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Abstract

With the advancement of machine learning, the analysis of earth observation data gained pop-
ularity in recent years. Especially the particularly difficult task of classifying hyperspectral
images showed significant improvements. A hyperspectral image is a 3-dimensional data cube,
where two dimensions have spatial information and one dimension has spectral information
about the electromagnetic wavelengths. Its high information density allows for a much more
detailed analysis of the sensed data compared to RGB images. Through classification, we assign
hyperspectral images’ pixels to a set of classes and can identify materials or objects of interest.
In this thesis, we explore the application of a novel form of Machine Learning, Quantum Machine
Learning, on the Pavia University hyperspectral image dataset. Quantum Machine Learning
uses quantum algorithms to either speed up existing machine learning subroutines or to develop
methods that have a higher capacity and expressibility than classical machine learning meth-
ods. We explore several forms of classical image representations on a quantum computer and
design three quantum machine learning algorithms to perform pixel-wise hyperspectral image
classification. Two of the three methods use quantum kernels to implement a quantum version
of the support vector machine and the third is a quantum neural network. We implement these
methods using the PennyLane framework and show that they classify with similar accuracy as
a classical support vector machine benchmark. Since we use quantum simulators, the results
have no immediate implications on the models’ performance but rather demonstrate that they
are feasible.
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Zusammenfassung

Mit den Fortschritten des maschinellen Lernens hat die Analyse von Erdbeobachtungsdaten in
den letzten Jahren an Popularität gewonnen. Vor allem bei der besonders schwierigen Aufga-
be der Klassifizierung von Hyperspektralbildern wurden deutliche Verbesserungen erzielt. Ein
Hyperspektralbild ist ein dreidimensionaler Datenwürfel, bei dem zwei Dimensionen räumliche
Informationen und eine Dimension spektrale Informationen in Form von elektromagnetischen
Wellenlängen enthalten. Seine hohe Informationsdichte ermöglicht im Vergleich zu RGB-Bildern
eine viel detailliertere Analyse der erfassten Daten. Durch Klassifizierung ordnen wir die Pixel
von Hyperspektralbildern einer Reihe von Klassen zu und können so Materialien oder Objekte
von Interesse identifizieren. In dieser Arbeit untersuchen wir die Anwendung einer neuarti-
gen Form des maschinellen Lernens, des Quanten-Maschinenlernens, auf den Hyperspektral-
bilddatensatz der Universität Pavia. Quantum Machine Learning nutzt Quantenalgorithmen,
um entweder bestehende Subroutinen des maschinellen Lernens zu beschleunigen oder um Me-
thoden zu entwickeln, die eine höhere Kapazität und Ausdrucksfähigkeit haben als klassische
maschinelle Lernmethoden. Wir erforschen verschiedene Formen klassischer Bilddarstellungen
auf einem Quantencomputer und entwickeln drei Quantenalgorithmen für maschinelles Lernen,
um eine pixelweise Klassifizierung hyperspektraler Bilder durchzuführen. Zwei der drei Me-
thoden verwenden Quantenkernel, um eine Quantenversion der Support-Vektor-Maschine zu
implementieren, und die dritte ist ein neuronales Quantennetzwerk. Wir implementieren diese
Methoden mit Hilfe des PennyLane-Frameworks und zeigen, dass sie mit ähnlicher Genauig-
keit klassifizieren wie eine klassische Support-Vektor-Maschine als Benchmark-Methode. Da wir
Quantensimulatoren verwenden, haben die Ergebnisse keine unmittelbaren Auswirkungen auf
die Leistung der Modelle, sondern zeigen vielmehr, dass sie funktionieren.

iii



Ich versichere an Eides statt, dass ich diese Masterarbeit selbständig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe. Alle wörtlich oder inhaltlich übernomme-
nen Stellen habe ich als solche gekennzeichnet. Die vorliegende Arbeit wurde weder in der
vorliegenden noch einer modifizierten Fassung einer dritten, in- oder ausländischen Fakultät als
Prüfungsleistung, oder zum Erlangen eines akademischen Grades vorgelegt.

Datum Antonius Benedikt Anani Scherer

Antonius Scherer
08.09.2022







Contents

1 Introduction 1

2 Application Domain 3
2.1 Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Hyperspectral Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Background 9
3.1 Elements of Quantum Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Elements of Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Quantum states and observables . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Transforming Quantum States and Measurement . . . . . . . . . . . . . . 15
3.2.3 Quantum Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Quantum Embedding of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Classical and Quantum Data . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Universal Embedding Techniques . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Quantum Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Quantum Machine Learning 25
4.1 Variational Quantum Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Quantum Kernel methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Theoretical Foundation of Kernel Methods . . . . . . . . . . . . . . . . . 28
4.2.2 Quantum Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Quantum Image Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Methodology 37
5.1 Quantum Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



5.2 Quantum Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Implementation 51
6.1 Pavia University Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Spectral classification methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusion 57

Bibliography 59

List of Figures 65

List of Tables 68



Chapter 1

Introduction

The search for patterns in data has long gone hand in hand with technological advances. Al-
though scientists and especially mathematicians have developed methods to describe data long
before computational devices were discovered, recent years have shown stepwise improvements
in the development of such methods stemming from advances in hardware. Shortly after von
Neumann and Turing designed and built the first computer, the field of Machine Learning was
born [1], [2], [3], [4]. Machine Learning, a subfield of Artificial Intelligence, is the study of
algorithms that allow programs to automatically improve through experience and by anlyzing
patterns in data [5]. In the last 70 years, the hardware development followed Moore’s law
and the field of Machine Learning caught up with increasing computational power. The same
happened in the beginning of quantum computing, where machine learning was already seen
as one of the potential applications. Especially the theoretical work of Seth Lloyd laid down
the fundamentals of what is now known as the first wave of quantum computing [6], [7], [8].
During that time the theorists focused on methods that would speed up existing machine learn-
ing subroutines. A notable example is the quantum basic linear algebra subroutines (QBLAS)
as proposed in [8]. QBLAS would speed up solving linear equations, finding eigenvalues and
-vectors, or performing Fourier transforms up to exponentially faster compared to their classical
counterparts. While it delivers a quantum speed-up theoretically, it heavily depends on large
fault-tolerant devices and hardware components such as QRAM, which by the time of writing
is beyond the horizon.1 Thus the devices available today are too small and too noisy. So one
of the leading figures in the field, John Preskill, coined them ’noisy intermediate scale quan-
tum’ devices, short NISQ, [9] and opened up the field to develop specific NISQ era algorithms.
Recently, IBM, Google, and other firms developed NISQ-era devices and platforms, enabling
researchers to develop and test their ideas. Quantum computing reached a peak when [10]

1Fault-tolerant means they either work with a fidelity that ensures secure, lossless computation or come with
error-correcting algorithms. QRAM is a not yet realized concept of random access memory of quantum data.
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CHAPTER 1. INTRODUCTION

presented the first experiment that showed a quantum advantage. Guided by this success many
fields like finance [11], chemistry [12], and image recognition [13] are now being explored for
potential quantum machine learning use-cases. The classification of remotely sensed data in
Earth Observation is an especially interesting use case for quantum machine learning [14] [15].
Particularly a subset of EO-data, hyperspectral images. They can be viewed as a 3D data cube,
where two dimensions have spatial information and one dimension has spectral information in
the form of intensity values for given electromagnetic wavelengths’. Hyperspectral images have
a particularly high spectral resolution which can be used to precisely classify the composition
of an object and developing accurate classification models for hyperspectral images would have
a huge impact on many sciences [16].

Scope of thesis In this thesis, we explore several methods to represent classical hyperspectral
images on a quantum computer and design three NISQ-era algorithms for pixel-wise classifica-
tion. Two of them will use quantum kernel methods and a classical support vector machine,
while the third is a quantum neural network. We implement them using the PennyLane frame-
work, which we also optimize for our use case. The goal of this thesis is to show that quantum
kernel methods and a quantum neural network are indeed implementable for hyperspectral
data and that classification of a benchmark dataset delivers comparable results to basic clas-
sical machine learning methods. Since we use quantum simulators to run our circuits, we are
not interested in the exact accuracy of our classification and any potential implications for a
quantum advantage.

Structure of the thesis We will first explain the application domain, namely image pro-
cessing for remote sensing and hyperspectral images, in Chapter 1. We then lay out the funda-
mentals of quantum computing in Chapter 2, followed by an introduction to quantum machine
learning and its application within image processing in Chapter 3. Chapter 4 describes the
core methods we use to perform pixel-wise classification for hyperspectral images and Chapter
5 shows their implementation. Chapter 6 summarizes the thesis and gives an outlook on future
research in the field.
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Chapter 2

Application Domain

The following chapter defines the application domain of this thesis. Since we classify remotely
sensed hyperspectral images with quantum computing, we first define the term remote sensing,
explain hyperspectral images and then give some background on classical machine learning.

2.1 Remote Sensing

The data acquisition of an object without making physical contact is known as remote sensing. It
is mostly used to gather information about our and other planets. Remotely sensed data, which
is usually a measurement of certain electromagnetic waves, is acquired through either space- or
aircraft. Here, we distinguish between active and passive methods, as seen in Figure 2.1. While
passive remote sensors solely rely on measuring electromagnetic waves emitted or reflected from
an object, active sensors have their own source of energy to illuminate the object. A common
camera for example is a good example of a passive sensor, while radar is a typical active sensor
method. In general, there is a vast variety of remote sensors. It ranges from active sensors
like LiDar, synthetic aperture radar or radar to passive sensors which mostly concern classical
imaging, multi- or hyperspectral imaging. With recent advances in optical sensor technologies,
hyperspectral imaging has become more and more important. Its application ranges from land
cover classification to medical imaging, providing more information which also leads to new
challenges.

2.2 Hyperspectral Image

A hyperspectral image is a 3D data cube that holds 2-dimensional spatial information and
1-dimensional electromagnetic spectral information as pictured in Figure 2.2a. To produce
the image, the respective sensor measures the intensity of the radiant flux. More precisely, it
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(a) Passive Sensor (b) Active Sensor

Figure 2.1. (a) Passive sensors detect the reflection of the sunlight from the object. (b) Active
sensors have their own source of energy to illuminate the object.

(a) Hypercube (b) Spectral signature

Figure 2.2. (a) 3-dimensional hypercube representation of the Pavia University dataset show-
ing the RGB image and its spectra (b) The spectral signature shows the normed
reflectance intensities of the respective bands. This signature was randomly sam-
pled from the class meadows within the Pavia University dataset.

measures the emitted and reflected light (electromagnetic waves) of the object or surface in the
pixel and belongs therefore to the passive remote sensing devices. The captured size of a pixel
on the surface is called the spatial resolution, while the captured wavelength and the number of
bands are considered the spectral resolution. Each holds continuous spectral bands, in contrast
to multispectral or RGB imaging that measures spaced spectral bands. An example is given
in Figure 2.2b. Since certain materials have specific spectral signatures, a hyperspectral image
potentially carries information about the composition of each pixel. In hyperspectral image
classification, we try to assign each pixel either a single class or a composition of classes. So in
contrast to classical image classification, we do not look at the whole image, but rather at single
pixels and find patterns. Hence the often used term pixel-wise classification. Nevertheless, the
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spatial component of a hyperspectral image is getting more and more important, especially in
the realm of convolutional neural networks. Even though the dimensions in the hyperspectral
hypercube do not have the same physical displacements, we can perform a linear operation on
a 3-dimensional subset. This is because all values within the hypercube are displayed by the
same values [16]. Like most remotely sensed data, one also needs to deal with atmospheric
disturbances and similar noise during the preprocessing phase. Fortunately, at least for the
benchmark dataset we are using, this is already done and not part of this thesis.
From an image processing perspective, hyperspectral images are very interesting due to their
high content of information. This allows for totally new applications, but also poses real chal-
lenges for nowadays technology. Especially the high dimensionality of the data requires a huge
computational effort, but also spectral variability, mixing pixels and unbalanced or limited
training data [17]. ”Hughes phenomenon” or the curse of dimensionality are very good exam-
ples of a problem strongly connected to hyperspectral images [18]. It describes the decrease
in classification accuracy when training data is scarce and the number of feature dimensions
increases. Before the rise of deep learning and the subsequent success of convolutional neural
networks [16], kernel methods [19] , support vector machines [20] or baysian methods [21] were
models of choice to perform pixel-wise classification.

2.3 Machine Learning

In the previous chapter, we have seen one application domain of machine learning and several
different model choices to perform a classification task for remotely sensed hyperspectral images.
This chapter presents an overview of the fundamentals of classical machine learning. Machine
learning is the use of methods or models that are able to learn by analysing patterns in data.
Mostly depending on the type of data we want to learn from, there are three main branches of
machine learning: supervised, unsupervised and reinforcement learning [22].

Supervised Learning A supervised classification task essentially learns a function f(x) s.t.
f(x) = y, where y are the labels for a given set of unlabeled data x. Sampling from the joint
distribution of P (X, Y ), the goal is to infer the probability s.t. P (Y = y|X = x).

Unsupervised Learning As the name suggests, in an unsupervised learning task, no labeled
training data is given. By exploiting the underlying pattern of the given training samples x ∈ X,
we want to approximate the real probability distribution P (X).

Reinforcement Learning Reinforcement learning is a reward-based learning method that
does not learn from given data or labels, but from self-generated data through a reward func-

5



2.3. MACHINE LEARNING CHAPTER 2. APPLICATION DOMAIN

tion. It is very prominent in fields like robotics, but not common in image processing.

What distinguishes machine learning from classical statistical methods like linear regression
is its non-linearity. It enables an artificial neural network to approximate any physical function.
So merging it with quantum computing might come as a surprise, as quantum computing itself
is inherently linear. However, we can overcome those linear challenges and introduce methods
that are at least as powerful as classical machine learning algorithms. In this thesis, we focus
on quantum supervised learning.

2.3.1 Machine Learning Methods

The objective of supervised machine learning is to find a model which minimizes a cost func-
tion given some provided data and subsequently minimizes the same cost function on unseen
data. Models can be used for classification and regression while being linear or non-linear. We
can identify four different classes of machine learning models: linear models, artificial neural
networks, graphical models, and kernel methods.

Linear models

Linear models form the theoretical foundation of machine learning and can mostly be found
in the form of linear regression. It outputs continuous values and performs a regression on
the given input data. To fit the model function, linear regression has usually some trainable
parameters. With the addition of post-processing the output e.g. by using thresholds, it can
also be used to perform classification tasks. Further, it is worth mentioning that linear refers
to the model being linearly dependable on its unknown parameters.

Artificial Neural Networks

Neural networks are the working horses of nowadays machine learning applications. Their cen-
tral building blocks are perceptrons, single neurons that have multiple weighted inputs and
perform a linear classification resulting in a binary output produced by a non-linear activation
function.1 Stacked perceptrons build layers that then construct a neural network, also called
multi-layer perceptrons. While perceptrons can build any function only over linearly separable
data, neural networks act as universal function approximations. Figure 2.3 usual structure is
one input layer, multiple hidden layers, and one output layer. Theoretically, only one hidden
layer is enough to full fill universality, but it usually requires many perceptrons in that layer.
The rise of deep neural networks in recent years shows only a moderate number of perceptrons

1The whole idea of perceptrons was inspired by the back then state-of-the-art model of neurons in the brain.
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Figure 2.3. Classical feed-forward neural network structure consisting of connected percep-
trons that form an input layer, several hidden layers and an output layer.

per layer suffice, but having many layers is often advantageous for many applications. As men-
tioned above, the activation function for each perceptron brings in the non-linearity. There are
multiple options for activation function, ranging from Sigmoid, rectified linear units (ReLUs),
or hyperbolic tangent, strongly depending on the problem one tries to solve. One of the biggest
problems for this network structure with non-linear activation functions is that they impose a
non-convex, non-linear optimization problem to find the fitting parameters. Such optimization
problems are usually very hard to solve and some variation of a gradient descent algorithm is
usually the method of choice when it comes to determining the optimal parameters. Especially
after the introduction of the backpropagation algorithm [23], which essentially calculates the
Jacobian of the parameters of the neural network by evaluating the model once and then pass-
ing its partial derivatives back through the network. It is a very efficient implementation to
calculate the gradients of the network, so important that even with nowadays available compu-
tational power we are not able to train most of the models in use otherwise. We will see later
that the general structure of a neural network is nearly identical to the one of a variational
quantum circuit.

Graphical models

Next, we quickly introduce graphical models. Graphical models are probabilistic models that
use graphs to express the structure and dependencies of random variables. One of its most
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prominent applications is Bayesian networks. A chronically underdeveloped field in machine
learning that has huge potential in the future. Here, quantum computers might be advantageous
since due to their probabilistic nature, especially inference might be very easy.

Kernel methods

Kernel methods are ways of calculating distances in some feature space, which is given through
a feature mapping from the classical to the feature space. Kernel methods are often used for
classification algorithms that rely on distance measurements such as support vector machines
or k-nearest neighbors. Contrary to neural networks, they are guaranteed to find the optimum
due to the convex nature of their underlying optimization problem. Unfortunately their com-
putation is often very hard, which made it unpracticable after the rise of deep neural networks.
Nevertheless, its theory is still very important today and it will become clear that kernel meth-
ods are strikingly similar to quantum machine learning methods and at least partly efficiently
implementable on a quantum computer.

2.3.2 Applications

In this thesis, we are in the realm of remote sensing. A field that would not exist in its
current structure without the help of machine learning. Remotely sensed data is usually known
for its complex nature and its sheer size. For most applications, without the help of aided
classification and segmentation, the number of humans required to fulfill a similar task would
just be unbearable. With the help of machine learning, we can monitor our earth in real-time,
evaluate the risk of fire, risk of famines, human rights in conflict zones, or the impact of the
climate crisis. Many challenges found a solution in recent years, but they either opened the
door for new requirements or they often pointed in a direction of potential requirements.
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Chapter 3

Background

Since quantum computation is an unknown field for many computer scientists and fundamen-
tally differs from classical computational theory, we go into detail about the elements of its
nature and the potential advantages of its use. We also go one step further and lay out the fun-
damentals of the core methodology we are using, quantum machine learning. It is the science of
implementing machine learning techniques on quantum computers with a potential advantage
over classical machine learning models. Lastly, we give a summary of the field of image process-
ing for remotely sensed data. In particular, we define what hyperspectral images are and how
they are currently processed and classified on classical computers. Thus the following section
discusses the elements of quantum theory and provides necessary background knowledge in the
area of quantum computation and how to embed classical data on a quantum circuit.

3.1 Elements of Quantum Theory

Richard Feynman famously said that everything about quantum mechanics can be explained
with the double slit experiment [24]. The setup of the double slit experiment is fairly easy.
We have a source that emits photons sequentially, a barrier that has two narrow slits, and a
wall behind the barrier that detects incoming photons. As shown in Figure 3.1, after counting
a certain number of photons, we receive a density pattern that shows that some areas are
more likely than others to be hit by a photon. Contrary to common conception, the pattern
alone is not the weird part. It is the difference between the single and the double slit pattern.
Coming from basic probability theory, we would expect that the probabilities of the single-slit
experiments would just add up to the double-slit pattern. But it does not. There are now
photons in areas where no photons had been before and vice versa. It gets even weirder if
we try to measure the photons before they hit the barrier. It resolves in Figure 3.1, which
shows the collapse of the double-slit pattern into the two single-slit ones. This leakage of
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a) b) c)

Figure 3.1. Double slit experiment: a) photon pattern with one slit b) photon pattern with
double slit c) photon pattern with double slit and measurement

information on the quantum system to the outside is known as decoherence and is one of the
reasons why building quantum computers is so difficult. In the above example, decoherence
was purposely introduced to perform the measurement. But to build a quantum computer,
we need to actively shield the quantum systems from the environment such that information
can not be leaked. Physics is mostly about predicting future measurement outcomes when
performing certain experiments and physicists in the early 20th century introduced complex
numbers to describe the randomness of what they saw.1 Each possible configuration of an
isolated quantum system is given an amplitude α, which describes its probability of measuring
it. The amplitudes are complex numbers with a real and an imaginary part, which can be either
positive or negative.2 More precisely, the probability of an outcome is the squared absolute value
of the amplitude. This is also commonly known as the Born Rule:

P ∈ [0, 1] = |α|2 = Re(α)2 + Im(α)2 (3.1)

The fact that the amplitudes are complex leads to the possibility of interference. Contrary
to classical randomness, adding two probabilities can not only add to each other but can also
cancel each other out. Subsequently, this produces the patterns as in Figure 3.1 and is one of
the essences of quantum mechanics [27].

1It was believed by many physicists that complex numbers were merely math sugar which made things easier,
but not essential to the theory itself. Meaning that everything can also be described by real numbers. This
was falsified by recent experiments in [25] meaning that complex numbers are inherently important for quantum
mechanics.

2Interestingly, this leads to the existence of negative probabilities. Something that is intuitively hard to
understand. If the reader is further interested in this topic, I recommend [26].
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3.2 Elements of Quantum Computation

The Church-Turing thesis can be seen as the foundation of the theory of computer science.
Developed by Alan Turing [28] and Alonzo Church [29] in the 1930’s, it states, that every
physical process can be simulated by a Turing machine. We can also reformulate it into:

A Turing machine (or lambda calculus) can simulate every mechanical computer.

In the following years, this thesis was strengthened by a theoretical computer scientist who
thought that the Turing machine was at least as powerful as any other model of computation.
This leads to the extended version of the Church-Turing thesis:

Every physical process can be simulated efficiently using a Turing machine.

This statement seems remarkable. One familiar with the building blocks of a Turing machine
might think that it is a rather bold statement given the complexity of nature itself. To many,
especially physicists, it seemed unintuitive to believe that such a mechanical structure would be
able to simulate any physical process efficiently. So the question was risen, can we challenge this
thesis? Or is it possible to derive an even stronger formulation of the Church-Turing thesis? In
1981, the aforementioned physicist Richard Feynman was the first person who openly suggested
that we might need a quantum computer to simulate quantum systems [30]. The idea was
further developed by David Deutsch in 1985 [31], who (tried) to define a computational device
that could simulate any physical system efficiently.3 Deutsch’s universal quantum computer is
the prototype of the model of quantum computation that is most often used nowadays. To
reformulate it in terms of the above discussed Church-Turing theses:

Is there a problem that can be solved efficiently by a universal quantum computer
but not by a probabilistic Turing machine?

It was Peter Shor in 1994 who delivered one of the first extensions to David Deutsch’s model.
He proposed an algorithm in [32] that would solve the problem of finding prime factors of
an integer efficiently using a universal quantum computer. A problem for which to this day,
no efficient classical algorithm is known.4 Another step forward was made by Lov Grover in
1995 [34]. He proposed an algorithm that finds an element in an unsorted list in sub-linear
time, more precisely O(√n). A quadratic speedup compared to the classical solution of going

3For completion, the quantum computational model was not the first computational model that challenged
the extended Turing thesis. In the 70s the Solovay-Strassen test for primality was introduces. It uses randomness
in its algorithm to determine whether an integer is prime or a composite with certainty. A problem for which
no efficient classical algorithm is known. That leads to the discovery that an algorithm with access to a random
number generator can solve certain problems efficiently that a classical deterministic Turing machine can not.

4Shor’s algorithm is especially important and gained widespread recognition because many of our encryption
techniques are based on the difficulty of solving this problem [33].
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through the whole list and therefore has the complexity of O(n) where n is the number of
elements in the list. In comparison, Shor’s algorithm delivers a potential exponential speedup
in comparison to any classical known algorithm. Here, theoretical computer science or more
specifically computational complexity theory gives us the overall motivation to find quantum
algorithms.

3.2.1 Quantum states and observables

To understand quantum computing, we need to understand its core building blocks. The fol-
lowing is based on Chapter 1 in [35], which we recommend for further studies of quantum
computation and information. In classical computation and digital communication, the basic
unit of information is the bit. It is a binary logical state usually taking either the values 0 or
1. Its physical implementation is usually done by a two-state device such as a transistor. In
quantum information theory, the basic unit of information is a quantum bit or qubit.5

Qubit

As the classical bit, a qubit can also be in the ground states |0〉 and |1〉, here notated by the
Bra-Ket formulation. A quantum system is described by a unit vector in a complex vector
space CN , the so-called Hilbert space H. For now, we deal with discrete quantum systems
where N = 2, so following a measurement we can only land in two possible basis states with a
certain probability. So a qubit is a pure quantum state described by a normalized state vector
|ψ〉. Given the two basis vectors |0〉 and |1〉, the qubit is in a general superposition,

|ψ〉 = α |0〉 + β |1〉 =



α

β



 (3.2)

with {α,β} ∈ C and normalized as

|α|2 + |β|2 = 1. (3.3)

The Bra-Ket or Dirac notation, named after its famous inventor Paul Dirac, simplifies common

operations in quantum mechanics. While the Ket notations |0〉 =



1
0



 and |1〉 =



0
1



 refer to

the two basis states or vectors, the scalar or inner product of two states is simply 〈ψ|ψ〉, where
〈ψ| represents the entry-wise conjugate-transpose of a ket as a complex row vector. So for a
pure state 〈ψ|ψ〉 = 1, the norm of the ket, is true. The linear combination or superposition in
Equation 3.2 reflects an arbitrary direction in which the state vector points within the Hilbert

5A formalism coined by Ben Schumacher, one of the pioneers of quantum information theory[36].
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|ψ〉

x

y

z |0〉

|1〉

Figure 3.2. Bloch Sphere representation of a qubit state |ψ〉.

space. We can rewrite Equation 3.2 and create a three-dimensional geometric representation of
φ by such that

|ψ〉 = eiγ
(

cos θ2 |0〉 + eiϕ sin θ2 |1〉
)

. (3.4)

where eiγ is the global phase which we ignore since it has no observable effects6 and simply
write:

|ψ〉 = cos θ2 |0〉 + eiϕ sin θ2 |1〉 . (3.5)

θ and ϕ define a point in the so-called Bloch sphere, which is illustrated in Figure 3.2. Given an
n-dimensional quantum system, we can pick a basis B = {|0〉 , ..., |n − 1〉}. Every state vector
can then be expressed in this basis so that,

|ψ〉 =
n−1∑

j=0
cj |j〉 . (3.6)

c0, ..., cn − 1 are called coefficients and are complex numbers. Further, we pick our basis vector
such that they are orthogonal to each other and normalized,

〈ψm|ψn〉 = δmn =






1 m = n

0 m &= n.
(3.7)

δmn is referred to as the Kronecker delta symbol. Besides the already mentioned computational
6Even though the global phase does have measurable effects, it does not affect our form of computation and

is thus being ignored for simplicity.
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basis states |0〉 and |1〉, there are four other basis states that occur frequently in the literature:

|+〉 = |0〉 + |1〉√
2

|−〉 = |0〉 − |1〉√
2

|i〉 = |0〉 + i |1〉√
2

|−i〉 = |0〉 − i |1〉√
2

(3.8)

Density operator

So far, we described our quantum states with state vectors and simply used the Dirac notation.
We were able to do this because we assumed pure states, hence perfect knowledge of the de-
scribed state. In the absence of this knowledge, which is very common in quantum mechanics,
we are required to use an alternative, stochastic description of the quantum states, the density
matrix ρ. The density matrix of an arbitrary pure state |ψ〉 is defined as,

ρ = |ψ〉 〈ψ| , (3.9)

which is, for non-physicists, essentially the covariance matrix of the state |ψ〉. The |.〉 〈.|, or
”ket-bra”, notation is equivalent to an outer product of the two-state. We are now also able to
describe so-called mixed quantum states. A mixed quantum state is an ensemble of pure states,
which is with probability pi in the state |ψi〉. The density matrix for mixed states is given by,

ρ ≡
∑

i

pi |ψi〉 〈ψi| . (3.10)

This density matrix is now able to describe the uncertainty in which state the ensemble is.
Further, the trace of the density matrix must satisfy either tr(ρ2) = 1 for pure states or tr(ρ2) <

1 for mixed states.7 Another useful property is the partial tracing of subsystems. Given a density
matrix of two quantum systems A and B,

ρAB =





ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44




, (3.11)

we can partially trace out the two subsystems as mixed states so that,

trA {ρAB} =



 ρ11 + ρ33 ρ12 + ρ34

ρ21 + ρ43 ρ22 + ρ44



 and trB {ρAB} =



 ρ11 + ρ22 ρ13 + ρ24

ρ31 + ρ42 ρ33 + ρ44



 .

(3.12)

7In a very nice way, one can show this through Schwartz inequality.
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Multiple Qubits

We already got a glimpse of how a single qubit can potentially store and process a substantial
amount of information, but to harness the full potential of quantum information and compu-
tation we need to consider the exponentially growing space of multiple qubits. Given a two
qubit system, the four computational basis states are |00〉 , |01〉 , |10〉 , |11〉. We can describe the
joint state of the system of qubits with the tensor product as |0〉 ⊗ |0〉 = |00〉. Considering the
definition in Equation 3.2, we write the state vector as a superposition of all four states so that,

|ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 . (3.13)

The complex coefficients αi are the state’s amplitudes and squaring them gives the probability
the state collapses in one of the corresponding classical states 00, 01, 10, or 11. As in Equation
Equation 3.3, the normalization condition requires that the sum of all the probabilities of all
possible states is 1.

3.2.2 Transforming Quantum States and Measurement

After introducing the basic units of information in quantum computing, we now describe how
to manipulate them to perform computation. To perform quantum computation, we need to
manipulate quantum information and therefore the state of a qubit. This is done by quan-
tum logic gates, whose functionality is similar to classical gates. A quantum gate is a linear
transformation of a quantum state. To model computation, we use quantum circuits which are
composed of quantum wires, that represent qubits and carry the information. Quantum circuits
are usually read from left to right and by applying quantum gates we can manipulate the qubits
within.

Single Qubit Gates

Single qubit gates can always be described by 2x2 unitary matrices, so that for every quantum
gate U , U †U = I, where U † is the adjoint of U. Potentially every unitary 2x2 matrix can be
a quantum gate on a single qubit state and since the state of a qubit can be represented as a
vector in the Bloch sphere, a quantum gate can be seen as a rotation of this vector. To give an
example, we introduce one of the basic quantum gates, the X-gate. On a computational basis
state, it acts similar to the classical NOT gate,

X |0〉 = |1〉

X |1〉 = |0〉

15
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Gate Circuit Representation Matrix

X X

[
0 1
1 0

]

Y Y

[
0 −i
i i

]

Z Z

[
1 0
0 −1

]

H H
1√
2

[
1 1
1 −1

]

Figure 3.3. Basic single qubit gates, rotating around the X, Y and Z axis of the bloch sphere
as well as the Hadamard gate (H). Shown are also the representation in a circuit
and their matrix representation.

Further, it acts linearly on the superposition in Equation 3.2,

X(α |0〉 + β |1〉) = α |1〉 + β |0〉 (3.14)

For a more comprehensive overview of single qubit quantum gates and their circuit and matrix
representations see Figure 3.3.

Observables

But how can we perform a measurement? To understand this, we need to learn about observables
and their expectation values. Observables are Hermitian operations in Hilbert space. They are
the quantities measured when we want to extract information after we do an experiment or our
above stated computations. An operator A is Hermitian if,

A = A†. (3.15)

Further, given a quantum state |ψ〉, the expectation value is given by,

〈A〉 = 〈ψ|A|ψ〉 . (3.16)
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The expectation value of the observable A is defined as the probabilistic expected value of its
measurement in a certain state. We can also define the expectation value of A through calcu-
lating the trace of the density operator. Here we define a density operator ρ as the projection
|ψ〉 〈ψ| and get the expectation value through,

〈A〉 = Tr(Aρ). (3.17)

If we want to measure a given quantum state |ψ〉 = α |0〉 + β |1〉 in our computational basis, we
take the Pauli-Z operator and calculate its expectation value, so that

〈ψ| Z |ψ〉 = |α|2 − |β|2. (3.18)

The probability of receiving a specific measurement, say |0〉, is then, given the corresponding
projected eigenspace P0 = |0〉 〈0|,

p(0) = Tr(P0 |ψ〉 〈ψ|) = 〈ψ| P0 |ψ〉 = |α|2. (3.19)

Multi Qubit Gates

To make quantum computation universal and harness its full potential, we need a way for qubits
to interact with each other. Here we need quantum gates that act on two or more qubits. Given
the multi qubit state in Equation 3.13, we introduce the most basic two qubit quantum gate,
the CNOT gate. It is defined as,

CNOT = CX =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




⇒






|00〉 → |00〉

|01〉 → |01〉

|10〉 → |11〉

|11〉 → |10〉

(3.20)

It sets the first qubit as control and if and only if it is the computational ground state |1〉,
applies an X-gate on the second qubit. We can rewrite this as,

|x〉 |y〉 → |x〉 |x ⊗ y〉 . (3.21)

Here ⊗ acts as addition modulo 2. To get a comprehensive overview of multi-qubit gate resp-
resentation see Figure 3.4.
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Gate Matrix Circuit Representation

CNOT
•





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





SWAP
×

×





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





CCU

•

•

U





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 U00 U01
0 0 0 0 0 0 U10 U11





Figure 3.4. Basic multi qubit gates: CNOT, the controlled NOT gate; SWAP, swaps the state
of two qubits and CCU, controlled-controlled U gate that controls on two wires
and then applies an arbitrary unitary U on the third wire.

3.2.3 Quantum Processing Unit

We execute quantum circuits on a quantum processing unit (QPU). A QPU describes the physi-
cal implementation which performs quantum computation. In contrast to classical computation,
a QPU can come not only in different hardware types but also with different quantum com-
puting paradigms. For this thesis, we choose the discrete quantum gate mode. A universal
quantum computing paradigm that already showed some recent proof of advantage [10], has
commercially available implementations [37] and has the overall advantage of being conceptual
very similar to classical circuit models. A QPU can also run hybrid quantum-classical circuits
that contain parameters that are optimized using a classical feedback loop. Such a scheme is
pictured in Figure 3.5.
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QPU
x

update

y

Figure 3.5. Quantum processing unit with input x, parameters θ and output y. The QPU
runs quantum circuits, but its parameters can be optimized classically.

3.3 Quantum Embedding of Data

So far, we presented the basic model of quantum computation but did not think about what
kind of information we wanted to process. The following section is solely dedicated to different
ways of encoding information into a quantum state so that it is computable in a meaningful
way.

3.3.1 Classical and Quantum Data

In quantum computing and especially quantum machine learning, the embedding of data is one
of the most crucial steps within the overall algorithm. As we have seen before, we can have four
different ways of quantum computation. We could either use quantum data on a quantum or
classical device or use classical data on a quantum or classical device. While quantum data on a
quantum device is the one setting that is expected to have the biggest impact [38], we will keep
it an open research question in the end since its implementation would overshoot the current
thesis. We will concentrate on the most common case where we use classical data on a quantum
device. To be more precise, we want to find a way to encode classical data as quantum states
in a Hilbert space through a so-called quantum feature map. Given a classical feature vector
x, we want to find a set of gates that represent its information in a quantum state |ψx〉. Since
embedding is usually a bottleneck in quantum computation, it will also be a central part of this
thesis.

3.3.2 Universal Embedding Techniques

We define two categories of universal quantum feature maps for classical data, parametrized and
non-parametrized. The difference is straightforward. Given some classical data x, we define the
non-parametrized embedding |x〉 as an unitary U(x) acting on the computational basis state
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|0〉 so that,
|x〉 = U(x) |0〉 . (3.22)

The parametrized embedding acts in the same way with the difference, that the unitary U(x, θ)
also depends on a set of freely tuneable parameters θ,

|x〉 = U(x, θ) |0〉 . (3.23)

In the following, we will present different schemes for non-parametrized embeddings. Parametrized
embeddings will be shown in the quantum image presentation section and the kernel section.

Basis Embedding

Basis embedding is the most basic and straightforward way to represent classical (binary) data
as a quantum state. Given a classical, 4-bit feature vector x = 1100, we simply represent it
by 4-qubit state |1100〉. So we use the two computational basis states to embed the classical
binary information, which allows us a direct mapping. It also means that, as a lower bound,
we need at least as many qubits as we have bits in the feature vector x. But we can use the
Hilbert space and therefore the superposition to embed an entire dataset. So considering a
Dataset D which consists of M N -dimensional feature vectors, we have a specific feature vector
x(m) = (b1, ..., bN ) with bi ∈ {0, 1} for i = 1, ..., N . With binary precision, we can now represent
the entire dataset as a superposition of N qubits so that,

|D〉 = 1√
M

M∑

m=1
|x(m)〉 . (3.24)

The number of qubits grows linear with the number of bits.

Amplitude embedding

Another common embedding technique is amplitude embedding[39]. Here we take normalized
classical data and encode it into the amplitudes of a quantum state, which is especially suited
for floating point data. Broadly speaking, we prepare a quantum state in a way that the
amplitude of every computational basis state represents a value in our feature vector. Given
an N -dimensional data point x, we need a n-qubit quantum state |ψx〉 so that N = 2n. |ψx〉 is
then defined as the sum of all features in x, represented as the amplitude of the corresponding
i-th computational basis state αi so that,

|ψx〉 =
N∑

i=1
αi |i〉 . (3.25)
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For amplitude encoding to work, we need to make sure to normalize the feature vector |α|2 = 1
and potentially pad the input data if N is not a multiple of 2n. As a lower bound, amplitude
encoding requires at least log(N) qubits, which translates to exponentially fewer qubits than
the basis embedding technique. But it comes with the cost of preparing the dense amplitude
vectors, which can be viewed as a space-time trade-off.

Angle Encoding

Another remarkable simple, yet very effective way of encoding is angle encoding. Through the
use of a single rotation gate R ∈ {Rx, Ry, Rz}, we encode each datapoint directly in an angle.
The resulting state is given by,

|x〉 =
n⊗

i

R (xi) |0n〉 . (3.26)

The slightly different notation ⊗ represents a tensor product of the n qubits present. The
angle encoding is desirable for NISQ-era devices for two reasons. Firstly, it is hardware efficient.
Meaning its implementation on real quantum hardware does not require much computational
overhead and is, therefore, comparable efficient to implement. Further, rotation gates are
usually within the set of native gates for many quantum computers. Secondly, due to its
bijective mapping of qubits and features, we achieve a sub-polynomial depth of the circuit in
the number of features.8

Within angle encoding, we can even go one step further. By exploiting the relative phase
degree of freedom, we are able to encode two features per qubit. This is known as dense angle
encoding.[40] Given a single, arbitrary angle encoding of one qubit |ψ〉, we can define this as,

|ψ〉 = cos(x) |0〉 + sin(x) |1〉 . (3.27)

Dense angle encoding now makes use of the relative phase, so that,

|ψ〉 = cos(πx1) |0〉 + e2πix2sin(πx1) |1〉 . (3.28)

IQP Encoding

IQP or Instantaneous Quantum Polynomial time is a class of commuting quantum computations
that are generally hard to simulate classically up to a constant additive error. IQP encoding
schemes use data encoding circuits that fall into that class. One very general way of encoding

8Circuit depth corresponds to the coherence time of quantum hardware. This is essentially the maximum
possible duration of computation until the qubit collapses. A look at the currently publicly available IBM
quantum hardware reveals an estimated average of 100µs.
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a certain state |x〉 in the IQP style is,

|x〉 =
(
UZ(x)H⊗n)Γ |0n〉 , (3.29)

where UZ(x) is defined as,

UZ(x) =
∏

[i,j]∈S

RZiZj (xixj)
n⊗

k=1
Rz (xk) . (3.30)

The circuit is essentially a sequence of Hadamard gates, rotation gates, and a non-closing ring
of controlled rotations. As mentioned above, the rotations are arbitrary as long as the overall
circuit falls into the IQP class.

3.4 Quantum Computational Complexity

After setting the stage with a basic overview of quantum computing, let us have a look at the true
motivation for why quantum computing might be worth the effort. In classical computational
science, we use complexity classes to group problems by their hardness.9 Our measurement
is the scaling of the resources it takes to solve the problem as a function of the input size n.
The accommodating notation is the so-called big O notation, which is part of the Bachmann-
Landauer or asymptotic notations and shows lower bounds on time or space resources. So for
linear runtime, we have O(n), quadratic O(n2), and so on. We use complexity classes to define
the groupings of the problems. The most well-known might be (i) P: problems that are solvable
in polynomial time by a Turing machine and (ii) NP: problems that can be solved in polynomial
time by a non-deterministic Turing machine and/or which are verifiable by a deterministic
Turing-machine in polynomial time. We have (iii) NP-complete: the ”hardest” problems in
NP, which are NP-hard, so that every problem in NP can be reduced to it in polynomial
time, and in NP. (iv) BPP: problems that are solvable by a probabilistic Turing machine in
polynomial time with a bounded-error probability. (v) BQP: problems that are solvable by a
quantum computer in polynomial time with a bounded error probability. It defines the quantum
analog to (iv). (vi) QMA: quantum Merlin Arthur complexity class contains problems that are
verifiable by a quantum computer in polynomial time. QMA is in a similar relation to BQP,
as NP is to P. Further, (vii) PSPACE: problems that are solvable using polynomial space, and
(viii) EXPTIME: problems that are solvable using exponential time on a deterministic Turing
machine. One of the central questions in theoretical computer science is how the classes are
in relation to each other, the most famous whether P ! = NP. We know for example that

9The following chapter is based on [41] and [42], references an interested reader might also enjoy getting a
more comprehensive understanding.
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EXPTIME

PSPACE

QMA

QMA - Complete

NP

NP - Complete

BQP

P

Figure 3.6. Potential relationships of complexity classes. Description of the classes are given
in Chapter 3.4

P ⊆ BQP. It is easily verifiable by looking at Shor’s factoring algorithm [43]. It factorizes
integers in polynomial time using a quantum computer, a problem for which no polynomial
time algorithm is known classically. Also, [44] showed that it is possible to simulate a quantum
computer classically with exponential time and polynomial memory, thus BQP ⊆ PSPACE.
Complexity classes are crucial when thinking about new algorithms and also perform well as
a sanity check whether potential advantages are realizable. A diagram of potential and widely
believed containment relations are shown in Figure 3.6. Nevertheless, so far, surprisingly little
is known about quantum complexity classes.10

10A rich and up-to-date database of all sorts of complexity classes can be found at https://complexityzoo.
net/Complexity_Zoo

23

https://complexityzoo.net/Complexity_Zoo
https://complexityzoo.net/Complexity_Zoo


3.4. QUANTUM COMPUTATIONAL COMPLEXITY CHAPTER 3. BACKGROUND

24



Chapter 4

Quantum Machine Learning

In Chapter 1, we introduced two waves of quantum machine learning. The first wave concen-
trated on speeding up existing machine learning subroutines. Theoretically, this has a speed up
over classical algorithms, but would require large, fault-tolerant quantum devices. Since such
hardware is beyond the horizon, a second wave of quantum machine learning evolved around
available NISQ era devices. There are several approaches on how such a NISQ algorithm might
look like, but the most famous ones are based on Variational Quantum Circuits (VQC) [22],
[45]. Instead of fixed quantum gates, VQCs have parametrized quantum gates that are trainable,
which allows them to incoporate the existing noise. They became prominent with the introduc-
tion of the variational quantum eigensolver algorithm (VQE) and the quantum approximate
optimization algorithm (QAOA) [46], [47]. VQE was especially interesting for quantum chem-
istry use cases, while QAOA was developed to solve combinatorial optimization algorithms.
One should not underestimate the impact of those to algorithms, because even though they
still lack a proof of superiority, they mainly drove the industry interest in quantum computing.
Moreover, it was also the trigger for the second wave of quantum machine learning, the direct
use of quantum circuits as machine learning models [48], [38]. The subsequent chapter will
introduce variational quantum algorithms and kernel methods, and conclude the chapter with
a section on quantum image representations.

4.1 Variational Quantum Algorithms

Throughout this thesis, we focus on the previously mentioned second wave of quantum machine
learning. We accept the presence of noise in our quantum devices, the limitation of qubits and
coherence time and therefor work with two NISQ era approaches.
Firstly, we describe how quantum computing and especially quantum machine learning is closely
related to Kernel methods. We explain the idea behind kernel methods, how and why we can
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|0〉

Sx Uθ

!!!

x Input ⇒ ... ... ... ⇒ Output y

|0〉 !!!






Figure 4.1. General structure of a variational quantum circuit consisting of the feature map Sx

with input data x, a parametrized unitary Uθ with parameters θ and a subsequent
measurement f(σ) = y where f is the overall quantum function with measurement
in basis σ producing output y.

implement them on quantum computers, discuss their advantage and give an outline why they
might become more relevant in the future. Secondly, we extend the idea and show the remarkable
similarity between parametrized quantum circuits and neural networks. The two ideas are not
mutually exclusive, and we will see in the methodology section that both have their advantages
and can be used together to improve results.

A variational quantum circuit is a quantum circuit that contains freely tuneable, parametrized
quantum gates. The general structure of a variational quantum circuit is pictured in Figure 4.1.
Given an n−dimensional input vector x, we encode the data using a unitary Sx which acts as
a feature map using N qubits. The resulting quantum state ψ therefor only depends on the
input feature, so that |ψx〉 = Sx |0〉⊗N . The routine is also called state preparation and usually
acts on an unprepared qubit input register in the computational basis state. In rare cases, the
feature map also contains trainable parameters which we discuss in the following section. The
input data can be quantum or classical and the choice of the feature map heavily depends on
it and the classification task. Common feature maps are the previously discussed amplitude
or angle encoding. Following the state preparation, we apply the variational model or Ansatz
Uθ. The Ansatz computes the desired output of the model and consists of parametrized and
non-parametrized single- and multi-qubit gates. It is often applied in multiple layers, similar to
hidden layers of classical neural networks. The output is the expectation value of an observable.
The parameters are then optimized given a certain objective function. In NISQ-era algorithm,
the optimization is computed classically which coins the term hybrid quantum machine learning
algorithms. The optimized parameters are then fed back into the Ansatz and the new output
is again evaluated. Before we have a look at different forms of variational quantum circuits, let
us take a look at how parametrized gates look like and how we can extract gradients.
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Parametrized gates and the parameters-shift rule

One of the three basic single qubit parametrized rotation gate is the Rx(θ) gate,

Rx (θ) = e−iθσx/2 =



 cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2



 , (4.1)

which performs a rotation around the x-axis. The rotation angle θ is freely choosable so that
θ ∈ [0, 2π]. To extract the gradient of Rx(θ), we simple apply the so-called parameter shift rule
[49], [50]:

d

dφ
f (Rx(φ)) = 1

2 [f (Rx(φ+ π/2)) − f (Rx(φ− π/2))] , (4.2)

where f(θ) is the output of the variational circuit as a quantum function. It is important
to notice, that the actual gradients can be computed with the same variational circuit only
through slightly shifting the input parameters. Further, the parameter shift rule provides the
exact gradient and not an approximation. It also does not depend on very small shifts, as we
can see in Eq. 4.2. This is very crucial compared to other methods like the finite difference
method since NISQ-era devices have a hard time outputting reliable small changes.

Optimization

Precision in measurement is also important when we search for a suitable optimizer. We only
consider gradient-based approaches, but there are also gradient-free and hardware-aware ap-
proaches. In general, optimizing parameters in quantum circuits does not differ from the clas-
sical setting. But lack of precision increases the number of measurements that are required
to estimate a suitable mean value, an additional overhead we should consider when choosing
the optimizer.[22] We should also avoid methods that require high-depth analytical gradient
circuits and are prone to error since NISQ-era devices are of course noisy and coherence times
might not be long enough to construct such circuits. One of the biggest obstacles parametrized
quantum circuits suffer from are so-called Barren plateaus. Barren plateaus describe a very flat
optimization landscape which makes optimizing through gradient descent algorithms extremely
difficult [51]. The resulting local minima are believed to be partly introduced by noise [52], or
in our cases, since we work with noiseless simulators, by the circuit itself. [53]. It could be
mitigated through better parameter initialization.

Ansätze

The parametrized quantum circuit or ansatz is not only essential when it comes to optimization,
but also dictates the performance of the model. Primarily, it affects the convergence speed and
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the final distance to the model’s aim. We can distinguish two objectives when constructing an
Ansatz. They can either be problem-inspired or hardware-inspired. In general, an Ansatz acts
as a parameter θ depending unitary V (θ) on the prepared state |ψ〉 so that,

|ψ(θ)〉 = V (θ) |ψ〉 . (4.3)

Usually, a problem-inspired Ansatz is rooted in either the underlying physics of the solvable
problem or uses some properties of quantum mechanics to optimize the circuit. Famous and
often used Ansätze are the Quantum Approximate Optimization Algorithm (QAOA) [47] or the
Variational Hamiltonian Ansatz (VHA) [54]. Even though they solve problems theoretically
very efficiently, they are sometimes hard to implement. On the other hand, hardware-efficient
Ansätze try to optimize the circuits without violating hardware constraints. See [55], [56] or
[22] for more comprehensive reviews.

4.2 Quantum Kernel methods

Besides the variational quantum algorithms, kernel methods are on the verge to become very
important in quantum machine learning. The following chapter is based on a similarity of quan-
tum computing and kernel methods, closely following the paper of [57] with the title ’Quantum
machine learning models are kernel methods’.

4.2.1 Theoretical Foundation of Kernel Methods

First and foremost, kernel methods are similarity measures that solve machine learning tasks
by calculating the distance between data points. Those distances are then for example used
to compare new data points to training samples in a classification task.1 Common classical
methods to achieve this are k-nearest neighbor, which compares the distance to a k number
of the closest data points and classifies according to the most common neighbor, and support
vector machines, which find a linear separation of the data.

Linear Classification

To understand the purpose of kernel methods, it is worth reminding us of one of the simplest
binary classification techniques, linear classification. As the name suggests, it draws a line in
our data space to separate the data points into their respective class. Given the binary label
y = ±1, the input data x, the intercept term b and an orthogonal, direction determining vector

1Kernel methods are not only classification methods, but they also can replace every dot product in a machine
learning model which can be reformulated with dot products.
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w, we can formalize this classification task as,

y(x) = sign(〈w, x〉 + b). (4.4)

In the case of high dimensional space, w defines a hyperplane. In a more visual way, b defines the
position of the separating line or hyperplane, while w describes its direction. The dot product
then indicates on which ’side’ (±1) the corresponding datapoint is.
This linear classification states a simple and powerful classification tool but quickly loses its
accuracy and relevance when the data is not linearly separable. But through the application
of simple and genius linear algebra, we can increase the accuracy of this method also for the
non-linear case.

Kernel definition

Following [58], we first define a mapping of the data from its original set X to a space which
allows us to perform similarity measurement, the dot-product space H,

φ : X → H. (4.5)

As the name suggests, we subsequently also define a dot product k as our similarity measurement
in H, so that,

k : X × X → R and (x, x′) ! k(x, x′), (4.6)

with,

k(x, x′) = 〈φ(x),φ(x′)〉 ∀ x, x′ ∈ X. (4.7)

We call k the kernel and φ(x) the feature map, while H is our feature space. A kernel that
satisfies Equation 4.7 is also a positive definite kernel. This has far-reaching effects, as we do
not have to know the explicit form of the feature map and can operate on data through the
dot product by replacing 〈φ(x),φ(x′)〉 with the kernel evaluation k(x, x′), which is called the
kernel trick.[59] So in other words, through Equation 4.7 we do not have to compute the explicit
embedding, which is mostly very costly, but we can implicitly use the embedding through the
kernel. In terms of our linear classification task defined in Equation 4.4, we replace w with a
separating hyperplane in the feature space w′ and x with the feature map φ applied on it so
that,

y(x) = sign(〈w′,φ(x)〉 + b). (4.8)

We are now able to do a non-linear classification through a linear classification in the feature
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space. Combining it with the kernel trick, we can do it by simply computing the inner product
in the initial space while implicitly computing the inner product in the feature space. [60] gave
a good example in showing that for an embedding,

φ :



x1

x2



 !





x2
1√

2x1x2

x2
2



 , (4.9)

we can explicitly calculate the corresponding kernel:

k
(
x, x′) =

〈

φ



 x1

x2



 ,φ



 x′
1

x′
2




〉

= x2
1x′2

1 + 2x1x2x′
1x′

2 + x2
2x′2

2

=
(
x1x′

1 + x2x′
2
)2

=
〈
x, x′〉2 .

(4.10)

We can see that the through calculating the dot product (and squaring) in our original space,
we get the dot product in the associated feature space. As mentioned above, we usually do not
know the explicit feature mapping function and calculating it is also expensive, so making use
of the kernel trick is very useful. To explain the effect of the feature map, we can take a look
at another, more visual example.

XOR Example The XOR problem is straightforward: we have 4 datapoints situated in a
2D plane like given in Figure 4.2. The set of inputs is X = {(−1, −1), (−1, 1), (1, −1), (1, 1)}
with the respective outcomes of Y = {1, −1, −1, 1}. It is the exclusive OR operation known
in computer science, where we only receive a positive outcome if the input is different. In
Figure 4.2, squares and circles are representing the binary outcomes ±1 respectively. Given a),
we are not able to find a linear separation. But applying the feature map,

φ : R! → R" (4.11)

that maps,

x =



x1

x2



 → φ(x) =





x1

x2

x1x2



 (4.12)

30



CHAPTER 4. QML 4.2. QUANTUM KERNEL METHODS

Figure 4.2. (a) Linearly not separable XOR problem with 4 datapoints on a 2D plane (b)
The feature map projects the data into a 3D space, where we can now draw a
separating hyperplane.

with the associated kernel,

k(x, y) =





x1

x2

x1x2





T 



y1

y2

y1y2



 . (4.13)

As mentioned before, we do not need to know the explicit feature map, but we can simply define
a valid kernel associated with it. The result is the projected data in R3 as seen in Figure 4.2 b,
which is is now linearly separable.

Valid Kernels

To check whether a kernel is actually valid for a certain feature map, we can check the ’Mercer
condition’ with respect to the ’Gram matrix’. The ’Gram matrix’ K, or the kernel matrix given
x1, ..., xn, is defined as,

Kij = k(xi, xj), (4.14)

satisfies,
n∑

i,j=1
cicjkij ≥ 0 ∀ c1, ...cn ∈ R, (4.15)

namely if Kij is positive definite. Subsequently, a positive definite kernel is a kernel that outputs
a positive definite Gram matrix for elements in its original input set [58] [19].

Quantum Feature Map

Generally, we can say that every encoding of classical information on a quantum computer is
in fact a mapping from the classical input space to a quantum state space. If this state space is
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a Hilbert space, so that there exists an inner product for every pair of points within the space,
we can call this mapping a feature map. Luckily, our quantum state space is per nature always
a Hilbert space, and therefore we can generally say that encoding classical data on a quantum
computer is a data-encoding feature map or ”quantum feature map”. Following the literature
[38], we can either use Dirac vectors as feature vectors x → |φ(x)〉 or density matrices as feature
encoding states x → ρ(x). Pure quantum states can be described by both representations.
Mixed states on the other hand can only be described completely by density matrices, which
makes the second encoding method more universal. For Dirac vectors the inner product of
two vectors is defined by 〈φ(x)|φ(x′)〉 and for density matrices it is simply the trace so that
tr{ρ(x)ρ(x′)}. In our quantum computational model, the mapping itself happens through the
use of quantum gates that depend on the specific classical input x which can be described
through a Unitary U , so that,

|φ(x)〉 = U(x) |0〉 . (4.16)

In summary, we can say that like classical feature maps, our quantum feature map projects
from the classical input space to a higher dimensional quantum Hilbert space. We access the
quantum Hilbert space through measurement and ideally, this measurement is trainable.

4.2.2 Quantum Kernels

We are doing this, because quantum models are always linear in some feature space, regardless
if they are fault-tolerant or variational algorithms. Since the space we are mapping in is a
Hilbert space, we can calculate inner products within the quantum feature space. And as we
learned from classical kernel theory, we can use this to operate and train our quantum models
in low-dimensional space, while the model itself explores the high-dimensional feature space.
First, we need to define two quantum kernels that calculate the distance of two quantum states,
one for pure and one for mixed states. For two pure states {x, x′}, the distance is simply the
squared absolute of their inner product,

κ(x, x′) = | 〈φ(x′)|φ(x)〉 |2. (4.17)

For two mixed states, we need to take the trace of the product of their density matrices ρ(x)
and ρ(x′) so that,

κ(x, x′) = tr{ρ(x′)ρ(x)}. (4.18)

Further, with this kernel, we can define an alternative version of a feature space, the reproducing
Kernel Hilbert Space (RKHS). It is a feature space of functions that are identical to the one
observed in the respective quantum machine learning model and only depends on the kernel
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presented in Equation 4.18. If we, for example, want to minimize the cost function over the
space of our quantum models, we just need to minimize the cost over the RKHS of the quantum
kernel. We minimize by finding the optimal measurement and through the representer theorem
from above, we can show that those measurements can be written as kernel expansion in the
data. We skip this for now, but under further consideration of the regularisation, we can then
show that we can find the minima of a cost function that is used to train a quantum model solely
through the optimal encoding of the data.[38] In other words and in comparison to variational
models, we are guaranteed to find the global optima. In terms of optimization, its importance
very much depends on the structure of the underlying optimization problem. If the optimization
problem is convex, only one global optimum exists, which we then are guaranteed to find in a
finite number of steps. But if the problem has many local minima, finding the global minimum
might actually be not that important. Recent research might tend to the latter, which would
partially explain the success of deep learning models over kernel methods for similar tasks. One
should also consider the scalability here.

4.3 Quantum Image Representation

The following section deals with the essential methods to encode a classical image into a quantum
mechanical system. It is the image processing extension to chapter ??. A classical image is
usually defined as matrices of numbers that describe the intensity levels for each matrix entry,
a pixel. Images are usually rendered in three different ways: colored, grayscaled, or binary.
In a color image, each pixel has three ’channels’ corresponding to the intensity levels of the
three colors of the additive color model red, green, and blue. Every color can be described as
a mix of those three channels. In grayscaled images, there is only one channel that describes
the intensity value of each pixel. As the name suggests, the bounds for this intensity value are
either white or black, resulting in some shade of grey for every value in between. Lastly, the
most simple image form is the binary image that for example captures only black and white
pixels. A comprehensive review of Quantum Image Processing can be found in [61].

Qubit Lattice

The Qubit Lattice model was one of the first methods for representing images in a quantum
state. [62] In comparison to the other models, it does not convert digitally detected RGB or HSI
values to phases or amplitudes but imagines a certain machine that is capable of translating
the electromagnetic wave of input ’pixel’ to a quantum state of a qubit. Given the nature of a
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quantum system of the form,

|ψ〉 = cos θ2 |0〉 + eiγ sin θ2 |1〉 (4.19)

we can always find a real parameter θ that initializes qubits in a different state for different
frequency values of some monochromatic electromagnetic wave. Notably, this works also for
frequencies in other non-visible spectra. The image is then stored in a set of qubit lattices.
Each qubit lattice represents a copy of the image in which every pixel is substituted by a qubit
and in addition, we have k number of lattice ’copies’ to retrieve the information later. We can
see the qubit lattice method as a quantum-analog representation of a classical image. Since
it uses no immediate quantum effect, it requires quite a lot of qubits and is therefore widely
unused in current literature. But with the potential rise of photonic quantum computers and
quantum sensors to enable the aforementioned translating ’machine’, the algorithm and the
underlying idea might experience a revival.

Flexible Representation of Quantum Images

The Flexible Representation of Quantum Images method (FRQI) uses angle encoding to store
the respective image. The image as a quantum state can be written as,

|I(θ)〉 = 1
2n

2n−1∑

i=0
(sin(θi) |0〉 + cos(θi) |1〉) |i〉 . (4.20)

where,
sin(θi) |0〉 + cos(θi) |1〉 = |ci〉 . (4.21)

|i〉 and |ci〉 represent the position of the respective pixel and its intensity respectively. Here, the
method shows the FRQI for a grayscale pixel value. It is shown in [63] that the encoding can
be done in polynomial many steps with simple quantum operations. Next to its exponential
space reduction advantage, FRQI grants also a setup that allows fast image operations such
as geometrical transformations. Due to the use of real and not complex-valued coefficients,
FRQI is also able to accurately retrieve the original image. FRQI can be extended to represent
color or, more generally, multi-band images with the multi-channel representation for quantum
images (MCQI). It was also further optimized as FRQCI in [64] and IFRQI in [65].

Novel Enhanced Quantum Representation

With the classical trade-off of the number of qubits and the lengths of the circuit, the Novel
Enhanced Quantum Representation NEQR can achieve a quadratic speedup in preparing the
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quantum image, by using more qubits. Through entangling the color information, a 2n × 2n

image is stored with location information so that,

|I〉 = 1
2n

22n−1∑

y=0

22n−1∑

x=0
|f(y, x)〉 |yx〉 . (4.22)

Here, f(y, x) is the pixel intensity at position (y, x). Especially in the multi-band image cases,
NEQR comes in handier and can perform more complex operations. Like FRQI, NEQR got
improved since its introduction by [66] as INEQR and generalized by [67] and [68] as GNEQR
and CQIR, respectively.

Quantum Probability Image Encoding

o encode an image into a quantum circuit, QPIE uses basic amplitude encoding techniques to
store the pixel values and position. The number of qubits required for this method is given by,

n = /log2 N0, (4.23)

where N is the number of pixels. Through generating the superposition of the n qubits, the
number of represented pixel values is 2n. If the number of pixels is not equal to any 2n, we need
to pad the input image to ceil up to the next viable number of qubits. Let us take a simple
gray-scale 2x2 classical image first. We can define the image through its pixel intensities as,

I = (Iyz)N1×N2 . (4.24)

Ixy defines the pixel intensity at position (x, y) in an image made of N1 × N2 pixels. Like
amplitude encoding, QHED encodes the intensity values I as the respective amplitudes of its
pixel position state within the overall superposition spanned over n qubits. We achieve this
through normalizing the intensity value I so that we receive a normalized cxy for every Ixy,

ci = Ixy√∑
I2

xy

. (4.25)

The resulting quantum state is,

|(Img)〉 = c0 |00〉 + c1 |01〉 + c2 |10〉 + c3 |11〉 , (4.26)

with integer sub-script indices for c and ∑2n−1
i=0 ci = 1. Similar to amplitude encoding, QPIE ’fits’

n pixels into log(n) qubits, which could falsely be seen as some kind of compression. While it is
true that we compressed the input information from its classical to a quantum representation,
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we are not able to efficiently decompress back from quantum to classical. This would require
2n steps. But fortunately, our classical output can also be the result of an operation on our
quantum data and not the explicit processed input image itself.
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Chapter 5

Methodology

This chapter describes the core method we use to perform a pixel-wise classification of hyper-
spectral images with a quantum computer. We use a quantum neural network and a quantum
support vector machine to perform this task. For quantum neural networks, we define an am-
plitude efficient feature map and a strongly entangling Ansatz as our model. Both are hard to
simulate classically and optimized by using a classical feedback loop, whose classical methods
are also presented. Further, we present the classical support vector machine and lay out how we
integrate the quantum kernel. An overview of different quantum kernel methods is given and a
method to further improve performance through a projected quantum kernel is introduced. We
close the chapter by presenting an approach to further train a form of parametrized quantum
kernels and selecting a feature map.

5.1 Quantum Neural Networks

Generally, quantum neural networks combine the concepts of artificial neural networks and
quantum computing. There are several usages of the name, ranging from describing the first
efforts to model a quantum version of the feed-forward neural networks [69], quantum versions
of Boltzmann machines [70] or in general for variational quantum circuits. Note that all the
above-mentioned ways to implement a ”quantum neural network” fundamentally differ from
each other. In the concept described in [69], the authors imitate the same linear/non-linear
structure on a quantum computer that is present in a classical neural network through the
inclusion of linear layers and non-linear activation functions. Boltzmann machines are rather
graphical models that work as stochastic recurrent neural networks. Quantum computers work
here as a sampler, mainly due to their probabilistic nature.
Then there is the notion of quantum neural networks as variational quantum circuits. Here,
the term quantum neural networks refers more to the strikingly similar structure to classical
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1. 2. 3. 4.

|0〉

Sx Uθ

!!! → y

... ...

|0〉

Figure 5.1. Typical four steps of a quantum neural network: 1. State preparation, 2. Model
Circuit, 3. Measurement and 4. Postprocessing

|0〉 Ry(α0) • • •

|0〉 Ry(α1) Ry(α2) • •

|0〉 Ry(α3) Ry(α4) Ry(α5) Ry(α6)

Figure 5.2. Amplitude encoding scheme for n = 3 qubits. Given N = 8 datapoints, we require
N − 1 angles (α0, ...,αN−1) to encode the information into the amplitudes of 2n

states.

neural networks, than the mathematical proximity. We have encoding and hidden layers, as well
as parameters for which we need to find gradients. NISQ era algorithms are hybrid quantum-
classical algorithms, meaning that while the parametrized circuit is executed on a quantum
device or quantum processing unit, the parameters are optimized through a classical feedback
loop. The following describes the two parts in more detail and the corresponding methods we
are using to perform the desired classification.

Quantum Processing Unit

In our implementation of a QNN, the QPU will load the classical data onto quantum hardware
and compute a prediction value by the use a parametrized circuit and subsequent measurement.
To perform the classification of a hyperspectral image, the QNN is divided into four steps. The
following will describe the four steps and our methodological choice as well as its implementation.
Figure 5.1 can be seen as accompanying graphical support.

Step 1: State Preparation

We decide to use a variation of the previously presented amplitude encoding method, the Möt-
tönen state preparation [71]. Amplitude encoding methods have high popularity since we can
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develop algorithms that perform computations on 2n amplitudes with a polynomial number of
qubits n. Here we trade circuit-width against circuit-depth.1 For arbitrary state preparation,
the theoretical lower bound of depth is given by 1

n2n [38]. This is given by the fact that even
though we used the superposition over all qubits to represent our state space, we still need to
encode the classical data into every single amplitude. It is achieved through a series of expensive
controlled rotation gates, for which we can see an example implementation in Figure 5.2. The
Moettoenen state preparation essentially initializes the same state using a sequence of uniformly
controlled rotations, but in linear time and is therefore considered an amplitude efficient state
preparation. Depending on the structure of the data, we might also achieve polylogarithmic
runtimes with the number of features [72], [73]. It takes as input any real or complex-valued
vector x ∈ CN. We require the input to be normalized so that ∑

i |xi|2 = 1 and the number
of elements in x is a power of two. For most datasets, this is not the case. The length of x

can simply be solved by padding the input, that is, by adding arbitrary values like zero until
the next power of two is reached. Normalization is more difficult, since the distance between
data points can be distorted. We can circumvent this by embedding the data in a higher di-
mension, similar to distance preserving feature maps, which is achieved through padding the
data first. Given an input vector x1, ..., xN and the padding terms p1, ..., pM , we can define the
preprocessing as,

Norm = 1
√∑

i x2
i + ∑

j |pj |2
, (5.1)

so that,
(x1, .., xN )T → Norm(x1, ..., xN , p1, ..., PM )T . (5.2)

Further, padding and normalization prevent the input vector from being homogenous to the
encoded state vector and add additional dimension [48]. In summary, since our input data is
in the order of magnitude 2, we choose an encoding that minimizes required qubits. In that
way, we can fit all data of a hyperspectral image on a NISQ-era circuit, without the need for
dimensionality reduction.

Step 2: Model Circuit

Next, we select a model or Ansatz that resembles the expressibility of a neural network and
can classify the input. In addition, we want it to be low in-depth and wide in reach within
the Hilbert space. Such shallow quantum circuits show promising results as universal function
approximators and seem to be at least as easy to handle as classical neural networks [74],
[75] Here, we select the quantum equivalent to a fully connected layer, the strongly entangled

1Width and depth of a circuit describe the number of qubits and the number of gates respectively.
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|ψ0〉 R(θ) • R(θ) R(θ) • R(θ) R(θ) !!!

|ψ1〉 R(θ) R(θ) • R(θ) R(θ) •
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L1 L2

Figure 5.3. Strongly entangled layers Ansatz consisting of two blocks L1 and L2R(θ) are
rotation gates with an individual set of parameters θ = (φ, γ,ω) for every gate.
Fir this configuration only the first qubit gets measured.

layer. A strongly entangled layer is generic for shallow circuits that have the goal to maximally
entangle the input states through parametrized gates. We choose an architecture proposed in
[48]. As shown in Figure 5.3, the layer consists of two blocks. Each block is structured in
the same fashion: we have an all qubit spanning single qubit rotation gates R(φ, γ,ω) layer
and a layer of controlled rotation gates CR(φ, γ,ω). (φ, γ,ω) define the set of rotation angles
around the respective axis of the Bloch sphere. Those are ring-connecting in the first block and
oscillating as given in Figure 5.3 in the second block. The single qubit rotation gate is defined
as,

R(φ, γ,ω) = RZ(ω)RY (γ)RZ(φ) =



 e−i(φ+ω)/2 cos(γ/2) −ei(φ−ω)/2 sin(γ/2)
e−i(φ−ω)/2 sin(γ/2) ei(φ+ω)/2 cos(γ/2)



 , (5.3)

while the controlled qubit rotation is given by,

CR(φ, γ,ω) =





1 0 0 0
0 1 0 0
0 0 e−i(φ+ω)/2 cos(γ/2) −ei(φ−ω)/2 sin(γ/2)
0 0 e−i(φ−ω)/2 sin(γ/2) ei(φ+ω)/2 cos(γ/2)




. (5.4)

The rotation angles are thus our trainable parameters.
To verify the trainability, we can provide the gradient recipe for each gate. For R(φ, γ,ω), the
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recipe holds for every angle parameter so that,

d

dφ
f(R(φ, γ,ω)) = 1

2[f(R(φ+ π/2, γ,ω)) − f(R(φ− π/2, γ,ω))], (5.5)

and for controlled rotation gate CR(φ, γ,ω) we get,

d

dxi
f (CR (xi)) =c+ [f (CR (xi + a)) − f (CR (xi − a))] (5.6)

− c− [f (CR (xi + b)) − f (CR (xi − b))] . (5.7)

In both equations, f is the expectation value depending on the respective gate. Equation 5.6
additionally satisfies a specific parameter-shift rule as proven in [76]. Further, the variables
in Equation 5.6 are defined as a = π/2, b = 3π/2 and c± = (

√
2 ± 1)/4

√
2.2 While the

number of parameters is fixed for this layer structure, the number of layers is a changeable
hyperparameter. As a rule of thumb, we should choose the number of layers so that the number
of tuneable parameters matches the length of the feature vector [77].

Step 3: Measurement

In this case, we perform binary classification and Figure 5.3 shows the measurement of one
qubit, typically in the Z-basis with an expectation value that ranges form f(x, θ) ∈ [−1, 1].
Here one major difference between simulators and real quantum devices gets obvious. While
simulators can calculate an expectation value, quantum circuits can only be measured once and
produce either -1 or 1, a binary output. To get an equivalent estimation value, we need to run
the circuit a sufficient number of times and calculate the estimation value from the collected
samples. This overhead increases with the precision of the estimation value.

Step 4: Postprocessing

After sampling the estimation value, we simply plug the output in a threshold function so that,

f(x; θ) =





1 if E(x; θ) ≥ 0
0 else

(5.8)

So given a measurement in the Z-basis, we classify a given input as 1 if the expectation value
is above or equal zero and one if the expectation value is below zero.

2For further information on possible gates, state preparations and differentiable quantum methods, we rec-
ommend the documentation of the PennyLane framework.
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Summary

To summarize, in Step 1 we loaded the classical data onto the quantum computer via a state
preparation routine. This routine can be seen as a non-linear map, or feature map. In Step
2, we applied a unitary transformation in form of a strongly entangled Ansatz on the prepared
state. The unitary transformation acts as a linear layer, which is one of the core mathematical
differences from classical machine learning. Here, activation functions follow every layer to bring
in non-linearity. In discrete quantum machine learning, measurements are one of the few actions
that can introduce non-linearity. This turns Step 3 into a nonlinear layer with one neuron. We
now leave the quantum processing unit and discuss the classical feedback loop.

Classical feedback loop

The classical feedback loop has the task to optimize the models parameters. To achieve this,
we need to define a loss function, calculate the gradient and define an optimization method.

Loss function

As a loss function, we choose the least-square method. Essentially, given a dataset of tuples
consisting features and labels, the least square methods calculates the sum of the squared
substraction of predictions and labels so that,

LSM = 1
2

M∑

m−1
|f(xm, θ) − ym|2. (5.9)

Since the loss function does not need to be further computed on a quantum device, we also add
L1 or L2 regularization terms [38].

Gradient extraction

On a QPU, we can not directly extract the gradient, since we do not have access to the circuit
itself. But as presented in ??, we can make use of the parameter-shift rule. It calculates the
analytical gradient with little overhead. For cases where this is not possible, we can also use
finite difference or similar methods. There are also promising results using a quantum natural
gradient [78].
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Optimization Method

As an optimization method, we choose stochastic gradient descent. Classical gradient descent
updates parameters following the rule,

θ(t+1) = θ(t) − η∇L
(
θ(t)

)
. (5.10)

Stochastic gradient descent, given the step-size η and gt being a sequence of random variables,
is a small modification so that,

θ(t+1) = θ(t) − ηg(t)
(
θ(t)

)
. (5.11)

It is mostly preferred over classical gradient descent because it helps escape local minima, it
has better convergence properties and gt can be computed way more efficiently than L [48].

5.2 Quantum Support Vector Machine

After presenting methods concerning quantum neural networks, we come back to kernel meth-
ods. More precise, we show how we can use quantum kernel methods within support vector
machines (SVM) to perform classification tasks.

Step 1: Classification Method

To use kernel methods for classification, we integrate them into support vector machines. Sup-
port vector machines as kernel-based classification methods were introduced in the 90s and are
one of the best-known classification methods in machine learning[79], [80].3 They linearly sepa-
rate two classes by fitting a margin-maximizing hyperplane, which also leads to the equivalent
term of the maximum-margin classifier. The margin describes the distance from the hyperplane
to the nearest data points of each class, the support vectors. Through maximization of the
margins, we find the best possible position for the separating hyperplane that acts as a decision
boundary of the classifier. Figure 5.4 shows a dataset of two classes, respectively labeled by
filled or empty circles. The classification follows a simple scheme. Let us consider the linear
model,

fw(x) = wT x + b, (5.12)

where w is a set of parameters, x is a feature vector and b is some bias. w is the normal vector
to the hyperplane, which is defined by all the points that satisfy wT x + b = 0. The resulting

3In recent years, especially with the rise of deep and convolutional networks they lost quite some traction.
This is not due to their performance, but more due to their computational cost. A potential angle of attack for
quantum algorithms.
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Figure 5.4. Support Vector Machine that maximizes the margin M. The separating hyperplane
are all points satisfying wẋ + b = 0, where w is a set of parameters, x is a feature
vector and b is some bias. The closest points of each dataset to the hyperplane
are the support vectors, here purple colord datapoints.

support vector machine classifies a given input by assigning it the output −1 if fw(xi) < 0
and 1 if fw(xi) > 0 for the i-th data point. To make the support vector machine also classify
non-linearly separable datasets, we let it act on the data in the feature space. So similarly to
Equation 4.8, we use the previously defined kernel and define the classifier as fw(x) = wTφ(x)+b.
To complete the description of Fig. Figure 5.4, b

||w|| describes the offset of the hyperplane to the
origin and the margin is M = 2

||w|| . Thus, maximization of the margin requires minimization of
||w||. To formulate the actual optimization problem, we further need to define a loss function.
Due to its strong performance and applicability to soft-margins4, we choose the hinge-loss,

l(yi) = max(0, 1 − yi(wT xi + b)). (5.13)

Here, wT xi + b is the output of fw(xi) and yi is the i-th target label. Support vector machines
are designed for binary classification tasks. To perform multi-class classification, we can use the
One-vs-Rest or One-vs-One strategy. One-vs-Rest creates a binary classification for every class
and compares it with the rest. One-vs-One considers each pair of classes and creates a binary
classification for each. The strategy of choice depends on the number of labels and the dataset.

4Depending on whether the data is linearly separable or not, we use either hard- or soft-margins respectively.
Further information can be found in [79]
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Step 2: Quantum Kernel

To maximize the margins, we need to know the distances between each pair of data points. To
obtain this information, we calculate the Gram matrix as defined in Equation 4.14. While we
use inner products classically, we define a quantum circuit that performs the equivalent distance
measurement.
We first show the realization of the kernel/overlap calculation, then we introduce performance-
enhancing projected kernels and how we can also train the kernels. Finally, we show how we
can integrate the quantum kernel implementations into a classical support vector machine to
classify hyperspectral images.

Implementing the Overlap Calculation

In the following, we will present two ways of calculating the overlap of two quantum states,
depending on whether they are pure or mixed. 5

Kernel implementation for pure states For the first method, we make use of the fact
that a unitary embedding results solely in a pure state. A known and also previously mentioned
property of unitaries,

U ∗ U = UU∗ = UU−1 = I, (5.14)

or, more specifically, as we work with the Hermitian adjoint of the matrix,

U †U = UU † = I. (5.15)

This boils down to the following: Given our data-embedding unitary U(x), if we are able to
construct its Hermitian adjoint U †, we can calculate the overlap of two states U(x), U †(x) by
simply applying the unitaries one after the other while one of them is its Hermitian adjoint. If
we have identical states and we started in a certain computational basis state like |0〉, we should
measure the same basis state afterward. Every other measurement and also its difference from
the basis states indicates the distance of the two encoded data points x, x′. Mathematically, we
can write this overlap as,

κ(x, x′) = | 〈φ(x′)|φ(x)〉 |2 = | 〈0| U †(x′)U(x) |0〉 |2. (5.16)

Kernel implementation of mixed states To estimate the overlap of two mixed states,
we can make use of a well-known quantum algorithm, the SWAP test. The SWAP test as

5We use the term mixed more loosely here. The presented method will not only work for mixed states, but
also for pure ones.
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well calculates the absolute squared value of two arbitrary quantum states, but through the
measurement of an ancilla qubits’ probability. To achieve this, we put an ancilla qubit into
a superposition and perform a controlled swap operation of the two quantum states following
another Hadamard gate on the ancilla qubit. The resulting interference under superposition
and the subsequent measurement reveals the actual overlap the two states. The probability of
measuring the ancilla qubit in the original computational basis state P (|anc〉 == |0〉) is,

p0 = 1
2 − 1

2 | 〈x|x′〉 |2, (5.17)

for pure states and,
p0 = 1

2 − 1
2 tr{ab}, (5.18)

for mixed states. The overlap is then given by,

| 〈x|x′〉 |2 = 1 − 2p0 and tr{ab} = 1 − 2p0. (5.19)

The SWAP test method can also be used for pure states and must be used for pure states where
the embedding unitary can not be inverted.
The methods presented thus far can be described as fidelity measurements. Using these meth-
ods, we are able to estimate the fidelity up to an accuracy of ±

√
F (1 − F )/k where F is the

overlap/fidelity measurement and k are the number of repetitions. For the implementing circuit,
we can again see a width vs. depth trade-of. While the SWAP test method requires 2n + 1
qubits, where n is the number of qubits required to represent the state in the feature space,
the method presented in Equation 5.16 needs only n qubits but twice the circuit-depth. For
example, an embedding using 20 qubits to operate in a 220 dimensional Hilbert space would sub-
sequently require 41 qubits to implement the SWAP method. Apart from the presented fidelity
measurements, there are also other measurements known in quantum information theory. A
prominent one is the Helstrom measurement which is known to be optimal to discriminate two
quantum states. Even though its performance is very efficient, we do not consider it in this work
since the required circuit size is much larger compared to the presented fidelity measurements.

Projected Quantum Kernels

While the power of quantum kernels lies in their potential high dimensionality, this is where
one of its major flaws lies, too. While the corresponding Hilbert space’s dimensionality grows
exponentially with the number of qubits, at some point, all quantum states will be perpendicular
to each other. This leads to them being indistinguishable from each other and the kernel/gram
matrix being an identity matrix. This problem occurs, when we calculate the kernels in the
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Figure 5.5. Three possible implemenations of a quantum kernel: (a) Adjoint method (b)
SWAP-Test (c) Projected Kernel. U is an arbitrary unitary encoding the dat-
apoints (x1, x2).

quantum space, but as proposed in [77], we can use projected quantum kernels to solve this
problem. For this, we identify the relevant features in the quantum Hilbert space and project
them back into the (approximate) classical space to circumvent the dimensionality problem.
This is achieved by using reduced physical observables like partial traces or classical shadows.
Subsequently, we combine the advantage of low dimensionality of the classical space and the
valuable features from the quantum feature/Hilbert space, which reduces the complexity of
training. A visual comparison of the respective circuits of the presented kernels can be seen in
Figure 5.5. To project the data back from the quantum space to the classical space we can select
from a variety of linear and non-linear kernel methods. We choose a simple and yet powerful
projected quantum kernel κP roj(x, x′) as presented in [77] so that,

κP roj(x, x′) = exp



−γ
∑

κ

∑

P ∈X,Y,Z

(Tr(Pρ(x)k) − Tr(Pρ(x′)k))2)



 . (5.20)

Like the classical and quantum kernel, the projected quantum kernel calculates the entries of the
respective kernel or Gram matrix. In Equation 5.20, ρ is the density matrix of the state after
applying the initial quantum feature map. Following that, we sum up the measurements in all of
the Pauli operators P , while γ acts as a positive, tuneable hyperparameter to optimize prediction
accuracy. Our implementation calculates the inner product of the feature vectors classically
while the feature vectors themself being the result of a quantum feature map. Figure 5.5
provides an overview of the implementation of the kernel mthods presented so far.
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Training Quantum Kernels

So far we only talked about fixed kernels, meaning we have a single, non-parametrized unitary
which is not subject to any optimization. Theoretically, we can learn every function that
a parametrized quantum circuit can learn, but this might require an exponential number of
samples [77].6 It strongly depends on the kernel or feature-map we choose, a problem that is
also present in classical kernel methods. One attempt to solve this problem is building a bridge
to the theory of parametrized quantum circuits and by making use of their similar structure.
We simply define a data fitting quantum feature map and add some freely tuneable parameters,
converting a part of the feature map, the ansatz, into a variational quantum circuit. Through
optimizing the parameters, we then try to find a better version of our kernel e.g. a kernel that
leads to a higher accuracy if we use it to train a support vector machine to classify given data.
One way of finding the optimal parameter is simply using an exhaustive search in a pre defined
set of parameters. Unfortunately, this grows exponentially in the number of parameters since
we need to calculate the accuracy of each parameter in the set of parameters for every possible
combination of the remaining parameters. Thus it is only suitable for parametrized feature maps
with few parameters. For more parameters, [60] proposed using the kernel-target alignment
method from [81]. Essentially, it uses the labels of the training set to form an ideal kernel which
kernel matrix we get by calculating the outer product of the label vectors. The alignment comes
from the idea to compare this perfect kernel with the kernel we have geometrically since we can
see the kernel matrices themselves as a multidimensional vector in some space. To calculate
the distance of two kernel matrices in terms of their angle, the alignment, we use the Frobenius
inner product. Given two kernel matrices A and B, the Frobenius inner product is defined as,

〈A, B〉 =
∑

i,j

A∗
ijBij = Tr(A†B), (5.21)

where the asterix represents the complex conjugate of matrix A and the dagger represents the
Hermitian conjugate of B. Like calculating the alignment of two vectors, we can now calculate
the kernel-target alignment Ξ(K) by using the Frobenius inner product 〈.〉 on the optimal (label)

6Parametrized quantum circuits can be seen as an encoding with a subsequent optimization of a measurement.
This is strikingly similar to our definition of quantum kernel methods. See Appendix A for more information.
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kernel K and the current kernel K and normalizing it so that,

Ξ(K) = 〈K, K〉
√

〈K, K〉 , 〈KK〉
(5.22)

=
∑

ij yiyjk (xi, xj)
√(∑

ij k (xi, xj)2
) (∑

ij y2
i y2

j

) (5.23)

=
∑

ij yiyjk (xi, xj)

n

√(∑
ij k (xi, xj)2

) . (5.24)

Equation 5.22 and Equation 5.23 represent the same, but Equation 5.23 is using the kernel
function and training data. Since the alignment value for Ξ(K) will be between [−1, 1], where
-1 is the kernel being the negative vector of the target and 1 is perfect alignment, y2 = 1 and n

is the number of samples. Here the kernel-target alignment Ξ(K) assumes a balanced dataset,
but [60] extended it also to unbalanced datasets by rescaling the labels. 7

Step 3: Feature Map

Since we do want to harness the full power of quantum computing, we need to define quantum
feature maps. If the goal is to show quantum advantage, the feature map must at least be
classically hard to simulate. We will use Instantaneous Quantum Polynomial time encoding
(IQP) as presented in Equation 3.29 and test it against angle encoding. We choose IQP, because
it is hard to simulate classically, hardware efficient and promises a larger feature space through
highly entangled input states. Further, we gain an additional hyperparameter that specifies how
often the IQP circuit will be repeated. Repetition increases the computational cost for both
simulators and quantum computers, but also makes the embedding extra complex through
interference.

7A dataset is balanced if each class has the same number of samples.
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Chapter 6

Implementation

In this section, we use the previously introduced methods and implement them using Xanadu’s
PennyLane framework. We optimize the baseline simulator method using JAX so that we
achieve a two order of magnitude runtime decrease for classifying the Pavia University hyper-
spectral image dataset. The results are comparable accuracy scores to the classical support
vector machine benchmark implementation. This shows that the implementation of all three
methods was successful.

6.1 Pavia University Dataset

Hyperspectral imaging is a new technology that leads to a little pool of publicly available
datasets. This will likely change in the foreseeable future through missions like the recently
launched EnMap hyperspectral spacecraft, sent into space by the German Aerospace Centre. We
apply our methods to the Pavia University dataset, a publicly available dataset that consists of a
610x340 pixel hyperspectral image of Pavia University in Italy. Figure 6.1 shows its unprocessed
three RGB channels and the respective label ground-truth. It was taken from an aircraft
using the ROSIS sensor with a high spatial resolution of 1.3 meters. Each pixel has a spectral
resolution of 103 bands, covering a spectral range from 0.43 - 0.84 µm. The dataset contains nine
classes comprising common urban surface materials like metal, asphalt, vegetation, or water.
For classification, we drop the undefined pixel class as well as some pixels that have no spectral
information. Other than that no preprocessing is required.

6.1.1 Dimensionality Reduction

Depending on our embedding strategy and the used hardware, we must reduce the dimension-
ality of the Pavia University dataset. Current real-world quantum hardware is limited to a
few noisy qubits, we use simulators that can handle up to 30 qubits. We distinguish between
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Figure 6.1. (a) Pavia University dataset, only the red-blue-green channels on the left side
and the ground truth with corresponding labels on the right side, (b) Number of
samples per class.

two main encoding strategies, linear or sub-linear mappings. Amplitude encoding, a sub-linear
mapping, requires √

x qubits with x datapoints. IQC embedding on the other hand is a linear
mapping and requires x qubits for x datapoints. Since our dataset has 103 bands for each pixel,
thus is a 103-dimensional input vector, we need to reduce the number of dimensions so that we
can embed it with the current hard- and software. We choose the Principal Component Analysis
(PCA) for this task. It is to date one of the most common approaches to reduce dimensionality,
and effectively defines an orthogonal projection of the data onto a lower dimensional subspace
[82].1 The resulting principal components replace the feature in our input feature vector. The
goal is to pin down how many components we need to explain a certain threshold of variance in
the original data. We see the cumulative explained variance with a growing number of principal
components in Figure 6.2. After setting the cut-off threshold to 95% explained variance, we see
that 3 principal components are necessary. We reduced the number of dimensions from 103 to
3 and can now embed the data with any embedding technique since we require a maximum of
three qubits.2 However, we need to be careful when applying unsupervised reduction methods.
We might explain most of the variance in the data through the extracted principal components
but we can still lose what might be important for classification.

1Interestingly, there also exists a quantum version of the PCA due to efficient execution of linear algebra
methods on quantum computers [83].

2There are also embedding techniques that require additional ancilla qubits, but they are not subject to this
thesis.
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Figure 6.2. Cumulative explained variance with growing number of principal components. We
break the threshold of 95% explained variance with 3 principal components.

6.1.2 Framework

Most quantum software is linked with a specific hardware producer. This comes in very natu-
rally, since at this stage of development most producers have the system’s close knowledge and
are also interested in finding users. The most used programming frameworks for quantum com-
puters are qiskit [37] (IBM), PennyLane [84] (XANADU) and cirq [85] (Google). Extending on
that are TensorFlow quantum [86], the quantum version of the machine learning package Ten-
sorFlow, and Pytorch as well as JAX integration for PennyLane. We execute all our algorithms
using PennyLane. It is designed as a cross-platform library for differentiable programming
of quantum computers. Cross-platform means that we can use multiple backends to execute
the circuits we are designing. This ranges from PennyLane’s quantum simulator, over IBM’s
super-conducting qubit hardware to Strawberry Fields photonic simulators. It focuses on dif-
ferentiable programming through built-in automatic differentiation methods of the quantum
circuits. Hence it is specially designed for NISQ era hybrid quantum computing algorithms and
is compatible with existing machine learning frameworks like JAX or PyTorch. In PennyLane,
circuits are defined as so-called QNodes. QNodes are differentiable and can handle classical and
quantum input. They also output either classical or quantum data, which makes them seam-
lessly integrate into classical machine learning pipelines. For our implementation, we used the
JAX interface for PennyLane and further optimized it. JAX uses just-in-time compilation for
speeding up linear algebra operations while supporting parallelization and GPUs/TPUs. This
results in some order of magnitude performance increase, which made most of the experiments
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feasible to execute on a MacBook Pro M1 2021. Through PennyLane’s device interface, we are
also able to compile and execute our circuits on a diverse set of real quantum backends such as
IBM’s superconducting or Xanadu’s photonic quantum hardware.

6.2 Spectral classification methods

All methods we implement are supervised spectral classification methods. They perform pixel-
wise classification, considering only the respective spectrum. It is worth noting, that today’s
best-performing machine learning methods in remote sensing are mostly spatial-spectral classi-
fication methods[16]. But due to their large input size, they are not considered for our imple-
mentation.

Quantum Support Vector Machine

For the implementation of the QSVM, we use a classical support vector machine and a quantum
kernel to classify our dataset. Since we use noise-less simulators to execute our quantum circuits,
we choose the adjoint overlap method as our kernel. Further, we define IQP embedding as our
feature map. The quantum circuit itself runs on PennyLanes ’default.qubit’ backend and is
optimized using JAX and just-in-time compilation to speed up the qubit simulation. We use
scikit-learn for the support vector machine implementation where our quantum kernel is given
as a custom kernel to fit the data. We implement the quantum kernel using three qubits and
six repetitions for the IQP embedding.

Projected Quantum Support Vector Machine

The projected quantum support vector machine runs identical to the presented quantum support
vector machine with the difference of using a projected quantum kernel. We implement the
projected quantum kernel by first defining the feature map as IQP embedding with subsequent
measurement of the expectation value of the three Pauli observables (σx,σy,σz) over all qubits.
Then we define a gaussian kernel κg that takes the previously defined feature map φ and
calculates the distance of two datapoints x1 and x2 such that,

κg(x1, x2) = exp −γ
∑

(φ(x1) − φ(x2))2, (6.1)

where γ is a hyperparameter set to 20 in our implementation. We use κg as the custom kernel
in scikit-learn’s support vector machine while also utilizing three qubits and six repetitions for
the IQP embedding.
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Method Pavia University
Accuracy

SVM linear 0.78
SVM rbf 0.88
QSVM 0.73

PQSVM 0.79
QNN 0.78

Table 6.1. Experimental results of the three quantum models compared to two classical sup-
port vector machines with linear and radial basis function kernel. The abbreviations
translate to Support Vector Machine (SVM), Quantum Support Vector Machine
(QSVM), Projected Quantum Support Vector Machine (PQSVM) and Quantum
Neural Network (QNN).

Quantum Neural Network

For the QNN we choose amplitude encoding as embedding and the strongly entangled layer as
presented in chapter section 5.1 as Ansatz. We define the resulting QNode using a PyTorch
interface to make it a PyTorch layer and run it on the Pennylane ’default.qubit’ backend. The
QNode is then together with a subsequent softmax layer integrated into a sequential PyTorch
model. The model parameters are optimized using stochastic gradient descent at a learning
rate of 0.5 and the hinge loss as loss function. Since we measure only one qubit, we perform a
binary classification task and have to apply the one-vs-rest approach to classify all classes.

6.3 Experiments

Before we applied the presented methods, we split the dataset into train and test sets. Sampling
from a hyperspectral image is not a trivial task, since neighboring pixels tend to be highly
correlated. We divide our dataset into test and train sets by randomly sampling over the
whole image, excluding the dropped labels. The train set is chosen to be 20% of the original
dataset, a particularly small share to ensure reasonable training times. Since our focus lies
on demonstrating the implementation and not scoring the highest possible performance, we
avoid further optimization to guarantee comparability. The resulting accuracies on the Pavia
University test set are presented in Table 6.1. To justify the hyperparameter selection of our best
performing model, namely the number of repetitions for the IQP embedding, we show the change
of performance for increasing repetitions in Figure 6.4. Further, we show PQSVM’s prediction
as overlay next to the ground truth in Figure 6.3. The results show comparable results for all
three quantum machine learning implementations to the two baseline support vector machine
methods. This leads us to the conclusion that the implementation of the methods were successful
and a pixel-wise classification was performed with an accuracy of up to 79%.
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Figure 6.3. Ground truth and predicted classes of the Projected Quantum Support Vector
Machine. To generate the predicted classes image, we overlayed the predicted
classes for test and training set as well as the previously dropped undefined classes.

Figure 6.4. Comparison of accuracy and performance of the Projected Quantum Support Vec-
tor Machine with an increasing number of IQP repetitions.
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Conclusion

This thesis implemented three supervised learning methods to classify hyperspectral images on
a quantum computer. We applied our models to the Pavia University dataset which consists
of a 610x320 pixel scene of the University District in Pavia, Italy. It was taken by an aircraft
using the ROSIS sensor and has a spectral resolution of 103 bands per pixel. As NISQ-era
quantum devices are scarce in available qubits, we extracted the principal components to reduce
the dimensionality. We first implemented a quantum support vector machine, that uses a
quantum kernel to project the classical input data into a quantum feature space. Then, a
classical support vector machine is applied to find the separating hyperplane. Our focus was
on designing a quantum kernel that is optimized for the classical hyperspectral image data
and the classification results showed that the implementation was successful. We improved
the quantum support vector machine by introducing a method that projects the data back
into classical space before fitting the model. With all other hyperparameters being equal, it
showed an increase in classification accuracy over the standard quantum support vector machine.
Further, we designed a trainable quantum neural network that acts similarly to a classical feed-
forward neural network. The challenge here was to find a state preparation that encodes the
classical hyperspectral data and a variational quantum circuit that acts as a quantum machine
learning model to process the encoded data. We successfully implemented a state preparation
that encodes the classical hyperspectral data with a sub-linear number of qubits in linear time
with the number of data points. As the subsequent model, we chose a strongly entangled
variational circuit that concludes with a single qubit measurement. The model gets evaluated
using the hinge loss function and the parameters are updated using a stochastic gradient descent
method. Similar to the quantum support vector machine, the quantum neural network reached
accuracies comparable to the classical benchmark method and therefore indicates a successful
implementation. Since both models are binary classification models, we classified the dataset
using the one-vs-rest principle. In our implementation, we used the PennyLane framework for
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all quantum methods and scikit-learn as well as PyTorch for the classical machine learning
routines. Additionally, we optimized the underlying quantum simulation tool using JAX and
achieved two orders of magnitude increase in runtime performance. All presented models are
also scalable so that with the growing availability of larger circuits, we can fit larger datasets.
Although, we are unsure of its effects on the growing parameter optimization landscape.

Future Work Expanding on this thesis, there are several subjects to work on in the future. On
a theoretical note, we still lack a full understanding of the importance of classical data structures
for quantum machine learning algorithms. We should investigate if hyperspectral data has an
underlying structure that might be exploitable and whether we can find specific and efficient
encoding methods for it. For quantum kernel methods and quantum neural networks, one could
explore the expressibility of different feature maps and model circuits, the effect of trainable
encoding routines, the use of quantum aware cost functions, and the potential of real multi-class
classification. In terms of quantum image representation, the question of how much classical
data can we store in a quantum state and whether the underlying structure of hyperspectral
images has any advantage. While we are limited to small-scale simulations, it would also be
interesting to investigate the effects of large input sets on classical parameter optimization.
It would also be interesting to study the potential use cases for quantum sensors in remote
sensing and subsequent processing of quantum data with the presented methods. Further, we
can integrate the presented quantum neural network into existing classical machine learning
architecture. Another promising method is a quantum convolutional neural network which
could, like its classical counterpart, consider both spectral and spatial components. Looking
in the future, we should also check whether replacing the classical machine learning subroutine
with quantum methods poses any performance improvement.
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