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2. Summary 

Mammalian DNA consists of millions of base pairs. To fit the DNA into the nucleus of 

a cell the DNA is condensed into chromosomes. The DNA is wrapped around an 

histone octamer forming nucleosomes which are the basis of chromatin. Chromatin is 

the physiological form of DNA and altered by various epigenetic mechanisms, such as 

DNA methylation, histone modifications and RNA modifications. During development 

epigenetic mechanisms drive lineage choices and cell identity. In this doctoral work 

we used next generation sequencing and CRISPR/Cas9 genome engineering to study 

different epigenetic mechanisms in mESCs. The main focus was to study the non-

catalytic functions of the DNA demethylase TET1. I have found that TET1 is involved 

in heterochromatin formation and retroviral silencing independent of DNA 

demethylation (Publication I). In the scope of this doctoral work I contributed to other 

projects with the focus on epigenetic proteins in mESCs. First, description of the role 

of the UBL domain of UHRF1 in the interplay with DNMT1 and DNA maintenance 

methylation (Publication II). Second, identification of DPPA3 as a regulator of UHRF1 

and critical for global DNA demethylation (Publication III). Third, discovery of TET1 

and TET2 stage-specific roles in DNA demethylation during early embryonic 

development (Publication IV). Last, in the scope of this doctoral work I contributed to 

study the role and function of the novel RNA methyltransferases METTL5 and 

METTL6 in the field of epitranscriptomics. METTL5 was found to be a specific 

ribosomal RNA methyltransferase critical for pluripotency and differentiation 

(Publication V). METTL6 was discovered as a transfer RNA methyltransferase 

involved in cancer (Publication VI). In summary, this doctoral work investigated and 

described novel non-catalytic mechanisms of TET1 and studied various epigenetic 

modifiers and mechanisms at different epigenetic levels.  
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Figure 1. Graphical Summary. In eukaryotic cells, the DNA is wrapped around 

histones to form nucleosomes, which are the basis of chromatin and build the 

framework of  transcriptional control. Chromatin can be regulated by various 

epigenetic mechanisms, like DNA and RNA methylation. Both are key epigenetic 

mechanisms and regulate multiple processes in a cell. In the scope of this doctoral 

work, functions and mechanisms of DNA and RNA methylation were investigated at 

different levels of chromatin regulation. TET1 mediates heterochromatin silencing 

independent of DNA demethylation (Publication I). UBL and RING domain of UHRF1 

regulate the ubiquitination activity and therefore DNMT1 activity (Publication II). 

DPPA3 controls a pathway of passive global DNA demethylation (Publication III). 

TET1 and TET2 act distinctly and stage specific during stepwise DNA oxidation 

(Publication IV). The rRNA m6A methyltransferase METTL5 regulates pluripotency 

and differentiation (Publication V). METTL6 is a m3C tRNA methyltransferase 

regulating pluripotency and tumor formation (Publication VI). 
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3. Introduction 

3.1 Introduction into epigenetics 

Already in the late 19th century, nuclear structures were described by Walther 

Flemming using microscopy. Thereby he coined the terms chromatin and 

chromosome, setting the foundation of the epigenetic field (Flemming, 1882). 

Remarkably, around the same time also histone proteins were discovered and 

described to associate with deoxyribonucleic acid (DNA) (Kossel, 1884). Following 

studies demonstrated that chromosomes are the carrier of genetic material (Morgan, 

1911; Sturtevant, 1913) and work in maize and fruit flies provided the first important 

hints on non-mendelian inheritance (McCLINTOCK, 1951; Muller and Altenburg, 

1930). Yet, it remained unclear how the information is transferred during cell division 

and how the developmental program is defined. While knowing very little about the 

mechanism, Conrad Hal Waddington in 1942 coined the term “epigenetics” and later 

also the term “epigenetic landscape” to describe phenotypic changes that are 

independent of genetic inheritance (Waddington, 1957, 2012). In sum, leading to the 

key question of the epigenetic field: How can a single fertilized egg give rise to a 

complex multicellular organism?  

Today, epigenetic mechanisms are defined to influence gene function in a hertible 

fashion without altering the DNA sequence. Different epigenetic mechanisms can form 

chromatin, the physiological form of genetic information, to assist the DNA template 

and maintain or alter gene expression profiles. This way epigenetic mechanisms 

shape the identity of a cell. The building blocks of epigenetic mechanisms are histone 

variants, posttranslational modifications of amino acids (aa) of histone tails and 

covalent DNA modifications. Recently, also post-transcriptional modifications of 

ribonucleic acids (RNAs) are considered as “RNA epigenetics” or “epitranscriptomics” 

(He, 2010; Meyer and Jaffrey, 2014; Wiener and Schwartz, 2021).  

Since Waddington introduced the term epigenetics 70 years ago, the field developed 

tremendously. Technology advances as next-generation sequencing (NGS) and 

genome engineering approaches like Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR)-Cas allowed to profile the epigenome and to identify 

epigenetic reader, writer and eraser proteins.  These proteins and epigenetic 

mechanisms have multiple critical roles in genome stability, cellular identity and in 

https://paperpile.com/c/H6gX9X/qO0uO
https://paperpile.com/c/H6gX9X/fkMG3
https://paperpile.com/c/H6gX9X/Fm779+a28Xv
https://paperpile.com/c/H6gX9X/Fm779+a28Xv
https://paperpile.com/c/H6gX9X/X9xfO+X6JN0
https://paperpile.com/c/H6gX9X/X9xfO+X6JN0
https://paperpile.com/c/H6gX9X/n3Om7+giXVo
https://paperpile.com/c/H6gX9X/p4Fav+Blk5p+grPCJ
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development and disease throughout the animal kingdom. Only a detailed 

understanding of these epigenetic mechanisms will allow the development of new 

drugs and medicine to treat diseases.  

3.2 Epigenetics and chromatin 

3.2.1. Organization of DNA 

 

In eukaryotes the DNA is compacted into chromatin. More precisely, the DNA of a 

single human cell entails around 3 billion base pairs (bp) and is organized in 23 pairs 

of chromosomes. To fit into the nucleus the approximately 2 m of double stranded 

DNA are tightly packed and organized in nucleosomes. The nucleosome core consists 

of 147 bp DNA wrapped around a histone octamer (Kornberg and Lorch, 1999; Luger 

et al., 1997; Richmond and Davey, 2003). Nucleosomes can be tightly placed together 

or arranged with greater distance to each other, which determines the accessibility of 

DNA. This organization of nucleosomes, also referred to as “arrays of nucleosomes” 

are the basic element of a chromatin structure and can form a chromatin fiber, which 

can condense to multiple higher order chromatin structures up to chromosomes (Luger 

and Hansen, 2005; Olins and Olins, 1974; Oudet et al., 1975; Woodcock et al., 1976). 

The most frequent state of chromatin is heterochromatin which is a condensed form 

of chromatin that is associated with transcriptionally inactive DNA. Heterochromatin 

marks repetitive regions and is known to be important for viral silencing. Accessible 

and transcriptionally active DNA regions on the contrary are called euchromatin and 

are mostly found at gene rich regions. All chromatin structures are shaped and 

maintained by different chromatin remodelers, transcription factors and epigenetic 

modifiers, like histone, DNA and RNA modifying enzymes. 

 

3.2.2. Histone variants and modifications 
 

Histones are fundamental proteins to build and alter chromatin structures. The four 

core histones are H3, H4, H2A and H2B and are highly conserved among eukaryotes. 

Two dimers of H2A-H2B and an H3-H4 tetramer represent the center of a nucleosome. 

In addition, in many eukaryotes linker Histone H1 is critical to form higher order 

chromatin structures (Allan et al., 1981; Fan et al., 2005; Geeven et al., 2015). Histone 

H1 binds and protects free linker DNA in between individual nucleosomes (Brockers 

https://paperpile.com/c/H6gX9X/yrfiU+0YLxt+L6KTV
https://paperpile.com/c/H6gX9X/yrfiU+0YLxt+L6KTV
https://paperpile.com/c/H6gX9X/pJbh8+gDScy+O1sgl+ZCsPL
https://paperpile.com/c/H6gX9X/pJbh8+gDScy+O1sgl+ZCsPL
https://paperpile.com/c/H6gX9X/aPT0Y+0NrVy+KiCps
https://paperpile.com/c/H6gX9X/7TH01
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and Schneider, 2019). Histone proteins diversify into different variants, sometimes with 

only a few bp altered, but harboring individual functions. For example, H2A.X is 

involved in double-strand break (DSB) repair (Morrison and Shen, 2005), whereas 

H2A.Z seems to counteract heterochromatin silencing (Draker and Cheung, 2009). 

Another example is the H3 variant  Centromere Protein A (CENP-A), which replaces 

canonical H3 specifically at centromeric chromatin (Palmer et al., 1991). Chromatin is 

not only altered by introducing different variants of histones, but histones are also 

decorated with post-translational modifications (PTMs) at their N-terminal tails or 

global core domains. The most common histone PTMs are methylation, acetylation, 

phosphorylation and ubiquitylation and can occur at different aa residues. Yet, even 

today new histone PTMs are constantly discovered, e.g. serotonylation and 

dopaminylation (Farrelly et al., 2019; Lepack et al., 2020). Every histone PTM is 

suggested to have an individual function (Jenuwein and Allis, 2001; Strahl and Allis, 

2000). The interplay of histone writer, reader and eraser proteins, can shape the 

structure of chromatin and hence modify the activity of the underlying gene sequence. 

Of note, while the activity of a DNA sequence can be influenced by histones and their 

modifications, DNA modifications can in turn also influence the histones landscape. 

 

3.2.3. DNA modifications 

 

In 1948, the first chemically modified DNA base was detected in higher organisms 

using paper chromatography (Hotchkiss, 1948). Today, around 40 verified DNA 

modifications have been detected throughout the animal kingdom (Sood et al., 2019). 

The majority is associated with DNA damage and DNA repair pathways, but harbor 

the potential for additional biological functions and implications (Ito and Kuraoka, 2015; 

Zhu et al., 2018b). Especially, 5-methylcytosine (5mC), 5-hydroxymethylcytosine 

(5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC), 5-hydroxymethyluracil 

(5hmU) and N6-methyladenine (6mA) are known for their biological significance (Zhu 

et al., 2018b). The most prominent DNA modification is 5mC, which was already 

connected to gene regulation and development in the 1970’s (Holliday and Pugh, 

1975). DNA modifications are known to interact with histone modifications and vice 

versa. In addition, DNA modifications influence genome stability, facilitate protein-DNA 

interactions, regulate DNA accessibility and gene expression. Similar to histone 

modifications, DNA modifications are installed by an interplay of writer, reader and 

https://paperpile.com/c/H6gX9X/7TH01
https://paperpile.com/c/H6gX9X/6rTjb
https://paperpile.com/c/H6gX9X/S4BYQ
https://paperpile.com/c/H6gX9X/gbMkj
https://paperpile.com/c/H6gX9X/Qmhpr+4l5qT
https://paperpile.com/c/H6gX9X/aqzfi+52TaR
https://paperpile.com/c/H6gX9X/aqzfi+52TaR
https://paperpile.com/c/H6gX9X/qd09P
https://paperpile.com/c/H6gX9X/7NvGK
https://paperpile.com/c/H6gX9X/HVBxH+XMR2V
https://paperpile.com/c/H6gX9X/HVBxH+XMR2V
https://paperpile.com/c/H6gX9X/HVBxH
https://paperpile.com/c/H6gX9X/HVBxH
https://paperpile.com/c/H6gX9X/M0svS
https://paperpile.com/c/H6gX9X/M0svS
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eraser proteins. In mammalian development DNA modifications undergo waves of 

remodeling and can shape chromatin structures. The predominant covalent DNA 

modification in mammals is 5mC, which is heavily remodeled during embryonic 

development and 5mC deficiencies are a hallmark of many diseases (Robertson, 

2005).  

 

3.2.4. RNA modifications 
 

Not only DNA and histones are known to carry various modifications, but also modified 

RNA molecules were discovered in 1960 (Cohn, 1960). Until today more than 150 

RNA modifications were identified in bacteria, eukaryotes and archaea (Boccaletto et 

al., 2022). Various modifications are decorating coding messenger RNA (mRNA) as 

well as non-coding RNAs, like transfer RNA (tRNA) and ribosomal RNA (rRNA) 

(Cantara et al., 2011; Höfer and Jäschke, 2018; Machnicka et al., 2013). This creates 

a great level of complexity in untangling the role and function of individual RNA 

modifications. However, in the last decade the field of “RNA epigenetics” or 

“epitranscriptomics” increased our understanding of  individual RNA modifications and 

their cellular function rapidly (Schwartz, 2016). The most abundant mRNA modification 

is N6-methyladenosine (m6A), which was detected in yeast, Drosophila, plants and 

mammals to affect folding, stability and degradation (Clancy, 2002; Frye et al., 2018; 

Levis and Penman, 1978; Nichols, 1979; Wei et al., 1975). tRNAs display the greatest 

diversity (>100) and amount of modified nucleotides among the different RNA classes. 

In humans single tRNAs can carry in between 11-13 different RNA modifications which 

can all affect translation (Jackman and Alfonzo, 2013). In comparison, rRNA only 

harbors a limited set of RNA modifications, but with relatively high abundance and 

important function for the ribosome (Sloan et al., 2017). rRNA modifications stabilize 

functional rRNA structures of the ribosome and are critical for high fidelity protein 

synthesis (Anderson et al., 2011; Polikanov et al., 2015). In summary, the various RNA 

modifications can impact multiple cellular functions on different levels, for example 

protein stability and folding, gene expression, splicing, localization and translation 

initiation (Decatur and Fournier, 2002; Pan, 2018; Roundtree et al., 2017). 

 

https://paperpile.com/c/H6gX9X/CFbWR
https://paperpile.com/c/H6gX9X/CFbWR
https://paperpile.com/c/H6gX9X/6mKqM
https://paperpile.com/c/H6gX9X/f3mXj
https://paperpile.com/c/H6gX9X/f3mXj
https://paperpile.com/c/H6gX9X/Aa02t+7VYLz+3CKiv
https://paperpile.com/c/H6gX9X/ShG7Q
https://paperpile.com/c/H6gX9X/Ev3Wr+EQ3XQ+HWLkX+7l1iI+PYNkG
https://paperpile.com/c/H6gX9X/Ev3Wr+EQ3XQ+HWLkX+7l1iI+PYNkG
https://paperpile.com/c/H6gX9X/zaKoH
https://paperpile.com/c/H6gX9X/JnsE1
https://paperpile.com/c/H6gX9X/mGdd8+ZAmWJ
https://paperpile.com/c/H6gX9X/HHoLL+vG9cT+LSWum


12 

3.3. DNA methylation 

3.3.1. DNA methyltransferases 

 

In mammals DNA methylation occurs predominantly at the 5th carbon of cytosine 

(5mC) and at much lower frequency also at adenine and guanine (Alderman and Xiao, 

2019; Greenberg and Bourc’his, 2019) (Figure 2a). The first DNA methyltransferase 

to be purified and cloned was DNA methyltransferase 1 (DNMT1), which associates 

with the replication fork and maintains the methylation pattern during replication (Goll 

and Bestor, 2005a; Leonhardt et al., 1992a). Therefore, DNMT1 is historically 

perceived as the maintenance methyltransferase (Goll and Bestor, 2005a) (Figure 2a). 

Only recently, DNMT1 was shown to also have de novo methylation activity at 

intracisternal A particles (IAP) retrotransposons (Haggerty et al., 2021). The major de 

novo methyltransferases however are DNMT3A and DNMT3B (Figure 2a), which are 

crucial for DNA methylation remodeling during early mammalian development (Okano 

et al., 1998, 1999). Both de novo methyltransferases have an autoinhibitory domain 

and upon binding of unmethylated H3K4 become activated for de novo DNA 

methylation (Guo et al., 2015; Ooi et al., 2007; Otani et al., 2009; Zhang et al., 2010). 

In addition to the three major DNMTs, mammals express one catalytically dead DNA 

methyltransferase (DNMT3L), which facilitates de novo methylation in the germline, 

mouse embryonic stem cells (mESCs) and the early embryo (Bourc’his et al., 2001a; 

Hata et al., 2002; Ooi et al., 2007). Of note, in rodents DNMT3C evolved from a 

duplication of DNMT3B and methylates retrotransposons in the male germ line (Barau 

et al., 2016).  

While in vertebrates 5mC is present in the whole genome, non-vertebrates exhibit 

5mC only at certain genomic elements (Suzuki and Bird, 2008). Most eukaryotes carry 

methylated cytosine, some prominent exceptions are model organisms like 

Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans, 

who lack DNA methylation (Goll and Bestor, 2005b; Rae and Steele, 1979; Simpson 

et al., 1986a). This genome-wide absence of 5mC highlights that DNA methylation is 

not essential to every organism. In mammals, however DNA methylation is crucial for 

imprinting, X inactivation and silencing of repeat elements (Greenberg and Bourc’his, 

2019; Schübeler, 2015) and the loss of DNMTs causes developmental defects or 

embryonic lethality (Bourc’his et al., 2001b; Damelin and Bestor, 2007; Li et al., 1992; 

Okano et al., 1999; Takebayashi et al., 2007).  

https://paperpile.com/c/H6gX9X/sKqV3+Kfmpv
https://paperpile.com/c/H6gX9X/sKqV3+Kfmpv
https://paperpile.com/c/H6gX9X/vM0RW+kmyRE
https://paperpile.com/c/H6gX9X/vM0RW+kmyRE
https://paperpile.com/c/H6gX9X/kmyRE
https://paperpile.com/c/H6gX9X/0vR4r
https://paperpile.com/c/H6gX9X/CQUi6+fAnDO
https://paperpile.com/c/H6gX9X/CQUi6+fAnDO
https://paperpile.com/c/H6gX9X/K879A+j9X3n+6rCHZ+EtHcj
https://paperpile.com/c/H6gX9X/K879A+lZ458+0itWb
https://paperpile.com/c/H6gX9X/K879A+lZ458+0itWb
https://paperpile.com/c/H6gX9X/uLr58
https://paperpile.com/c/H6gX9X/uLr58
https://paperpile.com/c/H6gX9X/7VJD5
https://paperpile.com/c/H6gX9X/ufldQ+XE12Y+Gwr2M
https://paperpile.com/c/H6gX9X/ufldQ+XE12Y+Gwr2M
https://paperpile.com/c/H6gX9X/wzqD2+sKqV3
https://paperpile.com/c/H6gX9X/wzqD2+sKqV3
https://paperpile.com/c/H6gX9X/j5sYe+fAnDO+dR5Sh+bzKhZ+0HY94
https://paperpile.com/c/H6gX9X/j5sYe+fAnDO+dR5Sh+bzKhZ+0HY94
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Figure 2. DNA methylation and UHRF1. a) In mammals, methylation occurs only at 

the 5th carbon of cytosine, converting unmodified cytosine to 5-methylcytosine. 

DNMT3A and DNMT3B are responsible for de novo methylation and DNMT1 for 

maintenance methylation. b) Functional description of the mouse UHRF1 domains. 

Ubiquitin-Like domain (UBL); Tandem Tudor Domain (TTD); Plant Homeodomain 

(PHD); SET and Ring-Associated domain (SRA); Really Interesting New Gene domain 

(RING) with E3 ligase activity. 
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3.3.2. UHRF1 

 

The process of DNA methylation maintenance during replication is very complex and 

is enabled through an interplay of different factors. For example, various post-

translational modifications of DNMT1 can regulate its enzymatic activity and protein 

stability (Du et al., 2010; Estève et al., 2009, 2011; Leng et al., 2018; Zhang et al., 

2019).  In addition, a critical regulator of DNMT1 activity at the replication fork is the 

multidomain protein Ubiquitin Like With PHD And Ring Finger Domains 1 (UHRF1). 

UHRF1 can recruit DNMT1 to ubiquitinated H3 tails and induce the methylation of the 

daughter DNA strand during replication (Petryk et al., 2021). In detail, the E3 ubiquitin 

ligase UHRF1 consists of its Ubiquitin-like (UBL) domain, the Tandem Tudor Domain 

(TTD), the Plant Homeo Domain (PHD) and the SET and RING finger-associated 

(SRA) domain (Figure 2b). The different domains of UHRF1 harbor individual and 

collaborative functions in mediating DNA and protein binding. The SRA domain 

predominantly binds hemimethylated DNA, but also methylated or unmethylated DNA, 

albeit with lower affinity  (Bostick et al., 2007; Schneider et al., 2020; Sharif et al., 

2007). The TTD and PHD cooperate to bind H3K9me2/me3 (Arita et al., 2012a; 

Rothbart et al., 2013). Of note, the cooperative binding of hemimethylated DNA and 

methylated H3K9 is required for DNA methylation maintenance (Liu et al., 2013). 

Furthermore, the PHD and TTD also harbor individual functions. The PHD can bind a 

specific peptide sequence at the amino-terminus (N-terminus) of H3 and also a very 

similar peptide sequence of the PCNA-associated factor 15 (PAF15). During 

replication UHRF1 ubiquitinates both H3 and PAF15, which is essential for DNMT1 

recruitment (Nishiyama et al., 2020). However, it remains unknown how UHRF1 

ubiquitinates H3 and as part of this doctoral work we addressed this question 

(Publication II). The TTD can bind two linker regions within UHRF1 or the methylated 

histone mimic DNA Ligase 1 (LIG1) (Figure 2b). While the intramolecular interaction 

inhibits UHRF1 recruitment, the methylation of LIG1 promotes the recruitment of 

UHRF1 to the replication fork (Ferry et al., 2017). Importantly, the multilayered function 

and regulation of UHRF1 must be tightly controlled to ensure DNA methylation 

maintenance. In this context, UHRF1 stability and/or activity is additionally regulated 

by post-translational modifications (Kori et al., 2020; Ma et al., 2012; Yang et al., 2017; 

Zhang et al., 2016a, 2019). An intriguing but not fully understood question is how the 

DNMT1-UHRF1 machinery contributes to changes in DNA methylation levels at 
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different stages during development. In primordial germ cells (PGCs), UHRF1 is not 

expressed and DNMT1 is not recruited to the replication fork, suggesting that the lack 

of maintenance methylation also contributes to DNA demethylation (Ohno et al., 

2013). In oocytes, DNMT1 and UHRF1 are expressed and even have de novo 

methylation activity (Li et al., 2018; Maenohara et al., 2017). Intriguingly, the activity 

of DNMT1-UHRF1 in oocytes is controlled by Developmental pluripotency-associated 

protein 3 (DPPA3) via disrupting UHRF1 accumulation in the nucleus and facilitating 

nuclear export (Li et al., 2018). This brings up the question whether DPPA3 controls 

UHRF1 mediated hypomethylation also at other stages during development, like in 

naive mESCs (Graf et al., 2017; von Meyenn et al., 2016). As part of this doctoral 

work, I contributed to investigate the role of the UBL domain of UHRF1 during 

replication (Publication II) and the mechanisms of DPPA3 in regulating UHRF1 in 

naive mESCs and in ESCs of different species (Publication III). 

 

3.3.3. DNA methylation during development 

 

How a complex organism arises from a single fertilized cell, is one of the most 

fascinating questions in biology. To answer this question, it is critical to understand the 

basic mechanisms and processes occurring during embryonic development. In 

mammalian development epigenetic modifiers play a crucial role, documented by the 

mouse embryonic lethal phenotypes of DNA methyltransferases (DNMTs) (Li et al., 

1992; Okano et al., 1999), ten-eleven translocation (TET) enzymes (Dawlaty et al., 

2014; Khoueiry et al., 2017), polycomb repressive complex 2 (PRC2) (O’Carroll et al., 

2001; Pasini et al., 2004; Shen et al., 2008) and histone methyltransferases (HMTs) 

(Bilodeau et al., 2009; Dodge et al., 2004; Tachibana, 2002; Tachibana et al., 2005). 

During the early development of mammals, pluripotent stem cells transition into the 

progenitor of a whole organism and it is critical to understand how the different 

epigenetic mechanisms are driving lineage choices in development. Importantly, DNA 

methylation dynamics are a hallmark of embryonic development and are represented 

by two epigenetic remodeling events and a de novo methylation wave in mammals. 

The two remodeling events are characterized by an erasure of DNA methylation and 

occur at fertilization and upon PGC arrival in the gonads (Eckersley-Maslin et al., 2018) 

(Figure 3). In mice, X inactivation becomes initiated and completed during the 

transition to the zygote. From the zygote stage on, the mouse embryo undergoes 
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genome-wide DNA demethylation until reaching the morula stage to restore 

totipotency and perhaps to erase epimutations (Skvortsova et al., 2018). The second 

epigenetic remodeling event occurs between embryonic day 10.5 (E10.5) and E13.5 

when PGCs colonize the gonads (Seisenberger et al., 2012) (Figure 3). The wave of 

DNA demethylation in PGCs is important to erase and restore imprints, so that later 

they can be established according to the sex of the germline (Smallwood et al., 2011; 

Wang et al., 2014a). Notably, the genome-wide DNA demethylation in PGCs seems 

to be absent in non-mammalian species (Macleod et al., 1999). Yet, a recent study 

suggests that in zebrafish embryos DNA methylation is maintained at CpG rich adult 

enhancers to avoid premature activation of lineage choices (Wu et al.).  

 

Figure 3. DNA methylation dynamics during mouse embryonic development. 

The fertilized zygote undergoes active and passive DNA demethylation until reaching 

the lowest point of DNA methylation levels at the morula stage. After blastocyst 

implantation the embryo gains DNA methylation until reaching a plateau in 

differentiated somatic cells. In contrast, primordial germ cells (PGCs) undergo a wave 

of DNA demethylation from E10.5 until E13.5. 

 

Upon implantation the inner cell mass (ICM) of the blastocyst starts to undergo a wave 

of de novo DNA methylation (Borgel et al., 2010; Kafri et al., 1992; Smith et al., 2012) 
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(Figure 3). This marks the first differentiation event in the early embryo and is crucial 

for maintaining lineage stability and identity of embryonic and extraembryonic tissues. 

As an exception, the progenitors of the placenta, the trophoblast stem cells remain 

hypomethylated (Santos et al., 2002). Interestingly, in plants the endosperm also 

remains hypomethylated in contrast to the plant embryo (Hsieh et al., 2009), pointing 

towards a distinct and conserved mechanism across plants and animals. A popular 

system to study DNA methylation and other epigenetic mechanisms are mESCs, 

which cultured in vitro reassemble the ICM of the blastocyst and can be differentiated 

into various developmental stages of embryonic development. In addition, mESCs are 

convenient to manipulate using CRISPR-Cas and represent a well established system 

to study the function of the different epigenetic modifiers, as utilized in this doctoral 

work (Publication I - VI).  

3.4. DNA demethylation 

3.4.1. TET enzymes 
 

While the role and function of DNA methylation has been intensively studied, the 

knowledge about DNA demethylation remained rudimentary for a long time. In 2009, 

TET proteins were identified as 2-oxoglutarate (2OG)- and Fe(II)-dependent enzymes, 

catalyzing the conversion of 5mC to 5hmC (Ito et al., 2010; Tahiliani et al., 2009). 

Originally, TET1 was discovered as a fusion partner of the mixed lineage leukemia 

(MLL) gene in acute myeloid leukemia associated with a specific translocation 

between chromosome 10 and 11 (Lorsbach et al., 2003; Ono et al., 2002). Subsequent 

studies found that TET enzymes can successively catalyze the oxidation of 5mC to 

5hmC, 5fC and 5caC (He et al., 2011; Ito et al., 2011; Pfaffeneder et al., 2011). Those 

new cytosine derivatives have individual biological functions (Hashimoto et al., 2014; 

Mellén et al., 2012; Pastor et al., 2011; Raiber et al., 2015; Spruijt et al., 2013) and on 

the other hand can serve as an intermediate for active DNA demethylation via Thymine 

DNA glycosylase (TDG) and the base excision repair (BER) pathway (He et al., 2011; 

Maiti and Drohat, 2011) (Figure 4a). The finding of active DNA demethylation via TET 

enzymes revolutionized the view on DNA methylation, which was long perceived as a 

stable repressive mark.  

In plants active DNA demethylation is mediated by repressor of silencing 1 (ROS1) 

and ROS1-like 5mC DNA glycosylases (DME2 and 3) (Zhu, 2009). In mammals, DNA 
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demethylation can be achieved actively via TET enzymes and passively by diluting 

5mC during replication. Mammals harbor three TET proteins, TET1, TET2 and TET3 

(Figure 4b). Their orthologues can be found throughout metazoans and homologous 

domains also exist in fungi and algae (Tahiliani et al., 2009). The three TET proteins 

are iron(II)/α-ketoglutarate (Fe(II)/α-KG)-dependent dioxygenases. They harbor a 

conserved catalytic domain at the carboxyl terminus which is composed of a double-

stranded β-helix (DSBH) domain and a cysteine-rich domain. The DSBH contains the 

metal-binding residues typical for the family of Fe(II)/α-KG- dependent oxygenases, 

which are crucial for the hydroxylation process (Loenarz and Schofield, 2011). In 

contrast to the catalytic domain, the N-terminus is not conserved among the three TET 

proteins (Figure 4b). In vertebrates, the N-terminus of TET1 and TET3 possess a 

CXXC domain, whereas TET2 is lacking this part. During evolution a chromosomal 

inversion split the Tet2 gene into two parts, the CXXC and the catalytic domain. The 

part of the Tet2 gene encoding the CXXC domain encodes for the gene IDAX4, which 

interacts with and mediates the activity of TET2 (Ko et al., 2013).  
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Figure 4. The TET family and TET1 catalytic and non-catalytic functions. a) DNA 

methyltransferase enzymes (DNMTs) install 5-methylcytosine (5mC). The family of 

TET enzymes promotes active DNA demethylation by successive oxidation of 5mC to 

5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine 

(5caC). The latter two can be excised and replaced with unmodified Cytosine (C) by 
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TDG and the base excision repair (BER) pathway. b) Schematic representation of the 

three mouse TET enzymes. The catalytic domain comprises a cysteine (Cys)-rich 

region and a double-stranded beta helix (DSBH) domain. The N-terminus of TET1 and 

TET3 harbors a CXXC zinc finger domain. Numbers indicate amino acids (aa). c) 

Representation of catalytic and potential non-catalytic functions of TET1 in mESCs. 

TET1 oxidizes 5mC to 5hmC, 5fC and 5caC mainly at promoters and enhancers. 

Besides its catalytic functions TET1 associates with multiple chromatin modifiers, like 

PRC2, MOF, OGT, MBD1 and SIN3A/HDAC. These complexes establish different 

chromatin marks like histone methylation, acetylation and glycosylation. TET1 might 

interact at different levels with the chromatin modifying proteins, e.g. recruitment to 

certain loci, mediating complex formation or inhibition.  

 

3.4.2. TET enzymes during development 

 

In vertebrates, DNA demethylation activity of TET enzymes at thousands of enhancers 

is crucial for body plan formation and organ development (Bogdanović et al., 2016). 

The three TET proteins are expressed during different stages of the embryonic 

development. TET1 is most abundant in primordial germ cells and the ICM of the 

blastocyst. Interestingly, TET proteins exist in different isoforms in mammalian 

development. In mESCs and PGCs, TET1 is expressed in its full form whereas in 

somatic cells TET1 is expressed lacking the N-terminus (Zhang et al., 2016b). TET3 

is the only TET enzyme highly expressed in the zygote. In general, TET3 exists in 

three different isoforms, from which two variants, short TET3 (TET3s) and oocyte 

TET3 (TET3o), are lacking the CXXC domain. The full-length form of TET3 and TET3s, 

are expressed during neuronal differentiation, whereas TET3o is specifically 

expressed in oocytes (Jin et al., 2016). In the paternal pronucleus TET3 is crucial for 

the oxidation of 5mC (Gu et al., 2011; Wossidlo et al., 2011), while the maternal 

pronucleus exhibits much less oxidation derivatives of 5mC (Inoue et al., 2011; Iqbal 

et al., 2011; Wossidlo et al., 2011). In the maternal pronucleus, two DPPA3 mediated 

mechanisms can protect 5mC from oxidation. First, DPPA3 was shown to inhibit TET3 

binding to H3K9me2 (Nakamura et al., 2012) and second, DPPA3 was suggested to 

inhibit the catalytic activity of TET3 (Bian and Yu, 2014). The loss of TET3 leads to 

embryonic defects (Gu et al., 2011) or neonatal sub-lethality (Inoue et al., 2015; 

Tsukada et al., 2015). However, it remains unclear if these defects are caused by 

reduced TET3 levels due to haploinsufficiency or the lack of TET3 mediated 5mC 
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oxidation (Inoue et al., 2015). In summary, the question about the important function 

of TET3 in preimplantation development remains elusive. 

TET3 and TET1 were both reported to have important neural functions (Rudenko et 

al., 2013; Yu et al., 2015; Zhang et al., 2013; Zhu et al., 2016). In the brain, 5hmC, 5fC 

and 5caC were all found at relatively high levels (Ito et al., 2011; Kriaucionis and 

Heintz, 2009; Münzel et al., 2010) suggesting that the activity of TET enzymes could 

have critical implications for the adult brain. However, it is difficult to assign the neural 

defects caused by the loss of TET1 or TET3 to catalytic or non-catalytic activities (Kaas 

et al., 2013; Wu and Zhang, 2017). Future studies will be necessary to dissect the 

catalytic and non-catalytic role of TET1 and TET3 in neural function. 

TET2 is expressed at the blastocyst stage and during PGC development. At both 

developmental stages TET1 is also expressed, yet TET2 and TET1 seem to have 

distinct functions (Huang et al., 2014) (Publication IV). While TET1 preferentially binds 

promoters in mESCs, TET2 targets gene bodies and enhancers (Hon et al., 2014; 

Huang et al., 2014). Here, TET2 maintains low methylation levels to keep enhancers 

and genes active for differentiation (Hon et al., 2014).  

Whether TET enzymes are essential for mammalian development in the end is subject 

of controversial discussions. Different studies suggest that the loss of TET1 or TET2 

does not trigger abnormalities in growth or lethality (Dawlaty et al., 2011; Li et al., 2011; 

Moran-Crusio et al., 2011). In contrast, TET triple knockout (TKO) mice are impared 

in embryonic development (Dawlaty et al., 2014). E7.5 TET TKO embryos show 

gastrulation defects caused by abnormal DNA methylation, directly deregulating Lefty-

Nodal signaling (Dai et al., 2016).  

These findings imply that TET1 and TET2 are non-essential for embryonic 

development, whereas the loss of TET3 causes severe embryonic defects (Gu et al., 

2011). However, in 2017 the Koh lab reported post-implantation lethality of non-inbred 

homozygous TET1 KO mice (Khoueiry et al., 2017). Khoueiry et al. claimed that other 

studies worked with a mouse model expressing a hypomorphic deletion of TET1, 

which lacks the catalytic domain, but still expresses part of the TET1 N-terminus 

(Khoueiry et al., 2017). Taken together, the latest findings of Khoueiry et al. suggest 

that TET1, independent of its catalytic activity, is substantial for embryonic 

development.  
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3.4.3. TET non-catalytic functions 

 

TET enzymes and their catalytic role were of great interest and have been intensively 

studied (Wu and Zhang, 2014). Alongside, independent studies reported non-catalytic 

functions of the different TET proteins in various systems (Deplus et al., 2013; Gao et 

al., 2016; Kaas et al., 2013; Khoueiry et al., 2017; Tsai et al., 2014; Villivalam et al., 

2020; Xu et al., 2012; Zhang et al., 2015). TET1 was reported to regulate expression 

of the central nervous system (CNS) dependent genes and memory formation 

independent of DNA demethylation (Kaas et al., 2013). In adipose tissue, TET1 non-

catalytically cooperates with histone deacetylase 1 (HDAC1) to regulate transcription 

(Kaas et al., 2013; Villivalam et al., 2020). And also during primed pluripotency, TET1 

was shown to regulate transcription mostly independent of DNA demethylation 

(Khoueiry et al., 2017). Similarly, increased proliferation rates in Tet2 KO immune cells 

can be rescued by a catalytically dead version of TET2 (Montagner et al., 2017). TET3 

was reported to repress the Snrpn gene in neural stem cells (NSCs) in a catalytically 

independent way (Montalbán-Loro et al., 2019). While evidence is accumulating that 

non-catalytic functions of the TET enzymes might play an important role in various 

systems, the knowledge about the underlying mechanism remains rudimentary. Until 

today, TET1 was described to interact with SIN3A/HDAC, OGT, MOF, MBD1 and 

PRC2 (Vella et al., 2013; Williams et al., 2011; Wu et al., 2011; Zhang et al., 2017; 

Zhong et al., 2017), which suggests that TET1 could recruit these factors or be 

involved in complex formation (Figure 4c). TET2 and TET3 seem to have fewer 

interactors and so far were reported to interact with O-linked N-

acetylglucosaminyltransferase (OGT) and SET1/COMPASS complexes (Chen et al., 

2013; Deplus et al., 2013; Vella et al., 2013). TET2 was also shown to interact with 

HDAC1 and HDAC2 to regulate inflammatory responses (Zhang et al., 2015). The 

crosstalk between TET1 and most chromatin modifiers however remains elusive. Most 

intensive research is done on the interaction between PRC2 and TET1, which together 

regulate epigenetic plasticity at developmental genes in mESCs and during 

differentiation (Gu et al., 2018b; Neri et al., 2013; Pastor et al., 2011; Williams et al., 

2011; Wu et al., 2011). However, the literature is contradictory regarding the 

mechanism, TET1 might facilitate the recruitment of PRC2 or the other way around 

(Neri et al., 2013; Wu et al., 2011)..  
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Besides PRC2, the SIN3A/HDAC complex is a prominent interactor of TET1 (Chandru 

et al., 2018; Williams et al., 2011; Zhu et al., 2018a). Interestingly, knockdown 

experiments of SIN3 Transcription Regulator Family Member A (SIN3A) caused an 

upregulation of long interspersed nuclear elements 1 (LINE1) in a TET1 dependent 

manner (de la Rica et al., 2016). However, the loss of TET1 alone does not lead to an 

upregulation of LINE1 elements (de la Rica et al., 2016), whereas the loss of all three 

TET proteins triggers a wide range of transposable element (TE) activation. TET TKO 

mESCs exhibit an upregulation of LINEs, short interspersed nuclear elements (SINEs) 

and in particular ERVs (Lu et al., 2014). The most significant upregulation was 

observed at ERVL and correlated with Tripartite Motif Containing 28 (TRIM28/KAP1) 

binding and activity (Lu et al., 2014). 

While two studies so far described a connection between TET enzymes and TE 

regulation (Lu et al., 2014; de la Rica et al., 2016), the underlying mechanism remains 

widely unclear. The catalytic and non-catalytic role of the single TET enzymes, as well 

as the interplay with SIN3A and TRIM28/KAP1 in TE regulation is not understood. In 

addition, it is unclear if the catalytic activity of the TET enzymes is important for the 

functional interaction with different chromatin modifying complexes or if TET1 

recruits/interacts with those complexes independent of DNA demethylation. In this 

doctoral work we addressed the non-catalytic role of TET1 in gene and TE regulation 

in mESCs (Publication I). In the future, it will be an intriguing task to investigate the 

non-catalytic roles of TET enzymes in development and diseases. 

3.5. Heterochromatin & retroviruses 

3.5.1. Retroviruses and their classification 
 

Heterochromatin is a condensed and inactive form of chromatin and can be subdivided 

into constitutive and facultative types (Grewal and Jia, 2007). Facultative 

heterochromatin is marked by H3K27me3, can change upon external stimuli and acts 

dynamically in a developmental context. Constitutive heterochromatin marks regions 

with a high density of repetitive DNA elements such as TEs and is maintained 

throughout the cell cycle. It is believed that silencing of parasitic mobile TEs is the 

main reason why heterochromatin was established during evolution. TEs are 

subdivided into two groups of DNA transposons and retrotransposons (Figure 5a). In 

mammals, retrotransposons are characterized by the presence or absence of long 
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terminal repeats (LTRs) flanking the coding region and can thereby be divided into 

non-LTR and LTR containing retrotransposons. The most well known non-LTR 

retrotransposons are SINEs and LINEs. The LTR-retrotransposons have a high 

similarity to proviral elements and are also called endogenous retroviruses (ERVs) 

(Groh and Schotta, 2017). There are three sub-classes of ERVs (I-III), based on the 

sequence homology of the reverse transcriptase (RT) of exogenous and endogenous 

retroviruses (Gifford and Tristem, 2003; Johnson, 2015). Class I (ERV1) includes 

gammaretroviruses and epsilonretroviruses, class II (ERVK) alpharetroviruses, 

betaretroviruses, and lentiviruses and class III (ERVL) spumaretroviruses (Figure 5a). 

Around 10% of the mouse genome and 8% of the human genome originates from ERV 

insertions (Consortium and Mouse Genome Sequencing Consortium, 2002; Lander et 

al., 2001). ERVs are the most active TEs and account for 10% of germline mutations 

in laboratory mouse strains (Nellåker et al., 2012). To ensure genome stability ERVs 

need to be tightly controlled. Over time, the ongoing battle between viruses and the 

defense mechanisms of the host also served as a driver of genetic variation and 

genome evolution. For example, the syncytin gene derived from an retroviral envelope 

protein, got integrated into the human genome and is involved in the development of 

the placenta (Dupressoir et al., 2012; Mi et al., 2000). TEs can serve as promoters or 

enhancers to regulate gene expression in mice and humans (Faulkner et al., 2009; 

Gifford et al., 2013). Today, it is accepted that ERVs are a driver of mammalian 

evolution (Bourque et al., 2008; Chuong et al., 2013; Cordaux and Batzer, 2009; Lynch 

et al., 2011). In mice some ERVs are still functional, like IAPs and therefore need to 

be tightly controlled (Dewannieux et al., 2004). Deficient ERV silencing may cause 

infertility (Bourc’his and Bestor, 2004), embryonic lethality (Walsh et al., 1998), 

autoimmune responses (Chiappinelli et al., 2017; Roulois et al., 2015) or apoptosis 

(Pasquarella et al., 2016). At the same time the activation of ERVs is crucial at defined 

developmental stages in humans and mice. ERVL are expressed in the early embryo 

to regulate genome plasticity (Göke et al., 2015; Macfarlan et al., 2012; Peaston et al., 

2004). At the zygote stage, MERVL retrotransposons are de-repressed before any 

other gene is transcribed and account for ~3% of the produced mRNA (Kigami et al., 

2003; Peaston et al., 2004). After the 2C stage MERVL expression is silenced again 

(Svoboda et al., 2004). During this defined time frame, MERVL virus-derived 

promoters serve as transcriptional initiators of 2C stage specific gene expression 

(Macfarlan et al., 2012). In addition, ERV1 and ERVK are expressed in mouse and 
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human ESCs and suggested to be under the control of core pluripotency factors (Fort 

et al., 2014). However, in most cell types ERVs remain silenced which is controlled by 

various mechanisms. 

 

3.5.2. Silencing mechanisms of viruses 

3.5.2.1. RNA based silencing 

Retrotransposons can be silenced by various RNA-mediated mechanisms. Three well 

studied RNA silencing mechanisms are the generation of small interfering RNAs 

(siRNAs), production of antisense RNA and piwi-interacting RNA (piRNA) mediated 

silencing (Groh and Schotta, 2017). siRNA are known to silence human LINE1 

elements (Watanabe et al., 2008; Yang and Kazazian, 2006) and upon DNA 

hypomethylation endogenous siRNAs were shown to restrict TE activation in mESCs 

(Berrens et al., 2017). In general antisense transcripts seem to have multiple roles in 

regulating viral expression (Werner, 2013). LINE1 and IAP retrotransposons were 

shown to be silenced or inhibited by their corresponding antisense transcript (Bierhoff 

et al., 2014; Li et al., 2014b). In addition, in preimplantation stem cells tRNA-derived 

fragments (tRFs) silence ERVs, most likely during phases of epigenetic remodeling 

(Schorn et al., 2017).  However, the predominant RNA-based silencing mechanisms 

in heterochromatin formation seems to be mediated by piRNA (Aravin et al., 2007; 

Groh and Schotta, 2017). Mechanistically, piRNAs can induce degradation of 

retroviruses and also influence the chromatin structure. In drosophila, piRNAs were 

discovered to regulate H3K9me3 mediated ERV silencing (Pal-Bhadra et al., 2004).  

and in mice to induce targeted DNA methylation (Aravin et al., 2008; Kuramochi-

Miyagawa et al., 2008).  

https://paperpile.com/c/H6gX9X/bT7Hk
https://paperpile.com/c/H6gX9X/bT7Hk
https://paperpile.com/c/H6gX9X/AiKNQ
https://paperpile.com/c/H6gX9X/5zCDQ+sqQgs
https://paperpile.com/c/H6gX9X/e3uXV
https://paperpile.com/c/H6gX9X/xAKEz
https://paperpile.com/c/H6gX9X/WIEw9+6llIK
https://paperpile.com/c/H6gX9X/WIEw9+6llIK
https://paperpile.com/c/H6gX9X/WsexH
https://paperpile.com/c/H6gX9X/1XuoK+AiKNQ
https://paperpile.com/c/H6gX9X/1XuoK+AiKNQ
https://paperpile.com/c/H6gX9X/fZehi
https://paperpile.com/c/H6gX9X/tD9r0+k5Ajm
https://paperpile.com/c/H6gX9X/tD9r0+k5Ajm


26 

 

Figure 5. Transposable Elements and ERV silencing. a) Classification of 

Transposable Elements (TEs). TEs can be divided into DNA transposons and 

retrotransposons. Retrotransposons are either classified as long terminal repeats 

(LTR) or as non-LTRs. LTRs are endogenous retroviruses (ERVs) and can be 

separated into ERV1, ERVK and ERVL. Non-LTRs can be divided into viral elements, 

like long interspersed elements (LINE) or short interspersed elements (SINE). Figure 

adapted from (Geis and Goff 2020). b) Model figure illustrating the epigenetic silencing 

mechanism of ERVs in mESCs. KRAB-Znf recruits TRIM28/KAP1 and subsequently 

the H3K9me3 methyltransferase SETDB1 to ERV1, ERVK and ERVL elements. HP1 

proteins bind H3K9me3, recruit the histone methyltransferases SUV39H and SUV4-

20H for the establishment of H3K9me3 and H4K20me3 domains, causing 

heterochromatin (HC) spreading. 
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3.5.2.2. Epigenetic ERV silencing 

The establishment and maintenance of ERV silencing is an interplay of different 

factors and closely linked to specific epigenetic marks. The crucial epigenetic 

hallmarks of constitutive heterochromatin are DNA methylation and histone based post 

translational modifications, such as H3K9me3 and H4K20me3 (Groh and Schotta, 

2017). In mESCs, the establishment of H3K9me3 is crucial for repressing ERVs 

(Matsui et al., 2010; Mikkelsen et al., 2007) (Figure 5b). The current model suggests 

that Krüppel-associated box domain zinc finger (KRAB-Znf) proteins recruit 

TRIM28/KAP1 to specific loci (Friedman et al., 1996; Jacobs et al., 2014; Tan et al., 

2013; Wolf and Goff, 2009; Wolf et al., 2015, 2020). TRIM28/KAP1 is one of the master 

regulators of ERV silencing (Rowe et al., 2010) and interacts with SET Domain 

Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) (Schultz et al., 2002), the 

H3K9 methyltransferase for H3K9me3 installation (Matsui et al., 2010). Next, 

heterochromatin proteins (HP1α, HP1β and HP1γ, also called CBX1, CBX3 and 

CBX5) bind H3K9me3 (Jacobs and Khorasanizadeh, 2002; Jacobs et al., 2001; 

Lachner et al., 2001) and recruit suppressor of variegation 3-9 homolog (SUV39H) and 

suppressor of variegation 4-20 (SUV4-20) for subsequent spreading of 

heterochromatin (Bulut-Karslioglu et al., 2014). SUV39H is the methyltransferase for 

H3K9 methylation and SUV4-20 methylates H4K20 (Schotta et al., 2004). While the 

establishment of H3K9me3 is crucial for silencing of ERVs in mESCs, it seems that 

the interplay of both H3K9me3 and DNA methylation has the greatest impact on ERV 

silencing (Sharif et al., 2016). DNA methylation alone is not sufficient to silence ERVs 

(Karimi et al., 2011) and seems to be more important for ERV repression during 

differentiation and in somatic cells (Sharif et al., 2016). While the role for DNA 

methylation in ERV silencing is well studied, the role of DNA demethylation and TET 

enzymes remains unclear. For example, LINE1 elements are decorated with 5hmC 

and not deregulated in TET TKO mESCs, whereas ERVs are activated (Lu et al., 2014; 

de la Rica et al., 2016). In summary leading to the question of the underlying 

mechanism in TE regulation and the individual contributions of the three TET 

enzymes. In this doctoral work we investigated the role of TET1 in ERV silencing and 

found that TET1 is crucial for H3K9me3 establishment at specific ERVs independent 

of DNA demethylation (Publication I).  

https://paperpile.com/c/H6gX9X/AiKNQ
https://paperpile.com/c/H6gX9X/AiKNQ
https://paperpile.com/c/H6gX9X/juNCq+8pgrI
https://paperpile.com/c/H6gX9X/FZxxe+9AqHL+ySqSo+6vV2r+2Ybae+XiiAH
https://paperpile.com/c/H6gX9X/FZxxe+9AqHL+ySqSo+6vV2r+2Ybae+XiiAH
https://paperpile.com/c/H6gX9X/9EJMy
https://paperpile.com/c/H6gX9X/pauB5
https://paperpile.com/c/H6gX9X/8pgrI
https://paperpile.com/c/H6gX9X/t8nB5+NR4Zz+9E35C
https://paperpile.com/c/H6gX9X/t8nB5+NR4Zz+9E35C
https://paperpile.com/c/H6gX9X/49wOj
https://paperpile.com/c/H6gX9X/2i4Wp
https://paperpile.com/c/H6gX9X/8MMml
https://paperpile.com/c/H6gX9X/7vbXB
https://paperpile.com/c/H6gX9X/8MMml
https://paperpile.com/c/H6gX9X/v59Dm+TIEKC
https://paperpile.com/c/H6gX9X/v59Dm+TIEKC


28 

3.6. RNA modifications in development and disease 

3.6.1 METTL enzymes and other RNA modifiers 

 

In eukaryotes m6A is the most abundant messenger RNA modification and is involved 

in various cellular, developmental, and disease processes (Roundtree et al., 2017). 

The last decade was marked with the discoveries of m6A writers (e.g. METTL14, 

WTAP, and KIAA1429) (Liu et al., 2014a; Ping et al., 2014; Wang et al., 2014c), m6A 

readers (YTHDF1, YTHDF2, and YTHDF3) (Li et al., 2014a; Wang et al., 2014b, 2015; 

Zhu et al., 2014) and m6A erasers (FTO and ALKBH5) (Jia et al., 2011; Zheng et al., 

2013) (Figure 6). Among human and mouse m6A is strongly conserved (Dominissini 

et al., 2012) and the loss of critical m6A enzymes causes severe defects in human, 

mouse, drosophila, yeast and plant (Batista et al., 2014; Clancy, 2002; Hongay and 

Orr-Weaver, 2011; Zhong et al., 2008).  

 

Figure 6. m6A writers, readers and erasers. N6-methyladenosine (m6A) is primarily 

installed by the METTL3/METTL14 writer complex but also by other enzymes like 

METTL5. The main m6A readers are YTHDF1, YTHDF2 and YTHDF3. The two major 

m6A erasers are FTO and ALKBH5. The figure is adapted from (Shi et al. 2019). 

 

In mammals, Methyltransferase-like 3 (METTL3) and METTL14 are the core of a multi-

unit m6A RNA methyltransferase complex and crucial for placing m6A on mRNA. 

During mouse embryonic development, the loss of either METTL3 or METTL14 

reduces m6A and promotes transcript stability of pluripotency genes (Wang et al., 
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2014c). In addition, Mettl3 knock-out mice are not viable and Mettl3 knock-out mESCs 

are unable to exit naive pluripotency (Geula et al., 2015). Besides METTL3 and 

METTL14, the family of METTL proteins includes a variety of enzymes targeting 

different kinds of RNA and even protein, thereby regulating various cellular processes 

(Wong and Eirin-Lopez, 2021). In general, the METTL enzymes are present in most 

metazoan phyla and represent a group of seven-beta-strand methyltransferases with 

S-adenosyl methionine-binding domains that can potentially modify DNA, RNA, and 

proteins (Wong and Eirin-Lopez, 2021). For example, METTL21D catalyzes the 

methylation of the chaperon VCP at lysine312 and can promote tumor formation 

(Kernstock et al., 2012; Thiele et al., 2011). Interestingly, in C.elegans DAMT-1, a 

protein similar to METTL4 in humans acts as a m6A DNA methyltransferase (Greer et 

al., 2015). In total, 33 METTL proteins were identified that are either DNA/RNA or 

protein methyltransferases or still of unknown function (Wong and Eirin-Lopez, 2021). 

However, compared to DNMT enzymes, the family of METTL enzymes remains 

understudied. Besides mRNA methylation, METTL proteins are also involved in the 

methylation of rRNA, tRNA and small nuclear RNA (snRNA) and therefore influencing 

cellular processes on multiple levels.  

 

3.6.2. METTL enzymes in development and disease 

 

Human rRNA contains multiple modifications, including 2’-O-methyls, pseudouridines, 

and base methylations. However, only two m6A sites exist on rRNA, one at position 

A1832 of 18S rRNA and one at position A4220a on 28S rRNA (Maden, 1986, 1988; 

Natchiar et al., 2017). Both m6A rRNA sites are located at functionally important sites 

and have potential implications for human health (Natchiar et al., 2017). Only in recent 

years, METTL5 and ZCCHC4 were discovered as the responsible m6A rRNA 

methyltransferases of A1832 and A4220 (Ma et al., 2019; van Tran et al., 2019). 

However, the role and function of METTL5 and ZCCHC4 in development and disease 

remains elusive.  

tRNA are subject to a wide range of modifications, which can impact tRNA stability, 

folding and translation efficiency of mRNA (Delaunay and Frye, 2019). Today, more 

than 610 tRNAs are identified and most are individually modified and expressed in a 

tissue specific manner. This versatility is required for effective interaction between the 

https://paperpile.com/c/H6gX9X/BRoVU
https://paperpile.com/c/H6gX9X/pe37S
https://paperpile.com/c/H6gX9X/XxpGw
https://paperpile.com/c/H6gX9X/XxpGw
https://paperpile.com/c/H6gX9X/U5yWt+jJ37E
https://paperpile.com/c/H6gX9X/jvyKz
https://paperpile.com/c/H6gX9X/jvyKz
https://paperpile.com/c/H6gX9X/XxpGw
https://paperpile.com/c/H6gX9X/HvDIy+amRKP+SS9xU
https://paperpile.com/c/H6gX9X/HvDIy+amRKP+SS9xU
https://paperpile.com/c/H6gX9X/SS9xU
https://paperpile.com/c/H6gX9X/ppcBl+I5rTI
https://paperpile.com/c/H6gX9X/mpLw5


30 

ribosome and the translation factors (Kuhn, 2016). Loss of tRNA modifications is tightly 

connected to cancer progression and disease. In humans for instance, tRNA enzymes 

that catalyze the modification of wobble uridine 34 (U34) are essential for the survival 

of melanoma cells via regulating translation efficiency of HIF1A mRNA (Rapino et al., 

2021). Deleterious mutations in the tRNA methyltransferase NOP2/Sun RNA 

methyltransferase 2 (NSUN2) cause growth retardation and neurodevelopmental 

deficits in humans and mice (Abbasi-Moheb et al., 2012; Khan et al., 2012; Sun et al., 

2020). Re-expression of the tRNA methyltransferase 9-like (hTRM9L/KIAA1456) 

suppresses tumor growth in vivo (Begley et al., 2013). Further, the establishment of 

the tRNA N7-methylguanosine (m7G) methylome by the METTL1/WDR4 complex is 

essential for mRNA translation in mammals and the loss of METTL1 causes defects 

during embryonic development (Lin et al., 2018). Importantly, tRNA modifications and 

their multiple functions in various cellular and developmental processes are potential 

drug targets. This creates the need to better understand tRNA modifying enzymes and 

their mechanism for effective drug development in the future. As part of this doctoral 

work, I investigated novel functions of the RNA methyltransferases METTL5 and 

METTL6 in development and disease (Publication V and VI). 

 

3.7. Technological milestones 

3.7.1. Next generation sequencing 

 

The decision to sequence the entire human genome marked a milestone in the 

development of NGS techniques. Since the human genome project in 2003 was 

completed, the costs for sequencing the human genome dropped from 150 mio to 

below 1000 dollars (Goodwin et al., 2016; Roberts et al.). This advancement was 

triggered by great innovations in the field of sequencing and data analysis and made 

NGS more accessible for basic research and medicine. NGS can be divided into short- 

and long-read sequencing. Many short-read sequencing platforms are based on 

sequencing by synthesis. Primer-directed polymerase extension uses 

deoxynucleotide triphosphate (dNTPs) coupled to fluorescent markers allowing base 

calling while DNA synthesis (Ronaghi et al., 1998). Today, short-read sequencing has 

the greatest market share and Illumina is the dominating provider of a short-read 

sequencing platform (Goodwin et al., 2016). For the Illumina workflow, the DNA is 
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fragmented into small pieces and ligated with an adaptor sequence. The adaptors are 

used for clonal PCR amplification in which the signal during the sequencing process 

is enriched. The DNA library is then applied to a flow cell which is covered with 

adaptors that match the adaptors of the DNA library. The mobile DNA fragments attach 

to the flow cell and are amplified by bridge PCR using dNTPs with base-specific 

fluorophores. The fluorescent signal is excited by a laser and converted into 

sequencing reads for computational analysis. The development of NGS allowed the 

concurrent development of a wide-range of applications like chromatin 

immunoprecipitation sequencing (ChIP-seq), RNA-seq and whole genome bisulfite 

sequencing (WGBS). This allowed for genome-wide chromatin profiling during 

development and disease. While the mapping of epigenetic marks was a major 

breakthrough, the technological advancements are ongoing. Single-cell sequencing of 

the transcriptome and epigenome provides crucial information to understand the 

complex cellular interplay in organs, tissues and embryonic development (Buenrostro 

et al., 2015; Nagano et al., 2013; Patel et al., 2014; Rotem et al., 2015; Smallwood et 

al., 2014; Tirosh et al., 2016; Venteicher et al., 2017; Zheng et al., 2017). Despite the 

rapid development and great benefits, short-read sequencing harbors some 

limitations. The mapping of short reads to the genome can be computationally 

challenging, the PCR amplification can introduce sequencing errors and some 

repetitive regions remain inaccessible due to the PCR amplification step (Chaisson et 

al., 2019). To avoid these difficulties, the development of long-read sequencing 

approaches offers an attractive solution. The two upfront long-read sequencing 

platforms are Oxford Nanopore Technologies and PacBio (Logsdon et al., 2020). Both 

platforms create thousands of kilobases (kb) in read length directly from native DNA. 

PacBio uses hairpin adapters on both sides of an up to 100 kb big DNA insert to create 

circular DNA. This allows the amplification of long reads by DNA Polymerase. To 

discriminate between individual DNA bases, fluorescently labeled dNTPs are used to 

detect and record fluorescent emission (Logsdon et al., 2020). Oxford Nanopore 

Technologies uses linear, up to several mega bases long DNA fragments attached to 

an adapter sequence and a motor protein. This DNA fragment is loaded onto a flow 

cell covered with nanopores and the negatively charged DNA is moved through the 

nanopore by the motor protein and an electric current. While the DNA is passing 

through the pore the current changes characteristically for each DNA base and is 

measured in real-time (Logsdon et al., 2020). Long-read sequencing offers chromatin 
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profiling methods without chemical treatments during library preparation and can be 

used to detect epigenetic marks on DNA like 5mC (Feng et al., 2013; Flusberg et al., 

2010; Rand et al., 2017), 5hmC (Laszlo et al., 2013; Wescoe et al., 2014), 6mA 

(McIntyre et al., 2019) and 8-oxoguanine (An et al., 2015), but also modifications on 

RNA (Leger et al., 2021; Liu et al., 2019). Today, short-read sequencing is still the gold 

standard, but long-read sequencing is developing and improving rapidly. Taken 

together NGS approaches have revolutionized basic research, clinical diagnostics and 

medicine.  

 

3.7.2. CRISPR/Cas9 
 

3.7.2.1. Brief history and basic principle 

 

The utilization of homology directed repair (HDR) to modify the genome allowed the 

shutdown, mutation or tagging of genes of interest and was a great improvement for 

many biological fields (Capecchi, 1989). Subsequently, several nuclease based 

genome editing technologies have been developed. The first two were meganucleases 

derived from microbial mobile genetic elements and zinc-finger nucleases (ZFNs) 

based on eukaryotic transcription factors (TFs) (Miller et al., 2007; Smith et al., 2006; 

Urnov et al., 2005). Shortly after, transcription activator-like effectors (TALENS) from 

Xanthomonas bacteria were developed for targeted genome engineering (Boch et al., 

2009; Christian et al., 2010). Nevertheless, precise and efficient modulation of the 

large and complex eukaryotic genome remained very challenging. TALENS and ZFNs 

are difficult to design and clone and new TALENS and ZNF proteins need to be 

validated for new target sites (2017). The discovery of CRISPR-Cas9 however marks 

a turning point in genome engineering and shaped the last decade in fundamental 

research, biotechnology and medicine.   

Clustered regularly interspaced short palindromic repeats (CRISPR) together with the 

associated Cas gene was first described in 2007 as a defense mechanism of 

prokaryotes against viruses (Barrangou et al., 2007). The CRISPR system was known 

as a defense mechanism of bacteria and archaea (Bhaya et al., 2011; Terns and 

Terns, 2011; Wiedenheft et al., 2012). In 2012 the labs of Charpentier and Doudna 

discovered that double stranded RNA can target Cas9 to specific DNA sites to create 

double strand breaks (Jinek et al., 2012). This finding simplified the gene editing 

process significantly. Before, genome editing systems relied on expertise in 
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engineering customized DNA-binding proteins, whereas CRISPR-Cas9 genome 

engineering relies on base pairing of nucleic acids (Pickar-Oliver and Gersbach, 

2019). 

In more detail, Cas9 endonuclease directed genome engineering depends on the 

protospacer adjacent motifs (PAM) and a short RNA which guides the Cas9 

endonuclease. In nature, the guide RNA of Cas9 consists of CRISPR-RNA (crRNA) 

and a complementary trans-activating crRNA, which can when merged guide Cas9 to 

the PAM (Deltcheva et al., 2011). For genome engineering approaches, single-guide 

RNAs have been developed which can be easily synthesized. The guide RNA and the 

Cas9 nuclease associate with the DNA by base pairing of the guide RNA and the 

recognition of the PAM. Upon successful alignment, Cas9 creates a blunt-ended 

double strand break (DSB) 3 bp upstream of the PAM (Garneau et al., 2010). The DSB 

can be repaired by two different DNA repair mechanisms, either non homologous end 

joining (NHEJ) or HDR. NHEJ creates random insertions or deletions useful for gene 

disruptions. HDR uses a DNA template for repair of the DSB, which entails a 

homologous sequence of the target site and can be utilized to incorporate a tag, 

fluorophore or mutation (Figure 7a). 

   

3.7.2.2. Epigenetic toolbox 

 

Shortly after its discovery, the CRISPR-Cas9 system was successfully utilized for 

genome engineering in mammalian cells (Cong et al., 2013; Mali et al., 2013). The 

engineering strategies can be planned using different softwares and algorithms (e.g. 

www.benchling.com). Cas9 created double strand breaks can be used to either screen 

for gene deletions or knockouts or used to insert a desired protein tag for subsequent 

experiments. Meanwhile, there are countless examples where CRISPR-Cas9 created 

double strand breaks were successfully used for genome engineering in different 

biological systems (Cho et al., 2013; Dever et al., 2016; Jinek et al., 2012; Min et al., 

2019; Shan et al., 2014; Shimatani et al., 2017). The great success is based on easy 

design and cloning, high targeting efficiency and the great diversity to utilize the 

CRISPR-Cas system. For example, mutating the RuvC (D10A) and HNH (H840A) 

nuclease domains of Cas9 disrupts its catalytic activity, but conserves the ability to 

bind DNA in an RNA-guided manner (Jinek et al., 2012; Qi et al., 2013). This 

catalytically dead version of Cas9 (dCas9) can be fused to a diverse range of effectors 
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like fluorophores, activators, repressors and epigenetic modifiers (Figure 7b) (Anton 

et al., 2018). In eukaryotic cells, the fusion of Krüppell-associated box (KRAB) to 

dCas9 can effectively repress transcription of targeted regions (Gilbert et al., 2013; 

Thakore et al., 2015). On the other side, genes can be activated by fusing transcription 

activation domains to dCas9, like four repeats of the herpes simplex VP16 activation 

domain (VP64) (Maeder et al., 2013; Perez-Pinera et al., 2013). The dCas9 driven 

transcriptional activation was already successfully used for reprogramming cell fate or 

pluripotency (Black et al., 2016; Liu et al., 2018). Further, dCas9 can be also used for 

site-directed acetylation or methylation of histones and methylation or demethylation 

of DNA (Choudhury et al., 2016; Hilton et al., 2015). Hence, the recruitment of 

epigenetic modifiers by Cas9 can induce activation, repression or remodeling of DNA, 

offering the intriguing possibility to thoroughly dissect epigenetic mechanisms in 

development and disease. 
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Figure 7. CRISPR/Cas gene and epigenome editing toolbox. a) Cas9 nuclease is 

directed to a specific loci by the gRNA and PAM and creates double strand breaks 

(DSB). The repair pathways of the cell are either non homologous end joining (NHEJ) 

or homology directed repair (HDR), which can be utilized to create random mutations 

respectively for precise editing using DNA templates with homology arms. b) The 

catalytic dead version of Cas9 (dCas9) can be directly fused to different epigenetic 

effectors for the recruitment to a specific site in the genome. The Krüppel-associated 

box domain (KRAB) induces transcriptional repression, VP64 acts as a transcriptional 

activator and the catalytic domain of TET enzymes catalyzes DNA demethylation. 
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3.7.2.3. Applications in development and disease 

 

The field of applications for CRISPR-Cas seems infinite and multiple strategies have 

been applied to study biological processes and disease. Besides binding and cleaving 

DNA, CRISPR-Cas was also utilized to target RNA in living cells (O’Connell et al., 

2014). This strategy was already successfully used for live tracking of mRNAs (Nelles 

et al., 2016) and to specifically eliminate toxic RNAs in patient derived cells (Batra et 

al., 2017). These studies highlight the potential of Cas9 for fundamental research and 

future human therapeutics. 

Recently, Cas13a was discovered to be a naturally occurring RNA-targeting 

endonuclease (Abudayyeh et al., 2016). The Zhang lab developed a Cas13-based 

molecular detection platform, called Specific High Sensitivity Enzymatic Reporter 

UnLOCKing (SHERLOCK), which utilizes the Cas13 RNA sensitivity (Gootenberg et 

al., 2017). More precisely, Cas13 is coupled to disease specific gRNA and quenched 

fluorescent RNA for fluorescent readout and can be used for detecting Zika, Dengue 

virus and Covid-19 (Kellner et al., 2019). Until today, new CRISPR-Cas family variants 

are being discovered in many different organisms (Edraki et al., 2019; Esvelt et al., 

2013; Hou et al., 2013; Müller et al., 2016). The different variants can bring distinct 

advantages, like smaller protein size (Ran et al., 2015) or different PAM sequences 

(Miller et al., 2020), holding great potential for new applications in research and 

medicine.  

Diseases caused by gene mutations generally harbor great potential for CRISPR-Cas 

based therapies, like retinitis pigmentosa (RP), which can result in blindness (Daiger 

et al., 2013). First experiments in animal models suggest that CRISPR-Cas based in 

vivo knockdown of the RP critical Nrl gene leads to preserved cone function and 

improved survival in three independent mouse models (Yu et al., 2017). Another 

example for a disease caused by a gene defect is Duchenne muscular dystrophy 

(DMD). Here, a mutation in the DMD gene leads to the absence of dystrophin causing 

a neuromuscular disorder (Hoffman et al., 1987). Different studies already showed that 

CRISPR-Cas gene editing enables the restoration of dystrophin expression and 

normal muscle formation in different animal models (Amoasii et al., 2018; Hakim et al., 

2018; Long et al., 2016; Nelson et al., 2016; Tabebordbar et al., 2016; Young et al., 

2016).  
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This shows that CRISPR-Cas based therapies harbor great potential for clinical 

applications, even though some bottlenecks still have to be overcome. New vectors 

have to be found as an expression system to solve limited DNA capacities, control the 

expression of Cas9 and reduce the risk of integration into DSB (Nelson et al., 2019). 

First achievements in clinical trials could be already celebrated in 2021 (Gillmore et 

al., 2021). Using a lipid nanoparticle carrier system to transport mRNA of Cas9 and 

gRNA to knock-out transthyretin (TTR) and to cure the life-threatening disease 

Transthyretin amyloidosis (ATTR amyloidosis) offered promising results. After 28 days 

TTR protein concentration was reduced up to 87% (Gillmore et al., 2021). Although, 

lipid nanoparticles as a carrier system for CRISPR-Cas might offer a solution to treat 

so far incurable diseases, long-term studies and increased patient numbers are 

needed to confirm the first positive results 

While CRISPR-Cas has already revolutionized basic research, some hurdles still need 

to be passed before it becomes a standardized medical application. Fortunately 

however, several trials are already ongoing using CRISPR-Cas to repair gene defects 

in blood disorders, cancers, eye disease, chronic infections and protein-folding 

disorders. In summary, it might still take years until first CRISPR-Cas therapies are 

approved by the FDA. However, with the potential for engineering DNA, RNA and the 

epigenome, CRISPR-Cas already today has an enormous benefit and impact on 

research, drug and therapy development and the work presented in this doctoral work 

(Publication I - VI). 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/H6gX9X/xTww1
https://paperpile.com/c/H6gX9X/2RI8E
https://paperpile.com/c/H6gX9X/2RI8E
https://paperpile.com/c/H6gX9X/2RI8E
https://innovativegenomics.org/glossary/cancer/


38 

4. Results 

4.1. Publication I: TET1 regulates gene expression and 

repression of endogenous retroviruses independent of DNA 

demethylation 

 

Paul Stolz, Angelo Salazar Mantero, Andrey Tvardovskiy, Enes Ugur, Lucas E 

Wange, Christopher B Mulholland, Yuying Cheng, Michael Wierer, Wolfgang Enard, 

Robert Schneider, Till Bartke, Heinrich Leonhardt, Simon J Elsässer, Sebastian 

Bultmann, Nucleic Acids Research, Volume 50, Issue 15, 26 August 2022, Pages 

8491–8511 

doi: org/10.1093/nar/gkac642 

 

4.2. Publication II: Critical Role of the UBL Domain in 

Stimulating the E3 Ubiquitin Ligase Activity of UHRF1 

toward Chromatin  

 

Foster BM, Stolz P, Mulholland CB, Montoya A, Kramer H, Bultmann S, Bartke T. 

Mol Cell. 2018 Nov 15;72(4):739-752.e9. Epub 2018 Nov 1 

doi: 10.1016/j.molcel.2018.09.028.  

 

 

4.3. Publication III: Recent evolution of a TET-controlled 

and DPPA3/STELLA-driven pathway of passive DNA 

demethylation in mammals 

Mulholland CB, Nishiyama A, Ryan J, Nakamura R, Yiğit M, Glück IM, Trummer C, 

Qin W, Bartoschek MD, Traube FR, Parsa E, Ugur E, Modic M, Acharya A, Stolz P, 

Ziegenhain C, Wierer M, Enard W, Carell T, Lamb DC, Takeda H, Nakanishi M, 

Bultmann S, Leonhardt H. Nat Commun. 2020 Nov 24;11(1):5972. Erratum in: Nat 

Commun. 2020 Dec 17;11(1):6443.  

doi: 10.1038/s41467-020-19603-1.  

 

 

 

 

https://doi.org/10.1093/nar/gkac642
https://doi.org/10.1016/j.molcel.2018.09.028
https://doi.org/10.1038/s41467-020-19603-1


39 

4.4. Publication IV: Distinct and stage-specific 

contributions of TET1 and TET2 to stepwise cytosine 

oxidation in the transition from naive to primed 

pluripotency 

Mulholland CB, Traube FR, Ugur E, Parsa E, Eckl EM, Schönung M, Modic M, 

Bartoschek MD, Stolz P, Ryan J, Carell T, Leonhardt H, Bultmann S. Sci Rep. 2020 

Jul 21;10(1):12066.  

doi: 10.1038/s41598-020-68600-3. 

 

4.5. Publication V: The rRNA m 6 A methyltransferase 

METTL5 is involved in pluripotency and developmental 

programs 

Ignatova VV, Stolz P, Kaiser S, Gustafsson TH, Lastres PR, Sanz-Moreno A, Cho 

YL, Amarie OV, Aguilar-Pimentel A, Klein-Rodewald T, Calzada-Wack J, Becker L, 

Marschall S, Kraiger M, Garrett L, Seisenberger C, Hölter SM, Borland K, Van De 

Logt E, Jansen PWTC, Baltissen MP, Valenta M, Vermeulen M, Wurst W, Gailus-

Durner V, Fuchs H, Hrabe de Angelis M, Rando OJ, Kellner SM, Bultmann S, 

Schneider R. Genes Dev. 2020 May 1;34(9-10):715-729. Epub 2020 Mar 26.  

doi: 10.1101/gad.333369.119.  

 

4.6. Publication VI: METTL6 is a tRNA m3C 

methyltransferase that regulates pluripotency and tumor 

cell growth 

Ignatova VV, Kaiser S, Ho JSY, Bing X, Stolz P, Tan YX, Lee CL, Gay FPH, Lastres 

PR, Gerlini R, Rathkolb B, Aguilar-Pimentel A, Sanz-Moreno A, Klein-Rodewald T, 

Calzada-Wack J, Ibragimov E, Valenta M, Lukauskas S, Pavesi A, Marschall S, 

Leuchtenberger S, Fuchs H, Gailus-Durner V, de Angelis MH, Bultmann S, Rando 

OJ, Guccione E, Kellner SM, Schneider R. Sci Adv. 2020 Aug 26;6(35):eaaz4551.  

doi: 10.1126/sciadv.aaz4551.  

 

 

 

https://doi.org/10.1038/s41598-020-68600-3
https://doi.org/10.1101/gad.333369.119
https://doi.org/10.1126/sciadv.aaz4551


40 

5. Discussion  

 

5.1. DNA methylation 

 

5.1.1. UHRF1 and DNA methylation 
 

The DNA methyltransferase DNMT1 was described early on as a maintenance 

methyltransferase engaging with replicating protein proliferating cell nuclear antigen 

(PCNA) (Leonhardt et al., 1992b). Subsequent studies showed that the interaction of 

DNMT1 with PCNA is not crucial for maintenance methylation (Schermelleh et al., 

2007; Spada et al., 2007), but that DNMT1 is regulated by intramolecular events 

(Jeltsch and Jurkowska, 2016), PTMs (Du et al., 2010; Estève et al., 2009, 2011; 

Zhang et al., 2019) and UHRF1 (Bostick et al., 2007; Sharif et al., 2007). Today, the 

multidomain protein UHRF1 is well characterized as a crucial player in regulating 

DNMT1 and passive DNA demethylation in mammalian development (von Meyenn et 

al., 2016). However, the mechanisms by which UHRF1 recruits DNMT1 to chromatin 

are numerous and complex and are still a subject of research. While, the E3 

ubiquitination ligase activity of UHRF1 towards H3 is critical for recruiting DNMT1 to 

replicating chromatin (Ishiyama et al., 2017; Nishiyama et al., 2013; Qin et al., 2015), 

the mechanism regulating the ubiquitination activity of UHRF1 itself remained 

unknown. In the scope of this doctoral work I collaborated with the group of Till Bartke 

to identify a hydrophobic patch in the UBL domain which is critical for E2 ligase 

(UbcH5a) targeted ubiquitination of H3 and which stabilizes the complex formation 

with the RING-domain of UHRF1 for E3 ligase activity (Publication II) (DaRosa et al., 

2018). Further, using CRISPR/Cas in mESCs, I contributed to the finding that a single 

F46A point mutation in the hydrophobic patch of the UBL domain disturbs the E3 ligase 

activity of UHRF1, which ultimately impedes DNA methylation maintenance (Figure 8, 

Publication II).  

 

The necessity to understand the ubiquitination mechanism of UHRF1 was again 

highlighted by a recent study of Nishiyama and colleagues (Nishiyama et al., 2020). 

Besides its known ubiquitination sites at Lysine 14, 18 and 23 of H3, UHRF1 also 

ubiquitinates PAF15 at two lysine residues (Nishiyama et al., 2020). Both 
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ubiquitination events lead to the recruitment of DNMT1 to chromatin and are therefore 

critical for DNA methylation maintenance (Nishiyama et al., 2020). Intriguingly, these 

two ways of DNMT1 recruitment are most likely separated in time and space. PAF15 

is suggested to compensate for the lack of H3 ubiquitination at early S-phase, whereas 

H3 ubiquitination could be the critical factor in late S-phase (Nishiyama et al., 2020). 

However, it remains unclear how this switch between PAF15 and H3 ubiquitination is 

regulated. One hypothesis is that PAF15 is degraded in late S-phase to ensure proper 

H3 ubiquitination. Paf15 knock-out mice are viable, whereas Dnmt1 and Uhrf1 

knockouts are embryonic lethal. This suggests that either H3 ubiquitination 

compensates for PAF15 or another not identified protein can substitute PAF15. 

Considering the multiple intramolecular interactions among the different domains of 

UHRF1, another possibility would be a change in the intramolecular states or folding 

of UHRF1 to switch between different ubiquitination targets. Thus, future studies of a 

full length UHRF1 protein, in particular harboring the UBL and RING domain, are 

needed to completely understand the function and mechanism of the UHRF1 

ubiquitination activity.  

 

Figure 8. The UBL domain of UHRF1 is essential for H3 ubiquitination and 

subsequent DNA methylation maintenance. Schematic representation of UHRF1 

impacting H3 ubiquitination and DNA methylation maintenance. The point mutation 

F46A in the UBL domain destabilizes the binding of the E2 ligase (UbcH5a) to UHRF1, 

which impairs H3 ubiquitination, inhibits the recruitment of DNMT1 and causes a 

reduction in DNA methylation levels.  
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Besides the ubiquitination activity of UHRF1, various other mechanisms are involved 

in regulating the UHRF1-DNMT1 interaction and activity. The PHD and TTD domain 

cooperate in regulating the binding of UHRF1 to H3K9me2/3 (Arita et al., 2012b; Qin 

et al., 2015; Rothbart et al., 2012). This is controlled by intramolecular contacts of the 

TTD domain and binding of histone mimic protein LIG1 (Ferry et al., 2017; Gao et al., 

2018). Moreover, the binding of methylated, hemi-methylated and unmethylated DNA 

depends on the SRA domain of UHRF1, which is also critical for DNA methylation 

maintenance (Arita et al., 2008). In the scope of this doctoral work I contributed to 

identify DPPA3 as a direct binding partner of UHRF1 and a significant regulator of 

DNA methylation maintenance (Publication III). DPPA3 can bind and remove UHRF1 

from chromatin, thereby inducing global hypomethylation by passive DNA 

demethylation (Publication III). Interestingly however, the expression of DPPA3 is 

regulated by active DNA demethylation of the Dppa3 locus by TET1 and TET2 

(Publication III). 

In addition to intramolecular regulation and the interaction with different proteins, 

UHRF1 can be regulated by PTMs, highlighting the multilayered complexity of UHRF1-

DNMT1 activity regulation. However, it remains unclear how the different modes of 

DNMT1 recruitment by UHRF1 are coordinated. In colorectal cancer for instance the 

PHD and SRA domain are crucial for cancer-specific DNA methylation patterns, but 

not the E3 ubiquitination activity of UHRF1 (Kong et al., 2019). This finding raises the 

question whether the E3 ubiquitination activity of UHRF1 is required for DNA 

methylation only in specific cell types or defined stages of embryonic development. 

One experimental approach to address this question, could be to induce degradation 

of UHRF1 and other proteins involved at different stages during development using 

the auxin-inducible degron (AID)-Auxin (Nishimura et al., 2009) or degron Tag (dTag) 

(Nabet et al., 2018) system. This would allow the measurement of epigenetic marks, 

like ubiquitination, upon UHRF1 loss at different timepoints during development. 

Another approach could be the mutation or deletion of the UBL domain in different cell 

types or using a Cre-lox system to delete the UBL domain at different timepoints during 

mouse development. This experimental setup could answer when and if the E3 

ubiquitination activity of UHRF1 is required for DNA methylation. 

This complex regulation of UHRF1-DNMT1 shows that the interplay needs to be tightly 

controlled to act at different genomic regions at different timepoints. In addition, 

https://paperpile.com/c/H6gX9X/hFOxN+IiFYx+libTn
https://paperpile.com/c/H6gX9X/hFOxN+IiFYx+libTn
https://paperpile.com/c/H6gX9X/IVlQL+zO1q5
https://paperpile.com/c/H6gX9X/IVlQL+zO1q5
https://paperpile.com/c/H6gX9X/5yqES
https://paperpile.com/c/H6gX9X/NTg4b
https://paperpile.com/c/H6gX9X/DZkdD
https://paperpile.com/c/H6gX9X/1573K


43 

DNMT1 was suggested to associate with non-replicating chromatin (Easwaran et al., 

2004), but it remained unclear whether the UHRF1-DNMT1 tandem is also involved in 

de novo DNA methylation activity. Recently however, Haggerty and colleagues 

showed DNMT1 de novo activity at specific TEs, namely IAP elements, in a UHRF1-

dependent manner (Haggerty et al., 2021). This fascinating finding brings up the 

following question: Which regulatory mechanisms of UHRF1-DNMT1 control the 

switch between maintenance and de novo methylation? UHRF1 seems to be recruited 

to TEs in a TRIM28 and H3K9me3 dependent manner (Haggerty et al., 2021). 

However, H3K9me3 is a pervasive mark at TEs and it remains elusive how UHRF1 is 

specifically targeted to IAP elements. It is intriguing to speculate, that zinc finger 

proteins, UHRF1 folding, PTMs or another epigenetic mechanism might individually or 

in combination control de novo methylation by DNMT1-UHRF1, to in the end silence 

ERVs at certain time points during embryonic development.  

 

 

 

5.2. DNA demethylation 
 

Originally, prokaryotes used DNA methylation as a defense mechanism against 

viruses (Blow et al., 2016). The host genome becomes targeted by DNMTs to protect 

it from restriction enzymes, whereas foreign viral DNA is cleaved and destroyed by 

restriction enzymes (Bickle and Krüger, 1993). During evolution viruses adapted 

methylation such as 5mC to hide their invasive DNA from restriction enzymes, which 

in turn triggered the emergence of 5mC sensitive restriction enzymes in bacteria. In 

this ongoing battle between hosts and viruses new strategies and DNA modifications 

evolved. Bacteriophages were first to decorate their DNA with 5hmC to protect it from 

enzymatic digestion by the host's defense system (Bickle and Krüger, 1993). Today, 

we know that in eukaryotes 5hmC, 5fC and 5caC are part of an active DNA 

demethylation pathway by TET enzymes, TDG and BER (He et al., 2011; Ito et al., 

2011; Tahiliani et al., 2009). At the same time, it is intriguing to speculate that 5hmC, 

5fC and 5caC also evolved as a part of viral defense mechanisms (Deniz et al., 2019), 

similarly to 5mC, which is clearly linked to silencing parasitic viral elements (Walsh et 

al., 1998; Yoder et al., 1997), However, it remains widely elusive how and if the 

different steps during DNA demethylation are involved in the regulation of viral 
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elements. This idea brings up some important questions: Why do mammals have two 

waves of DNA demethylation during early embryonic development? Does DNA 

demethylation harbor a risk for deficient virus activation, while ensuring genome 

plasticity? How did active and passive DNA demethylation evolve in mammals? Can 

the highly mutagenic nature of 5mC and other DNA modifications (Kamiya et al., 2002; 

Mahfoudhi et al., 2016; Supek et al., 2014; Tomkova and Schuster-Böckler, 2018; Xing 

et al., 2013) be a risk for a developing organism and could this be the reason for DNA 

hypomethylation during early embryonic development?  

While germline mutations caused by DNA methylation can serve as an important driver 

of evolution, the deposition of 5mC generally harbors also a high mutagenic risk for 

harmful mutations (Tomkova and Schuster-Böckler, 2018). For example, 

heterozygous Tet1 mutant mice, that are hampered in DNA demethylation, 

accumulate mutations and face genome instability (Zhong et al., 2017). To avoid such 

instabilities, it is beneficial for an organism to control 5mC and 5hmC (Lindahl, 1993). 

Some organisms like Drosophila melanogaster and Caenorhabditis elegans even lost 

the DNA methylation machinery during evolution, most likely because of its high 

mutagenic cost (Goll and Bestor, 2005a; Simpson et al., 1986b; Urieli-Shoval et al., 

1982). In pluripotent stem cells, mutagenesis can have severe consequences for body 

plan formation and lead to disease. In cancer, formerly methylated cytosine residues 

are one of the most common mutated sites in the genome (Tubbs and Nussenzweig, 

2017). This might offer an explanation why methylated plant and animal genomes tend 

to show a depletion of CG sites (Tran et al., 2005; Zemach et al., 2010). Altogether, 

this suggests that to avoid mutagenesis, the zygotic embryo reduces the amount of 

DNA methylation and maintains a hypomethylated state until implantation and lineage 

specification.  

In support of this hypothesis, mESCs are viable despite losing all DNMTs and TETs 

(Dawlaty et al., 2014; Li et al., 1992). This suggests that in a pluripotent state mammals 

reduce the risk of mutagenesis and genome instability by relying on other mechanisms 

to silence viral elements (Matsui et al., 2010; Rowe et al., 2010). In mESCs and PGCs, 

repressive histone modifications, mainly H3K9me3, are essential for TE silencing and 

mESCs viability (Liu et al., 2014b; Matsui et al., 2010; Rowe et al., 2010), whereas 

DNA methylation is dispensable for TE suppression in mESCs (Hutnick et al., 2010; 

Karimi et al., 2011; Matsui et al., 2010). A silencing pathway based on modified 

proteins might be beneficial in mESCs, because the DNA is not exposed to the 
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mutagenic instability of 5mC. Interestingly, upon differentiation, the mechanism of 

regulation switches and silencing of TE is regulated by DNA methylation (Bulut-

Karslioglu et al., 2014; Karimi et al., 2011). At the same time, DNMT TKO and TET 

TKO mESCs face severe embryonic defects at later stages during development, which 

correlates with TE activation (Dawlaty et al., 2013, 2014; Lei et al., 1996; Li et al., 

1992; Sakaue et al., 2010; Walsh et al., 1998). In summary, it is plausible that DNA 

demethylation evolved to reduce the risk of mutagenesis during critical steps of 

embryonic development, such as pluripotency and PGC development and at the same 

time caused the development of other mechanisms to silence TEs ensuring genome 

stability. 

However, it remains elusive why DNA methylation is dispensable during pluripotency, 

but essential during embryogenesis. Why can histone based silencing mechanisms 

compensate for DNA methylation during pluripotency, but not during differentiation and 

in somatic tissue? And how is this mechanistic switch regulated? The genome of a 

pluripotent cell requires both at the same time, high plasticity and strict control to 

regulate the activation of essential viral elements (Fadloun et al., 2013; Macfarlan et 

al., 2012). In pluripotent stem cells and during PGC development, histone based 

silencing mechanisms control virus activation and genome plasticity, while the genome 

remains globally hypomethylated (Karimi et al., 2011; Macfarlan et al., 2012; Matsui 

et al., 2010). But again, we do not know why other mechanisms than DNA methylation 

are the main regulator of TEs during toti- and pluripotency. One reason for this could 

be that histone based silencing might allow a more flexible and beneficial regulation 

of the genome then DNA methylation. However, we are currently lacking a 

comprehensive and systematic comparison of DNA methylation and histone based 

silencing.  

One possibility to answer some open questions would be a CRISPR screen in TET 

TKO or DNMT TKO for novel proteins that affect self-renewal or viability. The 

functional switch between DNA methylation and histone based silencing might be 

explained by 5mC, 5hmC, 5fC and 5caC-sensitive or -insensitive proteins. TFs for 

example could maintain the pluripotency network to great parts without TETs and 

DNMTs at the blastocyst stage. Collectively, epigenetic regulation during embryonic 

development is very complex and while it is intriguing to speculate that DNA 

demethylation evolved to reduce the risk of mutagenesis at critical developmental 

timepoints, DNA demethylation and TET enzymes also acquired other important 
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functions during evolution. Studies describing the catalytic and non-catalytic functions 

of TET enzymes are numerous and diverse and will be discussed in the next chapter.  

 

5.2.1. TET enzymes - catalytic function 
 

The discovery of active DNA demethylation by TET enzymes in mammals triggered a 

multitude of studies focusing on the role of DNA demethylation in development and 

disease (Wu and Zhang, 2014). TET-driven oxidation of 5mC can either lead to 

replication-dependent passive DNA demethylation (Inoue and Zhang, 2011) or 5fC 

and 5caC can be excised via TDG and BER, known as active DNA demethylation (Wu 

and Zhang, 2014). While 5fC (0.06 - 0.6% of 5mC) and 5caC (0.01% of 5mC) 

represent only a small fraction of chromatin, 5hmC (~5% of 5mC) makes up a 

significant proportion of chromatin (Ito et al., 2011; Pfaffeneder et al., 2011). The 

highest levels of 5hmC were found in mESC and in the brain (Szwagierczak et al., 

2010). Besides being intermediates of active DNA demethylation, 5hmC and 5fC are 

also stable epigenetic marks (Bachman et al., 2014, 2015) and have individual reader 

proteins (Spruijt et al., 2013). At E3.5 the ICM of the blastocyst undergoes massive re-

methylation, but only little was known about the 5mC oxidation dynamics in this 

developmental time frame (Smith et al., 2012; Wang et al., 2014a). I have contributed 

to a study of our lab that identified increasing levels of 5mC, 5hmC, 5fC and 5caC 

during the transition from naive mESCs to mouse epiblast-like cells (mEpiLC) (Figure 

9, Publication IV). In addition, the study discovered stage-specific contributions of 

individual TET enzymes. Whereas TET2 is required for large parts of the 5hmC 

production in naive mESCs and accounts for the majority of 5fC in both stages of 

pluripotency, TET1 is mainly responsible for 5hmC in mEpiLCs (Figure 9, Publication 

IV). These findings bring up two main questions. First, why do the levels of 5hmC, 5fC 

and 5caC increase in the ESC to EpiLCs  transition? Second, how is the distinct 

oxidation preference of TET1 and TET2 regulated?  
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Figure 9. Dynamics of DNA modifications and stage specific contributions of 

TET1 and TET2 in naive mESCs and primed mEpiLCs. Illustration of relative levels 

of 5mC, 5hmC and 5fC in the transition from naive mESCs to primed mEpiLCs and 

the stage specific contributions of TET1 and TET2 to the oxidation of the individual 

DNA modifications. In naive mESCs TET2 is responsible for the majority of the 5hmC 

and 5fC production, whereas in primed mEpiLCs TET1 is the main driver of 5hmC 

production and TET2 remains critical for 5fC levels. 

 

While TET enzymes are not essential for naive mESCs (Dai et al., 2016; Dawlaty et 

al., 2014), DNA demethylation activity of TETs plays an essential role in controlling 

Nodal signaling pathways during gastrulation (Dai et al., 2016; Gu et al., 2018b). 

Further, the loss of TET enzymes causes severe defects and lethality of 

postimplantation embryos (Dai et al., 2016; Dawlaty et al., 2014; Khoueiry et al., 2017). 

Yet, it remains unknown to what extent individual 5hmC, 5fC and 5caC levels 

contribute to the developing embryo upon implantation. Until today, numerous 

methods were developed to map 5hmC, 5fC and 5caC, which help to understand their 

function and role (Hon et al., 2014; Schutsky et al., 2018; Song et al., 2011; Sun et al., 

2015; Wu and Zhang, 2015; Wu et al., 2014; Zeng et al., 2019; Zhu et al., 2017). 5hmC 

is mostly enriched at gene bodies and enhancers of active genes (Tsagaratou et al., 

2014) and 5fC is enriched at promoters and exons (Raiber et al., 2012). Several 

studies suggest that 5hmC levels correlate with chromatin accessibility and gene 

activity (Ficz et al., 2011; Mellén et al., 2012; Wu et al., 2014). In contrast, the genomic 

https://paperpile.com/c/H6gX9X/Aqfqi+3VL7h
https://paperpile.com/c/H6gX9X/Aqfqi+3VL7h
https://paperpile.com/c/H6gX9X/3VL7h+9Bw98
https://paperpile.com/c/H6gX9X/Aqfqi+3VL7h+Q9vMd
https://paperpile.com/c/H6gX9X/IOYCC+mz4TD+k3lx9+JKNfk+t3zYB+ZuoLo+ITtu7+h5cjc
https://paperpile.com/c/H6gX9X/IOYCC+mz4TD+k3lx9+JKNfk+t3zYB+ZuoLo+ITtu7+h5cjc
https://paperpile.com/c/H6gX9X/WUM1b
https://paperpile.com/c/H6gX9X/WUM1b
https://paperpile.com/c/H6gX9X/BORhS
https://paperpile.com/c/H6gX9X/ITtu7+UZjry+OF8Gw


48 

abundance of 5caC is very low and even though there are methods to map 5caC (Lu 

et al., 2015; Wu et al., 2016), mapping remains technically challenging and genome-

wide studies are rare. Like 5hmC, 5fC also correlates with promoters of transcribed 

genes and active histone marks (He et al., 2021; Raiber et al., 2012; Zhu et al., 2017). 

However, it is not fully understood how 5hmC and 5fC dynamis contribute to 

differentiation. The discovery of an intermediate rosette-like cell state with elevated 

5hmC levels that is present before the primed mEpiLC state is reached, further 

increases the complexity (Neagu et al., 2020). A recent study suggests that the 

oxidation to 5hmC is not sufficient for the transition to another cell state and that TET 

enzymes mainly drive oxidation towards 5fC/5caC and promote rapid DNA 

demethylation (Caldwell et al., 2021). In addition, several studies reported that TET 

driven DNA demethylation is important to counteract DNMT3A/B de novo methylation 

(Dai et al., 2016; Ginno et al., 2020; Gu et al., 2018b; Manzo et al., 2017). These 

findings suggest that 5hmC, 5fC and 5caC are in the first place intermediates for active 

DNA demethylation. However, the question remains whether the DNA demethylation 

via TDB/BER is essential or whether 5hmC and 5fC execute an important function 

upon implantation and lineage specification. For example, 5hmC is found at high levels 

in the brain and imbalances of 5hmC are closely linked to brain disorders (Azizgolshani 

et al., 2021; Globisch et al., 2010; Mellén et al., 2012; Song et al., 2011; Szulwach et 

al., 2011; Wang et al., 2012). It will be an fascinating task to study whether 5hmC 

patterns set during implantation are defining neuronal cell identity. Here the recent 

development of in vitro cell culturing systems (Aguilera-Castrejon et al., 2021; Beccari 

et al., 2018; Liu et al., 2021b), together with imaging and single cell technology (Stuart 

and Satija, 2019) will allow the study of those DNA modifications and enables the 

tracking of respective cell identities in the early embryo. 

The second question arising from our data is, why TET1 is critical for 5hmC production 

in primed mEpiLCs, whereas TET2  is responsible in naive mESCs and how this switch 

is regulated. The N-terminus of TET2 lacks the chromatin binding parts of TET1 and 

its chromatin affinity and oxidation activity seems to be regulated by IDAX4 (Ko et al., 

2013). Interestingly, the catalytic activity of TET1 does not correlate with chromatin 

binding (Zhang et al., 2016b). This indicates that other factors regulate the stage 

specific contribution of TET1 and TET2 towards 5mC oxidation, like Spalt Like 

Transcription Factor 4 (SALL4) (Xiong et al., 2016) or 5hmC reader 5-

Hydroxymethylcytosine Binding, ES Cell Specific (HMCES) for example (Spruijt et al., 
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2013). HMCES associates with TET1 (Publication I) and is proposed to be a regulator 

of different repair pathways (Halabelian et al., 2019). Besides the association with 

different proteins, the supposedly greater catalytic activity of TET2 might be explained 

by a higher mobility of TET2 compared to TET1 in mESCs (Ryan, 2020). However, 

detailed structural analysis and dissecting the interaction networks of TET1 and TET2 

in the transition from naive mESCs to mEpiLC are needed in order to explain TET1 

and TET2 oxidation preferences.  

   

5.2.2. TET enzymes - non-catalytic function 

 

Since their discovery the role and significance of TET enzymes for embryonic 

development remain contradictory. While Dawlaty et al. reported embryonic viability 

upon loss of TET1 or TET2 (Dawlaty et al., 2011, 2013), Khoueiry et al. described 

severe embryonic defects for Tet1 KO mice (Khoueiry et al., 2017). Interestingly, 

Khoueiry et al. explain the difference to previous mouse models with a hypomorphic 

deletion of the Tet1 gene, which still allows the expression of the TET1 N-terminus. 

Further, they demonstrate that non-catalytic functions of TET1 are essential for 

embryonic development. However, in the last decade the majority of studies focused 

on describing the catalytic activity of TET enzymes and a detailed analysis of non-

catalytic functions was lacking. This doctoral work describes novel non-catalytic 

functions and mechanisms of TET1 in mESCs (Publication I). I found that TET1 

regulates gene and ERV expression independent of DNA demethylation. Further, I 

identified TET1 as a regulator of various histone modifications and as an interaction 

hub of multiple chromatin modifying complexes (Publication I). While the interaction 

with SIN3A and PRC2 accounts for most of the transcriptional changes observed in 

Tet1 KO mESCs (Publication I) (Chrysanthou et al., 2022a), it cannot explain all 

transcriptional and histone modification changes observed. We found that, besides 

SIN3A and PRC2, TET1 associates with multiple chromatin modifying complexes. 

Some were already described to interact with TET1, like Glutamine And Serine Rich 1 

(QSER1) (Dixon et al., 2021) and Non-POU Domain Containing Octamer Binding 

(NONO) (Li et al., 2020), but others are unknown and interesting targets to further 

dissect non-catalytic mechanisms of TET1.  
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Figure 10. Potential non-catalytic mechanisms of TET1 with associated proteins 

from a TET1 chromatin IP (Publication I). a) Proposed model of TET1 regulating 

mitotic inheritance of repressive histone marks. At the DNA replication fork, TET1 

might facilitate the inheritance of H3K27me3 by the histone chaperone NPM1 and 

thereby foster the propagation of H3K27me3 to naive nucleosomes. b) Proposed 

model of TET1 regulating the complex composition of SIN3A-RBBP4/7-HDAC1/2. 

TET1 might compete with HDAC1/2 for the binding of RBBP4/7 and controls 

acetylation of the H4 tail. c) Proposed model of TET1 regulating chromatin 

accessibility. The interaction of TET1 with the H4K16 acetyltransferase MOF might 



51 

directly or indirectly recruit BPTF to doubly-modified nucleosomes and might regulate 

chromatin accessibility.  

 

TET1 associates with core proteins (EED, SUZ12, EZH2) of the PRC2 complex 

(Publication I). The interaction and interplay of TET1 with PRC2 regulates 

developmental genes in mESCs (Publication I) (Chrysanthou et al., 2022a; Gu et al., 

2018b). Different studies suggest that TET1 counteracts the methylation activity of 

DNMT3A/B to regulate PRC2 at developmental genes (Ginno et al., 2020; Gu et al., 

2018b; Manzo et al., 2017). In contrast, this doctoral work and the work of others now 

shows that PRC2 and the deposition of H3K27me3 is controlled by catalytically 

independent mechanisms of TET1 (Publication I) (Chrysanthou et al., 2022a; Wu et 

al., 2011). Through its interaction with the core components of the PRC2 complex 

(SUZ12/EZH2/EED), TET1 facilitates the recruitment of PRC2 directly to target genes 

(Publication I) (Chrysanthou et al., 2022a; Wu et al., 2011). However, TET1 binds 

multiple genomic sites (Williams et al., 2011) and it remains elusive how TET1 recruits 

PRC2 specifically only to developmental genes. The chromatin IP data of TET1 

revealed that TET1 associates with the histone chaperone Nucleophosmin 1 (NPM1), 

which was recently shown to regulate H3K27me3 at PRC2 target genes across 

replication (Escobar et al., 2022). At the same time the chromatin IP data identified 

minichromosome maintenance complex component 3 (MCM3) and origin recognition 

complex subunit 2 (ORC2) to associate with TET1 (Publication I). Both are essential 

components of the DNA replication machinery (Bleichert et al., 2015, 2017; Madine et 

al., 1995) and this suggests that TET1 might localize to the replication fork. In addition, 

the loss of NPM1 and TET1 in mESCs triggers a delay in G1 phase (Chrysanthou et 

al., 2022b; Escobar et al., 2022). Every round of DNA replication also entails the 

maintenance of repressive chromatin marks and can have a huge impact on the 

transcriptional program and cell identity (Escobar et al., 2021). Together, these 

findings propose that TET1 cooperates with NPM1 in regulating the inheritance of 

H3K27me3 during S-phase at developmental genes (Figure 10a). To test this 

hypothesis, TET1 could be degraded using the AID-Auxin (Nishimura et al., 2009) or 

dTag (Nabet et al., 2018) system to compare the direct effects of TET1 on H3K27me3. 

Using the AID-Auxin system, NPM1 is completely degraded after 4-6h and H3K27me3 

levels are significantly reduced (Escobar et al., 2022). Genome-wide H3K27me3 

analysis and cell cycle measurements at different timepoints after degradation could 
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be used to explore the functional relationship between NPM1, TET1 and chromatin 

replication.  

The association with the histone chaperone NPM1 during replication offers the 

possibility of a striking mechanism for the regulation of the repressive chromatin mark 

H3K27me3. However, the loss of TET1 also leads to a global reduction of pH4Kac, a 

chromatin mark associated with transcriptional activation. Currently, we assume that 

only repressive and not active histone marks can be maintained throughout mitosis 

(Escobar et al., 2019). This indicates that the global acetylation dynamics and pH4Kac 

loss in Tet1 KO mESCs are controlled by mechanisms independent of replication. In 

the TET1 chromatin IP data, TET1 also associates with the histone chaperones 

Retinoblastoma-Binding Protein 4 (RBBP4) and RBBP7. In mESCs RBBP4/7 form a 

repressive deacetylation complex together with SIN3A, HDAC1 and HDAC2 

(Silverstein and Ekwall, 2005). Interestingly in iPSCs, TET1 and HDAC2 are 

competing for the binding of RBBP4 and the loss of TET1 triggers global H4 

deacetylation (Wei et al., 2015). This proposes that upon loss of TET1, HDAC2 is 

enriched in RBBP4 containing complexes and induces global deacetylation of 

pH4Kac. In mESCs the competition between TET1 and HDAC1/2 might regulate the 

complex composition and therefore the deacetylation activity of the SIN3A/HDAC 

complex (Figure 10b). To test this hypothesis, RBBP4/7 could be tagged and 

immunoprecipitated in WT and Tet1 KO mESCs to study whether RBBP4/7 are 

enriched for HDAC1/2, explaining the global deacetylation phenotype. 

Besides the association with different histone chaperones, TET1 also associates with 

the chromatin remodeler Bromodomain PHD-finger Transcription Factor (BPTF) 

(Publication I). BPTF is the largest subunit of the NURF chromatin remodeling complex 

(Barak et al., 2003) and Bptf KO mice die shortly after implantation (Landry et al., 

2008). Similar to TET1, BPTF is required for the trophectoderm specification (Goller 

et al., 2008) and the loss causes the differentiation to mesoderm and endoderm 

lineages (Landry et al., 2008). BPTF can specifically bind double modified 

nucleosomes carrying H3K4me3 and H4K16ac (Ruthenburg et al., 2011). Strikingly, 

TET1 is described to regulate H4K16ac in mESCs by controlling the auto-acetylation 

activity of the acetyltransferase Males absent on the first (MOF) (Zhong et al., 2017). 

TET1 regulating H4K16ac is in accordance with the global loss of pH4Kac and offers 

a potential pathway for a functional interplay with BPTF (Publication 10c). However, 

Zhong et al. used solely in vitro studies to investigate the functional relationship 
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between MOF and TET1. Further, MOF was not identified to associate with TET1 in 

the chromatin IP data (Publication I). This could have several reasons, but suggests 

that the interaction between TET1 and MOF is more complex. To test whether TET1 

regulates MOF, H4K16ac and thereby BPTF/NURF activity, quantitative ChIP-seq and 

mass spectrometry approaches could be used to study H4K16ac levels in Tet1 KO 

mESCs. To further dissect the potential crosstalk between BPTF, MOF and TET1, a 

detailed analysis of the H4K16ac and BPTF binding patterns in WT and Tet1 KO 

mESCs would give first correlative information. Next, fluorescent mESC lines of BPTF 

and TET1 in combination with high resolution live cell imaging could provide 

information about colocalization dynamics in mESCs and during differentiation. The 

tagged cell lines could be further used for mass spectrometry to study the NURF 

complex composition in a Tet1 KO background.  

In summary, it became clear that TET1 has important non-catalytic functions in 

mESCs, yet the potential mechanisms seem to be numerous and diverse. Future 

systematic studies will be needed to dissect the non-catalytic mechanisms of TET1. 

In addition, the primary use of TET knock-outs and the lack of TET catalytic mutant 

studies bears the need to revisit the already described functions of TET enzymes in 

development and disease. It will be an intriguing task for the future to decipher the 

non-catalytic functions of TET enzymes at different stages during development and 

their implications for disease and medical applications.  

 

5.2.3. TET1 and retroviral silencing  

 

DNA methylation evolved as a defense mechanism against viruses in bacteria (Blow 

et al., 2016). During embryonic development, DNMT1 KO mouse embryos are lethal 

after 8.5 days and the severe phenotype is coupled to the loss of DNA methylation 

and the activation of ERVK elements (Grosswendt et al., 2020; Li et al., 1992; Walsh 

et al., 1998). However, mESCs without DNMT1 are viable and the loss of DNA 

methylation only leads to a modest activation of retroviruses (Lei et al., 1996; Matsui 

et al., 2010). In addition, loss of DNMT1 in primordial germ cells does not lead to an 

upregulation of ERVs, suggesting alternative silencing mechanisms at certain time 

points of development (Liu et al., 2014b; Walsh et al., 1998). In mammalian germ cells 

and early embryonic development silencing of ERVs is mediated by mechanisms 

entailing the deposition of H3K9me3 by TRIM28-SETDB1 (Liu et al., 2014b; Matsui et 
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al., 2010; Rowe et al., 2010). The deletion of DNMT1 or DNMT3A/B has no effect on 

H3K9me3 in mESCs, showing that TRIM28-SETDB1 are the predominant ERV 

silencing mechanism during pluripotency (Lehnertz et al., 2003). We found that TET1, 

independent of DNA demethylation activity, but together with SIN3A regulates ERV 

expression in mESCs (Figure 11a, Publication I). Altogether, this raises several 

questions: What is the precise role and mechanism of TET1 in ERV silencing? Why is 

TRIM28-SETDB1 the predominant silencing mechanism in mESCs and PGCs? Why 

is DNA methylation the main ERV silencing mechanism in differentiated cells? 

The expression of specific retroviruses, like ERVL elements, is critical for embryonic 

development and regulates networks of embryonic marker genes (Macfarlan et al., 

2012). TRIM28-SETDB1 silencing might allow greater genome plasticity to regulate 

ERV expression, whereas DNA methylation serves as a stable silencing mechanism 

in differentiated cells. This would require histone modifications to have a higher 

turnover rate than DNA methylation. Historically, histone acetylation is received as 

highly dynamic and today we know that all histone modifications are reversible to some 

extent (Millán-Zambrano et al., 2022). The turnover rate of histone acetylation ranges 

from 2 to 40 min (Waterborg, 2002), while H3K9me3 is completely demethylated in 2h 

(Liu et al., 2017). Global DNA demethylation with a certain significance in human cells 

occurs after 2h (Yamagata et al., 2012) and demethylation at single genes was 

observed even after 20 min (Lucarelli et al., 2001). Altogether, the reported turnover 

rates of histone modifications and DNA methylation are rather similar and can not 

explain why H3K9me3 is the dominant epigenetic silencing mechanism for ERVs in 

mESCs and PGCs. However, a systematic quantification of histone modification and 

DNA methylation turnover rates in a developmental context is missing. 

While we cannot conclude that the histone modification turnover rates are important 

for genome plasticity, we know that histone methylation and acetylation are crucial 

marks of epigenetic regulation (Rice and Allis, 2001). This doctoral work proposes that 

TET1-SIN3A/HDAC deacetylation at ERV regions is necessary for TRIM28-SETDB1 

to place H3K9me3 (Figure 11a, Publication I). The hypothesis is that the H3K9 

deacetylation is crucial for H3K9me3 installation and subsequent silencing. To test the 

hypothesis, dCas9 fused to HDAC1/2 could be targeted to specific upregulated ERVs 

in Tet1 KO mESCs. The removal of H3K9ac at targeted ERVs should allow the 

installation of H3K9me3 and the subsequent ERV repression. While this doctoral work 

is lacking direct mechanistic proof, the loss of H3K9me3 might explain the dissociation 
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of HP1 proteins and the reduction of H4K20me3 in Tet1 KO mESCs (Publication I). 

However, the strong global effects on HP1 localization and H4K20me3 levels suggests 

that also other epigenetic mechanisms are involved. The chromatin IP of TET1 

identified the kinase Aurora B, which phosphorylates H3S10 subsequently evicting 

HP1 proteins from chromatin (Fischle et al., 2005; Hirota et al., 2005). Interestingly, 

preliminary analysis suggests that H3S10P is enriched in Tet1 KO mESCs in our 

histone modifications LC-MS/MS dataset from Publication I (Figure 11b). Further, 

H3S10P is well established as a mitotic mark and TET1 is described to regulate mitotic 

gene expression (Yamaguchi et al., 2012). These findings suggest that TET1 could 

directly regulate the kinase activity of Aurora B (Figure 11b) or indirectly via controlling 

mitotic gene networks. Future studies need to verify a direct interaction of TET1 and 

Aurora B, for example by performing co-immunoprecipitation and a kinase activity 

assay. Although still elusive at the moment, a functional interplay of TET1 and Aurora 

B could be an interesting study subject and an explanation for the global HP1 

delocalization and H4K20me3 loss in Tet1 KO mESCs. As discussed, the mechanism 

by which TET1 is involved in heterochromatin formation and specific ERV regulation 

remains to be further characterized and will be a fascinating topic for future research.  
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Figure 11. Potential non-catalytic mechanisms of TET1 in ERV regulation. a) 

Proposed model of TET1 regulating heterochromatin formation and ERV silencing 

independent of DNA demethylation. In wild-type mESCs, TET1 facilitates the 

deacetylation of H3K9ac by SIN3A-HDAC1/2. The deacetylated H3K9 is recognized 

by KRAB-Znf, which recruits TRIM28/KAP1 and the H3K9 methyltransferase SETDB1. 

HP1 proteins bind H3K9me3, recruit SUV39h and SUV4-20 for the installation of 

H3K9me3 and H4K20me3, leading to subsequent heterochromatin spreading and 

ERV silencing. In Tet1 KO mESCs SIN3A-HDAC1/2 cannot deacetylate H3K9ac at 

ERV elements, inhibiting heterochromatin formation and causing ERV activation. b) 

Relative levels of H3S10P measured by LC-MS/MS in WT, Tet1 KO and Tet1 CM 
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mESCs (data from Publication I, plot created from Andrey Tvardovskiy) and proposed 

model of TET1 and AURORA B regulating HP1 recruitment.  

 

5.3. RNA methylation 
 

5.3.1. METTL enzymes in development and disease 
 

m6A contributes to multiple cellular processes and is present on mRNA, spliceosomal 

RNA, non-coding RNA and 18S and 28S rRNA (He and He, 2021). In human rRNA 

only two m6A sites exist, in 18S rRNA at position A1832 and in 28S rRNA at position 

A4220. We and others identified METTL5 as the RNA methyltransferase required for 

m6A formation at position A1832 (Publication V) (van Tran et al., 2019; Xing et al., 

2020). In a collaborative project I contributed to describe the importance of METTL5 

for animal development, translation, pluripotency and differentiation (Publication V). 

However, the study lacks direct evidence that the observed phenotypes are the cause 

of impaired m6A formation in 18S rRNA. The multiple drastic phenotypes upon 

METTL5 loss rather suggest additional functions besides 18S rRNA methylation. In 

the fractionation assays, 18S rRNA was the predominant RNA species losing m6A in 

METTL5 KO cells, yet the experiment was performed on total RNA and it is possible 

that METTL5 also methylates other RNA species. To note, m6A is the most abundant 

modification on mRNA (Roundtree et al., 2017) and other METTL enzymes are 

involved in m6A formation on mRNA (Wong and Eirin-Lopez, 2021). A complex of 

METTL3/METTL14 for example regulates m6A formation on mRNA of the pluripotency 

genes Nanog, Klf2, Sox2 and Zfp42 (Batista et al., 2014; Geula et al., 2015). 

Generally, METTL enzymes have been shown to be involved in pluripotency and 

differentiation. METTL8 inhibits c-Jun N-terminal kinase (JNK) pathway (Gu et al., 

2018a) and METTL16 is involved in splicing (Mendel et al., 2018; Pendleton et al., 

2017), both are important for differentiation. The loss of m6A in METTL3 KO mESCs 

increases mRNA stability and translation leading to “hyperpluripotency” of mESCs 

(Batista et al., 2014; Geula et al., 2015). Interestingly, upon loss of METTL5 we 

observed the opposing phenotype to METTL3 KO mESCs. The loss of METTL5 

causes a downregulation of core pluripotency markers and a differentiated morphology 

of mESCs (Publication V). In a next step, it will be intriguing to study whether METTL5 

also methylates transcripts of core pluripotency genes and whether methylation of 

rRNA affects pluripotency. To test this WT and METTL5 KO mESCs can be compared 
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using m6A sequencing (m6A-seq) (Dominissini et al., 2012). Moreover, depending on 

different reader proteins, m6A methylation can increase or decrease the transcript 

stability (Roundtree et al., 2017; Wang et al., 2014b). To study the effects of METTL5 

on mRNA stability, mESCs can be treated with Actinomycin D to stop RNA synthesis 

and the amount of RNA can be measured by RT-qPCR. In METTL5 KO mESCs 

pluripotency genes are downregulated (Publication V), suggesting that m6A sites 

targeted by METTL5 promotes transcript stability. Interestingly, m6A formation by 

METTL3 has the opposite effect and causes mRNA instability (Batista et al., 2014; 

Geula et al., 2015). METTL3 and METTL5 might target different m6A sites and/or 

associate with different reader proteins promoting or decreasing RNA stability. It is 

tempting to speculate that METTL3 and METTL5 thereby coordinate the balance 

between pluripotency and differentiation. 

In another collaborative study I contributed to identify METTL6 as a tRNASer-specific 

3-methylcytidine (m3C) methyltransferase (Publication VI). The loss of METTL6 in 

mESCs causes impaired pluripotency and promotes the differentiation towards 

endodermal lineages (Publication VI). METTL6 KO mice have metabolic defects but 

develop normally (Publication VI), which suggests that other enzymes like METTL2 

(Xu et al., 2017) compensate for the loss of METTL6 during embryonic development. 

However, the question remains how m3C methylation of tRNASer isoacceptors 

promotes specific lineages and expression of pluripotency factors. Interestingly, the 

loss of METTL6 leads to an increase in mRNA abundance  and ribosome occupancy 

of lineage marker genes like Nodal, Fgf4 and Pdgfa, but also of epigenetic enzymes 

like Dnmt3b. The upregulation of the de novo methyltransferase DNMT3B is in fact a 

hallmark of lineage priming (Publication IV). It will be interesting to study whether 

METTL6 directly regulates DNMT3B in mESCs or whether this is a secondary effect 

upon METTL6 loss. Of note, increased ribosome occupancy correlates with higher 

mRNA abundance and is not necessarily directly caused by the loss of tRNAs 

(Publication VI) (Chou et al., 2017; Thompson et al., 2016). Therefore, future studies 

will have to show if biological secondary effects cause the differentiation phenotype in 

METTL6 KO mESCs and whether m3C methylation of tRNASer isoacceptors is directly 

involved in regulating the balance between pluripotency and differentiation.  

While the catalytic activity of METTL enzymes is heavily studied, they also harbor the 

potential of catalytically independent functions. This accounts also for the group of 

METTL enzymes. METTL3 for instance was shown to also have non-catalytic 
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functions and can act as a scaffold for other proteins (Lin et al., 2016). Additionally, 

METTL3 can promote translation independent of its catalytic activity by recruiting 

translation initiation factors (Lin et al., 2016). This finding highlights the importance of 

including catalytic mutants into future studies to identify potential mechanisms beyond 

the enzymatic function of RNA modifiers. It is intriguing to speculate that METTL5 and 

METTL6 might also harbor functions independent of their RNA methyltransferase 

activity. In general, the detailed mechanisms of METTL5 and METTL6 in a developing 

embryo remain widely unclear. The impact of RNA modifications on pluripotency and 

differentiation is a fascinating study subject and future studies will shed light on the 

impact of METTL proteins and RNA modifications on development and disease.   

 

 

5.4. Crosstalk - Histones, DNA methylation and RNA 

modifications 
 

Until today, the majority of studies have described and reported about the catalytic 

functions of TET1 during development and disease. However, the main focus of this 

doctoral work was to dissect the non-catalytic functions of TET1 in mESCs. I have 

found that TET1 regulates chromatin, gene and ERV expression independent of DNA 

demethylation (Publication I). Further, I have identified TET1 as an epigenetic hub and 

regulator of the histone modification landscape, which correlates with the gene and 

ERV expression (Publication I). Despite the important non-catalytic functions of TET1 

described in this doctoral work, TET1 also regulates the expression of important 

developmental genes, like Dppa3 and Lefty via active DNA demethylation (Publication 

III) (Dai et al., 2016). Astonishingly, the catalytic activity of TET enzymes is not limited 

to DNA, but TET-mediated 5hmC also occurs on mRNA, regulating RNA stability of 

developmental genes (Fu et al., 2014; Lan et al., 2020). Altogether, TET1 is an 

incredibly versatile epigenetic player which can regulate DNA modifications, RNA 

modifications, histone modifications and can serve as a scaffold protein for different 

epigenetic modifiers. The example of TET1 perfectly demonstrates that epigenetic 

processes are tightly connected and that the crosstalk of epigenetic marks can be 

highly complex. Today, the rise of genome-wide studies more and more reveals the 

complex crosstalk among those epigenetic marks (Janssen and Lorincz, 2022). In the 
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scope of this doctoral work I studied epigenetic processes at the level of DNA, RNA 

and histone modifications.  

TET1 regulates H3K9me3 levels at ERVs and global H4K20me3 levels (Publication I) 

and interestingly, DNMT1 activity at TEs was recently shown to be regulated by 

binding of H3K9me3 and H4K20me3 (Ren et al., 2020, 2021). Together these findings 

suggest a mechanism how TET1 indirectly regulates DNA methylation, namely via 

histone modifications and without direct DNA demethylation activity. While DNA 

methylation and H3K9me3 are important regulators of TEs (Janssen and Lorincz, 

2022), RNA modifications and RNA-mediated mechanisms also play an important role 

in TE silencing. In mammals, small RNAs programme P-Element induced wimpy testis 

(Piwi) proteins to control TE expression (Aravin et al., 2007) and are considered to 

induce de novo DNA methylation (Aravin et al., 2008). In mESCs and in the male 

germline, TE-specific antisense transcripts can counteract the expression of TEs 

(Berrens et al., 2017) and tRNA-derived fragments (tRFs) can regulate specific ERVs 

(Schorn et al., 2017). Even more severe seems to be the effect of RNA modifications 

on TE transcripts. Recent studies show that m6A levels control the stability and 

abundance of ERVs and LINE1 RNA in mESCs (Chelmicki et al., 2021; Liu et al., 

2021a; Wei et al., 2022; Xu et al., 2021). The main function of m6A is to control the 

RNA halflife of viral transcripts (Chelmicki et al., 2021). However, the RNA 

methyltransferase METTL3 can also directly interact with SETDB1 and TRIM28 and 

recruits them to IAP elements (Xu et al., 2021). The latest findings suggest that RNA 

modifications and RNA modifiers can control TE activity on a transcript level, but also 

by directly inducing H3K9me3-mediated heterochromatin formation. In total, the 

silencing of TE is mediated by DNA, RNA and histone modifications. In mESCs, DNA 

methylation and H3K9me3 seem to control distinct sets of TEs (Karimi et al., 2011), 

yet it is unclear which TEs are silenced by the different RNA mechanisms and how 

they are coordinated with DNA and histone modifications. The crosstalk of 

epitranscriptomics and epigenetics is not restricted to TEs, but is part of many 

biological processes (Kan et al., 2022). Importantly, epigenetics events like global 

DNA hypomethylation, GpG island hypermethylation and loss of specific histone 

marks are hallmarks of cancer (Fahrner et al., 2002; Fraga et al., 2005; Nguyen et al., 

2002; Nishiyama and Nakanishi, 2021). Different RNA modifications and modifiers are 

also deregulated and hijacked by cancer cells (Jonkhout et al., 2017; Li et al., 2017; 

Liu et al., 2021c; Su et al., 2018). This raises the question how and whether the 
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interplay of epigenetic marks is linked to the development of various types of disease. 

Taking into account the close interplay among those epigenetic marks, it will be an 

important task to decipher the mechanistic interaction between enzymes, DNA, RNA 

and histone modifications to understand their implications for fundamental biological 

processes and future drug development. 

 

 

 

 

 

 

 

 

  

  



62 

6. Declaration of contributions as a co-author 

Critical Role of the UBL Domain in Stimulating the E3 Ubiquitin Ligase Activity 

of UHRF1 toward Chromatin. 

 

This study was designed and conceived by Ben Foster and Till Bartke. Paul Stolz 

created stable UHRF1 mutant cell lines using CRISPR/Cas, cultured embryonic stem 

cells, performed Immunofluorescence experiments, analyzed data and contributed to 

writing the manuscript. 

 

Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of 

passive DNA demethylation in mammals. 

 

This study was designed and conceived by Christopher B. Mulholland, Sebastian 

Bultmann and Heinrich Leonhardt. Paul Stolz helped with cell line validation and 

performed fluorescence microscopy analysis.   

 

Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine 

oxidation in the transition from naive to primed pluripotency. 

 

This study was designed and conceived by Christopher B. Mulholland, Sebastian 

Bultmann and Heinrich Leonhardt. Paul Stolz helped to culture embryonic stem cells 

and performed western blot experiments to validate the expression levels of the 

different TET proteins.   

 

The rRNA m6A methyltransferase METTL5 is involved in pluripotency and 

developmental programs. 

 

This study was designed and conceived by Valentina Ignatova and Robert Schneider. 

Paul Stolz generated stable METTL5 knock-out embryonic stem cells using 

CRISPR/Cas, performed differentiation experiments, studied the pluripotency 

phenotype and analyzed data. 
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METTL6 is a tRNA m3C methyltransferase that regulates pluripotency and tumor 

cell growth. 

 

This study was designed and conceived by Valentina Ignatova and Robert Schneider. 

Paul Stolz generated stable METTL6 knock-out embryonic stem cells using 

CRISPR/Cas, performed embryoid body differentiation and studied the pluripotency 

phenotype. 

 

 

________________________                 ________________________     

    Paul Stolz                                          Heinrich Leonhardt       
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7. Abbreviations 

 

2OG 2-oxoglutarate 

5caC 5-carboxylcytosine 

5fC 5-formylcytosine 

5hmC 5-hydroxmethylcytosine 

5hmU 5-hydroxymethyluracil 

5mC 5-methylcytosine 

6mA 6-methyladenine 

aa Amino acid 

AID Auxin-inducible degron 

BER Base excision repair 

bp Base pair 

BPTF Bromodomain PHD-finger Transcription Factor 

Cas CRISPR associated 

CENP-A Centromere Protein A 

ChIP Chromatin Immunoprecipitation 

CM Catalytic mutant 

CNS Central nervous system 

CpG Cytosine-phosphate bond-guanine 

CRISPR Clustered regularly interspaced short palindromic repeats 

crRNA CRISPR-RNA 

dCas9 Dead Cas9 

dTag Degron tag 

DNA Deoxyribonucleic acid 

DMD Duchenne muscular dystrophy 

DME 5mC DNA glycosylase 

DNMT DNA methyltransferase 
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dNTPs Desoxy nucleosidtriphosphat 

DPPA3 Developmental pluripotency-associated protein 3 

DSB Double-strand break 

E Embryonic day 

ERV Endogenous retrovirus 

Fe(II) Iron(II) 

H1 Histone 1 

H2A Histone 2A 

H2B Histone 2B 

H3 Histone 3 

H4 Histone 4 

HC Heterochromatin 

HDAC Histone deacetylase 

HDR Homology directed repair 

HMCES 5-Hydroxymethylcytosine Binding, ES Cell Specific 

HP1 Heterochromatin Protein 1 

hTRM9L tRNA methyltransferase 9-like 

IAP Intracisternal A-particle 

ICM Inner cell mass 

kb kilobase 

KRAB-Znf Krüppel-associated box domain zinc finger  

LC-MS Liquid chromatography - mass spectrometry 

LIG1 DNA Ligase 1 

LINE Long interspersed nuclear elements 

m6A N6-methyladenosine 

m7G N7-methylguanosine 

MCM3 Minichromosome maintenance complex component 3 

mEpiLC Mouse epiblast-like cells 

mESC Mouse embryonic stem cell 
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METTL Methyltransferase-like 

MLL Mixed lineage leukemia 

MOF Males absent on the first 

mRNA Messenger RNA 

NGS Next generation sequencing 

NHEJ Non-homologous end joining 

NONO Non-POU Domain Containing Octamer Binding 

NPM1 Nucleophosmin 1 

NSC Neural stem cell 

NSUN2 NOP2/Sun RNA methyltransferase 2 

N-terminus Amino-terminus 

OGT O-linked N-acetylglucosaminyltransferase 

ORC2 Origin recognition complex subunit 2 

PAM Protospacer adjacent motifs 

PAF15 PCNA-associated factor of 15 kDa 

PCNA Proliferating cell nuclear antigen 

PRC2 Polycomb Repressive Complex 2 

PGC Primordial germ cell 

PHD Plant homeodomain 

piRNA PIWI-interacting RNA 

PTM Post-translational modification 

QSER1 Glutamine and Serin Rich 1 

RBBP Retinoblastoma-Binding Protein 

RING Really interesting new gene 

RNA Ribonucleic acid 

ROS1 Repressor of silencing 1 

RP Retinitis pigmentosa 

rRNA Ribosomal RNA 

SALL4 Spalt Like Transcription Factor 4 
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SHERLOCK Specific High Sensitivity Enzymatic Reporter Unlocking 

SIN3A SIN3 Transcription Regulator Family Member A 

snRNA Small nuclear RNA 

SRA SET- and RING-associated 

SUV39h Suppressor of variegation 3-9 homolog 

SUV4-20 Suppressor of variegation 4-20 

TALENS Transcription activator-like effectors  

TDG Thymine DNA glycosylase  

TE Transposable element 

TET Ten-eleven-translocation 

TET3o TET3 oocyte 

TET3s Short TET3 

TF Transcription factor 

TKO Triple knockout 

TRIM28/KAP1 Tripartite Motif Containing 28/KRAB-associated protein-1 

tRNA Transfer RNA 

TTD Tandem tudor 

TTR Transthyretin 

UBL Ubiquitin-like 

UHRF1 Ubiquitin-like containing PHD and RING finger domains 1 

VP64 VP16 activation domain 

WGBS Whole genome bisulfite sequencing 

WT Wild-type 

ZFNs Zinc-finger nucleases 
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