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Summary

The similarities and differences between us and our closest relatives, the primates, have

fascinated researchers for decades and evoked various approaches to better understand the

underlying genotype-phenotype relationship. Starting with early comparisons of protein

sequences between humans and chimpanzees, substantial technological advances in genomics

have led to a deeper understanding of the complexities in this relationship, ranging from

cataloging genetic differences to modeling genetic differences in cellular and animal systems.

Furthermore, the lack of genetic differences - sequence conservation - is crucial to annotate

the human genome and interpret biomedically relevant variants within humans. Charting

differences and similarities in molecular and cellular properties can take such a comparative

approach to the next phenotypic level. In particular, similar to the information obtained

from DNA conservation, expression conservation could help annotating and interpreting

human gene expression patterns and thus also provide biomedically relevant information.

However, the major limiting factor in this venture is the availability of comparable

samples of different primates, mainly due to ethical constraints. Induced pluripotent stem

cells (iPSCs) are used in humans to overcome such limitations, as they can be propagated

indefinitely and differentiated to many different cell types. Thus, they can provide a valuable

and unique resource for functional primate genomics.

In this context, I established a method to generate iPSCs from primates. One of the

major challenges in generating iPSCs from non-model organisms is the acquisition of the

somatic cells for reprogramming. Therefore, I focused on urine as a non-invasive cell source

and could show that cells can be isolated from very small amounts of primate urine samples,

which were collected in an unsterile manner. These cells can be efficiently reprogrammed

into iPSCs using the footprint-free Sendai Virus reprogramming method. Utilizing this
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2 Summary

approach, we generated four iPSC lines from two orangutans, three iPSC lines from one

gorilla and nine lines from five humans. We validated the pluripotecy of these lines using

immunocytochemistry, differentiation assays and also classified the cells as pluripotent using

bulk RNA-sequencing. We further showed that expression differences among clones are

comparable to those among individuals and considerably larger than technical sources of

variation, suggesting that these cells are a suitable resource for functional primate genomics.

As RNA-sequncing (RNA-seq) is a decisive assay to classify cells and to study gene

expression in a comparative context, a robust and affordable method to quantify RNA

expression levels is indispensable. I contributed to develop prime-seq, a sensitive bulk RNA-

seq protocol that we showed to perform equivalently to standard bulk RNA-seq methods,

but at a fourfold higher efficiency due to almost 50-fold cheaper library costs. This is highly

useful to e.g. classify generated iPSCs as described above. However, to compare heterogenous

cell populations, as they arise for example during the differentiation of iPSCs, RNA-seq

with single-cell resolution (scRNA-seq) is crucial. I contributed to develop mcSCRB-seq, a

sensitive, powerful and efficient single cell RNA-seq method, that is plate-based and hence,

can be used for scRNA-seq on sorted single cells.

Finally, I utilized mcSCRB-seq to compare gene expression trajectories during differ-

entiation of our primate iPSCs towards neural precursor cells (NPCs). We sampled single

cells of nine different clones from three species at six different time points during early

neural differentiation and thus generated a comprehensive dataset to study this process in a

comparable manner. We identify genes with a conserved constant up-regulation throughout

the trajectory and find that these genes have a higher probability of being mutation intol-

erant and a higher probability to be associated with neurodevelopmental disorders. This

strengthens the hypothesis that identifying conserved expression patterns in primate iPSCs

could carry unique functional information to annotate and interpret the human genome.

In summary, within my thesis I describe the basis for comparative research settings, by

providing a non-invasive and footprint-free method to generate iPSCs from various primates.

Additionally, I contributed to efficient methods to characterize these cells and showcase in an

encompassing study how expression conservation can help to better understand the human

genome.







1 | Introduction

1.1 The evolutionary perspective

Our genomes carry the entire heritable information of our complex phenotypes. While we

share the vast majority of our genetic information with our closest living relatives (Chimpanzee

Sequencing and Analysis Consortium 2005), the phenotypic differences seem - at least to us

humans - striking (Figure 1).

Figure 1. The phylogeny of great apes
The phylogeny of great apes (Bininda-Emonds et al. 2007) and their nucleotide divergence
(Chen and Li 2001). Created with BioRender.com
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6 1. Introduction

Already by 1975, King and Wilson compared several protein sequences between humans

and chimpanzees and reported that the observed phenotypic differences are encoded by less

than 1% sequence differences (King and Wilson 1975). When the human chimp consortium in

2005 presented a draft genome sequence of the chimpanzee, they found that single-nucleotide

substitutions occur at a rate of 1.23% but also point out that other events like insertions or

deletions and chromosomal rearrangements have to be taken into account for a full picture

(Chimpanzee Sequencing and Analysis Consortium 2005). Since then, technological advances

in molecular biology and computational methods have enabled researchers to study these

differences and similarities in more depth (Enard 2016). While examples of potential genetic

causes for human-specific phenotypes like vocal learning (Enard et al. 2002), brain size (Florio

et al. 2015; Heide et al. 2020) and synaptic plasticity (Charrier et al. 2012) are fascinating,

investigating phylogenetic conservation is practically more relevant. For example, it allows

to identify functional genetic elements or predict the deleteriousness of variants found within

humans (Siepel et al. 2005; Kircher et al. 2014; Goode et al. 2010; Consortium and Zoonomia

Consortium 2020; Alföldi and Lindblad-Toh 2013; Hubisz et al. 2011; Malhis et al. 2019).

However, to what extend conservation of expression patterns can be used to infer function

has not been studied, yet.

1.2 Expression conservation as a means to infer

function

Although every cell in our body contains the same genetic material, cells can differ sub-

stantially in their morphology and function. For these specific differences to be possible, a

complex interplay of chromatin state, DNA methylation, transcription factors, enhancers

and regulators is needed in order to orchestrate gene expression, and by that define cellular

identity. Even though all of this information is encoded in the genome, we are so far unable

to compute all of the details of the phenotypes from the genotype. Measuring phenotypes

like gene expression and thus considering the cellular context and dynamic cellular processes,

might help explain the differences and similarities of specific cell types and processes in closely
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related species in more depth. Hence, it is relevant to further deepen our understanding

of these genotype-phenotype relationships, by studying the regulation and function of the

relevant genes during biological processes of interest.

Figure 2. Comparative data and functional inference
Schematic sequence evolution at a neutral and a conserved, i.e. putative functional, locus.
Grey bars indicate DNA positions that differ among species (left panel). Schematic expression
evolution of a neutral and a conserved, i.e. putative functional gene expression profile across
a developmental trajectory (right panel).

In 1994 Duboule proposed the hourglass model of embryogenesis, describing the phe-

nomenon that the mid-embryonic developmental stage within a phylum is conserved, while

the earliest and latest stages are more divergent (Duboule 1994). Since then many groups

have tried to refine and explain this hypothesis and the underlying mechanisms. While

early approaches to assess divergence and conservation were usually based on morphological

observations, sequence based studies have opened up new possibilities in this field (Yanai

et al. 2011; Kalinka et al. 2010; Irie and Kuratani 2011; Levin et al. 2012; Hu et al. 2017;

Liu et al. 2021). In line with this notion, identifying conserved expression patterns during

developmental processes could be highly informative and helpful for a better understanding of

human biology and disease (Enard 2012). In recent years, the field of comparative genomics is

growing and more and more cross-species studies investigate expression conservation between
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species. Blake et al. for example investigated endoderm differentiation in humans and chim-

panzees, and showed that almost all known endoderm developmental markers have similar

trajectories between chimp and human (Blake et al. 2018). Ward et al. found a conserved

response to hypoxia in cardiomyocytes from humans and chimpanzees after exposing the

cells to varying oxygen levels (Ward and Gilad 2019). Applying similar strategies to more

developmental processes can help to create a better functional annotation of the human

genome. Assessing genome wide expression patterns across species can, in a similar manner

to DNA conservation, help identifying functional elements in specific biological systems and

tissues (Figure 2). While many aspects of such an approach need further investigation to

clarify its validity and its similarity to sequence comparisons, it definitely requires quantifying

expression levels in comparable cells across species.

1.3 Quantifying gene expression levels

In order to investigate dynamic changes during developmental processes we need a reliable

and quantitative measurement of mRNA levels for a given cell at a given time point. While

initially it was only possible to measure an a priori defined, specific set of genes, via northern

blot (Alwine et al. 1977), later qPCR, microarrays (Schena et al. 1995) or SAGE (Velculescu

et al. 1995), this limitation was overcome by the advent of RNA sequencing (RNA-seq)

(Mortazavi et al. 2008; Nagalakshmi et al. 2008; Marioni et al. 2008). RNA-seq employs high

throughput sequencing of cDNA libraries, generating global gene expression datasets. In

contrast to previous methods, no prior knowledge of the sequences is required, making it

possible to study non-model organisms and de novo transcripts (Shendure 2008; Vera et al.

2008; Zhao et al. 2014).

1.3.1 RNA sequencing as the current gold standard

By 2015 RNA-seq was the dominant transcriptomic method on the market (Lowe et al. 2017),

due to the high throughput and sensitivity but also comparably low costs. Many different

protocols were generated optimizing this procedure further, but the general steps for most
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RNA-seq library preparation methods and analysis workflows are comparable (Figure 3).

The cells to be investigated are lysed and RNA is isolated, classically using a column based

or bead-based method (Tavares et al. 2011; Oberacker et al. 2019). Enrichment of messenger

RNA (mRNA) can be performed either via ribosomal RNA (rRNA) depletion or enrichment

of polyadenylated transcripts (Zhao et al. 2018; Yi et al. 2011). Reverse transcription is

performed and after a fragmentation step which, depending on the protocol, can also be

performed before the cDNA synthesis step (Mortazavi et al. 2008; Picelli et al. 2014; Head

et al. 2014; Adey et al. 2010), sequencing adapters are added via PCR. Sequencing can be

performed on different platforms. However, Illumina’s sequencing-by-synthesis approach

dominates the market (Buermans and Dunnen 2014; Greenleaf and Sidow 2014). Subsequent

pre-processing steps are necessary in order to ensure good quality data and to be able to to

draw robust conclusions. At first reads are demultiplexed using the Illumina indices and/or

cell barcodes and a quality filtering step can be implemented to ensure that only reads

with high base call quality are used. A central challenge, especially when using non-model

organisms, is the mapping of the reads to the reference genome. Subsequently, the number

of reads assigned to each gene or transcript is counted and a count matrix is generated. The

count matrix contains one column per analyzed sample and one row per detected gene, the

values of the matrix are the counts of how many times a feature/gene was detected in a

particular sample. Lowly expressed genes and low quality samples are excluded from the

analysis and the data is normalized to account for differences in sequencing depth. As this

step highly impacts all further analysis it is crucial to choose a good fitting normalization

method for the data at hand (Vieth et al. 2019).

1.3.2 Single cell RNA sequencing to study heterogeneous

cell populations

For some applications an investigation of the transcriptome with single-cell resolution is

indispensable, especially when heterogeneous cell populations, i.e. differentiation processes
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Figure 3. General RNA-seq workflow
After cell lysis and RNA extraction, mRNA is enriched by either rRNA depletion or oligo(dT)
primers. The RNA is then reverse transcribed into cDNA, sequencing adapters are added
and the library is sequenced on a high throughput machine, e.g. Illumina HiSeq. Reads
are filtered for low quality and mapped to an annotated reference genome to generate a
count matrix in which reads for each gene are counted for each sample. The data can then
be normalized and lowly expressed genes as well as bad quality samples can be removed.
Finally, downstream analyses can be performed, e.g. differential gene expression. Created
with BioRender.com

or rare cell types are to be investigated (Volpato et al. 2018; Volpato and Webber 2020; Wen

and Tang 2016; Ziegenhain et al. 2018). While the first single-cell methods (Tang et al. 2009)

were expensive and time consuming, many different protocols have been established and

optimized with regards to efficiency and throughput, so that it is a widely used technique to

date (Svensson et al. 2018).
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Plate-based versus droplet-based scRNA-seq

In essence, single cell RNA-seq (scRNA-seq) methods follow the same workflow as bulk

RNA-seq methods. However, they pose different challenges. Naturally, a major challenge lies

in the isolation and capture of the very small amount of RNA present in a single cell. Hence,

scRNA-seq methods need to be especially sensitive (Bagnoli et al. 2018; Picelli et al. 2014).

Furthermore at the beginning of every scRNA-seq experiment the cells to be investigated need

to be dissociated into a single cell suspension. While this might be more straightforward for

monolayer cellcultures, this can be rather challenging for 3D structures like tissues, organoids

or whole organs and can already introduce biases (Brink et al. 2017). Subsequently the cells

need to be captured. The most popular protocols either make use of flourescent-activated

cell sorting (FACS) for capturing the cells (Soumillon et al. 2014; Picelli et al. 2013; Picelli

et al. 2014; Bagnoli et al. 2018), or encapsulate single cells in microdroplets (Zheng et al.

2017; Klein et al. 2015; Macosko et al. 2015) (Figure 4).

Figure 4. Isolation and capturing of single cells
For scRNA-seq, cells first need to be dissociated and then be captured using plate-based
or droplet-based methods. A single cell suspension comprised of living and healthy cells is
crucial. Created with BioRender.com
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While droplet-based platforms like 10X Genomics are able to capture thousands of cells

and therefore identify more rare sub populations, they detect fewer genes in comparison

to very sensitive methods like Smart-seq2 (Picelli et al. 2013; Wang et al. 2021). These

high-throughput methods, like 10X Genomics, being the current standard (Zheng et al.

2017; Svensson et al. 2018) make large-scale projects like the human cell atlas possible

(Rozenblatt-Rosen et al. 2017; Regev et al. 2017). In contrast, plate-based methods are

limited in the number of cells (Ziegenhain et al. 2017; Wang et al. 2021) but they offer

more flexibility in study design and sample type. Samples can be sorted according to their

surface markers and therefore the fluorescence signal of each cell can be associated with the

position in the plate (Hayashi et al. 2010). Moreover, plates with lysed cells can be stored,

which makes it especially appealing for time-series experiments. Hence, which method is

best suited, should be decided depending on the specific scientific question (Ziegenhain et al.

2017; Wang et al. 2021).

Comparative analysis of RNA-seq data during dynamic processes

As more scRNA-seq methods were developed it became clear just how crucial a well-fitting

computational analysis pipeline is for the success of the experiment. However, although rough

standard workflows can be defined (Lun et al. 2016), all of the subsequent steps have an

important impact on the outcome and choices should be made based on the research question

and experimental setup (Vieth et al. 2019). Classic goals of scRNA-seq experiments could be

differential expression (DE) analysis (Love et al. 2014; Ritchie et al. 2015), identification of cell

types or states (Aran et al. 2019) or trajectory inference (Saelens et al. 2019). Comparative

analyses between different species come with specific requirements and challenges, so that

some steps need further, special and careful considerations. As mentioned before, mapping

of the reads to a reference genome, especially when working with non-model organisms, can

be challenging, however it is a crucial and central part (Parekh et al. 2018). The quality of

the reference genomes is not the same across species and less studied organisms often have

missing or truncated gene model annotations, which can lead to huge biases in cross species

comparisons. Therefore, strategies are developed to deal with these difficulties. Extending
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annotations to recapture reads that would otherwise not be counted or cross-mapping for

closely related species are essential strategies to deal with these complications (Parekh et al.

2018; Derr et al. 2016).

Furthermore, comparing absolute changes between species can be challenging and the

results can be hard to interpret. In contrast, comparing species differences and similarities

across a dynamic process, i.e. looking at relative expression changes across time, can lead to

more robust results than comparing absolute values of steady cell states. Especially when

the cells can be aligned along a common trajectory to account for species specific differences

in differentiation speed and homologous cell states among species can be defined (Cannoodt

et al. 2016). As for most of the computational tools it is crucial to choose the method based

on the scientific question, conditions of the experiment as well as the topology of the data

(Saelens et al. 2019). In conclusion, it is crucial to be aware of the experimental setup,

limitations and challenges of the study, as well as the impact of choices for analysis tools

along the scRNA-seq pipeline (Vieth et al. 2019).

1.3.3 Optimizing RNA-seq methods

In order to be able to study heterogeneous cell populations for example during early devel-

opmental processes, I contributed to establishing an optimized version of single cell RNA

barcoding and sequencing (SCRB-seq) (Soumillon et al. 2014). A systematic optimization of

the different steps of the method by comparing the impact of different reaction enhancers,

RT and PCR enzymes led to mcSCRB-seq, a highly sensitive, cost efficient and flexible

protocol (Bagnoli et al. 2018).

Based on these findings, we additionally set out to develop an optimized bulk RNA-

seq method, as bulk RNA-seq is a still widely used and valuable method, especially when

homogeneous cell populations are investigated. I helped developing and benchmarking

prime-seq, a sensitive, affordable and robust method as shown for over 6000 samples across

17 species to date (Janjic et al. 2022).



14 1. Introduction

1.4 The cell bottleneck in comparative primate

transcriptomics

A major obstacle when attempting comparative approaches during dynamic processes,

especially when primates are to be investigated, is the acquisition of the material, i.e. the

cells. Generally, cells of early developmental stages are difficult to obtain. As with all

vertebrates, experimental research with non-human primates in Germany is strictly regulated

by law and precisely defined in the national Animal Welfare Act. While it is possible, with

informed consent, to isolate fibroblasts via skin biopsy from humans, this is only hardly

possible or even impossible for many primate species. Other cell types are even more

critical, e.g. neural cells, unless post mortem tissue is used. However, the availability of

post mortem tissue is also very limited and therefore most of the time there is no option

to control for covariates like age, viability or individual effects. Although the investigation

of post mortem tissue has led to many important insights (Romero et al. 2012), for further

comparative approaches especially in a dynamic developmental context, it is crucial to start

with comparable, matching cell states and molecular properties and for this renewable sample

resources are of pivotal importance.

1.5 Primate embryonic stem cells

Embryonic stem cells (ESCs) have the distinctive advantage that they are pluripotent,

meaning that are able to differentiate into any cell type of the adult body, and that they

can proliferate indefinitely in culture, making it possible to investigate dynamic processes,

rare cell types or transient developmental cell states (Evans and Kaufman 1981; Martin

1981). On the other hand, Human ESCs (hESCs) impose ethical concerns, as they involve

the destruction of an embryo and therefore the amount of cell lines available is very limited.

In Germany the generation of new hESC lines as well as the import and utilization of hESCs

is in principle prohibited and only permissible when the imported human embryonic stem
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cell lines have been derived before 2007 and are governed by other strict ethical conditions

approved by the German parliament (§ 1 StZG and § 4 Abs 1 StZG - Stammzellgesetz).

Similarly, experiments on great apes are strictly prohibited and also for monkeys strict rules

exist, so naturally very few non-human primate (NHP) ES cell lines are available. Available

lines include for example rhesus and cynomolgus (Thomson et al. 1995; Mitalipov et al.

2006; Navara et al. 2007; Suemori and Nakatsuji 2006; Watanabe et al. 2019) or marmoset

(Thomson et al. 1996; Sasaki et al. 2005; Debowski et al. 2016).

1.6 Primate induced pluripotent stem cells to

study developmental processes

The possibilities of ESCs, but also concerns regarding their generation and utilization, made

the finding of Takahashi and Yamanka in 2006 even more groundbreaking (Takahashi and

Yamanaka 2006). They discovered that terminally differentiated, adult mouse fibroblasts

could be reprogrammed into a pluripotent state, by the ectopic expression of the so-called

Yamanaka factors Oct3/4, Sox2, Klf4, and c-Myc, using retroviral tranduction. They called

this celltype "induced pluripotent stem cells" (iPSCs) (Takahashi and Yamanaka 2006).

Only one year later the same group announced the generation of induced pluripotent stem

cells (hiPSCs) from human fibroblasts using the same strategy (Takahashi et al. 2007).

Simultaneously another research group succeeded to generate hiPSCs using a different set

of factors (OCT3/4, SOX2, NANOG, and LIN28) (Yu et al. 2007). From this discovery on,

a multitude of research projects were based on and around iPSCs. To date, hundreds of

reprogramming protocols exist, utilizing different somatic cells as starting material, varying

reprogramming factors, different ways to introduce the factors into the cells and different

culture systems.

The basic workflow (Figure 5) starts with the isolation and culture of primary cells. The

reprogramming process is initiated by the forced expression of the reprogramming factors.

These factors can be introduced using different strategies which vary in efficiency and safety

and should be chosen based on the cells to be reprogrammed and the conditions of the
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Figure 5. Generation of iPSCs
Primary somatic cells can be isolated from different sources, e.g. urine samples, blood samples
or skin biopsies. The cells can then be reprogrammed to iPSCs by the ectopic expression of
pluripotency associated transcription factors, classically OCT3/4, SOX2, KLF4, c-MYC -
referred to as the Yamanaka factors. The delivery can be performed using various methods.
When the cells are successfully reprogrammed they have the ability to self-renew and to
differentiate into almost any desired celltype. Created with BioRender.com

facility. Between several days to some weeks post factor delivery to the cells, the first colonies

appear, this timing is highly dependent on celltype and reprogramming strategy used. The

clones are usually manually picked, transferred to a new plate, expanded and have to pass

quality-control measures. Classically, verification assays for genomic stability, pluripotent

cell-specific marker gene expression, and the ability to form the three germlayers are the

minimum requirements necessary to prove their pluripotency. Similarly to ES cells, the first

iPSCs were dependent on the co-culture with mouse embryonic fibroblasts (MEF)-derived

feeder cells (Thomson et al. 1998; Takahashi et al. 2007). However, this was overcome in

recent years by the invention of various specific media and matrices promoting pluripotency

(Xu et al. 2005a; Xu et al. 2005b; Chen et al. 2011; Nakagawa et al. 2014), broadening the

spectrum of application areas.

The invention of iPSCs made it possible to generate pluripotent cells specifically for

patients and to differentiate them to the desired cell type to be investigated. Not only did
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this innovative discovery revolutionize the clinical research world, it also opened the door to

obtaining any cell types from non-model organisms, like primates.

1.6.1 The need for a non-invasive somatic cell source

It is thought that most somatic cells of the body can in principle be reprogrammed into

iPSCs (Ray et al. 2021). The most commonly used primary cells are fibroblasts, as they

are well investigated, easy to handle and have low demands on culture conditions (Raab

et al. 2014). Also many other somatic cell sources like PBMCs or keratinocytes were shown

to be possible sources for proliferating, reprogrammable cells (Staerk et al. 2010; Aasen

et al. 2008; Aasen and Izpisúa Belmonte 2010; Ray et al. 2021). The reported efficiency

of reprogramming between these celltypes varies depending on the original source, lab and

reprogramming strategy (Vidal et al. 2014; Liebau et al. 2013; Sacco et al. 2019; Schlaeger

et al. 2015). From primates, skin biopsies or PBMCs can in principle be obtained during

planned surgeries or after the death of an animal. However, this still practically constraints

the number of individuals and species that can be obtained and thus, a non-invasive somatic

cell source would decisively speed up the generation of a variety of primate iPSCs.

A promising celltype that has been widely used in the past years are keratinocytes.

Keratinocytes can be isolated from plucked hair and reprogrammed using many different

techniques (Klingenstein et al. 2020), they show high reprogramming efficiencies (Aasen

et al. 2008; Linta et al. 2012; Petit et al. 2012) and a fast reprogramming process (Piao

et al. 2014). Furthermore, keratinocytes from plucked hair are a minimal-invasive cell source,

as the acquisition procedure is easy and does not require any special training or any other

precautions (Raab et al. 2014). While this holds true in the case of humans, naturally this is

not the case for great apes and other primates.

From all possibilities for primary cell isolation described so far, the only totally non-

invasive source that is also applicable to other primates are urine samples (Zhou et al. 2011;

Zhou et al. 2012; Geuder et al. 2021). Even low volumes of unsterile urine can be sufficient

to isolate proliferating urine-derived stem cells (UDSCs) (Geuder et al. 2021). Moreover, the

stem cell/progenitor cell properties of UDSCs (Zhang et al. 2008) make them a valuable cell
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source, as they can proliferate in culture for many passages and reprogram fast and efficiently

(Zhou et al. 2011; Bharadwaj et al. 2013; Liu et al. 2020). Primate sampling related issues

like contamination and low sampling volumes are negligible due to the low cost per sample

and the minimal hands on time required through the process of isolation (Zhou et al. 2011;

Zhou et al. 2012; Liu et al. 2020; Geuder et al. 2021).

1.6.2 Non-integrating reprogramming methods are im-

portant for comparative studies

Not only different somatic cell sources have been widely investigated, but also the reprogram-

ming methods were subject to change and optimization. The different methods can roughly

be grouped into four categories based on the mode of delivery, viral or non-viral, and the

integration into the genome (Figure 6). Central for a successful reprogramming method is

the ability to sustain the expression of the reprogramming factors for a sufficient time at

high enough levels, which highly depends on the cells to be reprogrammed.

Integrating viral methods were the first to be applied during the early phase of induced

pluripotent stem cells. Yamanaka and Takahashi used retroviral transduction to reprogram

human fibroblasts to iPSCs in 2007 (Takahashi et al. 2007). γ-Retroviral and lentiviral

vectors both have the ability to sustain the expression of reprogramming factors at high

enough levels during multiple cell divisions, enabling the first iPSC reprogramming based

on the information of a large screen for transcription factors. Although, the transgenes are

ultimately methylated and silenced in iPSCs (Yao et al. 2004; Stadtfeld et al. 2008), due to

their random genomic integration, they can be mutagenic, can obstruct cellular processes

and due to residual expression or re-activation of reprogramming factors can interfere with

later differentiation protocols (Nakagawa et al. 2008; Hu 2014).

PiggyBac transposons, as an example for the group of integrating, non-viral methods,

integrate into the host genome, however in a second step the transient expression of a

transposase can catalyze the excision of the transgenes (Fraser et al. 1996). Woltjen et al.

used this method and induced the expression of reprogramming factors via a doxycyline
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Figure 6. Overview of iPSC reprogramming methods
The available reprogramming methods can be grouped into four categories. Integrating
viral methods like retroviral (including lentiviral) vectors were the first methods to be used
during the dawn of iPSCs. Non-integrating viral methods like the sendai viral vectors are
also commonly used, the efficiency is high and they do not enter the nucleus of the host
cell, due to their solely RNA-based lifecycle. Non-viral methods like the PiggyBac system
involve the insertion of the transgene into the host genome but can subsequently be excised
and are therefore potentially also footprint-free. The non-integrating and non-viral methods
like mRNA or episomal vector transfection comprise the most diverse group. Many of these
methods are widely and successfully used. Created with BioRender.com

inducible PiggyBac system. After successful reprogramming, when the generated clones

became dox-independent, transient transposase expression led to complete removal of the

transgenes which are flanked by inverted terminal repeats (Woltjen et al. 2009). However,

these excisable methods of course also come with the need to verify that the excision did not

introduce mutations itself.

Non-integrating viral methods like the Sendai virus (SeV) based reprogramming also

show a high reprogramming efficiency but with their completely RNA-based life cycle, they

do not enter the nucleus of the cell to be transduced (Bernloehr et al. 2004). A temperature

sensitive variant leads to a faster clearing of the viral particles after around 10 passages

(Ban et al. 2011; Fusaki et al. 2009). As for all viral methods, the virus absence needs to be

proven after successful reprogramming. A major advantage of the Sendai virus system is the

small amount of cells needed for the reprogramming procedure and morphological changes

are observed comparably early after the transduction (Beers et al. 2015; Geuder et al. 2021).
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Many different methods fall into the group of non-integrating and non viral reprogram-

ming strategies. Episomal vectors for example divide extrachromosomally and get diluted out

from the cell at a rate of 5 % per cell cycle (Yu et al. 2009). Derived from the Eppstein-Barr

virus, the vectors contain the EBNA1 gene and virus origin of viral replication (oriP) they are

described to efficiently reprogram cells with only one round of transfection needed, in contrast

to previous vector-based methods (Okita et al. 2011; Okita et al. 2013). Another method

and, due to its unambiguously footprint free nature, probably the most safe for clinical

applications is mRNA reprogramming. mRNAs are synthesized by in vitro transcription and

modified with 3’ and 5’ UTR elements and the incorporation of nucleosides to increase their

stability (Karikó et al. 2005; Karikó and Weissman 2007; Karikó et al. 2008; Steinle et al.

2017). The first reprogramming protocols were very time consuming with the need for 17

consecutive transfections (Warren et al. 2010), however, rapid progress has been made to

increase efficiency and decrease hands on time (Yakubov et al. 2010; Tavernier et al. 2012),

so that today it is an efficient and widely used method.

Many different protocols have been described and compared for different types of cells

and downstream applications in recent years (Rao and Malik 2012; Malik and Rao 2013;

Al Abbar et al. 2020). Non-integrating methods are currently preferred, as their efficiency

and practicability have improved and the advantage of not genetically altering cells during

reprogramming is decisive, not only but especially for safety aspects in biomedical applications.

1.7 Generating comparable primate iPSCs

The possibility to generate iPSCs from non-model organisms like primates opened a new

chapter in the field of comparative primate genomics. Protocols were adjusted and new

methods developed to generate a wide range of primate iPSCs, like chimpanzees (Marchetto

et al. 2013; Wunderlich et al. 2014; Fujie et al. 2014; Gallego Romero et al. 2015; Blake et al.

2018; Kanton et al. 2019; Pollen et al. 2019; Field et al. 2019), other great apes (Geuder et al.

2021; Ramaswamy et al. 2015) and more distant species like drill (Ben-Nun et al. 2011),

baboon (Navara et al. 2018), marmoset (Hemmi et al. 2017; Yoshimatsu et al. 2021) or
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different macaques (Nakai et al. 2018; Wunderlich et al. 2012; Yada et al. 2017). The majority

of the available protocols are optimized for human iPSCs and then applied to non-human

primates. In some cases, however, the human optimized conditions seem not to be sufficient

to keep the cells in a pluripotent state, for example feeder cells turned out to be essential for

the maintenance of japanese macaque iPSCs (Nakai et al. 2018). Nevertheless, many of the

primate cells can be reprogrammed feeder-free, cultured in human stem cell medium and

show similar characteristics like hiPSCs during and after reprogramming (Geuder et al. 2021;

Wunderlich et al. 2014; Gallego Romero et al. 2015).

Albeit the difficulties that come with the generation of primate iPSCs, the optimized

protocols of somatic cell isolation as well as iPSC culture in combination with advances in

functional genomic technologies make them a promising tool to study evolution within and

between species (see also Dannemann and Gallego Romero (2021) for a recent review).

To this end, I established a method that uses urine as the only completely non-invasive

cell source in combination with the footprint free Sendai virus (SeV) mediated reprogramming

method. The method is based on previously described protocols for urine isolation (Zhou

et al. 2011; Zhou et al. 2012) with optimizations specifically to issues that arise during

the sampling of primate urine. Briefly, we show that volumes as little as five milliliters

are sufficient to isolate reprogrammable cells. Additionally, storing the sample for at least

four hours and the addition of a broad-spectrum antibacterial agent make the isolation

process from unsterile collected NHP urine possible. Cells from human, gorilla and orangutan

reprogrammed quickly and efficiently. Furthermore, expression distances within a species

were similar, independent of the individual and donor cell type, highlighting the usefulness

of these cells to further expand the zoo of species available for comparative evolutionary

analyses (Geuder et al. 2021).
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1.8 Applying primate iPSCs in a comparative

approach

Using primate iPSCs in combination with efficient bulk and single-cell RNA-seq methodology,

is a powerful means for evolutionary studies. To demonstrate the validity of this idea, I used

our generated iPSCs in a comparative differentiation approach during which we profiled

the transciptomes of single-cells using mcSCRB-seq (Bagnoli et al. 2018). We differentiated

the cells towards neural precursor cells (NPCs) and sampled single cells of nine different

clones from three species at six different time points, resulting in a comprehensive dataset

of more than 4000 cells. We compared differentiation trajectories, identified a set of genes

with conserved expression up-regulation during cell-state transition and further characterized

these genes as to their functional relevance.
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Abstract

Comparing the molecular and cellular properties among primates is crucial to better under-

stand human evolution and biology. However, it is difficult or ethically impossible to collect

matched tissues from many primates, especially during development. An alternative is to

model different cell types and their development using induced pluripotent stem cells (iPSCs).

These can be generated from many tissue sources, but non-invasive sampling would decisively

broaden the spectrum of non-human primates that can be investigated. Here, we report

the generation of primate iPSCs from urine samples. We first validate and optimize the

procedure using human urine samples and show that suspension- Sendai Virus transduction

of reprogramming factors into urinary cells efficiently generates integration-free iPSCs, which

maintain their pluripotency under feeder-free culture conditions. We demonstrate that this

method is also applicable to gorilla and orangutan urinary cells isolated from a non-sterile

zoo floor. We characterize the urinary cells, iPSCs and derived neural progenitor cells

using karyotyping, immunohistochemistry, differentiation assays and RNA-sequencing. We

show that the urine-derived human iPSCs are indistinguishable from well characterized

PBMC-derived human iPSCs and that the gorilla and orangutan iPSCs are well comparable

to the human iPSCs. In summary, this study introduces a novel and efficient approach

https://www.nature.com/articles/s41598-021-82883-0#Sec26
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to non-invasively generate iPSCs from primate urine. This will extend the zoo of species

available for a comparative approach to molecular and cellular phenotypes.
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A non‑invasive method to generate 
induced pluripotent stem cells 
from primate urine
Johanna Geuder1, Lucas E. Wange1, Aleksandar Janjic1, Jessica Radmer1, Philipp Janssen1, 
Johannes W. Bagnoli1, Stefan Müller2, Artur Kaul3, Mari Ohnuki1* & Wolfgang Enard1*

Comparing the molecular and cellular properties among primates is crucial to better understand 
human evolution and biology. However, it is difficult or ethically impossible to collect matched tissues 
from many primates, especially during development. An alternative is to model different cell types 
and their development using induced pluripotent stem cells (iPSCs). These can be generated from 
many tissue sources, but non‑invasive sampling would decisively broaden the spectrum of non‑
human primates that can be investigated. Here, we report the generation of primate iPSCs from urine 
samples. We first validate and optimize the procedure using human urine samples and show that 
suspension‑ Sendai Virus transduction of reprogramming factors into urinary cells efficiently generates 
integration‑free iPSCs, which maintain their pluripotency under feeder‑free culture conditions. We 
demonstrate that this method is also applicable to gorilla and orangutan urinary cells isolated from a 
non‑sterile zoo floor. We characterize the urinary cells, iPSCs and derived neural progenitor cells using 
karyotyping, immunohistochemistry, differentiation assays and RNA‑sequencing. We show that the 
urine‑derived human iPSCs are indistinguishable from well characterized PBMC‑derived human iPSCs 
and that the gorilla and orangutan iPSCs are well comparable to the human iPSCs. In summary, this 
study introduces a novel and efficient approach to non‑invasively generate iPSCs from primate urine. 
This will extend the zoo of species available for a comparative approach to molecular and cellular 
phenotypes.

Primates are our closest relatives and hence play an essential role in comparative and evolutionary studies in 
biology, ecology and medicine. We share the vast majority of our genetic information, and yet have considerable 
molecular and phenotypic  differences1. Understanding this genotype–phenotype evolution is crucial to under-
stand the molecular basis of human-specific traits. Additionally, it is biomedically highly relevant to interpret 
findings made in model organisms, such as the mouse, and to identify the conservation and functional relevance 
of molecular and cellular  circuitries2,3. However, obtaining comparable samples from different primates, espe-
cially during development, is practically and—more importantly—ethically very difficult or even impossible.

Embryonic stem cells have the potential to partially overcome this limitation by their ability to differentiate 
into all cell types in vitro and divide  indefinitely4. However, the necessary primary material collection from 
an embryo is in most cases impossible. Fortunately, a pluripotent state can also be induced in somatic cells by 
ectopically expressing four  genes5. Since this discovery of induced pluripotency, great efforts have been made 
to identify suitable somatic  cells6 and optimize reprogramming  methods7. Most of this research, however, has 
focused on human or mouse. While the methods are generally transferable and iPSCs from several different 
non-human  primates8–10 and other  mammals11,12 have been generated, these methods have not been optimized 
for non-model organisms.

One major challenge for establishing iPSCs of various non-human primates is the acquisition of the primary 
cells. So far iPSCs have been generated from fibroblasts, peripheral blood cells or vein endothelial cells derived 
during medical examinations or from post mortem  tissue8–10,13,14. However, also these sources impose practical 
and ethical constraints and therefore limit the availability of the primary material.

To overcome these limitations, we adapted a method of isolating reprogrammable cells from human urine 
 samples15,16 and applied it to non-human primates (Fig. 1). We find that primary cells can be isolated from 
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unsterile urine sampled from the floor, can be efficiently reprogrammed using the integration-free Sendai  Virus17 
and can be maintained under feeder-free conditions as shown by generating iPSCs from human, gorilla and 
orangutan.

Results
Isolating human urinary cells from small‑volume and stored samples. To assess which method is 
most suitable for isolating and reprogramming primate cells, we first tested different procedures using urinary 
cells from human samples (Fig. 1). We collected urine from several humans in sterile beakers and processed 
them as described in Zhou et al.15,16. We found varying cell numbers in the urine samples (range 46–2250 cells 
per ml; Supplementary Table S1) with about 60% living cells. As previously  reported18,19, we initially observed 
two morphologically distinct colony types that became indistinguishable after the first passage and consisted of 
grain-shaped cells that proliferated extensively (Fig. 2a, Supplementary Figure S1b). In total we processed 19 
samples of several individuals in 122 experiments using different volumes and storage times (Supplementary 
Table S2). Similar to previous  reports20, we isolated an average of 7.6 colonies per 100 ml of urine when process-
ing samples immediately with a considerable amount of variation among samples (0–70 colonies per 100 ml, 
Supplementary Table S2) and among aliquots (0–160 per 100 ml; Supplementary Table S2; Fig. 2b), but no dif-
ference between sexes (Supplementary Table S2). Furthermore, storing samples for up to 4 h at room tempera-
ture or on ice did not influence the number of isolated colonies (9 samples, 7.4 colonies on average per 100 ml, 

Figure 1.  Workflow overview for establishing iPSCs from primate urine. We established the protocol for iPSC 
generation from human urine based on a previously described  protocol16. We tested volume, storage and culture 
conditions for primary cells and compared reprogramming by overexpression of OCT3/4, SOX2, KLF4 and 
MYC (OSKM) via lipofection of episomal vectors and via transduction of a Sendai virus derived vector (SeV). 
We used the protocol established in humans and adapted it for unsterile floor-collected samples from non-
human primates by adding Normocure to the first passages of primary cell culture and reprogrammed visually 
healthy and uncontaminated cultures using SeV. Pluripotency of established cultures was verified by marker 
expression, differentiation capacity and cell type classification using RNA sequencing.
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range: 0–17). As sample volumes can be small for non-human primates, we also tested whether colonies can be 
isolated from 5, 10 or 20 ml of urine (Fig. 2b). We found no evidence that smaller volumes have lower success 
rates as we found that for 42% of the 5 ml samples, we could isolate at least one colony (Supplementary Table S2). 
Many more samples and conditions would be needed to better quantify the influence of different parameters on 
the isolation efficiency of colonies. However, in most practical situations such parameters would not be used to 
make a decision as one would anyway try to obtain colonies with the urine samples at hand, especially in our 
case where samples from primates are rare. Fortunately, low-volume human urine samples stored for a few hours 
at room temperature or on ice are a possible source to establish primary urinary cell lines. In summary, these 
experiments are a promising starting point for the use of small-volume urine samples from non-human primates 
to generate primary cell lines, which may then be reprogrammed into iPSCs.
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Figure 2.  Establishing urinary cell isolation and reprogramming to iPSCs in human samples. (a) Human urine 
mainly consists of squamous cells and other differentiated cells that are not able to attach and proliferate (upper 
row). After ~ 5 days, the first colonies become visible and two types of colonies can be distinguished as described 
in Zhou (2012). Scale bars represent 500 μm. (b) Isolation efficiency of urine varies between samples. The 
efficiency between 5 ml, 10 ml and 20 ml of starting material is not different (Fisher’s exact test p > 0.5). (c) SeV 
mediated reprogramming showed significantly higher efficiency than Episomal plasmids (Wilcoxon rank sum 
test: p = 1.1e−05). (d) Established human colonies transduced with SeV expressed Nanog, Oct4 and Sox2; Scale 
bars represent 50 μm and (e) differentiated to cell types of the three germ layers; scale bar represents 500 µm in 
the phase contrast pictures and 100 µm in the fluorescence pictures. See also Supplementary Figure S1.
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Reprogramming human urinary cells is efficient when using suspension‑Sendai Virus trans‑
duction. Next, we investigated which integration-free overexpression strategy would be the most suitable to 
induce pluripotency in the isolated urine cells. To this end we compared transduction by a vector derived from 
the RNA-based Sendai  Virus14,17 in  suspension10, to lipofection with episomal plasmids (Epi) derived from the 
Epstein Barr  virus21,22. We chose to use the suspension transduction method as it yielded a significantly higher 
reprogramming efficiency than the method on attached cells (suspension reprogramming efficiency: 0.24%, 
N = 7; attached reprogramming efficiency: 0.09%, N = 7; Wilcoxon rank sum test: p = 0.003; Supplementary 
Table S3, Supplementary Figure S2d). Both systems have been previously reported to sufficiently induce repro-
gramming of somatic cells without the risk of genome integrations. In our experiments presented here, trans-
duction of urinary cells with a Sendai Virus (SeV) vector containing Emerald GFP (EmGFP) showed substan-
tially higher efficiencies than lipofection with episomal plasmids (~ 97% versus ~ 20% EmGFP+; Supplementary 
Figure S2a and S2b). We assessed the reprogramming efficiency of these two systems by counting colonies with 
a pluripotent-like cell morphology. Using SeV vectors, 0.19% of the cells gave rise to such colonies (Fig. 2c). In 
contrast, when using Episomal plasmids only 0.009% of the cells gave rise to colonies with pluripotent cell-like 
morphology (N = 23 and 18, respectively; Wilcoxon rank sum test: p = 0.00005), resulting in at least one colony 
in 87% and 28% of the cases. Furthermore, the first colonies with a pluripotent morphology appeared 5 days 
after SeV transduction and 14 days after Epi lipofection. To test whether the morphologically defined pluripotent 
colonies also express molecular markers of pluripotency, we isolated flat, clear-edged colonies from 5 indepen-
dently transduced urinary cell cultures on day 10. All clones expressed POU5F1 (OCT3/4), SOX2, NANOG and 
differentiated into the three germ layers during embryoid body formation as shown by immunocytochemistry 
(Fig. 2d,e). Notably, while the transduced cells also expressed the pluripotency marker SSEA4, this was also true 
for the primary urinary cells (Supplementary Figure S2c). SSEA4 is known to be expressed in urine derived 
 cells18,23 and hence it is an uninformative marker to assess the reprogramming of urinary cells to iPSCs. Further-
more, SeV RNA was always absent after the first five passages (Supplementary Figure S3) and the pluripotent 
state could be maintained for over 100 passages (data not shown).

In summary, we find that the generation of iPSCs from human urine samples is possible from small volumes, 
and our results also reveal that reprogramming is most efficient when using suspension SeV transduction. Hence, 
we used this workflow for generating iPSCs from non-human primate cells.

Isolating cells from unsterile primate urine. For practical and ethical reasons, the collection procedure 
is a decisive difference when sampling urine from non-human primates (NHPs). Samples from chimpanzees, 
gorillas and orangutans were collected by zoo keepers directly from the floor, often with visible contamination. 
Initially, culturing these samples was not successful due to the growth of contaminating bacteria. The isolation 
and culture of urinary cells only became possible upon the addition of Normocure (Invivogen), a broad-spec-
trum antibacterial agent that actively eliminates Gram+ and Gram− bacteria from cell cultures. We confirmed 
that Normocure did not affect the number of colonies isolated from sterile human samples (Supplementary 
Table S2). Furthermore, many NHP samples also had volumes below 5 ml. We attempted to isolate cells from a 
total of 70 samples, but only 24 NHP samples showed collection parameters comparable to human urine samples 
as described above (≥ 5 ml of sample, < 4 h storage at RT or 4 °C and no visible contamination). From chimpan-
zees, gorillas and orangutans we collected a total of 87, 70 and 39 ml of urine in 11, 8 and 5 samples from several 
individuals and isolated 0, 5 and 2 colonies respectively (Supplementary Table S4). For gorilla and orangutan this 
rate (7.3 and 5.2 colonies per 100 ml urine) is not significantly different from the rate found for human samples 
(6.0 per 100 ml across all conditions in Supplementary Table S2, p = 0.8 and 0.6, respectively, assuming a Poisson 
distribution). However, obtaining zero colonies from 87 ml of chimpanzee urine is less than expected, given the 
rate found in human samples (p = 0.005). While isolating primary cells from urine samples seems comparable to 
humans in two great ape species, it seems to have at least a two- to threefold lower rate in our closest relatives, 
suggesting that the procedure might work in many but not in all NHPs. Fortunately, it is possible to culture many 
samples in parallel so that screening for urinary cells in a larger volume with more samples is relatively easy.

The first proliferating cells from orangutan and gorilla could be observed after six to ten days (Fig. 3a,b) in 
culture and could be propagated for several passages, which is comparable to human cells. While we observed dif-
ferent proliferation rates and morphologies among samples, these did not systematically differ among individuals 
or species (Fig. 3b). Infection with specific pathogens, including simian immunodeficiency virus (SIV), herpes 
B virus (BV, Macacine alphaherpesvirus 1), simian T cell leukemia virus (STLV) and simian type D retroviruses 
(SRV/D), was not detected in these cells (data not shown).

Expression patterns of urinary cells are most similar to mesenchymal stem cells, epithelial 
cells and smooth muscle cells. To characterize the isolated urinary cells, we generated expression profiles 
using prime-seq a 3′ tagged RNA-seq  protocol24–26, on early passage primary urinary cells (p1–3) from three 
humans, one gorilla and one orangutan. Note that some of these samples contained cells from 1–4 different 
colonies (Supplementary Table S2 and S4) and hence could be mixtures of different cell types. To classify these 
urinary cells we compared their expression profile to 713 microarray expression profiles grouped into 38 cell 
 types27 using the SingleR  package28. SingleR uses the most informative genes from the reference dataset and 
iteratively correlates it with the expression profile to be classified. The most similar cell types were mesenchymal 
stem cells, epithelial cells and/or smooth muscle cells and at least two groups are evident among the six samples 
(Fig. 3c). To further investigate these cell types, we isolated 19 single colonies from six different individuals 
(Supplementary Table S1) and analyzed their expression profiles as described above. A principal component 
analysis revealed three clearly distinct clusters A, B and C with 10, 6 and 3 colonies, respectively (Fig. 3d). When 
we classified these 19 profiles using  SingleR27,28 as described above, we found the three colonies from cluster C 
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clearly classified as epithelial cells from the bladder (Fig. 3e). This cluster shows high KRT7 expression, as also 
described in Dörrrenhaus et al.19 as well as high FOXA1 expression, both hinting towards an urothelial origin 
(Supplementary Figure S4). The colonies of the other two clusters are classified as MSCs, whereas cluster B also 
has a high similarity to epithelial profiles (Fig. 3e). They could resemble the two renal cell types described in 
Dörrrenhaus et al.19 and are probably derived from the kidney as also evident by their PAX2 and MCAM expres-
sion (Supplementary Figure S4). We also used differential gene expression and Reactome pathway  analysis29 to 
further characterize the differences between these clusters (Supplementary Figure S4a, S4c). In sum, our findings 
indicate that at least three types of proliferating cells can be isolated from urine, one of urothelial and two of renal 
origin and that the same types can also be isolated from gorilla and orangutan.
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Figure 3.  Isolation and characterization of primate urinary cells. (a) Workflow of cell isolation from primate 
urine samples. NC Normocure, REMC renal epithelial mesenchymal cell medium. (b) Primary cells obtained 
from human, gorilla and orangutan samples are morphologically indistinguishable and display similar EmGFP 
transduction levels. Scale bars represent 400 μm. (c) The package SingleR was used to correlate the expression 
profiles from six samples of primate urinary cells (passage 1–3) to a reference set of 38 human cell types. 
Normalized scores of the eight cell types with the highest correlations are shown (MSC mesenchymal stem 
cells, SM smooth muscle, Epi epithelial, Endo endothelial). Color bar indicates normalized correlation score. 
(d) Principal component analysis of primary cells from single colony lysates using the 500 most variable genes. 
(e) Heatmap of normalized SingleR scores show that cluster C is classified as epithelial cell originating from the 
bladder. The scores for MSCs in Cluster A and B are similarly high, although cluster B also shows higher scores 
for epithelial cells than cluster A. See also Supplementary Figure S5.
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Reprogramming efficiency of urinary cells is similar in humans and other primates. To gener-
ate iPSCs from the urinary cells isolated from gorilla and orangutan, we used Sendai Virus (SeV) transduction 
and the reprogramming timeline that we found to be efficient for human urinary cells (Fig. 4a). Human, gorilla 
and orangutan urinary cells showed similarly high transduction efficiencies with the EmGFP SeV vector (data 
not shown). Transduction with the reprogramming SeV vectors led to initial morphological changes after 2 days 
in all three species, when cells began to form colonies and became clearly distinguishable from the primary cells 
(Fig. 4b). When flat, clear-edged colonies appeared that contained cells with a large nucleus to cytoplasm ratio, 
these colonies were picked and plated onto a new dish. We found that the efficiency and speed of reprogram-
ming was variable (Supplementary Figure S5b), probably depending on the cell type, the passage number and 
the acute state (“health”) of the cells, in concordance with the variability and efficiency found in other studies 
utilizing urine cells as a source for  iPSCs15. Also the mean reprogramming efficiency over all replicates was dif-
ferent (Kruskal–Wallis test, p = 0.015) for human (0.19%), gorilla (0.28%) and orangutan (0.061%). However, 
many more samples would be necessary to disentangle the effects of all these contributing factors. Of note, we 
observed that the orangutan iPSCs showed more variability in proliferation rates and morphology compared to 
human and gorilla iPSCs. Several subcloning steps were needed until a morphologically stable clone could be 
generated. However, the resulting iPSCs were stable and had the same properties as the other iPSCs (Fig. 4). To 
what extent this is indeed a property of the species is currently unclear. Importantly, from all primary samples 
that were transduced, colonies with an iPSC morphology could be obtained. So, while considerable variability in 
reprogramming efficiency exists, the overall success rate is sufficiently high and sufficiently similar in humans, 
gorillas and orangutans.

Urine derived primate iPSCs are comparable to human iPSCs. We could generate at least two lines 
per individual from each primary cell sample, all of which showed Oct3/4, TRA-1-60, SSEA4 and SOX2 immu-
nofluorescence (Fig. 4c). Furthermore, karyotype analysis by G-banding in three humans, one gorilla and one 
orangutan iPS cell line revealed no recurrent numerical or structural aberrations in 33–60 metaphases analyzed 
per cell line. All five cell lines analyzed showed inconspicuous and stable karyotypes (Supplementary Figure S6). 
iPSCs from all species could be expanded for more than fifty passages, while maintaining their pluripotency, 
as shown by pluripotency marker expression (Fig. 4c) and differentiation capacity via embryoid body forma-
tion (Fig. 4d,e). Both the human and NHP iPSCs differentiated into ectoderm (beta-III Tubulin), mesoderm 
(α-SMA) and endoderm (AFP) lineages (Fig. 4e, Figure S7a). Dual-SMAD inhibition led to the formation of 
neurospheres in floating culture, as confirmed by neural stem cell marker expression (NESTIN+, PAX6+) using 
qRT-PCR (Supplementary Figure S7b).

To further assess and compare the urine-derived iPSCs, we generated RNA-seq profiles from nine human, 
three gorilla and four orangutan iPSC lines as well as the six corresponding primary urinary cells (see analysis 
above). As an external reference, we added a previously reported and well characterized blood-derived human 
iPS cell line that was generated using episomal vectors and adapted to the same feeder-free culture conditions 
as our cells (1383D2)30. All lines were grown and processed under the same conditions and in a randomized 
order in one experimental batch. We picked one colony per sample and used prime-seq, a 3′ tagged RNA-seq 
 protocol24–26 to generate expression profiles with 19,000 genes detected on average.

We classified the expression pattern of the iPSCs relative to the reference dataset of 38 cell types using SingleR 
as described for the urinary cells. ES cells or iPS cells are clearly the most similar cell type for all our iPS samples 
including the external PBMC-derived iPSC line (Fig. 5a). Principal component analysis of the 500 most variable 
genes (Fig. 5b), shows clear clustering of the samples according to cell type (54% of the variation in PC1) and 
species (23% of the variance in PC2). The external, human blood-derived iPSC line is interspersed among our 
human urine derived iPS cell lines. Using the pairwise Euclidean distances between samples to assess similarity, 
they also cluster first by cell type and then by species (Supplementary Figure S5d). When classifying the expres-
sion pattern of the iPSCs relative to a single cell RNA-seq dataset covering distinct human embryonic stem cell 
derived progenitor states (Chu et. al. 2016), again all our iPSC lines are most similar to embryonic stem cells and 
are indistinguishable from the external PBMC-derived iPSC line (Fig. 5c), also confirming the immunostainings. 
Finally, expression distances within iPS cells of the same species were similar, independent of the individual and 
donor cell type (Fig. 5d).

Taken together, these analyses do not only indicate that our urine derived iPS cells show a pluripotent expres-
sion profile and differentiate as expected for iPS cells but can also not be distinguished from an iPSC line derived 
in another laboratory from another cell type with another vector system. Hence, the expression differences 
among species are far larger than these technical sources of variation, indicating that these cells are well suited 
to assess species differences among primates in iPS cells as well as in cell types derived from these pluripotent 
cells by in vitro differentiation strategies.

Discussion
Here, we adapted a previously described protocol for human urine  samples16 to isolate proliferating cells from 
unsterile primate urine. We show that these urinary cells can be efficiently reprogrammed into integration-free 
and feeder-free iPSCs, which are closely comparable among each other and to other iPSCs. Our findings have 
implications for generating and validating iPSCs from primates and other species for comparative studies. Addi-
tionally, some aspects might also be of relevance when generating iPSCs from human urinary cells for medical 
studies.

Human urine mainly contains cells, such as squamous cells, which are terminally differentiated and can-
not attach or proliferate in culture. The first proliferating cells from human urine were isolated in  197231 and 
since then a variety of different cells have been isolated and described that can proliferate, differentiate and be 
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Figure 4.  Generation and characterization of primate iPSCs. (a) Workflow for reprogramming of primate 
urinary cells. Urine collection and cell seeding is carried out in primary medium, then after 5 days changed 
to REMC medium, and only passaged for the first time after 10–14 days. When the cells reach confluency 
reprogramming is induced and after 5 days the medium is changed to mTeSR1. Once the reprogrammed 
cells are ready to be picked, the cells are seeded in StemFit medium. REMC renal epithelial mesenchymal 
cell medium. (b) Cell morphology of the three species is comparable before (p0), during (p1–3) and after 
reprogramming (~ p5). Scale bar represents 400 µm. (c) Immunofluorescence analysis of pluripotency 
associated proteins at passage 10–15: TRA-1-60, SSEA4, OCT4 and SOX2. Nuclei were counterstained with 
DAPI. Scale bars represent 200 µm. (d) Differentiation potency into the three germ layers. iPSC colony before 
differentiation, after 8 days of floating culture and after 8 days of attached culture. Scale bar represents 400 µm. 
(e) Immunofluorescence analyses of ectoderm (β-III Tubulin), mesoderm (α-SMA) and endoderm markers 
(α-Feto) after EB outgrowth. Nuclei were counterstained with DAPI. Scale bars represent 400 μm. See also 
Supplementary Figure S7a.
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reprogrammed to iPSCs  (see32 for a recent overview). As these urine-derived stem cells (UDSCs) can be isolated 
non-invasively at low costs and reprogrammed  efficiently16, they are increasingly used to generate iPSCs from 
patients (e.g.33–35). Perhaps the only major drawback of using UDSCs for iPSC generation is that the number of 
UDSCs that can be grown per milliliter is quite variable among samples. While parameters such as body size, 
age and cell count correlate with the number of isolated  colonies20, isolation can fail despite large volumes and 
can be successful despite small volumes (Supplementary Table S1, Supplementary Table S2). As UDSC culturing 
is neither very cost- nor time-intensive, the best practical solution will in most cases be to try isolating UDSCs 
independent of those parameters.

While it is known for a long time that different types of UDSCs can be isolated, the quantitative relation 
between morphology, marker expression, potency and reprogramming efficiency among the different UDSCs is 
not clear. The RNA-seq profiles of single colonies presented here, allow for the first time to classify them based on 
genome-wide expression patterns. In agreement with previous findings using marker staining and morphological 
 analysis19, we find three different cell types, of which one is most similar to epithelial cells from the bladder and 
the other two are most similar to mesenchymal stem cells and probably originate from the kidney. Importantly, 
all three cell types seem to reprogram with sufficient efficiency and the expression of pluripotency markers like 
KLF4 and OCT3/4 in all three cell types (Supplementary Figure S4) might be one factor why the reprogramming 
efficiency of UDSCs is relatively high compared to other primary cells. Regarding the reprogramming method, 
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Figure 5.  Characterization of primate iPSCs by expression profiling. (a) The package SingleR was used to 
correlate the expression profiles from seventeen samples of primate iPSCs (passage 1–3) to a reference set of 
38 human cell types. The twelve cell types with the highest correlations are shown (MSC mesenchymal stem 
cells). All lines are similarly correlated to embryonic stem cells and iPS cells. Color bar indicates correlation 
coefficients. (b) Principal component analysis of primary cells and derived iPSC lines using the 500 most 
variable genes. PC1 separates the cell types and PC2 separates the species from each other. (c) Correlation 
coefficient of iPSCs compared to a single cell dataset covering distinct human embryonic stem cell derived 
progenitor states (Chu et al. 2016). (d) Expression distances of all detected genes are averaged from pairwise 
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the species. See also Supplementary Figure S5.
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we find that transduction using the commercial Sendai Virus based vector in  suspension10 is substantially more 
efficient for UDSCs than lipofection of episomal plasmids, and also leads to a change in morphology within 
2 days. While it is established that Sendai Virus reprogramming is an expensive but efficient method to gener-
ate iPSCs from  fibroblasts7,36, our findings indicate that the suspension method might be especially efficient for 
UDSCs. Finally, a relevant side note of our findings is that SSEA4, which is occasionally used as a marker for 
 pluripotency37,38, is not useful when starting from urinary cells as these express SSEA4 at already high levels 
(Supplementary Figure S2c). In summary, our findings contribute to a better understanding of human UDSCs 
and to a method to more efficiently reprogram them into iPSCs.

Maybe more important are the implications of our study for isolating urinary stem cells for the generation of 
iPSC from primates and other mammals. This could be useful in contexts where invasive sampling is difficult, as 
it is the case for non-model primates and many other mammals, and where iPSCs are needed for  conservation11 
or comparative approaches as discussed below. So how likely is it that one can find UDSCs in other primates 
and mammals? In humans, UDSCs originate from the kidney and the urinary tract as also shown by our tran-
scriptional profiles. We isolated UDSCs from orangutan and gorilla and found similar transcriptional profiles, 
morphologies and growth characteristics. Given the general similarity of the urinary tract in mammals and our 
successful isolation of UDSCs in two apes, it seems likely that most primates, and maybe even most mammals, 
shed UDSCs in their urine. However, our failure to isolate UDSCs from chimpanzees suggests that even very 
closely related species might have at least 2–3 times less of those cells in their urine. An alternative possibility 
is that the culture conditions, e.g. the FBS, do not work for isolating chimpanzee UDSCs. However, given that 
UDSCs from gorilla and orangutan can be isolated under these conditions and fetal calf serum works for tissue 
cultures of chimpanzee  kidneys39, we think that a lower concentration of UDSCs in some species is the more likely 
cause. Hence, from which species UDSCs can be isolated in practice might depend mainly on the concentration 
of UDSCs and the available amount of urine. Fortunately, this can be easily tested for any given species of inter-
est, as culturing systems are very cost-efficient. Furthermore, our procedure to use unsterile samples from the 
ground to isolate such cells broadens the practical implementation of this approach considerably.

Given that it is possible to isolate UDSCs from a species, the efficiency of reprogramming and iPSC mainte-
nance will determine whether one can generate stable iPSCs from them. Fortunately, the efficiency of reprogram-
ming UDSCs is shown to be high, probably higher than for many other primary cell  types6. This is especially 
true when using SeV transduction in suspension as is evident from the fact that we could generate iPSCs from 
all twelve UDSC reprogramming experiments (Supplementary Table S5). To what extent this reprogramming 
procedure works in other species is currently unclear, but as the Sendai virus is thought to infect all mamma-
lian  cells40 it could be widely applicable. Additionally, iPSCs have been previously generated from many spe-
cies, even avian  species11, when using human reprogramming factors and culture conditions, albeit with over 
tenfold lower reprogramming  efficiencies41,42. So, while in principle it should be possible to isolate iPSCs from 
many or even all mammals, variation in reprogramming efficiency with human factors and culture conditions 
to keep cells pluripotent with and without feeder  cells42 will considerably vary among species and will make it 
practically difficult to obtain and maintain iPSCs from some species. Investigating the cause of this variation 
more systematically will be important to better understand pluripotent stem cells in general and to generate 
iPSCs from many species in practice. Recent examples of such fruitful investigations include the optimization 
of culture conditions for  baboons43, and the optimization of feeder-free culture conditions for rhesus macaques 
and  baboons42. A related aspect of generating iPSCs from different species is testing whether iPSCs from a given 
species are actually bona fide iPSCs. While for humans a variety of tools exist, such as predictive gene expression 
assays, validated antibody stainings and SNP arrays for chromosomal integrity, these tools cannot be directly 
transferred to other species. Fortunately, due to the availability of genome sequences, RNA-sequencing in com-
bination with human or mouse reference cell types to which generated iPSCs can be compared, but also rather 
traditional techniques such as karyotyping, the characterization of non-human iPSCs becomes feasible as also 
shown in this paper. In summary, while extending the zoo of comparable iPSCs is a daunting task and requires 
considerable more method development, we think our method to isolate UDSCs from unsterile urine could be 
a promising tool in this endeavor.

Assuming that our approach works in at least some non-human primates (NHPs), the effectiveness and non-
invasiveness of the protocol allows sampling many more individuals and species than currently possible. Why 
is this important? So far, iPSCs have been generated from only a few individuals in a very limited set of NHP 
species. One main application is to model biomedical applications of iPSCs in primates such as rhesus macaques 
or  marmosets44. As these species are used as model organisms, non-invasive sampling is less of an issue. Another 
main application are studies investigating the molecular basis of human-specific phenotypes e.g. by comparing 
gene expression levels in humans, chimpanzees and an  outgroup8,9,45,46 to infer human-specific changes more 
 robustly47. A third type of application with considerable potential has been explored much less, namely using 
iPSCs in a comparative framework to identify molecular or cellular properties that are conserved, i.e. functional 
across  species2,3,48. This is similar to the comparative approach on the genotype level in which DNA or protein 
sequences are compared in orthologous regions among several species to identify conserved, i.e. functional 
 elements49. This information is crucial, for example, when inferring the pathogenicity of genetic  variants50. 
Accordingly, it would be useful to know whether a particular phenotypic variant, e.g. a disease associated gene 
expression pattern, is conserved across species. This requires a comparison of the orthologous cell types and states 
among several species. Primates are well suited for such an approach, because they bridge the evolutionary gap 
between human and its most important model organism, the mouse, and because phenotypes and orthologous 
cell states can be more reliably compared in closely related species. However, for practical and ethical reasons, 
orthologous cell states are difficult to obtain from several different primates. Hence, just as human iPSCs allow 
one to study cell types and states that are for practical and ethical reasons not accessible, primate iPSCs extend 
the comparative approach to these cell types and states, leveraging unique evolutionary information that is not 
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only interesting per se, but could also be of biomedical relevance. As our method considerably extends the pos-
sibilities to derive iPSCs from primates, it could contribute towards leveraging the unique information generated 
during millions of years of primate evolution.

Methods
Experimental model and subject details. Human urine samples. Human urine samples from healthy 
volunteers were obtained with written informed consent and processed anonymously. This experimental proce-
dure was ethically approved by the responsible committee on human experimentation (20-122, Ethikkommis-
sion LMU München). All experimental procedures were performed in accordance with relevant guidelines and 
regulations. Additional information on the samples is available in Supplementary Table S2.

Primate urine samples. Primate urine was collected at the Hellabrunn Zoo in Munich, Germany. Caretakers 
noted the time and most likely donor and took up available urine on the floor with a syringe, hence the collec-
tion procedure was fully non-invasive without any perturbation of the animals. Due to the collection procedure 
we do not know with certainty from which individual the samples were derived. Additional information on the 
samples can be found in Supplementary Table S4.

iPSC lines. iPSC lines were generated from human and non-human primate urinary cells. Reprogramming 
was done using two different techniques. Reprogramming using SeV (Thermo Fisher) was performed as suspen-
sion transduction as described  before10. Episomal vectors were transfected using Lipofectamine 3000 (Thermo 
Fisher). iPSCs were cultured under feeder-free conditions on Geltrex (Thermo Fisher) -coated dishes in Stem-
Fit medium (Ajinomoto) supplemented with 100 ng/ml recombinant human basic FGF (Peprotech), 100 U/ml 
Penicillin and 100 μg/ml Streptomycin (Thermo Fisher) at 37 °C with 5% carbon dioxide. Cells were routinely 
subcultured using 0.5 mM EDTA. Whenever cells were dissociated into single cells using 0.5 × TrypLE Select 
(Thermo Fisher) or Accumax (Sigma Aldrich), the culture medium was supplemented with 10 µM Rho-associ-
ated kinase (ROCK) inhibitor Y27632 (BIOZOL) to prevent apoptosis.

Isolation of cells from urine samples. Urine from human volunteers was collected anonymously in 
sterile tubes. Usually a volume of 5–50 ml was obtained. Urine from NHPs was collected from the floor at Hel-
labrunn Zoo (Munich) by the zoo personnel, using a syringe without taking special precautions while collecting 
the samples. Samples were stored at 4 °C until processing for a maximum time span of 5 h. Isolation of primary 
cells was performed as previously described by Zhou et al. 2012. Briefly, the sample was centrifuged at 400×g for 
10 min and washed with DPBS containing 100 U/ml Penicillin, 100 μg/ml Streptomycin (Thermo Fisher), 2.5 µg/
ml Amphotericin (Sigma-Aldrich). Afterwards, the cells were resuspended in urinary primary medium consist-
ing of 10% FBS (Life Technologies), 100 U/ml Penicillin, 100  μg/ml Streptomycin (Thermo Fisher), REGM 
supplement (ATCC) in DMEM/F12 (TH. Geyer) and seeded onto one gelatine coated well of a 12-well-plate. To 
avoid contamination stemming from the unsanitary sample collection, 100 µg/ml Normocure (Invivogen) was 
added to the cultures until the first passage. 1 ml of medium was added every day until day 5, where 4 ml of the 
medium was aspirated and 1 ml of renal epithelial and mesenchymal cell proliferation medium RE/MC prolif-
eration medium was added. RE/MC consists of a 50/50 mixture of Renal Epithelial Cell Basal Medium (ATCC) 
plus the Renal Epithelial Cell Growth Kit (ATCC) and mesenchymal cell medium consisting of DMEM high 
glucose with 10% FBS (Life Technologies), 2 mM GlutaMAX-I (Thermo Fisher), 1 × NEAA (Thermo Fisher), 
100 U/ml Penicillin, 100 μg/ml Streptomycin (Thermo Fisher), 5 ng/ml bFGF (PeproTech), 5 ng/ml PDGF-AB 
(PeproTech) and 5 ng/ml EGF (Miltenyi Biotec). Half of the medium was changed every day until the first colo-
nies appeared. Subsequent medium changes were performed every second day. Passaging was conducted using 
0.5 × TrypLE Select (Thermo Fisher). Typically 15 × 103 to 30 × 103 cells were seeded per well of a 12-well plate.

Single colony isolation from urine samples. For the UDSC single colony characterization experiment 
we seeded cells of 3 ml urine sample per well and chose the wells with only one colony for further characteriza-
tion. The cells grew without further passage for two weeks (some colonies appeared only after one week) and 
were dissociated, counted and lysed in RLT Plus (Qiagen) as soon as they reached a sufficient size to be counted.

Generation of NHP iPSCs by Sendai virus vector infection. Infection of primary cells was performed 
with the CytoTune-iPS 2.0 Sendai Reprogramming Kit (Thermo Fisher) at a MOI of 5 using a modified protocol. 
Briefly, 7 × 105 urine derived cells were incubated in 100 µl of the CytoTune 2.0 SeV mixture containing three 
vector preparations: polycistronic Klf4–Oct3/4–Sox2, cMyc, and Klf4 for one hour at 37 °C. To control transduc-
tion efficiency 3.5 × 105 cells were infected with CytoTune-EmGFP SeV. Infected cells were seeded on Geltrex 
(Thermo Fisher) coated 12-well-plates, routinely 10 × 103 and 25 × 103 cells per well. Medium was replaced with 
fresh Renal epithelial and mesenchymal cell proliferation medium RE/MC (ATCC) every second day. On day 5, 
medium was changed to mTeSR1 (Stemcell Technologies), with subsequent medium changes every second day. 
After single colony picking, cells were cultured in StemFit (Ajinomoto) supplemented with 100 ng/ml recombi-
nant human basic FGF (Peprotech), 100 U/ml Penicillin and 100 μg/ml Streptomycin (Thermo Fisher).

Immunostaining. Cells were fixed with 4% PFA, permeabilized with 0.3% Triton X-100, blocked with 5% 
FBS and incubated with the primary antibody diluted in 1% BSA and 0.3% Triton X-100 in PBS overnight 
at 4 °C. The following antibodies were used: Human alpha-Smooth Muscle Actin (R&D Systems, MAB1420), 
Human/Mouse alpha -Fetoprotein/AFP (R&D Systems, MAB1368), Nanog (R&D Systems, D73G4), Neuron-
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specific beta-III Tubulin (R&D Systems, MAB1195), Oct-4 (NEB, D7O5Z), Sox2 (NEB, 4900S), SSEA4 (NEB, 
4755), EpCAM (Fisher Scientific, 22 HCLC, TRA-1-60 (Miltenyi Biotec, REA157) and the isotype controls IgG2a 
(Thermo Fisher, eBM2a) and IgG1 (Thermo Fisher, P3.6.2.8.1). The next day, cells were washed and incubated 
with the secondary antibodies for one hour at room temperature. Alexa 488 rabbit (Thermo Fisher, A-11034) 
and Alexa 488 mouse (Thermo Fisher, A-21042) were used in a 1/500 dilution. Nuclei were counterstained using 
DAPI (Sigma Aldrich) at a concentration of 1 µg/ml.

Karyotyping. iPSCs at ~ 80% confluency were treated with 50 ng/ml colcemid (Thermo Fisher) for 2 h, harvested 
using TrypLE Select (Thermo Fisher) and treated with 75 mM KCL for 20 min at 37 °C. Subsequently, cells were fixed 
with methanol/acetic acid glacial (3:1) at − 20 °C for 30 min. After two more washes of the fixed cell suspension in 
methanol/acetic (3:1) we followed standard protocols for the preparation of slides with differentially stained mitotic 
chromosome spreads using the G-banding technique. Between 33 and 60 metaphases were analyzed per cell line.

RT‑PCR and PCR analyses. Total RNA was extracted from cells lysed with Trizol using the Direct-zol 
RNA Miniprep Plus Kit (Zymo Research, R2072). 1 µg of total RNA was reverse transcribed using Maxima H 
Minus Reverse Transcriptase (Thermo Fisher) and 5 µM random hexamer primers. Conditions were as follows: 
10 min at 25 °C, 30 min at 50 °C and then 5 min at 85 °C. Quantitative polymerase chain reaction (qPCR) studies 
were conducted on 5 ng of reverse transcribed total RNA in duplicates using PowerUp SYBR Green master mix 
(Thermo Fisher) using primers specific for NANOG, OCT4, PAX6 and NESTIN. Each qPCR consisted of 2 min 
at 50 °C, 2 min at 95 °C followed by 40 cycles of 15 s at 95 °C, 15 s at 55 °C and 1 min at 72 °C. Cycle threshold 
was calculated by using default settings for the real-time sequence detection software (Thermo Fisher). For rela-
tive expression analysis the quantity of each sample was first determined using a standard curve and normalized 
to GAPDH and the average target gene expression (deltaCt/average target gene expression).

Genomic DNA for genotyping was extracted using DNeasy Blood and Tissue Kit (Qiagen). PCR analyses 
were performed using DreamTaq (Thermo Fisher). Primate primary cells were genotyped using primers that 
bind species-specific Alu insertions (adapted  from51).

To confirm the transgene-free status of the iPSC lines, SeV specific primers were used described in CytoTune-
iPS 2.0 Sendai Reprogramming Kit protocol (Thermo Fisher).

In vitro differentiation. For embryoid body formation iPSCs from one confluent 6-well were collected 
and subsequently cultured on a sterile bacterial dish in StemFit without bFGF. During the 8 days of suspension 
culture, medium was changed every second day. Subsequently, cells were seeded into six gelatin coated wells of a 
6-well-plate. After 8 days of attached culture, immunocytochemistry was performed using α-fetoprotein (R&D 
Systems, MAB1368) as endoderm, α-smooth muscle actin (R&D Systems, MAB1420) as mesoderm and β-III 
tubulin (R&D Systems, MAB1195) as ectoderm marker.

For directed differentiation to neural stem cells (NSCs) cells were dissociated and 9 × 103 cells were plated into 
each well of a low attachment U-bottom 96-well-plate in 8GMK medium consisting of GMEM (Thermo Fisher), 
8% KSR (Thermo Fisher), 5.5 ml 100 × NEAA (Thermo Fisher), 100 mM Sodium Pyruvate (Thermo Fisher), 
50 mM 2-Mercaptoethanol (Thermo Fisher) supplemented with 500 nM A-83–01 (Sigma Aldrich), 100 nM 
LDN 193189 (Sigma Aldrich) and 30 µM Y27632 (biozol). Half medium change was performed at days 4, 8, 11. 
Neurospheres were lysed in TRI reagent (Sigma Aldrich) at day 7 and differentiation was verified using qRT PCR.

Bulk RNA‑seq library preparation. In this study two bulk RNA-seq experiments were performed, one 
to validate the generated iPS cells and the corresponding primary cells and one to further characterize human 
UDSCs derived from single colonies. For the first experiment one colony per clone corresponding to ~ 2 × 104 cells 
and 2 × 103 primary cells of each individual was lysed in RLT Plus (Qiagen) and stored at − 80 °C until processing. 
While for the single colony urinary cell characterization experiment we used lysate from 500 to 1000 cells per 
colony. The prime-seq protocol, which is based on SCRB-seq24–26, was used for library  preparation24–26. The full 
protocol can be found on protocols.io (https ://www.proto cols.io/view/prime -seq-s9veh 66). Even though prime-
seq was used in both cases some minor differences between the two experiments exist. In particular in regards 
to the oligo dT primers that were used and the library preparation method as highlighted below. Briefly, proteins 
in the lysate were digested by Proteinase K (Ambion), RNA was cleaned up using SPRI beads (GE, 22%PEG). In 
order to remove isolated DNA, samples were treated with DNase I for 15 min at RT. cDNA was generated using 
oligo-dT primers containing well specific (sample specific) barcodes and unique molecular identifiers (UMIs). 
Unincorporated barcode primers were digested using Exonuclease I (New England Biolabs). cDNA was pre-
amplified using KAPA HiFi HotStart polymerase (Roche) and pooled before library preparation. Sequencing 
libraries for the iPSC/primary cell experiment were constructed from 0.8 ng of preamplified cleaned up cDNA 
using the Nextera XT kit (Illumina). Sequencing libraries for the single colony experiment were constructed using 
NEBNext (New England Biolabs) according to the prime-seq protocol. In both cases 3′ ends were enriched with a 
custom P5 primer (P5NEXTPT5, IDT) and libraries were size-selected for fragments in the range of 300–800 bp.

Sequencing. Libraries were paired-end sequenced on an Illumina HiSeq 1500 instrument. Sixteen/twenty-
eight bases were sequenced with the first read to obtain cellular and molecular barcodes and 50 bases were 
sequenced in the second read into the cDNA fragment.

Data processing and analysis. All raw fastq data were processed with  zUMIs52 using STAR 2.6.0a53 to 
generate expression profiles for barcoded UMI data. All samples were mapped to the human genome (hg38). 
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Gene annotations were obtained from Ensembl (GRCh38.84). Samples were filtered based on number of genes 
and UMIs detected, and genes were filtered using HTS Filter.  DESeq254 was used for normalization and variance 
stabilized transformed data was used for principal component analysis and hierarchical clustering.

Mitochondrial and rRNA reads were excluded and singleR (v1.4.0, https ://bioco nduct or.org/packa ges/Singl 
eR/) was used to classify the cells. SingleR was developed for unbiased cell type recognition of single cell RNA-
seq data, however, here we applied the method to our bulk RNA seq  dataset28. The 200 most variable genes were 
used in the ‘de’ option of SingleR to compare the obtained expression profiles  to55 as well as  HPCA27. Based on 
the highest pairwise correlation between query and reference, cell types of the samples were assigned based on 
the most similar reference cell type.

We averaged and compared pairwise expression distances for different groups (Fig. 5d): the distances among 
iPSC clones within and between each species (N = 14 samples), the average of the distances between 1383D2 
and the urinary derived human iPSCs (N = 9) and the average of the pairwise distance between and within indi-
viduals among iPSCs and species (within individuals: N = 6 (6 individuals with more than one clone), between 
individuals: N = 8).

Data availability
RNA-seq data generated here are available at GEO under accession number GSE155889.

Code availability
 Code is available upon request.
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Figure S1. Cell types found in human urine samples 

Different types of cells can be found in urine samples directly after collection and after proliferation. (a) Different 

cells found in human samples after centrifugation. Squamous cells as well as various smaller round cells can be found. 

(b) Two different types of cells can be distinguished after one week of culture. 
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Figure S2. Transfection/Transduction efficiency of urinary cells 

(a) GFP expression of urinary cells transfected with pcxle-EGFP episomal plasmids or CytoTune EmGFP transduced 

after 5 days (b) FACS analysis of GFP expressing cells 5 days post transfection/transduction (c) SSEA4 expression 

of urinary cells (d) Reprogramming efficiency comparison between attached and suspension reprogramming 

(suspension reprogramming efficiency: 0.2371%, N=7; attached reprogramming efficiency: 0.09%, N=7; Wilcoxon 

rank sum test: p=0.00265) 
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Figure S3. SeV absence verification of primate iPSC lines 

Exemplary SeV absence PCR of human and nonhuman primate iPSCs. (a) Exemplary gorilla and human PCR 

targeting the SeV genome and B2M, GAPDH and OCT4 as controls. A standard dilution of the SeV product shows 

the sensitivity of this assay. (b) SEV detection PCR showing human and both primate species have no trace of SeV. 

The positive control are passage 1 EmGFP transduced fibroblasts.  
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Figure S4. Characterization of human UDSCs originating from single colonies 

Expression profiles of single colonies from human urine samples were subjected to further analysis. (a) Heatmap of 

top differentially expressed genes between the clusters. (b) Marker gene expression of different cell clusters. Cells in 

cluster c express urothelial cell markers (FOXA1 and KRT7). Pluripotency markers (KLF4 and POU5F1) are 

expressed in all clusters. PAX2 and MCAM expression is higher in cluster A and B. (c) Top 5 Reactome pathways 

enriched in the set of genes differentially expressed between one group and both other groups.  
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Figure S5. UDSCs and corresponding iPSC characteristics 

(a) Overview of collected urine samples and properties of the samples, associated with successful isolation of 

proliferating cells. (b) Reprogramming efficiency shown as colonies per number of seeded cells between species. (c) 

Heatmap of mesenchymal stem cell and iPSC marker expression. (d) Euclidean distance between samples.  

 

48 2. Results



7 
 

 
 

Figure S6. Karyograms of primate iPSC lines 

Exemplary karyotyping analysis of human and nonhuman primate iPSCs. (a) human female, 46,XX (b) human male, 

46,XY (c) gorilla male, 48,XY and (d) orangutan female, 48,XX. All karyotyped iPSC lines showed normal 

karyotypes without recurrent numerical or structural chromosomal alterations. Note: Ape chromosomes were ordered 

according to their homologies with human chromosomes and accordingly, human chromosome 2 corresponds to each 

two gorilla and orangutan chromosomes with homology to the long and the short arm, respectively. 
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Figure S7. Differentiation capacity of iPSCs 

(a) Immunofluorescence analyses of ectoderm (β-III Tubulin), mesoderm (α-SMA) and endoderm markers (α-Feto) 

after EB outgrowth. Nuclei were counterstained with DAPI. Upper 3 panels are taken from Figure 4, lower 2 panels 

show isotype controls for above antibodies.Nuclei are stained with DAPI in all panels; Scale bars represent 400μm. 

(b) Dual-SMAD inhibition leads to the formation of neurospheres in floating culture, confirmed by neural stem cell 

marker expression (NESTIN+, PAX6+) using qRT-PCR. 
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sample Total number of cells squamos cells Volume [ml] cells/ml non-squamous /ml # colonies # colonies harvested for RNA-seq

1 6000 1733 40 150 107 3

2 4750 1500 35 136 93 5

3 17600 2650 35 503 427 12 3 (a1,a2,a3)

4 78750 73500 35 2250 150 4 2 (b1, b2)

5 1850 500 40 46 34 0

6 20502 5796 45 456 327 ND 2 (f1, f2)

7 9120 4000 45 203 114 ND 2 (e1, e2)

8 19116 7452 45 425 259 7 1 (a4)

9 54000 28000 37 1459 703 0

10 9548 1860 50 191 154 ND 4 (d1,d2,d3,d4)

11 28906 11640 50 578 345 8 4 (c1,c2,c3,c4)
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Experiment Individual storage sex Normocure volume [ml]

No_urinary 
cell 

colonies corresponding iPSC line 

a no M no 150 8 11C2

b no F no 180 0

c no F no 150 2 12C2

a 1 hr M no 150 12
#2 a no F no 180 2 64AB1, 64A1

a no M no 90 1
a no M no 45 1
a 2.5 F no 45 0
a 2.5 F no 45 0
a 2.5 F no 45 0
b 1hr on ice M no 45 5
b 1hr on ice M no 45 5
b 1hr on ice M no 45 4
b 1hr on ice M no 45 >10
c no F no 70 1
c no F no 70 1
a no F no 45 0
a no F no 45 0
a no F no 45 1  65B4, 65A3

a no M no 40 4 29B5

a no M no 30 2
a no M no 20 4
a no M no 12.5 0

b no F no 40 1
b no F no 32.5 3
b no F no 30 0
b no F no 20 0
b no F no 12.5 0
a no F no 40 0
a no F no 30 2
a no F no 30 1
a no F no 20 0
a no F no 10 5

#7 a 13 hrs M no 42.5 0
#8 a no M no 42.6 1  63Ab1.2, 63AB1

a no M no 10 0
a no M no 20 1
a 1hr RT M no 10 2
a 1hr RT M no 20 1
a 1hr in F M no 10 >10
a 1hr in F M no 20 >10
a 1hr on Ice M no 10 1
a 1hr on Ice M no 20 3
a 2hrs RT M no 10 0
a 2hrs RT M no 20 2
a 2hrs in F M no 10 3
a 2hrs in F M no 20 1
a 2hrs on ice M no 10 1
a 2hrs on ice M no 20 3
a 3hrs RT M no 10 3
a 3hrs RT M no 20 1
a 3hrs in F M no 10 1
a 3hrs in F M no 20 0
a 3hrs on ice M no 10 0

#1

#6

#5

#4

#3
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a 3hrs on ice M no 20 3
b no F no 10 0
b no F no 20 0
b 1hr RT F no 10 0
b 1hr RT F no 20 0
b 1hr in F F no 10 0
b 1hr in F F no 20 0
b 1hr on Ice F no 10 0
b 1hr on Ice F no 20 0
b 2hrs RT F no 10 0
b 2hrs RT F no 20 0
b 2hrs in F F no 10 0
b 2hrs in F F no 20 0
b 2hrs on ice F no 10 0
b 2hrs on ice F no 20 0
b 3hrs RT F no 10 0
b 3hrs RT F no 20 0
b 3hrs in F F no 10 0
b 3hrs in F F no 20 0
b 3hrs on ice F no 10 0
b 3hrs on ice F no 20 0
a no F no 10 0
a no F no 20 5
a 1hr RT F no 10 0
a 1hr RT F no 20 0
a 1hr in F F no 10 0
a 1hr in F F no 20 2
a 2hrs RT F no 10 0
a 2hrs RT F no 20 0
a 0 F F 5 0

a 0 F T 5 1

a 0 F F 5 0

a 0 F T 5 4

a 0 F F 10 0

a 0 F T 10 0

a 4 F F 5 1

a 4 F T 5 2

a 4 F F 5 1

a 4 F T 5 1

a 4 F F 10 1

a 4 F T 10 1

a 0 F F 20 0

a 0 M F 5 0

a 0 M T 5 0

a 0 M F 5 0

a 0 M T 5 0

a 0 M F 10 0

a 0 M T 10 0

a 4 M F 5 1

a 4 M T 5 0

a 4 M F 5 0

a 4 M T 5 0

a 4 M F 10 1

a 4 M T 10 0

a 0 M F 20 3

a 0 F F 5 8

a 0 F T 5 0

a 0 F F 5 0

a 0 F T 5 2

a 0 F F 10 3

#10

#11

#12

#13

#9
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a 0 F T 10 1

a 4 F F 5 0

a 4 F T 5 0

a 4 F F 5 0

a 4 F T 5 1

a 4 F F 10 0

a 4 F T 10 0

a 0 F F 20 17#14
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well factors Method cells_seeded colony_number efficiency Urine_ID
A1 OSKM 5000 (6-well) 0 0 a
B1 OSKM 5000 (6-well) 0 0 a
C1 OSKM suspension 5000 (6-well) 10 0.2 a
D1 OSKM 5000 (6-well) 5 0.1 a
A2 OSKM attached 5000 (12-well) 0 0 a
B2 OSKM 5000 (12-well) 0 0 a
C2 OSKM suspension 5000 (12-well) 12 0.24 a
D2 OSKM 5000 (12-well) 14 0.28 a
A1 OSKM attached 5000 (6-well) 0 0 b
C1 OSKM suspension 5000 (6-well) 9 0.18 b
A2 OSKM attached 5000 (12-well) 3 0.06 b
B2 OSKM 5000 (12-well) 6 0.12 b
C2 OSKM suspension 5000 (12-well) 17 0.34 b
D2 OSKM 5000 (12-well) 16 0.32 b

attached 
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experiment Individual storage sex Normocure species Volume [ml] Contaminated #of proliferating colonies Corresponding iPSC line 

Jahe F Y Orang Utan 15 F

Tano M Y Gorilla 10 F 4 55A1, 55C1, 55D1

Tano M Y Gorilla 5 F 1

Annemarie F Y Chimpanzee 7 F

Sofie F Y Chimpanzee 2 F

Walter M Y Chimpanzee 8 F

Bagira F Y Chimpanzee 4 F

#3 Willi M Y Chimpanzee 2 F

#4 Drill M Y Mandrill 2 T

Willi M Y Chimpanzee 10 F

Willi M Y Chimpanzee 10 F

Hannerl F Y Chimpanzee 12 F

Hannerl F Y Chimpanzee 12 F

Isahi F Y Orang 6 F

Nafi F Y Gorilla 11,5 F

Bagira F Y Gorilla 12 T

Neema F Y Gorilla 12 F

Sonja F Y Gorilla 8 F

Bagira F Y Gorilla 6 T

Bruno M Y Orang Utan 6,5 F
Sonja F Y Gorilla 11,5 F
Bagira F Y Gorilla 5,5 F
Bagira F Y Gorilla 2 F
Neema F Y Gorilla 3 F
zenta F Y Chimp 1,5 F
Sophie F Y Chimp 1 F
Annemarie F Y Chimp 1 F
Walter M Y Chimp 1 F
Bagira F Y in primary mediumGorilla 1,2 F
Hanni F Y in primary mediumchimp 1,3 F
Willi M Y in primary mediumchimp 1,3 F
Walter M Y in primary mediumchimp 0,5 F
Sophie F Y in primary mediumchimp 2,1 F
Zenta F Y in primary mediumchimp 0,9 T
Hannerl F Y in primary mediumchimp 2 F
Zenta F Y in primary mediumchimp 2 F
Willi M Y in primary mediumchimp 2 F
Hanni F Y in primary mediumchimp 2 F
Walter M Y in primary mediumchimp 3 F
Sophie F Y in primary mediumchimp 2 F
Annemarie F Y in primary mediumchimp 3 F
Willi M Y in primary mediumchimp 3 F
Neema F Y in primary mediumGorilla 1,2 F
Sonja F Y in primary mediumGorilla 4 F
Bagira F Y in primary mediumchimp 1,9 F
Hanni F Y in primary mediumchimp 1,2 F
Annemarie F Y in primary mediumchimp 3 F
Willi M Y in primary mediumchimp 3 F
Sophie F Y in primary mediumchimp 3 T
Willi M Y in primary mediumGorilla 3 F
Zenta F Y in primary mediumGorilla 2 F
Walter M Y in primary mediumchimp 3 F
Sophie F Y in primary mediumchimp 4 F
Neema F Y in primary mediumGorilla 5 F
Walter M Y in primary mediumchimp 5 F
Sophie F Y in primary mediumchimp 5 T
Sophie F Y in primary mediumchimp 6 F
Willi M Y in primary mediumchimp 6 F
Willi M Y in primary mediumchimp 6 F
Willi M Y in primary mediumchimp 6 T
Willi M Y in primary mediumchimp 6 T
Isalie >24 hrs F Y in primary mediumOrang 5 F
Bruno >24 hrs M Y in primary mediumOrang 6 F
Bruno M Y in primary mediumOrang 5 F 1 68A20, 69A1
Walter M Y in primary mediumchimp 3 F
Sophie F Y in primary mediumchimp 4 T
Hannerl F Y in primary mediumchimp 3 T
Bruno M Y in primary mediumOrang 6 T
Jahe F Y in primary mediumOrang 6 F 1 70Ab1, 70Af1
Willi M Y in primary mediumchimp 5 F

#15

#16

#1

#2

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14
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well species cells_seeded factors colony_number Experiment_number Urine_ID
A human 25000 OSKM 92 29 #5A
B human 25000 OSKM 161 29 #5A
C human 10000 OSKM 39 29 #5A
D human 10000 OSKM 60 29 #5A
A human 25000 OSKM 3 30 #4C
B human 25000 OSKM 7 30 #4C
C human 10000 OSKM 0 30 #4C
D human 10000 OSKM 0 30 #4C
B human 25000 OSKM 16 31 #8A
D human 25000 OSKM 18 31 #8A
B human 10000 OSKM 1 31 #8A
A human 10000 OSKM 3 31 #8A
A human 25000 OSKM 60 54 #4B
A human 25000 OSKM 60 54 #4B
B human 10000 OSKM 22 54 #4B
A human 10000 OSKM 30 54 #4B
A human 25000 OSKM 27 61 #9A
B human 10000 OSKM 0 61 #9A
A human 10000 OSKM 8 61 #9A
A human 25000 OSKM 21 63 #7A
B human 10000 OSKM 7 63 #7A
A human 25000 OSKM 30 65 #4A
A human 10000 OSKM 11 65 #4A
A Orang 25000 OSKM 37 68
B Orang 10000 OSKM 5 68
A Orang 25000 OSKM 13 69
B Orang 10000 OSKM 2 69
C Orang 25000 OSKM 3 69
D Orang 10000 OSKM 10 69
A Orang 25000 OSKM 20 70
B Orang 10000 OSKM 6 70
A Orang 25000 OSKM 21 70
B Orang 10000 OSKM 3 70
C Orang 25000 OSKM 25 70
D Orang 10000 OSKM 0 70
A Gorilla 25000 OSKM 100 55
B Gorilla 25000 OSKM 100 55
C Gorilla 10000 OSKM 25 55
D Gorilla 10000 OSKM 29 55
B Gorilla 10000 OSKM + GFP 27 55
D Gorilla 10000 OSKM + LIN28 8 55
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Forward Reverse

SeV 

GGA TCA CTA 
GGT GAT ATC 
GAG C

ACC AGA CAA 
GAG TTT AAG 
AGA T

GAPDH

ACC ACA GTC 
CAT GCC ATC 
AC

TCC ACC ACC 
CTG TTG CTG 
TA

hOCT3/4

GAC AGG 
GGG AGG 
GGA GGA 
GCT AGG

CTT CCC TCC 
AAC CAG TTG 
CCC CAA AC

NESTIN

GCC CTG 
ACC ACT CCA 
GTT TA

GTC CTG GAT 
TTC CTT CC

PAX6

CTT GGG AAA 
TCC GAG 
AGA GA

CTA GCC 
AGG TTG 
CGA AGA AC

NANOG GCC TGA GGA GGA 
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Prime‑seq, efficient and powerful bulk RNA 
sequencing
Aleksandar Janjic1,2†, Lucas E. Wange1†, Johannes W. Bagnoli1, Johanna Geuder1, Phong Nguyen1, 
Daniel Richter1, Beate Vieth1, Binje Vick3,4, Irmela Jeremias3,4,5, Christoph Ziegenhain6, Ines Hellmann1 and 
Wolfgang Enard1*  

Background
RNA sequencing (RNA-seq) has become a central method in biology and many techno-
logical variants exist that are adapted to different biological questions [1]. Its most fre-
quent application is the quantification of gene expression levels to identify differentially 
expressed genes, infer regulatory networks, or identify cellular states. This is done on 
populations of cells (bulk RNA-seq) and increasingly with single-cell or single-nucleus 
resolution (scRNA-seq). Choosing a suitable RNA-seq method for a particular biological 
question depends on many aspects, but the number of samples that can be analyzed is 
almost always a crucial factor. Including more biological replicates increases the power 
to detect differences and including more sample conditions increases the generalizability 
of the study. As the limiting factor for the number of samples is often the budget, the 
costs of an RNA-seq method are an essential parameter for the biological insights that 
can be gained from a study. Of note, costs need to be viewed in the context of statistical 
power, i.e., in light of the true and false positive rate of a method [2, 3] and these “nor-
malized” costs can be seen as cost efficiency. On top of reagent costs per sample, aspects 
like robustness, hands-on time, and setup investments of a method can also be seen as 

Abstract 

Cost-efficient library generation by early barcoding has been central in propelling 
single-cell RNA sequencing. Here, we optimize and validate prime-seq, an early barcod-
ing bulk RNA-seq method. We show that it performs equivalently to TruSeq, a stand-
ard bulk RNA-seq method, but is fourfold more cost-efficient due to almost 50-fold 
cheaper library costs. We also validate a direct RNA isolation step, show that intronic 
reads are derived from RNA, and compare cost-efficiencies of available protocols. We 
conclude that prime-seq is currently one of the best options to set up an early barcod-
ing bulk RNA-seq protocol from which many labs would profit.
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cost factors. Other important factors less directly related to cost efficiency are the num-
ber and types of genes that can be detected (complexity), the amount of input material 
that is needed to detect them (sensitivity), and how well the measured signal reflects the 
actual transcript concentration (accuracy).

In recent years, technological developments have focused on scRNA-seq due to its 
exciting possibilities and due to the urgent need to improve its cost efficiency and sen-
sitivity [4–6]. A decisive development for cost efficiency was “early barcoding”, i.e., the 
integration of sample-specific DNA tags in the primers used during complementary 
DNA (cDNA) generation [7, 8]. This allows one to pool cDNA for all further library 
preparation steps, saving time and reagents. However, the cDNA and the barcode need 
to be sequenced from the same molecule and hence cDNA-tags and not full-length 
cDNA sequences are generated. An improvement in measurement noise is achieved 
by integrating a random DNA tag along with the sample barcode, a Unique Molecular 
Identifier (UMI), that allows identifying PCR duplicates and is especially relevant for the 
small starting amounts in scRNA-seq [2, 7, 9]. Optimizing reagents and reaction con-
ditions (e.g., [10, 11]) and the efficient generation of small reaction chambers such as 
microdroplets [12–14], further improved cost efficiency and sensitivity and resulted in 
the current standard of scRNA-seq, commercialized by 10X Genomics [5].

Despite these exciting developments, bulk RNA-seq is still widely used and—more 
importantly—still widely useful as it allows for more flexibility in the experimental design 
that can be advantageous and complementary to scRNA-seq approaches. For example, 
investigated cell populations might be homogenous enough to justify averaging, single-
cell or single-nuclei suspensions might be difficult or impossible to generate, or single-cell 
or single-nucleus suspension might be biased towards certain cell types. Most trivial, but 
maybe most crucial, the number of replicates and conditions is limited due to the high 
costs of scRNA-seq per sample. Furthermore, as more knowledge on cellular and spatial 
heterogeneity is acquired by scRNA-seq and spatial approaches, bulk RNA-seq profiles 
can be better interpreted, e.g., by computational deconvolution of the bulk profile [15]. 
Hence, bulk RNA-seq will remain a central method in biology, despite or even because of 
the impressive developments from scRNA-seq and spatial transcriptomics. However, bulk 
RNA-seq libraries are still largely made by isolating and fragmenting mRNA to generate 
random primed cDNA sequencing libraries. Commercial variants of such protocols, such 
as TruSeq and NEBNext, can be considered the current standard for bulk RNA-seq meth-
ods. This is partly because improvements of sensitivity and cost efficiency were less urgent 
for bulk RNA-seq as input amounts were often high, overall expenses were dominated by 
sequencing costs, and n = 3 experimental designs have a long tradition in experimen-
tal biology [16]. However, input amounts can be a limiting factor, sequencing costs have 
decreased and will further decrease, and low sample size is a central problem of reproduc-
ibility [17, 18]. To address these needs, several protocols have been developed, including 
targeted approaches [19–21] and genome-wide approaches that leverage the scRNA-seq 
developments described above [16, 22]. However, given the importance and costs of bulk 
RNA-seq, even seemingly small changes, e.g., in the sequencing design of libraries [16], 
the number of PCR cycles [9], or enzymatic reactions [22], can have relevant impacts on 
cost efficiency, complexity, accuracy, and sensitivity. Furthermore, protocols need to be 
available to many labs to be useful and insufficient documentation, limited validation, 
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and/or setup costs can prevent their implementation. Accordingly, further developments 
of bulk RNA-seq protocols are still useful.

Here, we have optimized and validated a bulk RNA-seq method that combines 
several methodological developments from scRNA-seq to generate a very sensi-
tive and cost-efficient bulk RNA-seq method we call prime-seq (Fig. 1, Additional 
file 1: Fig. S1). In particular, we have integrated and benchmarked a direct lysis and 
RNA purification step, validated that intronic reads are informative as they are not 
derived from genomic DNA, and show that prime-seq libraries are similar in com-
plexity and statistical power to TruSeq libraries, but at least fourfold more cost-
efficient due to almost 50-fold cheaper library costs. Prime-seq is also robust, as we 
have used variants of it in 22 publications [9, 23–43], 132 experiments, and in 17 
different organisms (Additional file 2: Table S1, Additional file 1: Fig. S2). Addition-
ally, it has low setup costs as it does not require specialized equipment and is well 
validated and documented. Hence, it will be a very useful protocol for many labs or 
core facilities that quantify gene expression levels on a regular basis and have no 
cost-efficient protocol available yet.

Results
Development of the prime‑seq protocol

The prime-seq protocol is based on the scRNA-seq method SCRB-seq [44] and our 
optimized derivative mcSCRB-seq [11]. It uses the principles of poly(A) priming, 

Fig. 1 Graphical overview of prime-seq, highlighting its robustness, sensitivity, affordability, and the 
validation experiments performed. Cells are first lysed, mRNA is then isolated using magnetic beads, and in 
turn reverse transcribed into cDNA. Following cDNA synthesis, all samples are pooled, libraries are made, and 
the samples are sequenced. The protocol has been validated on 17 organisms, including human, mouse, 
zebrafish, and arabidopsis. Additionally, prime-seq is sensitive and works with low inputs, and the affordability 
of the method allows one to increase sample size to gain more biological insight. To verify prime-seq’s 
performance, we first compared prime-seq to TruSeq using the publicly available MAQC-III Study data. We 
then showed robust detection of marker genes in NPC differentiation and high-throughput analysis of 
AML-PDX patient samples without compromising the archived samples
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template switching, early barcoding, and UMIs to generate 3′ tagged RNA-seq librar-
ies (Fig. 1 and Additional file 1: Fig. S1). Compared to previous versions as described, 
e.g., in [32], we have optimized the workflow, switched from a Nextera library prepa-
ration protocol to an adjusted version of NEBNext Ultra II FS, and made the sequenc-
ing layout analogous to 10X Chromium v3 gene expression libraries to facilitate 
pooling of libraries on Illumina flow cells, which is of great practical importance [16]. 
A detailed step-by-step protocol of prime-seq, including all materials and expected 
results, is available on protocols.io (https:// doi. org/ 10. 17504/ proto cols. io. s9veh 66). 
We have so far used this and previous versions of the protocol in 22 publications [9, 
23–43] and have generated just within the last year over 24 billion reads from > 4800 
RNA-seq libraries in 97 projects from vertebrates (mainly mouse and human), plants, 
and fungi (Additional file 2: Table S1 and Fig. 2A). From these experiences, we find 
that the protocol works robustly and detects per sample on average >20,000 genes 
with 6.7 million reads of which 90.0% map to the genome and 71.6% map to exons and 
introns (Additional file 2: Table S1). Notably, a large fraction (21%) of all UMIs map 
to introns with considerable variation among samples (Fig. 2A). Across all data sets, 
about 8000 genes are detected only by exonic reads, ~ 8000 by exonic and intronic 
reads, and ~ 4000 by intronic reads only (Additional file  1: Fig. S2B, Additional 
file 2: Table S1). Previous studies for scRNA-seq data showed that intronic reads can 
improve cluster identification [45] and allow to infer expression dynamics [46]. Also 
for bulk RNA-seq data, it has been shown that they are informative [47]. Neverthe-
less, it is an uncommon practice to use them. This might be due to concerns that 

Fig. 2 Intronic reads account for a variable but substantial fraction of UMIs and stem from RNA. A Fraction 
of exonic and intronic UMIs from 97 primate and mouse experiments using various tissues (neural, 
cardiopulmonary, digestive, urinary, immune, cancer, induced pluripotent stem cells). Sequencing depth is 
indicated by shading of the individual bars. We observe an average of 21% intronic UMIs, with some level 
of tissue-specific deviations as, e.g., immune cells generally have higher fractions of intronic reads. B To 
determine if intronic reads stem from genomic DNA or mRNA, we extracted DNA from mouse embryonic 
stem cells (mESCs) and RNA from human-induced pluripotent stem cells (hiPSCs), pooled the two in various 
ratios (75, 50, 25, and 0% gDNA), and either treated the samples with DNase I (green) or left them untreated 
(gray). We then counted the percentage of genomic (=mouse-mapped) UMIs. This indicates that DNase I 
treatment in prime-seq is complete and that observed intronic reads are derived from RNA
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intronic reads could at least partially be derived from genomic DNA as MMLV-type 
reverse transcriptases could prime DNA that escaped a DNase I digest. Therefore, we 
investigated the origin of the intronic reads in prime-seq.

Intronic reads are derived from RNA

First, we measured the amount of DNA yield generated from genomic DNA (gDNA). 
We lysed varying numbers of cultured human embryonic kidney 293T (HEK293T) 
cells and treated the samples with DNase I, RNase A, or neither prior to cDNA gen-
eration using the prime-seq protocol (up to and including the pre-amplification step). 
Per 1000 HEK cells, this resulted in ~5 ng of “cDNA” generated from gDNA in addi-
tion to the 12–32 ng of cDNA generated from RNA (Additional file  1: Fig. S3A). 
To test the efficiency of DNase I digestion and quantify the actual number of reads 
generated from gDNA, we mixed mouse DNA and human RNA in different ratios 
(Fig.  2B). Prime-seq libraries were generated and sequenced from untreated and 
DNase I-treated samples and reads were mapped to the mouse and human genome 
(Fig. 2B). In the sample that did not contain any mouse DNA, ~70% of reads mapped 
to exons or introns (Additional file 1: Fig. S3B) and ~0.5% of the exonic and intronic 
UMIs mapped to the mouse genome (Additional file  1: Fig. S3C), representing the 
background level due to mismapping. Importantly, the DNase I-treated sample had 
almost the same distribution and amount of mismapped UMIs (0.7%), strongly sug-
gesting that the DNase I digest is nearly complete and that essentially all reads in the 
DNase I-treated sample are derived from RNA (Fig. 2B and Additional file 1: Fig. S3).

As expected, with increasing amounts of mouse DNA, the proportion of mouse-
mapped UMIs increased (Fig.  2B), but even with 75% of the sample being mouse 
DNA, only 3.6% of the UMIs map to the mouse genome, suggesting that also for 
gDNA-containing samples (e.g., single cells) the impact of genomic reads on expres-
sion levels is likely small. Notably, with increasing amounts of gDNA, the fraction 
of unmapped reads also increased (Additional file  1: Fig. S3B), suggesting that the 
presence of gDNA does decrease the quality of RNA-seq libraries and does influence 
which molecules are generated during cDNA generation.

We also analyzed the properties of the intronic reads in DNase-digested prime-
seq libraries from HEK cells (Additional file  1: Fig. S4). Intronic reads are enriched 
towards the 3′ end of genes albeit not as strongly as exonic reads, suggesting that they 
are derived from internal as well as poly(A)-tail priming events (Additional file 1: Fig. 
S4). The probability of obtaining an intronic read from a gene depends probably on 
many factors, such as splicing dynamics (~10% of all transcripts are thought to be 
pre-mRNAs [46]), expression levels, efficiency of poly(A)-tail priming, and presence 
of internal priming sites. But as long as these reads are derived from RNA molecules, 
it seems reasonable to use them for quantifying and comparing gene expression levels 
as has been laid out previously [47].

In summary, these results indicate that essentially all reads in prime-seq libraries are 
derived from RNA when samples are DNase I treated and hence that intronic reads can 
be used to quantify expression levels.
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Prime‑seq performs as well as TruSeq

Next, we quantitatively compared the performance of prime-seq to a standard bulk 
RNA-seq method with respect to library complexity, accuracy, and statistical power. 
A gold standard RNA-seq data set was generated in the third phase of the Microarray 
Quality Control (MAQC-III) study [48], consisting of deeply sequenced TruSeq RNA-
seq libraries generated from five replicates of Universal Human Reference RNA (UHRR) 
and External RNA Controls Consortium (ERCC) spike-ins. As Illumina’s TruSeq pro-
tocol can be considered a standard bulk RNA-seq method, and as the reference RNAs 
(UHRR and ERCCs) are commercially available, this is an ideal data set to benchmark 
our method. As in the MAQC-III design, we mixed UHRR and ERCCs (Additional file 1: 
Fig. S5) in the same ratio but at a 1000-fold lower input and generated eight prime-seq 
libraries, which were sequenced to a depth of at least 30 million reads. We processed 
and downsampled both data using the zUMIs pipeline [45] and compared the two meth-
ods with respect to their library complexity (number and expression levels of detected 
genes), accuracy (correlation of estimated expression level and actual number of spiked-
in ERCCs), and statistical power (true positive and false positive rates in data simulated 
based on the mean-variance distribution of technical replicates of each method).

We found that prime-seq has a slightly lower fraction of exonic and intronic reads that 
can be used to quantify gene expression (78% vs. 85%; Fig.  3A, Additional file  1: Fig. 
S6A). But despite the slightly lower number of reads that can be used, prime-seq does 
detect at least as many genes as TruSeq (Fig. 3B). Of these, 33,230 genes are detected 
with both methods (76.2%) (Additional file  1: Fig. S6B). Pairwise sample comparisons 
between (R2 = 0.64) the two methods are lower than within the methods (R2 = 0.94 and 
0.97), as one would expect (Additional file 1: Fig. S6C). Additionally, the comparison of 
normalized expression data between prime-seq and TruSeq shows stronger correlation 
in ERCC spike-in molecules (R2 = 0.95) than endogenous molecules (R2 = 0.67) (Addi-
tional file 1: Fig. S6D). This is likely explained by the biological variation of the samples, 
as the ERCC spike-ins are synthetically produced to exact specifications, and UHRR is 
extracted from a mixture of cell lines, which may have altered in composition or expres-
sion in the 7 years separating the two experiments. Both methods also show a similar 
distribution of gene expression levels (Fig. 3D), indicating that the complexity of gener-
ated libraries is generally very similar.

The accuracy of a method, i.e., how well estimated expression levels reflect actual con-
centrations of mRNAs, is relevant when expression levels are compared among genes. 
Here, TruSeq and prime-seq show the same correlation (Pearson’s R2 = 0.94) between 
observed expression levels and the known concentration of ERCC spike-ins, indicating 
that their accuracy is very similar (Fig. 3C).

However, for most RNA-seq experiments, a comparison among samples—e.g., to 
detect differentially expressed genes—is more relevant. Therefore, it matters how well 
genes are measured by a particular method, i.e., how much technical variation a method 
generates across genes. As we have 8 and 5 technical replicates of the same RNA for 
prime-seq and TruSeq, respectively, we can estimate for each method the mean and 
variance per gene. Note that UMIs are only available for prime-seq and hence only 
prime-seq can profit from removing technical variance by removing PCR duplicates 
(Fig. 3A). The empirical distribution shows the characteristic dependency of RNA-seq 
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data on sampling (Poisson expectation) at low expression levels and an increasing influ-
ence of the additional technical variation at higher expression levels (Fig.  3D). Prime-
seq shows a slightly lower variance for medium expression levels where most genes are 
expressed (Fig. 3D). To quantify to what extent these differences in the mean-variance 

Fig. 3 Prime-seq has similar sensitivity and power compared to TruSeq (MAQC-III data). A Mapped reads, 
UMIs (dashed line, only prime-seq), and B detected genes (exonic + intronic reads) at varying sequencing 
depths between TruSeq data from the MAQC-III Study and matched prime-seq data, show prime-seq and 
TruSeq are similarly sensitive (filtering parameters: detected UMI ≥ 1, detected gene present in at least 25% 
of samples and is protein coding). C Accuracy, measured by spike-in molecules, is similarly high in both 
methods (R2 = 0.94). D The distribution of genes across mean expression is similar for both methods, as well 
as the dispersion, which follows a Poisson distribution (dark gray dashed line) for lower expressed genes and 
then increases as technical variation increases for highly expressed genes. The local polynomial regression 
fit between mean and dispersion estimates per method is shown in solid lines with 95% variability band 
per gene shown in dashed lines. E Power analysis at a sequencing depth of 10 million reads shows almost 
identical power between prime-seq and TruSeq, and a similar increase at varying sample size for F mean 
expression and G absolute log2 fold change. Data filtering parameters: detected UMI ≥ 1, detected gene 
present in at least 25% of samples
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distribution actually matter, we used power simulations as implemented in powsimR 
[49]. We simulated that 10% of genes sampled from the estimated mean-variance rela-
tion of each method are differentially expressed between two groups of samples. The 
fold changes of these genes were drawn from a distribution similar to those we observed 
in actual data between two cell types (iPSCs and NPCs) or two types of acute myeloid 
leukemia (AML) (see below and Additional file 1: Fig. S7A). The comparison between 
this ground truth and the identified differentially expressed genes in a simulation allows 
us to estimate the true positive rate (TPR) and the false discovery rate (FDR) for a par-
ticular parameter setting. We stratified TPR and FDR across the number of replicates 
(Fig. 3E), the expression levels (Fig. 3F), and the fold changes (Fig. 3G) to illustrate the 
strong dependence of power on these parameters. At a given FDR level, a more powerful 
method reaches a TPR of 80% with fewer replicates, at a lower expression level, and/or 
for a lower fold change. We find that the power of the two methods is almost identical as 
FDR and TPR are very similar across conditions for both methods. The false discovery 
rates (FDR) are—as expected—generally below 5% for 12, 24, or 48 replicates per condi-
tion (Additional file 1: Fig. S7B-D) and the (marginal) TPR across all expression levels 
and fold changes is 80% for both methods at ~12 replicates per condition (Fig. 3E). The 
power increases for both methods in a similar manner with increasing expression levels 
(Fig.  3F) and increasing fold changes (Fig.  3G). This is also the case when using only 
exonic reads for the power analysis (Additional file 1: Fig. S7B and S7E-F). In summary, 
prime-seq and TruSeq perform very similarly in estimating gene expression levels with 
respect to library complexity, accuracy, and statistical power.

Bead‑based RNA extraction increases cost efficiency and throughput

As library costs and sequencing costs drop, standard RNA isolation becomes a consider-
able factor for the cost efficiency of RNA-seq methods. RNA isolation using magnetic 
beads is an attractive alternative [50] and we have used it successfully in combination 
with our protocol before [11]. To investigate the effects of RNA extraction more sys-
tematically, we compared prime-seq libraries generated from RNA extracted via silica 
columns and via affordable carboxylated magnetic beads (for more information see 
Additional file  3. Supplemental Text). Libraries from cultured HEK293T cells, human 
peripheral blood mononuclear cells (PBMC), and mouse brain tissue showed a similar 
distribution of mapped reads, albeit with a slightly higher fraction of intronic reads in 
magnetic bead libraries (Fig. 4A and S8) and considerable differences in expression lev-
els (Fig. 4B and S9).

To further explore these differences, we tested the influence of the Proteinase K 
digestion and its associated heat incubation (50 °C for 15 min and 75 °C for 10 min), 
which is part of the bead-based RNA isolation protocol. We prepared prime-seq 
libraries using HEK293T RNA extracted via silica columns (“Column”), magnetic 
beads with Proteinase K digestion (“Magnetic Beads”), magnetic beads without Pro-
teinase K digestion (“No Incubation”), and magnetic beads with the same incuba-
tions but without the addition of the enzyme (“Incubation”). Interestingly, the shift 
to higher intronic fractions and the expression profile similarity is mainly due to the 
heat incubation, rather than the enzymatic digestion by Proteinase K (Additional 
file 1: Fig. S8A and B).
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Hence, bead-based extraction does create a different expression profile than col-
umn-based extraction, especially due to the often necessary Proteinase K incuba-
tion step. This confirms the general influence of RNA extraction protocols on gene 
expression profiles [51]. Importantly, the complexity of the two types of libraries is 
similar, with a slightly higher number of genes detected in the bead-based isolation 
(Fig.  4C, Additional file  1: Fig. S8C and S8D), potentially due to a preference for 
longer transcripts with lower GC contents (Additional file 1: Fig. S9C).

So while bead-based RNA isolation and column-based RNA isolation create dif-
ferent but similarly complex expression profiles, bead-based RNA isolation has the 
advantage of being much more cost-efficient. At least four times more RNA samples 
can be processed for the same budget (Fig. 4D, Additional file 4: Table S2). In addi-
tion, RNA isolation using magnetic beads is twice as fast and without robotics more 
amenable to high-throughput experiments (Additional file  5: Table  S3). Thus, we 
show that bead-based RNA isolation can make prime-seq considerably more cost-
efficient without compromising library quality.

Prime‑seq is sensitive and works well with 1000 cells

As prime-seq was developed from a scRNA-seq method [44], it is very sensitive, i.e., it 
generates complex libraries from one or very few cells. This makes it useful when input 

Fig. 4 RNA extraction with beads, rather than columns, provides similar sequencing data while increasing 
throughput capabilities. A Feature distributions of RNA isolated with a column-based kit and magnetic beads 
show that both RNA extraction protocols produce similar amounts of useable reads from cultured human 
embryonic kidney 293T (HEK293T) cells, peripheral blood mononuclear cells (PBMC), and harvested mouse 
brain tissue. B Gene expression between both bead and column extraction are also similar in all three tested 
inputs (R2 = 0.86 HEK, 0.84 PBMCs, and 0.74 tissue). C Detected UMIs and detected genes for column and 
magnetic beads in HEK293T, PBMCs, and tissue are almost identical, with slightly more detected genes in the 
bead condition (filtering parameters: detected UMI ≥ 1, detected gene present in at least 25% of samples 
and is protein coding). Comparison of costs (D) and time (E) required for different RNA extractions
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material is limited, e.g., when working with rare cell types isolated by FACS or when 
working with patient material. To validate a range of input amounts, we generated RNA-
seq libraries from 1000 (low input, ~10–20 ng total RNA) and 10,000 (high input, ~100–
200 ng) HEK293T cells. The complexity of the two types of libraries was very similar, 
with only a 2% decrease in the fraction of exonic and intronic reads and a 7.7% and 1.9% 
reduction in the number of UMIs and detected genes at the same sequencing depth 
(Additional file 1: Fig. S10A). The expression profiles were almost as similar between the 
two input conditions as within the input conditions (median r within = 0.94, median r 
between = 0.93; Additional file  1: Fig. S10B), indicating that expression profiles from 
1000 and 10,000 cells are almost identical in prime-seq. Using a lower number of input 
cells is certainly possible and unproblematic as long as the number of cells is unbi-
ased with respect to the variable of interest. Using higher amounts than 10,000 cells is 
certainly also possible, but it is noteworthy that we have observed a large fraction of 
intergenic reads in highly concentrated samples, potentially due to incomplete DNase 
I digestion (data not shown). In summary, we validate that an input amount of at least 
1000 cells does not compromise the complexity of prime-seq libraries and hence that 
prime-seq is a very sensitive RNA-seq protocol.

Barcode swapping in prime‑seq is low

One potential concern with early barcoding methods is the swapping of barcodes due 
to the formation of chimeric molecules during PCR, resulting in a “contamination” of 
a cell’s expression profile with transcripts from another cell. This has been discussed in 
the context of scRNA-seq library generation [52, 53], but it is not clear to what extent 
it is relevant in bulk RNA-seq methods. To quantify barcode swapping, we generated 
prime-seq libraries from isolated total RNA from mouse embryonic stem cells (mESCs) 
and human-induced pluripotent stem cells (iPSCs) either separately or pooled after 
reverse transcription (pooling) as it is normally done in the prime-seq protocol (Addi-
tional file  1: Fig. S11A). We find that less than 0.1% of the mapped UMIs in the ten 
separately amplified human libraries, map to mouse, representing a low background 
rate due to mismapping and index swapping during sequencing. In contrast, ~0.5% of 
the mapped UMIs in the five human libraries that were generated together with five 
mouse libraries map to mouse (Additional file 1: Fig. S11B). So barcode swapping does 
occur, but at a relatively low level, consistent with previous findings for single human 
and mouse cells for our related mcSCBR-seq method [11] (Additional file 1: Fig. S11C) 
and that the amount of swapped barcodes correlates strongly with the amount of tran-
scripts in the pool (Additional file  1: Fig. S11D). Importantly, even 10% of barcode 
swapping has fairly little influence on power as shown in simulations (Additional file 1: 
Fig. S11E). In summary, we show that barcode swapping is present, but not a major 
issue for prime-seq as long as absolute expression levels, like the presence or absence 
of a gene, are interpreted accordingly. However, the amount of barcode swapping does 
depend on reaction conditions, specifically on the number of PCR cycles, but probably 
on more conditions such as types of polymerases [54], input amounts, library com-
plexity, and sequence similarities. Hence, better controlling and understanding bar-
code swapping within and across methods might be important.
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Two exemplary applications of prime‑seq

To exemplify the advantages with respect to sensitivity and throughput in an actual 
setting, we used prime-seq to profile cryopreserved human acute myeloid leukemia 
(AML) cells from patient-derived xenograft (PDX) models [23, 55]. These consisted 
of different donors and AML subtypes and were stored in freezing medium at – 80 
°C for up to 3.5 years (Fig. 5A). Due to the sensitivity of prime-seq, we could use a 
minimal fraction of the sample without thawing it by taking a 1-mm biopsy punch 
from the vial of cryopreserved cells and putting it directly into the lysis buffer. This 
allowed sampling of precious samples without compromising their amount or quality 
and resulted in 94 high-quality expression profiles that clustered mainly by AML sub-
type (Fig. 5B) as expected [56].

To further exemplify the performance of prime-seq, we investigated its ability to 
detect known differences in a well-established differentiation system [57]. We differ-
entiated five human-induced pluripotent stem cell (iPSCs) lines [36] to neural pro-
genitor cells (NPCs) and generated expression profiles using prime-seq (Fig. 5C). In a 
hierarchical clustering of well-known marker genes [58], the iPSCs and NPCs formed 
two distinct groups and the expression patterns were in agreement with their cellu-
lar identity. For example, the iPSC markers POU5F1, NANOG, and KLF4 showed an 
increased expression in the iPSCs and NES, SOX1, and FOXG1 in NPCs (Fig. 5D).

Prime‑seq is cost‑efficient

We have shown above that the power, accuracy, and library complexity is similar 
between prime-seq and TruSeq. The performance and robustness of the prime-seq 
protocol has been demonstrated by the two examples above as well as its many appli-
cations using this or previous versions of the protocol [9, 23–35, 42, 43, 59, 60]. In 

Fig. 5 Two exemplary applications of prime-seq. A Experimental design for an acute myeloid leukemia 
(AML) study, where a biopsy punch was used to collect a small fraction of a frozen patient-derived xenograft 
(PDX)-AML sample. B Prime-seq libraries were generated from 94 PDX samples, derived from 11 different 
AML-PDX lines (color-coded) from 5 different AML subtypes (symbol-coded) and cluster primarily by AML 
subtype. C Experimental design for studying the differentiation from five human-induced pluripotent stem 
cell lines (iPSCs) to neural progenitor cells (NPC). D Expression levels from 20 a priori known marker genes 
cluster iPSCs and NPCs as expected
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summary, one could argue that prime-seq performs as well as TruSeq for quantify-
ing gene expression levels. Other methods that generate tagged cDNA libraries using 
early barcoding have also been developed [16, 22, 61–64]. This includes BRB-seq that 
uses poly(A) priming and DNA-Pol I for second-strand synthesis and also performs 
similarly to TruSeq [22]. Decode-seq also uses poly(A) priming and template switch-
ing like prime-seq, but adds sample-specific barcodes and UMIs at the 5′ end [16]. In 
a direct comparison, Decode-seq performed slightly better than BRB-seq and due to a 
more flexible sequencing layout [16]. While slight differences in power, accuracy, and/
or library complexity might exist among these protocols, cross-laboratory bench-
marking on exactly the same samples as recently done, e.g., for scRNA-seq methods 
[5] or small RNA-seq methods [65], are probably needed to quantify such differ-
ences reliably. For now, it is probably fair to say that RNA-seq methods like BRB-seq, 
prime-seq, TruSeq, Smart-Seq, or Decode-seq all perform fairly equal with respect to 
quantifying gene expression levels. Hence, at a fixed budget, the cost per sample will 
determine to a large extent how many samples can be analyzed and hence how much 
biological insight can be gained.

To this end, we calculated the required reagent costs to generate a library from 
isolated RNA in a batch of 96 samples for the different commercial methods as well 
as for prime-seq, Decode-seq, and BRB-seq (Additional file 6 Table S4). With $2.53 
per sample prime-seq is the most cost-efficient method, followed by BRB-seq ($4.05) 
and Decode-seq ($6.58). Commercial methods range from $60 (NEBNext) to $164 
(SMARTer Stranded). This is illustrated by the number of libraries that can be gener-
ated by a fixed budget of $500 (Fig. 6A). Note that these costs include for all methods 
$1.39 per sample for two Bioanalyzer (Agilent) Chips (Additional file 6: Table S4) and 
do not consider the additional cost reduction that is associated with the direct bead-
based RNA extraction of prime-seq (see above). The drastic advantage of prime-seq, 
Decode-seq, and BRB-seq also becomes apparent when power is plotted as a function 
of costs with and without sequencing (10 million reads per sample) (Fig.  6B, Addi-
tional file 1: Fig. S12A). For example, to reach an 80% TPR at a desired FDR of 5%, 
one needs to spend $715 including sequencing costs for prime-seq, $795 when using 
Decode-seq, $1625 when using Illumina Stranded, and $3485 when using TruSeq 
(Additional file 1: Fig. S12B).

Cost efficiency with respect to time can also matter and we calculated hands-on and 
hands-off time for the different methods (Additional file 7: Table S5). Hands-on times 
vary from 30 to 35 min for the non-commercial, early barcoding methods to 52–191 
min for commercial methods. However, as all methods require essentially a full day of 
lab work, we consider the differences in required times not as decisive, at least not in 
a research lab setting where RNA-seq is not done on a daily or weekly basis. In sum-
mary, we find that prime-seq is the most cost-efficient bulk RNA-seq method cur-
rently available.

Discussion
In this paper, we present and validate prime-seq, a bulk RNA-seq protocol, and show 
that it is as powerful and accurate as TruSeq in quantifying gene expression levels, but 
more sensitive and much more cost-efficient. We validate the DNase I treatment and 
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determine that intronic reads are derived from RNA and can be used in downstream 
analysis. We also validate input ranges and the direct lysis and bead-based RNA puri-
fication of tissue and cell culture samples. Finally, we exemplify the use of prime-seq 
by profiling AML samples and NPC differentiation and show that prime-seq is cur-
rently the most cost-efficient bulk RNA-seq method. In the following, we focus our 
discussion on advantages and drawbacks of prime-seq in comparison to other RNA-
seq protocols. To this end, we distinguish protocols like TruSeq, Smart-Seq, or NEB-
Next that individually process RNA samples and generate full-length cDNA profiles 
(“full-length protocols”) from protocols like prime-seq, Decode-seq, or BRB-seq that 
use early barcoding and generate 5′ or 3′ tagged cDNA libraries (“tag protocols”).

Complexity, power, and accuracy are similar among most bulk RNA‑seq protocols

Initially, early barcoding 3′ tagged protocols generated slightly less complex libraries 
(i.e., detected fewer genes for the same number of reads), especially due to a consid-
erable fraction of unmapped reads [22, 66]. These reads are probably caused by PCR 
artifacts during cDNA generation and amplification. Protocol optimizations as shown 
for BRB-seq [22], Decode-seq [16], and here for prime-seq have reduced these arti-
facts and hence have improved library complexity to the level of standard full-length 
protocols. For prime-seq, we have shown quantitatively that its complexity, accuracy, 

Fig. 6 Prime-seq is very cost-efficient. A With a set budget of $500, prime-seq allows one to process 198 
samples, which is 1.6 times more samples than the next cost-efficient method. B The compared methods 
were grouped into low, middle, and high cost methods and the TruSeq MAQCII data was used as a basis 
for power analysis for all methods but prime-seq. The increase in sample size due to cost efficiency directly 
impacts the power to detect differentially expressed genes, as evident by the increased performance 
of prime-seq and other low cost methods (BRB-seq and Decode-seq), even when sequencing costs are 
included in the comparison (sequencing depth of 10 mio. reads at a cost of $3.40 per 1 mio. reads)
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and power is very similar to that of TruSeq. More comprehensive studies, ideally 
across laboratories [5, 48], would be needed to quantitatively compare protocols, also 
with respect to their robustness across laboratories and conditions and their biases 
for individual transcripts. For the context and methods discussed here, we would 
argue that there are no decisive differences in power, accuracy, and complexity among 
tag protocols and full-length protocols at least when performed under validated and 
optimized conditions.

Cost efficiency makes tag‑protocols preferable when quantifying gene expression levels

As shown above (Fig. 6) and as argued before [16, 22, 66], the main advantage of tag pro-
tocols is their cost efficiency. Their most obvious drawback is that they cannot quantify 
expression levels of different isoforms. Smart-Seq2 [67] and Smart-Seq3 [10] are rela-
tively cost-efficient full-length protocols that were developed for scRNA-seq. However, 
they have not been validated and optimized for bulk RNA-seq and would still be con-
siderably more expensive than most tag protocols. Furthermore, as reconstructing tran-
scripts from short-read data is difficult and requires deep sequencing, isoform detection 
and quantification is now probably more efficiently done by using long-read technolo-
gies [1]. However, from our experience, most RNA-seq projects quantify expression 
at the gene level not at the transcript level. This is probably because most projects use 
RNA-seq to identify affected biological processes or pathways by a factor of interest. 
As different genes are associated with different biological processes, but different iso-
forms are only very rarely associated with different biological processes, most projects 
do not profit much from quantifying isoforms. Hence, we would argue that quantifying 
expression levels of genes is the better option, as long as isoform quantification is not of 
explicit relevance for a project.

Another limitation is that all tag-protocols use poly(A) priming and hence do not 
capture mRNA from bacteria, organelles, or other non-polyadenylated transcripts. For 
full-length protocols like TruSeq, cDNA generation by random priming after rRNA 
depletion can be done. Another possibility is poly(A) tailing after rRNA depletion [68], 
but to our knowledge, this has not been adopted to tag-based protocols yet. How to 
efficiently combine profiling of polyadenylated, non-polyadenylated, and small RNA is 
certainly worth further investigating. However, it is also true that for eukaryotic cells, 
quantification of mRNAs contains most of the information. Hence, similar to the quanti-
fication of isoforms, we would argue that quantifying expression levels of genes by poly-
adenylated transcript is often sufficient, as long as non-polyadenylated transcripts are 
not explicitly relevant.

Furthermore, early barcoding and pooling necessitates calibrating input amounts. 
Input calibration is easy when starting with extracted RNA or when it is possible to 
count cells prior to direct lysis. When counting cells is not possible, we have also devel-
oped a protocol adaptation of prime-seq that allows for RNA quantification and nor-
malization after bead-based RNA isolation and prior to reverse transcription (https:// 
doi. org/ 10. 17504/ proto cols. io. s9veh 66).

Finally, early barcoding and pooling can lead to barcode swapping. We have shown 
that barcode swapping is not a major issue for prime-seq, but the amount of barcode 
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swapping is unknown for most tag-protocols. However, even rather high levels of bar-
code swapping have a much smaller impact on power than a decrease in sample size 
(Additional file 1: Fig. S11E) and as long as the interpretation of absolute expression lev-
els (e.g., presence/absence) is not crucial, the cost efficiency of tag-based protocols out-
weighs this drawback.

In summary, when quantification of isoforms and/or non-polyadenylated RNA is not 
necessary, a technically validated tag protocol has no drawbacks. Protocols that use 
poly(A) priming and template switching also have the advantage that they are very sen-
sitive, and for prime-seq, we have validated that it still works optimally also with 1000 
cells (~10–20 ng total RNA) as input. However, the decisive advantage of tag protocols 
is their drastically higher cost efficiency (Fig. 6), as this leads to drastically higher power 
and much more flexibility in the experimental design for a given budget. As repeated by 
biostatisticians over the decades, a good experimental design and a sufficient number of 
replicates is the most decisive factor for expression profiling. It is sobering how endur-
ing the n = 3 tradition is, as is nicely shown in [16], although it is known that it is better 
to distribute the same number of reads across more biological replicates [17]. Cost-effi-
cient tag protocols will hopefully make such experimental designs more common. While 
library costs are less notable for sequencing depths of 10 M reads or more (Fig. 6B), they 
may enable RNA-seq experiments that can be done with shallow sequencing, something 
which is less obvious and might be overlooked. Replacing qPCR has been advocated as 
one example by the authors of BRB-seq [22]. But also other applications, like character-
izing cell type composition [36], quality control of libraries, or optimizing experimental 
procedures can profit considerably from low library costs.

In summary, tag protocols allow flexible designs of RNA-seq experiments that should 
be helpful for many biological questions and have a vast potential when readily acces-
sible for many labs.

Validation, documentation, and cost efficiency make prime‑seq a good option for setting 

up a tag protocol

We have argued above that adding a tag protocol to the standard method repertoire of a 
molecular biology lab is advantageous due to its cost efficiency. As the different tag pro-
tocols discussed here perform fairly similar with respect to complexity, power, accuracy, 
sensitivity, and cost efficiency, essentially any of them would suffice. If one has a vali-
dated, robust protocol running in a lab or core facility, it is probably not worth switch-
ing. That said, our results might still help to better validate existing protocols, integrate 
direct lysis, and make use of intronic reads. If one does not have a tag protocol running, 
we would argue that our results provide helpful information to decide on a protocol and 
that prime-seq would be a good option for several reasons as laid out in the following.

A main difference among tag protocols is whether they tag the 5′ end, like Decode-seq, 
or tag the 3′ end like BRB-seq or prime-seq.  5′ tagging has some obvious advantages 
(see also [16]), including the possibility to read both ends of the cDNA as one cannot 
read through the poly(A) tail. Using the sequence information from the 5′ end is also 
important to distinguish alleles of B-cell receptors and T-cell receptors [69]. In scRNA-
seq, both 5′ and 3′ tag protocols have been successfully used, but 3′ tagging is currently 
the standard. The reason for this is not obvious, but it might be that the incorporation 
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of the barcode and the UMI is more difficult to optimize [10]. Additionally, the higher 
level of alternative splicing at the 5′ end could make gene-level quantification more dif-
ficult. More dedicated comparisons would be needed to further investigate these factors. 
Currently, 3′ tag protocols are more established and when using a suitable sequencing 
design, poly(A) priming does not compromise sequencing quality as validated by us and 
the widespread use of Chromium 10x v3 chemistry scRNA-seq libraries that have the 
same layout as prime-seq.

As shown above, prime-seq is among all protocols the most cost-efficient when start-
ing from purified RNA. It is also currently the only protocol for which a direct lysis is 
validated, which further increases cost efficiency of library production. This is especially 
advantageous when processing many samples, shallow sequencing is sufficient, and/or 
as sequencing costs continue to drop.

Finally, we think that prime-seq is the easiest tag protocol to set up. While many such 
protocols have been published and all have argued that their method would be useful, 
few have actually become widely implemented. The reasons are in all likelihood com-
plex, but we think that prime-seq has the lowest barriers to be set up by an individual 
lab or a core facility for three reasons: First, to our knowledge, it is the most validated 
non-commercial bulk RNA-seq protocol, based on the experiments presented here as 
well as our >5 years of experience in running various versions of the protocol with over 
6000 samples across 17 species resulting in over 20 publications to date. It is the only 
protocol for which direct lysis and sensitivity are quantitatively validated. Also, it is well 
validated in combination with zUMIs, the computational pipeline that was developed 
and is maintained by our group [45]. Second, it is not only cost-efficient per sample, but 
it also has low setup costs. It requires no specialized equipment and only the barcoded 
primers as an initial investment of ~$2000 for 96 primers, which will be sufficient for 
processing more than 240,000 samples. Finally, prime-seq is well documented not only 
by this manuscript, but also by a step-by-step protocol, including all materials, expected 
results, and alternative versions depending on the type and amounts of input material 
(https:// doi. org/ 10. 17504/ proto cols. io. s9veh 66). Hence, we think that prime-seq is not 
only a very useful protocol in principle, but also in practice.

Conclusion
The multi-dimensional phenotype of gene expression is highly informative for many bio-
logical and medical questions. As sequencing costs dropped, RNA-seq became a standard 
tool in investigating these questions. We argue that the decisive next step is to use the pos-
sibilities of lowered library costs by tag protocols to leverage even more of this potential. 
We show that prime-seq is currently the best option when establishing such a protocol as 
it performs as well as other established RNA-seq protocols with respect to its accuracy, 
power, and library complexity. Additionally, it is very sensitive, is well documented, and is 
the most cost-efficient bulk RNA-seq protocol currently available to set up and to run.

Methods
A step-by-step protocol of prime-seq, including all materials and expected results, 
is available on protocols.io (https:// doi. org/ 10. 17504/ proto cols. io. s9veh 66). Below, 
we briefly outline the prime-seq protocol, as well as describe any experiment-specific 

78 2. Results



Page 17 of 27Janjic et al. Genome Biology           (2022) 23:88  

methods and modifications that were made to prime-seq during testing and 
optimization.

Prime‑seq

Cell lysates, generally containing around 1000–10,000 cells, were treated with 20 μg 
of Proteinase K (Thermo Fisher, #AM2546) and 1 μL 25 mM EDTA (Thermo Fisher, 
EN0525) at 50 °C for 15 min with a heat inactivation step at 75 °C for 10 min. The sam-
ples were then cleaned using cleanup beads, a custom-made mixture containing Speed-
Beads (GE65152105050250, Sigma-Aldrich), at a 1:2 ratio of lysate to beads. DNA was 
digested on-beads using 1 unit of DNase I (Thermo Fisher, EN0525) at 20 °C for 10 min 
with a heat inactivation step at 65 °C for 5 min.

The samples were then cleaned and the RNA was eluted with the 10 μL reverse tran-
scription mix, consisting of 30 units Maxima H- enzyme (Thermo Fisher, EP0753), 
1×  Maxima H- Buffer (Thermo Fisher), 1 mM each dNTPs (Thermo Fisher), 1 μM tem-
plate-switching oligo (IDT), and 1 μM barcoded oligo (dT) primers (IDT). The reaction 
was incubated at 42 °C for 90 min.

Following cDNA synthesis, the samples were pooled, cleaned, and concentrated 
with cleanup beads at a 1:1 ratio and eluted in 17 μL of  ddH2O. Residual primers were 
digested using Exonuclease I (Thermo Fisher, EN0581) at 37 °C for 20 min followed by 
a heat inactivation step at 80 °C for 10 min. The samples were cleaned once more using 
cleanup beads at a 1:1 ratio, and eluted in 20 μL of  ddH2O.

Second-strand synthesis and pre-amplification were performed in a 50 μL reaction, 
consisting of 1× KAPA HiFi Ready Mix (Roche, 7958935001) and 0.6 μM SingV6 primer 
(IDT), with the following PCR setup: initial denaturation at 98 °C for 3 min, denatura-
tion at 98 °C for 15 s, annealing at 65 °C for 30 s, elongation at 68 °C for 4 min, and a final 
elongation at 72 °C for 10 min. Denaturation, annealing, and elongation were repeated 
for 5–15 cycles depending on the initial input.

The DNA was cleaned using cleanup beads at a ratio of 1:0.8 of DNA to beads and 
eluted with 10 μL of  ddH2O. The quantity was assessed using a Quant-iT PicoGreen 
dsDNA assay kit (Thermo Fisher, P11496) and the quality was assessed using an Agilent 
2100 Bioanalyzer with a High-Sensitivity DNA analysis kit (Agilent, 5067-4626).

Libraries were prepared with the NEBNext Ultra II FS Library Preparation Kit 
(NEB, E6177S) according to the manufacturer instructions in most steps, with the 
exception of adapter sequence and reaction volumes. Fragmentation was performed 
on 2.5 μL of cDNA (generally 2–20 ng) using Enzyme Mix and Reaction buffer in a 6 
μL reaction. A custom prime-seq adapter (1.5 μM, IDT) was ligated using the Liga-
tion Master Mix and Ligation Enhancer in a reaction volume of 12.7 μL. The samples 
were then double-size selected using SPRI-select Beads (Beckman Coulter, B23317), 
with a high cutoff of 0.5 and a low cutoff of 0.7. The samples were then amplified 
using Q5 Master Mix (NEB, M0544L), 1 μL i7 Index primer (Sigma-Aldrich), and 1 
μL i5 Index primer (IDT) using the following setup: 98 °C for 30 s; 10–12 cycles of 
98 °C for 10 s, 65 °C for 1 min 15 s, 65 °C for 5 min; and 65 °C for 4 min. Double-size 
selection was performed once more as before using SPRI-select Beads. The quantity 
and quality of the libraries were assessed as before.
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Nextera XT Library Prep

Prior to using the NEBNext Ultra II FS Library Kit, libraries were prepared using the 
Nextera XT Kit (Illumina, FC-131-1096). This included the RNA extraction experiments 
(Fig. 4) as well as the AML experiment (Fig. 5B). These libraries were prepared as previ-
ously described [11].

Briefly, three replicates of 0.8 ng of DNA were tagmented in 20 μL reactions. Follow-
ing tagmentation, the libraries were amplified using 0.1 μM P5NextPT5 primer (IDT) 
and 0.1 μM i7 index primer (IDT) in a reaction volume of 50 μL. The index PCR was 
incubated as follows: gap fill at 72 °C for 3 min, initial denaturation at 95 °C for 30 s, 
denaturation at 95 °C for 10 s, annealing at 62 °C for 30 s, elongation at 72 °C for 1 min, 
and a final elongation at 72 °C for 5 min. Denaturation, annealing, and elongation were 
repeated for 13 cycles.

Size selection was performed using gel electrophoresis. Libraries were loaded onto 
a 2% Agarose E-Gel EX (Invitrogen, G401002) and were excised between 300 and 900 
bp and cleaned using the Monarch DNA Gel Extraction Kit (NEB, T1020). The libraries 
were quantified and qualified using an Agilent 2100 Bioanalyzer with a High-Sensitivity 
DNA analysis kit (Agilent, 5067-4626).

Barcoded oligo (dT) primer design

In order to enable more robust demultiplexing and to ensure full compatibility of our 
sequencing layout with the Chromium 10x v3 chemistry, oligo (dT) primers were 
designed to include a 12 nt cell barcode and 16 nt UMI. Candidate cell barcodes were 
created in R using the DNABarcodes package [70] to generate barcodes with a length of 
12 nucleotides and a minimum Hamming distance (HD) of 4, with filtering for self-com-
plementarity, homo-triplets, and GC-balance enabled. Candidate barcodes were filtered 
further, resulting in a barcode pool with a minimal HD of 5 and a minimal Sequence-
Levenshtein distance of 4 within the set. In order to balance nucleotide compositions 
among cell barcodes at each position, BARCOSEL [71] was used to further reduce the 
candidate set down to the final 384 barcodes.

Sequencing

Sequencing was performed on an Illumina HiSeq 1500 instrument for all libraries except 
for the IPSC/NPC experiment where a NextSeq 550 instrument was used. The following 
setup was used: Read 1: 28 bp, Index 1: 8 bp; Read 2: 50-56 bp.

Pre‑processing of RNA‑seq data

The raw data was quality checked using fastqc (version 0.11.8 [72]) and then trimmed of 
poly(A) tails using Cutadapt (version 1.12, https:// doi. org/ 10. 14806/ ej. 17.1. 200). Follow-
ing trimming, the zUMIs pipeline (version 2.9.4 ,[45]) was used to filter the data, with 
a Phred quality score threshold of 20 for 2 BC bases and 3 UMI bases. The filtered data 
was mapped to the human genome (GRCh38) with the Gencode annotation (v35) or the 
mouse genome (GRCm38) with the Gencode annotation (vM25) using STAR (version 
2.7.3a,[73]) and the reads counted using RSubread (version 1.32.4,[74]).
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Sensitivity and differential gene expression analysis of RNA‑seq data

The count matrix generated by zUMIs was loaded into RStudio (version 1.3.1093 [75]) 
using R (version 4.0.3 [76]). bioMart (version 2.46.0 [77]), dplyr (version 1.0.2 [78]), and 
tidyr (version 1.1.2 [79]) were used for data processing and calculating descriptive sta-
tistics (i.e., detected genes, reads, and UMIs). DESeq2 (version 1.30.0 [80]) was used 
for differential gene expression analysis. ggplot2 (version 3.3.3 [81]), cowplot (version 
1.1.1 [82]), ggbeeswarm (0.6.0 [83]), ggsignif (version 0.6.0 [84]), ggsci (version 2.9 [85]), 
ggrepel (version 0.9.0 [86]), EnhancedVolcano (1.8.0 [87]), ggpointdensity (version 0.1.0 
[88]), and pheatmap (version 1.0.12 [89]) were used for data visualization.

Power analysis of RNA‑seq data

Power simulations were performed following the workflow of the powsimR package 
(version 1.2.3 [49]). Briefly, RNA-seq data per method was simulated based on param-
eters extracted from the UHRR comparison experiment. For each method and sample 
size setup (6 vs. 6, 12 vs. 12, 24 vs. 24, and 48 vs. 48), 20 simulations were performed 
with the following settings: normalization = “MR,” RNA-seq = “bulk,” Protocol = 
“Read/UMI,” Distribution = “NB,” ngenes = 30000, nsims = 20, p.DE = 0.10. We ver-
ified with the data generated from the AML and NPC differentiation data that the 
gamma distribution (shape = 1, scale = 0.5) would be an appropriate log fold change 
distribution in this case (Additional file 1: Fig. S7A).

To simulate contamination by cross-contamination, we assumed that contamina-
tion increases with expression as shown in Additional file 1: Fig. S11D and can thus 
be simulated by sampling from the overall counts per gene in a pool. Different levels 
of contamination (0.5%, 1%, 2.5%, 5%, 10%) were simulated and added to the original 
count matrix. Power simulations were run as described above.

Cell preparation

Human embryonic kidney 293T (HEK293T) cells were cultured in DMEM media 
(TH.Geyer, L0102) supplemented with 10% FBS (Thermo Fisher, 10500-064) and 
100 U/ml Penicillin and 100 μg/ml Streptomycin (Thermo Fisher). Cells were grown to 
80% confluency and harvested by trypsinization (Thermo Fisher, 25200072).

Peripheral blood mononuclear cells (PBMCs) were obtained from LGC Standards 
(PCS-800-011). Before use, the cells were thawed in a water bath at 37 °C and washed 
twice with PBS (Sigma-Aldrich, D8537).

Prior to lysis, cells were stained with 1 μg/ml Trypan Blue (Thermo Fisher Scientific, 
15-250-061) and counted using a Neubauer counting chamber. Then, the desired number 
of cells (1000 or 10,000) was pelleted for 5 min at 200 rcf, resuspended in 50 μL of lysis 
buffer (RLT Plus (Qiagen, 1053393) and 1% ß-mercaptoethanol (Sigma-Aldrich,M3148) 
and transferred to a 96-well plate. Samples were then stored at − 80 °C until needed.

Tissue preparation

Striatal tissue from C57BL/6 mice between the ages of 6 and 12 months was harvested 
by first placing the mouse in a container with Isoflurane (Abbot, TU 061220) until the 
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mouse was visibly still and exhibited labored breathing. The mice were then removed 
from the container, and a cervical dislocation was performed. The mice were briefly 
washed with 80% EtOH, the head decapitated, and the brain removed. The brain was 
transferred to a dish with ice-cold PBS and placed in a 1-mm slicing matrix.

Using steel blades (Wilkinson Sword, 19/03/2016DA), 5 coronal incisions were made. 
Biopsy punches (Kai Medical, BPP-20F) were then taken from the striatum and the tis-
sue was transferred to a 1.5-mL tube with 50 μL of lysis buffer, RLT Plus, and 1% ß-mer-
captoethanol. The tubes were snap frozen and stored at − 80 °C until needed.

RNA extraction experiments

To determine differences due to RNA extraction, we isolated RNA using columns from 
the Direct-zol RNA MicroPrep Kit (Zymo, R2062) (condition: “Column”) and magnetic 
beads from the prime-seq protocol (conditions: “No Incubation,” “Incubation,” and 
“Magnetic Beads”) (see above for details on prime-seq). For the “Column” condition, the 
manufacturer instructions were followed and both the Proteinase K and DNase diges-
tion steps were performed as outlined in the protocol. For the magnetic bead isolation, 
the prime-seq protocol was used as outlined in the “Magnetic Beads” condition. For “No 
Incubation” condition, the Proteinase K digestion was skipped entirely. For the “Incuba-
tion” condition, the Proteinase K digestion was performed but with no enzyme; that is 
the heat cycling of 50 °C for 15 min and 75 °C for 10 min was carried out but no enzyme 
was added to the lysate.

gDNA priming experiment

For a graphical overview of the gDNA Priming experiment, see Fig. 2B. Frozen vials of 
mouse embryonic stem cells (mESC), which have been cultured as previously described 
(citation Bagnoli) (clone J1, frozen in Bambanker (NIPPON Genetics, BB01) on 04.2017), 
and HEK293T cells (frozen in Bambanker on 30.11.18, passage 25) were thawed. DNA 
was extracted from 1 million mESCs using DNeasy Blood & Tissue Kit (Qiagen, 69506) 
and RNA was extracted from 450,000 HEK293T cells using the Direct-zol RNA Micro-
Prep Kit (Zymo, R2062), according to the manufacturer instructions in both cases. The 
optional DNase treatment step during the RNA extraction was performed in order to 
remove any residual DNA.

After isolating DNA and RNA, the two were mixed to obtain the following conditions: 
10 ng RNA/ 7 ng DNA, 7.5 ng RNA/ 1.75 ng DNA, and 10 ng RNA/ 0 ng DNA. The 
10 ng RNA/ 7 ng DNA condition, which represents the highest contamination of DNA, 
was performed twice, once without DNase treatment and once with DNase treatment. 
Libraries were prepared from three replicates for each condition using prime-seq and 
were then sequenced (see above for detailed information).

MAQC‑III comparison experiment

For a graphical overview of the experimental design, see Additional file  1: Fig. S5. As 
only Mix A from the original MAQC-III Study was compared, 122.2 μL of  ddH2O, 2.8 
μL of UHRR (100 ng/μL) (Thermo Fisher, QS0639), and 2.5 μL of ERCC Mix 1 (1:1000) 
(Thermo Fisher, 4456740) were combined to generate a 1:500 dilution of Mix A. Eight 
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RNA-seq libraries were constructed using prime-seq (see above methods) with 5 μL of 
the 1:500 Mix A.

The samples were sequenced and the data processed and analyzed as outlined above. 
Of the comparison data from the original MAQC-III Study, Experiment SRX302130 to 
SRX302209 from Submission SRA090948 were used as this was the sequence data from 
one site (BGI) and was sequenced using an Illumina HiSeq 2000 [48]. The TruSeq data 
was first trimmed to be 50 bp long and then processed with zUMIs as outlined above, 
with the exception of using both cDNA reads and not providing UMIs as there were 
none. Paired-end data was used to not penalize TruSeq, as this is a feature of the method.

Barcode swapping experiments

In order to estimate cross-contamination levels in prime-seq introduced by barcode 
swapping, we isolated RNA from human-induced pluripotent stem cells (line 29B5, pas-
sage 34) [60] and mouse ES cells (line JM8, passage 27) [2] using the Direct-zol RNA 
MicroPrep Kit (Zymo, R2062). RNA concentrations were measured using the Quanti-
Flour RNA Dye (Promega, E3310) and 8 ng of total RNA were added per well. For the 
experiment estimating the impact of amplification on contamination, different nano-
grams of RNA per well (0.5, 2, 8, 32, 128) were amplified with different numbers of cycles 
(17, 15, 13, 11, 9). Prime-seq was performed as described before with pooling of samples 
from the different species (Additional file 1: Fig. S11A). Contamination was assessed by 
mapping to a concatenated human and mouse genome and assigning reads to species 
based on which genome they mapped to best.

NPC differentiation experiment

To differentiate hiPSCs to NPCs, cells were dissociated and 9 ×  103 cells were plated into 
each well of a low attachment U-bottom 96-well-plate in 8GMK medium consisting of 
GMEM (Thermo Fisher), 8% KSR (Thermo Fisher), 5.5 ml 100× NEAA (Thermo Fisher), 
100 mM sodium pyruvate (Thermo Fisher), 50 mM 2-Mercaptoethanol (Thermo Fisher) 
supplemented with 500 nM A-83-01 (Sigma-Aldrich), 100 nM LDN 193189 (Sigma-
Aldrich), and 30 μM Y27632 (biozol). A half-medium change was performed on days 2 
and 4. On day 6, Neurospheres from 3 columns were pooled, dissociated using Accumax 
(Sigma-Aldrich) and seeded on Geltrex (Thermo Fisher) coated wells. After 2 days, cells 
were dissociated and counted and 2 ×  104 were lysed in 100 μL of lysis buffer (RLT Plus 
(Qiagen, 1053393) and 1% ß-mercaptoethanol (Sigma-Aldrich,M3148).

AML‑PDX sample collection

Acute myeloid leukemia (AML) cells were engrafted in NSG mice (The Jackson Labo-
ratory, Bar Harbour, ME, USA) to establish patient-derived xenograft (PDX) cells [55]. 
AML-PDX cells were cryopreserved as 10 Mio cells in 1 mL of freezing medium (90% 
FBS, 10% DMSO) and stored at – 80 °C for biobanking purposes. To avoid thawing these 
samples and thus harming or even destroying them, the frozen cell stocks were first 
transferred to dry ice under a cell culture hood. Next a sterile 1-mm biopsy punch was 
used to punch the frozen cells in the vial and transfer the extracted cells to one well of 
a 96-well plate containing 100 μL RLTplus lysis buffer with 1% beta mercaptoethanol. 
To ensure complete lysis, the lysate was mixed and snap frozen on dry ice. One biopsy 
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punch is estimated to contain 10 μL of cryopreserved cells corresponding to roughly 1 
× 10^5 cells given an even distribution of cells within the original vial. All 96 samples 
were collected in this manner, biopsy punches were washed using RNAse Away (Thermo 
Fisher Scientific) and 80% Ethanol for reuse. These lysates were subjected to prime-seq, 
including RNA isolation using SPRI beads. In total, PDX samples from 11 different AML 
patients were analyzed in 6 to 16 biological replicates (engrafted mice) per sample.

Cost comparisons

Costs were determined by searching for general list prices from various vendors. When 
step by step protocols were available, each component was included in the cost calcula-
tion, such as for the SMARTer Stranded Total RNA Kit (Takara, 634862), SMART-Seq 
RNA Kit (v4) (Takara, 634891), TruSeq Library Prep (Illumina, RS-122-2001/2), TruSeq 
Stranded Library Prep (Illumina, 20020595), and Illumina Stranded mRNA Prep (Illu-
mina, 20040534). In the case of BRB-seq, no publicly available step-by-step protocol 
was found, so the methods section was used to calculate costs [22]. Decode-seq has a 
publicly available protocol; however, the level of detail was insufficient to calculate exact 
costs; therefore, when specific vendors were not listed, we used the most affordable 
option that we have previously validated. In all cases, the prices included sales tax and 
were listed in euros and were therefore converted to USD using a conversion rate of 1.23 
USD to EUR. The costs for all methods can be found in Table S4.
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Fig. S1. Molecular workflow of prime-seq. (Related to Figure 1) oligo(dT)-primers are used to enrich mRNA, which 

is then reverse transcribed using Maxima H-, a M-MLV reverse transcriptase. Full length first strand synthesis is 

performed using a template switching oligo. Second strand synthesis and cDNA pre-amplification is completed during 

the PCR using KAPA Hifi Polymerase, and this DNA is then used to generate libraries using the NEBNEXT Ultra II 

FS Kit. Finally the libraries are sequenced with the following setup: read 1: 28bp, read 2: 8bp, and read 3: 50-150bp. 
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Fig. S2. prime-seq is a robust protocol and has been validated with numerous organisms. (Related to Figure 

2A) (A) To date, 132 experiments consisting of 6,691 samples from 17 different organisms, ranging from arabidopsis 

to zebrafish, have been processed with prime-seq. (B) Data from experiments with well-annotated genomes 

suggests a substantial number of detected genes come from intronic reads.  
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Fig. S3. Intronic reads are not derived from contaminating gDNA. (A) Samples containing total nucleic acids 

were either treated with RNase A or DNase I, or remained untreated. Untreated samples had the highest 

concentration, showing that genomic DNA is also used as a template when not removed, albeit less efficiently than 

mRNA. cDNA yields were normalized to the number of input cells. (Related to Figure 2B) (B) Mapped reads from 

different gDNA/RNA mixed conditions, showing that the DNase treated condition and the no DNA contamination 

condition had the lowest fraction of intergenic and unmapped reads. (C) Fraction of assigned mapped reads per 

genomic feature (exon, intron, intergenic) and species, showing an increase in mouse reads with higher gDNA 

contamination.  
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Fig. S4. Intron counts are enriched at the 3' prime end and correlate with exon counts. (A) Upset plot showing 

the intersection of genes detected with reads mapped to exons, introns or both. Most genes are detected in both 

introns and exons, followed by exons and introns only. Color represents the biotypes of the detected genes. Genes 

detected in both introns and exons are enriched for protein coding genes. Boxplots above show the expression levels 

of the genes by biotype. Genes detected with both intron and exon mapped reads are most highly expressed, intron 

only detected genes are lowly expressed. (B) Mean expression based on exon counts shows weak correlation to 

intron counts. (C) Histograms of expression levels of exon counts and intron counts normalized to total counts (intron 

plus exon) show higher average expression for exon counts. (D) 3’ prime enrichment of exon counts, intron counts 

and intron only counts. Counts per position relative to the 3’ prime per million averaged over 2000 genes with highest 

overall expression. Exon and intron counts are enriched at the 3’ prime end of the genbody. Intron only counts follow 

the same pattern as intron counts in genes with exon counts. (E) Exemplary exon and intron coverage for the gene 

ENAH show mapping of the intron counts coincides with mapping of exon counts along the gene body. (F) 

Corresponding UMI counts of ENAH based on intron and exon counting. 
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Fig. S5. Experimental design comparing prime-seq to TruSeq data generated in the MAQC-III Study. (Related 

to Figure 3) A 1:1000 concentration of Mix A, from the MAQC-III Study, was generated by mixing UHRR and ERCC 

Mix 1. From this, eight libraries were generated using prime-seq and compared to five TruSeq generated libraries.  
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Fig. S6. prime-seq and TruSeq have similar mapping, gene detection, and expression.  (Related to Figure 3) 

(A) Feature distribution from prime-seq and TruSeq shows 78% and 85% of reads are exonic, intronic, and ERCCs, 

respectively. (B) TruSeq and prime-seq exhibit a strong overlap of detected genes (33,230), with 3,589 and 6,766 

genes expressed only in TruSeq and prime-seq, respectively. (C) Coefficient of determination of two samples, either 

between (R2 = 0.64) or within methods (R2 = 0.94 for prime-seq and 0.97 for TruSeq).  (D) Gene-wise scatterplot of 

prime-seq and TruSeq mean normalized expression showing decent correlation of endogenous genes (R2 = 0.67) 

and strong correlation of ERCC spike-in molecules (R2 = 0.95).  
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Fig. S7. Power and FDR mostly depend on sample size and are similar between prime-seq and TruSeq. 

(Related to Figure 3) (A) Log2 fold change distribution from the AML and NPC differentiation experiment (Figure 4) 

compared to the log2 fold change distribution used in powsimR for power analysis confirms that simulation settings 

match expected distributions. (B) Marginal power of prime-seq and TruSeq at differing samples per condition shows 

both methods perform similarly well, crossing the 80% threshold with roughly 12 samples both for exon plus intron 

and only exon counts. (C and D) FDR over different mean expression and log2 fold change strata (Related to 3F 

and 3G). (E and F) analogous to Figure 3F and 3G but including only Exonic counts; prime-seq and TruSeq exhibit 

similar TPR and FDR over different mean expression and log2 fold change strata. Filtering parameters: detected 

UMI ≥ 1, detected gene present in at least 25%. 
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Fig. S8. Performance of isolation methods is similar independent of prefiltering or usage of only Exon data. 

(Related to Figure 4) (A) HEK293T cell samples were extracted using columns and magnetic beads, employing the 
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standard prime-seq protocol (“Magnetic Beads”), as well as variant protocols without proteinase K digestion (“No 

Incubation”) and a proteinase K digestion control without enzyme (“Incubation”). All conditions had similar fractions 

of usable reads (all but intergenic and ambiguity), with an increase in intronic reads in “Incubation” and “Magnetic 

Beads” suggesting this increase is due to heat incubation. (B) Principal component analysis (PCA) of the 500 most 

variable genes shows the largest variable is heat incubation. (C and D) Analysis of detected UMIs and detected 

genes for unfiltered data and exonic only data shows that prime-seq using magnetic bead isolation is more sensitive 

in HEK cells and similarly sensitive in PBMCs and tissue compared to prime-seq using column isolation. Filtering 

parameters: detected UMI ≥ 1, detected gene present in at least 25% of samples and is protein coding.  
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Fig. S9. Most genes are detected independent of the extraction method used. (Related to Figure 4) (A) Upset 

plots showing a strong overlap of detected genes between columns and magnetic beads. (B) Up- and down-

regulated genes between column and bead-based RNA extractions (p>0.05, log2 FC > 2). (C) Density plots of the 

differentially expressed genes relative to length and GC content. Genes upregulated in columns tend to be longer 

with lower GC content. 
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Fig. S10. prime-seq performs equally well with high- and low-input samples. (Related to Figure 5) (A) 

Sensitivity, measured in detected UMIs and genes, is similar between high input (10,000 HEK293T cells) and low 

input (1,000 HEK293T cells) conditions at various sequencing depths (filtering parameters: detected UMI ≥ 1, 

detected gene present in at least 25% of samples and is protein coding). (B) Additionally, Pearson's correlations 

between the high- and low-input conditions were high (pairwise comparison between: r = 0.93, pairwise comparison 

within: r = 0.94, and average normalized mean expression, R2 = 0.97). 
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Fig. S11. Cross-contamination levels are low, increase with additional cycles but do not impact power 

simulations. (A) Experimental overview to detect cross-contamination. 1.RNA was isolated from hiPSCs and mESC; 

2. cDNA amplification of 8ng RNA per well; 3. pooling of only human samples or mouse and human samples. (B) 

The percentage of contaminating UMIs (mapping best to the mouse genome) increases with pooling but is generally 

low median early pooling: 0.52%. (C) Impact of amplification cycles on cross-contamination. 0 corresponds to the 

condition shown in panel B, 13 cycles of pre-amplification for 96 ng of input RNA (8 ng per well). (D) Genewise 

contamination ranges from 0% to up to 10 % for lowly expressed genes. Contamination decreases with increasing 

expression levels. (E) Power simulation with different levels of computationally added contamination shows little 

impact on marginal TPR. An increase in the number of replicates leads to a small increase in power for highly 

contaminated conditions relative to no contamination.  
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Fig. S12. Power analysis shows prime-seq is able to reach 80% power earlier than less cost-efficient 

methods. (Related to Figure 6) (A) True positive rate (TPR) and false discovery rates (FDR) corresponding to Figure 

6B, but with more incremental values. (B) prime-seq crosses an 80% power threshold with $715 when sequencing 

costs are included compared to $795, $1,625, and $3,485 for low, middle, and high cost methods respectively (10 

million reads used for analysis at a cost of $3.40 per 1 mio. reads).  
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Supplemental Text 1. Magnetic beads used in prime-seq 

 

Magnetic beads for nucleic acid isolation are a suitable alternative to column-based extraction, 

especially as they are more easily scalable and generally more cost efficient. These magnetic 

nanoparticles are coated to prevent oxidation and clumping, frequently with silica or a carboxyl 

coating as this provides an inert or negatively charged surface on the beads, respectively [50]. 

This allows for solid phase reversible immobilization (SPRI), that is the negatively charged 

nucleic acids can be precipitated out of solution, bind to the magnetic beads, be immobilized 

through the use of a magnet, washed, and then eluted without risk of irreversible binding. 

Additionally, carboxylated beads have carboxyl groups on the surface of the beads which form 

covalent bonds with nucleic acids in the presence of a crowding agent (i.e. polyethylene glycol) 

and high salt conditions [50]. These advantages have made carboxylated magnetic beads 

especially useful in isolating nucleic acids for high-throughput NGS applications.  

 

For prime-seq, we use two different sets of beads, Carboxylated Sera-Mag SpeedBeads (GE 

Healthcare, now Cytiva) and SPRIselect (Beckman Coulter). The former are used in the RNA 

extraction step and the subsequent cleanup steps, whereas the latter are used only in the size 

selection steps during library preparation. Therefore, in the case of prime-seq, the Sera-Mag 

SpeedBeads are used to replace RNA extraction columns as well as nucleic acid concentrator 

columns, and the SPRISelect beads replace the gel excision and cleanup.  

 

Numerous carboxylated magnetic beads exist for nucleic acid cleanups, with Ampure XP 

(Beckman Coulter) consistently used across many RNA-seq and NGS protocols. Additionally, 

the Ampure XP  beads have worked well in our hands when used for standard nucleic acid 

cleanups. Within the prime-seq protocol, however, we specifically do not use the Ampure XP 

beads due to the cost factor involved. For example, a 24 sample prime-seq experiment would 

require 2.46 mL of Ampure XP beads and 2.7 mL of diluted Sera-Mag SpeedBeads prior to 

library preparation, which amounts to $203 and $2.25, respectively. The almost 90-fold lower 

cost makes it apparent that the Sera-Mag SpeedBeads are a better choice for many 

researchers. It could be possible that the Ampure XP beads yield a better nucleic acid recovery 

or provide more consistent performance, however, when tested we recover 80 % of input with 

the Sera-Mag SpeedBeads. Thus, even if there were slight improvements in performance, this 

would not outweigh the substantial increase in cost.  

 

During library preparation, we are not only cleaning the solution to remove residual primers 

and salts, but are also specifically selecting for a range of fragment sizes (e.g. 300-800 bp). 

And, although both the Sera-Mag SpeedBeads and SPRIselect beads are carboxylated 

magnetic beads, the SPRIselect beads are validated for size selection properties ensuring 

consistent performance between lots. From our experience it is unclear if there are added 

advantages of using the SPRISelect beads for the library size selection, but as our Sera-Mag 

SpeedBead lot-to-lot verifications are not as rigorous as those performed by Beckman Coulter, 

and one only needs 70 µL of SPRISelect per prime-seq library, the increased cost of using 

SPRISelect for this portion of the protocol does not substantially alter the overall cost. 
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Ingredient List price Delivered Units Unit Required Price

1.5 ml low bind tubes €52,40 1000 pieces 2 €0,1048

96-well Plate €417,00 200 pieces 2 €4,1700

Total €4,2748

Ingredient List price Delivered Units Unit Required Price

Proteinase K €88,50 1.250 µl 1 €0,0708

Tips €36,50 1000 pieces 10 €0,3650

EDTA €69,90 100 ml #ERROR! #WERT!

Clean-up beads €22,86 50 ml 0,1 €0,0457

Ethanol €144,90 2500 ml 0,4 €0,0232

DNAseI €71,00 500 µl 1 €0,1420

RNAse free H2O €133,00 5000 ml 0,1 €0,0027

Bead-binding buffer €2,39 50 ml 0,01 €0,0005

Total #WERT!

Ingredient List price Delivered Units Unit Required Price
Microprep Kit (R2062) €545,00 200 reactions 1 €2,73
1.5 ml low bind tubes €52,40 1000 pieces 2 €0,1048
Total €2,8298

Ingredient List price Delivered Units Unit Required Price
Miniprep Kit €555,00 200 reactions 1 €2,78
1.5 ml low bind tubes €52,40 1000 pieces 2 €0,1048
Total €2,8798

Ingredient List price Delivered Units Unit Required Price
Micro RNeasy Kit (74004) €508,00 50 reactions 1 €10,16
1.5 ml low bind tubes €52,40 1000 pieces 2 €0,1048
Total €10,2648

Ingredient List price Delivered Units Unit Required Price
Mini RNeasy Kit (74106) €1.334,00 250 reactions 1 €5,34
1.5 ml low bind tubes €52,40 1000 pieces 2 €0,1048
Total €5,4408

Qiagen - per 1 reaction

prime-seq Lysis consumables - per 96 reactions

prime-seq Extraction - per 1 reaction

Zymo - per 1 reaction

Zymo - per 1 reaction

Qiagen - per 1 reaction
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2.3 Sensitive and powerful single-cell RNA sequencing using
mcSCRB-seq 123

2.3 Sensitive and powerful single-cell RNA se-

quencing using mcSCRB-seq

Bagnoli, Johannes W. and Ziegenhain, Christoph and Janjic, Aleksandar, Wange, Lucas E.,

Vieth, Beate, Parekh, Swati, Geuder, Johanna, Hellmann, Ines, Enard, Wolfgang

"Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq" (2018)

Nature Communications 9, 2937 (2018).

doi: https://doi.org/10.1038/s41467-018-05347-6

Supplementary Information is freely available at the publisher’s website:

https://www.nature.com/articles/s41467-018-05347-6#Sec33

Abstract

Single-cell RNA sequencing (scRNA-seq) has emerged as a central genome-wide method

to characterize cellular identities and processes. Consequently, improving its sensitivity,

flexibility, and cost-efficiency can advance many research questions. Among the flexible plate-

based methods, single-cell RNA barcoding and sequencing (SCRB-seq) is highly sensitive

and efficient. Here, we systematically evaluate experimental conditions of this protocol

and find that adding polyethylene glycol considerably increases sensitivity by enhancing

cDNA synthesis. Furthermore, using Terra polymerase increases efficiency due to a more

even cDNA amplification that requires less sequencing of libraries. We combined these and
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Whole transcriptome single-cell RNA sequencing
(scRNA-seq) is a transformative tool with wide
applicability to biological and biomedical questions1,2.

Recently, many scRNA-seq protocols have been developed to
overcome the challenge of isolating, reverse transcribing, and
amplifying the small amounts of mRNA in single cells to generate
high-throughput sequencing libraries3,4. However, as there is no
optimal, one-size-fits all protocol, various inherent strengths and
trade-offs exist5–7. Among flexible, plate-based methods, single-
cell RNA barcoding and sequencing (SCRB-seq)8 is one of the
most powerful and cost-efficient6, as it combines good sensitivity,
the use of unique molecular identifiers (UMIs) to remove
amplification bias and early cell barcodes to reduce costs. Here,
we systematically optimize the sensitivity and efficiency of SCRB-
seq and generate molecular crowding SCRB-seq (mcSCRB-seq),
one of the most powerful and cost-efficient plate-based methods
to date (Fig. 1a).

Results
Systematic optimization of SCRB-seq. We started to test
improvements to SCRB-seq by optimizing the cDNA yield and
quality generated from universal human reference RNA (UHRR)9

in a standardized SCRB-seq assay (see Supplementary Fig. 1a and
Methods). By including the barcoded oligo-dT primers in the
lysis buffer, we increased cDNA yield by 10% and avoid a time-
consuming pipetting step during the critical phase of the protocol
(Supplementary Fig. 1b). Next, we compared the performance of
nine Moloney murine leukemia virus (MMLV) reverse tran-
scriptase (RT) enzymes that have the necessary template-
switching properties. Especially at input amounts below 100 pg,

Maxima H- (Thermo Fisher) performed best closely followed by
SmartScribe (Clontech) (Supplementary Fig. 1c). In order to
reduce the costs of the reaction, we showed that cDNA yield and
quality is not measurably affected when we reduced the enzyme
(Maxima H-) by 20%, reduced the oligo-dT primer by 80%, or
used the cheaper unblocked template-switching oligo (Supple-
mentary Fig. 2). Next, we evaluated the effect of MgCl2, betaine
and trehalose, as these led to the increased sensitivity of the
Smart-seq2 protocol10. Since both Smart-seq2 and SCRB-seq
generate cDNA by oligo-dT priming, template switching, and
PCR amplification, we were surprised that these additives
decreased cDNA yield for SCRB-seq (Supplementary Fig. 3a).
Apparently, the interactions between enzymes and buffer condi-
tions are complex and optimizations cannot be easily transferred
from one protocol to another.

Molecular crowding significantly increases sensitivity. An
additive that has not yet been explored for scRNA-seq protocols
is polyethylene glycol (PEG 8000). It makes ligation reactions
more efficient11 and is thought to increase enzymatic reaction
rates by mimicking (macro)molecular crowding, i.e., by reducing
the effective reaction volume12. As small reaction volumes can
increase the sensitivity of scRNA-seq protocols5,13, we tested
whether PEG 8000 can also increase the cDNA yield of SCRB-seq.
Indeed, we observed that PEG 8000 increased cDNA yield in a
concentration-dependent manner up to tenfold (Supplementary
Fig. 3b). However, at higher PEG concentrations, unspecific DNA
fragments accumulated in reactions without RNA (Supplemen-
tary Fig. 3d) and therefore we chose 7.5% PEG 8000 as an optimal
concentration balancing yield and specificity (Supplementary
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Fig. 3c). With the addition of PEG 8000, yield increased sub-
stantially, making it possible to detect RNA inputs under 1 pg
(Fig. 1b).

To test whether these increases in cDNA yield indeed
correspond to increases in sensitivity, we generated and
sequenced 32 RNA-seq libraries from 10 pg of total RNA
(UHRR) using eight replicates for each of the following four
SCRB-seq protocol variants (Supplementary Tables 1, 2): the
original SCRB-seq protocol8 (“Soumillon”; with Maxima H- as
RT and Advantage2 as PCR enzyme), the slightly adapted
protocol benchmarked in Ziegenhain et al.6 (“Ziegenhain”; with
Maxima H- and KAPA), the same protocol with SmartScribe as
the RT enzyme (“SmartScribe”) and our optimized protocol
(“molecular crowding”; with Maxima H-, KAPA, 7.5% PEG, 80%
less oligo-dT, and 20% less Maxima H-). As expected, the
molecular crowding protocol yielded the most cDNA, while
variant “Soumillon” yielded the least, confirming our systematic
optimization (Supplementary Fig. 4a). After sequencing, we
processed data using zUMIs14 and downsampled each of the 32
libraries to one million reads per sample, which has been
suggested to correspond to reasonable saturation for single-cell
RNA-seq experiments5,6. Of the 32 libraries, 31 passed quality
control with a median of 71% of the reads mapping to exons
(range: 50–77%), 12% to introns (9–15%), 13% to intergenic
regions (10–31%), and 4% (3–7%) to no region in the human
genome (Supplementary Fig. 4b). Of note, we observe that a
higher proportion of reads are mapping to intergenic regions for
the “molecular crowding” condition (Supplementary Fig. 4b). As
UHRR is provided as DNAse-digested RNA, these reads are likely
derived from endogenous transcripts, but why their proportion is
increased in the molecular crowding protocol is unclear. In any
case, we assessed the sensitivity of the protocols by the number of
detected genes per cell (>=1 exonic read), representing a
conservative estimate for the molecular crowding protocol with
its higher fraction of intergenic reads (Fig. 1c). This sensitivity
measure correlates fairly well with cDNA yield (Supplementary
Fig. 4a). Hence, it shows that Maxima H- is indeed more sensitive
than SmartScribe (5542 detected genes per sample in “Ziegen-
hain” vs. 3805 in “SmartScribe”, p= 3 × 10–5, Welch two sample
t-test) and that the molecular crowding protocol is the most
sensitive one (7898 vs. 5542 detected genes, p= 7 × 10–7, Welch
two sample t-test). In summary, we can show that our optimized
SCRB-seq protocol, in particular due to the addition of PEG 8000,
increases the sensitivity compared to previous protocol variants at
reduced costs.

Terra retains more complexity during cDNA amplification.
Next, we aimed to increase the efficiency of this protocol by
optimizing the cDNA amplification step. Depending on the
number of cycles, reaction conditions, and polymerases, sub-
stantial noise and bias is introduced when the small amounts of
cDNA molecules are amplified by PCR15,16. While UMIs allow
for the correction of these effects computationally, scRNA-seq
methods that have less amplification bias require fewer reads to
obtain the same number of UMIs and hence are more
efficient6,17. As a first step, we evaluated 12 polymerases for
cDNA yield and found KAPA, SeqAmp, and Terra to perform
best (Supplementary Fig. 5a). We disregarded SeqAmp because of
a decreased median length of the amplified cDNA molecules
(Supplementary Fig. 5b) as well as the higher cost of the enzyme
and continued to compare the amplification bias of KAPA and
Terra polymerases. To this end, we sorted 64 single mouse
embryonic stem cells (mESCs) and generated cDNA using our
optimized molecular crowding protocol. Two pools of cDNA
from 32 cells were amplified with KAPA or Terra polymerase (18

cycles) and used to generate libraries. After sequencing and
downsampling each transcriptome to one million raw reads14, we
found that amplification using Terra yielded twice as much
library complexity (UMIs) than when using KAPA (Supple-
mentary Fig. 5c). This is in agreement with a recent study that
optimized the scRNA-seq protocol Quartz-seq2, which also found
Terra to retain a higher library complexity17. In addition to
choosing Terra for cDNA amplification, we also reduced the
number of cycles from 19 in the original SCRB-seq protocol to 14,
as fewer cycles are expected to decrease amplification bias fur-
ther15 and 14 cycles still generated sufficient amounts of cDNA
(~1.6–2.4 ng/µl) from mouse ESCs to prepare libraries with
Nextera XT (~0.8 ng needed). Depending on the investigated
cells, which may have a lower or higher RNA content than ESCs,
the cycle number might need to be adapted to generate enough
cDNA while avoiding overcycling.

With the final improved version of the molecular crowding
protocol (mcSCRB-seq), we tested to what extent cross-
contamination occurs. For example, chimeric PCR products
may occur following the pooling of cDNA18 and we assessed
whether this might potentially be influenced by PEG that is
present during cDNA synthesis before pooling. To this end, we
sorted 96 cells of a mixture of mESCs and human-induced
pluripotent stem cells, synthesized cDNA according to the
mcSCRB-seq protocol with and without the addition of PEG
and generated libraries for each of the two conditions. After
mapping the sequenced reads to the joint human and mouse
reference genomes, each barcode/well could be clearly classified
into human or mouse cells, indicating that no doublets were
sorted into wells, as may be expected for a fluorescence-activated
cell sorting (FACS)-based cell isolation (Supplementary Fig. 6a).
Importantly, the median number of reads mapping best to the
wrong species is less than 2000 per cell (<0.4% of all reads or
<1.5% of uniquely mapped reads). This is not influenced by the
addition of PEG, as may be expected, since PEG is only present
during cDNA generation (Supplementary Fig. 6b; two-sided t-
test, p value= 0.81). In summary, we developed an optimized
protocol, mcSCRB-seq, that has higher sensitivity, a less biased
amplification and little crosstalk of reads across cells.

mcSCRB-seq increases sensitivity 2.5-fold more than SCRB-
seq. To directly compare the entire mcSCRB-seq protocol to the
previously benchmarked SCRB-seq protocol used in Ziegenhain
et al.6 (Supplementary Table 2), we sorted for each method 48
and 96 single mESCs from one culture into plates, and added
ERCC spike-ins19. Following sequencing, we filtered cells to
discard doublets/dividing cells, broken cells, and failed libraries
(see Methods). The remaining 249 high-quality libraries all show
a similar mapping distribution with ~50% of reads falling into
exonic regions (Supplementary Fig. 7). When plotting the num-
ber of detected endogenous mRNAs (UMIs) against sequencing
depth, mcSCRB-seq clearly outperforms SCRB-seq and detects
2.5 times as many UMIs per cell at depths above 200,000 reads
(Fig. 2a and Supplementary Fig. 8a). At two million reads,
mcSCRB-seq detected a median of 102,282 UMIs per cell and a
median of 34,760 ERCC molecules, representing 48.9% of all
spiked in ERCC molecules (Supplementary Fig. 8b). Assuming
that the efficiency of detecting ERCC molecules is representative
of the efficiency to detect endogenous mRNAs, the median
content per mESC is 227,467 molecules (Supplementary Fig. 8c
and 8d), which is very similar to previous estimates using mESCs
and STRT-seq, a 5′ tagged UMI-based scRNA-seq protocol20. As
expected, the higher number of UMIs in mcSCRB-seq also results
in a higher number of detected genes. For instance, at 500,000
reads, mcSCRB-seq detected 50,969 UMIs that corresponded to
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5866 different genes, 1000 more than SCRB-seq (Supplementary
Fig. 9). Congruent with the above comparison of Terra and
KAPA polymerase, mcSCRB-seq showed a less noisy and less-
biased amplification (Supplementary Fig. 10). Furthermore,
expression levels differed much less between the two batches of
mcSCRB-seq libraries, indicating that it could be more robust
than SCRB-seq (Supplementary Fig. 11a). In contrast to findings
for other protocols21, neither mcSCRB-seq nor SCRB-seq showed
GC content or transcript length-dependent expression levels
(Supplementary Fig. 11b, c).

Decisively, we find by using power simulations6,22 that
mcSCRB-seq requires approximately half as many cells as
SCRB-seq to detect differentially expressed genes between two
groups of cells (Fig. 2b and Supplementary Fig. 11d). Hence, the
higher sensitivity and lower noise of mcSCRB-seq compared to
SCRB-seq, as measured in parallelly processed cells, indeed
matters for quantifying gene expression levels and can be
quantified as a doubling of cost-efficiency. Furthermore, we have

reduced the reagent costs from about 1.70 € per cell for SCRB-
seq6 to less than 0.54 € for mcSCRB-seq (Supplementary Fig. 12a
and Supplementary Table 3). Together, this makes mcSCRB-seq
sixfold more cost-efficient than SCRB-seq. Moreover, owing to an
optimized workflow, we could reduce the library preparation time
to one working day with minimal hands-on time (Supplementary
Fig. 12b and Supplementary Table 4). As SCRB-seq was already
one of the most cost-efficient protocols in our recent bench-
marking study6, this likely makes mcSCRB-seq the most cost-
efficient plate-based method available.

Benchmarking by ERCCs. The widespread use of ERCC spike-
ins also allows us to estimate and compare the absolute sensitivity
across many scRNA-seq protocols using published data5. As in
Svensson et al.5, we used a binomial logistic regression to estimate
the number of ERCC transcripts that are needed on average to
reach a 50% detection probability (Supplementary Fig. 13a).
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mcSCRB-seq reached this threshold with 2.2 molecules, when
ERCCs are sequenced to saturation (Supplementary Fig. 13b).
When comparing this to a total of 26 estimates for 20 different
protocols obtained from two major protocol comparisons5,6 as
well as additional relevant protocols17,23, mcSCRB-seq has the
highest sensitivity among all protocols compared to date (Fig. 2c).
It should be noted that the data show large amounts of variation
within protocols, even for well-established, sensitive methods like
Smart-seq2. This is the case, especially in Svensson et al.5, because
the data were generated from many varying cell types sequenced
in numerous labs. Similarly, mcSCRB-seq sensitivity estimates
could be variable across labs and conditions. Nevertheless, the
average ERCC detection efficiency is the most representative
measure to compare sensitivities across many protocols.

mcSCRB-seq detects biological differences in complex tissues.
Finally, we applied mcSCRB-seq to peripheral blood mono-
nuclear cells (PBMCs), a complex cell population with low
mRNA amounts, to test whether it is efficient in recapitulating
biological differences. We obtained PBMCs from one healthy
donor, FACS-sorted cells in four 96-well plates and prepared
libraries using mcSCRB-seq with a more stringent lysis condition
(see Methods; Fig. 3a). We sequenced ~203 million reads for the
resulting pool, of which ~189 million passed filtering criteria in
the zUMIs pipeline (see Methods). Next, we filtered low-quality
cells (<50,000 raw reads or mapping rates <75%; Supplementary
Fig. 14a), leaving 349 high-quality cells for further analysis
(Supplementary Fig. 14b). Using the Seurat package24, we clus-
tered the expression data and obtained five clusters that could be
easily attributed to expected cell types: B cells, Monocytes, NK
cells, and T cells (Fig. 3b). Rare cell types, such as dendritic cells
or megakaryocytes that are known to occur in PBMCs at fre-
quencies of ~0.5–1%, could not be detected, as expected from the
low power to cluster 2–3 cells. For the detected cell types, known
marker gene expression fits closely to previously described
results23 (Fig. 3c, d). Overall, we show that mcSCRB-seq is a
powerful tool to highlight biological differences, already when a
low number of cells are sequenced.

Discussion
In this work, we developed mcSCRB-seq, a scRNA-seq protocol
utilizing molecular crowding. Based on benchmarking data gen-
erated from mouse ES cells, we show that mcSCRB-seq con-
siderably increases sensitivity and decreases amplification bias
due to the addition of PEG 8000 and the use of Terra polymerase,
respectively. Furthermore, it shows no indication of bias for GC
content and transcript lengths, and has low levels of crosstalk
between cell barcodes, which has been seen especially in droplet-
based RNA-seq approaches23,25. Compared to the previous
SCRB-seq protocol, mcSCRB-seq increases the power to quantify
gene expression twofold. Additionally, optimized reagents and
workflows reduce costs by a factor of three. Qualitatively, we
validate our protocol by sequencing PBMCs, a complex mixture
of different cell types. We show that mcSCRB-seq can identify the
different subpopulations and marker gene expression correctly
and distinctively detect the major cell types present in the
population.

In this context, we found that it was necessary to use different
lysis conditions for the PBMCs than for mESCs. In our experi-
ence, some cell types may require a more stringent lysis buffer to
stabilize mRNA, which might be a result of internal RNAses and/
or lower RNA content. Therefore, we also provide an alternative
lysis strategy for mcSCRB-seq to deal with more difficult cell
types or samples.

Taken together, mcSCRB-seq is—to the best of our knowledge
—not only the most sensitive protocol when benchmarked using
ERCCs, it is also the most cost-efficient and flexible plate-based
protocol currently available, and could be a valuable methodo-
logical addition to many laboratories, in particular as it requires
no specialized equipment and reagents.

Methods
cDNA yield assay. For all optimization experiments, universal human reference
RNA (UHRR; Agilent) was utilized to exclude biological variability. Unless
otherwise noted, 1 ng of UHRR was used as input per replicate. Additionally,
Proteinase K digestion and desiccation were not necessary prior to reverse tran-
scription. In order to accommodate all the reagents, the total volume for reverse
transcription was increased to 10 µl. All concentrations were kept the same, with
the exception that we added the same total amount of reverse transcriptase (25 U),
thus lowering the concentration from 12.5 to 2.5 U/µl. After reverse transcription,
no pooling was performed, rather preamplification was done per replicate. For each
sample, we measured the cDNA concentration using the Quant-iT PicoGreen
dsDNA Assay Kit (Thermo Fisher).

Comparison of reverse transcriptases. Nine reverse transcriptases, Maxima H-
(Thermo Fisher), SMARTScribe (Clontech), Revert Aid (Thermo Fisher), Enz-
Script (Biozym), ProtoScript II (New England Biolabs), Superscript II (Thermo
Fisher), GoScript (Promega), Revert UP II (Biozym), and M-MLV Point Mutant
(Promega), were compared to determine which enzyme yielded the most cDNA.
Several dilutions ranging from 1 to 1000 pg of universal human reference RNA
(UHRR; Agilent) were used as input for the RT reactions.

RT reactions contained final concentrations of 1 ×M-MuLV reaction buffer
(NEB), 1 mM dNTPs (Thermo Fisher), 1 µM E3V6NEXT barcoded oligo-dT
primer (IDT), and 1 µM E5V6NEXT template-switching oligo (IDT). For reverse
transcriptases with unknown buffer conditions, the provided proprietary buffers
were used. Reverse transcriptases were added for a final amount of 25 U per
reaction.

All reactions were amplified using 25 PCR cycles to be able to detect low inputs.

Comparison of template-switching oligos (TSO). Unblocked (IDT) and blocked
(Eurogentec) template-switching oligonucleotides were compared to determine
yield when reverse transcribing 10 pg UHRR and primer-dimer formation without
UHRR input. Reaction conditions for RT and PCR were as described above.

Effect of reaction enhancers. In order to improve the efficiency of the RT, we
tested the addition of reaction enhancers, including MgCl2, betaine, trehalose, and
polyethylene glycol (PEG 8000). The final reaction volume of 10 µl was maintained
by adjusting the volume of H2O.

For this, we added increasing concentrations of MgCl2 (3, 6, 9, and 12 mM;
Sigma-Aldrich) in the RT buffer in the presence or absence of 1M betaine (Sigma-
Aldrich). Furthermore, the addition of 1 M betaine and 0.6 M trehalose (Sigma-
Aldrich) was compared to the standard RT protocol. Lastly, increasing
concentrations of PEG 8000 (0, 3, 6, 9, 12, and 15% W/V) were also tested.

Comparison of PCR DNA polymerases. The following 12 DNA polymerases were
evaluated in preamplification: KAPA HiFi HotStart (KAPA Biosystems), SeqAmp
(Clontech), Terra direct (Clontech), Platinum SuperFi (Thermo Fisher), Precisor
(Biocat), Advantage2 (Clontech), AccuPrime Taq (Invitrogen), Phusion Flash
(Thermo Fisher), AccuStart (QuantaBio), PicoMaxx (Agilent), FideliTaq (Affy-
metrix), and Q5 (New England Biolabs). For each enzyme, at least three replicates
of 1 ng UHRR were reverse transcribed using the optimized molecular crowding
reverse transcription in 10 µl reactions. Optimal concentrations for dNTPs, reac-
tion buffer, stabilizers, and enzyme were determined using the manufacturer’s
recommendations. For all amplification reactions, we used the original SCRB-seq
PCR cycling conditions8.

Cell culture of mouse embryonic stem cells. J126 and JM827 mouse embryonic
stem cells (mESCs) were provided by the Leonhardt lab (LMU Munich) and ori-
ginally provided by Kerry Tucker (Ruprecht-Karls-University,Heidelberg) and by
the European Mouse Mutant Cell repository (JM8A3; www.eummcr.org), respec-
tively. They were used for the comparison of KAPA vs. Terra PCR amplification
(Supplementary Fig. 5c) and the comparison of SCRB-seq and mcSCRB-seq,
respectively. Both were cultured under feeder-free conditions on gelatine-coated
dishes in high-glucose Dulbecco’s modified Eagle’s medium (Thermo Fisher)
supplemented with 15% fetal bovine serum (FBS, Thermo Fisher), 100 U/ml
penicillin, 100 μg/ml streptomycin (Thermo Fisher), 2 mM L-glutamine (Thermo
Fisher), 1 ×MEM non-essential amino acids (NEAA, Thermo Fisher), 0.1 mM β-
mercaptoethanol (Thermo Fisher), 1000 U/ml recombinant mouse LIF (Merck
Millipore) and 2i (1 μM PD032591 and 3 μM CHIR99021 (Sigma-Aldrich)).
mESCs were routinely passaged using 0.25% trypsin (Thermo Fisher).
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mESC cultures were confirmed to be free of mycoplasma contamination by a
PCR-based test28.

Cell culture of human-induced pluripotent stem cells. Human-induced plur-
ipotent stem cells were generated using standard techniques from renal epi-
thelial cells obtained from a healthy donor with written informed consent in
accordance with the ethical standards of the responsible committee on human
experimentation (216–08, Ethikkommission LMU München) and with the

current (2013) version of the Declaration of Helsinki. hiPSCs were cultured
under feeder-free conditions on Geltrex (Thermo Fisher)-coated dishes in
StemFit medium (Ajinomoto) supplemented with 100 ng/ml recombinant
human basic FGF (Peprotech) and 100 U/ml penicillin, 100 μg/ml streptomycin
(Thermo Fisher). Cells were routinely passaged using 0.5 mM EDTA. Whenever
cells were dissociated into single cells using 0.5 × TrypLE Select (Thermo
Fisher), the culture medium was supplemented with 10 µM Rho-associated
kinase (ROCK) inhibitor Y27632 (BIOZOL) to prevent apoptosis.
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hiPSC cultures were confirmed to be free of mycoplasma contamination by a PCR-
based test28.

SCRB-seq cDNA synthesis. Cells were dissociated using trypsin and resuspended
in 100 µl of RNAprotect Cell Reagent (Qiagen) per 100,000 cells. Directly prior to
FACS sorting, the cell suspension was diluted with PBS (Gibco). Single cells were
sorted into 96-well DNA LoBind plates (Eppendorf) containing lysis buffer using a
Sony SH800 sorter (Sony Biotechnology; 100 µm chip) in “Single Cell (3 Drops)”
purity. Lysis buffer consisted of a 1:500 dilution of Phusion HF buffer (New
England Biolabs). After sorting, plates were spun down and frozen at −80 °C.
Libraries were prepared as previously described6,8. Briefly, proteins were digested
with Proteinase K (Ambion) followed by desiccation to inactivate Proteinase K and
reduce the reaction volume. RNA was then reverse transcribed in a 2 µl reaction at
42 °C for 90 min. Unincorporated barcode primers were digested using Exonu-
clease I (Thermo Fisher). cDNA was pooled using the Clean & Concentrator-5 kit
(Zymo Research) and PCR amplified with the KAPA HiFi HotStart polymerase
(KAPA Biosystems) in 50 µl reaction volumes.

mcSCRB-seq cDNA synthesis. A full step-by-step protocol for mcSCRB-seq has
been deposited in the protocols.io repository29. Briefly, cells were dissociated using
trypsin and resuspended in PBS. Single cells (“3 drops” purity mode) were sorted
into 96-well DNA LoBind plates (Eppendorf) containing 5 µl lysis buffer using a
Sony SH800 sorter (Sony Biotechnology; 100 µm chip). Lysis buffer consisted of a
1:500 dilution of Phusion HF buffer (New England Biolabs), 1.25 µg/µl Proteinase
K (Clontech), and 0.4 µM barcoded oligo-dT primer (E3V6NEXT, IDT). After
sorting, plates were immediately spun down and frozen at −80 °C. For libraries
containing ERCCs, 0.1 µl of 1:80,000 dilution of ERCC spike-in Mix 1 was used.

Before library preparation, proteins were digested by incubation at 50 °C for
10 min. Proteinase K was then heat inactivated for 10 min at 80 °C. Next, 5 µl
reverse transcription master mix consisting of 20 units Maxima H- enzyme
(Thermo Fisher), 2 ×Maxima H- Buffer (Thermo Fisher), 2 mM each dNTPs
(Thermo Fisher), 4 µM template-switching oligo (IDT), and 15% PEG 8000
(Sigma-Aldrich) was dispensed per well. cDNA synthesis and template switching
was performed for 90 min at 42 °C. Barcoded cDNA was then pooled in 2 ml DNA
LoBind tubes (Eppendorf) and cleaned up using SPRI beads. Purified cDNA was
eluted in 17 µl and residual primers digested with Exonuclease I (Thermo Fisher)
for 20 min at 37 °C. After heat inactivation for 10 min at 80 °C, 30 µl PCR master
mix consisting of 1.25 U Terra direct polymerase (Clontech) 1.66 × Terra direct
buffer and 0.33 µM SINGV6 primer (IDT) was added. PCR was cycled as given:
3 min at 98 °C for initial denaturation followed by 15 cycles of 15 s at 98 °C, 30 s at
65 °C, 4 min at 68 °C. Final elongation was performed for 10 min at 72 °C.

Library preparation. Following preamplification, all samples were purified using
SPRI beads at a ratio of 1:0.8 with a final elution in 10 µl of H2O (Invitrogen). The
cDNA was then quantified using the Quant-iT PicoGreen dsDNA Assay Kit
(Thermo Fisher). Size distributions were checked on high-sensitivity DNA chips
(Agilent Bioanalyzer). Samples passing the quantity and quality controls were used
to construct Nextera XT libraries from 0.8 ng of preamplified cDNA.

During library PCR, 3′ ends were enriched with a custom P5 primer
(P5NEXTPT5, IDT). Libraries were pooled and size-selected using 2% E-Gel
Agarose EX Gels (Life Technologies), cut out in the range of 300–800 bp, and
extracted using the MinElute Kit (Qiagen) according to manufacturer’s
recommendations.

Sequencing. Libraries were paired-end sequenced on high output flow cells of an
Illumina HiSeq 1500 instrument. Sixteen bases were sequenced with the first read
to obtain cellular and molecular barcodes and 50 bases were sequenced in the
second read into the cDNA fragment. When several libraries were multiplexed on
sequencing lanes, an additional 8 base i7 barcode read was done.

Primary data processing. All raw fastq data were processed using zUMIs together
with STAR to efficiently generate expression profiles for barcoded UMI data14,30.
For UHRR experiments, we mapped to the human reference genome (hg38) while
mouse cells were mapped to the mouse genome (mm10) concatenated with the
ERCC reference. Gene annotations were obtained from Ensembl (GRCh38.84 or
GRCm38.75). Downsampling to fixed numbers of raw sequencing reads per cell
were performed using the “-d” option in zUMIs.

Filtering of scRNA-seq libraries. After initial data processing, we filtered cells by
excluding doublets and identifying failed libraries. For doublet identification, we
plotted distributions of total numbers of detected UMIs per cell, where doublets
were readily identifiable as multiples of the major peak.

In order to discard broken cells and failed libraries, spearman rank correlations
of expression values were constructed in an all-to-all matrix. We then plotted the
distribution of “nearest-neighbor” correlations, i.e., the highest observed
correlation value per cell. Here, low-quality libraries had visibly lower correlations
than average cells.

Species-mixing experiment. Mouse ES cells (JM8) and human iPS cells were
mixed and sorted into a 96-well plate containing lysis buffer as described for
mcSCRB-seq using a Sony SH800 sorter (Sony Biotechnology; 100 µm chip). cDNA
was synthesized according to the mcSCRB-seq protocol (see above), but without
addition of PEG 8000 for half of the plate. Wells containing or lacking PEG were
pooled and amplified separately. Sequencing and primary data analysis was per-
formed as described above with the following changes: cDNA reads were mapped
against a combined reference genome (hg38 and mm10) and only reads with
unique alignments were considered for expression profiling.

Complex tissue analysis. PBMCs were obtained from a healthy male donor with
written informed consent in accordance with the ethical standards of the
responsible committee on human experimentation (216–08, Ethikkommission
LMUMünchen) and with the current (2013) version of the Declaration of Helsinki.
Cells were sorted into 96-well plates containing 5 µl lysis buffer using a Sony
SH800 sorter (Sony Biotechnology; 100 µm chip). Lysis buffer consisted of 5 M
Guanidine hydrochloride (Sigma-Aldrich), 1% 2-mercaptoethanol (Sigma-Aldrich)
and a 1:500 dilution of Phusion HF buffer (New England Biolabs). Before library
preparation, each well was cleaned up using SPRI beads and resuspended in a mix
of 5 µl reverse transcription master mix (see above) and 4 µl ddH2O. After the
addition of 1 µl 2 µM barcoded oligo-dT primer (E3V6NEXT, IDT), cDNA was
synthesized according to the mcSCRB-seq protocol (see above). Pooling was per-
formed by adding SPRI bead buffer. Sequencing and primary data analysis was
performed as described above using the human reference genome (hg38). We
retained only high-quality cells with at least 50,000 reads and a mapping rate above
75%. Furthermore, we discarded potential doublets that contained more than
40,000 UMIs and 5000 genes. Next, we used Seurat24 to perform normalization
(LogNormalize) and scaling. We selected the most variable genes using the
“FindVariableGenes” command (1108 genes). Next, we performed dimensionality
reduction with PCA and selected components with significant variance using the
“JackStraw” algorithm. Statistically significant components were used for shared
nearest-neighbor clustering (FindClusters) and tSNE visualization (RunTSNE).
Log-normalized expression values were used to plot marker genes.

Estimation of cellular mRNA content. For the estimation of cellular mRNA
content in mESCs, we utilized the known total amount of ERCC spike-in molecules
added per cell. First, we calculated a detection efficiency as the fraction of detected
ERCC molecules by dividing UMI counts to total spiked ERCC molecule counts.
Next, dividing the total number of detected cellular UMI counts by the detection
efficiency yields the number of estimated total mRNA molecules per cell.

ERCC analysis. In order to estimate sensitivity from ERCC spike-in data, we
modeled the probability of detection in relation to the number of spiked molecules.
An ERCC transcript was considered detected from 1 UMI. For each cell, we fitted a
binomial logistic regression model to the detection of ERCC genes given their input
molecule numbers. Using the MASS R-package, we determined the molecule
number necessary for 50% detection probability.

For public data from Svensson et al.5, we used their published molecular
abundances calculated using the same logistic regression model obtained from
Supplementary Table 2 (https://www.nature.com/nmeth/journal/v14/n4/extref/
nmeth.4220-S3.csv). For Quartz-seq217, we obtained expression values for ERCCs
from Gene Expression Omnibus (GEO; GSE99866), sample GSM2656466; for
Chromium23 we obtained expression tables from the 10 × Genomics webpage
(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/ercc)
and for SCRB-seq, Smart-seq2, CEL-seq2/C1, MARS-seq and Smart-seq/C16, we
obtained count tables from GEO (GSE75790). For these methods, we calculated
molecular detection limits given their published ERCC dilution factors.

Power simulations. For power simulation studies, we used the powsimR pack-
age22. Parameter estimation of the negative binomial distribution was done using
scran normalized counts at 500,000 raw reads per cell31. Next, we simulated two-
group comparisons with 10% differentially expressed genes. Log2 fold-changes
were drawn from a normal distribution with a mean of 0 and a standard deviation
of 1.5. In each of the 25 simulation iterations, we draw equal sample sizes of 24, 48,
96, 192 and 384 cells per group and test for differential expression using ROTS32

and scran normalization31.

Batch effect analysis. In order to detect genes differing between batches of one
scRNA-seq protocol, data were normalized using scran31. Next, we tested for
differentially expressed genes using limma-voom33,34. Genes were labeled as sig-
nificantly differentially expressed between batches with Benjamini–Hochberg
adjusted p values <0.01.

Code availability. Analysis code to reproduce major analyses can be found at
https://github.com/cziegenhain/Bagnoli_2017.

Data availability. RNA-seq data generated here are available at GEO under
accession GSE103568.
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Further data including cDNA yield of optimization experiments is available on
GitHub (https://github.com/cziegenhain/Bagnoli_2017). A detailed step-by-step
protocol for mcSCRB-seq has been submitted to the protocols.io repository
(mcSCRB-seq protocol 2018). All other data available from the authors upon
reasonable request.
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Supplementary Figure 1 

Supplementary Figure 1: Schematic overview and optimization of reverse 
transcription

a) Low amounts (1-1000pg) of universal human reference RNA (UHRR) were used in 
optimization experiments. We assessed components affecting reverse transcription and 
PCR amplification with respect to cDNA yield and cDNA quality and verified effects on gene 
and transcript sensitivity by sequencing scRNA-seq libraries to develop the mcSCRB-seq 
protocol. 
b) cDNA yield (ng) after reverse transcription with oligo-dT primers already in the lysis buffer 
(“in Lysis”) or separately added before reverse transcription (“in RT”). Each dot represents a 
replicate and each box represents the median and first and third quartiles. The condition 
selected for the final mcSCRB-seq protocol is highlighted in blue. 
c) cDNA yield (ng) dependent on varying UHRR input using 9 different RT enzymes. Each 
dot represents a replicate. Lines were fitted using local regression. The condition selected 
for the final mcSCRB-seq protocol is highlighted in blue. 
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Supplementary Figure 2 

Supplementary Figure 2: Optimization of reverse transcription conditions. 
Shown are relative cDNA yields after reverse transcription and PCR amplification of UHRR 
using: 
a) varying amounts of reverse transcriptase enzyme (15-25 units, Maxima H-; 1 ng UHRR 
input per replicate)  
b) varying amounts of oligo-dT primer (E3V6; 1 ng UHRR input per replicate)  
c) blocked or unblocked Template switching oligo (TSO, E5V6; 10 pg UHRR per replicate) 
d) relative primer dimer yield using blocked or unblocked Template switching oligo (TSO, 
E5V6) estimated using no-input controls (see Methods). 
All values are relative to the median of the condition used in the original SCRB-seq 
protocol1, which is indicated by a dashed horizontal line. Each dot represents a replicate and 
each box represents the median and first and third quartiles method. Numbers above boxes 
indicate p-values (Welch Two Sample t-test).  
Optimized conditions selected for the mcSCRB-seq protocol are marked in blue. 
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Supplementary Figure 3 

Supplementary Figure 3: Reverse transcription yield is increased by molecular 
crowding.  
cDNA yield as well as representative length distributions (Bioanalyzer traces, bottom) using 
various additives in the reverse transcription and template switching reaction.  
Each dot represents a replicate, lines represent the median and boxes the first and third 
quartile. Stars above boxes indicate p-values < 0.05 (Welch Two Sample t-test) 
a) Influence of MgCl2 and Trehalose on cDNA synthesis (1 ng UHRR input per replicate; 21 
PCR cycles).  
b) Concentration-dependent influence of PEG 8000 on cDNA yield (100 pg UHRR input per 
replicate; 23 PCR cycles).  
c) Effect of 7.5%  PEG 8000 (100 pg UHRR input per replicate; 23 PCR cycles).  
d) Concentration-dependent generation of unspecific reverse transcription products (0 pg 
UHRR input per replicate; 23 PCR cycles). 
The conditions selected for the final mcSCRB-seq protocol are highlighted in blue. 

*

***

0

50

100

150

200

None 12 mM MgCl2 0.6 M Trehalose
Enhancers

cD
N

A 
yi

el
d 

(n
g)

100

200

300

0% 3% 6% 9% 12% 15%
concentration of PEG

cD
N

A 
yi

el
d 

(n
g)

***

0

40

80

120

0% PEG 7.5% PEG

cD
N

A 
yi

el
d 

(n
g)

None 12 mM MgCl2 0.6 M Trehalose

100 10000 100 10000 100 10000
0

100

200

300

[bp]

[F
U

]

0% PEG 12.5% PEG 25% PEG

100 10000 100 10000 100 10000
0

50
100
150
200

0
50

100
150
200

0

200

400

600

800

[bp]

[F
U

]

0% PEG 7.5% PEG

100 10000 100 10000
0

30

60

90

[bp]

[F
U

]

A B C

Figure 3.4: Comparison of Reverse Transcription Enhancers
(A) The addition of MgCl2 (12 mM) and betaine (1 M) significantly decreased
the cDNA yield (p-value = 0.0001, Wilcoxon test). The cDNA distribution
was also greatly impacted as evident by the Bioanalyzer plots. The addition
of trehalose (0.6 M) and betaine (1 M) also significantly decreased the cDNA
yield (p-value = 0.02, Wilcoxon test). The cDNA distribution, however, was
not greatly impacted. (B) Concentration curve of 0-15% PEG used as an RT
enhancer. As PEG was increased, cDNA yield increased. However, high concen-
trations of PEG increased unspecific products, as evident in the Bioanalyzer plots.
(C) Comparison of 0% PEG and 7.5% PEG with 16 replicates, showing that
7.5% PEG significantly increases cDNA yield, while producing cDNA fragments
of ideal lengths (p-value = 9.1 x10≠5, Wilcoxon test).

was examined, however, unspecific products were found at higher concentrations

of PEG. Therefore, a concentration of 7.5% was chosen as the cDNA yield was still

increased and specificity was retained (Figure 3.3 B and Figure 6.2). When 7.5%

PEG as an RT enhancer was further tested, cDNA yield was significantly increased

(p-value = 9.1 x10≠5, Wilcoxon test) (Figure 3.4 C).

3.6 KAPA and SeqAmp Improve cDNA Yield in

Pre-amplification

Pre-amplification is a necessary step in scRNA-seq, as there is a very low amount of

RNA in the input material. Although essential, amplification can cause biases and

noise (Parekh et al., 2017). By optimizing pre-amplification, the total cycle number

can be reduced, which would alleviate some bias.
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Supplementary Figure 4 

 

Supplementary Figure 4: Sequencing of UHRR samples. 
10 pg of UHRR where used as input for eight replicates for each of the four protocol variants 
(Supplementary Table 1). 
a) cDNA yield (ng) after PCR amplification per method. Each dot represents a replicate and 
each box represents the median and first and third quartiles per method. 
b) Libraries were generated and sequenced from the above cDNA, downsampled to one 
million reads per library and mapped. Shown are the percentage of sequencing reads that 
cannot be mapped to the human genome (red), mapped to ambiguous genes (brown), 
mapped to intergenic regions (orange), inside introns (teal) or inside exons (blue).  
Note the higher fraction of reads mapping to intergenic regions, especially in the molecular 
crowding condition. As UHRR is provided as DNAse-digested RNA, these reads are likely 
derived from endogenous transcripts, although it is unclear why these are proportionally 
more detected than annotated transcripts only in the molecular crowding protocol. This is 
also not generally observed for molecular crowding conditions, as SCRB-seq and mcSCRB-
seq protocols have the same fraction (~25%) of intergenic reads mapped when single 
mouse ES cells are used (Supplementary Figure 7c). 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Supplementary Figure 5 
 

Supplementary Figure 5: Optimization of PCR amplification. 
a) Relative cDNA yield after reverse transcription of 1 ng UHRR and amplification using 
different polymerase enzymes or ready mixes. All values are relative to the median of KAPA 
HiFi which is indicated by a dashed vertical line, as this was used in the SCRB-seq protocol 
variant of Ziegenhain et al.2. Solid vertical lines indicate the median for each polymerase. 
b) Top: Representative length quantification of cDNA libraries amplified with KAPA HiFi 
(green) or SeqAmp (purple) as quantified by capillary gel electrophoresis (Agilent 
Bioanalyzer). Solid vertical lines depict the ranked mean length for each library within the 
region marked with dashed vertical lines. Bottom: Depiction of time length model (spline fit) 
used to analyze capillary gel electrophoresis via the ladder. Each dot represents a ladder 
peak with known length (bp) and measurement time (sec). 
c) Relative amount of detected UMIs in single mESCs (J1) downsampled to 1 million reads 
using KAPA-HiFi or Terra for cDNA amplification. For both conditions, molecular crowding 
conditions (7.5% PEG 8000) were used during reverse transcription. Each dot represents a 
cell and horizontal lines indicate the median per polymerase. 
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Supplementary Figure 6 

Supplementary Figure 6: Species mixing experiment for mcSCRB-seq 
Human induced pluripotent stem cells and Mouse embryonic stem cells were mixed and 
sorted in a 96-well plate. cDNA was synthesized using the mcSCRB-seq protocol in absence 
and presence of PEG.  
a) For each cell barcode, uniquely aligning reads to human or mouse gene features are 
shown in a dot plot. No doublets were observed, as expected from single-cell purity FACS 
sorting. 
b) Each cell barcode was classified to be a human or mouse cell. Shown are the number of 
reads aligning to the wrong species for each of the cell barcodes. There is no significant 
difference between the protocols with and without PEG (two-sided t-test, p-value=0.81). 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Supplementary Figure 7 
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Supplementary Figure 7: Libraries from single mESCs generated with mcSCRB-seq 
and SCRB-seq protocols. 
a) Scatter plots showing FACS data with forward (FS(c) and backward (BS(c) scatter 
intensities of one vial of mESCs (JM8) resuspended in PBS (mcSCRB-seq) or resuspended 
in RNAProtect Cell Reagent (SCRB-seq). Each dot represents an event. Coloured dots 
represent events that were sorted for scRNA-seq libraries in the four plates as depicted in b. 
b) UMI counts for each cell by method (SCRB-seq/ mcSCRB-seq) and replicate (48 cells/ 96 
cells) are shown in their respective position in 96-well plates. Point sizes indicate the number 
of detected UMIs. Colouring indicates whether a cell passed (green) or failed (red) the 
Quality Control (QC) as described (see Methods).  
c) Percentage of reads that cannot be mapped to the human genome (red), are mapped 
ambiguously (brown), are mapped to intergenic regions (orange), inside introns (teal) or 
inside exons (blue). Each box represents the median and first and third quartiles of cells that 
passed QC for each method. 

142 2. Results



Supplementary Figure 8 

 
 

Supplementary Figure 8: Sensitivity of SCRB-seq and mcSCRB-seq protocols. 
a) Relative increase in the median of detected UMIs dependent on raw sequencing depth 
(reads) using mcSCRB-seq compared to SCRB-seq. Each symbol represents the median 
over all cells at the given sequencing depth. The size of symbols depicts the number of cells 
(SCRB-seq + mcSCRB-seq) that were considered to calculate the median. The 95% 
confidence interval of a local regression model is depicted by the shaded area.  
b) For each mcSCRB-seq cell that could be downsampled to 2 million reads, the number of 
UMIs from endogenous genes is plotted on the x axis (median at 102,282 UMIs per cell) and 
the fraction of UMI- ERCCs from the total amount of spiked-in ERCCs (70,000) is plotted on 
the y-axis (median 0.49). These values where used to calculate the histogram shown in  
c) where for each cell the number of endogenous UMIs is divided by the fraction of ERCCs 
that were detected in that cell. Using the median of this distribution (dotted line) was set at 
100% for the graph in  
d) in which the percentage of cellular mRNAs is plotted for each cell at different sequencing 
depths. 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Supplementary Figure 9 
 
 

 

 

Supplementary Figure 9: Sensitivity of SCRB-seq and mcSCRB-seq protocols by 
genes. 
a) Number of detected genes per cell and method (SCRB-seq/mcSCRB-seq) at a 
sequencing depth of 500,000 reads per cell (downsampled). Each dot represents a cell and 
each box represents the median and first and third quartiles.  
b) Number of detected genes per cell and method (SCRB-seq/mcSCRB-seq) dependent on 
sequencing depth (reads). Each box represents the median and first and third quartiles per 
sequencing depth and method. Sequencing depths and genes are plotted on a logarithmic 
axis (base 10). 
c) Number of detected genes at a sequencing depth of 500,000 reads per cell 
(downsampled) dependent on the number of cells considered. 
d) Gene detection reproducibility is displayed as the fraction of cells detecting a given gene. 
Dashed line and label indicate the median of the distribution. 
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Supplementary Figure 10 

 

Supplementary Figure 10: Variation parameters of SCRB-seq and mcSCRB-seq 
protocols by genes. 
Variation and mean were calculated for each gene and method in cells downsampled to 
500,000 reads using either UMIs per gene or reads per gene. 
a) Gene-wise mean and coefficient of variation (standard deviation/mean) from all cells are 
shown as scatterplots for all methods based on read counts or UMIs. The black line 
indicates variance according to the poisson distribution.  
b) Extra-Poisson variability across 12,086 reliably detected genes (detected in > 10% of 
cells) was calculated by subtracting the expected amount of variation due to Poisson 
sampling from the coefficient of variation (CV) measured in read-count or UMI quantification. 
Distributions are shown as violin plots and medians are shown as bars. Numbers indicate 
the median for each distribution. 
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Supplementary Figure 11 
 
 

Number of sig. genes: 115 Number of sig. genes: 1121

mcSCRB−seq SCRB−seq

−2 −1 0 1 2 −2 −1 0 1 2
0.0

2.5

5.0

7.5

10.0

log2 fold−change

−l
og

10
(a

dj
us

te
d 

p−
va

lu
e)

A

47 1318 3717 3580 2406 720 127 45 1313 3702 3562 2399 715 126

mcSCRB−seq SCRB−seq

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript % GC

Av
er

ag
e 

Ex
pr

es
si

on

B

5275 3061 1818 944 429 176 103 46 63 5246 3045 1815 940 426 176 104 47 63
mcSCRB−seq SCRB−seq

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript length

Av
er

ag
e 

Ex
pr

es
si

on

C

FDR TPR

24
 vs

 24

48
 vs

 48

96
 vs

 96

19
2 v

s 1
92

38
4 v

s 3
84

24
 vs

 24

48
 vs

 48

96
 vs

 96

19
2 v

s 1
92

38
4 v

s 3
84

0.00

0.25

0.50

0.75

0.00

0.05

0.10

Number of cells

R
at

e

mcSCRB−seq SCRB−seqA

96−well plate

384−well plate

0 20 40 60
Library preparation cost/cell (cents)

Clean−up / quantification   
Nextera XT Kit
Oligonucelotides

PCR amplification
Plasticware
Reverse Transcription  

B

Hands−on

Hands−off

0 100 200 300
Preparation time (minutes)

cDNA synthesis
Clean−up / quantification

Nextera XT
PCR amplification

C

FDR TPR

24
 vs

 24

48
 vs

 48

96
 vs

 96

19
2 v

s 1
92

38
4 v

s 3
84

24
 vs

 24

48
 vs

 48

96
 vs

 96

19
2 v

s 1
92

38
4 v

s 3
84

0.00

0.25

0.50

0.75

0.00

0.05

0.10

Number of cells

R
at

e

mcSCRB−seq SCRB−seqA

96−well plate

384−well plate

0 20 40 60
Library preparation cost/cell (cents)

Clean−up / quantification   
Nextera XT Kit
Oligonucelotides

PCR amplification
Plasticware
Reverse Transcription  

B

Hands−on

Hands−off

0 100 200 300
Preparation time (minutes)

cDNA synthesis
Clean−up / quantification

Nextera XT
PCR amplification

C

Number of sig. genes: 115 Number of sig. genes: 1121

mcSCRB−seq SCRB−seq

−2 −1 0 1 2 −2 −1 0 1 2
0.0

2.5

5.0

7.5

10.0

log2 fold−change

−l
og

10
(a

dj
us

te
d 

p−
va

lu
e)

A

47 1318 3717 3580 2406 720 127 45 1313 3702 3562 2399 715 126

mcSCRB−seq SCRB−seq

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript % GC

Av
er

ag
e 

Ex
pr

es
si

on

B

5275 3061 1818 944 429 176 103 46 63 5246 3045 1815 940 426 176 104 47 63
mcSCRB−seq SCRB−seq

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript length

Av
er

ag
e 

Ex
pr

es
si

on

C

Number of sig. genes: 115 Number of sig. genes: 1121

mcSCRB−seq SCRB−seq

−2 −1 0 1 2 −2 −1 0 1 2
0.0

2.5

5.0

7.5

10.0

log2 fold−change

−l
og

10
(a

dj
us

te
d 

p−
va

lu
e)

A

47 1318 3717 3580 2406 720 127 45 1313 3702 3562 2399 715 126

mcSCRB−seq SCRB−seq

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript % GC

Av
er

ag
e 

Ex
pr

es
si

on

B

5275 3061 1818 944 429 176 103 46 63 5246 3045 1815 940 426 176 104 47 63
mcSCRB−seq SCRB−seq

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript length

Av
er

ag
e 

Ex
pr

es
si

on

C

Number of sig. genes: 115 Number of sig. genes: 1121

mcSCRB−seq SCRB−seq

−2 −1 0 1 2 −2 −1 0 1 2
0.0

2.5

5.0

7.5

10.0

log2 fold−change

−l
og

10
(a

dj
us

te
d 

p−
va

lu
e)

A

47 1318 3717 3580 2406 720 127 45 1313 3702 3562 2399 715 126

mcSCRB−seq SCRB−seq

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript % GC

Av
er

ag
e 

Ex
pr

es
si

on

B

5275 3061 1818 944 429 176 103 46 63 5246 3045 1815 940 426 176 104 47 63
mcSCRB−seq SCRB−seq

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript length

Av
er

ag
e 

Ex
pr

es
si

on

C

Number of sig. genes: 115 Number of sig. genes: 1121

mcSCRB−seq SCRB−seq

−2 −1 0 1 2 −2 −1 0 1 2
0.0

2.5

5.0

7.5

10.0

log2 fold−change

−l
og

10
(a

dj
us

te
d 

p−
va

lu
e)

A

47 1318 3717 3580 2406 720 127 45 1313 3702 3562 2399 715 126

mcSCRB−seq SCRB−seq

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript % GC

Av
er

ag
e 

Ex
pr

es
si

on

B

5275 3061 1818 944 429 176 103 46 63 5246 3045 1815 940 426 176 104 47 63
mcSCRB−seq SCRB−seq

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript length

Av
er

ag
e 

Ex
pr

es
si

on

C

Number of sig. genes: 115 Number of sig. genes: 1121

mcSCRB−seq SCRB−seq

−2 −1 0 1 2 −2 −1 0 1 2
0.0

2.5

5.0

7.5

10.0

log2 fold−change

−l
og

10
(a

dj
us

te
d 

p−
va

lu
e)

A

47 1318 3717 3580 2406 720 127 45 1313 3702 3562 2399 715 126

mcSCRB−seq SCRB−seq

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript % GC

Av
er

ag
e 

Ex
pr

es
si

on

B

5275 3061 1818 944 429 176 103 46 63 5246 3045 1815 940 426 176 104 47 63
mcSCRB−seq SCRB−seq

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]
1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript length

Av
er

ag
e 

Ex
pr

es
si

on

C

Number of sig. genes: 115 Number of sig. genes: 1121

mcSCRB−seq SCRB−seq

−2 −1 0 1 2 −2 −1 0 1 2
0.0

2.5

5.0

7.5

10.0

log2 fold−change

−l
og

10
(a

dj
us

te
d 

p−
va

lu
e)

A

47 1318 3717 3580 2406 720 127 45 1313 3702 3562 2399 715 126

mcSCRB−seq SCRB−seq
(2

0,
35

]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

(2
0,

35
]

(3
5,

40
]

(4
0,

45
]

(4
5,

50
]

(5
0,

55
]

(5
5,

60
]

(6
0,

80
]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript % GC

Av
er

ag
e 

Ex
pr

es
si

on

B

5275 3061 1818 944 429 176 103 46 63 5246 3045 1815 940 426 176 104 47 63
mcSCRB−seq SCRB−seq

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

(0
,1

00
0]

(1
00

0,
20

00
]

(2
00

0,
30

00
]

(3
00

0,
40

00
]

(4
00

0,
50

00
]

(5
00

0,
60

00
]

(6
00

0,
70

00
]

(7
00

0,
80

00
]

(8
00

0,
12

31
79

]

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Transcript length

Av
er

ag
e 

Ex
pr

es
si

on

C

a d

b

c

146 2. Results



Supplementary Figure 11: Batch effects, biases and power analysis of SCRB-seq and 
mcSCRB-seq protocols 
a) Volcano plots show differentially expressed genes between plates for each method. 
 Points in red depict significantly differentially expressed genes (limma-voom; FDR < 0.01). 
Red labels show the number of differentially expressed genes between batches. 
b) Average detected gene-wise expression levels (log normalized UMI) dependent on GC 
content of each transcript. Transcripts are grouped in 7 bins of GC content. Each dot 
represents an outlier and each box represents the median and first and third quartiles. 
c) Average detected gene-wise expression levels (log normalized UMI) dependent on 
transcript length. Transcripts lengths are grouped in 7 bins and number of genes in each bin 
are indicated. Each dot represents an outlier and each box represents the median and first 
and third quartiles. 
d) Power simulations were performed using the powsimR package3 from empirical 
parameters estimated at 500,000 raw reads per cell. For SCRB-seq and mcSCRB-seq, we 
simulated n-cell two-group differential gene expression experiments with 10% differentially 
expressed genes. Shown is the false discovery rate (“FDR”) for sample sizes  
n = 24, n = 48, n = 96, n = 192 and n = 384 per group. The corresponding true positive rate 
is shown in Figure 2b. Boxplots represent the median and first and third quartiles of 25 
simulations. Dashed lines indicate the desired nominal level. 
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Supplementary Figure 12 
 

 

Supplementary Figure 12: Costs and preparation time of mcSCRB-seq 
a) Library preparation costs (Eurocents) per cell. Colors indicate the consumable type based 
on list prices (see Supplementary Table 3). Costs also apply if four 96-well plates are pooled 
for PCR amplification and Nextera 
b) Library preparation time for one 96-well plate of mcSCRB-seq libraries was measured for 
bench times (“Hands-on”) and incubation times (“Hands-off”). Colors indicate the library 
preparation step. The total time was 7.5 hours. (see Supplementary Table 4) 
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Supplementary Figure 13 

 

Supplementary Figure 13 : Comparison of mcSCRB-seq to other scRNA-seq data 
based on ERRCC spike-in detection probability 
a) Shown is the detection (0 or 1) of the 92 ERCC transcripts in an average cell processed 
with mcSCRB-seq at 2 million reads coverage. Points and solid line represent the ERCC 
genes with their logistic regression model. Dashed lines and label indicate the number of 
ERCC molecules required for a detection probability of 50%. 
b) Number of ERCC molecules required for 50% detection probability dependent on the 
sequencing depth (reads) for mcSCRB-seq. Each each box represents the median, first and 
third quartiles of cells per sequencing depth with dots marking outliers. A non-linear 
asymptotic fit is depicted as a solid black line. 
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Supplementary Figure 14 

Supplementary Figure 14: Quality control of PBMC data 
a) Scatter plot shows each of the 384 sequenced PBMC cells with the number of sequenced 
reads and the % of those reads mapped to the human genome. Dashed lines indicate 
quality filtering cut-offs chosen. Colors indicate QC passed cells (blue) or discarded cells 
(grey).  
b) Cell-wise detected genes (>=1 UMI) and detected UMIs are shown for all cells that 
passed quality control (n=349). 
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Supplementary Table 1 

Supplementary Table 1: Overview of used enzymes and enhancers in UHRR based 
experiments. 

protocol variant Soumillon Ziegenhain SmartScribe molecular 
crowding

Reverse 
transcriptase

Maxima H- Maxima H- SmartScribe Maxima H-

Buffer enhancer none none none 7.5% PEG

PCR polymerase Advantage2 KAPA HiFi KAPA HiFi KAPA HiFi
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Supplementary Table 2 

Supplementary Table 2: Overview of the key differences between SCRB-seq as used in 
Ziegenhain et al.2 and mcSCRB-seq (this work).  

SCRB-seq mcSCRB-seq

Lysis Phusion HF Phusion HF + Proteinase 
K + oligo-dT primers

Cell suspension RNAprotect PBS

Proteinase K Ambion Clontech

oligo-dT concentration 1 µM 0.2 µM

reverse transcription 
volume

2 µl 10 µl

RT amount 25 U 20 U

RT enhancer none 7.5% PEG

TSO modification 5’-blocking none

TSO concentration 1 µM 2 µM

Pooling Zymo Clean & 
Concentrator

magnetic beads

PCR polymerase KAPA HiFi Terra direct

PCR cycles 18-21 13-15

Protocol speed 2 days 1 day

Cost per cell 1-2 € 0.4-0.6 €
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Supplementary Table 3 

Supplementary Table 3. Detailed overview of costs for mcSCRB-seq. 

consumable price/unit # 384 plates price/384 plate

Barcode oligo-dT 24.000,00 € 5000 4,80 €

TSO E5V6unblocked 453,40 € 50 9,07 €

Maxima RT 554,00 € 5 110,80 €

Exonuclease I 327,00 € 1000 0,33 €

Clontech Terra 551,00 € 800 0,69 €

Nextera XT 3.002,00 € 96 31,27 €

dNTPs 1.236,00 € 125 9,89 €

Beads 20,00 € 10 2,00 €

Picogreen 542,00 € 400 1,36 €

PCR Seal 500,00 € 1000 0,50 €

PCR Plate/96 140,00 € 0 0,00 €

PCR Plate/384 195,00 € 25 7,80 €

Tips/96 36,50 € 0 0,00 €

Robotic tips/384 290,00 € 10 29,00 €

Total 207,50 €

Total/cell 0,54 €
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Supplementary Table 4 

Supplementary Table 4. Detailed overview of hands-on and hands-off time necessary to 
create a sequenceable mcSCRB-seq library from one single cell plate. 

Task
Hands-on 
(min)

Hands-off 
(min)

suggested 
start time Stopping point? Note

Prepare workplace 10 09:00

Proteinase K digest 10 10 09:10

Meanwhile 
prepare RT 
Master-Mix

Dispense RT Mix 5 09:30

RT 90 09:35

Pool + Clean-up 35 10 11:05 <72h @ 4°C

ExoI 30 11:50

PCR set-up 5,00 12:20

PCR 100 12:25

PCR clean-up 20,00 14:05

1 week @ 4°C or 
long-term @ -20 
°C

Quantify cDNA 5,00 14:25

Nextera: Transposition + 
PCR set-up 20 10 14:30

Nextera XT PCR 40 15:00

PCR clean-up 15,00 15:40

1 week @ 4 °C or 
long-term @ -20 
°C

Gel-excision & clean-up 25 10 15:55

1 week @ 4 °C or 
long-term @ -20 
°C

16:30

total time 150 300
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Abstract

Studying dynamic processes across the primate phylogeny using transcriptomics can help to

better understand the molecular basis of phenotypes and diseases. Conserved gene expression

patterns can hint to functional importance and might serve as a basis for further studies, for

example by identifying sets of genes or pathways that are essential for the process of interest.

Here, we aim to further strengthen this hypothesis by investigating a dynamic process in a

cross-species differentiation context. We investigated early neural differentiation in three

primate species across six time points using single cell RNA-sequencing. After aligning

temporal expression trajectories across species to make them comparable, we identified a

set of genes that are consistently and constantly upregulated during differentiation, in all

species. We found that this set of genes is significantly enriched for transcription factors

that are known to play a role during early neural differentiation. Moreover, the genes with

conserved expression upregulation show a higher probability of being mutation intolerant than

genes with less conserved patterns and a substantial fraction of these genes are associated

with neurodevelopmental disorders. A deeper understanding of the link between regulatory

conservation and functional relevance will strengthen the confidence when addressing less

commonly investigated cellular processes and help to prioritize particular dysregulated genes

in the context of disease.
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Abstract  

Studying dynamic processes across the primate phylogeny using transcriptomics can help to 

better understand the molecular basis of phenotypes and diseases. Conserved gene expression 

patterns can hint to functional importance and might serve as a basis for further studies, for 

example by identifying sets of genes or pathways that are essential for the process of interest. 

Here, we aim to further strengthen this hypothesis by investigating a dynamic process in a 

cross-species differentiation context. We investigated early neural differentiation in three 

primate species across six timepoints using single cell RNA-sequencing. After aligning temporal 

expression trajectories across species to make them comparable, we identified a set of genes 

that are consistently and constantly upregulated during differentiation, in all species. We found 

that this set of genes is  significantly enriched for transcription factors that are known to play 

a role during early neural differentiation. Moreover, the genes with conserved expression 

upregulation during cell-state transition towards neural progenitors show a higher probability 

of being mutation intolerant than genes with less conserved patterns and a substantial fraction 

of these genes are associated with neurodevelopmental disorders. A deeper understanding of 

the link between regulatory conservation and functional relevance will strengthen the 

confidence when addressing less commonly investigated cellular processes and help to prioritize 

particular dysregulated genes in the context of disease.  

2.4 A comparative study of neural differentiation in primates 159



 

Background 

Linking genetic to phenotypic changes is an essential, yet a highly challenging task in biology. 

An evolutionary perspective can shed light on this relationship through the traces that 

adaptation and constraint have left in different biological systems. This has been shown 

especially on the DNA level, however the emerging technologies and systems allow to start 

addressing this question also on a more cellular-system and context specific level, for example 

expression. Hence, a comparative approach enables us to identify rules of regulatory changes 

and help to differentiate between important and more spurious links and nodes in regulatory 

networks (Fair et al., 2020; Wunderlich et al., 2014). However, investigating early embryonic 

developmental processes in humans and our closest relatives, the non-human primates (NHPs), 

is challenging, not only because of the difficult acquisition of the primary material, but also 

because of substantiated ethical concerns. Induced pluripotent stem cells (iPSCs) of a wide 

range of primates have the potential to bridge this gap, as they can be differentiated in culture 

to almost any desired cell type and therefore mimic early developmental processes in vitro 

(Blake et al., 2018; Fair et al., 2020; Kanton et al., 2019; Marchetto et al., 2013; Wunderlich 

et al., 2014).  

Here we have utilized previously generated iPSCs of human, gorilla and cynomolgus macaques 

(Geuder et al., 2021) to investigate the neural induction process using single cell 

transcriptomics. In order to identify conserved gene expression patterns to infer functional 

relevance, we analyzed cell compositions, reconstructed the differentiation trajectories and 

compared these between the species. We found that the cynomolgus cells differentiated at a 

faster rate than human and gorilla cells. To account for these differences we ordered the cells 

along a common pseudotime and identified a set of differentially expressed genes between early 

and late differentiation stages shared across the species. Furthermore, we found that genes 

that are constantly and consistently upregulated along the differentiation trajectory are 

significantly enriched for transcriptional regulators, show low tolerance to mutations and a 

substantial fraction of them are associated with neurodevelopmental disorders. With this 

approach we demonstrate the usefulness and strength of the evolutionary perspective when 

investigating dynamic processes to identify relevant patterns through conserved gene 

expression and regulation.  
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Results  

Study design and data collection of the iPSC-based system 

To investigate the similarities and differences of gene expression during neural differentiation 

between human, gorilla and cynomolgus macaque, we differentiated iPSCs via dual-SMAD 

inhibition (Chambers et al., 2009; Ohnuki et al., 2014) and sampled at six different timepoints 

during the course of neural maturation (Figure 1A). To validate the differentiation on the 

protein level we cryosectioned and stained the spheres for OCT4 and PAX6, markers 

commonly used to identify pluripotent cells and neural stem cells, respectively. In addition we 

performed plate based single cell RNA-seq at these six timepoints to investigate the 

transcriptional landscapes of the different primate iPSCs during this dynamic process.  

At each timepoint we obtained data of at least one clone per species. Cynomolgus reads were 

mapped to mmul10 and human and gorilla reads were mapped to hg38 in accordance with the 

findings in (Parekh, Vieth, et al., 2018). Possible mapping issues through bad annotations were 

dealt with by extending the ends and only 1:1 human-macaque orthologs were considered 

resulting in a total of 9,522 genes and 4,169 cells. We aligned the differentiation trajectories 

between the species using a pseudo temporal-approach and intersected differentially expressed 

genes between early and late pseudotime stages between the species and defined conserved 

patterns of gene expression along the differentiation trajectory from iPSCs to NPCs. 

Eventually we identify conserved expression patterns between the species and characterize 

these lists of genes further (Supplementary Figure S1).  

Modeling early neural differentiation in human, gorilla and cynomolgus 

cells   

We stained the generated neural spheres at six timepoints (Fig. 1B) using OCT4 as a 

pluripotency marker and PAX6 as a neural marker. Although the observed timing seems to 

differ between species and clones (Supplementary Figure S2), all samples showed a comparable 

progression from OCT4 positive pluripotent cells to PAX6 positive NPCs, equal fractions of 

OCT4/PAX6  positive cells occurred around day 3 in all species, corresponding to the 

respective RNA expression dynamics derived from single cell RNA-seq data (Supplementary 

Figure S2). To verify the identity of the cells we classified them using SingleR (Aran et al., 
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2019) and the human primary cell atlas (Mabbott et al., 2013) as reference. As expected, cells 

from day 0 and 1 were classified as pluripotent cells, either as iPSCs or embryonic stem cells. 

From day 3 on the majority of the cells of each species was classified as either neuroepithelial 

cells, neurons or astrocytes, although some pluripotent cells could still be detected. Between 

day 5 and day 9 neural cells could be detected almost exclusively in gorilla and human. The 

cynomolgus, however, contained a fraction of cells that were neither pluripotent, nor of neural 

origin (Figure 1C); these 188 cells (4.5% of cynomolgus cells) were excluded from all further 

analyses, resulting in a total of 3981 cells for further analyses.  

Principal component analysis of the clone corrected data shows a clear separation of the 

different sampling days for all of the species (Figure 1C). Day 0 and 1 cluster closely together 

and clearly separate from the further differentiated cells from day 3 to day 9, the former cluster 

shows a high expression of the pluripotency factor NANOG, whereas the latter expresses high 

levels of PAX6 in all 3 species (Figure 1E).  

When looking at the sampling of the three species separately, it is apparent that human and 

gorilla cells are continuously distributed along the trajectory, whereas the cynomolgus sampling 

is sparse for the intermediate stage. A potential explanation is that the cynomolgus cells 

progress faster into the NPC state.  
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Figure 2: Differentiation validation  

A) iPSCs from 3 different species were differentiated to neural precursor cells (NPCs). At six 

distinct timepoints, cells were sampled for Immunocytochemistry to verify the differentiation 

to NPCs and for scRNA-seq. B) Immunocytochemistry staining shows that all lines 

differentiated from pluripotent iPSC (Oct4 positive) to NPCs (Pax6 positive) C) Classification 

of scRNA seq results using singleR (Aran et al., 2019)and HPCA (Mabbott et al., 2013). Some 

cynomolgus cells differentiated in another or further direction than neural progenitorsD) Clone 

corrected PCA. iPSCs from day 0 and 1 separate clearly from cells that differentiated already 

further E) POU5F1 (OCT4) is expressed in the day 0/ day 1 cluster, whereas PAX6 expression 

is predominantly present in the later stages of differentiation.  
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Cynomolgus iPSCs differentiate faster than human and gorilla iPSCs 

To compare the different cell states and account for potential differences in the differentiation 

pace, we ordered the cells along pseudotime (pt). Consistent with previous studies (Field et 

al., 2019) we find the cynomolgus cells to progress faster than human and gorilla cells (Figure 

3A). We scaled and binned the pseudotime in three stages (hereby referred to as the stage 

model) which we call early (containing mostly pluripotent cells, pt: 0 - 0.25) intermediate 

(containing a mix of pluripotent and neural cells ; pt: >0.25 - 0.75) and late stage (containing 

mostly neural cells, pt: >0.75 - 1) (Figure 3A). While on day 0 and 1 almost all cells are 

classified as pluripotent cells and fall in the early stage, day 3 cells of human and gorilla are a 

heterogeneous mix of pluripotent and neural cells and therefore placed in the intermediate 

stage whereas the cynomolgus cells seem to have progressed further already (72% of day 3 cells 

have a pseudotime score higher than 0.75, corresponding to the late stage). Day 5 cells of all 

species have progressed further and are placed between the boundaries of intermediate and 

late stage. Day 7 and 9 of all species however, predominantly contain neural cells that fall in 

the late pseudotime stage (Figure 3A). Figure 3B shows that the sampling days correspond 

well with the pseudotime scores and that the inferred trajectory follows the sampling days as 

expected. Figure 3C shows genes that are differentially expressed (DE) between late and early 

stage cells in all species. For a fair comparison we downsampled the cells per stage to the same 

number between the species (i.e. early stage contains 378 of each species; see methods). We 

observe a marginal statistical power of 80% to detect DE genes for all comparisons in every 

species with our experimental setup (Supplementary Figure S3). We also find that constantly 

downregulated show an overall higher gene expression in comparison to the constantly 

upregulated genes. The biggest group of DE genes between early and late stage are shared 

among all species (821 genes). The number of DE genes shared between two species decreases 

with phylogenetic distance (Figure 3C), i.e. human and gorilla share more DE genes than 

human and cynomolgus.  

 

To investigate the trajectory of a given gene over pseudotime, we used a mixed effects model 

(Law et al., 2014). We determined the best fitting model for each gene based on alternative 

nested models (species; splined pseudotime; species+splined pseudotime; the full model with 

an interaction term: species + splined pseudotime + species:splined pseudotime) using AIC 

(Law et al., 2014). The full model fits best for the highest number of genes (6590, compared 
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to 2490 best explained by the model containing species and pseudotime but no interaction 

term, 521 best explained by the model containing only species as a predictor, 1 best explained 

by  pseudotime only). 

We used this model to accurately trace the trajectory of the gene expression (Figure 3D). 

Figure 3D shows the trajectory of genes that were identified as up-regulated in the early, 

intermediate or late stage, as identified before.  

 

Figure 3: Pseudotime and differentiation trajectories  

A) Scorpius pseudotime scores shown against sampling days. A sampling gap between 0.25 

and 0.5 pt can be observed in all species. In addition, the cells from cynomolgus seem to be 

overall faster and show almost no cells in the intermediate stage. B) Principal component 

analysis and inferred trajectory by Scorpius (Cannoodt et al., 2016). C) Species-overlap of DE 
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genes between late and early stage of differentiation, only genes that change in the same 

direction are considered as shared between the species. Cells are downsampled to the same 

number of genes per stage and species. D) Expression progression over pseudotime based on 

the spline model. Upper panel: genes that are significantly higher in the early stage than in 

the intermediate and late stage in all species. Middle panel: genes that are significantly higher 

in the intermediate stage than in the early stage in all species and significantly higher in the 

intermediate stage than in the late stage for human and gorilla (Cynomolgus was not 

considered in here because of the sparse sampling in the intermediate stage). Lower panel: 

genes that are significantly higher in the late stage than in early or intermediate stage in all 

species.  

Constantly rising genes in all species are enriched for transcriptional 

regulators  

We identified genes that are constantly and consistently rising or falling in mean expression 

over the three differentiation stages and quantified the overlap between the species to 

determine core neural differentiation factors. We term constantly and consistently regulated 

genes (CCRGs) . We defined a gene as CCRG if the mean expression in the intermediate and 

late stages were significantly higher or lower than in the early stage.  

 

Figure 4A shows that 69 genes constantly increase in mean expression in all species across the 

stages, whereas 352 genes constantly decrease between the three stages in all species. We find 

pathways to be significantly enriched related to early neural development (Yu & He, 2016) 

(hypergeometric test, p-value<0.1, terms: Nervous system development, Axon guidance and 

EPH related pathways, Supplementary Figure S4).  

Furthermore the constantly rising genes are enriched for transcriptional regulators (i.e. 

transcription factors, cofactors, surface proteins, signaling molecules(Obradovic et al., 2022)) 

(chisq p-value = 7.039e-12), when considering all genes that are differentially expressed 

between the early and late stage. In contrast, we find less transcriptional regulators in the 

group of constantly falling genes than expected by chance (chisq p-value =1.554e-08). 

Investigating the association between the groups (Figure 4A upper panel), constantly 

falling/rising transcriptional regulators in one species or shared across species, we again find 

positive residuals in the groups of rising genes. Transcriptional regulators are upregulated 

during differentiation, and we find an especially high number of transcriptional regulators in 

the group of rising genes shared across all species. In contrast, all genes in the group with 
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expression decrease over the stages have negative residuals, meaning we see fewer TRs in this 

group than expected. The group of upregulated genes over all species alone contributes to more 

than 25% to the total Chi-square score and thus accounts for a large fraction of the difference 

between expected and observed values. 

The 69 constantly rising genes shared across species contain 26 transcriptional regulators of 

which many are well known to play a role during early neural differentiation supporting the 

hypothesis that conservation can hint towards functional relevance (Supplementary Figure 

S5).  

 

Figure 4: Association between constantly rising/falling genes and transcriptional regulators  

Constantly rising/falling genes shared across and specific per species and the fraction of 

transcriptional regulators for each of the groups. Chisq Residuals and Contributions to the 

result are displayed below for each of the groups. The genes that are constantly rising in all 

species show a significant enrichment for transcriptional regulators.  
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Constantly rising genes with conserved expression patterns have a higher 

probability of being mutation intolerant and associated with 

neurodevelopmental disorders 

 

We further assessed the importance and influence of the genes we identified by investigating 

their probability of being loss of function intolerant (pLI) (Lek et al., 2016)  and their 

association with neurodevelopmental disorders (NDDs) (Leblond et al., 2021). In the case of 

the constantly rising genes, we see a clear correlation between the number of species that share 

this pattern and the pLI score (Figure 5A; Pearson’s rho = 0.15, p-value = 0.001). The 

proportion of genes that are very likely intolerant of loss-of-function (pLI ≥ 0.9) is highest in 

the group of genes that is shared across all three species in the constantly rising genes. Whereas 

the number of genes that are LoF tolerant (pLI ≤ 0.1) decreases with increasing number of 

species that share this expression pattern (Figure 5B). The constantly falling genes do not 

show an association between LoF tolerance or intolerance with the number of species that 

share this feature. When we investigate the association of the consistently regulated genes with 

NDDs we find a similar pattern when looking at the TRs. Constantly upregulated TRs tend 

to show higher fractions of NDD associated genes than constantly falling genes or genes that 

are not constantly up- or down-regulated. The more species share the pattern of constantly 

rising genes, the higher the percentage of TRs that have a known association with NDDs 

(Figure 5C). On the other hand, non-TR genes do not show this trend, they even show a 

decrease when comparing shared between two to shared between three species. Since  this 

trend is only present within the group of TRs, the association between the overall number of 

species in which the genes are constantly rising/falling and being associated with NDDs is not 

significant (chisq test p=0.1604, Figure 5D).  
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Figure 5: Characterization of conserved genes.  

A) pLI scores of genes that are shared between three, two or one species. Vertical line 

represents the mean of each group. pLI and number of species are significantly correlated for 

constantly rising genes with a Pearso’s rho of 0.15 and a  p value of 0.001. No significant 

correlation is observed across the constantly falling genes. The dashed line represents the mean 

of genes that are not constantly regulated. B) pLI >= 0.9 was defined as mutation intolerant 

and <=0.1 as tolerant. In the constantly rising genes the % of genes per group that is intolerant 

decreases with the number of species it is shared with. The numbers in the bars represent the 

absolute number of genes. C) Fraction of constantly rising/falling genes shared in all or less 

species associated with NDDs (Leblond et al., 2021). D) Correlation of constantly rising/falling 

genes with NDDs.  
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Discussion 

Comparing humans to their closest relatives, the primates, can in many ways help to better 

understand human evolution, as shown in important studies before (Blake et al., 2018; Field 

et al., 2019; Kanton et al., 2019). Not only differences between the species can give a valuable 

insight, but investigating conservation on the transcriptome level during a dynamic process 

can help us to infer functional relevance on a molecular level. 

We here sought to use such a comparative approach by investigating early neural 

differentiation. We chose a fine grained timeline and sampled single cells at six timepoints 

during a ten day process of differentiation from iPSCs to NPCs. We ordered the cells along a 

common pseudotime trajectory, binned them into three stages and modeled the expression 

trajectory per gene over the time course of this dynamic differentiation process. We identified 

conserved expression profiles of a set of essential transcriptional regulators (TRs) for NPC 

differentiation across all three species and underlined the importance of these genes by showing 

that they have a high probability of being loss of function intolerant and for a large fraction 

of them an association with NDDs. 

One important consideration in this study to note is the small number of cynomolgus cells in 

the intermediate stage. From our experiment it is not clear if they simply differentiate at a 

faster pace or if they follow a different differentiation route, skipping the intermediate phase 

that we observe in human and gorilla. This also led to the necessity to exclude the intermediate 

vs. late stage comparison in the identification of constantly rising or falling genes. Therefore, 

we also cannot identify conserved transiently expressed genes in our experiment.  

Moreover, when we look at the PAX6 and OCT4 protein in immunocytochemistry and 

expression levels as classic markers and compare the fractions of  positive cells, it seems as if 

the human cells are the fastest. However, in the course of our analysis we show that these 

marker genes alone are not sufficient to model the differentiation process. We find the gorilla 

and human cells to be well comparable, whereas the cynomolgus has progressed further in 

pseudotime already on day three. The faster differentiation time of macaques was shown in 

several studies and different differentiation systems before (Field et al., 2019; Jacobo Lopez et 

al., 2022; Kanton et al., 2019) and we emphasize here that for complex dynamic systems classic 

marker gene expression alone can not be used to determine differentiation timing.  
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Nevertheless it could be of interest to investigate if the cynomolgus cells differentiate at a 

faster pace or if they follow a different differentiation route, skipping the intermediate phase. 

One possible explanation why they are faster could be the chromatin state of cynomolgus 

iPSCs, i.e. these could possibly be more primed into the neural differentiation, speeding up the 

differentiation process. Investigation of the essential genes that we identified for neural 

differentiation using ATAC-seq data could show if this is the reason for a faster differentiation 

in macaques. Furthermore, macaques have a shorter gestation time in general. Either way, 

more timepoints in a shorter time period of the first days of differentiation would be necessary 

to gain a more fine-grained expression trajectory for macaques. 

We identified conserved expression patterns across the three different species during early 

neural differentiation. We also found a small set of ten genes that show a constant upregulation 

in one and constant down regulation in another species; these genes could also be of interest. 

However, we here focus on conservation of expression patterns and did, therefore, not further 

investigate these genes.  

Genes that are constantly upregulated in all species are significantly enriched for 

transcriptional regulators (TRs) and the majority of these TRs are known to play a role during 

early neural differentiation from previous studies. Finding many regulators of transcriptional 

processes during differentiation can be expected and these processes seem to be very conserved 

across primates. Using this approach we identified, among others, well known and investigated 

genes like POU3F2, PAX, ZEB1 and ZEB2, which were shown to play a role in early neural 

differentiation pathways (Inoue et al., 2019; Liu et al., 2018; Shang et al., 2018; Wen et al., 

2008), underlining the informational relevance of these conserved expression patterns. In line 

with this notion, we find the mean pLI score (probability of being loss of function intolerant) 

is higher in the more species the set of genes is constantly upregulated. We find a significant 

correlation between the number of species that share this expression pattern and the pLI score, 

hinting towards functional relevance of these genes during the process of early neural 

differentiation. In line with this, more than 30% of the constantly rising TRs shared across 

species are associated with neurodevelopmental disorders (NDDs). We do not find the same 

trend for the constantly falling genes, we neither find an association between the number of 

species that share these genes, nor an association with NDDs. However, this can also be 

expected as the differentiation process is highly specific and genes that are involved, and hence 

constantly upregulated, must be highly specific for this process, too. Constantly falling genes 
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include all genes that are expressed during the pluripotency stage but should not be expressed 

anymore in NPCs. As known from previous studies substantially more genes are expressed in 

the pluripotency stage, when the cell is less specialized (Gulati et al., 2020), so many more 

genes need to be downregulated during this process than upregulated. Furthermore, genes that 

are constantly downregulated show an overall higher gene expression and therefore we have 

more power to detect constantly downregulated than upregulated genes.  

Our results show the importance and usefulness of investigating conservation of gene expression 

during a dynamic process to identify target genes of interest for further studies and ultimately 

infer functional relevance using this information. This approach could, in a similar way as 

shown here, help to identify relevant and functional genes in other, less well studied processes   

Perspectively this list of essential genes for early neural differentiation could be functionally 

validated using a perturbation screen in the different primate species. The essential genes in 

all species should have similar impacts on all of the species, the cells might be differentiation 

deficient, differentiate into a different germ layer or even apoptosis might occur. In contrast, 

the species specific genes, for example genes that are upregulated over differentiation in the 

cynomolgus but not human or gorilla, might have an impact on the cynomolgus but not 

influence, or differently influence, the other species. Similarly one could overexpress these genes 

in iPSCs and investigate whether they differentiate to NPCs and if there is a difference between 

shared or specific gene sets.  
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Methods  

Cell culture maintenance and NPC Differentiation  

Primate iPSCs were cultured in StemFit + bFGF as described previously (Geuder et al., 2021). 

For Differentiation cells were dissociated and 9 × 103 cells were plated into each well of a low 

attachment U-bottom 96-well-plate in 8GMK medium consisting of GMEM (Thermo Fisher), 

8% KSR (Thermo Fisher), 5.5 ml 100 × NEAA (Thermo Fisher), 100 mM Sodium Pyruvate 

(Thermo Fisher), 50 mM 2-Mercaptoethanol (Thermo Fisher) supplemented with 500 nM A-

83–01 (Sigma Aldrich), 100 nM LDN 193189 (Sigma Aldrich) and 30 µM Y27632 (biozol). 

Medium was changed every second day.  

 

Immunohistochemistry 

Spheres were collected in a reaction tube, washed with PBS and fixed with 4% PFA. After the 

spheres were incubated in 10%, 20% and 30% sucrose solution, they were embedded in … and 

stored at -80°C until further processing. Embedded spheres were then cut using a cryostat to 

slices a 20 µm. For staining the slides were thawed, rinsed with PBSand incubated with 0.5% 

TritionX100 for one hour. Primary antibodies in blocking solution were subseqently incubated 

overnight at 4°C. After washing with 0.05 % TritonX100/PBS at 37°C for 30 minutes, 

secondary antibody and DAPI were added and incubated overnight. After another 0.05 % 

TritonX100/PBS treatment at 37°C for 30 minutes, slides were mounted using vectashield and 

imaged on a confocal microscope.  

 

Library preparation and sequencing  

On day 0,1,3,5,7 and 9 cells were dissociated using accumax and single cell sorted using a BD 

FACS Aria II. The cells were sorted into 96-well plates containing lysis buffer consisting of 

Phusion buffer, proteinase K and barcoded oligo-dT primers. Libraries were then prepared 

using mcSCRB-seq (Bagnoli et al., 2018). The method was followed exactly as outlined in the 

step-by-step protocol (Bagnoli et al., 2018) with the exception of using 17 cycles for the pre-

amplification.   

Libraries were paired-end sequenced on an Illumina HiSeq 1500 instrument. Sixteen bases were 

sequenced with the first read to obtain cellular and molecular barcodes and 100 bases were 

sequenced in the second read into the cDNA fragment 
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Mapping and Quality Control 

Fastq data were processed with zUMIs (Parekh, Ziegenhain, et al., 2018) using bbmap 

(Bushnell, 2014). The Genomes used for mapping were Homo sapiens HG38, GENCODE 

release 32 and Macaca mulatta ensembl version 10, release-98. For mapping to Macaca 

mulatta, an additional flag of -da was added to the BBMAP command. Explanations of the 

usage of these flags can be found at https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-

guide/usageguide/. Because many of the cynomolgus reads accumulated downstream of the 3’ 

end of the existing gene model, we added a 3’ extension option to zUMIs (Parekh, Ziegenhain, 

et al., 2018), comparable to ESAT (Derr et al., 2016), to capture reads that fell outside of the 

gene model using the classic pipeline. Filtering was performed based on distributions of UMIs, 

Genes, percent of mitochondrial reads after mapping. Distributions of each covariate were 

visualized and cutoffs manually decided to filter out cells. Counting and quality control was 

performed separately for each species. After this we restricted the count matrices to 1-to-1 

orthologs between human and cynomolgus, combined the data and normalized the read counts 

of all species together using the package scran (Lun et al., 2016). Orthologous genes were 

defined as 1-to-1 orthologs per the definition from Ensembl, accessed using biomaRt tool, 

additionally genes with the same gene name, as pulled from the gtf files were added to the list. 

Clustering was performed by the quickCluster function prior to normalization, with a min.size 

of 50, and the option method = "hclust" selected. Log-transformed counts adjusted by size 

factors were then output for further downstream analysis.  

 

Trajectory Inference 

Differences between clones and hence also species were treated as batch effects and were 

removed prior to pseudotime estimation and clustering. Trajectory Inference was performed 

with SCORPIUS (Cannoodt et al., 2016). Trajectory inference was performed on counts after 

filtering cells for quality, normalizing counts with SCRAN, and batch correcting for clone 

within species with Batchelor (Haghverdi et al., 2018). Dimensionality reduction in SCORPIUS 

was called with “spearman” and ndim=30.  

 

Differential Gene Expression analysis (stage model) 

To compare mean expression differences between the different stages of differentiation, the 

cells were binned into three stages based on their pseudotime assignment. Boundaries were set 
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at 0.25 and 0.75. For comparisons between the species stage differences we applied an 

additional filtering, so that the confidence intervals of a gene must overlap between the species 

in at least one stage. For differential gene expression we used limma-trend  (Law et al., 2014; 

Ritchie et al., 2015) and blocked the clone as a random effect in the model. We defined a gene 

as rising/falling if the mean expression in the intermediate and late stage was significantly 

higher/lower than in the early stage.  

 

Spline model for assessing expression over pseudotime  

To model gene expression over pseudotime we used a limma-trend model, including the species 

and splined pseudotime and an interaction term. The knots were set as the boundaries of the 

stage model to 0.25 and 0.75. Also here we treated the clone as a random effect in the mixed 

effects model.  

 

Power simulations  

A posteriori power analysis was performed using the powsimR package (v. 1.2.4) (Vieth et al., 

2017). Mean variance relationships were inferred for the subsampled data for each stage - early, 

intermediate, late - and species. As we did not observe a difference in this relationship for the 

different bins, we combined data from all time points per species for power analysis. To test 

for differences in power to detect DE between the stages we simulated 378 cells for early vs. 

114 cells for intermediate stage as well as 215 cells for late according to the real numbers per 

stage in this study. Secondly, to test for differences in power to detect constantly falling or 

constantly rising genes, we accounted for the expression levels in the two groups by simulating 

7500 genes each, based on the expression of the genes found to follow a comparable temporal 

pattern in all species. The particular parameters used in powsimR were as follows: fraction of 

genes simulated as DE, pDE=0.1; LFC cutoff for expression changes to be deemed biologically 

important, |logFC| >= 0.25; LFC distribution to be sampled from was a gamma distribution 

form -1.5 to 1.5 with shape=1 and rate=2; number of genes to be tested was 7500. powsimR 

was run individually per species and expression range (Constantly Rising or Constantly 

Falling) and marginal power was compared. 
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Functional relevance comparisons  

pLI scores 

For the pLI score comparisons we used the gene-wise pLI scores from the Exome Aggregation 

Consortium (ExAC)  (Lek et al., 2016). The scores can be downloaded from:  

broadinstitute.org/pub/ExAC_release/release1/manuscript_data/forweb_cleaned_exac_r0

3_march16_z_data_pLI.txt.gz. As described in (Lek et al., 2016) we grouped the probability 

of a gene for being loss-of-function (LoF) intolerant (pLI) into LoF intolerant ((pLI ≥ 0.9) and 

LoF tolerant (pLI ≤ 0.1). 

 

Neurodevelopmental Disorder (NDD) association  

We extracted high confidence NDD genes (HC-NDD) (N = 1,586) from (Leblond et al., 2021).  
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Supplementary Material 

 
 

Supplementary Figure 1: Analysis overview 

Reads were mapped separately to hg38 in the case of human and gorilla and to the cynomolgus 

was mapped to mmul10. 3’ Extension, counting and QC analysis were performed per species. 

Normalization using scran was done for all species together and for visualization and 

pseudotime assignment purposes a batch correction was performed. The normalized counts 

together with the pseudotime estimation were used for the differential expression analysis, 

trajectory inference and analysis of conserved expression patterns.  
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Supplementary Figure 2: Comparison of RNA and Protein levels of OCT4 and PAX6 

A)  Fraction of cells that express OCT4/PAX6 in RNA seq data (one point per clone) B) 

Fraction of cells positive for OCT4/PAX6 in staining (2 Clones per species and 2 replicates 

per clone)  
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Supplementary Figure 3: Power analysis for the different stages and for the two groups of 

genes that show constant expression changes in all three species. A) Mean-Variance trends per 

stage and species. Black dashed lines variance bands as estimated by powsimR; dark gray 

dashed lines Poison expectation. Points are coloured according to the group of genes they 

belong to, Constantly Rising/Falling. B) Marginal power (True Positive Rate) per species for 

comparisons between the different stages. Dashed line marks 80% power C) Mean expression 

of constantly Rising/Falling genes at their peak stage (high) and at their valley stage (low). 

D) Marginal power per species for the different sets of genes. Dashed line mar 

ks 80% power. 
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A      Constantly falling genes 

 
B      Constantly rising genes 

 

 
 

Supplementary Figure 4: Characteristics of constantly falling and rising genes  

Upper panel: Top Reactome Pathways enriched in the constantly falling genes shared across 
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species. lower panel: Top Reactome Pathways enriched in the constantly rising genes shared 

across species 

 

 

 
Supplementary Figure 5: Trajectory of the conserved constantly rising genes  

Expression trajectory of 26 Transcriptional regulators that are significantly upregulated in all 

species over pseudotime. 
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3 | Discussion

In my thesis I have contributed towards leveraging a comparative molecular approach in

primates, by optimizing methods to generate and characterize iPSCs as well as optimizing a

scRNA-seq and a bulk RNA-seq method. Further, I combined these technologies to compare

gene expression profiles during neural differentiation of primate iPSCs. In the following I

will discuss three aspects of this work, namely that bulk RNA-seq is an efficient way to

characterize primate iPSCs, aspects on generating iPSCs from more primate species and the

prospects of the comparative approach with these resources.

3.1 Bulk RNA sequencing is an efficient way

to characterize primate iPSCs

Since the emergence of induced pluripotent stem cells in 2006, researchers have worked on

optimizing reprogramming protocols especially focusing on human and mouse cells, as the

main model organism. The efficiency and safety of reprogramming has drastically improved

during the last decade. An equally important step, the process of verifying the pluripotency

state of the cells and the distinction of bona fide iPSCs from partially reprogrammed cells

(Chan et al. 2009), has not changed that drastically. Although there are some important

checkpoints on which the scientific community largely agreed, which assays are actually

performed depends on the lab and the subsequent application.

191
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3.1.1 The classic way to characterize pluripotent cells

These strategies involve several steps. A classic first step is the confirmation of the expression

of pluripotent cell-specific marker genes via immunocytochemistry or qPCR, often testing

the reprogramming factor OCT3/4 or the surface marker TRA-1-60 (Nichols et al. 1998;

Andrews et al. 1984). Additionally, the potential to differentiate into cells of all three germ

layers needs to be verified. Historically this trilineage differentiation capacity has been tested

in vivo as a teratoma assay. For that, iPSCs were injected into immune-deficient mice to

show the ability to form a teratoma in which cells of the three germ layers can be detected

(Nelakanti et al. 2015). However, this strategy is not only very costly and time consuming but

also under criticism because of the variability of protocols, for ethical reasons and because

its significance is furthermore questionable as the cells are placed in a non-physiological

environment (Buta et al. 2013; Vallier et al. 2009; Bouma et al. 2017). A widely used in

vitro alternative is the embryoid body formation, during which the cells are placed in general

differentiation media and differentiate randomly in a 3D structure and cells of the three

germlayers can be identified via immunocytochemistry (Höpfl et al. 2004). Both methods

perform equally in determining the differentiation potential of the iPSCs, however, only a

teratoma assay can give information about the malignant potential of the cell line, which

is relevant for clinical applications (Bouma et al. 2017; International Stem Cell Initiative

2018). Moreover, cells can be subjected to a directed differentiation, which requires more

specialized protocols and supplements. Of central importance is furthermore the verification

of pluripotency at high passage number (at least 50 passages), as well as a karyotype analysis

to demonstrate the absence of recurrent numerical or structural aberrations.

3.1.2 Peculiarities of non-human primate iPSCs

All these guidelines in principle also apply for the characterization of non-human primate

(NHP) iPSCs. However, as usually when working with non-model organisms, some difficulties

and species specific differences can be expected. While many of the classic tools used for

human pluripotency testing also work for NHP species, not all of the knowledge from hiPSCs
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can be easily transferred. For example the gene REX1 was shown to be indispensable

for human and mouse pluripotency, but this may not be the case for chimpanzee PSCs

(Gallego Romero et al. 2015). While REX1 is not a commonly used marker for pluripotency,

this finding still highlights the differences between closely related species and caveats of

focusing solely on the expression of single genes when assessing pluripotency in different

species. So, while the zoo of available species and clones is growing, it might be highly

relevant to standardize procedures and add more efficient/high throughput processes that

are applicable to a wider range of primates.

3.1.3 prime-seq is an efficient way to characterize pri-

mate iPSCs and their derivatives

Bulk RNA-seq is an ideal method to further characterize iPSCs of different species. With

prime-seq we have a highly sensitive and affordable method at hand which is predestined

for these types of approaches. First of all, prime-seq does not rely on isolated RNA as

input, cells can either be sorted or directly lysed, due to its sensitivity single colonies can

simply be picked from the plate and directly be transferred to the tube containing the lysis

buffer, making it easy and fast to collect cells at each step during an experiment. Only

few cells are needed as input, 1000 cells work well, which is especially interesting when

precious samples or rare cell types are to be investigated, for example when picking single

colonies or after a differentiation and sorting step. The subsequent bead clean up is not

only time and cost-saving compared to the classic RNA isolation with silica membranes,

also a high throughput of samples is possible. Overall prime-seq generates high-quality

expression profiles at low costs and can be highly beneficial in characterizing iPSCs and

their derivatives of different primate species. We show that the cells cluster according to cell

type and species and can efficiently and reliably be classified by correlating the expression

profiles to reference datasets using methods like SingleR (Aran et al. 2019) and reference

datasets containing human embryonic stem cell derived progenitor states (Chu et al. 2016).

As previously described (Wunderlich et al. 2014), the expression distance between species
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is far larger than the distance between individuals, clones or technical differences during

the reprogramming process. prime-seq therefore not only poses the advantage of working

comparably well for many different species, as shown for samples across 17 species, we

furthermore generate comprehensive global gene expression data of the cell lines, valuable

information which can can give deeper insights into the cell state and can also be beneficial

for subsequent down-stream applications. With the growing body on data on many cell lines

like in the HipSci project, characteristics like lineage biases can be derived directly from the

expression profiles (Jerber et al. 2021). This valuable information and the knowledge from

previous methods like ScoreCard which uses qPCR expression profiles from specific sets of

genes to quantify functional pluripotency (Bock et al. 2011; Tsankov et al. 2015), could be

integrated with the knowledge we gain from global expression data from different primates

and therefore expand the possibilities to reliably and efficiently quantify pluripotency across

related species.

Using prime-seq we highlight the usefulness of our generated iPSCs in a straight forward,

sensitive and cost as well as time efficient manner. Especially in comparison to commercially

available methodologies, utilizing classifiers comparing gene expression profiles, this is a

major advantage.

In parallel, we sequenced and analyzed single colony derived primary UDSCs. As these

UDSC expression profiles were derived from single colonies, they represent a homogeneous

population of cells that can therefore also be efficiently analyzed and classified using prime-seq.

We showed that different types of cells can be isolated from urine. All of the three types

express pluripotency markers like KLF4 and OCT3/4, explaining their high reprogramming

efficiency compared to other primary cells. We also classified the UDSCs with a human

microarray reference covering 38 human cell types (Mabbott et al. 2013) and found them

to be most similar to either mesenchymal stem cells, epithelial cells or smooth muscle cells

respectively, indicating different tissues of origin. These results highlight how prime-seq can

help us to better characterize cell states and types, which in turn can provide information on

the efficiency of reprogramming and important insights for the comparisons of iPSCs and the

cells they are derived from. Large scale characterization of somatic cells and classification

based on their reprogramming efficiency can further be used to select for cells with high
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chances of successful reprogramming. This will be especially important when moving away

further from humans and might help to adapt human optimized culture conditions to be

more generalizeable.

In the future bulk RNA-seq and especially prime-seq will be a valuable tool in tackling

the task of developing streamlined, efficient and straight forward methods to reprogram,

characterize and compare primary cells and iPSCs of different species.

3.2 Extension towards more primate species

In recent years many efforts have been made to create large panels of well characterized iPSCs.

However, most of these focus on human iPSCs, for example the HipSci consortium (Leha et al.

2016; Streeter et al. 2017) or the STEMBANCC (Cader et al. 2019; Morrison et al. 2015).

As primate iPSCs become more important and widely used, it becomes clear that also here a

large panel of well characterized and comparable iPSCs is needed, as for example already

started by Romero and colleagues who generated a panel of fully characterized chimpanzee

(iPSC) lines (Gallego Romero et al. 2015). Especially for evolutionary, cross species analyses

it is highly relevant to extend the zoo of species and clones to as many as possible (Kelley

and Gilad 2020). Three major steps are important for this venture: a reliable source for the

acquisition of somatic cells, an efficient reprogramming procedure and culture conditions

that work for a broad spectrum of species, resulting in a panel of comparable iPSCs.

3.2.1 The importance of a non-invasive somatic cell

source

In order to increase the number of available species, it is important to consider the strict

laws with respect to animal welfare. Therefore, as a very first step in the process it is crucial

to establish methods to isolate primary cells in a non-invasive way. To this end, we show

that urine, even unsterile urine from the zoo floor, can be used to isolate reprogrammable

cells. The only practical drawback is, that compared to other invasive methods the success
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rate of isolation is rather low due to the few cells that can attach and proliferate in culture

(Lang et al. 2013) in combination with contamination issues that come with the unsterile

primate urine. We could overcome the problem of contaminated samples to a large extent

by the addition of Normocure, a broad-spectrum antibacterial agent, to our cell cultures.

We confirmed that the addition of Normocure does not have an impact on the number of

colonies that can be isolated from human urine samples and were able to isolate proliferating

cells from two orangutan and one gorilla sample collected from the zoo floor. It has to be

mentioned that although our method worked for two great ape species, this was not the case

for chimpanzee, despite a rather large total sample size, indicating that the process works for

some, but not for all species. Luckily, due to the minimal hands on time required for the

isolation process and its low costs, it is practically feasible and worthwhile to try isolating

UDSCs from urine anytime a sample is available. However, if this method is found not to

work for some species or no urine samples are available, alternative opportunities for somatic

cell isolation should be used, such as material from health checkups or during surgeries of

zoo animals. Nevertheless, the non-invasive sampling of somatic cells from urine allows us to

establish iPSCs as a renewable source of cells from various primates, with many advantages

and possibilities to expand the zoo of available primate iPSC species.

3.2.2 Human reprogramming factors for non-human pri-

mate reprogramming

The classic reprogramming factor cocktails OCT3/4, SOX2, KLF4, and MYC (commonly

referred as to OSKM) (Takahashi and Yamanaka 2006) and OCT3/4, SOX2, NANOG and

LIN28A (commonly referred as to OSNL) (Yu et al. 2007) have already widely been used to

reprogram cells of various taxonomic groups, including many different primates (Endo et al.

2020). The efficiency of human transcription factor sequences for other species is probably

attributed to the high degrees of genetic conservation (Endo et al. 2020; Watanabe et al.

2019). However, some species, like marmosets, seem to be hard-to-reprogram and researchers

use different strategies to try to solve these problems. Debowski et al. for example utilized a
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six factor approach with marmoset specific reprogramming factors to overcome this difficulty

(Debowski et al. 2015), while other groups tried to enhance the reprogramming efficiency by

adding additional factors to the reprogramming cocktail (Tomioka et al. 2010; Watanabe

et al. 2019). Importantly, while some species display difficult-to-reprogram characteristics,

the field is constantly advancing and we learn more and more about what makes these

processes so difficult and how to circumvent these issues. Moreover for a multitude of species,

the usage of the classic human reprogramming factors and strategies works efficiently and

robustly. Given these successes and the high degrees of conservation of the transcription

factor sequences it is likely that human reprogramming factors can be successfully used to

generate iPSCs from a wide range of primates.

3.2.3 Finding culture conditions that work for all pri-

mates

An additional challenge one is facing when trying to establish comparable iPSCs from different

species are the culture conditions. Most protocols focus on the optimization of human iPSCs.

While for example human pluripotent stem cells relied on feeder cells for quite some time, this

issue was overcome and almost all labs use feeder and xeno-free, defined culture conditions

for their standard hiPSC culture by now (Xu et al. 2005a; Xu et al. 2005b; Ludwig et al.

2006; Chen et al. 2011; Nakagawa et al. 2014). Many major advances also have been made

in the field of NHP iPSCs in recent years, but not all inventions from hiPSCs were readily

applicable to all NHP iPSCs.

The culture of most NHP iPSCs relied on the co-culture with feeder cells or xenogenic

medium for longer than hiPSCs (Aron Badin et al. 2019; Hong et al. 2014; Nakai et al. 2018;

Navara et al. 2018; Navara et al. 2013). However, as these additional factors complicate

downstream applications, limit reproducibility and are very time consuming, more and more

work is put into facilitating different solutions. For example, rhesus macaque and marmoset

iPSCs were, for a long time only possible to be kept on a feeder cell layer, or in conditioned

MEF medium (Yada et al. 2017; Wu et al. 2010), the classic medium components known



198 3. Discussion

from feeder-free hiPSC culture seemed to not be sufficient to keep the pluripotent state of

these species. In 2020 Stauske and colleagues developed chemically defined conditions for a

feeder-free culture of rhesus macaque and baboon by the simultaneous use of Wnt-activation

by GSK-inhibition and Wnt-inhibition and called this medium Universal Primate Pluripotent

Stem cell (UPPS) medium (Stauske et al. 2020). Other groups describe the usefulness of a

defined medium that was previously reported to induce naive human iPSCs and marmoset

ESCs (Yoshimatsu et al. 2021; Shiozawa et al. 2020), or a feeder-free culture systems for

marmoset using two small molecule inhibitors and customized marmoset iPSC medium

(Petkov and Behr 2021).

The diversity of available protocols, aiming to optimize the conditions for NHP iPSCs

highlights the difficulties of working with cell cultures of different species. Especially if

comparable cells between different species are essential for the success of the experiment and

the interpretability of the results, as it is the case for comparative approaches. Nevertheless,

the ongoing research and constant improvements are a promising first step towards the

establishment of culture conditions that work for many primate species.

And while the somatic cell isolation, reprogramming and feeder-free culture of some

species seem to be more challenging, a variety of promising methods have proven to be able to

establish comparable cells from different primate species. We contribute to this endeavor with

an easy and efficient protocol, which opens the door to more primary material, uses a non-

integrating reprogramming approach and has so far been demonstrated to work for human,

gorilla and orangutan (Geuder et al. 2021). We compared our iPSCs to a previously reported

and well characterized human iPS cell line. This cell line was generated from PBMCs using

episomal vectors and subsequently adapted to the same feeder-free culture conditions that

we use for our primate cells. Importantly, we found the expression distances between clones

are comparable to those between individuals and by far smaller than differences introduced

by technical factors like reprogramming method or laboratory the cells were generated in.

Furthermore, in an experiment using different reprogramming factor delivery strategies for

chimpanzee cells Hemmi et al. reported that no clear association between deficits of iPSC

lines and the vectors that were used could be observed (Hemmi et al. 2017). Leading to the

conclusion that it might be not so important how the reprogramming factors are introduced
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into the cell, it is mainly crucial that the cells can be kept in the same medium under the

same conditions after acquiring a stable pluripotent state. Also opening up the possibility to

reprogram cells of hard-to-reprogram species on feeder cells or in special medium and only af-

ter getting a stable cell line adapting all cells to be investigated to universal culture conditions.

3.3 Leveraging the information from compara-

tive approaches

The field of functional comparative genomics is constantly progressing and helping us to

better understand human specific traits, diseases and in general the basis of genotype-

phenotype relationships (Enard 2012; Housman and Gilad 2020). As pointed out above,

iPSCs in combination with scRNA-seq allow to study early development and also provide

experimental access to the compared cells for follow up experiments. While iPSCs from

human, chimpanzees and other primates have been used e.g. to model brain development

and identify human-specific properties (Mora-Bermúdez et al. 2016; Kanton et al. 2019;

Pollen et al. 2019), they so far have been conducted in few lines (Kelley and Gilad 2020)

of few species and have not leveraged the information from conserved processes. To start

establishing quantitative comparisons in this respect, we subjected iPSCs of gorilla, human

and cynomolgus to a cross-species differentiation experiment. The cynomolgus iPSCs used in

this experiment were established from fibroblasts using the same reprogramming method as

described for urinary cells (Geuder et al. 2021). We differentiated the cells via dual-SMAD

inhibition, using the same conditions for all species (Chambers et al. 2009; Ohnuki et al.

2014) and studied the transcriptomes during this early neural differentiation process, using

scRNA-seq. The cells of nine different clones from three species were sampled at six distinct

time points and sequencing libraries were prepared using the mcSCRB-seq protocol. Although

the cynomolgus cells progressed faster along pseudotime, we were able to define comparable

cell states and compared them between the species. We identified iPSC/NPC specific sets of

genes shared across species and show that genes with a conserved constantly rising pattern
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along the differentiation trajectory are enriched for transcriptional regulators (TRs), among

them many known factors important for neural differentiation. Furthermore, these conserved

constantly rising TRs show a higher probability of being loss of function intolerant (Lek et al.

2016) and more than 30 % are associated with neurodevelopmental disorders (Leblond et al.

2021), showcasing how conservation of expression patterns during a dynamic differentiation

process could help to infer functional relevance on a molecular level.

We concluded that the TRs that show a conserved constant up-regulation across the

three species are essential during early neural differentiation. For a further assessment of

the functional importance of the TRs as well as their targets in different species, one could

imagine a perturbation screen as a next step. These types of screens become possible by the

advantages in scRNA-seq technologies in combination with inducible CRISPRa or CRISPRi

screens (Jaitin et al. 2016; Dixit et al. 2016; Datlinger et al. 2017). Comparing the difference

between a perturbation of TRs which are conserved to species specific TRs in iPSCs of

different species could help to better understand the underlying mechanisms, the functionality

of these genes and their regulatory networks.

Moreover, to demonstrate the principle that comparing gene expression patterns between

closely related species can be used as a means to infer functional relevance, we here used the

well studied process of early differentiation via dual-SMAD inhibition. However, leveraging

the information of conserved gene expression patterns during any process of interest, might

help identifying functional relevant genes and processes or to interpret disease associated

changes (Enard 2012). This study might serve as a blueprint for future research investigating

expression patterns between species in a dynamic context. Eventually, more clones and

available species will facilitate more and more high-throughput experiments with bigger

sample sizes over a broad range of processes and this data will ultimately help to better

understand the genotype-phenotype relationships among closely related species.
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In this work focusing on the use of primate iPSCs for evolutionary analyses, I summarized the

current state of the art, developed a method to generate primate iPSCs, contributed to method

improvements in the field of RNA-seq and finally present a model study demonstrating the

usefulness of these methods and the underlying premise.

The field of comparative primate genomics is rapidly evolving. However, one of they keys

to successful studies, obtaining comparable cells of a broad spectrum of primates, is still a

major hurdle. Although iPSCs in principle are an endless renewable resource, their generation

can be challenging. I contributed to unlocking this resource by establishing primate iPSCs

from a non-invasive cell source using a footprint free reprogramming approach. A method

which might help to expand the zoo of available species, as shown for gorilla and orangutan.

This has already opened up opportunities for new research projects in our lab. Furthermore,

I contributed to developing a bulk RNA sequencing method, and show that it is a valuable

tool to characterize iPSCs of different primates. In addition, I contributed to the systematic

optimization of a scRNA sequencing method that can reliably quantify expression levels,

which is indispensable for the comparison of expression patterns during dynamic processes

of development in an evolutionary framework. Our experiment on a time series of early

neural differentiation in primates demonstrates the power of such comparative approaches.

By measuring the phenotype of gene expression we were able to infer putative functionally

relevant transcriptional regulators from expression conservation across species.

Further optimizations and the availability of more species and clones will enable and

facilitate more comparative experiments using a broad spectrum of technologies and in-depth

analyses. Future approaches might, for example utilize co-culture of cells of different species,

201
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like it has been shown for different human cell lines already, further reducing biases in

comparative studies and making it possible to increase the number of species and clones to

be studied at once.

The constant progress in the field of functional comparative primate genomics allows us

to investigate genotype-phenotype relationships from an evolutionary perspective which will

help us to further deepen our understanding of human specific traits and ultimately create a

better understanding and functional annotation of the human genome.
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