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ABSTRACT 

Increasingly frequent extreme weather and climate events, such as droughts or floods, 

represent one of the greatest global risks of the future. They have already led to acute 

food insecurity and water shortages. While droughts occur more frequently and also 

expand in area, strong inter-annual fluctuations in precipitation and more frequent 

extreme precipitation can occur. Africa is severely affected by the impacts of climate 

change, both on its environment and population. Examples range from lower agricultural 

yields, livestock health to malnutrition among the most vulnerable population. In this 

regard, rural households are more vulnerable and thus more affected by the impacts of 

climate change. They are heavily dependent on natural resources such as water and land. 

Most rural African communities depend on yields from rain-fed agriculture, while 

agriculture is one of Africa's most important economic sectors, accounting for more than 

half of the continent's gross domestic product. Not only have negative impacts of climate 

change already been identified in the past, but they are equally projected into the future. 

Communities in arid and semi-arid areas in sub-Saharan Africa are particularly 

vulnerable, where lower yields reflect one of the main causes of food shortages and 

malnutrition. Similarly, transhumance with its seasonally migrating pastoralists is directly 

affected by the increasing climatic variability. Herders with their livestock are dependent 

on natural resources such as water and pasture and thus highly vulnerable to droughts. A 

correlation between droughts and livestock deaths has been noted in the past. Armed 

conflicts between local smallholder farmers and pastoralists over natural resources, which 

are further exacerbated by drought-induced water scarcity, represent an already 

increasing risk.  

These climate change related risks and their impacts highlight the need for large-scale 

monitoring of the environmental aspects in support of local communities. In this regard, 

remote sensing with its recent technological advances, mainly through high-resolution 

data with shorter revisit cycles of satellites and global data availability, plays a crucial 

role.  

This thesis investigates how Earth Observation can be used to assess risks to food 

security, health, and livelihoods from different perspectives. Droughts, surface water 

availability, and analyses of transhumance and smallholder farmers are discussed. In my 

first paper, a spatially transferable drought model to detect regional drought conditions 

for rangelands and croplands is presented, reflecting local drought probability, 

vulnerability, and risk. Water is one of the most important natural resources for 

agriculture and transhumance, so reliable monitoring and detection of water surfaces is 

crucial. Another study therefore compared different surface water detection algorithms to 
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provide an assessment of their performances and to identify the most promising methods, 

including their limitations and advantages. In the third paper of my thesis, a monitoring 

system for the environmental suitability of transhumance is presented. A conceptual 

framework was created to support prevention and mitigation of conflicts between 

pastoralists and local farmers and to better plan and manage transhumance. In addition, a 

remote sensing-based crop yield model at the field level was developed as presented in 

my last paper. The high-resolution crop yield estimates show variability within and 

between individual fields and are based on a unique three-year training dataset. The study 

provides important results for public health studies and adaptation options.  

Overall, this work has developed, tested and demonstrated satellite-based monitoring 

systems that support livelihoods, through analyzing aspects of food security among local 

populations and environmental resources in Africa. It highlights potential decision 

support tools for policy makers and it demonstrates how satellite data can be linked and 

effectively being used for multiple applications in the future. 
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ZUSAMMENFASSUNG 

Die in ihrer Häufigkeit steigenden extremen Wetter- und Klimaereignisse wie Dürren 

oder Überflutungen stellen global eines der größten Risiken der Zukunft dar. Sie führten 

bereits zu akuter Ernährungsunsicherheit und Wasserknappheit. Während Dürren 

häufiger auftreten werden und sich auch flächenmäßig ausdehnen, treten starke 

zwischenjährliche Schwankungen des Niederschlags und häufigere Extremniederschläge 

auf. Große Teile Afrikas sind dabei besonders von den Auswirkungen des Klimawandels 

auf seine Umwelt und Bevölkerung betroffen. Beispiele führen von geringeren Erträgen 

in der Landwirtschaft, über die Gesundheit der Nutztiere zu Unterernährung in der 

Bevölkerung. Dabei sind ländliche Haushalte anfälliger und somit stärker von den 

Auswirkungen des Klimawandels betroffen. Sie sind stark abhängig von natürlichen 

Ressourcen wie Wasser und Land und in hohem Maße von Erträgen des Regenfeldbaus 

abhängig. Landwirtschaft ist einer der wichtigsten wirtschaftlichen Sektoren Afrikas und 

stellt mehr als die Hälfte des mittleren Bruttoinlandproduktes des Kontinents dar. Dabei 

wurden nicht nur bereits in der Vergangenheit negative Auswirkungen des Klimawandels 

festgestellt, sondern sie werden auch gleichermaßen in die Zukunft prognostiziert. Dabei 

sind speziell Bevölkerungsgruppen in ariden und semiariden Gebieten in Sub-Sahara 

Afrika betroffen, wo niedrigere Erträge einen der Hauptgründe für Nahrungsknappheit 

und Unterernährung darstellen. Gleichermaßen ist die Transhumanz mit den saisonal 

migrierenden Hirten direkt von den Auswirkungen des Klimawandels betroffen, da sie 

hochgradig abhängig von natürlichen Ressourcen wie Wasser und Weideland sind. In der 

Vergangenheit wurde bereits eine Korrelation zwischen Dürren und Tiersterblichkeit 

festgestellt. Ein weiteres Risiko stellen bewaffnete Konflikte zwischen lokalen 

Kleinbauern und wandernden Pastoralisten dar, die um natürliche Ressourcen 

konkurrieren, was durch die von Dürren verursachte Wasserknappheit weiter verstärkt 

wird.  

Die durch den Klimawandel verursachten Risiken und deren Auswirkungen auf die 

Lebensgrundlagen der Bevölkerung im ländlichen Afrika machen deutlich, dass ein 

großflächiges Monitoring umweltrelevanter Aspekte nötig ist. Dabei stellt die 

Fernerkundung zusammen mit ihren jüngsten technologischen Fortschritten ein wichtiges 

Instrument dar. Hoch aufgelöste Daten in hoher zeitlicher Frequenz und deren globale 

Verfügbarkeit spielen dabei eine entscheidende Rolle.  

In dieser Arbeit sollen die betrachten Risiken in Bezug auf Nahrungssicherung, 

Gesundheit und Lebensgrundlagen mittels Methoden der Erdbeobachtung betrachtet 

werden. Dabei stehen Dürren, die Verfügbarkeit von Oberflächenwasser und Analysen 

der Transhumanz sowie die landwirtschaftlichen Erträge von Kleinbauern im Fokus. In 
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meiner ersten Publikation, wird ein räumlich übertragbares Dürremodell zur Erkennung 

von regionalen Dürren vorgestellt, dass die örtliche Dürrewahrscheinlichkeit, -

vulnerabilität und das Dürrerisiko wiedergibt. Wasser ist eine der wichtigsten natürlichen 

Ressourcen für die Landwirtschaft und Transhumanz, weshalb ein zuverlässiges 

Monitoring und Erkennen von Wasserflächen von entscheidender Bedeutung ist. Daher 

wurden in einer weiteren Studie verschiedene Algorithmen zur Erkennung von 

Oberflächenwasser verglichen, um einen Überblick über deren Aussagekraft zu erhalten. 

Die dritte Publikation stellt ein Monitoringsystem der umweltbedingten Eignung für 

Transhumanz vor, welches ein Tool sowohl zur Unterstützung der Konfliktvorbeugung 

und -minderung als auch zur Planung und zum Management von Transhumanz darstellen 

kann. In der letzten hier vorgestellten Studie wurden Ernteertragsmodelle der 

Hauptfruchtarten für kleinste landwirtschaftliche Flächen entwickelt. Die 

hochaufgelösten Ernteertragsabschätzungen zeigen die teilschlagspezifische Variabilität 

sowie die Variabilität der Erträge zwischen verschiedenen Feldern, wobei die Modelle 

auf einem einzigartigen dreijährigen Trainingsdatensatz basieren. Die Studie liefert 

wichtige Ergebnisse für Studien der Ernährungssicherung, der Gesundheit und zu 

Anpassungsmöglichkeiten.  

Insgesamt konnten in dieser Arbeit satellitenbasierte Monitoringsysteme entwicklet, 

getestet und demonstriert werden, die die Lebensgrundlagen der lokalen Bevölkerung 

verbessern können, da sie Aspekte der Ernährungssicherung und der natürlichen 

Ressourcen in Afrika beleuchten. Die Arbeit stellt neue Möglichkeiten potentieller 

Entscheidungshilfen für politische Entscheidungsträger vor und diskutiert wie 

Satellitendaten in Zukunft verknüpft werden und effektiv für mehrere 

Anwendungsbereiche genutzt werden können.  
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I. Introduction 

1. Climate change and its effects on livelihoods in Africa 

Climate change and its far-reaching consequences represent one of the most significant 

current and future problems for the Earth. Emerging changes in climate patterns and 

increased frequency of extreme weather events are just two future projections of the 

effects (IPCC, 2013). These increasing weather and climate extreme events have already 

been observed and have led to acute food insecurity and reduced water security (IPCC, 

2022; Myers et al., 2017). Africa represents one of the places with the largest impact of 

climate change on locations and communities. Changes in ecosystem structures, 

especially terrestrial ecosystems and freshwater, have already taken place. They resulted 

in water scarcity, reductions in crop production and livestock health, increased 

malnutrition, and damage to key economic sectors, which has additionally worsened due 

to floods and drought (IPCC, 2022). Drought areas in East Africa will likely increase 

according to simulations based on Representative Concentration Pathways (RCPs). Area 

growths of 16 %, 36 %, and 54 % (RCPs 2.6, 4.5, and 8,5 respectively) are predicted 

towards the end of the 21st century, while areas with extreme drought are set to increase 

more rapidly than severe and moderate droughts (Haile et al., 2020). West Africa is 

similarly exposed to climate change through strong inter-annual precipitation variability, 

an increased frequency of rainfall extremes, and prolonged droughts (Salack et al., 2016; 

Sultan et al., 2019). Climate change projections show a continuing warming trend with 

increasing aridity and frequent occurrences of extreme heat events (Serdeczny et al., 

2017). Heat-related child mortality has already doubled in 2009 in comparison to a 

scenario without climate change (Chapman et al., 2022). According to the 

Intergovernmental Panel on Climate Change (IPCC) (2022), mid- to long-term risks 

(2041 - 2100) include increasing pressure on food production and access as well as food 

security risks resulting in more severe malnutrition in Sub-Saharan Africa (SSA) with 

2°C or higher global warming levels (Grolleaud, 2020; IPCC, 2022; Myers et al., 2017). 

Additional future risks for Africa are freshwater loss, loss of livelihoods due to reduced 

food production from crops and livestock, reduced economic output and growth, and an 

increased risk to water security due to drought and heat (IPCC, 2022).  

While facing all these risks, Africa and especially West-, Central-, and East Africa are 

the hotspots most vulnerable to climate change (IPCC, 2014, 2022). A study in South 
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Africa furthermore showed that rural households are more susceptible to climate change 

than urban households (Leocadia Zhou et al., 2022). While poverty has been identified as 

the greatest limit to adaption, rural areas are more vulnerable in contrast to urban areas in 

all three vulnerability aspects: exposure, sensitivity, and adaptive capacity. People living 

in rural environments rely more heavily on climate-sensitive resources, as agriculture for 

example (crops and livestock combined) needs natural resources like land and water 

(Leocadia Zhou et al., 2022). Rainfed agriculture, which is dominant in West Africa, is 

therefore highly vulnerable to Climate Change (Carr et al., 2022).  

Agriculture, in general, is one of the most important economic sectors in Africa as it adds 

up to 55% of Africa’s Gross Domestic Product (GDP) (AGRA, 2017). It is the base for 

food security and livelihood as 85 % of the population relies on rain-fed agriculture (Shah 

et al., 2008). The IPCC states with a high level of confidence, that the overall effect of 

climate change on yields of the major cereal crops in the African region is very likely to 

be negative, with a strong regional variation (Niang et al., 2014). Edame et al. (2011) also 

stated that agriculture is a vulnerable sector, that is exposed to the impacts of climate 

change and climate variability. Seasonal changes in precipitation and temperature in 

addition to their varying severity will negatively impact crop production and food security 

also due to the overreliance on rainfed agriculture (Kogo et al., 2021). Especially 

vulnerable are communities in arid and semi-arid areas (Kogo et al., 2021). Carr et al. 

(2022) revealed that yields declined by 6 % (median) for all major staple crops they 

analyzed due to climate change in all considered scenarios. Lower crop yields are also a 

prominent driver of food insecurity and child malnutrition, especially among rural 

smallholder farmers in SSA (FAO et al., 2019; Grolleaud, 2020; Myers et al., 2017). 

Common adaption strategies like optimized planting dates or cultivars, however, could 

increase yields that are affected by climate change by 13 % (Carr et al., 2022). Carr et al. 

(2022) also state that a combination of fertilizers and adopted cropping practices is needed 

to enhance future crop production. Kogo et al. (2021) support this statement by saying 

that crop production and food security systems need more adaptation as future projections 

show a high population growth and urbanization rate. Together with higher climate 

variability this will lead to the altering of cropping patterns and yield.  

Pastoral systems are also highly affected by climate change. The pastoral systems of the 

drylands in the Sahel, for example, are highly dependent on natural resources including 

pasture, fodder, forest products, and water, all of which are directly affected by climate 
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variability (Djoudi et al., 2013). Livestock is also vulnerable to drought, particularly 

where it depends on local biomass production (Masike & Ulrich, 2018). Thornten et al. 

(2009) already found a strong correlation between drought and animal death in the past. 

Adding to these climate risks, conflicts over natural resources arose between farmers and 

herders and have increased over the past two decades (Ayana et al., 2016). Especially 

conflicts due to drought and water tensions have become widespread in the Sahel (Ayana 

et al., 2016; Puig Cepero et al., 2021). These conflicts represent an additional health risk 

to all the climate change-related risks above.  

 

2. Droughts and water availability 

Droughts are affecting livelihoods in Africa in many different ways - from a lack of 

drinking water to damaged crops and food insecurity. In the following, some definitions 

of droughts are provided and their aspects are described in more detail.  

2.1. Definition of droughts 

A missing accurate and universally accepted drought definition led to confusion and 

disagreement in drought research in the past (Dracup et al., 1980). Even in recent years, 

there was no single definition of drought. Mishra and Singh (2010) define droughts as 

natural hazards that create problems for activities, groups, and environmental sectors 

through water deficits over an extended period of time. Sheffield and Wood (2007), on 

the other hand, describe a drought as a continuous period in which soil moisture remains 

below the twentieth percentile on a monthly scale. Heim (2002) states that droughts are 

viewed by the remote sensing community as a period of abnormally low precipitation that 

alters vegetation conditions. Defining the beginning and end of droughts is additionally 

problematic because the effects of droughts often accumulate slowly over a considerable 

period of time (Tannehill, 1949). In the process, economic, social, and natural impacts 

occur, which is why droughts can be characterized by economic, social, and 

environmental bifurcation (Owrangi et al., 2011). In general, drought can be described as 

a recurrent climatic process that affects all climatic regions of the world (Sivakumar et 

al., 2011; Wilhite, 2000a) and is the consequence of a natural reduction in precipitation 

over an extended period of time. In this context, the severity of droughts can be influenced 

by the interaction with other climate factors (Sivakumar et al., 2011). 
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Despite the difficulty of defining droughts universally, they can be divided into four broad 

categories. In 1997, the American Meteorological Society (Heim, 2002) divided them 

into meteorological, agricultural, hydrological, and socio-economic droughts. These four 

types have become established in drought science (FAO & NDMC, 2008; Wilhite et al., 

2007). Here, meteorological drought is defined as a negative rainfall deviation, relative 

to the normal or expected value, over an extended period of time (Sivakumar et al., 2011). 

Agricultural droughts are characterized by prolonged deficits in soil moisture leading to 

crop losses (Mishra & Singh, 2010; Sivakumar et al., 2011). Deficits in surface and 

subsurface water supply are expressed by the term "hydrologic drought" (Sivakumar et 

al., 2011). All these types of droughts have an impact on society and the economy, so 

they are referred to as social and economic droughts. 

For a better understanding of droughts, three essential elements are differentiated – 

intensity, duration, and spatial extent (Sivakumar et al., 2011). Drought intensity is 

defined by the degree of rainfall deficit and/or the severity of its impact as well as by the 

deviation of climatic indices (e.g., Standardized Precipitation Index (SPI)) from normal. 

In determining drought impacts, intensity is closely related to duration. Droughts usually 

take two to three months to develop. However, they can also last for several months and 

years, such as in arid regions where successive years of drought are not uncommon. 

Prolonged droughts over several seasons or years produce more drastic effects due to 

greater depletion of surface and subsurface water supplies. In addition, the longer duration 

affects a greater number of users. For vulnerable arid and semi-arid ecosystems, 

frequently recurring and prolonged droughts are a particularly critical problem, as they 

result in both natural and managed systems having no opportunity to recover. In general, 

droughts naturally are regional events that affect millions of square kilometers. Due to 

their long duration, the drought's epicenter, the location of maximum severity, shifts from 

season to season and year to year (Sivakumar et al., 2011). 

2.2. Drought as a natural hazard 

According to the IPCC (2013), the frequency and severity of droughts are expected to 

increase due to global warming. In recent decades, this trend has already been noted 

(Hulme & Kelly, 1993) as the effects of weather extremes worsened due to population 

growth, environmental degradation, industrial development, and fragmented government 

authority over water and resource management, which is for example reflected in large 
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annual vegetation losses (Wilhite, 2000b). Because of the socially, economically, and 

environmentally relevant aspects (Owrangi et al., 2011) with enormous potential damage 

to the economy, society, and environment, the monitoring of droughts is very important 

(Gulácsi & Kovács, 2015; J. Wu et al., 2012; Lei Zhou et al., 2013; Zhuo et al., 2016). 

For example, the occurrence of droughts correlates with wildfires in the western United 

States (Westerling et al., 2006), Canada (Flannigan & Harrington, 1988), and 

southeastern Australia (Bradstock et al., 2009). The interplay of severe, prolonged 

droughts and elevated temperatures has also had a tremendous impact on terrestrial 

ecosystems over the past several decades (Kaptué et al., 2015; Overpeck & Udall, 2010; 

Zhao & Running, 2010). Thus, successive drought years also affect forests (Anderegg et 

al., 2015; McDowell & Allen, 2015). Recent mega-droughts, as in 2005 and 2010 in the 

Amazon Basin (Gatti et al., 2014; Saleska et al., 2007), substantially reduced forest 

productivity and ecosystem services. This has already been demonstrated in Europe (Ciais 

et al., 2005), Africa (Liming Zhou et al., 2014), Australia (van Dijk et al., 2013), and East 

Asia (Saigusa et al., 2010). For humans, agriculture represents the most vulnerable sector 

affected by droughts (Di Wu et al., 2015). Recent large-scale droughts in Europe, Asia, 

Africa, and throughout the Americas resulted in large crop and monetary losses 

(Hazaymeh & Hassan, 2016). According to the IPCC (Bates & Kundzewicz, 2008), rice, 

corn, and wheat production in Asia have already declined in the past. Between 1980 and 

2003, droughts in the U.S. caused 144 billion USD in monetary damages, which is about 

41% of the estimated total cost of weather/climate-related disasters. 3.6 billion CAD were 

lost by Canada in agricultural production due to drought between 2001 and 2002 

(Hazaymeh & Hassan, 2016). However, the consequences of droughts amount not only 

to monetary damages but also to humanitarian damages as drinking water and food 

shortages can occur. Between 1981 and 2010, 253 million people in Africa were affected 

by drought, of which half a million died as a result (Rojas et al., 2011). These figures 

make it clear that droughts, like other natural hazards, can have enormous damage to the 

environment, economy, and society (J. Wu et al., 2012). 

Because of their drastic consequences, the designation of droughts as natural hazards is 

obvious. Natural hazards are associated with geophysical processes - an integral part of 

the environment - that have the potential for damage or loss in the presence of a vulnerable 

society, while posing an unexpected threat to humans or their property (Bobrowsky, 

2013). Geophysical natural hazards are preceded by geological, geomorphological, 
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climatic, or meteorological reasons (Bobrowsky, 2013). Thus, a drought is a geophysical 

natural hazard because of its meteorological origin. Furthermore, there are four reasons 

why droughts are different from other natural hazards and why early warning systems in 

the form of accurate, reliable temporal estimates of their severity and impacts, as well as 

so-called drought preparedness plans, are of enormous importance (Sivakumar et al., 

2011). 

One of these reasons is that drought impacts accumulate slowly over a considerable period 

of time and can persist for years after the natural disaster has ended. In addition, the 

beginning and end are difficult to determine. Third, there is no precise and universally 

accepted drought definition. The fourth reason is that impacts are described over a larger 

geographic area than, for example, floods, hurricanes, and most other natural hazards 

making quantification of impacts much more difficult (Sivakumar et al., 2011). 

2.3.  Drought risk and drought vulnerability 

Drought risk represents the interaction of the exposure of the geographic region and the 

vulnerability of society (Sivakumar et al., 2011). Exposure varies regionally, so there is 

almost no opportunity for action to reduce or prevent recurrence, frequency, or 

occurrence. Therefore, climatic understanding of droughts and their frequency, severity, 

and duration is necessary, as these aspects vary spatially. Further, identifying the regions 

most likely to experience drought is critical (Sivakumar et al., 2011). 

Vulnerability is reflected in the interaction of social factors, such as population growth 

and the shift of society from humid to arid and rural to urban areas. Population growth 

increases pressure on natural resources and people are pushed to settle in regions more 

vulnerable to drought. Urbanization has a similar effect, putting pressure on water 

resources and contributing to the conflict between agricultural and urban water use. 

Progressive technologization though can reduce vulnerability. On the other hand, there 

are natural factors, such as environmental degradation (e.g., desertification), which 

positively and negatively affect drought vulnerability (Sivakumar et al., 2011).  

Studies on drought vulnerability have already been conducted in the past. Dabanli (2018), 

for example, includes population density and the proportion of artificially irrigated fields 

for his vulnerability analysis. However, the latter data are not available with sufficient 

accuracy and over large areas. In contrast, Naumann et al. (2014) considered the 

economic factor of GDP per capita as an indirect indicator of well-being and attested to 
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a correlation with drought vulnerability. Other factors such as pasture animal density were 

also sometimes included in vulnerability analyses (Carrão et al., 2016). Climate change 

and increased greenhouse gas concentrations could also increase the occurrence and 

severity of meteorological droughts in some regions (IPCC, 2007). Thus, drought 

vulnerability is highly dynamic and ideally needs to be evaluated periodically. 

Furthermore, it is influenced by many variables, which makes it difficult to quantify and 

evaluate vulnerability uniformly across different regions. Because of this dynamic 

occurrence, current and spatially explicit data, such as remote sensing imagery, are 

needed.  

 

3. Transhumance 

Droughts severely affect transhumance, which has established itself as one of the most 

important lifeforms in several regions of the world, including the Sahel region in Africa. 

Pastoralists need grazing land as forage for their animals and have to tackle several risks 

to maintain their livelihoods. In the following, transhumance, its economic value, and its 

risks in the Sahel are described in more detail.  

3.1. Definition and economic value in the Sahel region 

Different descriptions of transhumance can be found in the literature. Oteros-Rozas et al. 

(2014) described transhumance partly as a farming practice shaping cultural landscapes, 

but also as an adaptive strategy, that overcomes the growing challenges of environmental 

change due to mobility. Brottem (2014) states, that transhumance consists of regular 

patterns of herd movements along persistent corridors between key pastoral sites. Jones 

(2005) mentioned that transhumance separates from pastoral nomadism in several ways. 

Transhumance, therefore, is not only based on mobile livestock herding, that adjusts to 

environmental conditions, but parts of the groups also have permanent village residents 

with arable agriculture. Here, several definitions from the IOM (International 

Organization for Migration) (Leonhardt, 2017) help to draw boundaries between several 

terms, that are often used as synonyms. Following, pastoralism generally describes an 

economic system based on livestock production with different degrees of mobilities and 

therefore includes nomadism, transhumance, and semi-transhumance. Furthermore, 

transhumance features a seasonal movement of herds and a return to a fixed origin with 
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a permanent place of residence, in contrast to nomadism. The migration schedule is 

dependent on the onset of the wet and dry seasons, while routes and destination pastures 

are generally well-known. Semi-transhumance on the other hand has one family 

responsible for agriculture, while the other part practices seasonal migration. 

Transhumance can furthermore be divided into long transhumance, where herders travel 

several hundred kilometers, and short transhumance, which is only limited to a small local 

area. Cross-border transhumance then describes seasonal movements, during which 

national borders are being crossed in search of natural resources like water and pasture 

(ECOWAS, 1998). Transhumance also displays the importance of livestock mobility 

across various spatio-temporal scales, as it is flexible in response to ecological variability. 

This reduces the vulnerability to climatic change and also the likelihood of overgrazing 

(Brottem et al., 2014; Fernandez-Gimenez & Le Febre, 2006). Movement patterns 

generally consist of north-south movements in the Sahel zone (Figure 1), while 

movements north take place during the rainy season (April – October) (Brottem et al., 

2014). The movement starts at the beginning of the green-up period and the beginning of 

senescence (Brottem et al., 2014).  

 

Figure 1: Transhumance and nomadism in Sahelian countries (OECD/SWAC, 2014). 

Rates of movement also differ between the two movement times. While herders move 

faster at the end of the rainy season due to the good nutritional status of the livestock, 
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movements at the end of the dry season are much slower (Diallo, 1978). Another reason 

for that is, that the annual grasses further north provide higher nutritional content 

(Penning de Vries & Djitèye, 1982). Routes or corridors of transhumance are generally 

well known by the herders as they often have fixed reliable resting points each year. 

Verified information about locations and the legal status of the corridors and resting 

points though is mainly not available. Resting points describe key locations along the 

transhumant corridors between origin and destination areas and are often located along 

water sources (Brottem et al., 2014). The transhumant movement generally follows the 

same trajectories each year with a highly varying length of stay at the origin and 

destination areas as well as at resting points (Brottem et al., 2014).  

Transhumance has a high economic value in the Sahelian countries of the ECOWAS 

(Economic Community for West African States) region. Livestock production is 

estimated at around 40 % of the GDP and can reach up to 50 % with animal traction, 

manure, and the transformation of animal products like butter or leather (Leonhardt, 

2017). 38 % of West Africa consists of unfavorable land for agriculture (OECD/SWAC, 

2014), where livestock production is the only way of using these arid zones. Livestock 

production not only employs millions of people but is also an important source of food 

and income, especially in fragile ecological zones like the Sahel. Rural inhabitants here 

are especially vulnerable to food insecurity, where livestock makes up about half of their 

capital. Large parts of the cattle, camels, goats, and sheep are held in transhumant 

production systems in the Sahel zone. Transhumance is well adapted to ecological and 

economic realities in West Africa and holds 70-90 % of the Sahel’s cattle, 30-49 % of its 

sheep and goats, and produces around 65 % of cattle meat and 70 % of milk (Leonhardt, 

2017).  

3.2. Transhumance at risk 

Despite their economic value, transhumant pastoralists also face several risks and 

challenges. These consist of population growth, climate change, expansion of agricultural 

areas, and the privatization of formerly shared resources (Leonhardt, 2017). This includes 

policies, that are favoring agriculture. In Mali for example big pastures have been 

converted to rice fields (Benjaminsen & Ba, 2009). The neglect and lack of governance 

in rural areas also contribute to the competition for natural resources. Conflicts and 

violence arising from that competition, lead to a negative perception of pastoralists and 



I. Introduction 

 

10 

reinforces marginalization. Transhumance is therefore often seen as a security issue 

instead of a development issue. Back in time, substance farmers and pastoralists 

complemented each other in how agroecological systems were used. Increasing 

competition for natural resources (Ikhuoso et al., 2020), increases in herd sizes, cropland 

expansion, poor governance, and extreme weather events have exacerbated these conflicts 

(Inter-resaux, 2017; Touré et al., 2012). All this leads to a contrary, where rights to secure 

fixed territories and social boundaries are needed to protect pastoralists and their pasture, 

and on the other side the spatio-temporal variability of resources for livestock (Marty, 

1993; Painter et al., 1994). Ferandez-Gimenez (2002) describes this as the “paradox of 

pastoral land tenure”. Accompanied is a confusion of policymakers and incoherent policy 

frameworks, that limited the progress in improving pastoral management and the 

securement of rights to key resources (Fernandez-Gimenez & Le Febre, 2006; Turner et 

al., 2011). The complexity arose from a highly variable and low predictable spatio-

temporal distribution of pastoral resources. A step in the right direction was the ECOWAS 

Protocol on Transhumance in 1998 and the supporting regulation in 2003, where 

ECOWAS Member states recognized cross-border pastoralist transhumance as a valuable 

economic activity. Regional regulatory frameworks for cross-border transhumance were 

set in place to provide free movement of persons, services, and goods (Leonhardt, 2017). 

Agricultural expansion nevertheless is a pressing challenge for transhumances as it leads 

to restricted movements and a reduced number of paths, as well as paths under conditions 

of heavy cultivation pressure (Brottem et al., 2014). Brottem (2014) described the 

extension of the cropland area as the most vulnerable aspect for transhumance and not 

climate change. The extension of cultivated areas leads to blocks, where movements 

between areas with water and pastures are not possible anymore and therefore result in 

lower viability for transhumance. Drought-related farmer-herder conflicts and water 

tensions with both fighting for the same natural resources are widespread in the Sahel and 

East Africa (Benjaminsen et al., 2009; Cabot, 2017). The fight for limited resources was 

also the main reason for recent conflicts in Nigeria (Ikhuoso et al., 2020). While conflicts 

have increased over the past two decades (Ayana et al., 2016), it became apparent that 

environmental factors act in tandem with many socioeconomic and political factors to 

trigger conflicts (Detges, 2016; Scheffran et al., 2019; Shettima & Tar, 2008). The 

understanding of the drivers of transhumance patterns as well as possible sources and 
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locations of conflicts is limited due to the lack of information on spatio-temporal 

migratory movements, grazing locations, or resting points (Motta et al., 2018).  

 

4.  Small-scale and subsistence farming 

Transhumance is not the only form of agriculture that faces the previously described risks. 

Small-scale and subsistence farmers represent another form of livelihood in rural Africa 

and are at least equally important as transhumant herders. Therefore, this chapter focuses 

on smallholder farmers and outlines their economic value along with the risks they are 

facing. 

4.1. Definition and the economic value of smallholder farmers in Sub-Saharan Africa 

Small-scale farmers belong to the group of smallholders that also contain pastoralists, 

forest keepers, and fishers (FAO, 2012). Smallholders in general are managing small 

areas of less than one hectare up to ten hectares and are focused on the stability of the 

farm household. Mainly family labor is used for production and a part of the produce is 

for family consumption (FAO, 2012). Subsistence and small-scale farming are sometimes 

interchangeably used (e.g.,Michael Aliber et al., 2005; Moeletsi et al., 2013). Small-scale 

farmers grow subsistence crops on small plots of land plus one or more cash crops while 

relying almost exclusively on family labor (Lidzhegu & Kabanda, 2022). Smallholder 

farmers also vary in activities they are engaged in, assets and resources available to them 

(e.g., land area or water), land tenure (e.g., rental or share-cropping arrangements), the 

control of the natural resources used, the scale of production, the share of family labor 

utilized, the degree of market integration and the distance of the holding farms from their 

family residence (Maass Wolfenson, 2013). So, despite being grouped under the same 

definition, there can be huge differences between individual smallholder farmers. 

Smallholder farmers in SSA also face some barriers as low nutrient inputs, insufficient 

control of weeds, pests, and diseases, and inadequate labor puts them into a category of 

low input systems (Sheahan & Barrett, 2017). The agricultural sector in Africa and 

especially in SSA is underdeveloped with an over-reliance on primary agriculture. Within 

that, the minimal use of external farm inputs, significant pre- and post-harvest food crop 

losses, minimal value addition, and product differentiation play a huge role (Assefa et al., 

2020; Tilman et al., 2011; van Ittersum et al., 2016).  
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Figure 2: Smallholder farmers in Ghana (FAO, 2021). 

Nevertheless, agriculture plays an important role in the economy and food security in 

Africa. In SSA agriculture employs 51.6 % of the population and generates 20 % of the 

GDP in 2016 (The Global Economy, 2019). Recent estimates found 33 million farms in 

SSA (IFC, 2013) with a contribution of up to 90 % of agricultural production in the same 

countries of SSA (Wiggins, 2009). Nearly 80 % of the farmland in SSA is managed by 

smallholder farmers with an average size of agricultural holdings below 3 ha which 

together produce up to 80 % of the total food supply in SSA (FAO, 2012). Still, the 

consumption of self-produced food crops represents only 20 % of the food needed for 

SSA smallholder households (Frelat et al., 2016). Despite actions to achieve the “Zero-

Hunger” Sustainable Development Goal (SDG) by 2030, food security in SSA is still far 

away (FAO et al., 2020). In recent years, yields of staple crops such as maize, wheat, or 

sorghum have decreased across Africa, widening food security gaps and leaving open 

challenges besides other risks for small-scale farmers (Ketiem et al., 2017).  

4.2. Risks for small-scale and subsistence farming 

This food security risk is additionally amplified in the future by the projected population 

growth. 1.02 billion people lived in SSA in 2017 and 2.17 billion inhabitants are projected 

for 2050 (United Nations, 2017). This population expansion will lead to an increased food 

demand (Kim et al., 2021). Subsistence farmers are also one of the most vulnerable groups 

to climate variability. It is difficult for them to cope with climate-related hazards as they 

have no capital for adaptive strategies (Thompson et al., 2007). Especially vulnerable are 

households relying on rain-fed agriculture (Thorlakson & Neufeldt, 2012). The worsening 
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food situation though is only partly related to climate change as poor and weakening 

market situations also play a role (Abdul Mumin & Abdulai, 2022). Prohibitive 

transaction costs by underdeveloped market systems and infrastructure as well as market 

failures, inadequate access to finance and technologies hinder the efficiency of food 

market systems and lead to limited potential of agricultural marketing (Abdulai & 

Birachi, 2009; Abdul‐Rahaman & Abdulai, 2020; Fafchamps, 1992). An additional risk 

to smallholder farmers is the loss of land as a decline in land/labor ratios shows (Jayne et 

al., 2010). The amount of arable land under cultivation has only risen marginally while 

the population of households in agriculture tripled between 1960 and 2000 (Jayne et al., 

2010). The bottom quartile of small-scale farmers in Ethiopia and Rwanda for example 

control less than 0.02 to 0.03 ha of land (Jayne et al., 2003). Another example is Malawi, 

where 70 % of smallholders possess less than one ha of land (Chirwa, 2006), which shows 

the risk of landlessness (Jayne et al., 2010). Rural communities heavily depend on access 

to land and natural resources while agricultural land on communal lands is one of the 

major land uses that supports the livelihood of millions of people (Shackleton, 2020). 

While facing adverse conditions like inadequate access to production resources 

(Mpandeli & Maponya, 2014) or poor access to markets (Loeper et al., 2016), the most 

alarming challenge in South Africa for rural communities is the access to and ownership 

of arable land (Loeper et al., 2016; Mpandeli & Maponya, 2014; Shackleton, 2020). In 

South Africa, 87% of agricultural land is used by commercial farms leaving only 13% for 

small-scale subsistence farmers (M. Aliber & Hart, 2009). Ineffective land use 

management that is less protective of smallholder farmers in rural areas led to a decline 

in land under agricultural fallow from 26% to 8% with a 69% decline in extent in South 

Africa as many areas were converted to built-up land (Lidzhegu & Kabanda, 2022). 

Besides the economic viability and the contribution to a diversified landscape and culture, 

small-scale farming faces additional risks. The competitive pressure from globalization 

and the integration into common economic communities only leaves two choices: either 

to be purely self-subsistent or to grow into larger units, that can compete with large 

industrialized farms (FAO, 2012). Another problem and risk for future food security is 

the stagnant food crop productivity in SSA in contrast to the risen productivity in the rest 

of the world since 1960 (Jayne et al., 2010). For example, while global maize production 

has increased with increasing yields, maize production in most countries of SSA only 

increased with increasing areas (Cairns et al., 2021). This expansion-based production 
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growth though is not sustainable in the long run (Cairns et al., 2021) pointing to the need 

for adaptation strategies. 

 

5. Remote Sensing 

Remote sensing, through its large spatial coverage and high revisiting frequency, allows 

us to analyze various processes on the Earth surface in a spatiotemporal way. Before 

providing an overview of the status of current remote sensing applications for droughts, 

transhumance, or agriculture, the principles of remote sensing together with its different 

sensors to monitor environmental factors are described in the following. 

5.1. Introduction to remote sensing: History, definition, and basics 

The term “remote sensing” was first used between 1960 and 1970 (Campbell & Wynne, 

2011). Over time, there were many different definitions surrounding one central concept 

– the gathering of information at a distance. The closest definition for this thesis explains 

remote sensing as “the practice of deriving information about the earth’s land and water 

surfaces using images acquired from an overhead perspective, using electromagnetic 

radiation in one or more regions of the electromagnetic spectrum, reflected or emitted 

from the Earth’s surface” (Campbell & Wynne, 2011). Regarding this thesis, the 

definition needs to be a bit broader as meteorology for example is not included, but is a 

factor in this work primarily in the form of rainfall. Satellite remote sensing designed for 

the observation of land surfaces started in 1972 with the launch of Landsat 1 providing 

systematic and repetitive observations for the first time. Rapid advances in technologies 

like hyperspectral remote sensing in the 1980s, the first satellite systems designed to 

collect data of the entire earth in the 1990s, and public remote sensing, which was made  

available through the advances of the internet in the first decade of the 21st century lead 

to today's standards of long time series archives of satellite data with varying spatial and 

temporal resolutions dependent on the applications (Campbell & Wynne, 2011). Remote 

sensing itself represents a process that starts with physical objects on the earth’s surface 

(e.g., buildings or vegetation). Subsequently, sensor data is collected by viewing the 

objects with instruments and recording electromagnetic radiation, that is either emitted or 

reflected. To use these types of sensor data, analyses and interpretation are necessary to 

convert this data to information that can be used to address practical problems (e.g., 
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identifying burned areas). Finally, the extracted information can be used in combination 

with other data for specific applications like land use planning or drought monitoring 

(Campbell & Wynne, 2011). Remote sensing additionally consists of several key 

concepts – the spectral differentiation where different features on the earth reflect or emit 

different energy, the radiometric differentiation where differences in brightness of the 

objects are measured, the spatial differentiation which is limited to the smallest area that 

can be separately recorded by a sensor (minimal units: pixels), and the temporal 

dimension where constant repetition of observations over years allow change detections 

(Campbell & Wynne, 2011).  

 

Figure 3: The electromagnetic spectrum, including wavelength, energy, and a detailed excerpt of the visible 

subdivision (Verhoeven, 2017). 

All these concepts rely on the basis that all objects on the earth’s surface emit or reflect 

electromagnetic radiation. The emitted and/or reflected radiation can be measured by 

sensors and different characteristics of features such as vegetation, structures, soils, rock, 

or water bodies can then be identified. Each electromagnetic wave consists of one electric 

(vertical) and one magnetic (horizontal) field, which are orthogonal to each other and the 

direction of the wave propagation (Lo, 1987). Each wave has several properties, which 

include the wavelength (λ) representing the distance of separation between adjacent wave 

peaks, the frequency (f) describing the number of wave peaks passing a fixed point in a 

given period of time, the amplitude as the height of each peak, and the phase, which shows 

the extent to which peaks of one waveform align with those of another (Campbell & 

Wynne, 2011; Lo, 1987). As the speed of electromagnetic energy is constant, the 
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frequency and wavelength are related inversely proportional and the characteristics of 

electromagnetic radiation can be described through either one of them (Campbell & 

Wynne, 2011; Lillesand & Kiefer, 1994). The most common way to categorize waves 

uses their wavelength location in the electromagnetic spectrum (Figure 3) (Lillesand & 

Kiefer, 1994). The electromagnetic spectrum consists of several subdivisions including 

gamma rays, X-rays, ultraviolet radiation (UV), visible light (VIS), infrared radiation 

(IR), microwave radiation, and radio waves (Figure 3) (Campbell & Wynne, 2011).  

 

Figure 4: Spectral characteristics of atmospheric transmittance and common remote sensing systems 

(Lillesand et al., 2015). 

While the radiation travels through the atmosphere, its energy is altered in intensity and 

wavelength by particles and gases (Campbell & Wynne, 2011). Interactions in the 

atmosphere include scattering, which describes an unpredictable diffusion of radiation by 

particles in the atmosphere, and absorption which is an effective loss of energy to 

atmospheric constituents (Lillesand & Kiefer, 1994). While the effect of scattering on 

sensor data can be reduced through atmospheric correction, the effect of absorption 

cannot be corrected and leaves so-called “atmospheric windows” where remote sensing 

systems can receive transmissive energy (Figure 4) (Lillesand & Kiefer, 1994). Therefore, 

remote sensing systems operate on several wavelengths to gather information about 

features on the earth’s surface. These features can be differentiated by their spectral 

signature, which represents the spectral response of a feature over a range of wavelengths. 

The spectral responses of objects on the earth’s surface in different wavelengths can be 
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observed through several satellite-based remote sensing systems. In the field of remote 

sensing, active and passive systems are distinguished based on the same physical 

principles as explained above. Different passive and active remote sensing systems as 

well as their physics and exemplary application fields, which are related to the topic of 

this thesis, are described in the following two sections.  

5.2. Passive sensors (optical) and remote sensing of environmental factors 

Passive sensors are based on the principle of measuring radiation, which is reflected or 

emitted by objects, and depend on external energy sources. The main external energy 

source is the sun, but also thermal energy emitted by fires can be measured 

(Schowengerdt, 2007). Passive sensors measure radiation in the visible, near-infrared 

(NIR), mid-infrared (MIR), and thermal infrared (TIR) parts of the electromagnetic 

spectrum ranging from 0.4 – 14 µm (Figure 3) (Schowengerdt, 2007). Objects on earth 

react differently to incoming radiation, as they reflect, emit, absorb or transmit the energy. 

Reflection is defined by the change of the radiation’s direction without emitting or 

absorbing energy and is divided into diffuse and specular (direct) reflectance. Absorption 

describes the intake of energy by an object, emission in this context is defined through 

outgoing secondary heat radiation. Energy can also transit through the object without 

changing, which is called transmission (Borengasser et al., 2008). These properties vary 

for features on the earth’s surface and are dependent on the material, shape, and size as 

well as their physical and chemical characteristics (e.g. moisture content) while the most 

important properties are color, structure, and surface condition. Features on the earth’s 

surface have unique properties and can therefore be identified through their spectral 

signature, as described in the previous section (Campbell & Wynne, 2011). Passive 

sensors in this work were mainly used for vegetation monitoring. Vegetation monitoring 

is also based on the spectral signature principle, where mostly healthy and dry vegetation, 

as well as soil, are differentiated. 

In the optical wavelength region, vegetation absorbs much of the solar radiation for 

photosynthesis through pigments in the leaf tissue - particularly chlorophyll a and b, 

carotenoids, and anthocyanins (Chang et al., 2017). Plant greenness is influenced by the 

fact that healthy vegetation is greener and absorbs more incident visible light, such as that 

of the red and blue spectrums, and reflects a significant amount of near-infrared energy 

as well as a small reflectance peak for the green part of the visible spectrum (Figure 5). 
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Less vital and sparse vegetation, on the other hand, reflects more visible light without a 

green reflectance peak and less near-infrared (NIR) energy (Hazaymeh & Hassan, 2016). 

To evaluate vegetation and soil status, the wavelength range 0.4-2.5 μm (Red Spectrum, 

NIR, Shortwave Infrared (SWIR)) is most used due to the clear response from vegetation 

greenness and vegetation moisture (Hazaymeh & Hassan, 2016). 

 

 

Figure 5: Spectral signatures of green vegetation, dry vegetation, and soil across the spectra measured by 

passive sensors (Maisongrande et al., 2007). 

For moisture, the NIR is less sensitive than the SWIR, which has a significant absorption 

peak for vegetation water content (Zhang et al., 2013). In general, surface reflectance 

increases with higher levels of water deficits, especially in the spectrum of the SWIR 

(Hazaymeh & Hassan, 2016).  

Vegetation monitoring is mostly done by exploiting the described properties of vegetation 

throughout their spectral signatures. An example is given in Figure 6, where a false color 

composite is shown. Here, green vegetation appears green as it shows high reflectance 

values in the NIR (Figure 5), which are displayed as the green band of image. Differences 

can also be seen between agricultural areas (light green to yellow) with partly dryer 

vegetation and forests (darker green). Healthy, green vegetation, therefore, can be clearly 

distinguished from other land cover types like for example bare soil, which is represented 

by purple and white to rosa coloring depending on the soil type (e.g., built up land (pink) 
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or sandy soil (light rosa)) as well as sparse vegetation cover or the moisture content. By 

calculating vegetation indices like the NDVI or the NDRE (Normalized Difference Red 

Edge Index) as well as water indices, e.g., the NDWI (Normalized Difference Water 

Index) (Gao, 1996; Lambert et al., 2017) vegetation monitoring takes advantage of the 

spectral signatures. Water indices that use the NIR and SWIR regions of the 

electromagnetic spectrum are more suitable for the evolution of drought for example than 

indices that use the visible and near-infrared wavelength spectrum. This is because water  

 

Figure 6: Exemplary false color Sentinel-2 image in Burkina Faso during the crop growing season 

(06.09.2021). Color representation: Red: SWIR, Green: NIR, Blue: Red. The black square in the inset 

represents the location of the image in Burkina Faso. Background: ESRI Basemaps. 

indices are more sensitive to changes in drought conditions than vegetation indices 

(Chang et al., 2017; Gulácsi & Kovács, 2015). Vegetation health for crop yield models is 
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also often based on water indices together with vegetation indices (Groten, 1993; Lambert 

et al., 2017). Optical remote sensing indices can be divided into different groups for 

drought monitoring. There are indices describing soil drought and those describing 

vegetation drought (Hazaymeh & Hassan, 2016). In this context, for example, soil 

drought indices have uncertainties about vegetation areas because vegetation reacts 

consistently to short-term drought conditions in leaves and roots, which leads to delayed 

identification of drought and uncertainties in results (Farooq et al., 2009). Similarly, 

vegetation indices have uncertainties over areas of sparse vegetation. Another way of 

vegetation monitoring is called spectral unmixing analysis (SMA) (Roberts et al., 2003; 

Yebra et al., 2013). In contrast to indices, it does not only use specific bands recorded by 

remote sensing sensors but all vegetation-related bands throughout the measured 

spectrum. Spectral mixture analyses are suitable to assess the fractional green 

photosynthetic vegetation versus per pixel non-photosynthetic vegetation, and bare 

substrate (soil) abundances from satellite data (Asner et al., 2005; Franke et al., 2018; 

Roberts et al., 1993). 

Examples of passive remote sensing systems, that are used in this work are the Moderate 

Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2. MODIS provides 

different products about surface reflectance or the albedo on a spatial resolution of 500m 

since the year 2000, while also delivering global coverage (Schaaf & Wang, 2015; 

Vermote et al., 2015). Sentinel-2 also operates on a global level but has a much finer 

resolution of 10 – 20m, which makes it extremely important for yield estimations for 

small fields of rural smallholder farmers (ESA, 2022; Karst et al., 2020).  

5.3. Active systems (radar) and remote sensing of environmental factors 

Active remote sensing systems actively emit electromagnetic energy and measure the part 

of this energy that is reflected and backscattered by objects. Therefore, the sensors are 

independent of other energy sources like the sun and can also operate at night. Examples 

are radar and LiDAR (light detection and ranging). As only radar satellites were used in 

this thesis, only this methodology will be elaborated on in more detail.  

Radar originates from radio detection and ranging (Lillesand & Kiefer, 1994) and 

transmits short bursts or pulses of microwave energy (Figure 3). Sensors record the 

strength and origin of echoes or reflections of objects. Spaceborne instruments only use 
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Synthetic Aperture Radar (SAR) as real aperture systems would have an insufficient 

resolution (Lillesand & Kiefer, 1994). SAR instruments transmit microwave pulses at a  

 

Figure 7: Exemplary preprocessed Sentinel-1 image in the border area of Chad, Cameroon and Nigeria 

during the wet season (19.09.2022). The black square in the inset represents the location of the image. 

Background: ESRI Basemaps. 

given frequency and measure the backscattered energy in form of magnitude and phase 

(Campbell & Wynne, 2011). These relatively long wavelengths (1 mm – 1 m) (Figure 3) 

can penetrate clouds making SAR instruments weather-independent in contrast to optical 

platforms (Richards, 2009). Radar systems primarily measure the time it takes for the 

transmitted microwave pulses to return to the sensor. By doing so, the distance of the 

target can be calculated (Richards, 2009). The side-looking angles of the instruments and 

the terrain geometry result negative in phenomenons including radar shadows, 
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foreshortening, and the layover effect (Lillesand & Kiefer, 1994). As relief, e.g., 

mountains can slope perpendicular towards the sensor, the backside of the mountain 

cannot be reached by the transmitted microwave pulses resulting in zero energy 

measured. This is called radar shadow. Foreshortening exists when the size of the sloped  

surface is compressed on the recorded image and layer effects occur when the signal of 

the top of a vertical feature reaches the sensor before the signal of the base of the feature. 

Both of them are severe (layover) or less severe (foreshortening) relief displacements in 

the resulting image (Lillesand & Kiefer, 1994). Figure 7 shows a preprocessed Sentinel-

1 SAR image where one of these phenomena can be clearly seen. Terrain effects have 

been reduced during preprocessing with a terrain correction, but radar shadows cannot be 

removed as they represent no data areas. This is shown by the black areas on the backside 

(left) of the elevated features in lower right corner of the image.  

 

Figure 8: Schematic overview of the different scattering mechanisms surface scattering, volume scattering, 

and double-bounce, arrows simulate directions of energy (Berninger, 2020) 

The transmitted electromagnetic waves have a geometrical orientation of the oscillations, 

that are specified by their polarization (Campbell & Wynne, 2011). The energy is 

transmitted in simple linear polarization either horizontal (H) or vertical (V). Both 

polarizations can be received in different channels as scattering by the objects on the 

earth’s surface can change the polarization (Cloude, 2010). Therefore, four different 

combinations are possible – HH, VV, HV, and VH, where the first letter stands for the 

transmitted polarization and the second letter for the received polarization. HH and VV 

are called like- or co-polarized while HV and VH are called cross-polarized (Campbell & 

Wynne, 2011). Horizontally polarized waves are more sensitive to horizontally oriented 

features and vertically polarized waves to vertically oriented features while cross-
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polarized waves are more influenced by volume scattering and co-polarization is strongly 

affected by surface properties like moisture (Le Toan et al., 1992). These different 

polarizations allow the differentiation of land cover types and properties (Campbell & 

Wynne, 2011). As radar systems emit energy in varying frequencies and wavelengths, 

their differentiation is based on bands. Sentinel-1 for example operates with the C-Band 

with a wavelength between 5.2 and 7.1 cm (European Space Agency, 2022). Bands and 

wavelength differ in the penetration depth of the signal into soil or vegetation, as in dry 

conditions the penetration depth increases with increasing wavelength (Campbell & 

Wynne, 2011). The sensor measured energy is scattered by objects, which means the 

redirection of energy (Campbell & Wynne, 2011) and is dependent on different properties 

like roughness or moisture. Different kinds of scattering are distinguished. Surface 

scattering represents the backscatter without interaction with other objects and depends 

on the roughness of the surface (Richards, 2009), volume scattering consists of numerous 

scattering elements in 3D bodies like trees (Campbell & Wynne, 2011), and double-

bounce describes scattering resulting from two relatively smooth surfaces perpendicular 

to each other (Figure 8) (Richards, 2009).  

In this context, smooth water surfaces are specular reflectors, that return no signals to the 

antenna, whereas rough water results in signal returns of varying strengths due to waves 

(Lillesand & Kiefer, 1994). On the basis of water as an almost specular reflector, surface 

water classifications can be done for example with radar data as for example in Steinbach 

et al. (2021). Surface water classifications in this work also followed this principle. This 

is also demonstrated in Figure 7, where large black areas and streamlines represent rivers 

and reservoirs.  

5.4. Applications and remote sensing-based modeling 

By using these different sensors and monitoring techniques, remote sensing can be used 

in various applications together with other datasets. In the following section, applications 

of remote sensing for drought monitoring, yield modeling, and the support of 

transhumance are described in more detail. 

5.4.1. Droughts 

Satellite data have been used for drought detection and monitoring since the 1980s 

(Kogan, 1997). The advantages of remote sensing-based drought indices are the large 
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spatial coverage and the almost continuous data availability. In contrast, difficulties and 

challenges arise with small areas, data gaps, consistent historical datasets, integration of 

recent satellite missions, and the development of a standard for a validation scheme 

(Hazaymeh & Hassan, 2016). The usability of data depends on its availability, cost, 

quality, pre-processing, and post-processing requirements (Hazaymeh & Hassan, 2016). 

Nevertheless, remote sensing is the most effective way to detect and analyze the impacts 

of droughts on ecosystems (Zhang et al., 2013). 

Droughts are usually triggered by a precipitation deficit in combination with increased 

solar radiation and a temperature rise (Zhang et al., 2013). Using remote sensing to map 

this phenomenon is based on the fact that droughts affect the biophysical and chemical 

properties of soils and plants, such as soil moisture, organic matter content, vegetation 

biomass, chlorophyll content, canopy cover, and soil temperature (Anjum et al., 2011). 

Droughts can alter the spectral or thermal responses of ecosystems, from which indicators 

of their occurrence can be derived (Hazaymeh & Hassan, 2016). Remotely sensed drought 

indices depend primarily on the characteristics of energy reflected or emitted from the 

Earth's surface (Hazaymeh & Hassan, 2016). They are based on individual spectral 

signatures of the ground surface and tree canopy characteristics (Hazaymeh & Hassan, 

2016). These signatures vary with changes in vegetation. For example, photosynthetic 

barriers are the result of declines in evapotranspiration and stomatal closure, leading to a 

reduction in absorbed photosynthetically active radiation (APAR). This is a defensive 

response of plants, leading to slower growth under stress - triggered, for example, by 

water deficits. Droughts also reduce enzyme activity in plants, which can cause damage 

to biomolecules and chlorophyll (H. G. Jones & Corlett, 1992; Reddy et al., 2004). This 

causes the leaves to dry out, fall off, and the plant dies (Zhang et al., 2013). Plant death 

and growth are mainly controlled by the three environmental factors of temperature, 

water, and sunlight, all of which are interrelated (Zhang et al., 2013). The temperature 

increase can be measured in the thermal wavelength range of the measurement 

instruments on the satellites (Zhang et al., 2013). In the optical wavelength region, the 

green of the plants can be inferred (Chang et al., 2017), and in the infrared region, the 

water content of the leaves can be inferred (Zhang et al., 2013). 

The primary goal of drought research is to reduce the negative impacts of drought through 

improvements in water management, drought management, and agricultural practices (Di 

Wu et al., 2015). For proper drought strategies, temporal information on the onset, 
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severity, and duration is very important (Di Wu et al., 2015). Moreover, a comprehensive 

understanding of the causes and consequences of historical and current droughts is 

essential for food production and crop planning/management (Hazaymeh & Hassan, 

2016). Studies aimed at better drought management exist, for example, by Bachmair et 

al. (2017), who modeled probabilities of drought impacts from drought reports. More 

consistent methods are presented by Diermanse et al. (2018) and Towler and Lazarus 

(2016), who conduct general drought risk analyses at regional and local scales based on 

meteorological and hydrological data. Going into more detail, Rojas et al. (2011) use the 

Vegetation Health Index (VHI) to calculate drought probabilities of agricultural land 

during the growing season in Africa. Even more specific are Wu and Wilhite (2004), who 

model drought risks for individual crops. Regional droughts were observed for example 

by Shen et al. (2019) who used multi-source remote sensing data with MODIS NDVI and 

EVI (Enhanced Vegetation Index) as well as TRMM (Tropical Rainfall Measuring 

Mission) data. Their deep learning model for drought showed good applicability in 

monitoring regional droughts. Monteleone et al. (2020) on the other hand successfully 

developed a new composite index for agricultural drought (PPVI (Probabilistic 

Precipitation Vegetation Index) in Haiti by combining the SPI and the VHI. By only using 

globally available remote sensing data sets their methods could also be transferred to and 

applied in other areas. Also, global drought models are available, but mostly on a lower 

resolution and therefore they often lack precise regional information. Examples are the 

Global Drought Observatory (Vogt et al., 2018) and Climate Engine data (Huntington et 

al., 2017). 

5.4.2. Remote sensing for transhumance 

In contrast to droughts, remote sensing related to transhumance is not as established. Most 

studies and analyses have been conducted based on fieldwork, like interviews or 

participatory mapping studies. Nevertheless, there has been some research in this field. 

Butt et al. (2011) for example used MODIS (Moderate Resolution Imaging 

Spectroradiometer) NDVI data with 1km resolution for vegetation analysis, to detect 

green-up and senescence times at the beginning and end of the rainy season at a higher 

resolution than before. Although green-up and senescence are very important for 

transhumant mobility, the detection of yearly varying times was not as beneficial as 

assumed, because the difference between green-up at the dry season homes and the wet 
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season destinations further north was only marginal (Butt et al., 2011). Therefore, they 

conclude that more spatially defined information about particular locations of vegetation 

green-up or the lack of senescence would be of use. Brottem et al. (2014) also used 1km 

MODIS NDVI data to analyze the spatiotemporal variability of forage availability which 

is important as green-up and senescence determine the timing of transhumance 

movements. They used NDVI data as a proxy for green forest and looked for inter-annual 

variability, seasonal changes in the connectivity of forage patches, and key locations with 

consistently early green-up or late senescence of the vegetation (Brottem et al., 2014). By 

doing so, they found information about specific locations of quality fodder and water at 

higher resolutions together with place names recognizable to local people. They also 

highlight the necessity of protecting sites with early green-up or late senescence from 

competing land use. Ellision et al. (2021) analyzed Landsat data from 1986 to 2017 for 

changes in land cover and found that rangeland transformations had negative impacts on 

transhumant herds’ mobility and forage availability. Consequently, the rangeland stability 

and consent between agricultural and pastoral land users is a tipping point (Ellison et al., 

2021). They further state that informed policies, land use planning, and compromises 

among all stakeholders will be needed in the future. Therefore, research was not only 

conducted on movements based on vegetation, but also on the connections between 

farmer-herder conflicts and climate change. McGuirk and Nunn (2020) conducted their 

research based on the assumption that droughts can disrupt the cooperative relationship 

between pastoralists and farmers, where arable land is used for crop farming during the 

wet season and animal grazing in the dry season. During droughts, pastoralists would 

migrate to agricultural land before the dry season, which causes conflicts (McGuirk & 

Nunn, 2020). Therefore, they analyzed a time series from 1989 to 2018 by connecting 

ethnographic information on traditional locations of pastoralists and sedentary 

agriculturalists, with rainfall data and satellite-based data on the vegetation status. Their 

results showed conflicts in neighboring areas of the pastoralists’ territories that were 

affected by drought and revealed that conflicts are concentrated in agricultural areas due 

to the rainfalls’ impact on plant biomass growth. This mechanism explains a sizable 

proportion of conflicts in Africa (McGuirk & Nunn, 2020). Ayana et al. (2016) 

demonstrate that environmental stressors are only partly predictive of conflicts. They 

analyzed NDVI and rainfall time series data together with conflict location data. Efforts 

to directly support pastoralists were also made in the past. The French Agricultural 
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Research Centre for International Development (CIRAD) therefore developed the 

“système d’information sur le pastoralisme au Sahel” (SIPSA) in 2012. Within this 

system satellite data was used to derive a set of biophysical indicators relating to 

rangeland productivity, the state of the vegetation, and the extent of surface water and 

burned areas (Touré et al., 2012). Furthermore, Mertz et al. (2016) stated that improved 

information on weather and natural resources as a support for transhumance would help 

to reduce the level of conflicts if communicated together with multiple options for herd 

movements. The modeling of movement paths or movement options concerning 

transhumance is still a largely unexplored field. An example can be seen in D’Abramo et 

al. (2021). They used GPS locations of the pastoralists’ winter and summer camps in 

Argentina and connected these data with terrain indices derived from a Digital Elevation 

Model (DEM), environmental parameters like vegetation status from 30m Landsat data, 

and river networks. They conducted a Least Cost Path (LCP) analysis on cost surfaces 

based on Ensemble Distribution Modelling (EDM) and found a good concordance with 

some ethnographic routes. The appropriate locations of the ethnographic routes though 

could not be predicted. Nevertheless, they conclude that modeling can contribute to a 

deeper understanding of transhumance and that human mobility is not only driven by 

environmental factors. Cultural and social factors (e.g., fences or paved roads) or specific 

herd characteristics, like size and composition, also play a role (D’Abramo et al., 2021). 

Modeling in general, however, allows for the identification of critical areas for seasonal 

mobility, which is the basis for maintaining traditional practices and developing 

information-based policies to regulate sustainable environmental management strategies 

(D’Abramo et al., 2021).  

Concluding this chapter, it is evident that more research needs to be done, especially in 

the Sahel zone. Not only is satellite data helpful to monitor environmental conditions, but 

also to determine alternate grazing locations, and can serve as a basis for modeling 

transhumant routes. Even though exact routes cannot be predicted, modeled routes with 

the right input parameters can be helpful for policymakers to support transhumance itself 

and to minimize conflicts. 

5.4.3. Remote sensing-bases yield estimations at different scales 

While remote sensing for transhumance and pastoralists is not as widespread as in the 

drought context, remote sensing for agricultural purposes is already widely used. Past 



I. Introduction 

 

28 

examples include numerous studies in Europe or the US for example, as Bolton and Friedl 

(2013) did crop predictions on county-level based MODIS data. This section though 

focuses on remote sensing applications in Africa, where timely monitoring of cropland is 

important to ensure food security and to make agricultural activities more sustainable 

(Huang et al., 2019). Several challenges for remote sensing come into play in Africa. 

Smallholder fields are often characterized by high spatial and temporal heterogeneities, 

which are enhanced by intercropping and the presence of trees within plots (Bégué et al., 

2020). Unfavorable weather conditions for optical remote sensing in the rainy season 

represent an additional challenge as for example a revisit time period of 1 – 3 days in 

August would be needed to get 8-day image composites with clear sky conditions of 70% 

of agricultural land in SSA (Bégué et al., 2020). The paucity of ground databases also 

causes problems as ground data are critical for developing and assessing the accuracy of 

remote sensing-based indicators and methods (Bégué et al., 2020). Ground data though 

has some limitations as they come with labor-intensive surveys and are not easily 

scalable. For that reason, high-resolution earth observation data is needed for crop 

production estimates in heterogeneous smallholder farming systems (Lambert et al., 

2018). Despite recent advances in remote sensing and crop modeling for assessing 

agricultural conditions, reliably and cheaply assessing production losses is still 

challenging in complex landscapes and also points out the need for the improved 

collection and accessibility of reliable ground-reference data on crop types and 

production (Benami et al., 2021). Major uncertainties in large-scale crop modeling also 

arise from the lack of information on the spatiotemporal variability of crop sowing dates, 

which can be reduced through remote sensing (Rezaei et al., 2021). Rezaei et al. (2021) 

did multiple simulations of maize yields for four provinces in South Africa with 

previously defined scenarios of sowing dates from 2001 to 2016 and found differences of 

48% of the mean yield in the long-term at the province level. Therefore, they conclude 

that remote sensing could help to gain a better representation of sowing dates. Samasse 

et al. (2018) additionally state that accurate estimates of cultivated areas and crop yield 

are critical to further the understanding of agricultural production and food security, 

especially for semi-arid regions like the Sahel, where agriculture is mainly rainfed. 

Accurate estimations of agricultural areas could also outline abandoned cropland. Olsen 

et al. (2021) for example found that conflicts in South Sudan led to a reduction of 16% in 

cultivated cropland and that the abandoned croplands could have supported food for 
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around 25% of the population in the southern states of South Sudan. This shows that it is 

also important to identify land where agricultural production can be practiced to support 

food security. Studies on yield estimations have also been conducted by Leroux et al. 

(2019), who forecasted yields by two months with a combination of remote sensing, crop 

modeling, and machine learning. They also found that more research on the spatial 

variability of yields is needed to strengthen agricultural monitoring systems. Petersen 

(2018) used MODIS data to predict yields at the country level in Africa based on NDVI, 

EVI, and NDWI anomalies for vegetation health. The predictions were done for each of 

the countries’ main crops while finding errors of less than 2% for 20% of the predictions 

and errors of less than 5% for 40% of the predictions. To support food security on the 

household level in rural areas though, high-resolution satellite data is needed. Therefore, 

Lambert et al. (2018) used Sentinel-2 and ground data to estimate individual crop 

production at farm-to-community scales. Through Sen2-Agri (Sentinel-2 for Agriculture) 

estimates of the LAI (Leaf Area Index), they got correlations between 0.48 and 0.8 with 

an uncertainty of 0.3% of the total production for the main crops in Mali. Karst et al. 

(2020) went further by producing yield predictions at the field level for smallholder 

farmers. They used Sentinel-2 data together with ground observations to build a linear 

regression model based on different vegetation indices for crop yield estimations. While 

only having one year of training data, they state that yield predictions of smallholder 

fields provide crucial information for food security and health-related issues like 

malnutrition.  
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6. Objectives and structure of the thesis 

The climate change-related risks on livelihoods in Africa make it evident, that large-scale 

monitoring measures are needed to help local and especially rural communities in 

adapting to climate change and to improve health and livelihood outlooks.  

Therefore, the overarching aims of this thesis, are:  

• the development of satellite-based approaches to support livelihoods, food 

security, and studies on natural resources 

• the demonstration of satellite-based monitoring as precursors decision support 

tools for policymakers, 

• the support of prevention measures regarding health risks, conflicts, and food 

insecurity in Africa through remote sensing-based evidence, and 

• providing an outlook on how satellite data and derivative products can be used 

efficiently in multiple domains. 

This thesis is divided into four chapters based on stand-alone publications, which are 

surrounded by a general introduction including theory and background that provides 

detailed information on the different topics, as well as a synthesis including a discussion 

of the four studies in the context of the overarching aims of this thesis together with an 

outlook over future research.  

The first study (Chapter I) describes a regional transferable drought modeling framework 

based on satellite data and national yield statistics. After being trained in a ‘data-rich’ 

area, the modeling framework was transferred to southern Africa to provide monthly 

drought monitoring measures on a regional scale.  

In Chapter II, environmental suitability maps for transhumance were developed through 

remote sensing data, survey data, and other geospatial data sources. Theoretical optimal 

movement paths of pastoralists along the highest environmental suitability scores were 

additionally modeled. By combining the suitability maps and modeled movement paths 

with other data sets, for example on conflicts, a potential decision support and planning 

tool is presented to support conflict prevention in the Sahel.  

Chapter III consists of an intercomparison of remote sensing-based algorithms to detect 

surface water. It provides a systematic evaluation of different existing algorithms and 
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points out the pros and cons of different sensors and models for surface water detection 

and monitoring.  

The last study (Chapter IV) describes a high-resolution, satellite-based modeling 

approach for yield estimates at the smallholder field level. By using for the first time an 

in-situ dataset of three years of field measurements, this study examines if it is possible 

to make the time- and cost-consuming field measurements obsolete. Therefore, models 

based on one year of training data are compared to the general crop yield model based on 

three years of training data.  

The results of the studies support the conceptualization of monitoring systems, prevention 

measures, and decision support tools, that are essential to maintain livelihoods in Africa, 

which face several health risks, food insecurity, and conflicts. The analyses are partly 

nested in research units like the DFG research unit “Climate Change and Health in Sub-

Saharan Africa” and partly depend on close cooperations with institutions such as  the 

International Organization for Migration. 
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Abstract 

Increasing frequencies of climate change-induced extreme weather like prolonged 

droughts pose significant challenges for small-scale subsistence farmers in sub-Saharan 

Africa, who rely on the yearly harvest by more than 80% of their nutritional needs. 

However, yield estimates at the field and household level (mean field size < 2 ha), that 

can be applied without continuously collected in-situ data, are still lacking. Statistical 

models for region-wide food crop yield estimations based on high-resolution satellite data 

at the field level may generate better insights on how to address health risks like child 

undernutrition in low-resource contexts where the burden is greatest and projected to 

aggravate in future climate projections. Our study developed crop-specific, satellite-based 

yield models using a novel three-year data set of in-situ yield measurements as 

exemplified for a rural region in Burkina Faso. The aim of the model is to reduce the need 

for in-situ field data collection while still assuring accurate yield estimates at the field 

level. The model employed LASSO regression and was based on monthly vegetation 

index composites from Sentinel-2 and weekly accumulated Climate Hazards Group 

InfraRed Precipitation with Station (CHIRPS) rainfall data. Our yield modeling results 

suggest that an increase in training data capturing a wider range of yields over three years 

led to more robustness to overfitting and, therefore, better model fits. R² values ranged 

from 0.62 (Maize) to 0.3 (Sorghum) for the three-year yield models, with normalize root 

mean square error (nRMSE) values ranging from 12% - 16%. An additional plausibility 

check confirmed the validity of our models, as we compared the magnitude of our yield 

estimation with national yield statistics for Burkina Faso. We showed that the models 

based on three-year in-situ data can capture parts of the inter-year variability in yields, 

which enables the proposed models to be applied to future years without the need for 

additional in-situ measurements. Our advances in predicting yield estimates at the field 

level enable a linkage between household-level yields, socioeconomic indicators, 

nutritional status of children, and the health status of the household members. A further 

application is linking high-resolution yield data to farmers’ productivity losses from 

increasing heat under climate change. 

Keywords: food crop yield, child nutrition, health, climate change, food security, sub-

Saharan Africa 
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1. Introduction 

Increasing temperatures, shifting rainfall patterns, and shorter frequencies of extreme 

weather events such as floods and droughts are already affecting food security (Mbow et 

al. 2019) and particularly child undernutrition (Belesova et al. 2019a). According to the 

United Nations Committee on World Food Security (CFS), these climate stressors act in 

tandem with factors such as population growth (CFS 2009). According to the Global 

Climate Risk Index 2021, five out of ten countries that suffered the most from climate 

change-related extreme weather events between 2000 and 2019 are located in Africa 

(Eckstein et al. 2021). In 2020, over 768 million people worldwide faced hunger, while 

21% of Africa’s population was affected. In Western Africa, 18.1% of children suffered 

from undernutrition in 2020, including Burkina Faso (FAO et al. 2021). The effects of 

climate change on food availability are especially apparent in subsistence farming 

settings, where people eat almost exclusively what they have harvested from their own 

fields. The agricultural sector employs nearly 80% of the working population and 

generates around 30% of the country’s GDP (The World Bank 2020; Dabat et al. 2012).  

Droughts are one of the most frequent and hazardous climate change-related events. It is 

the main cause of crop failure and loss of agricultural varieties, which in turn increases 

the risk of undernutrition (Belesova et al. 2019a; Kogan et al. 2019). Increasingly 

common causes of crop failure and low yields are sequential torrential rainfalls that flood 

fields for days, thus damaging the crop plants (Licht 2022; Wang et al. 2022).  

The government supports subsistence farmers in two ways: First, (i) through weather-

indexed crop insurance. Using remote sensing for quantifying each subscriber 

household’s yields to determine, whether they are eligible for benefit payments can prove 

useful. This is currently tested as part of an early warning and responses system by the 

Burkinian government. Second (ii), farmers are supported in the diversification of 

agricultural production, better partial integration of agriculture into markets, and 

development of domestic and foreign markets. To support food self-sufficiency and 

smallholder farmers in the development of agricultural strategies, it is essential to 

constantly monitor crop yields at the household field level.  

Since the majority of crop types show a correlation with vegetation indices (VI), e.g., the 

normalized difference vegetation index (NDVI), multi-temporal satellite data is well 

suited to estimate yields (Groten 1993; Doraiswamy et al. 2003; Bolton and Friedl 2013; 
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Huang et al. 2019). Vallentin et al. (2022) showed that high-resolution satellite remote 

sensing images like Sentinel-2 improve the correlation between yield and satellite data 

compared to lower-resolution sensors. While most studies to date have focused on large 

industrialized farming systems using simulations (Jin et al. 2017; Jain et al. 2016) or 

regression models based on different VIs or the leaf area index (Lambert et al. 2018; 

Meroni et al. 2013; Mkhabela et al. 2011; Schwalbert et al. 2018), there are very a few 

studies on yield estimates at the household level. Jain et al. (2016) used high-resolution 

SkySat data to simulate yield for smallholder wheat fields, while Lambert et al. (2017) 

and Karst, Mank et al. (2020) explored Sentinel-2 data with a 10 meter (m) spatial 

resolution to estimate yields at the household field level. However, due to highly variable 

biotic and abiotic factors affecting crop yield, especially in the scenario of a changing 

climate, studies that are based solely on data from one phenological cycle, cannot 

adequately address and assess the yield variability, which is also shown in Belesova et al. 

(2018). Therefore, multi-annual assessments are needed to develop yield estimating 

approaches that account for a range of inter-annual yield variabilities. This would enable 

yield quantification without the need for further labor-intensive and costly ground 

truthing. 

This study aims to develop a valid yield model for various food crops using a unique 

three-year in-situ yield data set. Through satellite-based crop yield models, we want to 

reduce labor-, time-, and cost-intensive data collection crop yield on the ground (Paliwal 

and Jain 2020), while assuring accurate yield estimates at the household field level (mean 

field size < 2 ha). The presented work is nested in a larger research unit that focuses on 

aspects including food security and child undernutrition (Mank et al. 2020; Beiersmann 

et al. 2012), children’s health (Belesova et al. 2017, 2018; Belesova et al. 2019b), and 

heat stress (Kjellstrom et al. 2016; Sahu et al. 2013) (www.cch-africa.de).  

 

2. Material and Methods 

2.1. Study area  

The study area is located in the Kossi province of the Boucle du Mouhoun Region in rural 

northwestern Burkina Faso (Figure 1). One-third of the province is under health and 
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nutritional surveillance of the Nouna Health and Demographic Surveillance System 

(NHDSS) since 1992 (Sié et al. 2010). 

The study area is characterized by a dry tropical climate of the Sudano-Sahelian type. The 

rainfall pattern is characterized by two seasons, a long dry season (October to May) and 

a short-wet season (June to September). The yearly amount of rainfall averages 700 mm. 

More than 30% of the annual rain falls in August (213 mm).  

More than 80% of households depend on small-scale subsistence farming which is rain-

fed agriculture. Nine crop types are dominant in the region: millet, sorghum, maize, 

peanuts, beans, cotton, sesame, fonio, and rice, which cover more than 90% of the 

cultivated area (Grace et al. 2014). The use of chemical fertilizers or insecticides and 

herbicides is limited.  

 

Figure 1: Study area (Health Demographic Surveillance System (HDSS)) with the collected field 

boundaries and yield measurements (yield squares) in the Kossi province.  

 



V. Multi-annual yield model at the field level for subsistence 

farming in Burkina Faso (Chapter IV) 

105 

2.2. In-situ data and satellite data 

2.2.1  Field Data  

An essential component of this study was the collection of field data for the five main 

food crops maize, millet, sorghum, beans, and sesame over a period of three years (2018, 

2020, and 2021). Seven agricultural surveyors were trained for the sampling of field 

boundaries using GPS devices and the installation, monitoring, and harvesting of yield 

squares. The fields were selected with the intention of maximizing variation between 

them so as to represent the full range of variability in the entire study area. Yield squares 

for each field were randomly selected (Figure 2). Generally, the sampling followed a 

protocol from the Agriculture Ministry (DPSAA 2011). Every field was assigned a unique 

identifier, so that each field could be linked to individual households. For each type of 

crop, we targeted a sample size of n ≥ 25 yield squares per year to satisfy the robustness 

of the model. In addition, woody vegetation within the studied fields was manually 

mapped in GIS using Google Earth and masked out of the sampled field boundaries as 

they can have negative impacts on harvest estimates based on remote sensing data 

(Lambert et al. 2018). From June to December of each year, data was collected during the 

rainy season until the harvest of all selected crops. The field sampling followed the 

established methodology of Karst, Mank, et al. (2020) (see Karst, Mank, et al. (2020) for 

further details).  

 

 

Figure 2: Schematic representation of in-situ yield measurements. Each field, that was selected for in-situ 

measurements, was divided into 5x5m squares using a grid. The yield square, for which the harvest was 

measured, was randomly selected and then marked and protected in the field by circumferences. Picture 

copyright by Isabel Mank. 
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2.2.2 Processing of remote sensing data  

For each crop growing season in the study years 2018, 2020, and 2021, all available 

Sentinel-2 images at a 10m spatial resolution were used at Level-1C and preprocessed 

including an atmospheric correction using the Sen2Cor version 2.10. Monthly maximum 

NDVI composites were created for the preprocessed Sentinel-2 reflectance images, which 

best represent the phenology of farming systems (Hasenbein et al. 2022). For each 

monthly composite, three vegetation indices, namely the normalized difference 

vegetation index (NDVI), the normalized difference red edge index (NDRE), and the 

normalized difference water index (NDWI) were calculated. All of these indices have 

proven their suitability for monitoring vegetation and estimating yields (Lambert et al. 

2017; Gao 1996). All 10 monthly composites for each VI and year were then used as 

input variables (30 variables in total) for the linear regression model, from which pixel 

values at the respective sampled harvest squares were extracted (Figure 3). 

 

2.2.3 Rainfall Data 

Rainfall data helped to explain the variability of vegetation indices as there is a strong 

correlation between green plant health and rainfall (Greve et al. 2011). Since the crops of 

interest in this study are exclusively rainfed, rainfall and vegetation indices times series 

were used to monitor crop growth. We used daily CHIRPS (Climate Hazards Group 

InfraRed Precipitation with Station data) data as rainfall data for the model (Funk et al. 

2015). For each of the three years 2018, 2020, and 2021, daily rainfall data for each 

calendar week of the crop growing season, including all preceding weeks for that week, 

were accumulated (e.g., calendar week three contains the rainfall sum of calendar weeks 

one, two, and three). Each calendar week from March onwards was used as an input 

variable for the model (except November and December as the months of harvest) (35 

variables in total) (Figure 3). In addition, daily rainfall data from one of the five weather 

stations in the Nouna HDSS (at the CRSN in Nouna) as part of the research unit on climate 

change and health in sub-Saharan Africa (www.cch-africa.de) were used to analyze the 

results. 
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2.3. Methodology of the crop yield model  

We used the LASSO (Least Absolute Shrinkage and Selection Operator) regression 

instead of a stepwise multiple linear regression used in previous studies (Karst, Mank, et 

al. (2020)). LASSO regression addresses two common problems in regression analyses: 

(i) overfitting in terms of the number of predictors included in the model and (ii) 

overestimating, how well the model explains the observed variability with the included 

variables (Tibshirani 1996). It aims to find the model with the smallest prediction error 

and identifies the variables and their corresponding regression coefficients for each model 

by ‘shrinking’ the regression coefficients towards zero. The LASSO regression constrains 

the model complexity by requiring the sum of absolute regression coefficient values to 

be smaller than a preset value (lambda (𝜆)) (Ranstam and Cook 2018). Hence, LASSO 

aims to minimize the sum of squares with constraint ∑|βj|≤ t. Statistically, it is written as:   

                                                    ∑ (𝑦𝑖 −  ∑ 𝑥𝑖𝑗𝛽𝑗

𝑗

)

𝑛

𝑖=1

2

+  𝜆 ∑ |𝛽𝑗|

𝑝

𝑗=1

                                        (1)   

for a linear regression model with yi (i = 1, 2, …, N) as the response variable and the p-

vector of regressors xij (j = 1, 2, …, p) with its βj coefficients for the ith observation 

(Tibshirani 1996; Chintalapudi et al. 2022).  

Generally, the best lambda is determined using a k-fold cross-validation (Ranstam and 

Cook 2018). The k-fold cross-validation also helps to reduce overfitting since the analysis 

is not limited to using a single subset for the internal validation (Ranstam and Cook 2018). 

In this study, we used a 5-fold cross-validation to have at least five field samples in each 

fold. Since the data fed into each fold was selected randomly, we computed the 5-fold 

cross-validation 1000 times. Each iteration yielded an optimal lambda value for the final 

LASSO regression model. To determine the overall optimal lambda, we calculated an 

index based on the ratio of R² and the Root Mean Square Error (RMSE), where the highest 

index value identifies the model with the best fit and its corresponding lambda value. To 

account for outliers, we identified the optimal model using the 95th percentile of the index. 

This process was repeated for each crop type, resulting in crop-dependent yield models 

(Figure 3). For each crop type, we ran a model with only one year of training data, 

corresponding to each year of 2018, 2020, and 2021, and a model using all three years of 

data. A single-year model was only possible if the training data had more than 25 per crop 
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type per year. Finally, the three-year models were applied to all sampled field boundaries 

to predict yield estimates.  

We verified the goodness of fit of the different models with statistical measures and 

validated the plausibility of the model results by comparing them to national yield 

statistics for Burkina Faso provided by the Food and Agriculture Organization (FAO) via 

their FAOSTAT database (FAO 2022).  

Figure 3 provides the schematic workflow of our method. 

 

 

Figure 3: Schematic workflow diagram of the multi-annual crop yield model. Left to right:  Preprocessing 

of Sentinel-2 imagery, from which monthly composites of the NDVI, NDRE, and NDWI were derived. These 

datasets were used as model predictors together with weekly rainfall sums for all three years 2018, 2020, 

and 2021. The model was trained and validated through cross-validation with the reference data from the 

5x5m harvest squares. Finally, the model predicted yield estimates for all sampled field boundaries in the 

study area.  
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3. Results  

3.1 Summary of the in-situ field sampling 

Table 1 shows the number of in-situ measured harvest squares (411 in total) and field 

boundaries (1027 in total) per crop type in the years 2018, 2020, and 2021. The most 

significant and dominant food crops, namely sorghum, millet, and maize, were monitored 

in all three years, while sesame and beans were observed less frequently. Also, in 2021 

the number of field boundaries increased to predict yield estimates for a wide range of 

fields when applying the final models. Other differences in numbers of the sample sizes 

mainly occurred due to data cleaning.  

Table 1: Number of sampled yield squares and field boundaries per crop type in the years 2018, 2020, and 

2021. 

 2018 2020 2021 Total 

 
Yield 

plots 

Boun-

daries 

Yield 

plots 

Boun-

daries 

Yield 

plots 

Boun-

daries 
Yield plots Boundaries 

Maize 33 44 29 35 23 136 85 215 

Millet 45 44 30 30 29 163 104 237 

Sorghum 57 61 35 36 28 175 120 272 

Beans 31 52 0 0 12 84 43 136 

Sesame 0 0 30 33 29 134 59 167 

Total 166 201 124 134 121 692 411 1027 

 

3.2 Results of the weighed yields for each crop type 

On the one hand, boxplots of the weighed yields showed that millet, sorghum, and sesame 

had higher weighted values in 2020, whereas maize and beans had the highest yields in 
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2018 (Figure 4). On the other hand, yields were overall low in 2021. For millet and maize, 

there was substantial inter-annual variability in production, as reflected by the upper 

quartile ranges of the boxplots. Especially in 2018, maize showed exceptionally higher 

yield values. The yields of other crops such as sorghum, beans, and sesame, seem more 

consistent from year to year.  

 

 

Figure 4: Boxplot analysis of the in-situ yield measurements showing the difference in yield per crop type 

over the three years 2018 (18), 2020 (20), and 2021 (21). In-situ data for beans and sesame were only 

available for two of the three years 

3.3 Exemplary phenology of monthly NDVI values for Sorghum 

Figure 5 depicts the monthly distribution of NDVI values derived from pixels lying inside 

all sampled and monitored sorghum field boundaries over three years. The NDVI trend 

of sorghum was chosen as an example. Figure 5 visualizes that the monthly VI composites 

reflect the phenology of the crop while also displaying inter-annual differences. From 

June onwards, NDVI values are increasing when the crops develop and increase in 

photosynthetically active biomass, reaching peak values in September. During the dry 

season (January to June), the interquartile range is very low, reflecting low variability in 

the vegetation, whereas during the rainy season (July to October) this variability is 

substantial, with high deviations from the mean. With the onset of ripening and 
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senescence of the crops, the NDVI values rapidly decline between October and the 

harvest months (November/December). In 2018, the NDVI values were generally higher 

with an earlier onset than in 2020 and especially than in 2021.  

 

Figure 5: Exemplary yearly time series of the Normalized Difference Vegetation Index (NDVI) for sorghum 

for the three years 2018, 2020, and 2021. The crop cycle during the rainy season is displayed in grey. 

Sowing period: June, Period of growth: July-October, Harvesting: October-November.  

3.4. Rainfall extremes and flooding in 2021 

In order to interpret the lower yields in 2021, as observed in the field data (Figure 4) and 

the phenology shown by the NDVI (Figure 5), rainfall data must be incorporated. While 

the temporal rainfall pattern was in line with historic averages, shown by the onset of 

rainfall in May, the amount of rainfall was comparably low until early August (Figure 6). 

Then, about 67 % of the total yearly rain fell in a five-week window between week two 

of August and week two of September. In the latter interval, the highest weekly rainfall 

amounts were observed. Two extreme rainfall events at the end of August and the 

beginning of September (recorded by the weather station in Nouna) caused severe 

floodings (see Sentinel-2 examples in Figure 7) of fields. Additionally, the comparison  
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of the rainfall pattern shows the inter-annual variability of rainfall patterns. These patterns 

of inter-annual variability can also be observed in yields (Figure 4). 

  

Figure 6: Distribution of weekly rainfall at Nouna weather station in 2018, 2020, and 2021. Nearly 70% 

of the annual rainfall occurred in a five-week from August – September in 2021 following a long period of 

unusually low rainfall. 
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Figure 7: Pre-flooding Sentinel-2 image (left: end of sowing season) and post-flooding image (right: middle 

of the growing period) after two weeks of heavy rainfall (see Figure 5) with locations of yield sampling 

plots (yellow dots) in a subset of the study area. Flooded areas are visible in blue. Color representation: 

R: SWIR, G: NIR, B: Red. 

3.5. Results of the crop-specific yield models 

For each crop type, an individual model was developed with varying results in terms of 

goodness of fit but also in terms of included predictors from the LASSO regression (Table 

2). Maize yield models showed good R² values in general, for the yearly models (2018 

and 2020) as well as for the multi-annual model. For 2021, there were not enough 

reference yield plots (<25) to conduct a model. The best model for maize was the model 

for 2018, while the multi-annual model was showing better results than 2020. Comparing 

the results of the multi-annual models, maize showed the highest R² of 0.62, while 

sesame, beans, millet, and sorghum showed R² values of 0.59, 0.54, 0.32, and 0.30, 

respectively. For millet and sorghum, the yearly models performed much better than the 

multi-annual models in most cases. However, overfitting is a bigger problem in the yearly 

models (e.g., millet 2020 and 2021), which is indicated by a high drop-off of the adjusted 

R² compared to the original R². This shows, that the three-year models are more robust 

against overfitting by taking a wider range and distribution of measured crop yields 

through the inter-annual variability into account. As the normalized RMSE (nRMSE) 

compares the RMSE to the range of the in-situ measurements, it is an additional indicator 

to describe the model error in percent. Reasonable low nRMSE values for all crop type 
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models were found (between 13% and 16% nRMSE) proving the statistical goodness of 

fit together with the R² and adjusted R². 

Table 2: Results of the crop-dependent yield models for each year as well as for the multi-annual yield 

model. The table includes the number of yield reference samples per crop type (N), the number of used 

predictor variables, the resulting R² and adjusted R² of the model as well as the RMSE and normalized 

RMSE that can be interpreted together with the range of measured yields. 

Crop type Statistic parameters 2018 2020 2021 3-year model 

M
a

iz
e 

N 32 28 23 83 

No. of predictors 10 9 - 13 

R² 0.78 0.52 - 0.62 

Adj. R² 0.68 0.28 - 0.55 

RMSE (kg/m²) 0.056 0.033 - 0.065 

Range (kg/m²) 0.456 0.256 - 0.512 

nRMSE (%) 12.28 12.89 - 12.70 

M
il

le
t 

N 44 30 29 103 

No. of predictors 9 24 21 7 

R² 0.46 0.95 0.64 0.32 

Adj. R² 0.32 0.71 -0.44 0.27 

RMSE (kg/m²) 0.053 0.013 0.029 0.056 

Range (kg/m²) 0.328 0.224 0.260 0.344 

nRMSE (%) 16.16 5.80 11.15 16.28 

S
o
r
g
h

u
m

 

N 57 35 28 120 

No. of predictors 6 12 3 11 

R² 0.41 0.56 0.23 0.30 
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Adj. R² 0.34 0.32 0.13 0.23 

RMSE (kg/m²) 0.050 0.029 0.032 0.047 

Range (kg/m²) 0.348 0.172 0.168 0.360 

nRMSE (%) 14.37 16.86 19.05 13.06 

B
e
a
n

s 

N 31 0 12 43 

No. of predictors 9 - - 10 

R² 0.59 - - 0.54 

Adj. R² 0.41 - - 0.40 

RMSE (kg/m²) 0.033 - - 0.034 

Range (kg/m²) 0.252 - - 0.252 

nRMSE (%) 13.10 - - 13.49 

S
e
sa

m
e 

N 0 28 29 57 

No. of predictors - 22 13 17 

R² - 0.84 0.65 0.59 

Adj. R² - 0.14 0.35 0.41 

RMSE (kg/m²) - 0.007 0.023 0.019 

Range (kg/m²) - 0.080 0.132 0.132 

nRMSE (%) - 8.75 17.42 14.39 

 

3.6. Results of the extrapolated three-year crop yield models 

Figure 8 illustrates an excerpt of the results of the three-year individual crop yield models 

with a 10m spatial resolution applied to predict yield estimates for all sampled field 

boundaries in 2021. The final model results of the three-year models (Figure 8) display 

the intra-field yield as well as the inter-year variability of crops. Additionally, differences 
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in productivity (kg/m²) between the different crop types are displayed in Figure 8. For 

example, it shows, that beans have the highest yield per m² (dark green), while sesame is 

showing the lowest yield values per m², which reflects the observation made in the field 

(Figure 4). 

 

Figure 8: Results of the extrapolation of the crop-specific three-year models to exemplary fields in the 

Nouna HDSS area in the year 2021 (zoomed to three different exemplary areas). The colored outlines of 

the fields indicate the crop type according to the color scheme in the legend. Red to green variations within 

the fields represent the predicted yield estimates in kg/m² for each pixel, where the same range was used 

for all five crop types. Numbers in kg on the side of each field show the total predicted yield for each field. 

Transparent pixels are masked out from the analysis because of the presence of other woody vegetation. 

Background: True color imagery, ESRI Basemaps. 

3.7. Plausibility check of the model results 

In a last step, an additional plausibility check was done by comparing the model results 

with national yield statistics for Burkina Faso provided by the FAO through their 

FAOSTAT database (FAO 2022). We used this dataset to verify the plausibility of the 

model. The FAOSTAT database only contained data until 2020. We assumed consistent 

conditions for 2021, given national yield statistics for the prior three years showed little 

variation. Comparing the magnitude of the productivity provided by FAOSTAT to the 

mean productivity estimates provided by our model, we found similar values in the 
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magnitude of the numbers, underlining that our multi-annual crop yield model is 

plausible.  

Table 3: Yield estimates of the three-year yield model per crop type for 2021 in comparison to the national 

yield in Burkina Faso in 2020 reported by the FAO. The statistics show the results of yield estimates for all 

sampled field boundaries for 2021. 

Crop type 

Modeled mean 

total yield per 

field (t) 

Mean field size 

(ha) 

Modeled mean 

yield (t/ha) 

(2021) 

FAO yield 

(t/ha) (2020) 

Maize 0.39 0.32 1.40 1.69 

Millet 0.78 1.09 0.76 0.81 

Sorghum 0.77 1.18 0.75 0.99 

Beans 0.43 0.30 1.62 1.35 

Sesame 0.81 1.46 0.60 0.60 

 

4. Discussion 

This study demonstrated the validity of a multi-year crop yield model in comparison to 

single-year models with the aim to reduce the need for in-situ field data collection while 

assuring accurate yield estimates at the household field level. It is important to mention 

that the in-situ measurements are also related to uncertainties that have been reported by 

Karst, Mank, et al. (2020). 

Results of the model application of the three-year model for exemplary fields of the study 

area in 2021 well represented the inter- and intra-variability of the fields. Comparing the 

field sizes together with the productivity between the crop types led to the conclusion, 

that crops with higher productivity were cultivated on smaller fields and crops with low 

productivity were grown on larger fields. 

Overall, the multi-year models were more robust against overfitting compared to the 

single-year models as proven by the adjusted R². Single-year models with less training 

data tend to pick too many variables for the final model on some occasions compared to 

the multi-year model, which led to overfitting. A good example are the models for millet, 
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where the single-year models had a higher R² than the final model, but had 24 (2020) and 

21 (2021) predictor variables included. Therefore, the adjusted R² values had a higher 

drop-off from the original R² than in the three-year model. While the R² measures of the 

three-year were comparably lower, the model still provided good measures in nRMSE 

and the magnitude of the mean yield per ha compared to the national yield statistics of 

the FAO, which proves the model’s plausibility. Differences between the single and 

multi-year models were also the differential variation of rainfall over the different periods 

of the growing period. The agricultural calendar (date of sowing, etc.) varies according 

to the arrival of the first rains and we made the hypothesis of equal use of production 

factors, like fertilizers, because we are dealing with small-scale subsistence farmers in 

our research observatory. Concluding, the models based on a single year of training data 

tend to be more accurate in predicting yields for the same year, however, the three-year 

models are more robust against overfitting and can better reflect the inter-annual 

variability of yields. This enables the three-year models to be applicable in future years 

without the need for new in-situ measurements.  

Differences occur not only between the single and multi-year models but also between 

the model results of the different crop types, where some crop yield models outperform 

others. Some of the crops were more affected by flooding and extreme weather events in 

2021 than other crops, which could have led to lower yields in 2021 and higher 

discrepancies within the training data. However, future detailed research would be needed 

for a definite statement. Another major finding of this study was that more field samples 

(training data) did not necessarily result in better model performance (see maize and 

sorghum in Table 2).  

Comparing the size of yield (t/ha) to the national figures provided by FAOSTAT, it was 

determined that all models produced plausible outcomes. Furthermore, by providing yield 

estimates at the field level, our model closes the gap of yield statistics not being available 

at the household level. By linking the respective fields to the individual households, yield 

estimations at the household level can be provided through our model. With our three-

year observation of the in-situ measurements, we are capable of also capturing inter-

annual variability. As can be seen in Belesova et al. (2019b), a three-year window 

captures large parts of the variability as more than two consecutive years with stable 

productivity were very rare between 1984 and 2012. This is also shown by the highly 
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varying rainfall patterns from the years 2018, 2020, and 2021 (Figure 6). We, therefore, 

assume, that this three-year period of training data is enough to capture the variability in 

the yield estimates to be valid for future applications without the need for additional in-

situ data. To determine a fixed threshold on how many years is sufficient to capture most 

of the inter-annual variability is not possible from our study, however, and would require 

additional future research. 

Our study demonstrates the novelty of using a three-year in-situ dataset that reduces the 

need for future ground truthing. We found comparable results to our models in Lambert 

et al. (2018) reporting R² regression values between 0.4 and 0.8 for cotton, maize, millet, 

and sorghum in Mali for the year 2016. However, their regression results are only based 

on the more homogeneous fields and the peak Leaf Area Index (LAI) as their sole 

predictor. Morel et al. (2014) found similar results with an R² between 0.21 and 0.53, 

albeit for sugarcane on Reunion Island but also using only one predictor, namely the 

NDVI. Karst, Mank, et al. (2020) conducted a similar study in the same study area and 

reported comparable results using only one year of training data (2018), the same data 

was incorporated in our study. By additionally extending the training data set of in-situ 

measurements to three years our study extends their findings. Overall, the multi-year 

model showed, that it is possible to generate more robust models with increasing and 

more balanced training data sets. More research would be welcome to prove our model 

results with in-situ measurements being sampled as validation datasets in the upcoming 

years. Additionally, a study on automated cropland and crop type classification using the 

sampled field boundaries as reference data is underway and would help to extrapolate the 

models to the whole study area. In the long term, we aim to estimate crop production by 

the household from the cadaster of fields in the Nouna HDSS area.  

Multiple potential benefits exist for both future HDSS interventions and research using 

household field level valid and “automated” low-cost remote sensing-based food crop 

yields. Some examples are given below: 

(i) in the area of agricultural research including but not limited to yield effects of 

changing field practices or increased inputs, irrigation – both modern, where 

feasible, and traditional such as the Zai practice (Sorgho et al. 2020a; Sorgho 

et al. 2020b); 
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(ii) in the field of child undernutrition from harvest failures, a large proportion 

(estimated 75%) of which are driven by increasing climate variability 

(Belesova et al. 2019a); 

(iii) the effect of heat on lower work productivity of farmers. Evidence from 

studies indicate that increased heat reduced the work productivity of farmers 

and endangered their health (e.g., Crowe et al. 2010). A study of the impact of 

heat on crop yields is currently underway in Burkina Faso, based on a 

preliminary study by Lang et al. (2022). 

This will enable us to contribute to connecting the science of remote sensing, with the 

fields of agriculture and human health and nutrition.  

 

5. Conclusion  

We developed satellite-based crop-specific models to predict yield estimates at the 

household field level using a unique dataset of three-year yield measurements from rural 

Burkina Faso. According to our knowledge, this is the first study to successfully develop 

a model on household plot level for subsistence farming in sub-Saharan Africa to predict 

yield estimates using a multi-annual training dataset, which is the first step toward a low-

cost solution for future applications in yield monitoring at the household field level. Our 

results indicate, that models are more robust against overfitting when increasing the 

number of years of training data and therefore including inter-annual variability. Our 

model was validated by the fact that the magnitudes of the anticipated yield estimates 

coincided with the magnitudes of the national yield numbers. The value of numerous 

years of training data for incorporating inter-annual variations of biotic and abiotic yield-

influencing factors was demonstrated. The crop yield models based on multi-annual data 

could be applied to upcoming years without the need for additional in-situ measurements 

(ground truthing). This is especially important to fight food security under a changing 

climate, that comes with additional challenges. To tackle health aspects like child 

undernutrition on a household level, high-resolution yield estimates at the household field 

level are fundamental, which allow us to predict nutritional shortages at the individual 

farmer and household level.  
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VI. Synthesis 

1. General Discussion 

Climate change-related risks are threatening rural livelihoods in Africa. Decreasing crop 

production, reduced livestock health or an increased malnutrition rate among children are 

some of the effects that have already been observed and additionally worsened by natural 

hazards such as floods and droughts (IPCC, 2022). Weather and climate extreme events 

are projected to increase even further in the future (IPCC, 2013, 2022). This will lead to 

growing pressure on food production (IPCC, 2022). Besides smallholder farmers, 

pastoralists are also set to face food insecurity as the livestock’s vulnerability to drought 

was already evident (Djoudi et al., 2013; Masike & Ulrich, 2018). Conflicts between 

farmers and herders present an additional risk and have already increased over the past 

years as conflicts due to drought and water tensions are widespread in the Sahel (Ayana 

et al., 2016; Puig Cepero et al., 2021). The studies presented in this thesis address these 

climate change-related food security and health risks from various perspectives. 

The first study (Chapter I) herein presented a regional transferable drought probability 

model based on remote sensing data with a spatial resolution of 1km. By doing so it 

addressed the gap between global drought monitoring systems with a low spatial 

resolution (e.g., Huntington et al., 2017; Vogt et al., 2018) and local drought models (e.g., 

H. Wu & Wilhite, 2004), which are not spatially transferable. Additionally, to the study 

area presented in Chapter I, the modeling framework was successfully transferred and 

applied in Chad, the Central African Republic (CAR), and Germany, which is not 

presented here. This further proved the capability of the model to be easily transferred to 

other areas and capture regional drought conditions. Other regional drought models have 

also been developed. Shen et al. (2019) for example developed a deep learning model 

based on remote sensing data that showed good results and applicability for 

meteorological and agricultural droughts but was only tested in the Henan Province of 

China. Monteleone et al. (2020) even developed a new drought index (PPVI) providing 

also the advantage of being spatially transferable. The index presented in their study 

however was only evaluated in Haiti. While the herein (Chapter I) presented modeling 

framework has proven to be regionally transferable it is also lacking information on soil 

moisture for example, which could further improve the model. Nevertheless, this regional 

drought probability model can furthermore be used as an early warning alert when 
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drought conditions begin to show up in different regions. Through the model results and 

its time series analyses regions at risk, which face more often and severe droughts, can 

be addressed to reduce their vulnerability to drought. On the other hand, areas with 

historically fewer droughts can be identified and used by agriculture for example. The 

presented drought vulnerability approach though comes with some limitations as the 

study only used globally available data sets and therefore missed some important 

information like water availability. Nevertheless, the results of this study help to monitor 

droughts, which is the first step toward reducing vulnerability and drought impacts. 

Water availability plays a crucial role along with drought in rural livelihoods practicing 

agricultural or livestock farming. Therefore, the detection of surface water and surface 

water monitoring systems are important, also to reach the Sixth Sustainable Development 

Goal (SDG) (Long, 2019). Chapter III, in this context, presented a round-robin 

intercomparison of different EO-based surface water detection and classification 

algorithms. As many different algorithms can be found in the literature, this study helped 

to find most accurate methods – such as those that combine radar and optical data. 

Additionally, this study provides the information needed when searching for the right 

algorithm or application as for example the implementation time or computational costs 

also play a crucial role in choosing the right option. One of the presented algorithms of 

this study was also used as one of the input parameters for the environmental suitability 

maps for transhumance (Chapter II). Fresh water is needed for both agriculture and 

transhumance. For agriculture, it is mainly used for irrigation purposes, while open water 

locations represent resting points for the livestock herds during their seasonal movements. 

By performing time series analyses of the monthly surface water classifications, it can be 

additionally separated between temporary, seasonal, and permanent water bodies. 

Therefore, the surface water locations and types of water bodies can be also used as one 

of many information inputs when planning transhumance corridors to ensure food 

security and to secure livelihoods of herders. These locations can be also used to equally 

distribute natural water resources to minimize conflicts due to water tensions as they are 

already widespread in the Sahel (Ayana et al., 2016; Puig Cepero et al., 2021). 

Chapter II tries to address these conflicts by analyzing the environmental suitability for 

transhumance based on high-resolution satellite data. Previous research on that topic is 

scarce. One of the very few studies for example used MODIS data with a lower spatial 

resolution to analyze the green-up and senescence times of forage patches (Brottem et al., 
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2014; Butt et al., 2011). A landcover change analysis that revealed increasing pressure on 

transhumance was performed by Ellison et al. (2021), while McGuirk and Nunn (2020) 

provided insights on the impact of droughts on conflicts. However, all these studies did 

not address concepts that can directly support transhumance. Mertz et al. (2016) stated 

that improved information on weather and natural resources as support for transhumance 

needs to be passed together with multiple options for herd movements to effectively 

minimize conflicts. Since then, this left an open research question that this study (Chapter 

II) addressed. To provide multiple options, environmental monitoring systems need to be 

set in place and can be combined with the spatial modeling of transhumance routes. As 

this has not been done very often in the context of transhumance, D’Abramo et al. (2021) 

provide an example as they modeled paths for pastoralists in Argentina. While their 

results also had some limitations, they found the modeled paths to be beneficial in 

identifying critical areas for mobility and to develop information-based policies to 

regulate management strategies. While this has not been done in the Sahel outside the 

presented study, Chapter II goes beyond that by providing additional spatial information 

to reduce farmer-herder-related conflicts. By analyzing high-resolution Sentinel-2 and 

Sentinel-1 data, several earth observation-based products like surface water availability 

or rangeland productivity were derived. These products represent the basis for the 

monthly environmental suitability maps for transhumance, which provide timely 

information on favorable or unfavorable areas. The suitability maps can help herders to 

find forage areas that provide enough fodder for the animals and therefore directly tackle 

food insecurity in SSA. By adding additional information on agricultural land and its 

farming systems (rainfed vs. irrigated agriculture), urban areas, or protected areas, the 

transhumance suitability maps can also be used as a possible planning tool for agricultural 

expansion that also considers transhumance corridors. This could reduce conflicts if space 

for corridors needed by the pastoralists for their seasonal movements is granted. On top 

of that, theoretical optimum movement paths along the highest environmental suitability 

values were modeled. While these paths do not represent reality, as other aspects like 

traditional paths also factor in (D’Abramo et al., 2021), they can be used by local 

authorities for potential safe corridors with enough natural resources to improve conflict 

prevention. The whole framework presented in Chapter II is also regionally transferable 

to other regions in the Sahel as additional information or weights through expert 

knowledge can be incorporated into the calculation of the suitability maps, depending on 
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the region. In general, the findings of this study can help to tackle food insecurity by 

finding forage areas through the monitoring of rangeland and can lead to a decision 

support tool for conflict prevention measures. Additionally, the results could help the 

herders to continue practicing livestock farming as many of them are settling down. The 

analysis can furthermore be combined with drought monitoring, as drought-related 

conflicts are widespread (Ayana et al., 2016), to be used as an early warning system and 

to identify grazing land with less severe drought conditions. 

The last study (Chapter IV) focused on smallholder farmers, that once were sharing their 

land with pastoralists during the dry season and therefore complemented each other 

(Ikhuoso et al., 2020). The study presents a satellite-based agricultural yield model for 

the major food crops in Nouna, Burkina Faso at the field level. Previous studies have for 

example modeled yield estimates with lower resolution data by MODIS at the country 

level (Petersen, 2018) or also used high-resolution Sentinel-2 data but predicted yield 

estimates at farm-to-community scales (Lambert et al., 2018). Yield predictions at the 

field level though, provide crucial information for food security and health-related issues 

like malnutrition (Karst et al., 2020). Therefore Karst et al. (2020) developed a high-

resolution agricultural yield model based on Sentinel-2 data to provide yield estimates at 

the field level. While the study in this thesis follows their general methodology, it goes 

beyond by utilizing a unique three-year training data set. Within the study, general yield 

models for the main food crops based on three years of training data were developed and 

compared to the single-year models. This comparison was used to determine whether it 

is possible to generate an accurate general yield model based on multi-year training data 

to lower the need for cost- and labor-intensive field data (Paliwal & Jain, 2020). The 

results showed that the three-year models capture inter-year variability of yields and 

therefore can be used to predict yield estimates in upcoming years. Additionally, through 

incorporating a wider range of yield values over multiple years, the models were more 

robust against overfitting than the single year models. Yield monitoring provides the first 

step needed to implement adaptation measures for agriculture to tackle food insecurity 

under a changing climate. Widespread intercropping though is still a challenge in yield 

modeling as the presented model was limited to mono-cropped fields. Overall, this study 

addresses food security issues through yield estimates and a possible forecast of one or 

two months before harvest depending on the crop type. Yield estimates at the field level 

are also important inputs for studies on prevention measures and health care as for 
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example Belesova et al. (2018) analyzed annual crop yield variations in context with 

nutrition and health. By providing yield estimates at a higher level (field level) such 

studies can be enhanced by the work presented in this thesis. Additionally, the study 

presented in Chapter IV can be combined with the regional drought model in Chapter I 

and the surface water algorithm in Chapter III for the spatial analysis of the impacts of 

droughts and flooding and potential yield losses. Therefore, potential food security issues 

could be addressed before the harvest. 

While addressing these climate change-related risks to food security, health, and the 

livelihood of rural communities in Africa from different perspectives, all these studies 

relate to each other in a certain way. The following section provides an overview of how 

the used satellite data can be combined and used efficiently. For example, the same 

satellite data (Sentinel-2) was used for the agricultural yield model and the environmental 

suitability maps for transhumance (in combination with Sentinel-1). This could enable a 

monitoring system for both agricultural practices, where the processed satellite data could 

be used effectively in multiple ways. Additionally, the drought model could also be tested 

on a local scale, based on yield predictions by the model presented in Chapter II, and 

therefore could also use Sentinel-2 data on a finer scale. Food security is dependent on 

vegetation health and also water availability for the planted crops and livestock, which 

are both impacted by droughts. All studies could therefore be combined as drought 

monitoring is important for both pastoralists and smallholder subsistence farmers. Surface 

water locations represent irrigation potential and on the other hand, are used by herders 

as resting points for their cattle. Floodings, their extent, and the following potential yield 

losses can also be observed by the surface water detection algorithm in Chapter III. In 

total, all this information can be combined to support both, smallholder farmers and 

transhumant herders. The gathered information can be used as a planning tool for 

agricultural expansion, the planning of corridors for the seasonal movements of 

pastoralists, and the protection of rangeland to achieve a peaceful coexistence between 

farmers and herders with enough land and natural resources for both communities. This 

could not only reduce conflicts but also help both farming practices to adapt to climate 

change and to tackle food insecurity and health risks. Furthermore, all of the presented 

methods are scalable. The drought model has already been proven to be regionally 

transferable beyond the presented study in Chapter I and could be applied to bigger areas. 

The environmental suitability maps could also be expanded to the whole Sahel with 
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regional adaptions, where future investigations of regional varying input parameters are 

needed. Lastly, the agricultural yield model is also scalable to all fields in the area and 

could be applied and tested in other sub-Saharan countries. 

 

2. Future research 

Despite the advances in all the topics presented, future research still needs to be done. 

The drought model presented in Chapter I for example could be tested on a local scale 

with high-resolution satellite data to predict drought probabilities also at the field level 

for agricultural purposes. It could then be investigated if the drought and crop yield model 

could be used in a combination to predict yields together with current drought conditions. 

Since drought conditions are usually long-lasting, early estimates in which direction the 

projected harvest of the current year trends could be made for example. The same 

accounts for the suitability maps, where the drought model could be used in addition to 

the environmental suitability maps as an input to an early warning system on conflicts. 

The analysis of the environmental suitability maps and the modeled theoretical optimal 

movement paths could also be enhanced by GPS livestock tracking data to better 

understand the mobility of transhumant pastoralists. Cooperation with local people could 

potentially lead to new rangeland possibilities or new corridors. Additionally, the analysis 

of multiple years could show if the inter-annual variability of the environmental 

suitability plays an important role in movement patterns and conflict numbers. The 

framework should also be tested in other areas leading to an investigation of whether the 

environmental suitability maps could be scaled to the whole Sahel zone. While the 

agricultural yield model already enhanced previous studies by using a unique three-year 

training data set, it should be investigated how many years of training data are needed to 

capture enough inter-annual variability to make long-lasting future predictions without 

the need of additional field sampling campaigns. Furthermore, an accurate land cover 

classification, which also provides information on different crop types, could be used to 

apply the model to all agricultural fields in the study area. This would furthermore reduce 

the need for GPS sampled field boundaries. An accurate classification though would be 

needed as currently, available cropland classifications overestimate cropland areas by up 

to 170% (Samasse et al., 2018). The agricultural yield models could also be used to 

evaluate, plan and recommend different adaptation measures. As agriculture represents a 
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major source of livelihood in most rural communities in SSA, adaption to climate change 

plays a major role to ensure food security (Kogo et al., 2021). Potential adaptation 

measures could lead to the enhancement of the resilience of the agricultural sector, the 

protection of livelihoods, and lower vulnerabilities associated with food insecurity. 

Possible adaptions at the farm level range from crop management practices like 

diversified crop cultivars or the staggering of planting dates to spread risk and mitigate 

against food shortages, to drought-tolerant cultivars, conservation agricultural practices 

like rainwater harvesting for irrigation, and soil fertility management. Diversified 

livelihoods like mixed crop-livestock farming systems or off-farm employment could be 

additional options (Kogo et al., 2021). Carr et al. (2022) state that a combination of 

fertilizers and adopting cropping practices are needed to enhance crop production. By 

combining the information on used adaptation measures with time series data of the 

modeled yield estimates, effective adaptation strategies can be identified. 
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