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Zusammenfassung

In dieser Dissertation konzentrieren wir uns auf zwei Hauptthemen: Das erste ist

die Konstruktion höherdimensionaler Differentialpolynome, die unter den

Transformationen freier Differentialalgebren invariant sind. Ein solches Problem

wird im Rahmen einer bestimmten freien Differentialalgebra, bekannt als FDA1,

behandelt, die man erhält, wenn man die einfachste Erweiterung einer Lie-Algebra

durch Einführung eines nicht-trivialen Vertreters einer

Chevalley–Eilenberg-Kohomologieklasse in ihre Maurer-Cartan-Gleichungen

betrachtet. Die Studie umfasst die explizite Formulierung einer invarianten

FDA1-Form, analog zur invarianten Chern–Pontryagin-Dichte einer Lie-Gruppe.

Das Hauptmerkmal freier Differentialalgebren, und damit einer FDA1, ist das

Vorhandensein von Differentialformen höheren Grades als Basiselemente, in

direkter Analogie zu den linksinvarianten Maurer-Cartan-Eins-Formen, deren

Differentialgleichungen eine Lie-Algebra definieren. Infolgedessen enthält die von

uns vorgeschlagene verallgemeinerte invariante Form dieselben Differentialformen

höheren Grades als Bausteine. Die Untersuchung ihrer erweiterten

Invarianzeigenschaften wird uns zu verallgemeinerten Definitionen der kovarianten

Ableitung und der invarianten Tensoren im Kontext einer FDA1 führen, was die

Berechnungen in den folgenden Schritten erleichtern wird und es uns ermöglicht,

explizite Ausdrücke für Chern–Simons und Transgressionsformen zu erhalten, die

mit der verallgemeinerten invarianten Dichte assoziiert und unter einer FDA1

invariant sind. Die Eichinvarianz dieser erweiterten Formen macht sie zu

Kandidaten für Lagrange-Dichten bei der Konstruktion verallgemeinerter

Wirkungen für Eichtheorien, deren Feldinhalte Eins-Formen und

Differentialformen höheren Grades enthalten, die auf nichttriviale Weise koppeln.

Als Beispiel betrachten wir die Konstruktion einer fünfdimensionalen

Chern–Simons-Wirkung, die unter einem besonderen Fall von FDA1 invariant ist.

Zu diesem Zweck untersuchen wir die Existenz nichttrivialer Kozyklen einiger

bestimmter bosonischer Lie-Algebren. Diese Studie führt uns zur Formulierung von

drei nicht-äquivalenten Fällen von FDA1 in beliebigen Dimensionen. Einer von
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ii ZUSAMMENFASSUNG

ihnen ist eine Erweiterung der bosonischen Poincaré-Algebra, und die beiden

anderen sind Erweiterungen der bosonischen Maxwell-Algebra. Für einen dieser

letzten Fälle stellen wir ein Beispiel für eine FDA1-Chern–Simons-Theorie vor, die

Eins- mit Drei-Formen koppelt, ohne die Eichsymmetrie unter der Transformation

der Maxwell-Algebra zu brechen, sondern sie, wie oben erwähnt, auf den Fall einer

FDA1 erweitert. Die Standard-Chern–Simons-Formen sind nicht nur hilfreich bei

der Konstruktion von Wirkungen, sondern auch bei der Untersuchung von

Eichtheorie-Anomalien in der Quantenfeldtheorie relevant. Wir beenden den ersten

Teil der Forschung dieser Dissertation, indem wir eine solche Analyse auf den Fall

einer FDA1 ausweiten und dabei zwei unabhängige Verallgemeinerungen der

nicht-abelschen Standardanomalie erhalten.

Das zweite Hauptthema dieser Dissertation befasst sich mit der Formulierung

klassischer Eichtheorien in Form von L∞-Algebren. Konkret schlagen wir drei

explizite Beispiele für eine solche abstrakte Formulierung vor, indem wir die

L∞-Algebren, die solche Theorien beschreiben, explizit aufschreiben. Der erste zu

analysierende Fall ist die ungerade-dimensionale Chern–Simons-Theorie, deren

Feldinhalt ein Eins-Formen-Eichfeld ist und deren Eichsymmetrie durch eine

Lie-Algebra beschrieben wird. Im zweiten Fall betrachten wir das einfachste

Beispiel einer eichinvarianten Theorie, deren Symmetrie durch eine FDA1

beschrieben wird, die wir als flache FDA1-Theorie bezeichnen. Die Dynamik einer

solchen Theorie wird durch die Maurer-Cartan-Gleichungen einer FDA1 bestimmt,

d.h. durch die Null-Krümmungs-Bedingungen. Der letzte untersuchte Fall ist die

verallgemeinerte, unter einer FDA1 invariante Chern–Simons-Theorie, die im

ersten Teil der Dissertation eingeführt wurde. Dieser letzte Fall erweist sich aus

technischer Sicht als anspruchsvoller, da sich die Dynamik der Theorie in

Abhängigkeit von der Dimensionalität stark verändert. Außerdem analysieren wir

die Bedingungen, unter denen die entsprechende Eichalgebra geschlossen ist.

Folglich untersuchen wir die Anforderungen, die die Wirkung erfüllen muss, um zu

einer wohldefinierten Eichtheorie zu führen und somit durch eine wohldefinierte

L∞-Algebra beschrieben zu werden. Wir stellen fest, dass diese Anforderungen nur

in bestimmten Dimensionalitäten oder in Theorien erfüllt sind, deren Dynamik

bestimmte Kopplungsbedingungen zwischen den Standard- und erweiterten

Feldern erfüllt.



Summary

In this thesis, we focus on two main topics: the first one is the construction of

higher-dimensional differential polynomials invariant under the transformations of

free differential algebras. Such a problem will be treated in the framework of a

particular free differential algebra, known as FDA1, which is the simplest extension

of a Lie algebra that can be obtained by introducing a representative of a

non-trivial Chevalley–Eilenberg cohomology class into its Maurer–Cartan

equations. The study of this thesis covers the explicit formulation of a FDA1

invariant form, analogue to the Chern–Pontryagin invariant density of a Lie group.

The main feature of a free differential algebra, and therefore of a FDA1, is the

presence of higher-degree differential forms as basis elements in direct analogy to

the Maurer–Cartan left-invariant one-forms that describe a Lie algebra through its

differential equations. Consequently, the generalized invariant form that we

propose includes the same higher-degree differential forms as building blocks. The

study of its extended invariance properties will lead us to generalized definitions of

covariant derivative and invariant tensors in the context of a FDA1. These

definitions will be helpful in facilitating calculations in the following steps and

allowing us to obtain explicit expressions for Chern–Simons and transgression

forms that are associated to the generalized invariant density, and that are

invariant under the mentioned FDA1. The gauge invariance of these extended

forms makes them candidates to be considered Lagrangian densities in the

construction of generalized action principles for gauge theories whose field contents

include one-forms and higher-degree differential forms that couple in a non-trivial

way. As an example, we consider the construction of a five-dimensional

Chern–Simons action, invariant under a particular case of FDA1. With this

purpose, we study the existence of non-trivial cocycles of some particular bosonic

Lie algebras. This study leads us to the formulation of three non-equivalent cases

of FDA1 in arbitrary dimensions. One of them is an extension of the bosonic

Poincaré algebra, and the remaining two are extensions of the bosonic Maxwell

algebra. For one of these last cases, we present an example of FDA1-Chern–Simons
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iv SUMMARY

theory that couples one-forms with three-forms without breaking the gauge

symmetry under the transformation of Maxwell algebra but extending it to the

case of the abovementioned FDA1. In addition to being helpful in constructing

action principles, standard Chern–Simons forms are relevant in the study of gauge

anomalies in quantum field theory. We finish the first part of the research of this

thesis by extending such analysis to the case of a FDA1, obtaining two

independent generalizations to the standard non-abelian gauge anomaly.

The second main topic of this thesis is the formulation of classical gauge theories

in terms of L∞ algebras. Specifically, we propose three examples of such abstract

formulation by explicitly writing down the L∞ algebras that describe such

theories. The first case that will be analyzed is the standard odd-dimensional

Chern–Simons theory, whose field content is given by one-form gauge field and

whose gauge symmetry is described by a Lie algebra. In the second case, we

consider the simplest example of a gauge-invariant theory whose symmetry is

described by a FDA1, which we refer to as flat FDA1 theory. The dynamics of

such theory is governed by the Maurer–Cartan equations of a FDA1, i.e., the

zero-curvature conditions. The last case of study is the generalized Chern–Simons

theory invariant under a FDA1, which was introduced in the first part of the

research of the thesis. Such a last case turns out to be more challenging, from a

technical point of view, due to the strong changes shown by the dynamics of the

theory depending on the dimensionality. Moreover, we analyze the conditions

under which the corresponding gauge algebra is closed. Consequently, we study the

requirements that the action principle must satisfy in order to lead to a

well-defined gauge theory and, therefore, to be described by a well-defined L∞

algebra, finding that such requirements are only fulfilled in certain dimensionalities

or in theories whose dynamics satisfy specific coupling conditions between the

standard and extended fields.
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Chapter 1

Introduction

In this chapter, we introduce the main concepts that motivate the research of this

thesis. We begin with a description of the role of symmetry algebras in standard

gauge theories. We then introduce in simple words the idea of free differential

algebra, which constitutes the central concept related to the first part of the

research of this thesis, and explain its importance in the construction of

generalized physical theories. We continue by presenting the motivation for the

construction of gauge theories that involve higher degree tensors as gauge fields

and their relation with the aforementioned algebras. The following section of the

chapter is devoted to describing the importance of two particular gauge theories,

namely, Chern–Simons and Yang–Mills theories, in the context of standard and

extended symmetry algebras. Later, we introduce L∞ algebras, the central concept

associated to the second part of the research of this thesis, and explain the

motivation for such study. We finish the chapter with a description of the

structure of the thesis, in which we shortly summarize the content of each chapter.

1.1 Symmetries and gauge theories

Many physical systems of interest have some degree of symmetry. Physical theories

themselves may have redundancy in their formulation such that a set of

transformations can be performed without modifying the measurable results. In

most cases, this symmetry can be mathematically described by a Lie algebra. On

the other hand, we constantly look for generalizations of theories such that they

comply the Bohr’s correspondence principle, i.e., such that they are able to

1



2 1. Introduction

reproduce the results of the already known theories as particular cases

corresponding to some specific regime of the generalized theory. Therefore, once we

know a mechanism of obtaining a theory from a particular symmetry, it becomes

relevant to know how to generalize Lie algebras in order to describe enlarged

symmetries and, through them, to study generalized theories. Two well-known

ways to formulate a theory for a particular Lie algebra are Yang–Mills and

Chern–Simons theories. These are theories that admit a gauge formulation, i.e.,

theories on which some transformations on the fundamental dynamical variable

leave invariant the corresponding action principle and, consequently, the

corresponding dynamics. In both cases, the action of such transformations on the

fundamental variable is ruled by a Lie algebra.

In the context of standard gauge theories, the fundamental gauge potential µ is

locally represented by a one-form taking values on a Lie algebra. Its corresponding

field strength is consequently described by a two-form. Thus, the one-form gauge

potential allows describing the parallel transport of a point particle, i.e., a zero-

dimensional object, whose trajectory is represented by a one-dimensional curve in

spacetime. In the same way, antisymmetric tensor fields of higher degrees allow

carrying out the parallel transport of extended objects, such as strings or branes,

along a higher-dimensional trajectory. A detailed analysis in the context of the

so-called p-form electrodynamics can be found in refs. [1, 2]. Another example of

a higher gauge field is the so-called Kalb–Ramond field in string theory, which is

described by a two-form [3]. The presence of gauge fields in physical theories that

are described by higher-degree tensors motivates the generalization of the gauge

principle by means of the use of enlarged algebraic structures whose gauging contains

such field content in a natural way.

1.2 Free differential algebras

A Lie algebra is a vector space endowed with a bilinear antisymmetric product

that satisfies the Jacobi identity. Such antisymmetric product is usually realized as

a commutator between the algebraic vectors, implying that the Jacobi identity of

the antisymmetric product is equivalent to the associativity condition of the

secondary product with which such commutator is defined. On the other hand,

any Lie algebra admits an equivalent dual formulation in terms of differential

one-forms (or Maurer–Cartan potentials). The information regarding the Lie

product is then codified into a set of differential equations known as
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Maurer–Cartan equations for the corresponding potentials. Therefore, one

straightforward way to generalize Lie algebras is to introduce new Maurer–Cartan

potentials, given not only by one-forms but by higher-degree differential forms

satisfying new differential equations that must be consistent with the structure

equations of the original one-forms. This procedure leads to a new mathematical

structure known as free differential algebra (FDA). In the following, we present our

ideas for applying generalized symmetries in the context of gauge theories.

FDAs were first introduced in physics in 1980 by R. D’Auria, P. Fré and T. Regge [4]

as mathematical structures that allow formulating supergravity in the superspace

in a geometric way. In 1982, R. D’Auria and P. Fré made use of such structure to

unveil a hidden symmetry algebra in the eleven-dimensional supergravity previously

constructed by Cremmer, Julia and Scherk [5,6]. On the other hand, the field content

of supergravity theories in six or more dimensions includes higher-degree differential

forms in the bosonic sector when it is formulated in terms of differential forms in the

first-order formalism. The presence of such higher-degree forms is a consequence of

the consistency requirement of an equal number of bosonic and fermionic degrees of

freedom in supersymmetry [7]. Therefore, the field content of these theories cannot

be consistently introduced in terms of one-forms, making impossible a formulation

in terms of a one-form gauge field valued in a Lie algebra (or superalgebra) as

it happens in standard Yang–Mills and Chern–Simons theories. This motivates to

introduce FDAs in substitution of Lie algebras in the first-order formulation of gauge

theories for gravity and supergravity that inherently involve higher-degree forms as

fundamental fields.

1.3 Higher gauge theories

As it was mentioned, the field content of a standard gauge theory is given by a

one-form gauge field that is valued in the Lie algebra that describes the gauge

symmetry. On the other hand, higher gauge theories are those in which the

fundamental field is not only given by a one-form gauge field but a composite

gauge field whose components are tensors of different degrees [8–10]. Since FDAs

are, basically, generalizations of Lie algebras that involve differential forms of

different degrees as Maurer–Cartan potentials, their gauging provide a natural

mechanism in the construction of higher gauge theories. The most simple example

of a higher gauge theory is the so-called p-form electrodynamics [1,2], a theory that

describes the dynamics of extended objects, such as p-branes. The gauge symmetry
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algebra of p-form electrodynamics is also a Lie algebra, specifically the U(1)

algebra, and not a non-trivial generalization of a Lie algebra. The field content is

described only by a p-form that is valued on U(1), such as it happens in standard

electrodynamics, and therefore, it does not carry an algebraic index. To introduce

higher-degree differential forms as gauge fields in a theory is therefore possible

without extending the underlying algebraic structure; it is enough to extend the

gauge principle and consider higher degree tensors valued in a Lie algebra.

Examples of this type were introduced and studied in refs. [11–19]. In these cases,

the field contents include several differential forms of different degree, being each

one valued in the same Lie algebra. Such forms are used in the construction of

generalized Chern–Simons forms, leading to theories that couple differential forms

of different degrees and whose gauge invariance is also described by Lie algebras.

In the aforementioned examples, the gauge symmetry is described by a Lie algebra,

exactly as it happens in standard Yang–Mills and Chern–Simons theories.

Although their field content include differential forms of different degree, in every

case, they are valued in a Lie algebra without the need to introduce generalized

gauge algebras. However, the presence of higher-degree forms as gauge fields allows

us to understand the gauge algebras of these theories as FDAs by interpreting the

one-forms and the higher-degree differential forms as different Maurer–Cartan

potentials of a FDA instead of gauge potentials valued in the same Lie algebra. In

these cases, the difference is merely a matter of interpretation. Consequently,

FDAs that describe the gauge symmetry these type of theories are equivalent to

Lie algebras and can be obtained from them without introducing an additional

mathematical structure. These are FDAs whose main feature is to be trivial

extensions of Lie algebras. In this context, the triviality lies in the fact that the

Maurer–Cartan potentials that are higher-degree differential forms can be

decomposed as linear combinations of tensorial products of the Maurer–Cartan

potentials of a Lie algebra, i.e., in terms of products of their one-forms. A FDA is

therefore non-trivial when we introduce another element into its Maurer–Cartan

equations, namely, a higher-degree differential form in a way that does not

contradict the structure equations of the original Lie algebra (i.e., without

contradicting its Jacobi identity) and whose role is to make it impossible to

decompose the higher-degree forms in terms of the one-forms without contradicting

the structure equations. Algebraic elements that satisfy these conditions are

known as non-trivial cocycles, representatives of the Chevalley–Eilenberg

cohomology classes of the Lie algebra [20]. When a Lie algebra is extended to a

FDA through the introduction of a non-trivial cocycle into the Maurer–Cartan

equations, the new structure can be considered a non-trivial FDA extension of the
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original Lie algebra, and it can be considered as a candidate to describe richer

symmetry in a physical system. It follows that there are so many non-equivalent

and non-trivial FDA extensions for a Lie algebra as Chevalley–Eilenberg

cohomology classes such Lie algebra has.

1.4 Yang–Mills & Chern–Simons

The field content of standard Yang–Mills and Chern–Simons theories is codified

into a one-form that takes values on certain gauge algebra. In particular,

Yang–Mills theory, the basis of the standard model, has SU(N) as gauge group and

describes three of the four fundamental interactions, namely, the electromagnetic,

weak nuclear, and strong nuclear interactions. Supersymmetric SU(N) Yang–Mills

theories also appear to be a very interesting case for N = 4 because of its

conformal symmetry and therefore its relation with string theory. Moreover,

according with the well-celebrated AdS/CFT correspondence [21], this theory is

dynamically equivalent to type IIB superstring theory. On the other hand, the

Chern–Simons action principle makes use of a Chern–Simons form as Lagrangian

density and, although it has been extensively studied in the three-dimensional

case, it can be formulated in arbitrary odd dimensions for any Lie gauge group or

supergroup [22–24]. The (2n+ 1)-dimensional Chern–Simons form, denoted by

Q2n+1, has a topological origin, and it can be mathematically derived from the

2n+ 2 dimensional Chern–Pontryagin invariant density, denoted by χ2n+2, through

the well-known relation [25,26]

χ2n+2 = dQ2n+1. (1.1)

The relation between the Chern–Pontryagin invariant density and the Chern–Simons

form constitutes the so-called Chern–Weil theorem, which provides the mathematical

tools for the explicit derivation of Chern–Simons (and transgression) forms necessary

in the construction of higher-dimensional action principles in odd dimensions. Due

to their invariance properties, Chern–Simons theories have been extensively studied

in the construction of gauge theories in arbitrary odd dimensions for different Lie

algebras. For details on their use as Lagrangian densities for gravity theories, see

refs. [27–29]. Moreover, their corresponding supersymmetric formulations can be

found in refs. [30,31]. The consequent study of the dynamics of these gravity theories

has led to different applications in black hole theory. See for example refs. [32–34].

Generalized Chern–Simons forms (and transgression forms) whose invariance is not
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described by Lie algebras but by enlarged structures is an active area of research.

See, for example, refs. [35, 36]. In addition to being helpful in the construction of

action principles for odd-dimensional topological gauge theories, standard

Chern–Simons forms are relevant in the study of non-abelian gauge anomalies in

quantum field theory. Gauge anomalies appear in quantum field theory when

classical symmetries associated to gauge fields are broken in the quantization

process. As a consequence, the currents that are associated with such symmetries

are not conserved anymore because of the appearance of anomalous terms in the

calculation of their divergences. An important result due to B. Zumino in

refs. [37–39] shows that, when considering a quantum field theory in

even-dimensional spacetime, the non-abelian gauge anomaly can be derived from

the gauge-variation of the Chern–Simons form corresponding to such gauge fields.

This motivates us to find explicit expressions for Chern–Simons and transgression

forms, not only for the construction of action principles but also for the research of

the generalized anomalies that emerge from the Chern–Simons forms whose gauge

field has components of different differential degree, and whose invariance is

described by FDAs that are non-trivially obtained from Lie algebras. It is

therefore expected that generalized versions of Chern–Simons forms and their

corresponding gauge anomalies reproduce their standard versions as the first terms

of their expansions and include new terms that depend on the extended

components of the gauge field, i.e., on higher-degree differential forms, due to the

natural origin of FDAs as extensions of the Lie algebras from which such standard

quantities were originaly derived. Moreover, to consider higher-degree forms as

building blocks in the construction of generalized Chern–Simons forms makes

possible their formulation in both odd and even dimensionalities, making also

possible the study of the gauge anomalies that emerge from them in the context of

odd and even-dimensional spacetimes. As mentioned before, the presence of the

cocycle in the construction of the FDA is essential to obtain results that cannot be

trivially reduced to the standard expressions originated in the study of gauge

theories and Lie algebras. In this thesis, we calculate the explicit expressions for

Chern–Simons and transgression forms, as well as the anomalies emerging from the

Chern–Simons theory (see chapters 5 and 6, respectively).

1.5 L∞ algebras

We can understand FDAs as the generalizations of Lie algebras in their dual

formulation, i.e., as differential algebras whose Maurer–Cartan equations
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non-trivially extend the ones of Lie algebras by using algebraic elements,

representatives of their Chevalley–Eilenberg cohomology classes. This is also

possible in the basis of contravariant tangent vectors by defining not only a

bilinear antisymmetric product but multilinear and graded-symmetric products

acting on a generalized vector space. As it happens with FDAs, some conditions

must be satisfied by consistency with the generalized version of the Jacobi identity

that FDAs satisfy. This ‘Lie algebra analogue’ is called L∞ algebra (see for

example [40]). L∞ algebras have been extensively studied in the formulation of

physical theories. In ref. [41], it was shown that it is possible to write the relevant

information of an arbitrary classical gauge theory in terms of an L∞ algebra.

Previous results regarding the relation between classical gauge theories and L∞

algebras can be found in ref. [42]. Moreover, for extensive reviews on the role of

L∞ algebras in the context of the Batalin–Vilkovisky formalism, see refs. [43, 44].

In most cases, when formulating a classical gauge theory, the gauge symmetry is

described by an algebraic structure (usually a Lie algebra) whose relevant

information is encoded into its corresponding structure constants. The information

concerning the dynamics of the theory is encoded in the equations of motion. In

contrast, the L∞ formulation of gauge theories allows to write down all the

information of a classical gauge theory in terms of the structure constants of an

algebra denoted by Lfull
∞ , consisting on a graded vector space endowed with a set of

multilinear products. Thus, the information regarding the covariance, the gauge

algebra and the dynamics of the interacting theory is encoded into the products

between elements of different subspaces. The gauge symmetry remains described

by a certain subalgebra Lgauge
∞ ⊂ Lfull

∞ . If the symmetry algebra of the theory is a

Lie algebra, then Lgauge
∞ will also be, even if Lfull

∞ is not. However, by considering a

gauge theory whose gauge invariance is governed by a FDA, the L∞ formulation of

gauge theories becomes more appropiate, due to the dual relation between FDAs

and L∞ algebras. This further motivates us to study the formulation of arbitrary

odd-dimensional Chern–Simons forms in terms of L∞ algebras and to extend the

results to generalized Chern–Simons theories that involve higher-degree differential

forms invariant under FDAs (see chapters 7 and 8 respectively).

1.6 Structure of the thesis

In this thesis we consider two main research topics. The first one is the construction

of gauge theories for FDAs. We will therefore start by focusing on the reproduction
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of the Chern–Weil theorem for such algebras, and the formulation of gauge-invariant

action principles that make use of extended Chern–Simons and transgression forms

as Lagrangian densities. Moreover we will study the existence of gauge anomalies

based on such generalization. The second main topic is the formulation of gauge

invariant theories that involve higher-degree differential forms as fundamental fields

in terms of L∞ algebras. To cover such topics, this thesis is presented in the following

structure:

• Chapter 2 is entirely devoted to mathematical preliminaries. We begin with

a review of differential geometry on Lie group manifolds and introduce the

concept of Chevalley–Eilenberg cohomology, which will be of particular

importance in chapters 3 and 5. In addition, we introduce mathematical

tools, necessary for the construction of Lie gauge theories such as the

invariant tensors and the Chern–Weil theorem.

• In chapter 3, we review the concept of free differential algebra. We include

its mathematical definition, its gauging and the detailed study of the

properties that emerge for a particular case, known as FDA1, which is of

special importance in the research developed in chapter 5.

• In chapter 4, we carry out a review of L∞ algebras. We introduce their

definition in two equivalent pictures and show their dual relation with the

already mentioned free differential algebras. Moreover, we study the

formulation of classical gauge theories in terms of L∞ algebras, which is of

significant relevance for the second part of the research of this thesis,

developed in chapters 7 and 8.

• Chapter 5 contains the main results concerning the first part of the research

of this thesis (see ref. [45]). We generalize the Chern–Weil theorem to the case

of the above mentioned algebra FDA1. This leads to definitions of generalized

Chern–Simons and transgression forms. Furthermore, we study the equations

of motion of the FDA1 invariant gauge theories that make use of such forms

as Lagrangian densities. The chapter ends with the study of the existence of

non-trivial FDAs that can be obtained as extensions of the bosonic Poincaré

and Maxwell algebras, and the construction of an action principle for one of

these cases.

• In chapter 6 we will study the existence of gauge anomalies in higher gauge

theories. For this purpose, we consider the generalized Chern–Simons forms,

introduced in chapter 5, and from them, we derive explicit expressions for
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generalized gauge anomalies, in theories that couple the standard one-form

from Yang–Mills theories with higher degree tensors (see ref. [45]).

• In chapter 7 the formulation of Chern–Simons theories is considered in the

language of L∞ algebras. For this purpose, we begin by finding the L∞

subspace structure that is shared by every Lie gauge theory, i.e., the sectors

that encode the gauge transformations and the gauge algebra. We then study

the subspace that encodes the dynamics of standard Chern–Simons theory in

arbitrary odd dimensions. We finish the chapter with a summary that shows

the L∞ algebras for such theories, including a remaining structure that was

not explicitly shown in the first sections of the chapter and that, for

consistency, must be non-trivial (see ref. [46]) .

• Finally, in chapter 8 we study the L∞ formulation of gauge theories whose

symmetry is described by a FDA1. We begin by finding the subspace structure

that is shared by every FDA1 gauge theory, which includes the information

regarding the definition of FDA1 gauge transformations and the corresponding

gauge algebra. We then study the particular cases of a flat FDA1 theory (in

which the dynamics is governed by the zero-curvature conditions) and the

FDA1-Chern–Simons theories introduced in chapter 5. We explicitly write

down the L∞ algebras for both types of theories (see ref. [46]).

• Chapter 9 contains the conclusions of the research presented in this thesis.
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Chapter 2

Mathematical preliminaries

An important part of this thesis is based on the study of an algebraic structure known

as free differential algebra (FDA). These are generalizations of Lie algebras that

allow the construction of gauge theories involving higher-degree differential forms

as gauge fields. In this chapter we introduce concepts of Lie groups and standard

gauge theories, such as left- and right-invariant vector fields, Lie derivatives, the dual

formulation of Lie algebras, and the so-called Chern–Weil theorem, which relates

the Chern–Pontryagin density and Chern–Simons form. These concepts will be

necessary in the later introduction of FDAs and their corresponding higher gauge

theories.

2.1 Symmetry algebras

Symmetry algebras are mathematical structures that have an important role in the

formulation of physical theories. To introduce them, let us consider a physical theory

on an arbitrary n-dimensional manifold M with a set of coordinates x0, . . . , xn−1,

and a set of fundamental fields µA (x) with A = 1, . . . , N . The dynamics of the

theory is determined by the general field variation of an action principle which is

given by a functional of the fundamental fields

S [µ] =

∫
M

dxnL (µ) . (2.1)

This action principle is defined in terms of the integration over M of the Lagrangian

density L (µ) of the theory. Let us now introduce a symmetry variation δεµ with

11
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respect to a scalar parameter ε. The variation of the action principle is given by

δεS [µ] =

∫
M

dxn
δL (µ)

δµA
δµA

δε
δε. (2.2)

By considering two successive variations with independent parameters ε1 and ε2, it

is direct to see that

δε2δε1S [µ] =

∫
M

dxnδε2

(
δL (µ)

δµBδµA
δε2µ

Bδε1µ
A +

δL (µ)

δµA
δε2δε1µ

A

)
, (2.3)

where we have used the eq. (2.2). By assuming that the parameters ε1 and ε2

commute, we obtain the following expression for the commutator of two independent

symmetry variations acting on the action principle:

[δε1 , δε2 ]S [µ] =

∫
M

dxn
δL (µ)

δµA
[δε1 , δε2 ]µA. (2.4)

As we have introduced both δε1 and δε2 as symmetries, the variations on eqs. (2.2)

and (2.4) must vanish. This shows that [δε1 , δε2 ] is also a symmetry of the action

principle and allows us to define a new gauge parameter [ε1, ε2] as follows

δ[ε1,ε2] = [δε1 , δε2 ] . (2.5)

Since [δε1 , δε2 ] is a commutator defined by using an associative product, it satisfies

the Jacobi identity. On the other hand, the composite parameter [ε1, ε2] defines a

product between parameters that is not necessarily a commutator. However, due to

eq. (2.5), it is also antisymmetric and satisfies the Jacobi identity. Notice that the

symmetry parameters have not been introduced as vectors of a previously defined

space, but they will obey the axioms of Lie algebras if we demand that the symmetry

transformations leave the action principle invariant and continuously depend on

the parameters. This shows that Lie algebras are the mathematical structure that

describes the symmetries of physical systems.

2.2 Group manifolds

In this section, we shortly review some basic concepts on Lie groups. For extensive

reviews on this subject, see refs. [7,47–49]. Let us consider a Lie group G. This is a

soft manifold on which the map defined by G ×G −→ G with (g′, g) −→ g′g and the

inverse map defined by G −→ G with g −→ g−1, are both smooth. For the sake of

introducing the corresponding notation, we mention some definitions in the theory
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of tensors on Lie groups.

Let g be a fixed point of G. The left-translation Lg and the right-translation Rg are

both diffeomorphisms G −→ G defined by the following action on a generic point

h ∈ G:

Rgh = hg, (2.6)

Lgh = gh. (2.7)

The definition of left- (and right-) translation induces a definition of left- (and

right) invariant vectors and one-forms. Indeed, by considering the tangent space of

contravariant vectors Te (G) at the identity point e ∈ G, the left-translation

Lge = g induces a mapping over every vector ve ∈ Te (G) given by the pull-back of

the left-translation (Lg)∗

(Lg)∗ : Te (G) −→ Tg (G) ,

ve 7−→ vg ≡ (Lg)∗ ve.

where Tg (G) is the tangent space of contravariant vectors in g. Since the transformed

vector vg ∈ Tg (G) transforms in the same functional way under a secondary left-

translation Lg′vg = vg′g, it is said to be left-invariant. In this way, the left-translation

induces a notion of left-invariant vector field over the manifold G. Analogously, the

right-translation Rge = g induces a mapping (Rg)∗ : Te (G) −→ Tg (G) by means

of its corresponding pull-back on the contravariant tangent space. The resulting

vector field over G is said to be right-invariant. These definitions are immediately

generalized to the dual tangent spaces of covariant vectors (or one-forms) providing

a notion of left- (and right-) invariant one-forms. Moreover, the antisymmetric

wedge product of differential forms provides a definition of left- (and right-) invariant

differential forms over the group manifold G. From now on we will denote the space

of left-invariant q-forms by Λq (G) unless we specify another notation.

The exterior derivative operator, denoted by d is defined as a mapping

d : Λq (G) −→ Λq+1 (G) , (2.8)

such that its action on an arbitrary differential form

ω(q) =
1

q!
ω

(q)
µ1···µqdx

µ1 ∧ · · · ∧ dxµq , (2.9)
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is given by

dω(q) =
1

q!

(
∂

∂xν
ω

(q)
µ1···µq

)
dxν ∧ dxµ1 ∧ · · · ∧ dxµq . (2.10)

From this definition, it follows that the exterior derivative satisfies the Leibniz rule

d
(
ω(r) ∧ ω(s)

)
= dω(r) ∧ ω(s) + (−1)r ω(r) ∧ dω(s), (2.11)

and nilpotence d2 = 0.

2.3 Lie algebras and Chevalley–Eilenberg cohomology

A Lie algebra is a vector space G endowed with a bilinear antisymmetric product

G×G −→ G, (2.12)

(A,B) 7−→ [A,B] , (2.13)

called Lie product, which verifies the Jacobi identity

[[A,B] , C] + [[C,A] , B] + [[B,C] , A] = 0. (2.14)

One can prove that the vector space of left- (and right-) invariant vector fields

on a Lie group G becomes a Lie algebra by defining the commutator as Lie product

[A,B] = AB−BA. As a consequence, every Lie group has an associated Lie algebra.

From now on, we will denote G to the Lie algebra associated with a Lie group G.

Thus, since every left-invariant vector field on G is univocally determined by its value

on the identity e, the Lie algebra can be identified by the space of tangent vectors

G ≡ Te (G).

Let {tA}nA=1 now be a basis for an arbitrary n-dimensional Lie algebra G. By writing

the Lie product in terms of this basis one finds

[tA, tB] = CCABtC , (2.15)

where the coefficients CCAB are called structure constants. They are constants due

to the left-invariance of the basis vectors, and antisymmetric in the lower indices

due to the antisymmetry of the Lie product. Writing the Lie algebra in terms of

a certain basis, also allows to write the Jacobi identity in terms of the structure
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constants in such basis, which gives

CED[AC
D
BC] = 0. (2.16)

The commutation relations of eq. (2.15) define a Lie algebra in terms of the basis

elements of the contravariant basis. It is also possible to define the Lie algebra in

terms of a set of differential equations relating the dual basis of one-forms. Let {xµ}
be a local coordinate system on G. Every basis vector tA can be written as a linear

combination of the coordinate basis associated to {xµ}

tA(x) = eµA(x)
∂

∂xµ
, (2.17)

where the matrix coefficients eµA(x) involve indices corresponding to both bases.

Moreover, the corresponding dual bases
{
ωA
}dimG

A=1
and {dxµ}dimG

µ=1 are related by

the inverse matrix, whose coefficients eAµ satisfy

ωA = eAµdxµ. (2.18)

The matrices e−1 with entries eAµ constitute the so-called left-invariant vielbein

group. By directly replacing eqs. (2.17) and (2.18) in eq. (2.15) it is possible to

write down the information regarding the Lie algebra into a set of differential

equations for eµA and eAµ , namely

2eµ[Ae
ν
B]∂µe

C
ν = −CCAB. (2.19)

By directly contracting eq. (2.19) with ωA ∧ ωB = eAµ e
B
ν dxµ ∧ dxν one gets

(dxν∂ν) ∧
(
eCµ dxµ

)
= −1

2
CCAB

(
eAµdxµ

)
∧
(
eBν dxν

)
. (2.20)

It is now possible to identify the exterior derivative operator and the elements of

the basis of one-forms on eq. (2.20), and write the information coming from the

commutation relations of the contravariant vectors tA without using the coordinate

basis but only the dual basis of one-forms, as follows

dωA +
1

2
CABCω

B ∧ ωC = 0. (2.21)

The differential equations in eq. (2.21) are known as Maurer–Cartan equations.

They provide a dual formulation of the Lie algebra in terms of the covariant basis.

The Jacobi identity for the structure constants becomes equivalent to the

integrability condition d2 = 0 in the Maurer–Cartan equations. Both ways of

describing a Lie algebra are completely equivalent. However, considering the dual
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formulation is especially useful when one generalizes the algebraic structure to a

new one that involves higher-degree differential forms.

At this point, we have considered the basis of covariant one-forms on the group

manifold. The use of such differential forms in the construction of a physical

theory requires the definition of a more sophisticated mathematical structure, that

allows the transformations of the Lie algebra to be applied to differential forms

defined on a space of different dimensionality. We now discuss the mathematical

idea of a principal bundle, which is a pair (M,G), where M is a manifold

describing the base space (in our case, spacetime), and G is the symmetry group of

another manifold, the so-called fiber. This mathematical framework allows us to

define a gauge theory in terms of its base manifold and symmetry Lie group by

introducing a gauge connection instead of a vielbein one-form, as follows

eAµdxµ −→ µAµdxµ.

Unlike eAµ , the quantity µAµ is not a vielbein, but a connection defined on the

bundle. The indices A and µ no longer take the same values. The algebraic index

A takes values between 1 and dimG, while µ, being a coordinate spacetime index,

takes values between 0 and dimM − 1. A formal definition of a bundle involves a

definition of the connection in terms of local charts due to the possibility of non-

trivial topology of G. For the purposes of this chapter, this heuristic definition is

sufficient; however, a rigorous definition can be found in ref. [49].

We aim now to gauge the Lie group manifold. As usual, one considers a smooth

deformation G̃ of G. An arbitrary basis of one-forms
{
µA
}

on G̃ is defined by

µA(x) = µAµ (x)dxµ, (2.22)

which, in general, do not satisfy the Maurer–Cartan equations of the Lie algebra G

associated to G. The failure of the one-forms µA in satisfying such set of Maurer–

Cartan equations defines a two-form called curvature form, which is given by

RA (µ) = dµA +
1

2
CABCµ

B ∧ µC . (2.23)

Eq. (2.23) is usually called Cartan structure equation.

Let us now introduce a matrix representation for the Lie algebra; this is, a mapping

from G in a set of matrix operators D (tA) acting on a representation space

D : tA −→ D (tA)i j , (2.24)
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satisfying the commutation relations of the Lie algebra. Moreover, let us introduce

polynomials of the type

Ωi = Ωi
A1···Apω

A1 ∧ · · · ∧ ωAp , (2.25)

where the index i takes values in the irreducible representations of G. Ωi is therefore

a p-form in Λp (G) that takes values in the representation space. These objects are

called Chevalley–Eilenberg cochains. The matrix representation D induces a G-

covariant derivative given by

(∇)i j = δijd + ωA ∧D (tA)i j , (2.26)

acting on elements with index i in the representation space. It is direct to verify

that the Jacobi identity implies the nilpotence of the operator ∇. The action of

the covariant derivative on Chevalley–Eilenberg cochains define certain equivalence

classes. A cochain that is covariantly closed is called a cocycle. It is important to

point out the existence of two types of cocycles. A coboundary (or trivial cocycle)

is a cocycle that is covariantly closed due to the structure of the Lie algebra, i.e.,

it can be written as the covariant derivative of a secondary (p− 1)-form Φi in the

same representation, and therefore, it is a cocycle because of the nilpotence of the

covariant derivative in the absence of curvature, namely

Ωi = ∇Φi, (2.27)

∇Ωi = ∇2Φi ≡ 0. (2.28)

On the other hand, the cocycles that cannot be written as the covariant derivative

of a secondary form are said to be non-trivial. They are representatives of the

Chevalley–Eilenberg cohomology classes of the Lie algebra. It is important to notice

that, with this notion of cohomology, two cocycles that differ by a coboundary are

equivalent; that is, they constitute an equivalence class. Moreover, if G is a graded

semi-simple Lie algebra, there are no non-trivial cohomology classes. For details on

the Chevalley–Eilenberg cohomology of Lie algebras, see ref. [20].

The covariant derivative of a generic form ωi can be defined in the deformed manifold

G̃ as follows

∇ωi = dωi + µA ∧D (tA)i j ω
j . (2.29)

By applying the same procedure, it is direct to verify that, in this case, the

covariant derivative is not nilpotent. This is a natural consequence of considering a

deformation of the original manifold. Since the one-forms µA do not satisfy the

Maurer–Cartan equations because of the presence of the curvature form RA, they
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do not describe a Lie algebra and the second covariant derivative turns out to be

proportional to the curvature two-form

∇2ωi = RA ∧D(tA)i jω
j . (2.30)

In particular, by taking the exterior derivative of the curvature RA it is also direct

to verify that RA is a covariantly closed form

∇RA = dRA + CABCµ
B ∧RC = 0, (2.31)

where we have used the adjoint matrix representation D(tB)AC = CABC . Eq. (2.23)

is usually known as the Bianchi identity.

Let us now consider an arbitrary contravariant vector on G, denoted by X = XAtA,

and let ε(p) = εA1···Apω
A1 ∧ · · · ∧ ωAp ∈ Λp (G) be an arbitrary p-form (with p > 0).

The contraction mapping iX associated with X is defined as

iX : Λp (G) −→ Λp−1 (G) , (2.32)

iXε
(p) = pXAεAA1···Ap−1ω

A1 ∧ · · · ∧ ωAp , (2.33)

where tA and ωA belong to dual bases. Moreover, if X is a contravariant vector and

ω(p) is an arbitrary p-form, the Lie derivative of ω(p) along X is a p-form defined

as the anticommutator between the exterior derivative operator and the contraction

iX

LXω(p) = iXdω(p) + d
(
iXω

(p)
)
. (2.34)

Notice that, by writing the vector in a certain basis X = XAtA, the Lie covariant

derivative from eq. (2.34) can be written as

Ltω(p) = dXAitAω
(p) +XALtAω

(p). (2.35)

Let us consider the behavior of µA under a general transformation of coordinates

x → x + δx. The variation of µA (x) is given in terms of the zero-form parameter

δx = ε by

δεµ
A (x) = dxν

{
∂µµ

A
ν (x)δxµ + µAµ (x)∂νδx

µ
}
. (2.36)

Integrating the second term at the r.h.s of eq. (2.36) by parts, we have

δεµ
A (x) = dxν∂ν

(
µAµ (x) εµ

)
+ dxνεµ

[
∂µµ

A
ν (x)− ∂νµAµ (x)

]
. (2.37)

On the other hand, the components of the two-form dµA can be explicitly written
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as (
dµA

)
µν

=
1

2

(
∂µµ

A
ν − ∂νµAµ

)
. (2.38)

By plugging in eq. (2.38) into eq. (2.37), it is possible to write the variation of µA

in terms of the anholonomic components of the parameter εA = µAµ ε
ν as

δεµ
A(x) = dεA − 2

(
µB
) (
εC
) (

dµA
)
BC

. (2.39)

We can now identify the contraction operation iε
(
dµA

)
= 2µBεC

(
dµA

)
CB

, so that

the variation of µA turns out to be proportional to its Lie derivative along the

direction of the parameter, namely

δεµ
A(x) = d

(
εA
)

+ iε
(
dµA

)
= LεµA. (2.40)

This means that the Lie derivative of µA is given by its infinitesimal change under

a general transformation of anholonomic coordinates. In general if ω(p) is an

arbitrary p-form then, under a general coordinate transformation, it experiences a

local infinitesimal change, given by its Lie derivative:

δεω
(p) = Lεω(p). (2.41)

Eq. (2.41) shows that the Lie derivative is the generator of the general

transformations of coordinates, and leads to an interesting result: by performing

two successive Lie derivatives along the basis vectors tA and tB, it is possible to

prove that they generate the Lie algebra G

[LtA ,LtB ] = CCABLtC . (2.42)

2.4 Invariant tensors

Let us now consider the linear representation of the Lie group G. To each element

g ∈ G there is an associated mapping [g] : G −→ G such that for any vector v ∈ G
we have g 7−→ [g] v = gvg−1. It follows that for any group elements h, g ∈ G and

vector v ∈ V we have

[h] [g] v = [hg] v. (2.43)

By using this action of the group elements on the algebraic vectors, we can define

an invariant tensor of the Lie algebra (or G-invariant polynomial) as an n-linear

mapping of the form 〈· · · 〉 : G × · · · × G −→ R satisfying the following invariance
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condition

〈v1, . . . , vn〉 =
〈(
gv1g

−1
)
, . . . ,

(
gvng

−1
)〉
. (2.44)

The invariance condition of a polynomial can be expressed in terms of the structure

constants of the corresponding Lie algebra, as follows

n∑
i=1

CCA0Ai

〈
tA1 , . . . , t̂Ai , tC , . . . , tAn

〉
= 0, (2.45)

where {tA}dimG
A=1 is the basis of vectors satisfying the Lie algebra from eq. (2.37),

and where a basis vector with hat, t̂A, denotes the absence of such vector in the

sequence. For details on invariant tensors of Lie algebras and proof of this theorem,

see refs. [49–51].

2.5 Chern–Weil theorem

Chern–Simons theories are topological theories that make use of a Chern–Simons

form as Lagrangian density, leading to gauge theories defined on odd-dimensional

spacetimes. The gauge symmetry of such theories is ruled by the Lie algebra, on

which the fundamental field of the theory, a one-form gauge connection, is

evaluated. Let us therefore consider a one-form gauge connection µA = µAµdxµ.

The corresponding field-strength (or curvature) two-form can be found by

considering a perturbated group manifold, i.e., by means of the gauging of the

Maurer–Cartan equation and the introduction of a non-vanishing curvature on it:

RA = dµA +
1

2
CABCµ

B ∧ µC (2.46)

The Chern–Simons (2n+ 1)-form, denoted by Q2n+1 can be derived from the

Chern–Pontryagin topological invariant density, which is a (2n+ 2)-form given by

the symmetrized trace of its Lie valued curvature forms [52,53], as follows

χ2n+2 (µ) = Str
(
Rn+1

)
, (2.47)

where Str denotes the symmetrized trace that acts over the matrix representation

of a basis of vectors of the corresponding Lie algebra, R = RAtA. In terms of the

components RA, the Chern–Pontryagin form can be written as

χ2n+2 (µ) = gA1···An+1R
A1 ∧ · · · ∧RAn+1 , (2.48)
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where the coefficients gA1···An+1 are the components of the degree-(n+ 1) invariant

tensor in the chosen basis. By taking the exterior derivative of χ2n+2 and using the

Bianchi identities, it is direct to prove that it is indeed a closed form. Moreover, by

replacing the gauge transformation rule on eq. (2.48) and using the invariant tensor

condition for Lie algebras, it is also direct to prove its gauge invariance.

Let us consider two independent gauge fields µ and µ̄ valued in the same Lie algebra

G. We also introduce a third gauge field depending on them, given by µt = µ̄+ tu,

with u = µ − µ̄. µ̄ is known as homotopic gauge field, and it is interpolated from

µ̄ to µ by the parameter t ∈ [0, 1]. In the same way, the homotopic two-form field-

strength associated to µt, denoted and given by

Rt = R̄+ t∇̄u+
t2

2
[u, u] , (2.49)

is interpolated between R̄ and R as the parameter changes between 0 and 1. A useful

property of the homotopic field-strength is that its derivative along the homotopic

parameter is given by a total covariant homotopic derivative, i.e.,

d

dt
Rt = ∇tu. (2.50)

On the other hand, the difference between the Chern–Pontryagin invariant densities

corresponding to both gauge fields can be written in a convenient way by using

Stoke’s theorem and the homotopic gauge field

χ2n+2 (µ)− χ2n+2 (µ̄) =

∫ 1

0
dt

d

dt
χ2n+2 (µt) . (2.51)

The invariant density χ2n+2 (µt) is constructed with the homotopic gauge curvatures.

By directly applying the derivative along the homotopic parameter and using eq.

(2.50), it is possible to prove that the difference in the l.h.s. of eq. (2.51) is given

by the following total derivative

χ2n+2 (µ)− χ2n+2 (µ̄) = dQ2n+1 (µ̄, µ) . (2.52)

The (2n+ 1)-form inside the exterior derivative at the r.h.s. of eq. (2.52) depends

on both gauge fields µ and µ̄. It is globally gauge invariant, known as transgression

form, and explicitly given by the following expression:

Q2n+1 (µ, µ̄) = (n+ 1)

∫ 1

0
dt gA1···An+1u

A1RA2
t ∧ · · · ∧R

An+1

t . (2.53)

The Chern–Simons form can be obtained from eq. (2.53) by locally setting µ̄ = 0,
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namely

Q2n+1 (µ) ≡ Q2n+1 (µ, 0)

= (n+ 1)

∫ 1

0
dt gA1···An+1µ

A1RA2
t ∧ · · · ∧R

An+1

t . (2.54)

This condition cannot be globally fixed, and therefore, the Chern–Simons form is

only locally defined. The homotopy rule is also reduced to a particular case in

which µt = tµ and Rt = tR +
(
t2 − t

)
µ2. Notice that Rt and µt take values

between 0 and µ in the first case and 0 and R in the latter. An important feature

of transgression forms is that they are invariant under gauge transformations. The

Chern–Simons form inherits such gauge-invariance only partially because of the

non-covariance of the setting µ̄ = 0. For this reason, action principles that use

transgression forms as Lagrangian densities are fully gauge invariant, but the

Chern–Simons action principles are invariant only up to boundary terms [25, 26].

For recent examples of the use of Chern–Simons and transgression forms in the

construction of gauge theories for gravity, see refs. [54, 55]. The relation between

the Chern–Pontryagin invariant density and transgression (and Chern–Simons)

forms is a celebrated result known as the Chern–Weil theorem.

When using a transgression form as Lagrangian density, the transgression form in

eq. (2.53) has, in principle, all the necessary information about the theory.

However, in practice, we work with well-determined gauge groups containing

different subgroups, each one having a clear physical meaning. For this reason, it is

helpful to split the transgression form Q2n+1 (µ, µ̄) into parts that explicitly reflect

such subgroup structure. This split describes the relation between the

Chern–Simons and transgression forms: one way to see this relation is to consider

the Chern–Weil theorem. From eq. (2.52) it is straightforward to check the

following identity

dQ2n+1 (µ, µ̄) + dQ2n+1 (µ̃, µ) + dQ2n+1 (µ̄, µ̃) = 0, (2.55)

where µ, µ̄ and µ̃ are three independent one-form connections valued in the same

Lie algebra. From Poincaré’s lemma we find that the sum of the three transgression

forms in eq. (2.55) can be locally written as a total derivative:

Q2n+1 (µ, µ̄) +Q2n+1 (µ̃, µ) +Q2n+1 (µ̄, µ̃) = −dQ2n (µ̃, µ, µ̄) , (2.56)

where Q2n (µ̃, µ, µ̄) is a 2n-form that depends on the three connections. However, it

is not possible to determine the explicit form of Q2n (µ̃, µ, µ̄) using only the Chern–

Weil theorem. Eq. (2.56) is known as the triangle equation and can be more
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conveniently written in the following way

Q2n+1 (µ̃, µ̄) = Q2n+1 (µ, µ̄) +Q2n+1 (µ̃, µ) + dQ2n (µ̃, µ, µ̄) , (2.57)

which allows us to understand Q2n+1 (µ̃, µ̄) as a transgression form that

interpolates between µ̃ and µ̄ and, in consequence, this differential form can be

written as the sum of two transgression forms by introducing an auxiliary one-form

µ and a total derivative. It is interesting to note that µ is completely arbitrary and

can be conveniently chosen. The mathematical foundation on which the previous

result rests is given in the extended Cartan homotopy formula. Such formula

shows that the triangle equation and the Chern–Weil theorem have a common

origin and allows to obtain an explicit expression for the 2n-form Q2n (µ̃, µ, µ̄).

2.6 Triangle equation

In 1985 J. Mañes, R. Stora and B. Zumino [39] showed that the Chern–Weil theorem

corresponds to a special case of the extended Cartan homotopy formula (ECHF) [39].

To analyze this, let us consider the following elements. Let
{
µAi
}r+1

i=0
be a set of one-

form gauge connections on a d-dimensional bundle based on a manifold M . Let also

Tr+1 be an oriented (r + 1)-dimensional simplex, parameterized by the set
{
ti
}r+1

i=0
,

where the parameters ti satisfy

ti ∈ [0, 1] , (2.58)
r+1∑
i=0

ti = 1. (2.59)

Eq. (2.59) implies that the linear combination

µt =

r+1∑
i=0

tiµi, (2.60)

transforms as a gauge connection in the same way as each µi does. It is possible to

consider each µi as an element associated with the i-th vertex of the simplex Tr+1,

so that it can be denoted as Tr+1 = (µ0, . . . , µr+1). The exterior derivatives on M

and Tr+1 are denoted by d and dt. We will also consider an antiderivative operator

lt, which increases the degree in dt and decreases the degree in dx; that is

lt : Λp (M)× Λq (Tr+1) −→ Λp−1 (M)× Λq+1 (Tr+1) , (2.61)
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and satisfies Leibniz rule just as d and dt do. This operator is defined so that it

constitutes a graded algebra together with d and dt

d2 = d2
t = {d,dt} = 0, (2.62)

[lt,d] = dt, (2.63)

[dt, lt] = 0. (2.64)

The action of lt on the algebra of polynomials generated by {µt, Rt} is defined in

such a way that the algebra from eqs. (2.62)-(2.64) is satisfied and the algebra of

polynomials is stable under the application of the operators d, dt and lt. In summary,

the operators d, dt and lt change the degree of an (r, s)-form in
(
dxµ,dti

)
as follows

(r, s)
d−→ (r + 1, s) , (2.65)

(r, s)
dt−→ (r, s+ 1) , (2.66)

(r, s)
lt−→ (r − 1, s+ 1) . (2.67)

Moreover, the action of the exterior derivatives d and dt on the elements of the

algebra of polynomials is defined in the usual way, according to eq. (2.10), while

the only choice for lt that satisfies the algebra (2.62)-(2.64) and keeps the algebra of

polynomials closed is given by

ltµt = 0, (2.68)

ltRt = dtµt. (2.69)

Let now π be an arbitrary (m+ q)-form given by an arbitrary polynomial in the

forms {µt, Rt}, such that m and q are its differential degree in dxµ and dt

respectively. Using the algebra from eqs. (2.62)-(2.64) we have [39]

(p+ 1) dtl
p
t π =

[
lp+1
t ,d

]
π, (2.70)

where, since the operator lt decreases the degree of the differential form in M , for

consistency one gets m ≥ p . Integrating eq. (2.70) over Tr+1 we have

1

p!

∫
Tr+1

dtl
p
t π =

1

(p+ 1)!

∫
Tr+1

[
lp+1
t , d

]
π. (2.71)

By applying Stokes’ theorem on the simplex, we can directly integrate the left side

of the eq. (2.71), obtaining

1

p!

∫
∂Tr+1

lpt π =
1

(p+ 1)!

∫
Tr+1

(
lp+1
t dπ − dlp+1

t π
)
. (2.72)
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Note that the quantity lp+1
t π must be of differential degree (m− p) in dx and

(q + p+ 1) in dt. Denoting r = q + p, we have that lp+1
t π is a (r + 1)-form over

Tr+1, therefore eq. (2.72) takes the form

1

p!

∫
∂Tr+1

lpt π =
1

(p+ 1)!

∫
Tr+1

lp+1
t dπ − (−1)r+1

(p+ 1)!
d

∫
Tr+1

lp+1
t π. (2.73)

Eq. (2.73) is known as ECHF. If we consider that π is given by the 2n-form 〈Rnt 〉
with degree zero in dt, we have q = 0 and p = r. Thus, this formula is reduced to

1

p!

∫
∂Tp+1

lpt 〈Rnt 〉 =
(−1)p

(p+ 1)!
d

∫
Tp+1

lp+1
t 〈Rnt 〉 . (2.74)

The study of eq. (2.74) for particular cases leads to interesting results:

• For p = 0, the simplex is parametrized by one parameter t. In this case, the

formula reproduces the Chern–Weil theorem from eqs. (2.51) and (2.52).

• For p = 1, the simplex is parametrized by two parameters t0 and t1. The

homotopic gauge field µt depends on them according µt = µ̄ + t0 (µ− µ̄) +

t1 (µ̃− µ). The resulting formula reproduces the triangle equation from eq.

(2.56) and provides an explicit expression for the 2n-form Q2n (µ̃, µ, µ̄) at the

r.h.s of eq. (2.57), given by

Q2n (µ̃, µ, µ̄) = n (n+ 1)

∫ 1

0
dt0
∫ t0

0
dt1
〈
Rn−1
t (µ̃− µ) (µ− µ̄)

〉
, (2.75)

where the homotopic curvature two-form Rt is, as usual, defined from µt and,

hence, depends on both homotopic parameters. For details on these particular

cases, see refs. [49, 56–58].
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Chapter 3

Free differential algebras

FDAs are helpful when describing symmetries in theories that intrinsically contain

higher degree tensors in the field content. They were introduced in theoretical

physics in the context of the formulation of supergravity theories in six or more

dimensions, where the supersymmetry requirement of an equal number of bosonic

and fermionic degrees of freedom leads to the introduction of new gauge fields

given by higher degree tensors. An example can be found in the formulation of

eleven-dimensional supergravity, where the field content includes the vielbein field,

the spin connection, and the spin 3/2 gravitino field. The algebraic structure that

allows interpreting such field content as a multiplet is the eleven-dimensional

Poincaré superalgebra, being each field associated to a symmetry generator;

specifically the generators of translations, rotations, and supersymmetry

transformations, respectively. However, the counting of the corresponding degrees

of freedom shows a deficit of 84 bosonic degrees of freedom, leading to the

introduction of a new bosonic three-form, whose number of degrees of freedom is

exactly 84. Therefore, the standard eleven-dimensional supergravity multiplet (or

CJS supergravity) is described by the aforementioned field content, in addition to

a bosonic three-form that cannot be interpreted as the gauge field associated to a

symmetry generator of a Lie algebra. Thus, the resulting algebraic structure turns

out to be a FDA for a composite one-form and a bosonic three-form that is

non-trivially included as an extension of Poincaré Lie superalgebra by means of a

non-trivial cocycle [7, 59–63].

In chapter 5, we will formulate a higher degree gauge theory. For this, we need to

introduce the mathematical tools regarding FDAs: in this chapter, we will review

the mathematical formulation of FDAs with particular emphasis on the simplest

27
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non-trivial case; this is, a differential algebra that includes only a one-form and a

higher-degree form.

3.1 Generalized Maurer–Cartan equations

As it was mentioned in chapter 2, a Lie algebra can be described in two equivalent

ways. The standard way consists of a vector space of contravariant vectors endowed

with a bilinear antisymmetric product, while the so-called dual formulation consists

of a set of differential equations for the covariant dual vectors (or left-invariant one-

forms). The dual formulation has the advantage that it can be naturally extended

to the case of p-forms.

Let M be an arbitrary N -dimensional manifold and let
{
θA(p)

}N
p=1

be a basis of

exterior forms defined on M . The basis elements are labeled by a set of indices

A (p) where p labels the degree of the differential form θA(p). Notice that if p 6= q,

the indices A (p) and A (q) run on different domains and they cannot be contracted.

Since
{
θA(p)

}N
p=1

is a basis of differential forms, the exterior derivative dθA(p) can

be expressed in terms of their elements. This immediately allows to write down a

generalized Maurer–Cartan equation [4, 7, 64]:

dθA(p) +
N+1∑
n=1

1

n
C
A(p)
B1(p1)···Bn(pn)θ

B1(p1) ∧ · · · ∧ θBn(pn) = 0. (3.1)

At this point, there are no restrictions on the coefficients C
A(p)
B1(p1)···Bn(pn), however,

they must be reduced to the structure constants of a Lie algebra in the simplest

case. A factor 1/n is introduced for later convenience. These coefficients are called

generalized structure constants, and their symmetry in the lower indices is induced

by the permutation of the forms in the wedge product from eq. (3.1). Notice that,

there is a (p+ 1)-form at the l.h.s. of eq. (3.1) and therefore, the generalized

structure constants are non-zero only if p1 +· · ·+pn = p+1. In the dual formulation

of Lie algebras, demanding the structure constants to verify the Jacobi identity

is equivalent to demanding the exterior derivative operator to be nilpotent, and

therefore, that the differential calculus to be well defined. In the same way, eq. (3.1)

is self-consistent only if the generalized structure constants are such that the second

derivative d2θA(p) vanishes identically for every basis element. By directly applying
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the exterior derivative in eq (3.1), one finds the following condition

N+1∑
n,m=1

1

m
C
A(p)
B1(p1)···Bn(pn)C

B1(p1)
D1(q1)···Dm(qm)θ

D1(q1)∧· · ·∧θDm(qm)∧θB2(p2)∧· · ·∧θBn(pn) = 0.

(3.2)

Eq. (3.2) constitutes the generalized Jacobi identity for FDAs and, together with

eq. (3.1), defines the algebraic structure known as free differential algebra. As it

happens with Lie algebras, the generalized Jacobi identity can be written in terms of

the structure constants, removing the basis of p-forms and adding the corresponding

antisymmetrization. However, it is convenient to express it as in eq. (3.2) and remove

the differential forms when studying particular examples case by case.

3.2 FDAs and Lie algebras

FDAs were first introduced in physics as extensions of Lie algebras by a

well-defined procedure. Such procedure, extensively studied in refs. [4, 7, 64], make

use of the non-trivial cocycles of a Lie algebra, representatives of its

Chevalley–Eilenberg cohomology classes to provide new structure to its

Maurer–Cartan equations.

Let us consider a Lie algebra G with a basis of vectors {tA}dimG
A=1 satisfying eq. (2.15),

and its corresponding dual basis of one-forms
{
ωA
}dimG

A=1
satisfying the Maurer–

Cartan equations from eq. (2.21). Let us also consider the spectrum of irreducible

n-dimensional matrix representations D(n) (tA)i j of G and the following non-trivial

p+ 1-form cocycle

Ωi
n,p+1 = Ωi

A1···Ap+1
ωA1 ∧ · · · ∧ ωAp+1 . (3.3)

Since the p + 1-form Ωi
n,p+1 is a cocycle, it is covariantly closed. Moreover, the

non-triviality implies the non-existence of a p-cochain Φi such that

Ωi
n,p+1 = ∇(n)Φi. For each cocycle in this representation, representative of a

Chevalley–Eilenberg cohomology class, there is a possible extension of the Lie

algebra of eq. (2.21) to a non-trivial FDA. Indeed, given the (p+ 1)-cocycle from

eq. (3.3), we can introduce a new p-form Ain,p in the same representation and write

the following generalized Maurer–Cartan equation

∇(n)Ain,p + Ωi
n,p+1 = 0, (3.4)

where∇(n) is the covariant derivative, as it was defined in eq. (2.29) in the mentioned

representation. Eqs. (2.21) and (3.4) constitute a new FDA for the differential forms
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θA(1) = ωA and θA(p) = Ain,p. Eq. (3.4) guarantees that the operator ∇(n) is still

nilpotent in the extended space, and therefore, we can still talk about cocycles and

cohomology classes for the new structure.

At this point, we can repeat the process by using eq. (3.4) and start over. By

recalling the definition of covariant derivative in this representation, we can consider

the construction of new non-trivial cocycles using the basis elements ωA and Ain,p

Ωi′
n′,p′+1 (ω,A) = Ωi

A1···Ari1···isω
A1 ∧ · · · ∧ ωAr ∧Ai1n,p ∧ · · · ∧Aisn,p. (3.5)

Notice that, at the r.h.s. of eq. (3.5) is a (r + sp)-form. The new cocycle

Ωi′
n′,p′+1 (ω,A) is therefore a (p′ + 1)-form with p′ = r + sp − 1 in a n′-dimensional

representation with index i′. It satisfies closure and it is non-exact under the

covariant derivative of the corresponding representation, denoted by ∇(n′). In this

way, each cohomology class corresponds to a new extension of the FDA that can

be found by introducing new differential forms. This FDA is then determined by

the following Maurer–Cartan equations

dωA +
1

2
CABCω

B ∧ ωC = 0, (3.6)

∇(n)Ain,p + Ωi
n,p+1(ω) = 0, (3.7)

∇(n′)Ai
′
n′,p′ + Ωi′

n′,p′+1(ω,A) = 0. (3.8)

The repetition of this procedure allows obtaining the most general FDA for a given

Lie algebra G.

3.3 Gauging free differential algebras

As it happens with Lie algebras, physical applications of FDAs require a gauging

of the Maurer–Cartan equations [4,7]. This means to consider a deformation of the

FDA manifold, on which the basis of differential forms
{
θA(p)

}
satisfies a modified

version of the generalized Maurer–Cartan equations:

RA(p) = dθA(p) +
N∑
n=1

1

n
C
A(p)
B1(p1)···Bn(pn)θ

B1(p1) ∧ · · · ∧ θBn(pn). (3.9)

The forms RA(p) are called (p+ 1)-curvatures. Notice that, for p = 1, eq. (3.10)

reproduces the definition of curvature from eq. (2.23). By directly applying the

exterior derivative operator to eq. (3.9) it is straightforward to find the following
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generalized Bianchi identity [7]

dRA(p) +
N∑
n=1

C
A(p)
B1(p1)···Bn(pn)R

B1(p1) ∧ΘB2(p2) ∧ · · · ∧ΘBn(pn) = 0. (3.10)

Eq. (3.10) turns out to be particularly useful by inducing a notion of covariant

derivative for FDAs. In this way, the covariant derivative can be defined such that

eq. (3.10) is equivalent to ∇R = 0.

3.4 The FDA1 algebra

Let us consider a particular case of FDA, known in the literature as a FDA1 [65,66].

This FDA has only two collections of differential forms as basis, namely the one-

forms µA and the p-forms Bi. This means that, in eq. (3.9), we fix θA(1) = µA and

θA(p) = Bi. We will study the ‘flat’-case i.e., the non-gauged algebra, and continue

by introducing a non-vanishing curvature later. For convenience, we will explicitly

mention which of these two cases we are dealing with and indistinctly denote the

basis of differential forms as µA and Bi in both cases.

By considering the given basis of differential forms, eq. (3.1) is reduced to the

following set of Maurer–Cartan equations

dµA +
1

2
CABCµ

BµC = RA = 0, (3.11)

dBi + CiAjµ
ABj +

1

(p+ 1)!
CiA1···Ap+1

µA1 · · ·µAp+1 = Ri = 0. (3.12)

Eqs. (3.11) and (3.12) define a FDA1. Notice that we have considered that the

structure constants of the type C
A(p)
B(p+1) vanish. FDAs that share this property

are called minimal algebras. The choice of FDA1 as a minimal algebra allows eq.

(3.11) to reproduce the Maurer–Cartan equations of a Lie algebra. In consequence,

the generalized Jacobi identity of eq. (3.2) is reduced to a set of three algebraic

equations for the structure constants of a FDA1, as follows

CAB[CC
B
DE] = 0, (3.13)

CiAjC
j
Bk − C

i
BjC

j
Ak − C

i
CkC

C
AB = 0, (3.14)

2Ci[A1|jC
j
|A2···Ap+2] − (p+ 1)CiA0[A1···ApC

A0

Ap+1Ap+2] = 0. (3.15)

Notice that, eq. (3.13) is the standard Jacobi identity of Lie algebras, showing that

the one-forms µA describe a Lie subalgebra of the FDA1. Moreover, eq. (3.14)
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states the structure constants CiAj as a representation of the Lie subalgebra. In fact,

by defining the matrix operators (tA)i j ≡ CiAj , eq. (3.14) immediately becomes

equivalent to the commutation relations of a Lie algebra. Lastly, the third Jacobi

identity in eq. (3.15) is equivalent to demand that the standard covariant derivative

of the structure constants CiA1···Ap+1
vanishes, showing that a FDA1 is only consistent

if CiA1···Ap+1
defines a cocycle of the original Lie subalgebra.

As we have seen in chapter 2, in the study of Lie groups, the diffeomorphism

transformations are given by Lie derivatives along all the possible directions on the

group manifold. To study the diffeomorphism transformations in the case of a

FDA1, it is therefore necessary to define a regular Lie derivative along the

standard directions of the Lie subalgebra described by eq. (3.11), and an extended

Lie derivative that determines the transformations along the extended directions.

For this purpose, we define the generalized contraction operators itA and itj whose

action on the one-form µA and the p-form Bi is given by [65,66]

itAµ
B = δBA , (3.16)

itAB
j = 0, (3.17)

itjµ
A = 0, (3.18)

itjB
i = δij . (3.19)

tA denote the basis vectors, generators of the Lie algebra described by eq. (3.11) (Lie

subalgebra of a FDA1). Moreover, we also have to introduce the corresponding basis

vectors along the extended directions of the FDA manifold, tj . The new vectors are

dual to Bj in the same way in which tA is dual to µA.

Let now εA be a zero-form and εi a (p− 1)-form. As it happens with Lie groups,

the Lie derivative operators along εAtA and εiti are defined as the anticommutator

of the corresponding contraction operators and the exterior derivatives:

LεAtA = diεAtA + iεAtAd, (3.20)

Lεjtj = diεjtj + iεjtjd, (3.21)

with iεAtA = εAitA and iεiti = εiiti .

Let us now consider the gauging of a FDA1. This means to introduce non-vanishing

curvatures RA and Ri, explicitly given by eqs. (3.11) and (3.12). We split the

components of the curvature in the chosen basis of one-forms and p-forms, and
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denote them as follows

RA = RABCµ
BµC +RAj B

j , (3.22)

Ri = RiA1···Ap+1
µA1 · · ·µp+1 +RiAjµ

ABj , (3.23)

where the second term at the r.h.s. of eq. (3.22) is non-zero only for p = 2.

Let us now proceed to the application of the Lie derivatives on the gauge potentials

µA and Bi along the standard zero-form parameter εAtA. Such derivatives are

explicitly given by:

LεAtAµ
A = dεA + CABCµ

BεC + 2RABCε
BµC , (3.24)

LεAtAB
i =

(
RiAj − CiAj

)
εABj +

(
(p+ 1)RiAA1···Ap −

1

p!
CiAA1···Ap

)
εAµA1 · · ·µAp .

(3.25)

On the other hand, the Lie derivative of the gauge fields along the extended (p− 1)-

form εiti parameter is given by

Lεjtjµ
A = εjRAj , (3.26)

LεjtjB
i = dεj + CiAjµ

Aεj −RiAjµAεj . (3.27)

Eqs. (3.24)-(3.27) contain the complete set of diffeomorphism transformations along

all the independent directions of the FDA manifold, which can be summarized as

follows [65,66]

δµA = dεA + CABCµ
BεC + 2RABCε

BµC + εjRAj , (3.28)

δBi = dεj + CiAjµ
Aεj −RiAjµAεj +

(
RiAj − CiAj

)
εABj

+

(
(p+ 1)RiAA1···Ap −

1

p!
CiAA1···Ap

)
εAµA1 · · ·µAp . (3.29)

Notice that the diffeomorphism transformations depend on the standard and

extended components of the curvature. The imposition of certain horizontality

conditions of the curvatures in some directions of the FDA-manifold leads to the

transformations of eqs. (3.28) and (3.29) becoming gauge transformations in an

analogous way to what happens in the case of Lie algebras (for details see

refs. [65, 66]). Indeed, by imposing the so-called ‘FDA1 horizontality conditions’,

given by

iεBtB
(
RACDµ

CµD
)

= 0, (3.30)

iεiti
(
RAj B

j
)

= 0, (3.31)
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iεBtB

(
RjAkµ

ABk
)

= 0, (3.32)

iεiti

(
RjAkµ

ABk
)

= 0, (3.33)

iεBtB

(
RiA1···Ap+1

µA1 · · ·µAp+1

)
= 0, (3.34)

for arbitrary parameters εA and εi, the diffeomorphism transformations from eqs.

(3.28) and (3.29) become gauge transformations, namely

δµA = dεA + CABCµ
BεC , (3.35)

δBi = dεi + CiAjµ
Aεj − CiAjεABj − 1

p!
CiA1···Ap+1

εA1µA2 · · ·µAp+1 . (3.36)

Eq. (3.35) corresponds to the usual Lie covariant derivative of the zero-form

parameter. The second equation is the natural extension to the case of a p-form.

Notice that the transformation of µA is the same that in ordinary groups and

depends only on εA. However, the transformation of Bi depends on both

parameters, εA and εi [67, 68].

As we have seen in eqs. (3.22) and (3.23), the curvature forms admit the splitting

RA = RA1 +RA2 , Ri = Ri1 +Ri2, with

RA1 = RABCµ
BµC , (3.37)

RA2 = RAj B
j , (3.38)

Ri1 = RiA1···Ap+1
µA1 · · ·µAp+1 , (3.39)

Ri2 = RiAjµ
ABj . (3.40)

Using this notation, the FDA1 horizontality conditions take the form

iεBtBR
A
1 = iεBtBR

i
1 = iεBtBR

i
2 = 0, (3.41)

iεjtjR
A
2 = iεjtjR

i
1 = 0. (3.42)

Moreover, by defining the contraction operator along the composite parameter ε as

iε = εAitA + εiiti , eqs. (3.41) and (3.42) can be written in a more convenient way:

iεR
A = 0, (3.43)

iεAtAR
i = 0. (3.44)

As it happens with the generalized Jacobi identity, eqs. (3.35) and (3.36) induce

a definition of covariant derivative on differential forms of degree zero and p − 1.

In this way, it is possible to write the variation of the gauge fields as the covariant
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derivative of the corresponding gauge parameters.

3.4.1 Covariant derivative

In order to construct an invariant gauge theory under a FDA, it is necessary to

define a covariant derivative that involves all the components of the gauge field. For

this purpose, we will use the transformation law for the curvatures and the Bianchi

identities.

From eqs. (3.35) and (3.36), it is straightforward to find the following gauge

transformation law for the components of the curvature [67,68]

δRA = CABCR
BεC , (3.45)

δRi = CiAjR
Aεj − CiAjεARj −

1

(p− 1)!
CiAA1···Apε

ARA1µA2 · · ·µAp . (3.46)

Notice that eq. (3.45) corresponds to the usual Lie bracket between the two-form

curvature and the zero-form parameter, written in components for the chosen basis

and involving only the structure constants of the Lie subalgebra of the FDA1. On

the other hand, eq. (3.46) corresponds to the natural generalization of the Lie

product between the curvature and the parameter and involves both components,

standard and extended, of each one. Moreover, the extended component Ri

transforms homogeneously, i.e. not depending on the derivatives of the parameters,

such as RA.

On the other hand, let us now consider the second source of information regarding

the covariant derivative, namely, the Bianchi identity. By imposing the conditions

of FDA1 in eq. (3.10), we obtain the Bianchi identities involving the curvatures RA

and Ri

dRA − CABCRBµC = 0, (3.47)

dRi + CiAjµ
ARj − CiAjRABj − 1

p!
CiA1···Ap+1

RA1µA2 · · ·µAp+1 = 0. (3.48)

As it happens with the gauge transformation laws, eq. (3.45) reproduces the Bianchi

identity regarding RA, which is the same that appears for Lie algebras. It turns out

to be the statement that the Lie covariant derivative of the two-form curvature

vanishes. This is a natural consequence of the fact that eq. (3.11) is the Maurer–

Cartan equation for a Lie algebra. Furthermore, eq. (3.48) generalizes the definition

of covariant derivative for a (p+ 1)-form.
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In summary, eqs. (3.35) and (3.36) provide a definition of the covariant derivative

of a vector of the FDA1 ε whose components are
(
εA, εi

)
, being εA a zero-form and

εi a (p− 1)-form. The covariant derivative of ε is therefore also a vector given by

∇ε =
(

(∇ε)A , (∇ε)i
)

, whose components are explicitly given by

(∇ε)A = dεA + CABCµ
BεC , (3.49)

(∇ε)i = dεj + CiAjµ
Aεj − CiAjεABj − 1

p!
CiAA1···Apε

AµA1 · · ·µAp . (3.50)

Moreover, eqs. (3.47) and (3.48) provide a definition of covariant derivative of a

vector of the type R =
(
RA, Ri

)
, being RA a two-form and Ri a (p+ 1)-form. The

components of the covariant derivative of R, denoted by ∇R =
(

(∇R)A , (∇R)i
)

are therefore given by

(∇R)A = dRA + CABCµ
BRC , (3.51)

(∇R)i = dRi + CiAjµ
ARj − CiAjRABj − 1

p!
CiA1···Ap+1

RA1µA2 · · ·µAp+1 . (3.52)

These results can be understood as the equations that define the covariant

derivative of every set of differential forms x =
(
xA, xi

)
in the (A, i)-representation

of the FDA1, where the index A corresponds to the adjoint representation of the

Lie algebra with which the FDA1 was constructed, while the index i corresponds

to the irreducible representation of the corresponding cocycle with which the

algebra was constructed. However, directly generalizing eqs. (3.50) and (3.52) to

any vector of the FDA1 leads to the following problems:

• The covariant derivative defined in this way does not satisfy a homogeneity

condition, i.e., the second covariant derivative ∇2x depends on the degree-one

derivatives of x. Such homogeneity condition holds only for differential forms

of even degree.

• The gauge variation of the (p+ 1)-form curvature cannot be written as δRi =

∇δBi, not even reproducing the original results for Lie algebras.

To solve these problems, we must define a covariant derivative depending on the

degree of the differential forms on which the operator is applied. Let us consider

a vector x =
(
xA, xi

)
in the (A, i)-representation of the FDA1. The components

of x, denoted as xA and xi are q-forms and (p+ q − 1)-forms, respectively. We

define the FDA1-covariant derivative of x as a vector ∇x =
(

(∇x)A , (∇x)i
)

, whose
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components are given by

(∇x)A =dxA + CABCµ
BxC , (3.53)

(∇x)i =dxi + CiAj

(
µAxj − (−1)f(q) xABj

)
− (−1)g(q)

p!
CiA1···Ap+1

xA1µA2 · · ·µAp+1 . (3.54)

The arbitrary scalar functions f (q) and g (q) are introduced for later consistency.

From the particular cases given by the covariant derivatives of the curvatures and

parameters in eqs. (3.50) and (3.52), it is direct to see that

(−1)f(0) = (−1)f(2) = (−1)g(0) = (−1)g(2) = 1. (3.55)

Moreover, in order to verify the homogeneity condition, it is necessary to remove

the dependency on the derivatives of xA and xi in the second covariant derivatives

of x. Such requirement leads to the following conditions for f (q) and g (q)

f (q + 1) = f (q) + 1, (3.56)

g (q + 1) = g (q) + 1. (3.57)

A valid solution to this equation system is given by f (q) = g (q) = q, which leads

us to the following definition of covariant derivative

(∇x)A =dxA + CABCµ
BxC , (3.58)

(∇x)i =dxi + CiAj
(
µAxj − (−1)q xABj

)
− (−1)q

p!
CiA1···Ap+1

xA1µA2 · · ·µAp+1 . (3.59)

Eqs. (3.58) and (3.59) reproduce eqs. (3.49)-(3.52), fulfill the requirements of

homogeneity in the second covariant derivative and allow to write the gauge

variations of the components of R as δRA = ∇δµA and δRi = ∇δBi.
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Chapter 4

L∞ algebras and field theory

In this chapter, we review the mathematical structure known as L∞ algebra. We

consider an introduction in two pictures known as b-picture and `-picture. Such

pictures are equivalent and will be useful in this and following chapters.

L∞ algebras are generalizations of Lie algebras defined as graded vector spaces

endowed with a set of multilinear products whose symmetry rules depend on the

degree of the subspaces on which they act [41, 69]. This set of multilinear products

directly generalizes the bilinear products of Lie algebras. In this sense, Lie algebras

are particular cases of L∞ algebras in which the only non-vanishing product is the

bilinear one, and the subspace structure of the vector space carries only one subspace,

making the bilinear product always antisymmetric. The products of an L∞ algebra

satisfy an enlarged version of the Jacobi identity. It is interesting to notice that

the presence of multilinear products, in general, allows the bilinear product not to

satisfy the standard Jacobi identity. Consequently, when the bilinear product is

defined as a commutator, the product with which such commutator is defined can

be non-associative [70,71].

4.1 L∞ algebras in the b-picture

An L∞ algebra is defined as a vector space X̄ endowed with a set of products {bk}k∈N
where:

39
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• X̄ is a graded vector space

X̄ =
⊕
n∈Z

X̄n. (4.1)

Eq. (4.1) defines the gradation of X̄, i.e., given an element x̄ ∈ X̄n we denote

deg x̄ = n.

• {bk}k∈N is a set of k-linear products of degree −1 defined on X̄, i.e., given an

arbitrary set of elements x̄1, . . . , x̄k ∈ X̄, we have

deg bk (x̄1, . . . , x̄k) = deg x̄1 + · · ·+ deg x̄k − 1. (4.2)

• The products are graded symmetric

bk (x̄1, . . . , x̄k) = ε (σ, x̄) bk
(
x̄σ(1), . . . , x̄σ(k)

)
, (4.3)

where ε (σ, x̄) is the Koszul sign defined by means of a graded symmetric

product x̄ ∧ ȳ = (−1)deg x̄deg ȳ y ∧ x. It depends on the degree of the elements

on X̄ and the order of the permutation σ through the following relation

x̄1 ∧ · · · ∧ x̄k = ε (σ, x̄) x̄σ(1) ∧ · · · ∧ x̄σ(k). (4.4)

• The products bk satisfy the so-called L∞ identities in the b-picture∑
σ∈Un(i,j)

ε (σ, x̄) bj
(
bi
(
x̄σ(1), . . . , x̄σ(i)

)
, x̄σ(i+1), . . . , x̄σ(n)

)
= 0, (4.5)

with n ≥ 1, i+j = n+1, and Un (i, j) being the set of unshuffled permutations

of n elements that satisfy the following ordering relations

σ (1) < · · · < σ (i) , (4.6)

σ (i+ 1) < · · · < σ (n) . (4.7)

4.2 L∞ algebras in the `-picture

L∞ algebras can be equivalently formulated in the so-called `-picture. In this picture,

an L∞ algebra is defined as a pair
(
X, {`k}k∈N

)
where:

• X is a graded vector space

X =
⊕
n∈Z

Xn. (4.8)
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Eq. (4.8) defines the gradation of X, i.e., a vector x ∈ Xn has degree n,

deg x = n.

• {`k}k∈N is a set of k-linear products of degree k − 2 defined on X, i.e., for k

vectors x1, . . . , xk ∈ X, we have

deg `k (x1, . . . , xk) = k − 2 + deg x1 + · · ·+ deg xk. (4.9)

• The products verify the following graded symmetry depending on the order of

the permutation and the Koszul sign depending on the degrees of the vectors

in the `-picture

`k (x1, . . . , xk) = (−1)σ ε (σ, x) `k
(
xσ(1), . . . , xσ(k)

)
. (4.10)

• The products `k satisfy the L∞ identities in the `-picture (n ≥ 1 :)∑
i+j=n+1

(−1)i(j−1)
∑

σ∈Un(i,j)

(−1)σ ε (σ, x) `j
(
`i
(
xσ(1), . . . , xσ(i)

)
,

xσ(i+1), . . . , xσ(n)

)
= 0. (4.11)

It is possible to define a mapping between both formulations. Let us consider an

L∞ algebra in the `-picture. We define the suspension map s as follows

s : Xn −→ X̄n+1, (4.12)

x 7→ sx ≡ x̄. (4.13)

The operation s maps vectors from X into vectors on X̄, such that, the image of a

vector x of degree n in X is a vector x̄ of degree n+ 1 in X̄

deg x̄ = deg x+ 1 . (4.14)

The product of an arbitrary number of vectors on X in the `-picture is also mapped

to the product of their corresponding images on X̄ in the b-picture up to a −1 factor

depending on the degree of the vectors, as follows [41]:

bn(x̄1, . . . x̄n) = (−1)(n−1) deg x1+(n−2) deg x2+···+deg xn−1s`n(x1, ..., xn). (4.15)

Notice that the relation from eq. (4.15) is written using the algebraic degrees of

vectors in X. The mapping s is invertible. By introducing s−1 as

s−1 : X̄n+1 −→ Xn, (4.16)
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x̄ 7→ s−1x̄ ≡ x, (4.17)

we can immediately obtain the inverse relation for the mapping of products from X̄

into X in terms of the degrees of X̄

`n(x1, ..., xn) = (−1)
n(n−1)

2
+(n−1) deg x̄1+(n−2) deg x̄2+···+deg xn−1 s−1bn(x̄1, . . . x̄n).

(4.18)

In the b-picture, the products always have algebraic degree −1. In contrast, in the

`-picture, the degrees of the products depend case by case. Such degrees correspond

to different pictures, and therefore, the Koszul signs defined in terms of them ε (σ, x)

and ε (σ, x̄) are different, even if they correspond to the same permutation σ.

The L∞ identities from eq. (4.11) relate n vectors of X using products of different

numbers of them in a single equation. Let us analyze the first cases:

Identity of one vector:

`1 (`1 (x)) = 0. (4.19)

The first identity defines `1 as a nilpotent operator on the entire vector space X.

Identity of two vectors:

`1 (`2 (x1, x2)) = `2 (`1 (x1) , x2) + (−1)deg x1 `2 (x1, `1 (x2)) . (4.20)

The second identity defines `1 as a derivation of `2.

Identity of three vectors:

`2 (`2 (x1, x2) , x3) + (−1)x1(x2+x3) `2 (`2 (x2, x3) , x1) + (−1)x1x3+x2x3 `2 (`2 (x3, x1) , x2)

= −`3 (`1 (x1) , x2, x3)− (−1)x1 `3 (x1, `1 (x2) , x3)− (−1)x1+x2 `3 (x1, x2, `1 (x3))

− `1 (`3 (x1, x2, x3)) . (4.21)

The l.h.s. of eq. (4.21) correspond to the Jacobiator of the bilinear product `2.

Moreover, on the r.h.s, we identify the action of `1 on `3. If `1 is a derivation of

`3, the r.h.s. of eq. (4.21) vanishes. Therefore, this identity states that the bilinear

bracket is, in general, not a Lie bracket. The failure of its Jacobi identity is measured

by the failure of `1 as a derivation on `3. Notice that in the absence of a three-linear

product, the Jacobi identity is immediately satisfied by the bilinear product.
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4.3 L∞ algebras and FDAs

The dual relation between Lie algebras and Lie differential algebras can also be

extended to FDAs. Through the introduction of a set of products acting on a dual

basis of vectors, it is possible to find a dual relation between FDAs and L∞ algebras.

Let us introduce a graded vector space X̄, and a basis for X̄ denoted by
{
tA(p)

}N
p=1

.

The gradation of the vectors in X̄ is labeled according degX̄ tA(p) = p, and each

index A (p) runs over a different domain depending on the value of p, allowing each

subspace to have different dimensionality. Let us also introduce a set of n-linear

products (n ≥ 1) acting on X̄, denoted by

[
tA1(p1), . . . , tAn(pn)

]
n
∈ X̄. (4.22)

Since the product of n basis elements
[
tA1(p1), . . . , tAn(pn)

]
n

is also an element of

X̄ , it can be written in terms of the basis. We denote its components by[
tA1(p1), . . . , tAn(pn)

]A(p)

n
. Such components are chosen to be proportional to the

structure constants of a FDA, as follows

[
tA1(p1), . . . , tAn(pn)

]A(p)

n
= (n− 1)!C

A(p)
A1(p1)···An(pn). (4.23)

As a consequence, the products on X̄ satisfy the same graded-symmetry relation

than the structure constants of the FDA, which can be conveniently written as

follows [
tAσ(1)(pσ(1)), . . . , tAσ(n)(pσ(n))

]
n

= ε (σ, T )
[
tA1(p1), . . . , tAn(pn)

]
n
, (4.24)

where T denotes the gradation of the vectors in the argument of the products. Notice

that, for n = 2, eq. (4.24) leads to the following rule for the bilinear product

[
tA(r), tB(s)

]
2

= (−1)rs
[
tB(s), tA(r)

]
2
. (4.25)

Since the new products are proportional to the generalized structure constants of

a FDA, they inherit some of their properties. As we have seen, the generalized

structure constants in eq. (4.24) are non-vanishing only if their indices satisfy p1 +

· · · + pn = p + 1. Consequently, a product
[
tA1(p1), . . . , tAn(pn)

]
n

is an vector of

the subspace X̄p. Moreover, by directly plugging in eq. (4.23) into eq. (3.2) it is

possible to write down the generalized Jacobi identity in terms of the products in
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X̄, as follows

N+1∑
m,n=1

1

m! (n− 1)!

[[
tC1(q1), . . . , tCm(qm)

]
m
, tB2(p2) . . . , tBn(pn)

]A(p)

n

θC1(q1) · · · θCm(qm)θB2(p2) · · · θBn(pn) = 0 (4.26)

Here, the sum runs over the integer values of pi and qi satisfying q1+· · ·+qm = p1+1

and p1 + · · · + pn = p + 1. Let us now remove the dependence of eq. (4.26) on the

differential forms. To this end, we separate the terms that are wedge products of the

same number of basis elements. Each term on the l.h.s. of eq. (4.26) is a product of

m+n−1 differential forms θA(q). This allows separating eq. (4.26) in equations that

contain the product of the same number of basis forms and perform the sum over

unsuffles. Thus, we can isolate the Jacobi equation corresponding to l = m+ n+ 1

basis elements, as follows∑
m+n=l−1

∑
σ∈U(l)

ε (σ, T )
[[
tBσ(1)(qσ(1)), . . . , tBσ(m)(qσ(m))

]
m

, tBσ(m+1)(qσ(m+1)), . . . , tBσ(l)(pσ(l))

]
n

= 0. (4.27)

Notice that, since there is no repetition of forms θA(q) in eq. (4.26) (otherwise, the

wedge product vanishes), we have performed the sum on m! (n− 1)! equivalent

terms, removing the factorial factor. Moreover, by considering the reordering of

differential forms when performing that sum, we have introduced a Koszul sign

depending on the order of the permutation and the differential degrees of the

elements.

Let us now consider a new Z-graded vector space, denoted by X = ⊕nXn. Let{
tA(p)

}N
p=1

be a basis of X, with the gradation degX tA(p) = p− 1. By last, in terms

of the products in eq. (4.23), we define the following set of products on X̄:

`n
(
tA1(p1), . . . , tAn(pn)

)
= (−1)(p1−1)(n−1)+···+(pn−1−1) [tA1(p1), . . . , tAn(pn)

]
n
. (4.28)

By plugging in eq. (4.28) into eqs. (4.27) and (4.24), one immediately obtains that

the products `n satisfy the L∞ identities and the graded symmetry relations of L∞

algebras in the `-picture. Therefore, the vector space X, endowed with the

products of eq. (4.28) defines an L∞ algebra in the `-picture. On the other hand,

eq. (4.27) turns on to be equivalent to the L∞ identities in the b-picture, being eq.

(4.28) the mapping of the products between both pictures. This shows the dual

relation between FDAs and L∞ algebras. For later convenience, we explicitly show

the relation between FDAs and L∞ algebras in the `-picture. Extensive analyses of
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the relation between L∞ algebras and graded differential algebras can be found in

refs. [70–72]. Moreover, for recent reviews on the role of non-associative algebras in

physics, with a strong emphasis on their historical development and dual

formulation, see refs. [73, 74] .

4.3.1 Example: five-dimensional case

Let us consider an example of a FDA, namely, a FDA1 carrying a one form θA(1)

and a two-form θA(2). This setup reduces the Maurer–Cartan equations from eq.

(3.1) to a set of two differential equations, as follows1

dθA(1) +
1

2
C
A(1)
B(1)C(1)θ

B(1) ∧ θC(1) = 0, (4.29)

dθA(2) +
1

2

(
C
A(2)
B(2)C(1)θ

B(2) ∧ θC(1) + C
A(2)
B(1)C(2)θ

B(1) ∧ θC(2)
)

+
1

3
C
A(2)
B(1)C(1)D(1)θ

B(1) ∧ θC(1) ∧ θD(1) = 0. (4.30)

The graded symmetry in eq. (4.24) shows that the first generalized structure

constants C
A(2)
B(2)C(1) are symmetric in the lower indices, i.e.,

C
A(2)
B(2)C(1) = C

A(2)
C(1)B(2), (4.31)

The second generalized structure constants C
A(2)
B(1)C(1)D(1) are the components of the

three-cocycle with which the FDA1 is constructed. The wedge product between

one-forms in the r.h.s of eq. (4.24) induces antisymmetry in their lower indices. By

imposing that the three-cocycle is in the adjoint representation of the Lie algebra,

the FDA1 is reduced to a particular case in which every algebraic index takes values

in the same domain. In this way, the indices A (1) and A (2) can be simply denoted

by the same letter without their labels i.e., A (1) → A and A (2) → A. This also

allows renaming the FDA1 potentials as θA(1) = θA1 and θA(2) = θA2 . Notice that we

have included a new label to distinguish them. By last, the generalized structure

constants of the FDA can also be renamed. Notice that the symmetry rule in

eq. (4.31) include both the indices B and C and the labels 1 and 2, being the

permutation of both of them necessary to hold the symmetry. This allows to define

the components of C
A(1)
B(1)C(1) in terms of the antisymmetric structure constants of a

1For this example, we explicitly write the wedge product between differential forms.
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Lie algebra, as follows

C
A(1)
B(1)C(1) =

[
tB(1), tC(1)

]A(1)

2
= CABC , (4.32)

C
A(2)
B(2)C(1) =

[
tB(2), tC(1)

]A(2)

2
= CABC , (4.33)

C
A(2)
C(1)B(2) =

[
tC(1), tB(2)

]A(2)

2
= −CACB, (4.34)

C
A(2)
B(1)C(1)D(1) =

1

2

[
tB(1), tC(1), tD(1)

]A(2)

3
= CABCD. (4.35)

Eqs. (4.33) and (4.34) show that, although the structure generalized structure

constants CABC are antisymmetric in the lower indices, the product between FDA1

forms, given by [
θ(2), θ(1)

]A(2)
= C

A(2)
B(2)C(1)θ

B(2) ∧ θC(1), (4.36)

is indeed symmetric due to the symmetry of the generalized structure constants and

the permutation of an even-degree form. In this case, we have chosen the structure

constants of the same Lie subalgebra with which the FDA1 is defined. In this

notation and with these choices, the Maurer–Cartan equations of the FDA1 take

the following form

0 = dθA1 +
1

2
CABCθ

B
1 ∧ θC1 , (4.37)

0 = dθA2 + CABCθ
B
2 ∧ θC1 +

1

3
CABCDθ

B
1 ∧ θC1 ∧ θD1 . (4.38)

Let us now write down this FDA as an L∞ algebra in the `-picture. To this end, we

introduce a graded vector space

X = X0 ⊕X1, (4.39)

and denote its basis elements as
{
tA, t̃A

}
, with tA ∈ X0 and t̃A ∈ X1. By writing

down the information of the FDA1 structure constants of eqs. (4.32)-(4.35) into the

L∞ products according to eq. (4.28), we find the following L∞ products:

`2 (tB, tC) = CABCtA, (4.40)

`2
(
tB, t̃C

)
= −CABC t̃A, (4.41)

`3 (tB, tC , tD) = 2CABCD t̃A, (4.42)

Others = 0. (4.43)

Here, we have identified the vectors on X as tA(1) = tA and tA(2) = t̃A. Thus, eqs.

(4.40) and (4.41) contain the information of the Lie subalgebra of eq. (4.29), while

the product in eq. (4.42) carry the information about the cocycle with which the

FDA1 is defined. They satisfy the L∞ identities due the Jacobi identities in eq.
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(4.27).

A similar approach for the derivation of a dual of FDAs was performed in ref. [68].

Such dual formulation leads to a non-associative algebra by defining a set of products

in terms of the Lie derivatives acting on the FDA manifold. The commutation

relations of that algebra arise by directly calculating the commutator between the

Lie derivatives along the standard and extended directions on the FDA manifold.

The motivation for investigating these dual non-associative structures lies in the

fact that, in closed string theory, non-associative structures in double phase space

describe flux backgrounds [75]. In the case of these dual non-associative algebras,

as well as in L∞ algebras, the non-associativity appears when the bilinear algebraic

product does not satisfy the standard Jacobi identity. The failure of such Jacobiator

is proportional to a cocycle, being the non-associativity controlled by the Chevalley–

Eilenberg cohomology (see refs. [76–78]).

4.4 L∞ formulation of gauge theories

L∞ algebras provide a mathematical structure that allows to write down the

complete information about an arbitrary classical gauge theory [41]. This means to

include not only the gauge algebra but also the information regarding the

dynamics into the definition of algebraic products. The information regarding the

gauge symmetry is still encoded into a certain subalgebra Lgauge
∞ of the entire

algebraic structure Lfull
∞ , being the dynamics codified into the remaining subspace.

Standard gauge theories, such as Yang–Mills and Chern–Simons theories, have

classical symmetries described by Lie algebras. As a consequence, when writing

them in terms of L∞ algebras, the gauge subalgebra Lgauge
∞ is a Lie algebra.

However, higher-gauge theories present higher-degree tensors as gauge fields [79]

and describe the dynamics of extended objects such as string and branes. Their

corresponding gauge symmetry is therefore described by enlarged algebraic

structures such as FDAs. Thus, when describing higher-gauge theories in L∞

formulation, the corresponding gauge subalgebra is an L∞ algebra that could not

be trivially reduced to a Lie algebra. For additional information about the use of

L∞ algebras in string theory and supergravity, see refs. [80–85].

Let us consider a classical gauge theory with fundamental field µ, whose dynamics

is governed by the equation of motion F = 0, and the gauge symmetry is induced

by a set of transformations δεµ for a gauge parameter ε. Moreover, we consider that

the field µ takes values in a vector space X−1, while the parameter ε takes values
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in another vector space X0. By last, we consider a third space, denoted by X−2,

in which the off-shell non-vanishing function F takes values. It is then possible to

encode the information of the theory into an L∞ algebra by introducing a vector

space given by

X = X0 ⊕X−1 ⊕X−2, (4.44)

and a set of products `n (with n ≥ 1) defined on X, such that they include the

information related to the definition of gauge transformations, the closed gauge

algebra, and the equations of motion. In the following, we will see how the

information of the gauge theory is encoded in these products.

4.4.1 Gauge transformations

Let us begin by writing the gauge transformations of an arbitrary theory in terms

of algebraic products. At this point, we have introduced a gauge field µ ∈ X−1 and

a set of parameters ε ∈ X0. The gauge variation δεµ is defined in terms of the L∞

products as follows

δεµ =
∞∑
n=0

(−1)
n(n−1)

2

n!
`n+1 (ε, µn) . (4.45)

Moreover, it is also possible to consider trivial gauge transformations, namely,

equations of motion symmetries. A particular case of a trivial transformation that

depends on two independent parameters ε1, ε2 ∈ X0, and that will be important in

chapter 7, is given by the following transformation

δTε1,ε2µ =
∞∑
n=0

(−1)
n(n−1)

2

n!
`n+3 (ε1, ε2,F , µn) . (4.46)

Since the variation of the gauge field is proportional to F , it vanishes on-shell.

Notice that the transformation depends on products of three or more elements, and

therefore, it does not appear in the case of gauge transformations described by Lie

algebras, due to the absence of higher products.

4.4.2 Equations of motion

Once introduced the gauge transformations (4.45), it is possible to define a gauge

invariant action by introducing an inner product 〈 , 〉L∞ on X, such that, for a given

collection of n + 1 vectors x0, . . . , xn ∈ X, the inner product satisfies the following
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properties

〈x0, `n (x1, x2, . . . , xn)〉L∞ = (−1)1+deg x0 deg x1 〈x1, `n (x0, x2, . . . , xn)〉L∞ , (4.47)

〈x0, x1〉L∞ = (−1)deg x0 deg x1 〈x1, x0〉L∞ . (4.48)

Notice that we introduce a label in the inner product to explicitly show that it is

defined for L∞ algebras, and distinguish it from the inner products of Lie algebras.

By using this inner product, it is possible to define the following action principle:

S =
∞∑
n=1

(−1)
n(n−1)

2

(n+ 1)!
〈µ, `n (µn)〉L∞ , (4.49)

which is invariant under the gauge transformations defined on eq. (4.45) due to

the properties of eqs. (4.47) and (4.48). By taking the field-variation of this action

principle and plugging in the L∞ identities, one obtains

δS = 〈δµ,F〉L∞ , (4.50)

where

F =
∞∑
n=1

(−1)
n(n−1)

2

n!
`n (µn) . (4.51)

This provides a definition for the equation of motion term F . Notice that it is

necessary to assume non-degeneracy of the inner product [41, 69], otherwise, the

variation of the action principle does not lead to F = 0 as the equation of motion.

From now on, this non-degeneracy will be considered as a requirement in the studied

theories.

4.4.3 Gauge algebra

As the third step, let us now consider two independent gauge parameters ε1 and ε2

belonging to X0. By applying two successive and independent gauge transformations

with these parameters and plugging in the definition from eq. (4.45), it is possible

to prove that the commutator of two gauge transformations is given by

[δε2 , δε1 ]µ = δε3µ+ δTε1,ε2µ. (4.52)

The first term at the r.h.s. of eq. (4.52) is a gauge transformation of µ as introduced

in eq. (4.45), where the parameter ε3 ∈ X0 is a function of ε1 and ε2, explicitly
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given by

ε3 =
∞∑
n=0

(−1)
n(n−1)

2

n!
`n+2 (ε1, ε2, µ

n) . (4.53)

On the other hand, the second term at the r.h.s. of eq. (4.52) is a trivial gauge

transformation. It becomes important to notice that this trivial transformation

involves the equation of motion term F , providing information about the dynamics,

even before having specified an action principle for the theory. More precisely,

when writing a classical gauge theory involving products of three or more vectors in

terms of an L∞ algebra, the definition of covariant derivative induces a definition of

gauge transformation. By directly calculating the commutator between two gauge

transformations, it turns out to be possible to find a trivial contribution to such

commutator (given by the second term at the r.h.s. of eq. (4.52)), becoming possible

to find information about the equation of motion by inspection of the algebraic vector

F . It is therefore relevant to study the presence of these trivial transformations when

introducing the action principle. In order to write down a consistent gauge theory,

the allowed action principles must be only those that are not inconsistent with the

trivial gauge transformation that appears in the commutator. In other words, the

action principle must be such that their equations of motions effectively imply that

the trivial transformation vanishes on-shell. As it was mentioned, since Lie algebras

do not carry products of more than two vectors, action principles can be introduced

for Lie gauge theories without taking this issue in account.

In summary, to write down the L∞ algebra of a classical gauge theory, it is

necessary to consider the relevant information coming from the definition of gauge

transformations, the equation of motion, and the gauge algebra. From eq. (4.45)

we can see that, given a gauge theory, the definition of gauge variations determines

the products of the corresponding L∞ algebra that involve vectors in X0 and X−1.

On the other hand, eqs. (4.46) and (4.53) show that the gauge algebra provides

the information about the L∞ products between two or more vectors in X0. By

last, the dynamics of the theory is determined by the equation of motion term in

eq. (4.50), which exclusively involves products between vectors in the subspace

X−1. These products can be obtained by direct inspection of these equations.

However, they do not necessarily satisfy the L∞ identities by themselves. In order

to obtain the L∞ algebra that describes a particular theory, it is also necessary to

plug the obtained products into the L∞ identities and demand them to be verified.

This consequently leads to new information regarding algebraic products that must

be non-vanishing for consistency. From now on, we will refer to the products that

are not obtained by inspection of the three main sources of information mentioned

before, but by their consistency with the L∞ identities as consistency products.
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This procedure was used in ref. [41] to write down the L∞ algebras that describe

three-dimensional Chern–Simons theory and Yang–Mills theory.
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Chapter 5

Chern–Weil theorem and

FDA1-Chern–Simons forms

In this chapter, we will use the formulation of FDAs introduced in chapter 4 to

extend the results from chapter 3. This means to formulate an extension of the

Chern–Weil theorem for a FDA1. In order to accomplish this goal, we begin by

considering the definition of gauge curvatures that emerges from the gauging of the

Maurer–Cartan equations, and then we postulate a generalized invariant density.

Let us then consider a composite gauge field µ =
(
µA, µi

)
having as components a

one form µA and a p-form µi. In the same way, its corresponding field strength is

given by a pair R =
(
RA, Ri

)
, being RA the standard two-form curvature and Ri

the extended (p+ 1)-form curvature defined by means of the inclusion of a cocycle

(p+ 1)-form. They are both non-vanishing off-shell and explicitly given by the

gauging of the Maurer–Cartan equations in eqs. (3.11) and (3.12).

We propose a generalized invariant density (analogous to the Chern–Pontryagin

invariant density of a Lie group from eq. (2.48)), as a multilinear product of the

components of the field strength. We set the form-degree of the new invariant density

as q and consider the most general q-form that can be constructed using RA and Ri

as building blocks [45]

χq =
∑
m,n

gA1···Ami1···inR
A1 · · ·RAmRi1 · · ·Rin . (5.1)

To write the product of curvatures on the r.h.s of eq. (5.1), we introduce a set of

constant coefficients gA1···Ami1···in in analogy to the higher-rank invariant tensors of

Lie algebras. The new coefficients contain both types of algebraic indices in the

53
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appropriate number for each term. Notice that, since each term on the r.h.s. of eq.

(5.1) can have a different power on the curvatures, we are also including coefficients

gA1···Ami1···in with different numbers of indices. The sum at the r.h.s. of eq. (5.1)

runs over all the possible combinations such that the result is a q-form. Since the

two-form Ri appears m times and the (p+ 1)-form appears n times, the result is

always a differential form of degree 2m+ (p+ 1)n. Therefore, the sum runs over all

the non-negative integer solutions (m,n) to the algebraic equation

2m+ (p+ 1)n = q. (5.2)

At this point coefficients gA1···Ami1···in are introduced such that χq is completely

gauge invariant. Therefore, the transformations of the FDA1 induce generalized

invariant conditions on these coefficients.

For example, in order to find a 12-form using only a two-form RA and a four-form Ri,

we have four possible terms, given by the integer solutions to the equation m+2n = 6

namely

χ12 = gA1···A6R
A1 · · ·RA6 + gA1···A4iR

A1 · · ·RA4Ri + gABijR
ARBRiRj

+gijkR
iRjRk. (5.3)

5.1 FDA1 invariant tensor

The coefficients gA1···Ami1···in were introduced as the generalization of the invariant

tensors of Lie algebras to the case of a FDA1. They are defined by the requirement of

gauge invariance of χq. By considering the gauge variation of eq. (5.1) and plugging

in the transformation laws from eqs. (3.45) and (3.46) we find

δχq (µ,B) =
∑
m,n

gA1···Ami1···in

[
mCA1

BCR
BεCRA2 · · ·RAmRi1 · · ·Rin

+nRA1 · · ·RAm
(
Ci1BjR

Bεj − Ci1Bjε
BRj

− 1

(p− 1)!
Ci1BB1···Bpε

BRB1µB2 · · ·µBp
)
Ri2 · · ·Rin

]
. (5.4)

The variation of χq includes both types of gauge transformations on eq. (5.4),

standard and extended. Thus, the variation depends on the gauge parameters εA and

εj . Since they are independent, and the total variation vanishes, we can decompose
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eq. (5.4) in parts that are proportional to each parameter and set both as equal to

zero, as follows∑
m,n

gA1···Ami1···in

[
mCA1

BCR
BεCRA2 · · ·RAmRi1 · · ·Rin

+
n

(p− 1)!
Ci1BB1···BpR

A1 · · ·RAmεBRB1µB2 · · ·µBpRi2 · · ·Rin

−nCi1BjR
A1 · · ·RAmεBRjRi2 · · ·Rin = 0, (5.5)

∑
m,n

gA1···Ami1···innC
i1
BjR

A1 · · ·RAmRBεjRi2 · · ·Rin = 0, (5.6)

Eqs. (5.5) and (5.6) are related to the variations with respect to εA and εi

respectively. Since p > 1 (otherwise, the FDA is a Lie algebra), there is always a

dependence on µA factor in the second term of (5.5). However, the first and third

terms contain only curvatures, meaning that both contributions are always

functionally different and therefore, in order to not impose any condition on the

fields and curvature, both contributions should vanish independently. Therefore,

eq. (5.5) can be split into two independent equations, as follows∑
m,n

gA1···Ami1···in

[
mCA1

BCR
BεCRA2 · · ·RAmRi1 · · ·Rin

−nCi1BjR
A1 · · ·RAmεBRjRi2 · · ·Rin = 0, (5.7)

∑
m,n

ngA1···Ami1···inC
i1
BB1···BpR

A1 · · ·RAmεBRB1µB2 · · ·µBpRi2 · · ·Rin = 0, (5.8)

The invariance condition of χq is then summarized into eqs. (5.6), (5.7) and (5.8).

Having the independent equations already separated, we can remove the dependence

on the gauge fields and curvatures, resulting in three conditions that the coefficients

gA1···Ami1···in must verify in relation with the structure constants of the FDA1 to

ensure the invariance of χq. Therefore, for each pair (m,n) in the solutions of eq.

(5.6), we have the following conditions

m∑
r=1

CCA0ArgA1···ÂrC···Ami1···in +

n∑
s=1

CkA0isgA1···Ami1···̂ısk···in = 0, (5.9)

m+1∑
r=1

Ci1ArB1···BpgA1···Âr···Am+1i1···in = 0, (5.10)

m+1∑
r=1

Ci1ArjgA1···Âr···Am+1i1···in = 0, (5.11)
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where Â and ı̂ denote the absence of such indices in the sequence. Eqs. (5.9), (5.10)

and (5.11) provide the definition of extended invariant tensor for a FDA1. Notice

that, in the absence of p-form (this sets n = 0), eqs. (5.10) and (5.11) are not present

while eq. (5.9) becomes equivalent to the standard definition of the invariant tensor

of a Lie group.

In general, from its original definition in eq. (5.1), the generalized invariant tensor

is symmetric in the standard indices A1 · · ·Am. Moreover, it is symmetric in the

extended indices i1 · · · in for p odd and antisymmetric for p even. Since there are no

symmetry rules for the interchange of mixed indices, we indistinctly denoted both

sets of indices in a different order, i.e.,

gA1···Ami1···in ≡ gi1···inA1···Am . (5.12)

An important feature of the standard invariant density in (2.48) is to be a closed

form, allowing the existence of locally defined Chern–Simons forms, due to the

Poincaré lemma. By directy applying the exterior derivative operator on χq and

plugging in the Bianchi identities for a FDA1, given by eqs. (3.47) and (3.48), we

find the following relation

dχq (µ,B) =
∑
m,n

gA1···Ami1···in

[
mCA1

BCR
BµCRA2 · · ·RAmRi1 · · ·Rin

+nRA1 · · ·RAm
(
Ci1AjR

ABj +
1

p!
Ci1A1···Ap+1

RA1µA2 · · ·µAp+1

−Ci1Ajµ
ARj

)
Ri2 · · ·Rin

]
. (5.13)

We can see that the exterior derivative of χq vanishes as a consequence of the

invariant tensor conditions from eqs. (5.9)-(5.11). This proves that the invariant

tensor conditions for a FDA1 lead to the construction of an analogue of the

Chern–Pontryagin form for a FDA1 that inherits the properties of being closed and

fully gauge invariant. These properties also allow us to find an analogue to the

Chern–Simons and transgression forms for a FDA1.

5.2 Chern–Weil theorem

At this point, we have introduced a closed gauge invariant q-form. Due to the

Poincaré lemma, it should be possible to write down a Chern–Simons form that

generalizes eq. (2.54) to the case of a FDA1. Moreover, as we will see in this
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section, it is also possible to define fully gauge invariant transgression forms. To

show this, in direct analogy to section 2.5, let us introduce two independent FDA1-

valued gauge fields, each one with components given by a one-form and a p-form, and

denoted by
(
µA0 , B

i
0

)
and

(
µA1 , B

i
1

)
. Moreover, in terms of them, we also introduce

a third homotopic gauge field, denoted by
(
µAt , B

i
t

)
, whose components are defined

as follows

µAt = (1− t)µA0 + tµA1 , (5.14)

Bi
t = (1− t)Bi

0 + tBi
1, (5.15)

where the parameter t takes values in [0, 1], such that
(
µAt , B

i
t

)
is interpolated

between
(
µA0 , B

i
0

)
and

(
µA1 , B

i
1

)
. The Stoke’s theorem allows us to write the

difference between the invariant densities corresponding to
(
µA0 , B

i
0

)
and

(
µA1 , B

i
1

)
in terms of an integral and a total derivative with respect to the parameter

χq (µ1, B1)− χq (µ0, B0) =

∫ 1

0
dt

d

dt
χq (µt, Bt) . (5.16)

As it was introduced in eq. (5.1), the invariant form χq (µt, Bt) makes use of the

components of Rt =
(
RAt , R

i
t

)
as building blocks. By directly applying the derivative

operator, it is possible to show that the components of the homotopic curvature

satisfy the following useful relations

dRAt
dt

= (∇tu)A , (5.17)

dRit
dt

= (∇tb)i , (5.18)

where we define uA = µA1 −µA0 and bi = Bi
1−Bi

0 for convenience, and where ∇t is the

FDA1 covariant derivative, as it was defined in eqs. (3.58) and (3.59) with respect

to the homotopic gauge field. We now apply the derivative along the parameter t

into the expression for χq (µt, Bt) and plug in the relations from eq. (5.17) to isolate

a total derivative on the r.h.s. of eq. (5.16). This allows us to write eq. (5.16) as

follows

χq (µ1, B1)− χq (µ0, B0) = dQq−1 (µ1, B1;µ0, B0) . (5.19)

where

Qq−1 (µ1, B1;µ0, B0) =
∑
m,n

gA1···Ami1···in

∫ 1

0
dt
(
muA1RA2

t · · ·R
Am
t Ri1t · · ·R

in
t

+nRA1
t · · ·R

Am
t bi1Ri2t · · ·R

in
t

)
. (5.20)
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Eq. (5.19) generalizes the Chern–Weil theorem for a FDA1, specifically, by means

of the relation between the gauge invariant densities and the transgression forms in

eq. (2.52). Moreover, eq. (5.20) is the definition of transgresion form for a FDA1.

As it happens with Lie groups, if we locally fix one set of gauge fields as zero, i.e.,(
µA0 , B

i
0

)
= (0, 0), and rename the remaining gauge field as

(
µA1 , B

i
1

)
=
(
µA, Bi

)
, we

obtain a definition for Chern–Simons forms for a FDA1 (or FDA1-Chern–Simons

forms)

Qq−1 (µ,B) =
∑
m,n

gA1···Ami1···in

∫ 1

0
dt
(
mµA1RA2

t · · ·R
Am
t Ri1t · · ·R

in
t

+nRA1
t · · ·R

Am
t Bi1Ri2t · · ·R

in
t

)
. (5.21)

Transgression forms as defined in eq. (5.20) are fully gauge invariant under the

FDA1. In the same way, action principles that use FDA1-Chern–Simons forms as

Lagrangian densities are invariant up to boundary terms.

5.3 Dynamics

Let us now consider the construction of transgression and Chern–Simons action

principles. In order to derive their corresponding field equations, we introduce a

change of notation that simplify the calculations. Let us therefore consider a q − 1

dimensional manifold Mq−1 on which we define two independent FDA1 valued gauge

fields µ and µ̄, to whose components we denote as follows

µ =
(
µA, µi

)
, (5.22)

µ̄ =
(
µ̄A, µ̄i

)
. (5.23)

Notice that, for simplicity, we use the same letter to denote both components of

the gauge fields. We distinguish them by their corresponding algebraic indices.

Moreover, when we write a gauge field (or any other FDA1 vector) without algebraic

index, it denotes the complete set of fields, as given in eqs. (5.22) and (5.23). We

also consider a compact notation for FDA1 algebraic vectors and its contraction

with the components of the invariant tensor in order to write the action principles

in terms of index-free expressions. Let x1, . . . , xm+n be FDA1 vectors. Each one

can be split in components as x =
(
xA, xi

)
, being xA and xi differential forms of

different degrees. We denote their contraction with the FDA1 invariant tensor, as
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follows

〈B1, . . . , Bm;Bm+1, . . . , Bm+n〉 = gA1···Ami1···inB
A1
1 · · ·B

Am
m Bi1

m+1 · · ·B
in
m+n. (5.24)

Notice that the semicolon separates both algebraic sectors. The details of this change

in the notation can be found in appendix A. The new notation allows writing the

invariant density from eq. (5.1) as

χq
(
µA, µi

)
=
∑
m,n

〈Rm;Rn〉 , (5.25)

while the transgression forms from eq. (5.20) can be used to define a transgression

action principle by integrating it over the base q-dimensional spacetime Mq−1, as

follows:

ST =

∫
Mq−1

∑
m,n

∫ 1

0
dt
(
m
〈
u,Rm−1

t ;Rnt
〉

+ n
〈
Rmt ;u,Rn−1

t

〉)
, (5.26)

where we define u = µ − µ̄. For the purpose of finding the equations of motion for

this action principle, we consider the general field variation of ST with respect to µ

and µ̄ simultaneously. By performing integration by parts in the variation of ST, we

obtain:

δST =

∫
Mq−1

∑
m,n

∫ 1

0
dt
(
m
〈
δu,Rm−1

t ;Rnt
〉

+m (m− 1)
〈
∇tu, δµt, Rm−2

t ;Rnt
〉

+mn
〈
∇tu,Rm−1

t ; δµt, R
n−1
t

〉
+mn

〈
δµt, R

m−1
t ;∇tu,Rn−1

t

〉
+ n

〈
Rmt ; δu,Rn−1

t

〉
− (−1)p n (n− 1)

〈
Rmt ;∇tu, δµt, Rn−2

t

〉)
+ Boundary terms. (5.27)

The homotopic covariant derivatives and field variations in the r.h.s. of eq. (5.27) can

be more conveniently written by using the following identities: the total derivative

of the homotopic gauge fields and curvatures are given by

dRt
dt

= ∇tu, (5.28)

dµt
dt

= δu. (5.29)

Eqs. (5.28) and (5.29) are valid for both standard and extended components and

allow to isolate the components of δµ and δµ̄ in the variation of the action principle.

Indeed, by plugging them in eq. (5.27) and performing integration by parts, eq.

(5.27) takes the following form

δST =

∫
Mq−1

∑
m,n

(
m
〈
δµ,Rm−1;Rn

〉
+ n

〈
Rm; δµ,Rn−1

〉
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−m
〈
δµ̄, R̄m−1; R̄n

〉
− n

〈
R̄mt ; δµ̄, R̄n−1

〉)
. (5.30)

For convenience, we have neglected the boundary terms. Finally, eq. (5.30) leads to

the following two equations of motion

δµ :
∑
m,n

(
m
〈
δµ,Rm−1;Rn

〉
+ n

〈
Rm; δµ,Rn−1

〉)
= 0, (5.31)

δµ̄ :
∑
m,n

(
m
〈
δµ̄, R̄m−1; R̄n

〉
+ n

〈
R̄mt ; δµ̄, R̄n−1

〉)
= 0. (5.32)

Notice that we have split the resulting equation of motion in two equations by

recalling that the variations with respect to µ and µ̄ are independent. Eqs. (5.31)

and (5.32) are the equations of motion of the general FDA1 transgression theory,

and therefore, it is interesting to analyze them in some particular cases. By setting

n = 0, eqs. (5.31) and (5.32) are reduced to the equations of motion of standard

transgression theory (see ref. [49]). Moreover, since the functional in eq. (5.26) is

reduced to the FDA1-Chern–Simons action principle if we locally set µ̄ = 0, eq.

(5.31) becomes the equation of motion of FDA1-Chern–Simons theory with that

setup (in such case, eq. (5.32) becomes trivial). In this last case, the first and

second terms at the l.h.s. of eq. (5.31) depend on δµA and δµi respectively, due to

the positions of δµ with respect to the semicolon. Therefore, the resulting equation

of motion can be split again into two independent equations, related to the variations

δµA and δµi respectively. In terms of the index-dependent notation, the equations

of motions of the FDA1-Chern–Simons theory are therefore given by

δµA :
∑
m,n

mgA1A2···Ami1···inR
A2 · · ·RAmRi1 · · ·Rin = 0, (5.33)

δµi :
∑
m,n

ngA1···Ami1i2···inR
A1 · · ·RAmRi2 · · ·Rin = 0. (5.34)

By last, notice that in the absence of FDA1 extension (i.e., by setting n = 0)

eq. (5.33) becomes the equation of motion of standard Chern–Simons theory and

eq. (5.34) becomes trivial. For details on the dynamics of standard Chern–Simons

theories, see refs. [86–88].

5.4 Triangle equation

In this section, we use the ECHF (see refs. [39, 56, 57]) to write down a triangle

relation for Chern–Simons and transgression forms for a FDA1. This turns out

to be a completely analogous procedure to the one introduced in section 2.6. In
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order to simplify the calculation, we denote again the gauge fields of the FDA1 as

µ =
(
µA, µi

)
. We can therefore denote the gauge invariant form simply as χq (µ),

understanding µ as a multiplet of one-forms and p-form in the (A, i)-representation

of the FDA1. With this notation, let us consider a collection of r + 2 gauge fields,

labeled by the index J = 0, . . . , r + 1

µJ =
(
µAJ , µ

i
J

)
, (5.35)

defined on a fiber bundle over the base manifold M and a (r + 1)-dimensional

simplex Tr+1 parametrized by r + 2 parameters tJ , each one taking values in the

one-dimensional segment [0, 1]. Moreover, let us introduce a homotopic gauge field

defined as

µt =
r+1∑
J=0

tJµJ . (5.36)

Since each gauge field µJ has a one-form and a p-form as components that transform

according to eqs. (3.35) and (3.36), it is necessary to impose the following constraint

on the homotopic parameters
r+1∑
J=0

tJ = 1. (5.37)

Eq. (5.37) defines trajectories over the simplex, on which the components of µt

also transform according to eqs. (3.35) and (3.36), and therefore it is a well-defined

gauge field for a FDA1 theory. Notice that this constraint reduces the number of

independent parameters from r + 1 to r. It is now possible to introduce the gauge

invariant form χq (µt), which is interpolated between the values

χq (µ0) , . . . , χq (µr+1) as well as µt is interpolated between µ0, . . . , µr+1 along the

mentioned trajectories.

By applying the ECHF to χq (µt), one finds the following relation, analogue to eq.

(2.74) ∫
∂Tr+1

lrt
r!
χq (µt) = (−1)r d

∫
Tr+1

lr+1
t

(r + 1)!
χq (µt) , (5.38)

where the allowed values for r are r = 0, . . . , q. As it happens with Lie algebras,

the operators d, dt and lt define a graded algebra given by eqs. (2.62)-(2.64), while

the action of lt on {µAt , RAt } is determined by eqs. (2.68) and (2.69). However, the

action of lt on the extended components µit and Rit remains to be determined.

As it was mentioned in section 2.6, particular cases of eq. (2.74) reproduce the

Chern–Weil theorem and the triangle equation for Lie algebras, relating

transgression forms depending on different sets of gauge fields in the same
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representation of the Lie algebra. We demand that the same happens for the

FDA1, i.e., we define the action of the homotopy operator lt on the extended

components of µt and Rt, such that the particular cases of eq. (5.38) reproduce

already found results of the Chern–Weil theorem. Let us now consider eq. (5.38)

case by case.

First equation:

By setting r = 0, the simplex T1 becomes a one-dimensional segment parametrized

by t0 ∈ [0, 1]. In this case, eq. (5.38) takes the form∫
∂T1

χq (µt) = d

∫
T1

ltχq (µt) , (5.39)

where the components of the homotopic gauge fields are given by

µAt = µA0 + t
(
µA1 − µA0

)
, (5.40)

µit = µi0 + t
(
µi1 − µi0

)
. (5.41)

The l.h.s. of eq. (5.39) is immediately given by the values of χq (µt) in the extreme

points t = 0, 1 : ∫
∂T1

χq (µt) = χq (µ1)− χq (µ0) , (5.42)

while for r.h.s of eq. (5.39) we get

d

∫
T1

ltχq (µt) = d
∑

m,n∈q(p)

gA1···Ami1···in

∫
T1

[
m
(
ltR

A1
t

)
RA1
t · · ·R

Am
t Ri1t · · ·R

in
t

+nRA1
t · · ·R

Am
t

(
ltR

i1
t

)
Ri2t · · ·R

in
t

]
. (5.43)

This equation must be consistent with the Chern–Weil theorem for the FDA1. By

comparing eq. (5.43) with eq. (2.52) we can see that the action of the homotopy

operator on µit and Rit is given by the following relations

ltR
i
t = dtµ

i
t, (5.44)

ltµ
i
t = 0. (5.45)

Second equation:

By setting r = 1, eq. (5.38) takes the form∫
∂T2

ltχq (µt) = −d

∫
T2

l2t
2
χq (µt) , (5.46)
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where the homotopic gauge fields depend on two parameters t0 and t2 taking values

between 0 and 1, and three independent gauge fields µ0, µ1 and µ2, as follows

µt = t0 (µ0 − µ1) + t2 (µ2 − µ1) + µ1. (5.47)

The l.h.s of eq. (5.46) corresponds to an integral along the boundary of the simplex

T2 that can be immediately integrated as follows∫
∂T2

χq (µt) = Q(q−1) (µ2, µ1)−Q(q−1) (µ2, µ0) +Q(q−1) (µ1, µ0) . (5.48)

By plugging in eq. (5.48) into eq. (5.46) we obtain a triangle relation for the FDA1

that is analogue to eq. (2.56) for the standard case

Q(q−1) (µ0, µ1) +Q(q−1) (µ1, µ2) +Q(q−1) (µ2, µ0) = dQ(q−2) (µ2, µ1, µ0) , (5.49)

where the (q − 2)-form inside the total derivative is defined as follows

Q(q−2) (µ2, µ1, µ0) =

∫
T2

l2t
2
χq (µt) . (5.50)

The direct application of the homotopy operator into the invariant density, leads to

the following explicit expression for the term inside the total derivative at the r.h.s.

of eq. (5.49)

Q(q−2) (µ2, µ1, µ0) =
∑
m,n

gA1···Ami1···in

∫ 1

0
dt0

∫ 1

0
dt2[

m (m− 1)
(
µA2

2 − µ
A2
1

)(
µA1

0 − µ
A1
1

)
RA3
t · · ·R

Am
t Ri1t · · ·R

in
t

+mn
(
µA1

0 − µ
A1
1

)
RA2
t · · ·R

Am
t

(
µi12 − µ

i1
1

)
Ri2t · · ·R

in
t

−mn
(
µA1

2 − µ
A1
1

)
RA2
t · · ·R

Am
t

(
µi10 − µ

i1
1

)
Ri2t · · ·R

in
t

+n (n− 1)RA1
t · · ·R

Am
t

(
µi10 − µ

i1
1

)(
µi22 − µ

i2
1

)
Ri3t · · ·R

in
t

]
, (5.51)

where Rt is the homotopic curvature associated to the homotopic gauge field from

eq. (5.47), and therefore, it depends on both parameters t0 and t2. Eq. (5.51)

generalized the standard boundary term from eq. (2.75) to the case of a FDA1.

Notice that such boundary term can be obtained as the first term of the expansion

at the r.h.s. of eq. (5.51), in which the p-form is not present.
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5.5 Adjoint representation

One of the main difficulties in constructing Chern–Simons and transgression gauge

theories is obtaining the invariant tensors of the corresponding Lie algebra. This

issue is also present in the study of FDA invariant gauge theories. In the case

of a FDA1, eqs. (5.9)-(5.11) show the conditions that a tensor must satisfy to be

considered in constructing an invariant action. Let us consider the components of

an invariant tensor of a FDA1, given by gA1···Ami1···in . There are m standard indices

and n extended ones. By inspection of the first term in the l.h.s of eq. (5.9) we

can see that, if n = 0, gA1···Ami1···in satisfies the invariant tensor conditions of the

Lie subalgebra of the FDA1. Therefore, an invariant tensor the Lie subalgebra is

also an invariant tensor of the FDA1. However, these tensors are not useful in the

construction of actions that involve higher-degree differential forms. Moreover, if

n 6= 0, the invariant tensor of the Lie subalgebra is not necessarily an invariant

tensor of the FDA1 due to the non-vanishing second term in the l.h.s. of eq. (5.9).

A case of FDA1, in which this situation becomes particularly convenient, can be

found when the p-form gauge field Bi is also in the adjoint representation of the

Lie subalgebra. In that case, the structure constants CiAk become equivalent to

the structure constants of the Lie subalgebra, i,e, CiAk → CCAB and CiA1···Ap+1
→

CCA1···Ap+1
. In order to avoid ambiguity, we use a comma to separate the indices

corresponding to different sectors of the algebra in the components of the invariant

tensor, i.e., gA1···Ami1···in → gA1···Am,B1···Bn . Thus, the invariant tensor remains

completely symmetric on the first set of indices, while the symmetry rule on the

second set of indices is not determined and depends on the differential degree p of

the extended component of the gauge field Bi. With this notation, the invariant

tensor conditions in eqs. (5.9)-(5.11) take the following form

m∑
r=1

CCA0ArgA1···ÂrC···Am,B1···Bn +
n∑
s=1

CCA0BsgA1···Am,B1···B̂sC···Bn = 0, (5.52)

m+1∑
r=1

CC1
ArB1···BpgA1···Âr···Am+1C1···Cn = 0, (5.53)

m+1∑
r=1

CC1
A0Ar

gA1···Âr···Am+1C1···Cn = 0. (5.54)

The first invariant tensor condition, given by eq. (5.52), is equivalent to the invariant

tensor condition of the Lie subalgebra even for n 6= 0. The main difference of the case

mentioned before (for n = 0) is that the invariance of the tensor takes into account

both sets of indices. It is not an invariant tensor of the Lie subalgebra in the first set
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of indices but it is with respect to all of them, and therefore, an action constructed

with this invariant tensor will also couple the higher-degree differential forms. This

shows that the invariant tensors of the Lie subalgebra are candidates to be invariant

tensors of the FDA1 because they immediately verify the first condition. However.

eqs. (5.53) and (5.54) still must be verified in order to find an action principle

invariant under both transformations, standard and extended ones.

5.6 Poincaré FDA

We now consider the goal of finding a FDA1 invariant gauge invariant theory for a

particular case. The first step is to construct a non-trivial FDA1 extension for a Lie

algebra. For this purpose, we consider candidates for FDA1 extensions in the adjoint

representation of the original Lie algebra, in order to facilitate the identification of

invariant tensors.

As the first candidate, let us consider the bosonic arbitrary-dimensional Poincaré

Lie algebra, whose Maurer–Cartan one-form can be decomposed in components as

µA =
(
ea, ωab

)
. Notice that, the standard index is composite as A = (a, ab). The

Maurer–Cartan differential equations that define the Poincaré algebra are given by

dea + ωabe
b = 0, (5.55)

dωab + ωacω
cb = 0. (5.56)

In order to extend this algebra to a FDA1, let us consider a new Maurer–Cartan

equation of the type ∇BA + ΩA = 0, where BA =
(
ba, bab

)
is a three-form gauge

field, and ΩA =
(
Ωa,Ωab

)
is a four-form cocycle representative of a non-trivial

Chevalley–Eilenberg cohomology class of the Poincaré algebra, being both in the

adjoint representation of the Poincaré algebra. Since ΩA is a cocycle, it can be

written in terms of the one-form µA. As a candidate to be a cocycle, we postulate

the most general four-form that we can write using only combinations of wedge

products of the one-forms ωab and ea without using the Levi–Civita pseudotensor.

Thus, we write down its components as follows

Ωa =
(
a1ω

a
bω

b
cω

c
de
d + a2e

aωcde
ced + a3e

aωbcωbdω
d
c

)
, (5.57)

Ωab =
(
b1ω

abωcde
ced + 2b2ω

[a|
cω

c
de
de|b]

)
, (5.58)

where we introduce the arbitrary constants a1, a2, a3, and b1, b2. In order to be a
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cocycle, its covariant derivative must vanish [4], leading to the following equations

(∇Ω)a = dΩa + ωacΩ
c − Ωa

ce
c = 0 (5.59)

(∇Ω)ab = dΩab + ωacΩ
cb − ωb cΩca = 0. (5.60)

Eqs. (5.59) and (5.60) impose conditions on the expansion from eqs. (5.57) and

(5.58) in terms of one-forms. This fix a1 = b1 = 0 and a2 = b2 leaving only two

independent forms on Ω that are proportional to a2 and a3 respectively. These

forms are cocycles of the Poincaré algebra that must still be proved as non-trivial.

We denote them as ΩA
1 =

(
Ωa

1,Ω
ab
1

)
and ΩA

2 =
(
Ωa

1,Ω
ab
1

)
respectively. They are

explicitly given in components by the following expressions

Ωa
1 = eaωcde

ced, (5.61)

Ωab
1 = 2ω[a|

cω
c
de
de|b], (5.62)

Ωa
2 = eaωbcωbdω

d
c, (5.63)

Ωab
2 = 0. (5.64)

In order to find out whether the cocycles are trivial, we introduce the most general

three-form in the adjoint representation of the Poincaré algebra φ =
(
φa, φab

)
that

can be built with wedge products of the one forms ea and ωab in the adjoint

representation, as we did for ΩA

φa = α1ω
a
bω

b
ce
c, (5.65)

φab = 2β1ω
[a|
ce
ce|b]. (5.66)

The components of the covariant derivative of φ give us a notion of the most general

trivial-cocycle that can be found with this procedure. The resulting four-form is

covariantly closed and covariantly exact

(∇φ)a = eaωb cebe
c (5.67)

(∇φ)ab = 2ω[a|
cω

c
ee
ee|b] (5.68)

By comparing eqs. (5.67) and (5.68) with eqs. (5.59) and (5.60), it follows that Ω1 is

a trivial cocycle but Ω2 is not. We can therefore formulate a new algebraic structure

that we call Poincaré-FDA by adding a Maurer–Cartan equation for the three-form

BA

dea + ωabe
b = 0, (5.69)

dωab + ωacω
cb = 0, (5.70)
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dba + ωacb
c + bace

c + eaωbcωbdω
d
c = 0, (5.71)

dbab + ωacb
cb − ωb cbca = 0. (5.72)

5.7 Maxwell FDA

We can repeat the procedure from the last section for a larger algebra, namely the

arbitrary-dimensional bosonic Maxwell algebra. In this case, the Maurer–Cartan

one-form is decomposed in components as µA =
(
ea, ωab, kab

)
, and the Maurer–

Cartan differential equations that define the algebra are given by

dea + ωace
c = 0, (5.73)

dωab + ωacω
cb = 0, (5.74)

dkab + ωack
cb + kacω

cb +
1

l2
eaeb = 0. (5.75)

For details on the derivation of this algebra and its physical meaning, see refs. [89–

91]. Notice that in this case, the index A is decomposed in three sectors, leading to

three independent components of the gauge field, namely ea, ωab and kab. As before,

we postulate the most general four-form that can be built with wedge products of

the components of µA, without using the Levi–Civita pseudotensor, as a candidate

for being a cocycle. We denote its components in the different algebraic sectors as

follows

Ω =
(

Ωa,Ωab,Θab
)

(5.76)

In order to be a cocycle, the covariant derivative ∇Ω must vanish. After imposing

such condition on the expansion of ΩA in terms of one forms, the resulting four-

form ΩA is a linear combination of cocycles. In order to isolate the components of

ΩA that are not covariantly exact we compare with the most general trivial cocycle

that can be found by applying the covariant derivative on a three form built using

the components of µA as building blocks. This procedure is analogue to the one

shown in the previous section and shows the existence of two non-trivial 4-cocycles

for the Maxwell Lie algebra. We denote their components of the first one as Ω1 =(
Ωa

1,Ω
ab
1 ,Θ

ab
1

)
. They are explicitly given by the following equations

Ωa
1 = 0, (5.77)

Ωab
1 = 0, (5.78)

Θab
1 = kack

c
de
deb − kb ckc dedea − 2kabkcde

ced. (5.79)
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By using Ω1, we introduce the following differential algebra, which we will call

Maxwell-FDA1. We denote the components of the three-form BA corresponding to

different algebraic sectors as BA =
(
ba, bab, Bab

)
and extend eqs. (5.73)-(5.75) by

including the following Maurer–Cartan equations

dea + ωace
c = 0, (5.80)

dωab + ωacω
cb = 0, (5.81)

dkab + ωack
cb − ωb ckca +

1

l2
eaeb = 0, (5.82)

dba + ωacb
c + bace

c = 0, (5.83)

dbab + ωacb
bc − ωb cbba = 0, (5.84)

dBab + ωacB
cb − ωb cBca + back

cb − bb ckca +
1

l2

(
eabb − ebba

)
+kack

c
de
deb − kb ckc dedea − 2kabkcde

ced = 0. (5.85)

Any rescaling of the cocycle in the Maurer–Cartan equations leads to an equivalent

algebra through a redefinition of the extended gauge fields. By applying the

exterior derivative to eqs. (5.80)-(5.85) we can check that it satisfies the

integrability condition.

On the other hand, we denote the components of the second non-trivial Maxwell

cocycle as Ω2 =
(
Ωa

2,Ω
ab
2 ,Θ

ab
2

)
. Their components are explicitly given by

Ωa
2 = eakcde

ced, (5.86)

Ωab
2 = 0, (5.87)

Θab
2 = 2kabkcde

ced. (5.88)

In the same way, using Ω2 we define a secondary algebra that we call Maxwell-FDA2

through the following differential equations

dea + ωace
c = 0, (5.89)

dωab + ωacω
cb = 0, (5.90)

dkab + ωack
cb − ωb ckca +

1

l2
eaeb = 0, (5.91)

dba + ωacb
c + bace

c + eakcde
cedPa = 0, (5.92)

dbab + ωacb
bc − ωb cbba = 0, (5.93)
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dBab + ωacB
cb − ωb cBca + back

cb − bb ckca

+
1

l2

(
eabb − ebba

)
+ kabkcde

ced = 0. (5.94)

Both algebras, Maxwell-FDA1 and Maxwell-FDA2, are differential algebras of the

type FDA1 introduced in section 3.4. Since they are extended from the Maxwell

algebra by the inclusion of different four-forms, representatives of the

Chevalley–Eilenberg cohomology classes of the Maxwell algebra, they are

non-equivalent structures, i.e., it is not possible to obtain one of them from the

other one by redefinitions of the gauge fields.

At this point, we have found three non-trivial FDA1 extensions of the Poincaré and

Maxwell Lie algebras. From now on, we will focus on the construction of a gauge

invariant theory whose symmetry is described by the Maxwell-FDA1. Similar results,

in which Poincaré and Maxwell algebras are extended (for both the bosonic and

supersymmetric cases) and in which generalized action principles are constructed,

can be found in refs. [92–94].

5.7.1 Gauge transformations

Let us consider a one-form gauge field µA =
(
ea, ωab, kab

)
and a three-form gauge

field BA =
(
ba, bab, Bab

)
. We proceed to gauge the Maxwell-FDA1 by considering

that the components of µA and BA do not satisfy the Maurer–Cartan equations,

i.e., by introducing non-vanishing curvatures. In this case, p = 3 and the algebraic

indices take the same values in both algebraic sectors A = (a, ab, ab). In order to

introduce gauge variations, we consider a zero-form parameter εA and a two-form

parameter ξA, and denote their components corresponding to different algebraic

sectors as follows:

εA =
{
εa, εab, ρab

}
, (5.95)

ξi =
{
ξa, ξab, λab

}
. (5.96)

By replacing the structure constants from the Maurer–Cartan equations

(5.80)-(5.85) into the general definition of gauge variation in eq. (4.45), we find the

following gauge variations for the components of µA

ea = dεa + ωacε
c − εacec, (5.97)

ωab = dεab + ωacε
cb − ωb cεca, (5.98)
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δkab = dρabZab + ωacρ
cb − ωb cρca − εackcb + εb ck

ca +
1

l2

(
eaεb − ebεa

)
. (5.99)

These variations are ruled by the Lie subalgebra (in this case, Maxwell algebra).

Moreover, the variations of the components of BA are given by

δba = dξa + ωacξ
c − ξacec (5.100)

δbab = dξab + ωacξ
cb − ωb cξca, (5.101)

δBab = dλab + ωacλ
cb − ωb cλa − εacBcb + εb cB

ca

+ kacε
c
de
deb − kb cεc dedea − εackc dedeb + εb ck

c
de
dea

+ 2εabkcde
ced − 2kabεcde

ced. (5.102)

Notice that the information concerning the cocycle Ω1 is present on the

transformation of Bab, while the first two components of BA transform according

to the Lie covariant derivative of the extended parameter.

5.8 Maxwell-FDA1 Chern–Simons action

The gauging of the Maxwell-FDA1 implies considering non-zero field strengths.

We therefore introduce a two-form field strength, to whose components we denote

RA =
(
Ra, Rab, F ab

)
and a four-form field strength, denoted by

HA =
(
ha, hab, Hab

)
. Explicit expressions of the components of RA and HA in

terms of the components of µA and BA and their derivatives, can be found on the

l.h.s. of eqs. (5.80)-(5.85).

Let us now consider the construction of the five-dimensional Chern–Simons action

given by a functional of the standard and extended gauge fields µA and BA defined

in a five-dimensional manifold M5

SCS [µ,B] =

∫
M5

Q5 (µ,B) . (5.103)

From eq. (5.20), we can write down a general expression for a five-dimensional

Chern–Simons form invariant under an arbitrary FDA1 with a three-form gauge

field, as follows

Q5 (µ,B) = 3

∫ 1

0
dt gABCµ

ARBt R
C
t + gAB

∫ 1

0
dt
(
BAHB

t +RAt B
B
)
. (5.104)

However, a more convenient expression for Q5 (µ,B) can be found using the triangle
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equation (2.56). Let us then consider a new set of independent gauge fields taking

values in certain subspaces of the Maxwell-FDA1. We define µ̄ =
(
µ̄A, B̄A

)
as a set

of gauge fields whose components take non-vanishing values in the Maxwell-FDA1

as follows

µ̄A =
(

0, ωab, kab
)
, (5.105)

B̄A =
(

0, bab, Bab
)
, (5.106)

i.e., µ̄ take values in the rotational sectors of the Maxwell-FDA1, but not in the

translation subspace associated with the vielbein field ea. By considering this new

set of gauge fields, it is possible to write down the Chern–Simons form from eq.

(5.104) in terms of a transgression form, another Chern–Simons form and total

derivatives, as follows

Q5 (µ,B) = Q5

(
µ,B; µ̄, B̄

)
+Q5 (µ̄) + total derivative. (5.107)

The first term at the r.h.s. of eq. (5.107) is a transgression from that, according

with eq. (5.20) can be explicitly written as

Q5

(
µ,B; µ̄, B̄

)
=

∫ 1

0
dt
{

3gABC
(
µA − µ̄A

)
RBt R

C
t

+gAB

[(
µA − µ̄A

)
HB
t +RA1

t

(
BB − B̄B

)]}
. (5.108)

where we introduce the homotopic gauge field µt, whose standard and extended

components are given by

µAt =
(
tea, ωab, kab

)
, (5.109)

BA
t =

(
tba, bab, Bab

)
. (5.110)

The second term at the r.h.s. of eq. (5.107) is a Chern–Simons form depending only

on the gauge field µ̄, and given by

Q5

(
µ̄, B̄

)
=

∫ 1

0
dt gAB

(
µ̄AH̄B

t + R̄At B̄
i
)
, (5.111)

where we have introduced another set of homotopic gauge fields and homotopic

curvatures, explicitly given by

µ̄t = tµ̄ =
(
tµ̄A, tB̄B

)
, (5.112)

R̄t =
(
R̄At , H̄

B
t

)
. (5.113)
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Finally, the last step in constructing the action principle is finding the components

of the invariant tensor of the Maxwell-FDA1. Therefore, we consider a degree-2

tensor, carrying one standard index and one extended index, denoted by gAi ≡ gAB.

Since both indices are in the adjoint representation of the Maxwell algebra, it is

easy to confuse the mentioned tensor with a tensor carrying two standard indices.

However, since a different number of standard and extended indices leads to different

invariance conditions in eqs. (5.9)-(5.11), it is important to remark the difference

between both cases. In this case, such invariant tensor conditions are reduced to

gADC
D
BC + gBDC

D
AC = 0, (5.114)

gABC
B
CDEF + gDBC

B
CAEF = 0, (5.115)

Notice that two (5.9) and (5.10) have become equivalent, reducing the invariant

tensor conditions to a set of only two equations. As we have mentioned before,

the first condition (5.114) implies that gAB is a degree-2 invariant tensor of the

Lie subalgebra (the Maxwell algebra, in this case) which also satisfies eq. (5.115).

Therefore, we propose the usual degree-2 invariant tensor. To avoid confusion, we

denote with square brackets the indices in the third sector of the algebra (the one

associated to kab)

gab,cd = α0 (ηacηbd − ηadηbc) , (5.116)

gab,[cd] = α1 (ηacηbd − ηadηbc) , (5.117)

ga,b = α1ηab. (5.118)

The coefficients α0 and α1 are arbitrary constants, each constant corresponding

to an independent invariant tensor. We now impose gAB to verify the invariance

requirement from eq. (5.115). Such condition sets the constants as α1 = 0. Thus, the

resulting tensor proportional to α0 (whose only non-vanishing component is given

by eq. (5.116)) is an invariant tensor of the complete algebra. Moreover, we also

need the degree-3 invariant tensor of the Maxwell-FDA1 that carries three standard

indices. This is equivalent to the invariant tensor of the Maxwell Lie algebra, which

is well-known (see ref. [95]), and given by the Levi–Civita symbol gab,cd,e = εabcde.

By plugging in eqs. (5.116), (5.108) and (5.111) into the general expression in eq.

(5.104), we find the following Chern–Simons action principle

SCS [µ,B] =

∫
M5

3

4
εabcdeR

abRcdee +
α0

2

(
ωabhab +Rabbab

)
. (5.119)

The first term on the integral at the r.h.s. of eq. (5.119) corresponds to the usual

Chern–Simons form invariant under the transformations of the Maxwell Lie algebra.
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Moreover, the second term extends the action, including the three-form gauge field

without breaking the invariance under transformations of the Maxwell algebra but

extending it and modifying the resulting dynamics in the corresponding theory. It

is important to notice that the cocycle is not present in the Lagrangian. Since the

only non-vanishing component of the invariant tensor in the extended sector of the

algebra is given by (5.116), the Bab field is not present in the Chern–Simons form.

To find an example of a Chern–Simons Lagrangian action principle, whose invariance

is described by a FDA, involving the information of a non-trivial cocycle into the

symmetry transformations is still an open problem.
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Chapter 6

Gauge anomalies and FDAs

There is a strong relation between the appearance of anomalies in gauge theories

and the invariant densities of the corresponding gauge group. The breaking of

symmetries in the quantization process of a classical theory triggers the so-called

gauge anomalies. In refs. [96–99], the concept of the chiral anomaly was

introduced: this anomaly emerges in gauge theories in which the gauge fields

interact with Weyl fermions. The abelian anomaly, a consequence of the

non-conservation of the classically conserved current Jµ, has a topological origin

and can be calculated from the Chern–Pontryagin four-form, as follows

∂µJ
µ ∝ Tr [εµνρσR

µνRρσ] = Tr

[
∂µεµνρσ

(
µν∂ρµσ +

2

3
µνµρµσ

)]
. (6.1)

Here, the gauge connection valued on the Lie algebra is represented by µν = µAν tA,

and tA are the generators of the Lie algebra corresponding to an internal Lie group

[37]. We can also express eq. (6.1) in a compact way by defining the one-form

µ = µµdxµ. With this, we get, in terms of the Hodge operator, a relation between

the divergence of the current one-form J = Jµdxµ and the Chern–Simons three-form

Q3 (µ), namely

d ∗ J ∝ Tr R2 = dQ3 (µ) . (6.2)

This can also be done for the non-abelian vector current JµA. In this case, the

covariant divergence of JµA can also be written in terms of a topological originated

quantity:

DµJµA ∝ Tr ∂µ
[
tAεµνρσ

(
µν∂ρµσ +

1

2
µνµρµσ

)]
. (6.3)

75
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As before, in the language of differential forms, we get the following relation for the

covariant divergence of the vector current JA = JµAdxµ

D ∗ JA ∝ d

[
Tr

(
tA

(
µdµ+

1

2
µ3

))]
. (6.4)

Notice that there is an issue when writing the r.h.s. of eq. (6.4) using only field-

strengths: in contrast to the abelian anomaly, this is, in general, not possible. In

refs. [37, 38] it is shown that the covariant divergence of JA, can also be written in

terms of a topological originated quantity, namely, the gauge-variation of the Chern–

Simons three-form in eq. (6.2). It turns out that this variation can be written as

the exterior derivative of a two-form Q1
2 (ε, µ), linear on the components of the zero-

form parameter εA. In 2n dimensions, one gets a similar result for both abelian

and non-abelian anomalies: in general, the divergence of the current J = Jµdxµ

and the covariant divergence of the current JA = JµAdxµ can be written in terms of

the Chern–Pontryagin invariant form and the variation of the Chern–Simons form

respectively, i.e.,

d ∗ J ∝ Tr (Rn) = dQ2n−1 (µ) ,

D ∗ JA ∝ δQ2n−1 (µ) = dQ1
2n−2 (ε, µ) .

The (2n− 2)-formQ1
2n−2 (ε, µ) is linear in the components of the zero-form εA, which

plays the role of constant of proportionality. Moreover, Q1
2n−2 (ε, µ) is explicitly

given in terms of ε and µ as follows [37,38]

Q1
2n−2 (ε, µ) = n(n− 1)

∫ 1

0
dt(1− t)Str

(
ε,d

(
µ,Rn−2

t

))
. (6.5)

Here, Str denotes the symmetrized trace, acting on the generators of the Lie algebra.

6.1 Anomalies in higher gauge theory

The study of gauge invariant forms in higher gauge theories has also introduced the

possibility of finding new gauge anomalies in quantum field theory [12–14, 16–19].

In standard gauge theory, the standard one-form gauge field is valued in a Lie

algebra. Generalizations of Lie algebras allow the construction of physical theories

involving gauge fields that replace or extend the one-form by higher-degree tensors.

As a consequence, the gauge-invariant densities are also modified in order to

extend the gauge invariance to the generalized algebraic structure and include the

higher-degree tensors in the field content. An example of this is given in chapter 5
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by the generalized invariant densities for FDA1 in arbitrary dimensions and their

corresponding Chern–Simons forms. In this chapter, we study the existence of

generalized anomaly terms that generalize the (2n− 2)-form Q1
2n−2 (ε, µ) to

arbitrary dimensions by replacing Lie algebras with FDA1. In the new case, the

standard gauge field is modified in order to include the p-form µi, while the scalar

parameters εA is modified to also include a higher parameter εi. The new anomaly

terms will reproduce the standard ones as the first terms of their expansion (at

least in even dimensions). Moreover, due to the existence of higher gauge fields

and parameters, odd-dimensional anomalies are also allowed.

Let us begin by considering the following FDA1-valued gauge field

µ =
(
µA, µi

)
, (6.6)

consisting on one-forms µA and p-forms µi. As we have seen, the corresponding

curvature is given by a (2, p+ 1)-form

R =
(
RA, Ri

)
. (6.7)

From now on, we use the compact notation for FDA1 algebraic vectors and invariant

tensors. The details can be found in appendix A. In this notation, the Chern–Weil

theorem for Chern–Simons forms can be written in a convenient compact manner

χq (µ) = dQq−1 (µ) , (6.8)

where the Chern–Simons form is given by the following expression

Qq−1 (µ) =
∑
m,n

∫ 1

0
dt
(
m
〈
µ,Rm−1

t ;Rnt
〉

+ n
〈
Rmt ;µ,Rn−1

t

〉)
. (6.9)

As before, the sum runs over all the positive integer solutionsm and n to the equation

2m + (p+ 1) n = q. The next goal is to generalize eq. (6.5). Furthermore, we

propose that, as it happens with Lie algebras, the total gauge variation of the FDA1-

Chern–Simons form Q(q−1) (µ) can be written in terms of the exterior derivative of

a (q − 2)-form depending on the gauge fields and parameters of the transformation,

i.e.,

δQq−1 (µ) = dω1
q−2 (ε, µ) . (6.10)

In this case, we deal with two sets of parameters valued in the corresponding Lie

subalgebra and in the extended subspace of the FDA1 respectively. Thus, we

separate the variations concerning the parameters εA and εi to find two

independent generalizations of the gauge anomaly from eq. (6.5). We begin with
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the study of the extended variation, i.e., the one proportional to εi.

6.2 Extended variations

Let us consider a gauge transformation with parameter εi. This means to consider

no transformation along the standard parameter εA. Therefore, the components of

the gauge field and curvature transform as follows

δµA = 0, (6.11)

δµi = dεi + [µ, ε]i , (6.12)

δRA = 0, (6.13)

δRi = [R, ε]i . (6.14)

Using the generalized Jacobi identity, it is straightforward to show that the variation

of the components of the homotopic curvature Rt change according to the following

rules

δRAt = 0, (6.15)

δRit = [Rt, ε]
i + t (t− 1) [µ, dε]i . (6.16)

By taking the variation of the Chern–Simons form in eq. (6.9) and directly plugging

in the transformation laws from eqs. (6.11)-(6.16) we obtain

δQq−1 (µ) =
∑
m,n

∫ 1

0
dt
[
nm

〈
µ,Rm−1

t ; [Rt, ε] , R
n−1
t

〉
+ n

〈
Rmt ; [µ, ε] , Rn−1

t

〉
+ n

〈
Rmt ; dε,Rn−1

t

〉
+ t (t− 1)mn

〈
µ,Rm−1

t ; [µ, dε] , Rn−1
t

〉
+ n (n− 1)

〈
Rmt ;µ, [Rt, ε] , R

n−2
t

〉
+ t (t− 1)n (n− 1)

〈
Rmt ;µ, [µ, dε] , Rn−2

t

〉]
. (6.17)

Eqs. (B.4)-(B.6) from appendix B can be used to write δQq−1 (µ) in a more

convenient way. By plugging in Rt and ε into these equations, it is possible to

show that they satisfy the following identities, when contracting with the invariant

tensor of the FDA1

0 =
〈
Rmt ; [Rt, ε] , µ,R

n−2
t

〉
, (6.18)

0 =
〈
Rmt ; [µ, ε] , Rn−1

t

〉
+m

〈
µ,Rm−1

t ; [Rt, ε] , R
n−1
t

〉
, (6.19)

0 = m
〈
[µ,Rt] , R

m−1
t ; dε, µ,Rn−2

t

〉
+
〈
Rmt ; [µ, dε] , µ,Rn−2

t

〉
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+ (−1)p
〈
Rmt ; dε, [µ, µ] , Rn−2

t

〉
+ (n− 2)

〈
Rmt ; dε, µ, [µ,Rt] , R

n−3
t

〉
, (6.20)

0 =
〈
[µ, µ] , Rm−1

t ; dε,Rn−1
t

〉
− (m− 1)

〈
µ, [µ,Rt] , R

m−2
t ; dε,Rn−1

t

〉
−
〈
µ,Rm−1

t ; [µ, dε] , Rn−1
t

〉
+ (−1)p+1 (n− 1)

〈
µ,Rm−1

t ; dε, [µ,Rt] , R
n−2
t

〉
. (6.21)

Eqs. (6.18)-(6.21) allow to remove the terms that include FDA1 products between

the gauge field and the derivatives of the parameters. Therefore, the extended gauge

variation of the Chern–Simons form takes the following form

δQq−1 (µ) =
∑
m,n

∫ 1

0
dt t (t− 1)

[
mn

〈
[µ, µ] , Rm−1

t ; dε,Rn−1
t

〉
−mn (m− 1)

〈
µ, [µ,Rt] , R

m−2
t ; dε,Rn−1

t

〉
+mn (n− 1) (−1)p+1 〈µ,Rm−1

t ; dε, [µ,Rt] , R
n−2
t

〉
+ n

〈
Rmt ; dε,Rn−1

t

〉
+ n (n− 1)m (−1)p

〈
[µ,Rt] , R

m−1
t ; dε, µ,Rn−2

t

〉
+ n (n− 1)

〈
Rmt ; dε, [µ, µ] , Rn−2

t

〉
+ n (n− 1) (n− 2) (−1)p

〈
Rmt ; dε, µ, [µ,Rt] , R

n−3
t

〉]
. (6.22)

In order to write the r.h.s. of eq. (6.22) as a total exterior derivative, it is necessary

to use the following properties:

1. Let us recall the generalized Bianchi identities for a FDA1. From eqs. (3.47)

and (3.48) it follows that the components of the FDA1 bracket between the

homotopic gauge fields and curvatures can be written as follows

[µt, Rt]
A = −dRAt , (6.23)

[µt, Rt]
i = −dRit + [Rt, µt]

i +
1

p!
[Rt, µ

p
t ]
i
. (6.24)

2. Let us now consider the definition of gauge curvatures from eqs. (3.11) and

(3.12) corresponding to the homotopic gauge fields µt = tµ. By directly taking

the derivative with respect to the parameter t one finds

t [µ, µ]A =
∂RAt
∂t
− dµA, (6.25)

t [µ, µ]i =
1

2

∂Rit
∂t
− 1

2
dµi − tp

2p!

[
µp+1

]i
. (6.26)

3. The generalized invariant tensor conditions for the FDA1 (B.4)-(B.6) lead to
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the following identities

〈
Rmt ; [µ, µt] ,dε,R

n−2
t

〉
−m

〈
µ,Rm−1

t ; dε, [Rt, µt] , R
n−2
t

〉
= 0, (6.27)〈

Rmt ; [µ, µt] ,dε,R
n−2
t

〉
+m

〈
µ,Rm−1

t ; [Rt, µt] ,dε,R
n−2
t

〉
= 0. (6.28)

By plugging in the relations from eqs. (6.23)-(6.28) into eq. (6.22), it is possible

to write the extended variation of the Chern–Simons form in terms of an exterior

derivative and a total derivative with respect to the homotopic parameter ∂/∂t

δQq−1 (µ) =
∑
m,n

∫ 1

0
dt

[
n
∂

∂t

{
(t− 1)

〈
Rmt ; dε,Rn−1

t

〉}
− (t− 1)mn (−1)(p+1)(n−1) 〈d (µ,Rm−1

t ;Rn−1
t

)
, dε
〉

− (t− 1) (−1)(p+1)(n−1) n (n− 1)
〈
d
(
Rmt ;µ,Rn−2

t

)
,dε
〉]
. (6.29)

The first term on the r.h.s. of eq. (6.29) can be immediately integrated due to

Stoke’s theorem. The second and third terms are exact forms. This removes the

dependence of δQq−1 (µ) on non-exact forms and allows to write it in terms of a

secondary (q − 2)-form. This secondary form is analogue to the anomaly term from

eq. (6.10). Since it turns out to be proportional to the extended gauge parameter

εi, we denote it as ω1
q−2

(
εi, µ

)
. This is summarized in the following relation

δExtendedQq−1 (µ) = dω1
q−2

(
εi, µ

)
. (6.30)

Here, the extended anomalous term for the FDA1 is explicitly given by

ω1
q−2

(
εi, µ

)
=

∑
m,n

∫ 1

0
dt (1− t)n

(
m
〈
d
(
µ,Rm−1

t ;Rn−1
t

)
, ε
〉

+ (n− 1)
〈
d
(
Rmt ;µ,Rn−2

t

)
, ε
〉)
. (6.31)

As it happens with Lie algebras, the (q − 2)-form ω1
q−2

(
εi, µ

)
is linear in the gauge

parameter, in this case the extended one εi. Since it does not involve the standard

parameter εA, eq. (6.31) does not reproduce the standard equation from eq. (6.5)

as a particular case. However, it shares its functional form and topological origin.

In order to recover the standard anomaly term, it is therefore necessary to study

the variation of the Chern–Simons form with respect to the standard parameter.
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6.3 Standard variations

In the case of the standard gauge variations, i.e., those with parameters εi = 0

and εA 6= 0, there is an important difference with respect to the previous case. In

order to isolate the anomaly term that comes from the variation of the FDA1-Chern–

Simons form, it is convenient to write the FDA1-Chern–Simons form in terms of new

homotopic gauge fields and curvatures. Let us then consider a FDA1-valued gauge

field µ =
(
µA, µi

)
and its corresponding gauge field strength R =

(
RA, Ri

)
. We now

redefine the exterior derivative operator by means of its action on the components

of R and µ as follows [37]

dµA = RA − 1

2
[µ, µ]A , (6.32)

dµi = Ri − [µ, µ]i − 1

(p+ 1)!

[
µp+1

]i
. (6.33)

Notice that the nilpotence condition of d is automatically verified because of the

Jacobi identity of the FDA1 products at the r.h.s of eqs. (6.32) and (6.33).

Let us now introduce an arbitrary variation of µ (and therefore of R) denoted by δµ.

With respect to that variation, we introduce the homotopy operator `, such that its

action on µ and R is given by

`µ = 0, (6.34)

`R = δµ. (6.35)

By directly applying the homotopy operator and the exterior derivative operator

into eqs. (6.32) and (6.33), it is possible to prove that it satisfies the following

anticommutation relations

(`d + d`)µ = δµ, (6.36)

(`d + d`)R = δR. (6.37)

We now introduce homotopic gauge fields µAt and µit depending on a real parameter

t ∈ [0, 1]. The one-form µA is parametrized as usual, i.e.,

µAt = tµA. (6.38)

Moreover, the extended gauge field carries a different parametrization. It is defined

as proportional to a power of the parameter, such that µt is interpolated along a
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convenient trajectory in the parametric space

µit = tpµi. (6.39)

As before, the homotopic gauge field is interpolated between 0 and µ1 as the

parameter t varies between 0 and 1. We now consider the variation δ as the

parametric variation i.e., δ = dt. In consequence, the homotopic operator from eqs.

(6.34) and (6.35) defined with respect to such variation (from now on denoted by

lt) satisfies the anticommutation relation ltd + dlt = dt. Therefore, the action of lt

on gauge field and field strength in eqs. (6.34) and (6.35) take the following form

ltµt = 0, (6.40)

ltRt = dtµt = dt
∂µt
∂t

. (6.41)

From these definitions, it follows that the homotopic operator satisfies the following

property when it is integrated along the parametric space [0, 1]∫ 1

0
(ltd+dlt) =

∫ 1

0
dt. (6.42)

By applying the l.h.s. of (6.42) into the gauge invariant χq (µt) constructed with the

homotopic gauge field, and by using the Stokes’ theorem, we recover the generalized

Chern–Weil theorem for the FDA1, which relates the gauge invariant density with

the total exterior derivative of a (q − 1)-form

χq (µ) = d

∫ 1

0
ltχq (µt) = dQq−1 (µ) . (6.43)

Notice that in this case, the integration is performed along a different parametric

trajectory. Eq. (6.43) allows finding alternative expressions for the FDA1-Chern–

Simons form by directly applying the homotopy operator lt in χq (µt) and neglecting

the exterior derivatives on both sides of the equation. This particular choice of the

homotopic trajectory leads to an expression for the FDA1-Chern–Simons form that

functionally depends on the parameter according to eqs. (6.38) and (6.39), as follows

Qq−1 (µ) =
∑
m,n

∫ 1

0
dt
(
m
〈
µ,Rm−1

t ;Rnt
〉

+ nptp−1
〈
Rmt ;µ,Rn−1

t

〉)
. (6.44)

The new expression for the FDA1-Chern–Simons form is equivalent to the one

previously obtained in eq. (6.9). Notice that the standard component of the

homotopic curvature RAt remains the same but the extended one changes.

However, since the final expression is independent of the integration, it is natural
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to have different choices. The new homotopic path, and therefore, the new

expression in eq. (6.44) is chosen such that the anomaly is more easily obtained.

In this case, the variation of the FDA1-Chern–Simons form along the standard

parameter εA takes the following form

δQq−1 (µ) =
∑
m,n

∫ 1

0
dt
[
m
〈
δµ,Rm−1

t ;Rnt
〉

+m (m− 1)
〈
µ, δRt, R

m−2
t ;Rnt

〉
+mn

〈
µ,Rm−1

t ; δRt, R
n−1
t

〉
+mnptp−1

〈
δRt, R

m−1
t ;µ,Rn−1

t

〉
+ nptp−1

〈
Rmt ; δµ,Rn−1

t

〉
+ n (n− 1) ptp−1

〈
Rmt ;µ, δRt, R

n−2
t

〉]
. (6.45)

Eq. (6.45) depends only on the variations of the homotopic field strengths and the

non-homotopic gauge fields. The homotopic gauge fields are not explicitly included

in the variation. Therefore, let us consider the gauge variation of the gauge fields

along the standard parameter εA. By setting εi = 0 in eqs (3.35) and (3.36) one

finds

δµA = dεA + [µ, ε]A , (6.46)

δµi = − [ε, µt]
i − 1

p!
[ε, µp]i . (6.47)

On the other hand, from eqs. (3.45) and (3.46) one finds that the standard variations

of the components of the homotopic field strength are given by

δRAt = [Rt, ε]
A +

(
t2 − t

)
[dε, µ]A , (6.48)

δRit =− [ε,Rt]
i − tp−1

(p− 1)!

[
ε,Rt, µ

p−1
]i

+ tp (t− 1) [dε, µ]i

+
tp (t− 1)

p!
[dε, µp]i . (6.49)

Different choices of the homotopy rule in eqs. (6.38) and (6.39) lead to a different

expressions for δRit. The chosen homotopic trajectory is particularly useful because

it allows writing eq. (6.49) in terms of the components of Rt, without explicit

dependence on the derivatives of the gauge fields. Notice that this situation does not

happen when calculating the extended anomaly term; therefore, we only introduce

the new homotopy rule for the anomaly resulting from the standard variations. As

before, the total derivative in eq. (6.45) has to be isolated by using the invariant

tensor conditions in eqs. (B.4)-(B.6). Such equations allow us to prove the following

relations for the components of ε, µ and R:

0 =
〈
[µ, µ] ,dε,Rm−2

t ;Rnt
〉
−
〈
µ, [dε, µ] , Rm−2

t ;Rnt
〉

+ (m− 2)
〈
µ, dε, [µ,Rt] , R

m−3
t ;Rnt

〉
+ n

〈
µ, dε,Rm−2

t ; [µ,Rt] , R
n−1
t

〉
, (6.50)
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0 =
〈
[dε, µ] , Rm−1

t ;µ,Rn−1
t

〉
− (m− 1)

〈
dε, [µ,Rt] , R

m−2
t ;µ,Rn−1

t

〉
−
〈
dε,Rm−1

t ; [µ, µ] , Rn−1
t

〉
− (−1)p (n− 1)

〈
dε,Rm−1

t ;µ, [µ,Rt] , R
n−2
t

〉
, (6.51)

0 =
〈
µ,Rm−1

t ; [dε, µp] , Rn−1
t

〉
−
〈
dε,Rm−1

t ;
[
µp+1

]
, Rn−1

t

〉
− (m− 1)

〈
dε, µ,Rm−2

t ; [Rt, µ
p] , Rn−1

t

〉
, (6.52)

0 =
〈
µ,Rm−1

t ; [dε, µ] , Rn−1
t

〉
−
〈
dε,Rm−1

t ; [µ, µ] , Rn−1
t

〉
− (m− 1)

〈
dε, µ,Rm−2

t ; [Rt, µ] , Rn−1
t

〉
, (6.53)

0 =
〈
Rmt ;µ, [dε, µ] , Rn−2

t

〉
− (−1)pm

〈
dε,Rm−1

t ; [Rt, µ] , µ,Rn−2
t

〉
, (6.54)

0 =
〈
Rmt ; [dε, µp] , µ,Rn−2

t

〉
+m

〈
dε,Rm−1

t ; [Rt, µ
p] , µ,Rn−2

t

〉
. (6.55)

Eqs. (6.50)-(6.55) are analogue to eqs. (6.27)-(6.28) for the standard case and allow

to remove the dependence of δQq−1 (µ) on terms carrying components of the FDA1

product between dε and µ. By plugging them in into the standard variation of the

FDA1-Chern–Simons form, it takes the form

δQq−1 (µ) =
∑
m,n

∫ 1

0
dt m

[〈
dε,Rm−1

t ;Rnt
〉

+ (t− 1)
(
(m− 1) t (m− 2)

〈
µ, dε, [µ,Rt] , R

m−3
t ;Rnt

〉
+ (m− 1) tn

〈
µ, dε,Rm−2

t ; [µ,Rt] , R
n−1
t

〉
+ tpn (m− 1)

〈
dε, µ,Rm−2

t ; [Rt, µ] , Rn−1
t

〉
+
tp

p!
n (m− 1)

〈
dε, µ,Rm−2

t ; [Rt, µ
p] , Rn−1

t

〉
+ n (n− 1) pt2p−1 (−1)p

〈
dε,Rm−1

t ; [Rt, µ] , µ,Rn−2
t

〉
+
tp

p!
n (n− 1) ptp−1 (−1)p

〈
dε,Rm−1

t ; [Rt, µ
p] , µ,Rn−2

t

〉
+ nptp−1t (m− 1)

〈
dε, [µ,Rt] , R

m−2
t ;µ,Rn−1

t

〉
+ (m− 1) t

〈
[µ, µ] ,dε,Rm−2

t ;Rnt
〉

+ tp (1 + p)n
〈
dε,Rm−1

t ; {[µ, µ]} , Rn−1
t

〉
+
tp

p!
n
〈
dε,Rm−1

t ;
[
µp+1

]
, Rn−1

t

〉
+ (−1)p nptp−1t (n− 1)

〈
dε,Rm−1

t ;µ, [µ,Rt] , R
n−2
t

〉)]
. (6.56)

The last step consists of isolating the exterior derivative by using the analogue of

eqs. (6.23)-(6.26). In this case, using the definition of homotopic gauge curvatures

and the generalized Bianchi identities, we get the following identities for the new
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homotopy rule

t [µ, µ]A =
∂RAt
∂t
− dµA, (6.57)

(p+ 1) tp [µ, µ]i +
tp

p!
[µ, . . . , µ]i =

∂Rit
∂t
− ptp−1dµi, (6.58)

[µt, Rt]
A = −dRAt , (6.59)

[µt, Rt]
i − [Rt, µt]

i − 1

p!
[Rt, µ

p
t ]
i

= −dRit. (6.60)

We now perform an integration by parts with respect to the exterior derivatives d

and dt. This allows us to write the variation of Qq−1 (µ) as an exact form. The

anomalous term emerges in the following way

δStandardQq−1 (µ) = dω1
q−2

(
εA, µ

)
. (6.61)

The secondary form ω1
q−2

(
εA, µ

)
is explicitly given in terms of the new homotopy

rule as follows

ω1
q−2

(
εA, µ

)
=

∑
m,n

∫ 1

0
dt (1− t)m

{
(m− 1)

〈
ε, d

(
µ,Rm−2

t ;Rnt
)〉

+nptp−1
〈
ε,d

(
Rm−1
t ;µ,Rn−1

t

)〉}
. (6.62)

In summary, eqs. (6.31) and (6.62) explicitly show the total gauge variation of the

Chern–Simons form for the FDA1. The total variation takes in account both

independent parameters εi and εA. Although both expressions are similar in their

integral forms, it is important to recall that they use different definitions of the

homotopic curvature Rt. Each case performs the integration along a different

homotopic trajectory: these two choices are equivalent and, in both cases, they

allow convenient isolation of the exterior derivatives, and consequently, of the

anomalous term. The generalized anomaly term from eq. (6.62) originated in the

standard variations, reproduces the anomaly term corresponding to Lie algebras

from eq. (6.5). This particular case is reobtained in the first term on the sum for

n = 0 which does not depend on the p-form gauge field.
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Chapter 7

L∞ formulation of

Chern–Simons theories

In this chapter, we consider the formulation of arbitrary-dimensional Chern–Simons

theories in terms of L∞ algebras. For this purpose, we consider the L∞ formulation

of classical gauge theories introduced in section 4.4. Let us therefore consider a

2m − 1 dimensional Chern–Simons theory invariant under a Lie algebra G. We

define a basis of vectors for G, denoted by {tA}dimG
A=1 and introduce the fundamental

field of the theory as a one-form gauge connection, denoted by µ = µAµdxµtA defined

on a principal bundle (G,M), where M is a 2m−1 dimensional spacetime manifold.

The corresponding action principle is defined as a functional integral over M that

makes use of the Chern–Simons (2m− 1)-form from eq. (2.54) as Lagrangian density

SCS = m

∫
M

∫ 1

0
dt
〈
µ,Rm−1

t

〉
Lie
. (7.1)

Here, the bracket 〈, 〉Lie denotes the symmetrized trace acting on the vectors of the

Lie algebra G, being the differential form inside the integrals of eqs. (7.1) and

(2.54) equivalent. The details of the change of notation from the invariant tensor

to the bracket 〈, 〉Lie can be found in appendix A. Moreover, in this case, the

homotopic gauge field is defined as µt = tµ, being Rt =
(
t2 − t

)
R its

corresponding gauge curvature. This theory is odd-dimensional and does not

depend on a background metric. In the following sections, we extract the

information concerning the definition of gauge transformations, the gauge algebra,

and the equations of motion that come from the variation of eq. (7.1), and write it

in terms of the products of an L∞ algebra.
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7.1 Gauge transformations

We begin by considering the definition of gauge transformations. In this case, the

gauge symmetry is described by a Lie algebra, and the gauge variations of the

fundamental field are given by the Lie-covariant derivative of a zero-form gauge

parameter ε valued in the Lie algebra G. In components, the transformations of the

gauge field µAµ is given by eq. (3.35). Therefore, we consider an L∞ algebra with

a graded vector space X = X0 ⊕ X−1 ⊕ X−2 and identify the parameters of the

transformation and gauge fields as vectors lying on the first and second subspaces,

respectively, i.e., εA ∈ X0 and µAµ ∈ X−1. In the L∞ formulation of gauge theories,

the gauge transformation of µAµ is given in eq. (4.45) as an expansion in terms of the

L∞ products. By inspection of eq. (3.35) it is direct to see that every contribution

depending on µ2 or higher powers of the gauge field must vanish in the expansion

of eq. (4.45), leading to the following expression

δµAµ = [`1 (ε)]Aµ + [`2 (ε, µ)]Aµ . (7.2)

Then, by comparing eqs. (4.45) and (7.2) we obtain the following information

concerning the L∞ products of elements belonging to the subspaces X0 and X−1

[`1 (ε)]Aµ = ∂µε
A, (7.3)

[`2 (ε, µ)]Aµ = [µµ, ε]
A . (7.4)

This shows that any other product originated in the expansion of eq. (4.45), and

therefore involving one vector from X0 and any number of vectors from X−1,

vanishes.

7.2 Gauge algebra

The second source of information that must be written in terms of the L∞ products

is the gauge algebra. Thus, it is necessary to consider the commutator between

two independent gauge transformations. If the gauge theory is well-defined, the

gauge transformations close an algebra whose relations can be written in terms

of the products of the subalgebra Lgauge
∞ , which in this case can be immediately

identified as the Lie algebra G. From eq. (3.35) it is possible to prove that the

commutator between two independent gauge transformations δ1 and δ2 defined in
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terms of independent gauge parameters εA1 and εA2 , is given by

(δ2δ1 − δ1δ2)µAµ = ∂µε
A
3 + CADBµ

D
µ ε

B
3 . (7.5)

Thus, the commutator of two gauge transformations turns out to be equivalent to a

third gauge transformation depending on a composite gauge parameter ε3 given by

the Lie product between the original parameters, whose components are

εA3 = CABCε
B
2 ε

C
1 . (7.6)

Let us now consider the writing of the same commutator in terms of its the expansion

in L∞ products. Eqs. (4.52) and (4.53) show that the expansion can be truncated

by considering only those terms that are linear or do not depend on the components

of the gauge field, as follows

(δ2δ1 − δ1δ2)µAµ = [`1 (`2 (ε1, ε2))]Aµ + [`1 (`3 (ε1, ε2, µ))]Aµ + [`2 (`2 (ε1, ε2) , µ)]Aµ .

(7.7)

Notice that `2 (ε1, ε2) and `3 (ε1, ε2, µ) are vectors belonging to X0, and therefore,

eq. (7.3) implies that `1 acts in the following way on them

[`1 (`2 (ε1, ε2))]Aµ = ∂µ [`2 (ε1, ε2)]A , (7.8)

[`1 (`3 (ε1, ε2, µ))]Aµ = ∂µ [`3 (ε1, ε2, µ)]A . (7.9)

By replacing eqs. (7.8) and (7.9) into eq. (7.7) and comparing with eq. (7.5), we

obtain the following information concerning L∞ products between vectors in the

subspace X0

[`2 (ε1, ε2)]A = CABCε
B
2 ε

C
1 , (7.10)

Any other product of vectors lying exclusively in X0, or in both subspaces X0 and

X−1, vanishes. As it was anticipated, this shows that the gauge subalgebra Lgauge
∞ is

indeed the Lie algebra G. Eqs. (7.3), (7.4) and (7.10) contain the information about

the gauge transformations and gauge algebra, and therefore, this subspace structure

is shared by every Lie gauge theory. The next step is to include the information that

is intrinsic to the theory, namely, the dynamics, and then to demand the resulting

products to satisfy the L∞ identities.
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7.3 Equations of motion

Let us now consider the equations of motion coming from the field variation of the

2m−1 dimensional Chern–Simons action. With this purpose, we start by identifying

the inner product of the L∞ algebra in the variation of the action principle. By

taking the variation in eq. (6.9) with respect to the gauge field and performing the

integration with respect to the parameter, one finds

δSCS =

∫
dx2m−1

m−1∑
k=0

1

2k

(
m− 1

k

)
εµ1···µ2m−1

gAB1···Bm−1δµ
A
µ1
∂µ2µ

B1
µ3
· · · ∂µ2m−2k−3

µ
Bm−k−1
µm−k+1[

µµ2m−2k−1
, µµ2m−2k

]Bm−k · · · [µµ2m−2 , µµ2m−1

]Bm−1 . (7.11)

Here, εµ1···µ2m−1 denotes the Levi–Civita pseudotensor and [, ]A denotes

A-component of the Lie bracket. This means that, given zero forms valued in the

Lie algebra x, y ∈ G with components xA and yA in the basis of vectors {tA}dimG
A=1 ,

such component is given by

[x, y]A = CABCx
ByC . (7.12)

The components of the Lie algebra invariant tensor, denoted by gA1···Am , are given

by the trace over the basis of the Lie algebra in the mentioned basis, and it can be

understood as a multilinear product of Lie valued vectors. In contrast, the inner

product of the L∞ algebra is bilinear. In order to write one of them in terms of

the other, let us consider two vectors valued on the Lie algebra, belonging to the

following subspaces in the L∞ formalism

xµ ∈ X−1, (7.13)

yµ ∈ X−2. (7.14)

By comparing both relations expressing the variation of the action principle in eqs.

(4.50) and (7.11), we define the inner product of the L∞ algebra in terms of the

invariant tensor of the Lie algebra, as follows [41]

〈x, y〉L∞ =

∫
dx2m−1ηµν 〈xµ, yν〉Lie . (7.15)

This identification is consistent with the general definition of inner product for L∞

algebras and reproduces eq. (4.50) for the case of the Chern–Simons theory, i.e., it

allows writing the variation of the action principle in terms of an L∞ inner product,
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as follows

δSCS =

∫
dx2m−1ηµνgABδµ

A
µFBν , (7.16)

Hence, eq. (7.11) isolates the equation of motion term in eq. (7.11), obtaining an

explicit expression for FAν , as follows

FAν =
m−1∑
k=0

1

2k

(
m− 1

k

)
ε µ1···µ2m−2
ν gAB1···Bm−1

∂µ1µ
B1
µ2
· · · ∂µ2m−2k−3

µ
Bm−k−1
µ2m−2k−2

×
[
µµ2m−2k−1

, µµ2m−2k

]Bm−k · · · [µµ2m−3 , µµ2m−2

]Bm−1 . (7.17)

Once obtained the equation of motion term F in terms of the gauge fields, the next

step is to identify the contributions corresponding to different L∞ products in eq.

(4.51). Thus, we write down the expansion of FAν in terms of l-linear products and

compare both expressions term by term, as follows

∞∑
l=1

(−1)
l(l−1)

2

l!

[
`l

(
µl
)]A

ν

=
m−1∑
k=0

1

2k

(
m− 1

k

)
ε µ1···µ2m−2
ν gAB1···Bm−1

∂µ1µ
B1
µ2
, · · · ∂µ2m−2k−3

µ
Bm−k−1
µ2m−2k−2

×
[
µµ2m−2k−1

, µµ2m−2k

]Bm−k · · · [µµ2m−3 , µµ2m−2

]Bm−1 . (7.18)

By inspection of both sides of eq. (7.18) one gets that the series is truncated, giving

place to a certain finite number of non-vanishing products in the dynamical sector

of the L∞ algebra. The number of these products depends on the dimension of the

Chern–Simons theory. In order to obtain an expression for the L∞ product of k

gauge fields (i.e., k vectors in X−1), we compare terms of equal powers of µ. The

k-th element in the sum of the r.h.s. of eq. (7.18) depends on powers of degree

m+ k− 1 in the components of the gauge field. Since there is only one term of that

power on each side of the equation, we match them one by one. Thus, given a fixed

value of m, k take values in a different domain (k = 0, . . . ,m− 1). Then, for a given

value k, the value of l is fixed and given by

l = m+ k − 1. (7.19)

Therefore, the non-vanishing contributions to the equation of motion terms in eq.

(4.51) come from `l products relating vectors of the subspace X−1 with

l ∈ [m− 1, . . . , 2m− 2], which are explicitly given by



92 7. L∞ formulation of Chern–Simons theories

[
`l

(
µl
)]A

ν
= (−1)

l(l−1)
2

1

2l−m+1

l! (m− 1)!

(2m− l − 2)! (l −m+ 1)!
ε µ1···µ2m−2
ν

× gAB1···Bm−1
∂µ1µ

B1
µ2
· · · ∂µ4m−2l−5

µ
B2m−l−2
µ4m−2l−4

×
[
µµ4m−2l−3

, µµ4m−2l−2

]B2m−l−1 · · ·
[
µµ2m−3 , µµ2m−2

]Bm−1 . (7.20)

7.4 Summary

In summary, the L∞ algebra of the standard 2m + 1 dimensional Chern–Simons

theory is constructed as a vector space X = X0 ⊕ X−1 ⊕ X−2 endowed with the

following products encoding the gauge transformations and gauge symmetry

[`1 (ε)]Aµ = ∂µε
A,

[`2 (ε, µ)]Aµ = [µµ, ε]
A ,

[`2 (ε1, ε2)]A = [ε2, ε1]A ,

[`2 (ε, E)]Aν = [Eν , ε]
A .

(7.21)

Here, ε, ε1, ε2 ∈ X0, µ ∈ X−1 and E ∈ X−2 are arbitrary vectors. Notice that, in

order to obtain more compact expressions, we have changed m −→ m + 1. The

last product in eqs. (7.21) relates one vector of the subspace X−2. This product

is obtained by consistency, by demanding the already found products to satisfy

the L∞ identities (4.11). The calculation of this consistency product can be found

in appendix C. Moreover the L∞ algebra of this theory shows a dynamical sector

described by a set of non-vanishing products `l with l taking integer values between

m and 2m. These products exclusively relate vectors in the subspace X−1 and are

given by

[`l (µ1, ..., µl)]
A
ν = 1

2l−m
(−1)

l(l−1)
2 l!m!

(2m−l)!(l−m)!ε
µ1···µ2m

ν

×gAB1···Bm∂µ1(µ{1)B1
µ2
· · · ∂µ4m−2l−1

(µ2m−l)
B2m−l
µ4m−2l

×
[
(µ2m−l+1)µ4m−2l+1

, (µ2m−l+2)µ4m−2l+2

]B2m−l+1 · · ·
[
(µl−1)µ2m−1 , (µl})µ2m

]Bm ,
(7.22)

with µ1, . . . , µl ∈ X−1, Eq. (7.22) is directly derived from eq. (7.20) by considering

arbitrary vectors in X−1 and including the corresponding normalized

symmetrization (denoted with braces) in order to preserve the symmetry

properties of the L∞ products.

Let us finish the chapter by considering a particular case, namely, a
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three-dimensional Chern–Simons theory. Since eqs. (7.21) do not depend on the

dimensionality, it is only necessary to study the dynamical sector of the L∞

algebra. The corresponding products can be obtained by setting m = 1 in eq.

(7.22). This leads to two products, corresponding to the values l = 1, 2, given by

[`1 (µ1)]Aν = ε µ1µ2
ν ∂µ1

(
µA1
)
µ2
,

[`2 (µ1, µ2)]Aν = −ε µ1µ2
ν

[
(µ1)µ1

, (µ2)µ2

]A
.

(7.23)

Therefore, the entire L∞ algebra for this theory is given by eqs. (7.21), describing the

gauge transformations and gauge algebra, and by eq. (7.23) describing the dynamics.

This particular case reproduces the formulation of three-dimensional Chern–Simons

theory from ref. [41].
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Chapter 8

L∞ formulation of FDA1 gauge

theories

At this point, we have studied the formulation of higher-dimensional

Chern–Simons theories in terms of L∞ algebras. As we have seen, this means to

write down the relevant information of an entire theory into a single algebra Lfull
∞

that encodes the gauge symmetry in a certain subalgebra Lgauge
∞ ⊂ Lfull

∞ . The gauge

invariance of standard Chern–Simons theories is described by Lie algebras, and

therefore, the gauge subalgebras in these cases are indeed Lie algebras. In this

chapter, we focus on writing down the L∞ algebras that describe FDA1 gauge

theories, i.e., gauge theories whose symmetry is not described by a Lie algebra but

by a FDA1. Due to the dual relation between FDAs and L∞ algebras, the new

gauge subalgebras are not Lie algebras anymore but also L∞ algebras whose

defining products cannot be decomposed in Lie brackets. The mathematical

obstacle that prevents this from happening is the non-trivial cocycle,

representative of a Chevalley–Eilenberg cohomology class, with which the FDA1 is

constructed. Moreover, as we will see, the presence of higher-degree differential

forms as gauge fields in the FDA1 gauge theories is naturally described by the

multilinear products of an L∞ algebra. We study two separated cases, namely, the

arbitrary-dimensional FDA1-Chern–Simons theory introduced in chapter 5, and a

gauge theory whose dynamics is determined by the zero-curvature conditions. We

will refer to the later as ‘flat FDA1 theory’.
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8.1 FDA1 gauge theories

Let us consider the gauging of a FDA1. This means considering a composite gauge

field whose components are given by a one-form and a p-form respectively, namely

µ =
(
µAµ , µ

i
µ1...µp

)
. (8.1)

Let us also introduce a set of gauge parameters composed by a zero-form and a

(p− 1)-form and denoted as follows

ε =
(
εA, εiµ1···µp−1

)
. (8.2)

As before, we consider an L∞ algebra with a vector space endowed with the following

subspace structure

X = X0 ⊕X−1 ⊕X−2. (8.3)

An important difference with respect to the previous case must be pointed out. The

FDA1 has two separated algebraic sectors that we call the standard sector (or A-

sector) and the extended sector (or i-sector). As a consequence, the vector space X

and each one of its subspaces X0, X−1 and X−2 can be split into two subspaces, as

follows

X0 = Xstandard
0 ⊕Xextended

0 , (8.4)

X−1 = Xstandard
−1 ⊕Xextended

−1 , (8.5)

X−2 = Xstandard
−2 ⊕Xextended

−2 . (8.6)

Therefore, in the L∞ formulation of FDA1 gauge theories, each vector in X carry

two components, being each one a differential form of different degree. For X0 and

X−1 this is summarized as follows:

• Every vector x ∈ X0 carries two components corresponding to two subspaces

of X0 (a zero-form and a (p− 1)-form)

x =
(
xA, xiµ1...µp−1

)
. (8.7)

• Every vector y ∈ X−1 carries two components corresponding to two subspaces

of X−1 (a one-form and a p-form)

y =
(
yAµ , y

i
µ1...µp

)
. (8.8)
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• Vectors in X−2 also carry two components. Since this subspace carry the

vectors that describe the dynamics of the theory, the differential degrees of

their components must be analyzed case by case depending on the dynamics

of the theory.

We identify µ =
(
µAµ , µ

i
µ1...µp

)
and ε =

(
εA, εiµ1...µp−1

)
as vectors in X−1 and X0

respectively. Moreover, we identify the equation of motion term F =
(
FA,F i

)
as a

vector of X−2.

As we have seen, in order to find the L∞ algebras that describe FDA1-Chern–Simons

theory and flat FDA1 theory, we need to study three aspects of them: their definition

of gauge transformations, their gauge algebra, and their equations of motions. Both

theories have the same gauge symmetry; therefore, they share the first two sources of

information. For this reason, we will extract the information regarding the definition

of gauge transformations and gauge algebra first and then study case by case the

algebraic sectors that encode the dynamics.

In general, when writing a FDA1 gauge theory, the algebraic vectors carry two

components. As we have seen in chapter 5, the gauge parameters carry a zero-

form εA and a (p− 1)-form εi as components. In the same way, for gauge fields,

these components are a one-form µA and a p-form µi. In general, every FDA1

vector is given by a q-form and a (p+ q − 1)-form carrying algebraic indices A and

i respectively. Since the L∞ products between vectors in X are also vectors in X,

their components carry both types of algebraic indices A and i depending on which

algebraic sector they lie, and a different number of antisymmetric spacetime indices,

depending on which subspace of X they belong. In general, an L∞ product between

r vectors in X is a vector in X whose components are a q-form with algebraic index

A, and a (p+ q − 1)-form with algebraic index i, i.e.,

`r (x1, . . . , xr) =
(

[`r (x1, . . . , xr)]
A
µ1···µq , [`r (x1, . . . , xr)]

i
µ1···µp+q−1

)
, (8.9)

From now on, we will write down products of the type `r (x1, . . . , xr) in components,

i.e., writing them in terms of the FDA1 and spacetime indices. For convenience, it

is useful to introduce differential form products. We write the components of the

product (8.9) in terms of differential forms as follows

[`r (x1, . . . , xr)]
A =

1

q!
[`r (x1, . . . , xr)]

A
µ1...µq

dxµ1 ∧ · · · ∧ dxµq , (8.10)
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[`r (x1, . . . , xr)]
i =

1

(p+ q − 1)!
[`r (x1, . . . , xr)]

i
µ1...µ(p+q−1)

dxµ1 ∧ · · · ∧ dxµ(p+q−1) ,

(8.11)

It is important to notice that the product in eq. (8.9) (and therefore also its

corresponding components) satisfy the original graded symmetry rule of L∞

algebras in the `-picture of eq. (4.10). However, its components, when they are

written in terms of differential forms, satisfy a modified symmetry rule due to the

inclusion of new algebraic structure in the wedge products. Although this notation

does not explicitly hold the symmetry of the products, it allows to write the

product between a large number of vectors without overloading of indices, and it

turns out to be especially useful in the formulation of FDA1 gauge theories, due to

the natural presence of higher-degree differential forms in them. From now on, we

will write down all the components of the L∞ products in terms of differential

forms.

8.1.1 Gauge transformations

Let us consider the definition of gauge transformations for a FDA1. The variation

of the fundamental gauge field δµ is a vector in X−1 that carry a one-form and

a p-form as components. Since the transformations of the one-form are given by

the Lie covariant derivative of the zero-form εA, the information in terms of L∞

products originated in that definition is the same that was obtained in the study of

standard Chern–Simons theories. The same happens with the corresponding gauge

algebra, which is a Lie algebra in the standard sector. Therefore, we will focus on

obtaining the information regarding the extended sector. The transformation rule

of the extended gauge field µiµ1···µp is given in terms of the gauge parameters by

eq. (3.36). On the other hand, this variation can also be written in terms a sum of

L∞ products, as in eq. (4.45). From both equations, we can see that such sum is

truncated, resulting only in those terms that are powers of degree zero, one, and p

in the gauge fields, as follows

δµiµ1···µp = [`1 (ε)]iµ1···µp + [`2 (ε, µ)]iµ1···µp +
(−1)

p(p−1)
2

p!
[`p+1 (ε, µ, . . . , µ)]iµ1···µp .

(8.12)

By writing eq. (8.12) in terms of differential forms, as in eq. (8.11), we obtain a

spacetime index free expression

δµi = [`1 (ε)]i + [`2 (ε, µ)]i +
(−1)

p(p−1)
2

p!
[`p+1 (ε, µ, . . . , µ)]i . (8.13)
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Thus, by directly comparing eqs. (3.36) and (8.13), we obtain the following

information concerning the components of products of gauge fields and parameters

in the extended sector, written in terms of differential forms

[`1 (ε)]i = dεi, (8.14)

[`2 (ε, µ)]i = [µ, ε]i − [ε, µ]i , (8.15)

[`p+1 (ε, µp)]i = (−1)1+
p(p−1)

2 [ε, µp]i . (8.16)

It is important to recall that those are not the L∞ products of the theory by

themselves, but their components in the extended sector (or i-sector) written in

terms of differential forms. Every other product originated in the gauge

transformations and, therefore, involving one vector of X0 and any number of

vectors of X−1 has zero components in this sector. The next step is to obtain the

information concerning the gauge algebra.

8.1.2 Gauge algebra

The commutator of two consecutive gauge transformations must lead to a third

gauge transformation depending on a composite parameter. However, when

describing a gauge theory in terms of an L∞ algebra, the presence of equation of

motion symmetries is allowed in the commutator (see eq. (4.52)). Therefore, in

order to have a well-defined L∞ algebra, it is necessary to ensure the closure of the

commutator of two gauge transformations and study the presence of trivial gauge

transformations. Since such transformations must be on-shell vanishing, their

functional form can impose constraints on the action principle. By applying two

consecutive transformations δ1 and δ2 on the gauge field, with parameters

ε1 =
(
εA1 , ε

i
1

)
and ε2 =

(
εA2 , ε

i
2

)
respectively, we calculate the commutator

(δ2δ1 − δ1δ2)µ. This is also a vector in X−1, whose standard components close a

Lie algebra, such as in the Chern–Simons case. Moreover, by taking the extended

component of the commutator, we find

(δ2δ1 − δ1δ2)µi

= [dε2, ε1]i − [ε1, dε2]i − [dε1, ε2]i + [ε2, dε1]i + [ε1, [ε2, µ]]i

− [ε2, [ε1, µ]]i + [[µ, ε2] , ε1]i − [[µ, ε1] , ε2]i + [ε2, [µ, ε1]]i − [ε1, [µ, ε2]]i

+
1

p!
[ε1, [ε2, µ

p]]i − 1

(p− 1)!

[
ε1,dε2, µ

p−1
]i − 1

(p− 1)!

[
ε1, [µ, ε2] , µp−1

]i
− 1

p!
[ε2, [ε1, µ

p]]i +
1

(p− 1)!

[
ε2,dε1, µ

p−1
]i

+
1

(p− 1)!

[
ε2, [µ, ε1] , µp−1

]i
. (8.17)
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This expression must be treated using the generalized Jacobi identity for the FDA1.

Indeed, from eqs. (3.13)-(3.15), it is possible to prove the following relations:

[ε1, [ε2, µ]]i − [ε2, [ε1, µ]]i − [[ε1, ε2] , µ]i = 0, (8.18)

[ε1, [µ, ε2]]i + [[µ, ε1] , ε2]i − [µ, [ε1, ε2]]i = 0. (8.19)

Eqs. (8.18) and (8.19) are directly obtained from the FDA1 Jacobi identities in the

compact notation of brackets. For details on the writing of the Jacobi identities in

such notation, see appendix B. By plugging in eqs. (8.18) and (8.19), and the relation

dµA = RA − 1
2 [µ, µ]A into eq. (8.17), the extended component of the commutator

takes a compact form, namely

(δ2δ1 − δ1δ2)µi = δ3µ
i − 1

(p− 2)!

[
ε2, ε1, R, µ

p−2
]i
, (8.20)

As it happens with Lie algebras, the commutator gives place to a new gauge

transformation δ3 for which we introduce a third composite parameter

ε3 =
(
εA3 , ε

i
3

)
whose components depend on the original parameters and gauge

fields as follows

εA3 = [ε2, ε1]A , (8.21)

εi3 = [ε2, ε1]i − [ε1, ε2]i +
1

(p− 1)!

[
ε2, ε1, µ

p−1
]i
. (8.22)

In contrast, the second term on the r.h.s. of eq. (8.20) is not present in the study

of Lie algebras. Its presence is due to the cocycle extension in the FDA1, and it

involves the standard two-form curvature RA but not its extended components Ri.

This presence of this term is important in the definition of the action principle of

a FDA1 gauge theory because it must vanish on-shell in order to close the gauge

algebra without contradictions with the equations of motion.

As we have seen, when writing the commutator of two gauge transformations in

terms of their expansions in L∞ products, the result is given by eq. (4.52) as the

sum of a new gauge transformation and a trivial one that involves higher products

(of three or more vectors) and relates the equation of motion term of the theory.

We identify the second term in eq. (8.20) as the trivial transformation, while the

first one can be more conveniently written by separating δε3µ in terms that depend

on powers of the same degree in the gauge field. By truncating general expansion

in terms of L∞ products from eq. (4.45), the variation δε3µ can be then written as
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follows

δε3µ = `1 (ε3) + `2 (ε3, µ) +
1

p!
(−1)

p(p−1)
2 `p+1 (ε3, µ

p)

= [δε3µ]0 + [δε3µ]1 + [δε3µ]p−1 + [δε3µ]p , (8.23)

where we denote as [δε3µ]k to the contribution to δε3µ that depends on powers of

degree k in µ. Therefore, by inspection of eqs. (8.21)-(8.23, we match the terms

in δε3µ depending on the same powers of µ, and write down an expression for each

contribution [δε3µ]k to the variation of the gauge field:

[δε3µ]0 = `1 (`2 (ε1, ε2)) , (8.24)

[δε3µ]1 = `1 (`3 (ε1, ε2, µ)) + `2 (`2 (ε1, ε2) , µ) , (8.25)

[δε3µ]p−1 =
(−1)

(p−1)(p−2)
2

(p− 1)!
`1
(
`p+1

(
ε1, ε2, µ

p−1
))

+
(−1)

(p−2)(n−3)
2

(p− 2)!
`2
(
`p
(
ε1, ε2, µ

p−2
)
, µ
)
, (8.26)

[δε3µ]p =
(−1)

p(p−1)
2

p!
`1 (`p+2 (ε1, ε2, µ

p)) +
(−1)

(p−1)(p−2)
2

(p− 1)!
`2
(
`p+1

(
ε1, ε2, µ

p−1
)
, µ
)

+
(−1)

p(p−1)
2

p!
`p+1 (`2 (ε1, ε2) , µp) . (8.27)

On the other hand, by directly replacing the components of ε3, given by eqs. (8.21)

and (8.22) into the definition of the FDA1 gauge transformation, it is possible to

explicitly write down δ3µ
i without using the L∞ products:

δ3µ
i =d

{
[ε2, ε1]i − [ε1, ε2]i +

1

(p− 1)!

[
ε2, ε1, µ

p−1
]i}

+

[
µ,

{
[ε2, ε1]− [ε1, ε2] +

1

(p− 1)!

[
ε2, ε1, µ

p−1
]}]i

− [[ε2, ε1] , µ]i − 1

p!
[[ε2, ε1] , µp]i . (8.28)

By comparing term by term eq. (8.28) with eqs. (8.24)-(8.27) we obtain four

relations, each one proportional to a different power of the gauge field. In order to

obtain the information regarding different L∞ products on them, we proceed case

by case:

First relation (power 0 in µ):

[`1 (`2 (ε1, ε2))]i = d
{

[ε2, ε1]i − [ε1, ε2]i
}
. (8.29)
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Second relation (power 1 in µ):

[`1 (`3 (ε1, ε2, µ)) + `2 (`2 (ε1, ε2) , µ)]i = [µ, ([ε2, ε1]− [ε1, ε2])]i − [[ε2, ε1] , µ]i .

(8.30)

Third relation (power p− 1 in µ):

(−1)
(p−1)(p−2)

2
[
`1
(
`p+1

(
ε1, ε2, µ

p−1
))]i

+ (−1)
(p−2)(n−3)

2 (p− 1)
[
`2
(
`p
(
ε1, ε2, µ

p−2
)
, µ
)]i

= d
[
ε2, ε1, µ

p−1
]i
. (8.31)

Fourth relation (power p in µ):

[`1 (`p+2 (ε1, ε2, µ
p))]i + p

[
`2
(
`p+1

(
ε1, ε2, µ

p−1
)
, µ
)]i

+ [`p+1 (`2 (ε1, ε2) , µp)]i

= (−1)
(p−1)(p−2)

2 p
[
µ,
[
ε2, ε1, µ

p−1
]]i − (−1)

(p−1)(p−2)
2 [[ε2, ε1] , µp]i . (8.32)

We now use the previously obtained information about the products. Since

`2 (ε1, ε2), `3 (ε1, ε2, µ), `p
(
ε1, ε2, µ

p−2
)
, `p+1

(
ε1, ε2, µ

p−1
)

and `p+2 (ε1, ε2, µ
p) are

vectors of X0, `1 acts on them according eqs. (8.29)-(8.32). This provides an

explicit expression for these products. On the other hand, we identify the trivial

transformation of eq. (4.52) with the last term on the r.h.s. of eq. (8.20), resulting

in a (p+ 1)-linear product involving one vector in X−2, as follows

`p+1

(
ε1, ε2, R, µ

p−2
)

= (−1)1+
(p−2)(p−3)

2
[
ε2, ε1, R, µ

p−2
]i
. (8.33)

8.1.3 Summary:

The L∞ products previously obtained contain the information of a FDA1 gauge

theory regarding its definition of gauge transformations and gauge algebra. Since

the dynamics has not been yet specified, the structure of these sectors is shared for

any FDA1 gauge theory and can be summarized as follows:
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Gauge transformations

[`1 (ε1)]A = dεA1 ,

[`1 (ε1)]i = dεi1,

[`2 (ε1, µ1)]A = [µ1, ε1]A ,

[`2 (ε1, µ1)]i = [µ1, ε1]i − [ε1, µ1]i ,

[`p+1 (ε1, µ1, . . . , µp)]
i = (−1)1+

p(p−1)
2 [ε, µ1, . . . , µp]

i .

(8.34)

Gauge algebra

[`2 (ε1, ε2)]A = [ε2, ε1]A ,

[`2 (ε1, ε2)]i = [ε2, ε1]i − [ε1, ε2]i ,

[`p+1 (ε1, ε2, µ1, . . . , µp−1)]i = (−1)
(p−1)(p−2)

2 [ε2, ε1, µ1, . . . , µp−1]i ,

[`p+1 (ε1, ε2, E, µ1, . . . , µp−2)]i = (−1)1+
(p−2)(p−3)

2 [ε1, ε2, E, µ1, . . . , µp−2]i .

(8.35)

Here, ε1, ε2 ∈ X0, µ1, . . . , µp ∈ X−1 and E ∈ X−2 are arbitrary vectors. Any other

product originated in these two sources of information, and therefore relating at

least one vector of the subspace X0, vanishes. These products do not close an L∞

algebra by themselves. In order to specify a theory, it is necessary to introduce

the products coming from the third source of information, namely, the equation of

motion. They exclusively involve vectors of the subspace X−1 and determine the

dynamics of the different theories that share the FDA1 symmetry. Consequently,

they must be introduced case by case for the chosen theory, in a way that satisfies the

L∞ identities in combination with the products defined by eqs. (8.34) and (8.35).

8.2 Flat FDA1 gauge theory

The first case to analyze is the flat FDA1 theory. This is a FDA1 gauge theory in

which the equations of motion are the Maurer–Cartan equations of the fundamental

field µ =
(
µA, µi

)
, i.e., on-shell vanishing curvatures. In contrast to the first two

sources of information, we need to study both algebraic sectors. The corresponding

field equation term F is a vector in the subspace X−2. In this case, we define the

components of the vectors in X−2 as a two-form and a (p+ 1)-form. This choice

allows to write the components of F easily, in terms of differential forms for both

standard and extended subspaces, as follows

FA = RA = dµA +
1

2
CABCµ

BµC , (8.36)



104 8. L∞ formulation of FDA1 gauge theories

F i = Ri = dµi + CiAjµ
Aµj +

1

(p+ 1)!
CiA1···Ap+1

µA1 · · ·µAp+1 . (8.37)

Notice that this choice for the dynamics is consistent and does not contradict the

constraint imposed by the trivial gauge transformation found in the gauge algebra.

The second term on the r.h.s. of eq. (8.20) depends on the standard component

of the curvature RA which vanishes on-shell, and therefore it satisfies the condition

of being an equation of motion symmetry, guaranteeing the closure of the gauge

subalgebra.

Since the equation of motion is immediately obtained from the FDA1 curvature,

there is no need to introduce an action principle or an L∞ inner product. Eqs.

(8.36) and (8.37) show that the general expansion of the equation of motion term F
in terms of L∞ products is truncated, removing every element not linear, bilinear

or (p+ 1)-linear in the gauge field, as follows

F = `1 (µ)− 1

2
`2
(
µ2
)

+
(−1)

p(p+1)
2

(p+ 1)!
`p+1

(
µp+1

)
.

Notice that the (p+ 1)-linear product has non-vanishing components only in the

extended sector, i.e., the expansion is truncated in different ways depending on the

algebraic sector:

FA = [`1 (µ)]A − 1

2

[
`2
(
µ2
)]A

, (8.38)

F i = [`1 (µ)]i − 1

2

[
`2
(
µ2
)]i

+
(−1)

p(p+1)
2

(p+ 1)!

[
`p+1

(
µp+1

)]i
. (8.39)

Therefore, we separately analyze the standard and extended sectors. By matching

eqs. (8.36) and (8.38) term by term, we obtain the following information about the

components of the products in the standard sector written in terms of differential

forms:

[`1 (µ)]A = dµA, (8.40)[
`2
(
µ2
)]A

= −CABCµBµC . (8.41)

On the other hand, from eqs. (8.37) and (8.39) we obtain the components of the

corresponding products in the extended sector also in terms of differential forms.

Notice that the (p+ 1)-linear product that carries the information about the cocycle

has non-vanishing components only in this sector:

[`1 (µ)]i = dµi, (8.42)
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[
`2
(
µ2
)]i

= −2CiAjµ
Aµj , (8.43)[

`p+1

(
µp+1

)]i
= (−1)

p(p+1)
2 CiA1···Ap+1

µA1 · · ·µAp+1 . (8.44)

Thus, the information regarding the third source of information can be summarized

as follows; let ε ∈ X0, µ, µ1, . . . , µp+1 ∈ X−1 and E ∈ X−2 be arbitrary vectors. The

dynamics of a flat FDA1 gauge theory is encoded into the following components of

L∞ products, written in terms of differential forms:

Flat FDA1 dynamical sector

[`1 (µ)]A = dµA,

[`1 (µ)]i = dµi,

[`2 (µ1, µ2)]A = −CABCµB1 µC2 ,
[`2 (µ1, µ2)]i = −CiAj

(
µA1 µ

j
2 + µA2 µ

j
1

)
,

[`p+1 (µ1, . . . , µp+1)]i = (−1)
p(p+1)

2 CiA1···Ap+1
µA1

1 · · ·µ
Ap+1

p+1 .

(8.45)

Consistency products

[`2 (ε, E)]A = [E, ε]A ,

[`2 (ε, E)]i = [E, ε]i − [ε, E]i ,

[`p+1 (ε, E, µ1, . . . , µp−1)]i = (−1)1+
(p−1)(p−2)

2 [ε, E, µ1, . . . , µp−1]i .

(8.46)

As it was mentioned in the previous chapter, we include a set of consistency products

involving at least one vector in the subspace X−2. These products are not directly

obtained from the three mentioned sources of information but by demanding the

products obtained from them to satisfy the L∞ identities. For an explicit calculation,

see appendix C. The inclusion of the consistency products allows eqs. (8.34), (8.35),

(8.46) and (8.45) to define an L∞ algebra and to consistently formulate the flat

FDA1 gauge theory.

8.3 L∞ formulation of FDA1-Chern–Simons theory

The second case to analyze is the extended Chern–Simons theory invariant under

FDA1 introduced in chapter 5. The writing of the corresponding L∞ algebra is

slightly more complicated for this case because, although the gauge symmetry

remains the same that in the flat FDA1 theory, the equations of motion take a
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different functional form depending on the dimensionality. As a consequence, the

subspace X−2, encoding the dynamics, has a different structure in different

dimensions. Let us begin by introducing the algebraic vectors belonging to the

subspaces X0, X−1 and X−2. Since the gauge transformations of the theory are

defined by eqs. (3.35) and (3.36), an arbitrary vector in X0 is given by

ε =
(
εA, εiµ1···µp−1

)
, i.e., its the A-, and i-components are a zero-form and a

(p− 1)-form respectively. Moreover, vectors in the subspaces X−1 and X−2 have

components in the standard and extended sectors that also can be split in the

following way:

u =
(
uAµ , u

i
µ1···µp

)
∈ X−1, (8.47)

v =
(
vAµ1···µq−2

, viµ1···µq−p−1

)
∈ X−2. (8.48)

Notice that since the first two sources of information of the theory (the gauge

transformations and gauge algebra) are the same that in the flat FDA1 theory,

vectors in X0 and X−1 are defined in the same way that in the previous section.

Unlike the previous case, vectors in X−2 are not given by a two-form and a

(p+ 1)-form. We define them as a (q − 2)-form and a (q − p− 1)-form, where q− 1

is de dimensionality of the theory. This new definition does not contradict the

definition of FDA1 algebraic vectors from chapter 3. The reason for this choice is

that we need to define algebraic vectors F ∈ X−2 such that, the variation of the

action can be written as eq. (4.50). Different choices of the components of F
would lead to different but equivalent definitions of the L∞ inner product that is

used in the definition of the action principle. Once we defined the components of

the vectors, we define the L∞ inner product between two arbitrary vectors

u ∈ X−1 and v ∈ X−2 as follows

〈u, v〉L∞ =

∫
dx2m−1εµ1···µq−1

(
gABu

A
µ1
vBµ2···µq−2

+ giju
i
µ1···µpv

j
µp+1···µq−1

)
. (8.49)

Notice that the coefficients gAB and gij were defined in eqs. (5.9)-(5.11) as the

components of the rank-2 FDA1 invariant tensor. With this definition of inner

product, the general variation of the action principle in eq. (4.49), reproduces the

variation of the FDA1-Chern–Simons action principle obtained by setting µ̄ = 0 in

eq. (5.27). Thus, according to eqs. (4.50) and (8.49), this variation can be written

terms of the inner product and the components of the equation of motion term, as

follows

〈δµ,F〉L∞ =

∫
dx2m−1εµ1···µq−1

(
1

(q − 2)!
gABδµ

A
µ1
FBµ2···µq−2
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+
1

p! (q − p− 1)!
gijδµ

i
µ1···µpF

j
µp+1···µq−1

)
. (8.50)

Eq. (5.33) allows to identify the components of the vector F ∈ X−2 by direct

inspection of the field variation of the action principle. In terms of differential

forms, these components are explicitly given by

FA =
∑
m,n

mgAA1gA1A2···Ami1···inR
A2 · · ·RAmRi1 · · ·Rin , (8.51)

F i =
∑
m,n

ngii1gA1···Ami1i2···inR
A1 · · ·RAmRi2 · · ·Rin . (8.52)

Notice that FA = 0 and F i = 0 are indeed the equations of motion obtained in eqs.

(5.33) and (5.34). Moreover, we have raised the algebraic indices A and i on these

expressions by using the components of the rank-2 invariant tensor. We used gAB

to rise indices in the standard sector and gij for the extended one. For a specific

explanation of how we raise FDA1 algebraic indices, see appendix A.

8.3.1 Standard dynamical sector

Since our purpose is to obtain the information regarding the dynamics, let us begin

by splitting the equation of motion term F in components and first consider the

standard ones FA. Eqs. (8.51) and (4.51) imply that FA can be written as an

expansion of the standard components of L∞ products, as follows

FA =
∞∑
l=1

(−1)
l(l−1)

2

l!

[
`l

(
µl
)]A

. (8.53)

Eq. (8.53) expands FA in terms that are linear products of the gauge fields. This

expansion is truncated in different ways depending on the dimensionality, i.e., in

terms of the allowed values of the coefficients m and n in the equation of motion

(8.51). In order to separate the contributions to FA corresponding to different L∞

products, we plug in the definition of gauge curvatures from eqs. (3.11) and (3.12)

into the generic expression from eq. (8.51), and write down FA in terms of the gauge

fields and their derivatives

FA =
∑
m,n

m−1∑
k=0

∑
r+s+t=n

1

2k (p+ 1)!t
m!

k! (m− k − 1)!

n!

r!s!t!

× gAA1···Am−1i1···indµA1 · · · dµm−k−1 [µ, µ]Am−k · · · [µ, µ]Am−1

× dµi1 · · · dµir [µ, µ]ir+1 · · · [µ, µ]ir+s
[
µp+1

]is+r+1 · · ·
[
µp+1

]in
. (8.54)
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As we proceeded with the equation of motion term in standard Chern–Simons theory,

we split the terms of the sum at the r.h.s. of eq. (8.54) that depend on powers of

the same degree in the gauge fields, i.e.,

FA =
∞∑
l=1

[
FA
]
l
. (8.55)

where
[
FA
]
l

denote the contributions to FA depending on powers of degree l. We

can therefore identify
[
FA
]
l

as proportional to the l-linear L∞ product, as follows

[
FA
]
l

=
(−1)

l(l−1)
2

l!

[
`l

(
µl
)]A

. (8.56)

With the purpose of isolating the term of the expansion depending on powers of

degree l, we notice that each term on the r.h.s of eq. (8.54) is a power of degree

m+ n+ k+ s+ pt− 1 in µ. We therefore fix l = m+ n+ k+ s+ pt− 1 and identify

the l-linear term
[
FA
]
l

as sum of those terms that satisfy that fixing. This allows

us to write the l-linear contribution to FA:

[
FA
]
l

=
∑
m,n

∑
r+s+t=n

1

2kst (p+ 1)!t
m!

kst! (m− kst − 1)!

n!

r!s!t!

× gAA1···Am−1i1···indµA1 · · · dµm−kst−1 [µ, µ]Am−kst · · · [µ, µ]Am−1

× dµi1 · · · dµir [µ, µ]ir+1 · · · [µ, µ]ir+s
[
µp+1

]is+r+1 · · ·
[
µp+1

]in
. (8.57)

For convenience, we have introduced the coefficient kst = l + 1 − m − n − s − pt.
Finally, by inspection of eqs. (8.56) and (8.57) we identify the non vanishing L∞

product that contributes to the dynamics in the standard sector:

[
`l
(
µl
)]A

= (−1)
l(l−1)

2
∑

m,n

∑
r+s+t=n

l!
2kst (p+1)!t

m!
kst!(m−kst−1)!

n!
r!s!t!

× gAA1···Am−1i1···indµA1 · · · dµm−kst−1 [µ, µ]Am−kst · · · [µ, µ]Am−1

× dµi1 · · · dµir [µ, µ]ir+1 · · · [µ, µ]ir+s
[
µp+1

]is+r+1 · · ·
[
µp+1

]in .
(8.58)

8.3.2 Extended dynamical sector

The procedure to obtain the L∞ products in the extended algebraic sector is

analogue. By explicitly writing eq. (8.52) in terms of the gauge fields and their

derivatives, one gets the following expression for the extended component of F in
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terms of differential forms

F i =
∑
m,n

m∑
k=0

∑
r+s+t=n−1

1

2k (p+ 1)!t
m!

k! (m− k)!

n!

r!s!t!
gi i1···in−1A1···Am

× dµA1 · · · dµAm−k [µ, µ]Am−k+1 · · · [µ, µ]Am

× dµi1 · · · dµir [µ, µ]ir+1 · · · [µ, µ]ir+s
[
µp+1

]ir+s+1 · · ·
[
µp+1

]in−1 . (8.59)

Notice that we write the algebraic indices of the invariant tensor with inverse

ordering. This is simply notation; since the indices corresponding to the standard

and extended sector take values in different domains, we can switch their positions

in the invariant tensor without introducing ambiguity. As in the standard sector,

we expand F i in terms of the contributions depending on powers of degree l in µ,

denoted by
[
F i
]
l
. In order to isolate the terms on the r.h.s. of eq. (8.59)

depending on powers of the same degree on the gauge field, we notice that each

term in the expansion is a power of degree m+ n+ k + s+ pt− 1 in µ. Therefore,

by matching l = m+ n+ k + s+ pt− 1, we obtain

[
F i
]
l

=
∑
m,n

∑
r+s+t=n−1

1

2k̄st (p+ 1)!t
m!

k̄st!
(
m− k̄st

)
!

n!

r!s!t!
gi i1···in−1A1···Am

× dµA1 · · · dµAm−k̄st [µ, µ]Am−k̄st+1 · · · [µ, µ]Am

× dµi1 · · · dµir [µ, µ]ir+1 · · · [µ, µ]ir+s
[
µp+1

]ir+s+1 · · ·
[
µp+1

]in−1 . (8.60)

For simplicity, we have defined the secondary coefficients k̄st = l+1−m−n−s−pt.
From eqs. (8.60) and (4.51), we get that the extended component of a product of l

gauge fields is given by

[
`l
(
µl
)]i

= (−1)
l(l−1)

2
∑

m,n

∑
r+s+t=n−1

l!
2k̄st (p+1)!t

m!
k̄st!(m−k̄st)!

n!
r!s!t!

× gi i1···in−1A1···AmdµA1 · · · dµAm−k̄st [µ, µ]Am−k̄st+1 · · · [µ, µ]Am

× dµi1 · · · dµir [µ, µ]ir+1 · · · [µ, µ]ir+s
[
µp+1

]ir+s+1 · · ·
[
µp+1

]in−1 .

(8.61)

Thus, eqs. (8.58) and (8.61) provide the information regarding the L∞ products

for the complete dynamical sector of the theory, and therefore, regarding the L∞

products of vectors in X−1. As it happens in standard Chern–Simons theory, the

equations of motion in eqs. (5.33) and (5.34) show strong functional changes

depending on the dimensionality of the theory. Consequently, the number of

non-vanishing products in the dynamical sector depends on the value of q. Let us

recall that the original Chern–Simons action is q − 1 dimensional, and that the
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values of m and n are the integer non-negative solutions of the equation

2m+ (p+ 1)n = q. (8.62)

For each solution of the type (m,n) to eq. (8.61), there is a different set of allowed

values for l in eqs. (8.58) and (8.61). In the standard sector, i.e., for eq. (8.58), they

take integer values between lmin = n and lmax = 2m − 2. In the extended sector,

i.e., for eq. (8.61), l take values between lmin = n− 1 and lmax = 2m.

The L∞ products previously obtained from the three original sources of information

do not necessarily combine to make an L∞ algebra by themselves. Therefore, we

impose them to satisfy the L∞ identities. For an explicit calculation, see appendix

C. Thus, this requirement leads to two consistency products, whose components (in

terms of differential forms) are given by:

[`2 (ε, E)]A = CABCE
BεC − gABgijCiBkEjεk,

[`2 (ε, E)]i = gijgklC
k
Bjε

BEl,[
`p+1

(
ε, E, µp−1

)]A
= (−1)1+

(p−1)(p−2)
2 gAB1gijC

i
B1···Bp+1

εB2µB3 · · ·µBp+1Ej ,[
`p+1

(
ε, E, µp−1

)]i
= 0.

(8.63)

Here, ε ∈ X0, µ ∈ X−1 and E ∈ X−2 are arbitrary vectors.

This completes the writing of the algebraic products corresponding to the L∞

formulation of the FDA1-Chern–Simons theory. The L∞ algebra that describes

this theory in arbitrary dimensions is given by eqs. (8.34) and (8.35) encoding the

information of the gauge transformations and gauge algebra respectively, in

addition with eqs. (8.58), (8.61) and (8.63) encoding the dynamics. Notice that, in

contrast with the writing of the L∞ algebra of standard Chern–Simons theory in

chapter 7, we have written the higher-degree products that involve many vectors

from the subspace X−1 by only using one vector µ instead of a set of arbitrary

independent vectors. This choice allows for writing the products more compactly.

The general expressions for the products describing the dynamical sector can be

obtained from eqs. (8.58) and (8.61) by considering independent vectors instead of

the repetition of the same gauge field and including the corresponding normalized

symmetrization (as we did in the case of standard Chern–Simons theory).

Moreover, in order to avoid overloading of indices, we have written every product

in terms of differential forms. The resulting expressions are, in this way, compact

due to the natural presence of higher-degree differential forms in FDA1 gauge

theories. It is important to point out that the equations of motion do not



L∞ formulation of FDA1-Chern–Simons theory 111

guarantee the on-shell closure of the gauge subalgebra. This issue in the

formulation is a consequence of the non-covariance in the gauge transformation law

of the extended curvature form Ri. In order to have a well-defined L∞ algebra for

the theory, it is necessary that the second term on the r.h.s of eq. (8.20) vanishes

on-shell. This condition is fulfilled only in special cases. For example, in

three-dimensional theories or those whose gauge algebra does not carry a

non-trivial cocycle, this happens by default. Moreover, if the invariant tensors of

the FDA1 do not carry mixed indices of the type gAi the issue is also avoided.

Chern–Simons theories that do not satisfy these conditions cannot be properly

described by L∞ algebras since they are not completely well-defined gauge

theories. However, they still have action principles that are invariant under the

transformations of the FDA1.

8.3.3 Five-dimensional example

At this point, we have written the general L∞ algebra that allows formulating a

FDA1-Chern–Simons theory in arbitrary dimensions. As an example, let us

consider a particular case given by a five-dimensional theory that couples the

standard one-form with a three-form. For simplicity, we will consider trivial

cohomology in the symmetry algebra, i.e., that the corresponding FDA1 carries no

cocycle in the Maurer–Cartan equations. This choice simplifies the long

expressions in the final L∞ product, allowing us to write their components without

using differential forms. Moreover, in contrast with the general expressions for the

products describing the dynamical sector of the theory in eqs. (8.58), (8.61), in

this case we will write the products in a completely general way. This means that,

when writing the products of a large number of vectors in X−1, we will use

arbitrary independent vectors instead of one vector multiple times.

Let us therefore consider a FDA1 with p = 3 with trivial cohomology, i.e., in absence

of four-cocycle . By imposing these conditions in eqs. (3.11) and (3.12), we obtain

the following Maurer–Cartan equations

dµA +
1

2
CABCµ

BµC = RA = 0, (8.64)

dµi + CiAjµ
Aµj = Ri = 0. (8.65)

Notice that eq. (8.64) describes the Lie subalgebra, while eq. (8.65) just states

that the covariant derivative of the three-form µi, defined through the arbitrary

representation (tA)i j = CiAj , vanishes. The gauging of this FDA1 leads to a non-
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vanishing curvature with components RA and Ri that allows the construction of

a six-dimensional invariant density χ6 and, consequently, a Chern–Simons action

principle that makes use of its corresponding Chern–Simons form as Lagrangian

density

SCS5 [µ] =

∫
M5

∫ 1

0
dt
(

3gA1A2A3µ
A1RA2

t RA3
t + gA1i1µ

A1Ri1t + gA1i1R
A1
t µi1

)
. (8.66)

In this case, the homotopic gauge field is defined as µt = tµ =
(
tµA, tµi

)
, being Rt its

corresponding field strength. An example of this action for a particular bosonic FDA

can be found in ref. [45]. This allows to formulate a gauge theory with non-trivial

coupling between a one-form and a three-form.

The L∞ algebra that describes this theory is given by a vector space X = X0 ⊕
X−1 ⊕X−2 endowed with a finite set of products. Every subspace can be split into

two subspaces, standard and extended. Thus, arbitrary vectors in X0 can be split

as

ε =
(
εA, εiµν

)
, (8.67)

i.e., their components are given by a zero-form in the adjoint representation of the

Lie subalgebra and a two-form in the arbitrary representation space. In the same

way, vectors in X−1 are decomposed in terms of a one-form and a three-form in the

same respective representations, i.e.

µ =
(
µAµ , µ

i
µνρ

)
. (8.68)

Finally, an arbitrary vector in X−2 also carries two components, being the standard

one a four-form in the adjoint representation of the Lie algebra and the extended

one a two-form in the arbitrary representation

E =
(
EAµνρσ, E

i
µν

)
. (8.69)

Notice that there is an important difference in the definition of vectors in X−2 with

respect to the other subspaces. Every other vector is, in general, given by an r-form

in the standard sector and a (p+ r − 1)-form in the extended one. However, since

the subspace X−2 is defined in order to introduce the equation of motion term F ,

there is an ambiguity in the definition of these vectors that is compensated by the

same ambiguity in the definition of the inner product of the L∞ algebra. In this

case, we have chosen to define vectors in X−2, such that it becomes easy to identify

the components of F from eq. (5.27).
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The definition of gauge transformation leads to the following L∞ products, regarding

vectors in the subspaces X0 and X−1 :

[`1 (ε)]Aµ = ∂µε
A,

[`1 (ε)]iµ = ∂µε
i,

[`2 (ε, µ)]Aµ = CABCµ
B
µ ε

C ,

[`2 (ε, µ)]iµνρ = CiAj

(
3µA[µε

j
νρ] − ε

Aµjµνρ
)
.

(8.70)

On the other hand, the gauge algebra acts as a second source of information, leading

to the following products between vectors in X0

[`2 (ε1, ε2)]A = CABCε
B
2 ε

C
1 ,

[`2 (ε1, ε2)]iµν = CiAj

(
εA2 (ε1)jµν − εA1 (ε2)jµν

)
.

(8.71)

Let us now consider the dynamics. In this case, the allowed values for the indices

(m,n) in eq. (8.62) are (3, 0) and (1, 1). Therefore, from eqs. (8.58) and (8.61),

we obtain three non-vanishing products for the standard dynamical sector, and one

product for the extended dynamical sector of the theory, whose components are

given by

[`4 (µ1, µ2, µ3, µ4)]Aµνρσ = 3× 3!× 4!gADgDBCC
B
B1B2

CCC1C2

×
(
µ{1
)B1

[µ
(µ2)B2

ν (µ3)C1
ρ

(
µ4}
)C2

σ]
,

[`3 (µ1, µ2, µ3)]Aµνρσ = −3× 3!× 4!gAF gFBCC
B
DE

(
µ{1
)D

[µ
(µ2)Eν ∂ρ

(
µ3}
)C
σ]
,

[`2 (µ1, µ2)]Aµνρσ = −3!× 4!gADgDBC∂[µ

(
µ{1
)B
ν
∂ρ (µ)Cσ]

−8gAiC
i
Bj

(
µ{1
)B

[µ

(
µ2}
)j
νρσ]

,

[`2 (µ1, µ2)]iµν = −2gijgAjC
A
BC (µ1)B{µ (µ2)Cν} .

(8.72)

Finally, we consider the consistency products that come from plugging in the

previously obtained products into the L∞ identities in the `-picture. These

products involve vectors in X0 and X−2 and are given by

[`2 (ε, E)]Aµνρσ = CABCE
B
µνρσε

C − 3!gABgijC
i
BkE

j
[µνε

k
ρσ],

[`2 (ε, E)]iµν = 2gijgklC
k
Bjε

BElµν .
(8.73)

This completes the formulation of the mentioned five-dimensional Chern–Simons

theory in terms of an L∞ algebra. Notice that, by inspection of the action principle

in eq. (8.66), we can see that the so-called BF five-dimensional theory can be

obtained as a particular case (see ref. [100]). This case is obtained by considering

a FDA1 for which the only non-vanishing component of the rank-2 invariant tensor
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is gAi, thus removing the first and second terms in the integral at the right side of

eq. (8.66). The corresponding L∞ algebra that describes this theory can also be

obtained by imposing the same conditions in the L∞ products from eqs. (8.70)-

(8.73).



Chapter 9

Conclusions

In this dissertation, we have studied the dual relation between free differential

algebras and L∞ algebras, and their role in standard and higher gauge theories.

The first goal accomplished in the thesis has been the generalization of the

so-called Chern–Weil theorem to the case of a particular free differential algebra,

known as FDA1, which is the most simple extension that can be found of a Lie

algebra by means of the use of one of its own Chevalley–Eilenberg cohomology

classes. The inclusion of such cohomology class extends the symmetry algebra,

making it possible to couple higher-degree differential forms to a gauge theory in a

non-trivial way. This has led to the following results:

• The study of the generalized Chern–Weil theorem has been achieved, in first

place, by generalizing the Chern–Pontryagin invariant density to the case of

a FDA1. The new density inherits the properties of gauge-invariance and

differential closeness of its standard analogue, making the local existence of

Chern–Simons forms possible. Moreover, its invariance properties have

provided us with a definition of generalized invariant tensors, essential in the

construction of action principles for FDA1 gauge theories.

• The gauging of a FDA1 and the consequent study of the invariance

properties of the generalized Chern–Pontryagin invariant density have led to

a definition of generalized covariant derivative for a FDA1 that has simplified

further calculations.

• The new covariant derivative allows performing calculations in a completely

analogous way to those presented in chapter 2 in the context of standard

115
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gauge theories and Lie algebras. Thus, we have derived explicit expressions for

transgression and Chern–Simons forms for a FDA1 that allow the construction

of gauge invariant action principles that couple differential forms of different

degrees as gauge fields. The corresponding equations of motion have also been

derived.

Secondly, the results mentioned above allow studying the properties of

FDA1-Chern–Simons forms from a different point of view. Standard Chern–Simons

forms play an important role in the study of gauge anomalies, consequences of the

breaking of classical symmetries in the quantization process of Yang–Mills theories.

In particular, the chiral abelian anomaly is proportional to the Chern–Pontryagin

invariant density. Moreover, the non-abelian gauge anomaly shares that

topological origin; it is proportional to the gauge variation of the corresponding

Chern–Simons form that is related to the Chern–Pontryagin invariant density by

means of the standard version of the Chern–Weil theorem. On the other hand, the

study of the generalized Chern–Pontryagin densities and Chern–Simons forms for a

FDA1 shows that the generalized expressions contain the standard ones as the first

terms of an expansion that can be understood as the sum over all the possible

combinations of the standard and extended gauge fields, holding the FDA1

symmetry. Moreover, by studying the properties of invariance and differential

closeness of these topological quantities and their gauge variations, we have found

generalized versions of the non-abelian gauge anomaly. As mentioned, a FDA1 is

an algebra that allows considering not only a one-form gauge field but also a

higher-degree differential form. As a consequence, there are also two types of gauge

variations: standard and extended. The standard one is performed with respect to

a zero-form gauge parameter that takes values along all the possible directions of

the Lie group manifold, corresponding to the Lie subalgebra of the FDA1. The

extended variation is performed with respect to an extended parameter given by a

higher-degree differential form that takes values in the remaining subspace of the

FDA1. The existence of two gauge transformations has been proven to allow two

types of generalizations of the non-abelian gauge anomaly that we called primary

and secondary anomaly terms. The first of them is related to the standard

parameter, and therefore, only that one reproduces the standard non-abelian

anomaly as a particular case in the first term of its expansion. It must be pointed

out that, since the extended gauge field (and also the extended parameter) is a

higher-degree tensor, both anomaly terms exist in even and odd dimensionality,

being possible to recover the standard case only for even-dimensional spacetimes.

In contrast, the secondary anomaly term does not reproduce the standard

non-abelian anomaly for either odd or even dimensionality. This is a natural
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consequence of its origin. Since the secondary anomaly term is obtained from the

variations of the Chern–Simons form along the extended directions of the FDA1

manifold, it has an entirely different functional form which, however, naturally

generalizes the primary anomaly term and shares its topological properties.

The second main goal of this thesis is the study of the aforementioned classical gauge

theories in terms of L∞ algebras. L∞ algebras have been studied as deformations

of Lie algebras that naturally appear when one moves from describing a theory

in terms of the Poisson brackets of its functionals, such as the action principle

or the Hamiltonian functional, to describe it in terms of the algebra of its local

functions [42]. On the other hand, free differential algebras turn out to be dual to L∞

algebras, which have been found in a completely different context by R. D’Auria, P.

Fré and T. Regge [4] when studying the cohomology classes of the algebra of higher-

dimensional supergravities. The results regarding the second part of this dissertation

make use of a recent work of O. Hohm and B. Zwiebach [41], in which a formulation of

classical gauge theories in terms of L∞ algebras is introduced. Such formalism allows

writing down the information of a theory, regarding its gauge transformations, gauge

algebra, and the dynamics of the interacting theory into a single L∞ algebra that

contains the original gauge algebra as a subalgebra. In this thesis, we hace proposed

some explicit examples of the abstract result of O. Hohm and B. Zwiebach, with

particular emphasis on theories whose gauge symmetry is described by a FDA1, and

therefore its gauge subalgebra is not necessarily a Lie algebra but a genuine L∞

algebra. The natural presence of higher degree differential forms as gauge fields in

FDA1 gauge theories makes it convenient to write the relations of the L∞ algebras

in terms of differential forms. We have therefore written the L∞ algebras of FDA1

gauge theories in these terms, which can be understood as a compact notation

that allows to easily obtain the true L∞ relations by removing the dependence on

differential forms. This has led to the following results:

• The L∞ algebra that describes standard Chern–Simons theory in arbitrary

dimensions has been found. In this case, the corresponding gauge subalgebra

is a Lie algebra, as expected, and does not depend on the dimensionality of the

theory. Moreover, the closure of the gauge subalgebra is ensured for every case

without imposing any restriction on the dynamics. In contrast, the dynamics

of the theory has been encoded into a subspace in which the number of non-

vanishing products has been enumerated in a way that explicitly depends on

the dimensionality of the theory.

• We have formulated the L∞ algebra that describes the most simple case of a
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FDA1 gauge theory, namely the flat FDA1 theory. This is the case in which

the dynamics is governed by the Maurer–Cartan equations of the FDA1, and

therefore, there is no on-shell gauge curvature. In this case, the gauge

subalgebra is not a Lie algebra but a FDA1, and its closure is not ensured for

every action principle. We have proved that the commutator of two gauge

transformations leads to a third composite gauge transformation that

includes a term that must be interpreted as an equation-of-motion symmetry.

Therefore, in order to introduce a well-defined gauge theory, it is necessary to

consider an action principle for which such extra term vanishes on-shell. This

condition is always satisfied by a flat FDA1 theory.

• The L∞ algebra that describes FDA1-Chern–Simons theory in arbitrary

dimensions has been found. In contrast to the standard case, this

formulation is valid in both odd and even dimensionality. Although the

gauge symmetry is, as in flat FDA1 theory, described by a FDA1, its closure

is not verified for every case. In order to write down a completely

well-defined gauge theory, it is necessary to verify that the

equation-of-motion symmetry that appears in the gauge algebra is indeed

vanishing on-shell. The L∞ algebra that describes FDA1-Chern–Simons

theory is therefore well-defined only in the cases in which this condition is

verified. There are some criteria that allow ensuring the closure of the gauge

subalgebra. For instance, this requirement is immediately satisfied by every

three-dimensional theory and also by every theory described by an L∞

algebra without non-vanishing products of three or more elements. Lie gauge

theories are examples of these cases. Moreover, if the gauge symmetry is

described by a FDA1 carrying a trivial cocycle, i.e., in the absence of

cohomology, the theory is immediately consistent. There is also possible to

find examples of well-defined higher-dimensional FDA1-Chern–Simons

theories with non-trivial cohomology. However, the consistency between the

closure of the gauge algebra and the dynamics must be verified case by case.



Appendix A

Notation

In this thesis, we use two notations for vectors and invariant tensors for a FDA1,

both useful in different contexts. We refer to them as index-dependent notation,

and index-free notation, respectively. In this appendix, we review the translation

between both notations.

Let us consider an arbitrary FDA and an algebraic vector x, given by a collection

of differential forms, and denoted by x =
(
xA(1), . . . , xA(N)

)
, where each index A (p)

runs on a different domain. We introduce a FDA-degree that will be useful to identify

the differential degree of each component. The FDA-degree of x is the differential

degree of its first component, i.e., if xA(1) is a r-form, we say that degFDA x = r.

For instance, the FDA1 field strength carries two components, a two-form RA and

a (p+ 1)-form Ri. The FDA-degree of R is therefore 2. This gradation of the

vector space is useful in the following definitions that allow introducing the index-

free notation, and it has no relation with the gradations of the dual L∞ algebra from

chapter 4. In general, a FDA1-valued vector with FDA-degree r can be split into

its standard and extended components, as follows

x =
(
xA(1), xA(p)

)
. (A.1)

The first component xA(1) is a r-form, while the extended component xA(p) is a

(r + p− 1)-form. For later convenience, we refer in general to the extended

components as r̄-forms, with r̄ = r + p− 1.

We now introduce a product between algebraic vectors in terms of the brackets.

These brackets encode the information regarding the generalized structure constants
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of a FDA1 and provide an index-free notation for their contraction. Let B1, . . . Bp+1

be FDA1 vectors, each one of FDA-degree b1, . . . , bp+1 respectively. In terms of the

structure constants of the FDA1, we define:

1. A bilinear product [B1, B2], whose standard and extended components are

given by

[B1, B2]A = CABCB
B
1 B

C
2 , (A.2)

[B1, B2]i = CiBjB
B
1 B

j
2. (A.3)

2. A (p+ 1)-linear product [B1, . . . , Bp+1], whose standard and extended

components are given by

[B1, . . . , Bp+1]A = 0, (A.4)

[B1, . . . , Bp+1]i = CiA1···Ap+11B
A1
1 · · ·B

Ap+1

p+1 . (A.5)

The resulting products are both FDA1 valued vectors, with

degFDA [B1, B2] = b1 + b2, (A.6)

degFDA [B1, . . . , Bp+1] = b1 + · · ·+ bp+1 − p+ 1. (A.7)

The index-free notation allows us to write the Maurer–Cartan equations of a FDA1

from eqs. (3.11) and (3.12) as follows

dµA +
1

2
[µ, µ]A = 0, (A.8)

dBi + [µ, µ]i +
1

(p+ 1)!

[
µp+1

]i
= 0, (A.9)

with
[
µp+1

]
≡
[
µ, p+1. . . , µ

]
.

Let us now consider two sets of algebraic vectors B1, . . . Bm and E1, ..., En, with

FDA-degrees b1, . . . , bm and e1, . . . en respectively. We introduce the following

compact notation for the contraction of their components with the FDA1 invariant

tensor

〈B1, . . . , Bm;E1, . . . , En〉 = gA1···Ami1···inB
A1
1 · · ·B

Am
m Ei11 · · ·E

in
n . (A.10)

Notice that in the absence of extended components (fixing n = 0), the FDA1 becomes

a Lie algebra, and eq. (A.10) becomes the usual notation of the symmetrized trace.
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Moreover, the bracket in the l.h.s of eq. (A.10) separates the algebraic sectors

before and after the semicolon, being the first ones valued in the standard sector

and the latter in the extended sector. The invariant tensor of the FDA1 inherits

the symmetry in the first set of indices from the invariant tensor of Lie algebras.

As a consequence, the bracket in the l.h.s. of eq. (A.10) has the following graded

symmetry due to the permutation of differential forms in the standard sector:

〈. . . , Br, Br+1, . . . ;E1, . . . , En〉 = (−1)brbr+1 〈. . . , Br+1, Br, . . . ;E1, . . . , En〉 .
(A.11)

On the other hand, the FDA1 invariant tensor presents graded symmetry in the

extended indices, depending on the degree of the p-form with which the FDA1 is

defined, as follows

gA1···Ami1···ij···in = (−1)p+1 gA1···Ami1···ji···in . (A.12)

Such symmetry rule, in addition to the permutation of differential forms in the

extended sector, leads to the following graded symmetry for the bracket in index-

free notation:

〈B1, . . . , Bm; . . . , Es, Es+1, . . .〉 = (−1)ēsēs+1+p+1 〈B1, . . . , Bm; . . . , Es+1, Es, . . .〉 .
(A.13)

The invariant properties of gA1···Ami1···in provide us with a notion of covariance and

contravariance for the algebraic indices of a FDA1. To clarify this, let us consider

an arbitrary vector B =
(
BA, Bi

)
with FDA-degree b. In analogy with the case

of Lie algebras, we call BA and Bi the covariant components of the vector. We

define the contravariant duals of B as BA = gABB
B and Bi = gijB

i. Although the

components with mixed indices gAi are in general non-vanishing, we do not include

them into the definition in order not to change the differential form degree of the

components of B. In this way, BA and Bi are also a b-form and b̄-form respectively,

which are univocally determined due to the assumption of non-degeneracy in gAB

and gij . In the same way, we define the inverse components gAB and gij through

the following relations

gAB = gACgBDg
CD, (A.14)

gij = gikgjlg
kl. (A.15)

By setting n = 0, gAB is reduced to the Cartan–Killing metric of the Lie algebra.

However, it must be pointed out that this is not a rigorous definition of a

generalized Cartan–Killing metric for a FDA1, but only a notation that turns out



122 A. Notation

to be helpful when writing the components of FDA1 vectors with lower indices

without introducing ambiguity.



Appendix B

Invariance identities

In this appendix, we consider the derivation of useful properties of FDA1 invariant

tensors. In order to clarify the role of such properties in the study of extended gauge

theories, we begin with their standard equivalents in the context of Lie algebras.

Let G be a Lie algebra expanded by a basis of generators {tA}dimG
A=1 with structure

constants CCAB. Let us also consider a set of arbitrary differential forms X1, . . . , Xn

and Θ of degrees x1, . . . , xn and θ respectively, valued in G, and let us recall the

degree-n invariant tensor condition from eq. (2.45). By contracting eq. (2.45)

with the differential form ΘA0XA1
1 · · ·XAm

n (which is given by the wedge product of

components of X1, . . . , Xn and Θ on the above mentioned basis), one finds

n∑
k=1

CCA0Ak

〈
tA1 , . . . , t̂Ak , tC , . . . , tAn

〉
ΘA0XA1

1 · · ·X
Am
n = 0. (B.1)

Eq. (B.1) allows to identify the algebraic vectors X1, . . . , Xn and Θ, removing

the dependence on the chosen basis of vectors {tA}dimG
A=1 . This allows writing the

following identity

n∑
k=1

(−1)θ(x1+···+xk) 〈X1, . . . , [Θ, Xk] , . . . , Xn〉 = 0. (B.2)

Eq. (B.2) is equivalent to the invariant tensor condition of eq. (2.45) in index-free

notation and involves arbitrary differential forms, relating the Lie bracket with the

symmetrized trace. We refer to eq. (B.2) as invariance identity.

Let us now repeat the above procedure for the case of a FDA1. Let X1, . . . , Xm,

Y1, . . . , Yn and Θ be arbitrary FDA1 vectors whose FDA-degrees we denote by
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x1, . . . , xm, y, . . . , yn and θ. We denote their components by the same letter with

its corresponding algebraic index (e.g. Θ =
(
ΘA,Θi

)
). We now recall the invariant

tensor conditions from eqs. (5.9)-(5.11) and proceed case by case.

By multiplying the first invariant tensor condition of eq. (5.9) by the wedge product

of standard components ΘA0XA1 · · ·XAmY i1 · · ·Y in , we get

m∑
r=1

ΘA0XA1
1 · · ·X

Am
m Y i1

1 · · ·Y
in
n CCA0ArgA1···ÂrC···Ami1···in

+

n∑
s=1

ΘA0XA1
1 · · ·X

Am
m Y i1

1 · · ·Y
in
n CkA0isgA1···Ami1···̂ısk···in = 0. (B.3)

Thus, by plugging in eq. (A.10) into eq. (B.3) and identifying the argument of

both sums as the components of the FDA1 products defined by eqs. (A.2)-(A.5),

we obtain the following identity

m∑
r=1

(−1)θ(x1+···+xr−1) 〈X1, . . . , Xr−1, [Θ, Xr] , Xr+1, . . . , Xm;Y1, . . . , Yn〉

+
n∑
s=1

(−1)θ(x1+···+xm+ȳ1+···ȳs−1) 〈X1, . . . , Xm;Y1, . . . , Ys−1, [Θ, Ys] , Ys+1, . . . , Yn〉 = 0.

(B.4)

Notice that eq. (B.4) relates both the standard and extended components of the

bilinear product to the invariant tensor, and that it reproduces eq. (B.3) for n = 0.

The second invariant tensor condition from eq. (5.10) leads to a different identity, for

which we need to introduce a new set of FDA1 vectors Θ1, . . . ,Θp, and consider the

wedge product of components ΘB1 · · ·ΘBpXA1
1 · · ·X

Am+1

m+1 Y i2
1 · · ·Y in

n . Notice that in

this case we use the extended components of Y1, . . . , Yn. By contracting such term

with eq. (5.10) and identifying the resulting terms as the components of a FDA1

(p+ 1) linear product, we obtain the following identity

m+1∑
r=1

(−1)xr(xr+1+···+xm+1) 〈X1, . . . , Xr−1, Xr+1, . . . , Xm+1;

[Xr,Θ1, . . . ,Θp] , Y2, . . . , Yn〉 = 0. (B.5)

Finally, we consider the contraction of eq. (5.11) with the differential form

ΘjXA1 · · ·XAm+1Y i2 · · ·Y in . This relation implies the definition of one extra

vector Xm+1. The repetition of the previous procedure leads to a third identity
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relating the extended component of the FDA1 bilinear product with the invariant

tensor:

m+1∑
r=1

(−1)xr(xr+1+···+xm+1) 〈X1, . . . , Xr−1, Xr+1, . . . , Xm+1; [Xr,Θ] , Y2, . . . , Yn〉 = 0.

(B.6)

Eqs. (B.4)-(B.6) are the generalization to the case of a FDA1 of the invariant

tensor property from eq. (5.11) studied in ref. [37] in the context of Lie algebras.

They relate the FDA1 products with the invariant tensor in free-index notation, are

equivalent to the requirement that gA1···Ami1···in be an invariant tensor of the FDA1,

and are valid for arbitrary values of m and n.
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Appendix C

Consistency products

In this appendix, we consider the calculation of products not explicitly obtained in

the L∞ formulation of gauge theories from chapters 7 and 8. As it was mentioned

in these chapters, the L∞ formulation of gauge theories extracts the information

of the theory from three sources of information and encodes it into the products

of an L∞ algebra. However, these products do not satisfy the L∞ identities of eq.

(4.11) by themselves, at least for the studied cases. By demanding them to satisfy

such identities, we find new products acting on X−2 that must be non-vanishing for

consistency. A simple procedure that allows to find those products consists of taking

the gauge variation of the definition of the equation of motion term in eq. (4.51),

namely

δF =
∞∑
k=1

∞∑
r=0

(−1)
k(k−1)+r(r−1)

2

k!r!
`k
(
`r+1 (ε, µr) , µn−1

)
. (C.1)

The imposition of the L∞ identities in the `-picture of eq. (4.11) into eq. (C.1) allows

to write δF in terms of a single sum, in which the nested products are absorbed into

F as follows

δF =

∞∑
k=0

(−1)
k(k−1)

2

k!
`k+2

(
ε,F , µk

)
. (C.2)

Thus, demanding eq. (C.2) to be satisfied becomes equivalent to demanding the

already found products to satisfy the L∞ identities. We now can directly compare

this expression with the variation of F that is explicitly obtained case by case, and

extract the information about the missing products that must be non-vanishing in

order to close a well-defined L∞ algebra. Since the gauge parameter ε lies in X0 and

the equation of motion term F lies in X−2, every consistency product found using

this procedure will involve at least one element in X0 and one element in X−2.
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C.1 Products in Chern–Simons theory

We begin by studying the consistency products in the formulation of standard

Chern–Simons theory. In this case, the equation of motion term is given by

FAν = ε µ1···µ2m−2
ν gAB1···Bm−1

RB1
µ1µ2
· · ·RBm−1

µ2m−3µ2m−2
. (C.3)

The gauge variation of the gauge curvature is given by the Lie bracket of the

curvature and the parameter, i.e., through the well-known relation

δRAµν = CABCR
B
µνε

C . This allows to write

δFAν = (m− 1) ε µ1···µ2m−2
ν gAB1···Bm−1

CB1
BCR

B
µ1µ2

εCRB2
µ2µ4
· · ·RBm−1

µ2m−3µ2m−2
. (C.4)

Finally, by plugging in the definition of invariant tensor for Lie algebras from eq.

(2.45) into eq. (C.4), we find

δFAν = ε µ1···µ2m−2
ν gBB1···Bm−1

CABCε
CRB1

µ1µ2
· · ·RBm−1

µ2m−3µ2m−2

= CABCFBν εC . (C.5)

By inspection of eqs. (C.2) and (C.5), it follows that there is one non-vanishing

product that involves vectors in X0 and X−2, necessary for the closure of the entire

L∞ algebra:

[`2 (ε,F)]A = CABCFBεC . (C.6)

Moreover, eq. (C.2) shows that the equation of motion term FAν inherits the

transformation law of the gauge curvature. Since this feature does not come from

the symmetry but the dynamics, it is only valid in standard Chern–Simons theory.

In general, a theory with different symmetry algebra, or whose equation of motion

term shows a different functional dependence on the fundamental field, may not

share such property.

C.2 Products in flat FDA1 theory

The second case under study is the flat FDA1 theory. In this case, the equations of

motions are equivalent to the Maurer–Cartan equations for the FDA1, and therefore,

it is possible to immediately identify the components of F as
(
FA,F i

)
=
(
RA, Ri

)
.

Notice that, as it was mentioned in chapter 7, we write the equation of motion term

and the corresponding L∞ products in terms of differential forms. Thus, the gauge
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variation of F is given by eqs. (3.45) and (3.46) in terms of the components of the

parameter εA and εi, as follows

δFA = CABCFBεC , (C.7)

δF i = CiAjFAεj − CiAjεAF j −
1

(p− 1)!
CiA1···Ap+1

εA1FA2µA3 · · ·µAp+1 . (C.8)

By inspection of eqs. (C.7), (C.8) and (C.2) we immediately find two non-vanishing

products `2 (ε,F) and `p+1

(
ε,F , Ap−1

)
, whose components (in terms of differential

forms) are given by

[`2 (ε,F)]A = CABCFBεC , (C.9)

[`2 (ε,F)]i = CiAj
(
FAεj − εAF j

)
, (C.10)[

`p+1

(
ε,F , Ap−1

)]i
= (−1)1+

(p−1)(p−2)
2 CiA1···Ap+1

εA1FA2µA3 · · ·µAp+1 . (C.11)

Eq. (C.9) corresponds to the standard component of the first consistency product.

Notice that it reproduces the consistency product of the previous case from eq.

(C.6). This is a natural consequence of the presence of the Lie subalgebra in the

FDA1.

C.3 Products in FDA1-Chern–Simons theory

In the case of FDA1-Chern–Simons theory, the equation of motion term does not

transform as the field strength, leading to more complicated expressions for the

consistency products. Hence, we separate F into its standard and extended

components and analyze their gauge variations separately.

C.3.1 Standard sector

Let us consider the gauge variation of the standard component FA in eq. (8.51). By

plugging in the variation of the gauge curvatures of eqs. (C.7) and (C.8), we find

δFA =
∑
m,n

mgAA1gA1···Ami1···in

(
(m− 1)CA2

BCR
BεCRA3 · · ·RAmRi1 · · ·Rin

+ nRA2 · · ·RAmCi1AjR
AεjRi2 · · ·Rin − nRA2 · · ·RAmCi1Ajε

ARjRi2 · · ·Rin

− n

(p− 1)!
RA2 · · ·RAmCi1A1···Ap+1

εA1RA2µA3 · · ·µAp+1Ri2 · · ·Rin
)
. (C.12)
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By using the invariant tensor conditions of eqs. (5.9)-(5.11), it is possible to prove

the following relations:

0 = gA1···Ami1···in

(
(m− 1)CA2

BCR
BεCRA3 · · ·RAm ;Ri1 · · ·Rin

−nRA2 · · ·RAmCi1Bjε
BRjRi2 · · ·Rin

)
− gAA2···Ami1···inC

A
BA1

εBRA2 · · ·RAmRi1 · · ·Rin , (C.13)

0 = mgA1···Ami1···inf
A1RA2 · · ·RAmCi1B1···Bp+1

RB1εB2µB3 · · ·µBp+1Ri2 · · ·Rin

+ gAA2···Ami1···inR
ARA2 · · ·RAmCi1A1B2···Bp+1

εB2µB3 · · ·µBp+1Ri1 · · ·Rin , (C.14)

0 = mgA1···Ami1···inR
A2 · · ·RAmCi1BjR

BεjRi2 · · ·Rin

+ gAA2···Ami1···inR
ARA2 · · ·RAmCi1A1j

εjRi2 · · ·Rin . (C.15)

Thus, by plugging in eqs. (C.13)-(C.15) into eq. (C.12) and by identifying the

differential forms FA and F i in the resulting expression, we can write

δFA = CABCFBεC − gABgikCiBjFkεj

− 1

(p− 1)!
gAB1gikC

i
B1B2···Bp+1

εB2µB3 · · ·µBp+1Fk. (C.16)

Finally, by inspection of eq. (C.16) and the general variation in eq. (C.2), we obtain

the following non-vanishing products

[`2 (ε,F)]A = CABCFBεC − gABCiBjFiεj , (C.17)[
`p+1

(
ε,F , Ap−1

)]A
= (−1)1+

(p−1)(p−2)
2 Ci1AB2···Bp+1

εB2µB3 · · ·µBp+1Fi1 . (C.18)

C.3.2 Extended sector

Let us now consider the gauge variation of the extended component F i in eq. (8.52),

written in terms of the variations of the gauge curvatures from eqs. (C.7) and (C.8)

δF i =
∑
m,n

ngii1gA1···Ami1···in

(
mCA1

BCR
BεCRA2 · · ·RAmRi1 · · ·Rin−1

+ (n− 1)RA1 · · ·RAmCi1BjR
BεjRi2 · · ·Rin−1

− (n− 1)RA1 · · ·RAmCi1Bjε
BRjRi2 · · ·Rin−1

− (n− 1)

(p− 1)!
RA1 · · ·RAmCi1B1···Bp+1

εB1RB2µB3 · · ·µBp+1Ri2 · · ·Rin−1

)
. (C.19)
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By using again the invariant tensor conditions of eqs. (5.9)-(5.11), it is possible to

prove the following relations

gA1···Ami1···in

(
mCA1

BCR
BεCRA2 · · ·RAmf i1Ri2 · · ·Rin

− (n− 1)RA1 · · ·RAmf i1Ci2Bjε
BRjRi3 · · ·Rin

)
− gA1···Amii2···inR

A1 · · ·RAm ;CiBi1ε
BRi2 · · ·Rin = 0, (C.20)

gA1···Ami1···inR
A1 · · ·RAmCi2B1···Bp+1

εB1RB2µB3 · · ·µBp+1Ri3 · · ·Rin = 0, (C.21)

gA1···Ami1···inR
A1 · · ·RAmCi2BjR

BεjRi3 · · ·Rin = 0. (C.22)

By plugging in eqs. (C.20)-(C.22) into eq. (C.19), the variation of the extended

component F i takes a simple form, namely

δF i = gijgklC
k
Bjε

BF l. (C.23)

Finally, by inspection of eq. (C.23) and the general expression in eq. (C.2), we

obtain one consistency product for the extended sector:

[`2 (ε,F)]i = gijgklC
k
Bjε

BF l. (C.24)

This completes the calculation of consistency products for the studied theories.
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Poincaré algebras and Lovelock–Cartan gravity theory,” Phys. Lett. B 742

(2015) 310–316, arXiv:1405.7078 [hep-th].
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