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Zusammenfassung

LWFA steht für Laser WakeField Acceleration (oder Accelerator), einer neuen Technolo-
gie, die eine drastische Reduzierung der Größe und Kosten von Teilchenbeschleunigern ver-
spricht. LWFA beruht auf dem großen (∼ GV/cm) elektrischen Feld in der Plasmawelle, die
durch Laserpulse mit relativistischer Spitzenintensität (1018W/c2m) angeregt wird. Im Rah-
men dieser Dissertation wurden die für die LWFA-Forschung am Ti:Saphir Laser ATLAS-
300 am Laboratory for Extreme Photonics der Ludwig-Maximilians-Universität München
geeignete Diagnostiken entwickelt, sowohl für Charakterisierung der Elektronen als auch zur
Untersuchung des Plasmamediums. Zur Elektronendiagnostik wurden Implementierung und
Charakterisierung von Szintillationsschirmen und Permanentdipolmagneten durchgeführt.
Zur Plasmadiagnose wurde ein Probestrahl mit wenigen Zyklen entwickelt, mit dessen Hilfe
fs-Schnappschüsse der Plasmawelle ermöglicht wurden.

Konkret wurde die Lichtemissionseffizienz von neun gängigen Szintillationsschirmtypen mit
Elektronenstrahlen des ELBE Linac am Helmholtz Zentrum Dresden-Rossendorf kalibriert.
Bestehende Verfahren zur Übertragung der absoluten Kalibrierergebnisse in eine Kreuzkalib-
rierung mit einer Konstantlichtquelle wurden entscheidend verbessert. Bezüglich des Dipol-
magneten wurde die Verteilung des B-Feldes in der Nähe der Mittelebene des Spalts mit
einem Hall-Sensor gemessen und die Elektronen wurde in General Particle Tracer mit der
gemessenen Feldverteilung getrackt. Szintillationsschirme und der Dipolmagnet bildeten das
Elektronenspektrometer, das eine energieaufgelöste Nachweis von im LWFA erzeugten Elek-
tronenstrahlen ermöglichte. Selbstinjizierte Elektronenstrahlen mit mehreren hundert pC
Ladung und Spitzenenergien über 1GeV wurden in einer mit Wasserstoff gefüllten Gaszelle
unterschiedlicher Länge beschleunigt. Durch die Injektion an Stoßfronten in überschallen
Gasstrahlen wurden stabile Elektronenstrahlen mit einer spektralen Dichte über 10 pC/MeV
dank einer prozentualen Energieverteilung erreicht.

Das Highlight dieser Arbeit ist der Aufbau und die Anwendung eines auf Hohlfasern basieren-
den Pulskompressionsaufbaus, der während der Experimente als Probestrahl dient. Dieser
Aufbau lieferte sub-10 fs Probepulse, mit denen Phasenkontrast-Schnappschüsse der Laser-
Plasma-Wechselwirkung aufgezeichnet wurden. Insbesondere wurden lasergetriebene Plas-
mawellen aufgrund der ultrakurzen Probepulsdauer aufgelöst. Ein Teil des Probestrahls
wurde aufgespalten, um ein Nomarski-Interferometer zu beleuchten, was eine unabhängige
Messung der durchschnittlichen Plasmadichte mit der Abel-Inversion ermöglicht. Eine sys-
tematische Messung der Plasmawellenlänge bei unterschiedlichen Dichten oder Laserinten-
sitäten zeigte, dass das derzeitige Verständnis der Skalierung von nichtlinearen Plasmawellen-
länge unzureichend ist. Basierend auf einer Reihe von Particle-in-Cell Simulationen wurde
eine empirische Skalierung vorgeschlagen, die die nichtlineare Plasmawellenlänge nicht nur
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mit der Spitzenstärke des Treiblasers, sondern auch mit seinem Aspektverhältnis von Punk-
tgröße zu Pulslänge in Beziehung setzt. Es wurde eine hervorragende Übereinstimmung
zwischen der Messung und dem neuen Skalierungsgesetz festgestellt.
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Abstract

LWFA is the abbreviation of Laser WakeField Acceleration (or Accelerator), which is an
emerging technology promising a drastic reduction of particle accelerators’ size and cost.
LWFA relies on the large (∼ GV/cm) electric field in the plasma wave excited by laser
pulses with a relativistic peak intensity in excess of 1018W/c2m. During the course of this
thesis work, diagnostic tools, for electrons and for the plasma medium, specially adapted
to the conditions of LWFA research were developed for the ATLAS-300 Ti:sapphire laser at
the Laboratory for Extreme (LEX) Photonics at Ludwig-Maximilians-Universität München
(LMU). For electron diagnostics, the implementation and characterization of scintillating
screens and permanent dipole magnets were carried out. On the plasma diagnostics side, a
few-cycle probe beam for producing fs-snapshots of the plasma wave was developed.

Specifically, the light-emitting efficiency of nine commonly used scintillating screen types
were calibrated with electron beams from the ELBE Linac at Helmholtz Zentrum Dresden
Rossendorf. Existing methods for transferring the absolute calibration results into cross-
calibration with a constant light source were improved upon. Regarding the dipole magnet,
the B-field distribution near the gap central plane was measured with a Hall sensor and
electron tracking was performed in General Particle Tracer using the measured field map.
Scintillating screens and the dipole magnet comprised the electron spectrometer, allowing for
energy-resolved detection of electron beams generated in the LWFA. Self-injected electron
beams with several hundreds pC of charge and peak energy above 1GeV were accelerated in
a hydrogen-filled varying-length gas cell. Injecting with shock fronts in supersonic gas jets,
stable electron beams with spectral density beyond 10 pC/MeV was achieved thanks to a
percent-level energy spread.

The highlight of this work is the construction and application of a hollow-core fiber based
pulse compression setup, serving as the probe beam during the experiments. This setup
delivered sub-10 fs probe pulses, with which, shadowgraphic snapshots of the laser plasma
interaction were recorded. In particular, laser-driven plasma waves were resolved owing to
the ultrashort probe pulse duration. A portion of the probe beam was split out to illuminate
a Nomarski interferometer, enabling independent measurement of the average plasma density
with Abel inversion technique. A systematic measurement of plasma wavelength at varying
densities or laser intensities revealed insufficiency of the current understanding of nonlinear
plasma wavelength scaling. An empirical scaling was proposed based on a set particle-in-
cell simulations, which relates the nonlinear plasma wavelength not only to the drive laser’s
peak strength, but also to its spot-size-to-pulse-length aspect ratio. Excellent agreement was
found between the measurement and the new scaling law.
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1 Introduction

Particle accelerators have been revolutionizing how mankind perceives the world. Scientists
use particles, or secondary radiations derived from accelerators to study the structure and
interaction of matter in the hope of unveiling the laws of the nature—the discovery of sub-
atomic particles such as electrons and quarks to name an example. Most recently, collisions
of the 7TeV (center-of-mass) proton beams produced with the Large Hadron Collider (LHC)
confirmed the long-standing hypothesis of the Higgs boson—an essential puzzle piece in ex-
plaining how mass arises for other fundamental particles in the Standard Model of particle
physics [1–3]. Outside the field of fundamental research, clinicians use accelerator-based
sources for diagnosing diseases or treating tumors, aiming for improving human living con-
dition. Radiography techniques such as Xray CT have become a routine in modern hospitals.
Medical accelerators producing heavy ions with several hundred MeV/u of energy have been
successfully used for radiotherapy. The societal befits of particle accelerators do not end
there, one finds myriad industrial applications too [4]. Huge market exists for accelerator-
based material processing and treatment, e.g., ion implantation of semiconductor, precision
e-beam machining. Neutron source off-sprang from accelerators are widely used for the ex-
ploration of natural resources such as gas and oil, as well as for security applications like
nondestructive examination of nuclear waste and search for concealed explosives.

Currently, particle accelerators rely mostly on metal cavities operating in the radio frequency
(RF) range of a few gigahertz. When a charged particle e.g. a proton or an electron propa-
gates through these RF cavities, the alternating field is effectively rectified in the particle’s
rest frame so that it can be accelerated to high energies. Particle accelerators are built in
the format of either a ring or a straight line. The largest circular accelerator ever built to
date is the located at CERN near Geneva—the Large Hadron Collider (LHC) for protons,
and the Large Electron–Positron Collider (LEP) for leptons, respectively. The LEP was
built in a tunnel with a circumference of 27 km, where electrons collide with positrons at a
beam energy of 209GeV. After the LEP’s operation stopped and the machine dismantled in
2000, the same tunnel became the host of the LHC, where two counter-propagating proton
beams can be accelerated to 6.5TeV, i.e., 13TeV center-of-mass collision energy. In contrast,
the Stanford Linear Accelerator at SLAC National Accelerator Laboratory is, as its name
suggests, a linear machine for electrons/positrons with beam energy up to 50GeV achieved
in a 2-mile-long tunnel, largest in its kind.

The huge size and hence enormous (construction and operation) cost of these accelerators
make it almost economically prohibitive for even larger machines, which also makes the
access to these facilities rather restricted. The main reason for that lies in the maximum
acceleration gradient achievable with RF technologies, which is limited to ∼ 100MV/m
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due to cavity material breakdown. Clearly, novel approaches to increase the acceleration
gradient are desired, enabling next-generation energy-frontier accelerators on the one hand,
proliferating the currently state-of-the-art machines on the other hand. A promising route
is to leverage the rapid development of ultra-fast lasers, as the highest controllable field
strength known to mankind is in the focus of a laser pulse. Switching from RF waves to near
infrared (NIR) lasers, advanced micro-cavity designs with dielectrics instead of metals have
achieved higher fields of up to ∼ 250MV/m [5], albeit only in structures of millimeter-scale
so far and the scalability is yet to be demonstrated.

When propagating a high-power laser pulse in a dilute plasma, the laser pulse’s ponderomo-
tive force expels the plasma electrons from high-intensity regions and leaves an ion excess
in its wake. The electrostatic force of these ions acts as the restoring force and sets up
a collective electron oscillation. Thus a density modulation co-propagating with the drive
pulse i.e. the plasma wave is formed. The electric field of this wakefield can be huge. For
example, a plasma with an average density of 1018 cm−3 can sustain a field on the order of
100GV/m, three orders of magnitude higher than possible in RF cavities.

Tajima and Dawson [6] first proposed the idea of harnessing this large plasma field to build
accelerators four decades ago. However, it was not until the advent of chirped pulse amplifi-
cation (CPA) pioneered by Strickland and Mourou [7] that laser plasma accelerators (LPAs)
were experimentally demonstrated. LPA experiments prior to 2004 [8] achieved acceleration
gradients over 100GV/m, electron energy beyond 100MeV, and nC-level charge, although
most of the spectral component was contained in the low energy (below 10MeV) part of
the exponentially distributed energy spectrum and only the long tail extends out to above
100MeV, making these beams unfit for many applications demanding monoenergetic source
with percent-level energy spread. On the theory front, contemporaneously, numerical meth-
ods, particle-in-cell (PIC) codes in particular, to simulate laser-plasma interactions witnessed
a rapid improvement. The ever-growing computing power and the ever-shorter laser pulse
duration, hence a reduced interaction volume, enabled fully three-dimensional simulations of
the laser wakefield acceleration (LWFA) process. PIC simulations illuminated LWFA physics
with fine details and identified the bubble regime [9], in which quasi-monoenergetic electron
bunches can be accelerated. This was demonstrated in 2004 when three independent groups
reported the production of high-quality electron bunches with ∼ 100MeV peak energy,
∼ 100 pC of charge, a few percent of energy spread, and a few milliradians of divergence,
marking the beginning of a new era of LWFA research. Ever since, LWFAs have reached
multi-GeV beam energies [10–12]; controlled injection schemes have drastically increased
their stability and tunability [13–25]; several types of LWFA-based compact Xray sources
have achieved competitive peak brightness compared with RF-based infrastructures [26–28].
Furthermore, these sources have demonstrated their application potential in imaging [29, 30],
high energy density physics [31, 32], and tumor treatment [33].

While the field of wakefield acceleration is developing at a fast pace, some basic questions
remain not fully answered. In particular, though theories on the formation of plasma wave
trains have been studied extensively for the one-dimensional case, their predicting power in
a real experiment is often limited due to higher dimensional effects. Studies addressing 3D
plasma wave formation date back decades and remain mostly qualitative [34] or phenomeno-
logical [35]. Lu et al. [36, 37] established a quantitative model to correlate plasma bubble
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size with the laser peak intensity based on a force balance argument, which, however, is only
valid in the bubble regime and does not discuss trailing periods of plasma oscillations.

Due to the restrictions of analytical models, interpretation of experimental results usually
resorts to numerical simulations. With the recent development of fast particle-in-cell codes
such as CALDER-CIRC [38] and FBPIC [39], quasi-3D simulations can be performed in a
short period of time, thus enabling systematic parameter scans.

It is often cited in the accelerator community that an accelerator is only as good as its
diagnostics. New diagnostics especially design for LPAs such as few-cycle shadowgraphy
uniquely combine femtosecond resolution with picosecond observation windows [40–43]. As
established models predict a clear relation between the plasma wavelength and the laser
peak potential, this method potentially provides a novel non-invasive diagnostic for the laser
evolution. Pioneering work of Sävert et al. [40] has demonstrated the lengthening of the
plasma bubble [9] and provided important information about the electron injection process.

A considerable portion of the work underlying this thesis was devoted to the commissioning
of a new infrastructure, the Laboratory for Extreme (LEX) Photonics, where researches
on laser plasma acceleration of electrons and ions were carried out. The Ti:sapphire laser
system ATLAS-300 is the backbone of this new lab. With ATLAS-300, GeV-class electron
bunches with hundreds of pC charge were accelerated from self-injection in a gas cell target.
High-quality electron bunches with unprecedented spectral charge density (> 10 pC/MeV)
were achieved with controlled injection, leading to the demonstration of fast betatron Xray
phase contrast tomography [30], the first direct observation of plasma waves and ion motion
driven by LWFA bunches [42], and new insights into beam-loading effects [44]. All these
successes are supported by accurate quantitative knowledge of the electron beam properties,
for which, electron diagnostics, a magnetic spectrometer with absolutely calibrated energy
and charge axes in particular, are indispensable. Characterization of electron diagnostics
forms the first pillar of this thesis.

The other pillar of this thesis is the commissioning and implementation of a few-cycle probe
beam, adapted from that described in the dissertation by Sävert [45] to suit the experimental
conditions at ATLAS-300. This few-cycle probe beam enabled shadowgraphic snapshots of
plasma waves, driven either by the laser directly [43], or by the electron beams from the
LWFA stage powered by ATLAS-300 [42]. Combining few-cycle shadwography with inde-
pendent density measurement from Nomarski-type interferometry allowed the interrogation
of the scaling laws for the non-linear plasma wavelength in a practical regime, and it was
found, contrary to the common belief in the community, that the laser peak strength alone
is not sufficient to scale the nonlinear plasma wavelength. FBPIC [39] simulations of laser
propagation in a plasma closely resembling the experiments reveal that the transverse mo-
tion of electrons play an important role in the plasma wave driven by a tightly focused laser
whose spot size is comparable to its pulse length. A set of CALDER-CIRC [38] simulations
inspired a new empirical scaling involving the peak laser strength and the spot aspect ratio,
which showed excellent agreement with the measurement.

The remainder of the thesis is structured as follows:

Chapter 2 starts by laying the theory foundation of high-intensity laser-plasma interaction,
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including the fundamental description of a laser pulse, the motion of a single electron in
electro-magnetic fields, and basics properties of plasmas.

Chapter 3 gives a general description of laser wakefield acceleration. Plasma dynamics is
discussed its simplest form with emphasis on plasma wave formation. Electron injection and
acceleration is presented with both mathematical equations and experimental data.

Chapter 4 describes the basic diagnostic tools developed during the course of this thesis
work.

Chapter 5 presents the setup and the results obtained with the few-cycle probe beam.

Finally, Chapter 6 summarizes the thesis work and gives prospects.
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2 Basic laser-matter interaction

Physics of laser wakefield acceleration (LWFA) involves the understanding of high-intensity
laser pulses as well as their interaction with a plasma. To tackle this rather complex problem,
the individual building blocks will be examined first and then put together. The discussion
of this chapter starts with properties of a laser pulse and the motion of a single electron.

2.1 Description of laser pulse

An intense laser pulse is in essence an electromagnetic (EM) wave, namely, an oscillation of
electric field E(r, t) and magnetic field B(r, t) in space r and time t. The bold fonts here
represent vectors and the explicit function dependence (r, t) will be dropped hereinafter for
brevity. In general, the dynamics of EM fields is governed by Maxwell’s equations [46]:

∇ ·E =
ρ

ε0
∇×E = −∂B

∂t

∇ ·B = 0 ∇×B =
1

c2
∂E

∂t
+ µ0j,

(2.1)

where ρ and j denote the electric charge and current density, ε0 and µ0 the vacuum permit-
tivity and permeability, and c = 1/

√
µ0ε0 the speed of light, respectively.

An EM wave carries an energy flow. The rate of energy transfer through a unit area,
corresponding to a laser pulse’s intensity IL in practical terms, can be calculated as the time
average of the Poynting vector ⟨S⟩. In free space,

IL = ⟨S⟩ = 1

µ0
⟨E ×B⟩ = ε0c⟨E2⟩. (2.2)

Later in this work EM fields are often expressed by a four-potential Aµ = (ϕ/c,A). The
relation between the fields and the four-potential is given as

E = −∇ϕ− ∂A

∂t
B = ∇×A,

(2.3)

with ϕ being the electric scalar potential, and A the magnetic vector potential.
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2.1. Description of laser pulse

Employing the definition above, the Lorenz gauge condition ∂µA
µ = 0,i and the vector

identity ∇×∇×A = ∇(∇ ·A)−∇2A, Maxwell’s equations simplify to a wave equation

(
1

c2
∂2

∂t2
−∇2

)
Aµ = µ0J

µ, (2.4)

with a four-current Jµ = (cρ, j) as the source term. In absence of Jµ, e.g. in vacuum, the
wave equation admits harmonic plane wave solutions

Aµ = Aµ
0 exp(ikL · r − iωLt), Aµ

0 ∈ C (2.5)

observing the dispersion relation |kL| = ωL/c. kL denotes the wave vector, and ωL the
angular frequency of the carrier. The complex-valued amplitude Aµ

0 = |Aµ
0 | exp(iΦµ) in-

corporates the phase Φµ of the oscillation. Here Aµ is an analytical representation [47]
consisting of the real-valued physical potential and its Hilbert transform—convolution with
1/(πt). Discarding the imaginary part of the analytical representation recovers the physical
potential.

A plane wave with a constant amplitude everywhere in space and time is just an idealized
model. It does not directly represent a real laser pulse, whose spatial-temporal extents are
finite. However, any laser pulse can be described as a linear superposition of plane waves
with various frequencies and wave vectors given a fixed phase relationship (detailed below)
owing to the completeness of the basis {exp(ikr), exp(iωt)}ω∈R. The linearity of the wave
equation further warrants that such a superposition remains a solution to the equation.
Importantly, it follows from the definition in Eq. (2.3) and the dispersion relation that the
amplitude of the E-field is a factor of c larger than the B-field. Hence the electron motion in
a laser pulse (detailed in section 2.2) will be dominated by the E-field in the non-relativistic
regime, and only in the relativistic regime does the B-field play an important role.

2.1.1 Gaussian pulse

Let Ã(ω) ∈ C, the spectrum of a linearly polarized laser pulse,ii be a Gaussian function with
an amplitude of Ã0 ∈ R, a mean angular frequency of ωL, a standard deviation of Ω/

√
2,

and a linear spectral phase Φ̃(ω) = κω +Φ0, i.e.,

Ã(ω) = Ã0 exp

[
−(ω − ωL)

2

Ω2

]
exp(iκω + iΦ0). (2.6)

An inverse Fourier transform of this spectrum yields

A(t) =

∫
dω

2π
Ã(ω) exp(−iωt)

= A0 exp

[
−(t+ κ)2

τ2

]
exp[−iωL(t+ κ)], (2.7)

irepeated index µ is summed over
iiThis work uses linearly polarized laser pulses. They have only one significant field component hence can

be expressed with a scalar notation.
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2.1. Description of laser pulse

with respectively the complex-valued amplitude and the half-width at 1/e maximum of

A0 = Ã0
Ω

2
√

π
exp(iΦ0), and τ =

2

Ω
. (2.8)

Equation (2.7) is the analytical representation of a Gaussian pulse in the time domain.
Apparently, a broader spectrum (larger Ω) can result in a shorter pulse (smaller τ), which is
but a manifestation of the Heisenberg’s uncertainty principle in the context of laser physics.
However, a broad spectrum alone does not ensure a short pulse. The spectral phase plays
also an important role. When the spectral phase is linear, as assumed for the calculation
above, there will be an instant of time—depending on the phase’s slope—where all frequency
components of the spectrum interfere constructively and the resulted pulse duration is the
shortest. Such a pulse is called transform-limited; cf. Fig. 2.1. On the contrary, a nonlinear
spectral phase distorts the pulse—increasing the pulse duration and thereby reducing the
pulse’s peak power. A pulse with nonlinear phases is called chirped. Chirping the pulse in
a controlled manner allows laser pulses to be amplified to high energies, e.g. ∼ 5 J before
compression for the experiments presented in this work, without damaging the optics. This
technique of chirped pulse amplification (CPA) [7] was awarded the Nobel prize in Physics
in 2018; cf. Sec. 3.7. Discussions above also constitutes the basic guideline for few-cycle
pulse generation, enabling the results on few-cycle shadowgraphy presented in chapter 5;
cf. Refs. [43, 45].
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Figure 2.1: Time- (left) and spectral domain (right) representation of laser pulses with identical
spectral amplitude and various orders of spectral phase; in the left panel pulses with odd-ordered
phase are flipped vertically for better legibility. A constant phase results in a transform-limited
centered at t = 0; a linear phase shifts the pulse; a parabolic phase broadens the pulse; a cubic phase
adds an asymmetry to the pulse.

The product of the temporal duration and spectral width—both in the sense of full width at
half maximum (FWHM) of the intensity envelope—is known as the time-bandwidth product.
For a transform-limited Gaussian pulse

∆tFWHM · ∆ωFWHM

2π
≈ 0.441. (2.9)

The discussion above did not involve the spatial dependence for simplicity. The spatial
decomposition is an analogy of the temporal one, that is, a laser beam with finite extent in
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2.1. Description of laser pulse

space can be decomposed into plane waves with different wave vectors (directions). In the
next subsection, the properties of a Gaussian beam will be discussed.

2.1.2 Gaussian beam

A Gaussian beam is of special interest because a) it is often the fundamental transversal
mode of a laser resonator or (approximately) of a hollow-core fiber (Sec. 5.1), and b) it is
simple enough to be handled analytically in paraxial approximation [48]. Employing the
(complex) analytic representation,

A(r, z) = A0
w0

w(z)
exp

[
− r2

w2(z)

]
exp

[
ikL

r2

R(z)

]
exp[ikLz − iψ(z)] (2.10)

describes a Gaussian beam propagating to the z-direction with the focus at z = 0. The
radial coordinate r measures the distance to the beam axis. Axial symmetry (hence the
coordinate r) and flat phase (see discussion below) in the focus are assumed for simplicity.

w(z) = w0

√
1 +

z2

z2R
(2.11)

denotes the beam size at position z, where

zR =
πw2

0

λL
(2.12)

is the Rayleigh range—the distance from the focus at which the beam area doubles. The
wave number kL and wavelength λL are related via λL = 2π/kL.

w0 = w(0) =
λL
π

1

tan θ
(2.13)

is the beam waist (radius), and

θ = lim
z→∞

arctan
w(z)

z
≈ w0

zR
(2.14)

is the asymptotic (half) divergence of the beam. The wavefront’s radius of curvature

R(z) = z +
z2R
z

(2.15)

has minima of ±2zR at z = ±zR. A flat wavefront, i.e. R(z) → ∞, can be obtained either
in the focus, z → 0, or in the far-field, z → ∞. A Gaussian beam acquires a phase of
kLz − ψ(z) over a propagation of z, less than that of a plane wave with the same carrier
frequency propagating over the same distance, kLz. This r-independent phase shift is known
as the Gouy phase [49]

ψ(z) = arctan

(
z

zR

)
. (2.16)
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2.2. Electron motion in laser pulse

2.2 Electron motion in laser pulse

Inside an EM field, the motion of a relativistic electron with rest mass me, charge −e, and
velocity v can be generally characterized by the Lagrangian [46]

L = −mec
2
√

1− |v|2 /c2 − e(v ·A− ϕ). (2.17)

The Euler-Lagrange equation dt ∂ṙL = ∂rL then reads

d

dt
(p− eA) = −e∇(v ·A− ϕ), (2.18)

which states that the temporal variation of the canonical momentum p− eA is given by the
gradient of a generalized potential -e(v ·A − ϕ). Here p = γmev denotes the momentum,
γ = 1/

√
1− β2 the Lorentz factor, and β = |v| /c the speed normalized to the speed of light.

Using the chain rule d/dt = ∂/∂t+(v ·∇) for a particle moving in a field, the vector identity
v ×∇×A = ∇(v ·A)− (v · ∇)A, and the definition of vector potential A in Eq. (2.3), the
Euler-Lagrange equation above reveals itself as the Lorentz force equation:

dp

dt
= −e(E + v ×B). (2.19)

Let this single electron be an element of a fluid, another interpretation of the Euler-Lagrange
equation can be obtained by considering the vector identity∇(p·p) = 2[(p·∇)p+p×(∇×p)],
which, upon division by 2γme and rearrangement [50], yields

(v · ∇)p =
1

2γme
∇|p|2 − v × (∇× p). (2.20)

Using the relation above to split the total time derivative in Eq. (2.18) and taking into
account γ =

√
1 + (|p|2/mec)2, the partial derivatives of the canonical momentum fulfill

(
∂

∂t
− v ×∇×)(p− eA) = −∇(γmec

2 − eϕ). (2.21)

Since the right hand side of this equation is a gradient, its curl vanishes. Hence taking curl
on both sides of Eq. (2.21) results in the vorticity equation

(
∂

∂t
−∇× v×)[∇× (p− eA)] = 0, (2.22)

which implies ∇×(p−eA) = 0 for any time t, if ∇×(p−eA)|t<0 = 0, e.g., when the electron
fluid is at rest before laser’s arrival [51]. Hence the momentum equation (2.21) becomes

∂

∂t
(p− eA) = −∇(γmec

2 − eϕ). (2.23)

This equation will serve as the starting point to derive plasma wave dynamics later in the
next chapter.
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2.2. Electron motion in laser pulse

2.2.1 Plane wave - non-relativistic regime

The Lorentz equation (2.19) can be easily integrated for the non-relativistic motion in a
plane wave propagating in vacuum, i.e. γ → 1, β → 0, ϕ = 0, and A = A0 sin(kL · r − ωLt).
In this case, p = mev and the v × B term can be neglected due to B = E/c [52]. Using
again the chain rule d/dt = ∂/∂t+ (v · ∇), Eq. (2.19) becomes

d

dt
(p− eA) = −e(v · ∇)A. (2.24)

Since (v · ∇)A = v∥kLA0 cos(kL · r − ωLt), v∥ being the velocity component parallel to the
wave vector kL, is on the order of O(v∥/c) due to the dispersion relation |kL| = ωL/c, the
right hand side of the equation above can be neglected for a non-relativistic electron. Hence

p− eA = const. (2.25)

For an electron initially at rest, the integration constant above is zero; the quiver velocity is
simply v = eA/me and the quiver motion is purely transverse. Averaging the quiver energy
me |v|2 /2 over one period of the fast oscillation yields the ponderomotive potential [53]

Up =
e2A2

0

4me
. (2.26)

If the field is not a simple plane wave with a constant amplitude, the gradient of the pondero-
motive potential exerts a force on a test charge and pushes it to lower intensity regions. As
will be shown in later chapters, this ponderomotive force can drive large amplitude plasma
waves in which particles can be trapped and accelerated to relativistic energies.

The maximal quiver velocity can also be readily obtained as vmax = eA0/me. Equating
vmax to the vacuum speed of light yields A0 = mec/e, that is, an electron were to reach
the speed of light when quivering in the field with an amplitude of mec/e, contradicting the
non-relativistic assumption. Hence when the normalized vector potential defined as

a0 =
eA0

mec
, (2.27)

approaches unity, relativistic treatment must be applied and the v×B term taken in account.

2.2.2 Plane wave - relativistic regime

In the relativistic regime, the electron motion is more complex. Two constants of motion
stemming from symmetries of plane waves can be utilized to ease the understanding [54, 55]:

1. the potential is translation-invariant in the transverse direction, r⊥ → r⊥ +∆r;

2. the potential is only a function of t− r∥/c, be r∥ the propagation distance.

10



2.2. Electron motion in laser pulse

From 1, it follows that the canonical momentum’s transverse components conserve, i.e.,

p⊥ − eA⊥ = C1. (2.28)

Hereafter C1 will be referred to as the first constant of motion. For an electron initially at
rest, C1 = 0. Likewise, it follows from 2,iii

p∥ −
Ekin
c

= C2, (2.29)

where Ekin = (γ − 1)mec
2 denotes the kinetic energy, and p∥ the parallel component of the

kinetic momentum. The second constant of motion, C2, vanishes as well if the electron has
no motion at the beginning. A heuristic way to understand the second constant of motion
is that the kinetic energy gain of an electron in the EM field is related to its longitudinal
momentum increment via the photon dispersion relation, kL = ωL/c, which is a consequence
of a plane wave carrying no net transverse momentum.

The relation between the longitudinal and transverse momenta can thus be found, for an

initially stationary electron, through the definition of the Lorentz factor γ =
√

1 + p̃2⊥ + p̃2∥,

with p̃⊥,∥ = p⊥,∥/mec denoting the normalized momenta, as

p̃∥ =
p̃2⊥
2
, (2.30)

alongside the relation between γ and a:

γ = 1 +
a2

2
. (2.31)

The quadratic relation in Eq. (2.30) implies that the electron motion will be dominated
by the transverse component in the non-relativistic regime, p̃⊥ → 0, whereas in the highly
relativistic regime, p̃⊥ ≫ 1, the longitudinal motion becomes dominant.

Thus the y- and z-component of the equation of motion, in a laser pulse a = ŷa0 sin(kLz − ωLt),
read

p̃y =
γ

c

dy

dt
= a (2.32)

p̃z =
γ

c

dz

dt
=
a2

2
. (2.33)

Introducing the retarded time τ = t− z/c such that kLz − ωLt = −ωLτ and γ d
dt =

d
dτ ,

iv the
equations above can be easily integrated to yield

y(τ) =
a0c

ωL
[cos(ωLτ)− 1] (2.34)

z(τ) =
a20c

4

[
τ − 1

2ωL
sin(2ωLτ)

]
. (2.35)

iiiThe direct consequence of 2 is p∥ − Etotal/c = C∗
2 . Subtracting both sides by mec

2 yields Eq. (2.29)
ivγ d

dt
= γ dτ

dt
d
dτ

= (γ − γ
c

dz
dt
) d
dτ

= d
dτ

, cf. Eqs. (2.31) and (2.33).
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2.2. Electron motion in laser pulse

At first glance, Eq. (2.34) represents a transverse oscillation at the laser frequency ωL, and
Eq. (2.35) a longitudinal drift (due to the a20cτ/4 term) superimposed with an oscillation at
2ωL. In fact, however, they contain all orders of nonlinear motion because τ is a function
of z [56]; cf. the middle panel of Fig. 2.2. This becomes evident when the phase slippage
between the laser and the electron is examined. Solving the drift term a20cτ/4 for t results
in a drift velocity of

vdrift =
〈z
t

〉
=

a20
4 + a20

c (2.36)

along the laser propagation direction, which effectively reduces the phase slippage angular
frequency tov

ω =
4

4 + a20
ωL. (2.37)

As a result, the transverse oscillation becomes the nonlinear quiver with a period of 2π/ω,
and the amplitude scales linearly with a0. In the longitudinal direction, oscillation period
elongates to π/ω, and the amplitude scales with a20/(4 + a20), which is almost a constant for
a0 ≫ 2. In the average rest frame co-moving with the velocity vdrift, the electron trajectory
appears as a figure-of-8; shown in the right panel of Fig. 2.2.
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Figure 2.2: Left: Electron trajectory in a plane wave in the lab frame; λL denotes the laser wavelength.
Middle: Evolution of dynamical variables for a0 = 2; z∗ = z − vdriftt is the coordinate in the average
rest frame. Note that the angular frequency is ω = ωL/2 for the transverse oscillation and 2ω = ωL

for the longitudinal motion. Right: Electron trajectories for a0 ∈ [0.4, 1.2, 2.0] in the average rest
frame; solid curves account for τ ’s z-dependence hence the oscillation amplitude is reduced (see main
text) whereas dotted curves are y(τ) v.s. z(τ) − a20cτ/4; cf. Eqs. (2.34) and (2.35); kL denotes the
laser wavenumber; the center of figure-of-8 is deliberately shifted to the coordinate origin.

vFor an electron moving at a velocity of vdrift = a2
0c/(4 + a2

0), it takes t = λL/(c− vdrift) for a laser pulse
to outrun this electron by one wavelength of λL, corresponding to a phase slippage of 2π between the laser
and the electron. The angular frequency of phase slippage is therefore ω = 2π/t = 4ωL/(4 + a2

0).
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2.2. Electron motion in laser pulse

2.2.3 Realistic laser pulse

Based on the knowledge of electron motion in a monochromatic plane wave, this section
adds complexity to the model in two steps to make it closer to reality. In the first step, a
Gaussian temporal envelope is considered while the pulse remains translation-invariant in
the transverse direction, i.e., a plane wave pulse; in the second step, the spatial dependence
is accounted for as a Gaussian beam with a finite-sized waist, i.e., a pulsed Gaussian beam.
In either case, the peak value of the field is assumed sufficient to drive the electron motion
to the relativistic regime. See section 2.1 for the definition of Gaussian pulses and beams.
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Figure 2.3: Electron trajectory in (a) a plane wave pulse and (b) a pulse focused to a spot with
w0 = 0.6λL. In both panels, a0 = 2.0, and λL denotes the laser wavelength.

In a plane wave pulse, the electron motion starts as a pure transverse oscillation in the
leading edge of the pulse. With the increase of field strength, the oscillation amplitude
grows; the longitudinal oscillation and drift kick in near the peak of the pulse. As the pulse
fades away, the electron motion gradually becomes a pure transverse oscillation again. After
the laser pulse has passed, the electron will be merely displaced in space. No net energy
transfer from the laser to the electron is achieved, because all the kinetic energy gain of the
electron during the oscillation will be eventually given back to the laser field; cf. Fig. 2.3 (a).
That sounds rather discouraging. In reality, however, the energy contained in the pulse
is limited, meaning that the relativistic intensity can only be sustained over a small focal
volume in space. For example, typical full width at half maximum (FWHM) focal spot size
in this work is about 30 µm; correspondingly, the Rayleigh range is about 3mm.

A pulsed Gaussian beam has its intensity peak in the center of the focal volume and the
intensity decreases both longitudinally and transversely. In the rising edge of the pulse, the
electron motion is similar to that in step one. Once the intensity peak overtakes the electron,
however, the motion becomes different: an electron moving away from the axis will find itself
in a lower intensity region, hence the reduced restoring force can not pull the electron back
to the high intensity region any more; cf. Fig. 2.3 (b). Eventually, the electron will scatter
out of the laser beam. Experimentally first observed by Moore et al. [57], the electron’s
scattering angle, θ, is related to the ratio of its transverse and longitudinal momenta as
tan θ = p⊥/p∥. Particularly, for an electron initially at rest, θ = arctan

√
2/(γ − 1).

Such a scattering effect is another way of interpreting the ponderomotive potential introduced
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2.3. Practical considerations

in the previous section. As the electron motion becomes relativistic, the expression for the
ponderomotive potential, Eq. (2.26), needs to be modified accordingly. Defining the potential
again as the cycle-averaged kinetic energy, the formula can be given in terms of the Lorentz
factor as

Up = mec
2(γ − 1). (2.38)

The notation of a bare γ above already implies averaging over fast oscillations, which holds
true hereinafter unless otherwise mentioned.

2.3 Practical considerations

The discussion so far is around quantities mostly beyond direct experimental access. To get
a feeling for numbers, the aforementioned normalized vector potential is linked to a laser
pulse via

a0 =

√
e2λ2LI0

2π2ε0m2
ec

5
≈ 0.85λL[µm]

√
I0[1018W/c2m], (2.39)

with λL denoting the wavelength and I0 the peak intensity of the laser; e andme are electron’s
charge and mass; ε0 and c are the permittivity and speed of light in vacuum, respectively.
In terms of a0, the peak values of the EM fields and the laser intensity can be given as

E0 =
2πmec

2

e

a0
λL

B0 =
2πmec

e

a0
λL

I0 =
2π2ε0m

2
ec

5

e2
a20
λ2L

≈ a0
λL[µm]

· 3.21× 1012Vm−1

≈ a0
λL[µm]

· 1.07× 104T

≈ (
a0

λL[µm]
)2 · 1.37× 1018W/c2m.

(2.40)

In order to drive electron motion to the relativistic regime, which is required to form the
plasma waves for electron acceleration (cf. Sec. 3.1), a0 ≳ 1 is necessary, corresponding
to an intensity in excess of 1018W/c2m for laser systems operating at near infrared (NIR)
wavelengths, λL ∼ 1µm. Such a high intensity is reached in this work by focusing laser
pulses containing 2.5 J of energy within a duration of 30 fs FWHM to a spot with an FWHM
size of 30 µm; cf. section 3.7.

2.4 Strong-field ionization

The high intensity of a laser pulse means a very strong electric field. With a simple calcu-
lation it can be shown that the peak field strength of a laser pulse of a relativistic intensity
is much higher than the field that binds the electron to the proton in a hydrogen atom. It
follows immediately that such a laser pulse is capable of ionizing matter.

Schematically represented in figure 2.4, there are several mechanisms of strong-field ioniza-
tion. In the intensity range of 1014W/c2m to 1015W/c2m, multi-photon ionization (MPI;
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2.4. Strong-field ionization

panel a) and tunnel ionization (TI; panel b) play a major role. The Keldysh parame-
ter [58, 59] defined as the square root of the ratio between the ionization potential Uion and
twice the ponderomotive potential Up

γK =

√
Uion

2Up
(2.41)

can be used to distinguish these two ionization regimes. When γK ≫ 1, MPI is the more
accurate picture, whereas when γK ≪ 1, TI gives a more appropriate description. However,
for a laser pulse with a relativistic peak intensity (> 1018W/c2m), the intensity values
mentioned above only occur at the feet of the pulse. Instead, the most probable mechanism
is the barrier-suppression ionization (BSI; panel c), which works as follow:

V (r)

Uion

r

IL

nh̄ωL

(a) (b) (c)

Figure 2.4: Strong field ionization of an atom or ion at various laser intensities. The blue line
represents the spatial dependence of the combined Coulomb potential of the ion and the laser pulse;
the dashed orange line represents the potential of the laser alone; each pink arrow represents a
laser photon. As the laser intensity increases from 1014 W/c2m to 1015 W/c2m level, the dominant
ionization mechanism evolves from (a) multi-photon ionization to (b) tunnel ionization, and the
atomic potential starts to distort. The shaded area in (b) suggests that the electron has to tunnel
though a potential barrier before ionization, in contrast to (c), where the barrier is fully suppressed
at even higher intensities.

Since the wavelength of a laser pulse (∼ µm) is much larger than the size of an atom, its
electric field EL can be considered a constant in the vicinity of the atom. Hence the combined
electric potential of an ion in the charge state Z+ in presence of the laser field can be written
as

V (r) = − Ze2

4πε0|r|
− eELr. (2.42)

Z is the charge state after ionization, e.g. Z = 1 for hydrogen.

The critical field for the BSI can be estimated by equating this potential maximum with the
ionization potential

V (r0) = Uion, with
dV (r)

dr
|r=r0 = 0. (2.43)

The maximum appears at r0 =
√
Ze/4πε0EL and the laser field strength can be solved as

EL =
πε0U

2
ion

Ze3
. (2.44)
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2.4. Strong-field ionization

Once this critical field is reached, the electron becomes unbound instantaneously. Within
a fast oscillation of the laser field, the potential barrier is most suppressed when the field
reaches its maximum, making BSI most likely to happen near the peaks of the electric field.
Since the peak of the electric field corresponds to the minimum of the vector potential, or
equivalently the quiver velocity (cf. Sec. 2.2) the BSI process leads to a very low initial
kinetic energy of electrons compared to the ionization potential and the ponderomotive
energy. As a result, the so generate electrons have a very low temperature, normally only a
few electronvolts.

To reach the critical field strength for BSI, the intensity required can be calculated according
to Eq. (2.2):

IL =
ε0cE

2
L

2
≈ 4× 109Z−2U4

ion[eV ]W cm−2. (2.45)

In table 2.1 the BSI thresholds for ions involved in this work are given. The choice of the
unit is to emphasize that the ionization happens at the foot the laser pulse, long before the
peak intensity arrives. As will be shown later in chapter 5, this feature can be utilized to
monitor the temporal contrast of the laser intensity.

Ion product Uion [eV] Iion [1018W/c2m]

H+ 13.6 0.00014
He+ 24.6 0.0015
He2+ 54.4 0.0088
N5+ 97.9 0.015
N6+ 552 10
Ar+ 15.8 0.00025
Ar8+ 144 0.027

Table 2.1: Ionization threshold and correspondingly the required laser intensity for various ions
relevant to this work, calculated with Eq. (2.45).

As the inner shells’ ionization energy is drastically different from the outer shells’, this clear
separation of scale can facilitate ionization injection; cf. subsection 3.4.2.

It has been shown that atoms get ionized when irradiated by an intense laser pulse. If one
considers the vacuum as bound virtual electrons-positrons pairs, the vacuum can be broken
following similar procedures discussed therein. The onset field strength for such effects is
known as the Schwinger limit, which corresponds to an intensity of ∼ 1029W/c2m for visible
to near-infrared (VIS-NIR) wavelengths. Since the intensity range of interest in this work
∼ 1018W/c2m is many orders of magnitude below the Schwinger limit, a laser pulse used
here will leave no wakefield in vacuum. In order to generate the wakefield, some medium is
necessary. As strong-field ionization normally initiates long before the peak intensity arrives,
the peak of a pulse will interact with a medium in an ionized state, or the so-called plasma
state. The remainder of this chapter illustrates some basic properties of a plasma.
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2.5. Definition of plasma

2.5 Definition of plasma

F. F. Chen gives a useful definition: “A plasma is a quasineutral gas of charged and neu-
tral particles which exhibits collective behavior.” in his Introduction to plasma physics and
controlled fusion [60]. In other words, a medium qualifies as a plasma, when its dynamics
is dominated by the long range Coulomb interaction and not by collisions between its con-
stituent particles. This is the case when the plasma parameter, i.e. the number of charged
particle ND in a sphere with a radius of the Debye length

λD =
√
kBTe/4πnee2 (2.46)

is much larger than unity. Here kB denotes the Boltzmann constant, Te the electron tem-
perature, ne the electron density, and e the elementary charge.

The typical plasma density used in this work is 4 × 1018 cm−3, which leads to ND = 28 for
1 eV of electron temperature, hence collisions can be safely ignored. Taking into account the
typical time (10s fs) and intensity (1018W/c2m) scale encountered in this work, the ions in
the plasma can be mostly considered static due to their high inertia. Therefore the plasma
will be modeled as an electron fluid in front of an immobile ion background hereafter, unless
otherwise pointed out.

When electrons in such a plasma are perturbed by an external force, e.g. the ponderomotive
force of a laser pulse, a space charge field builds up which acts as the restoring force. Under
the influence of this restoring force, electrons oscillate about their equilibrium positions with
a characteristic frequency defined as the (electron) plasma frequency [60]

ωp =

√
nee2

meε0
, (2.47)

where me denotes the rest mass of an electron, and ε0 the free space permittivity.

Since ωp depends only on the density and not on any plasma wave number kp, the group
velocity dωp/dkp = 0, i.e., the plasma oscillation is local and does not propagate. Therefore
the phase advance of a laser driven plasma wave is due completely to the propagation of the
drive laser, detailed below.

2.6 Laser propagation in plasma

The propagation of electromagnetic (EM) waves in a cold plasma (characterized by the
plasma frequency ωp) is governed by the dispersion relation [59]

ω2
L = c2k2L + ω2

p, (2.48)

where ωL and kL represent the angular frequency and the wave number of the laser respec-
tively, and c is the vacuum speed of light. The plasma’s refractive index, defined as

η =
kLc

ωL
=

√
1−

ω2
p

ω2
L

=

√
1− ne

nc
, (2.49)
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2.6. Laser propagation in plasma

determines the (linear) group velocity vg and the phase velocity vϕ of the laser:

vg = ηc, and vϕ = c/η. (2.50)

When the laser frequency is higher than the plasma frequency, the refractive index η is
between 0 and 1 and the laser wave number kL = ηωL/c is a real number. Hence the phase
term exp(ikLz) (cf. Sec. 2.1) is oscillatory, meaning the laser can propagate and the plasma
is transparent. Such a plasma will be called under-dense. On the other hand, when the
laser frequency is less than the plasma frequency, the refractive index hence kL is purely
imaginary. The exp(ikLz) term becomes an exponential decay, indicating that the laser can
only penetrate a skin depth of the order 1/ |kL|. Thus the plasma is opaque, reflective, and
will be called over-dense. In the special case where the laser frequency equals the plasma
frequency, the refractive index vanishes and the plasma is of the critical density nc.

To name a concrete example, the typical density used in this work, 4× 1018 cm−3, amounts
about 0.2% the critical density for the central laser wavelength of 800 nm. The drive laser
pulse’s group velocity vg, hence the plasma wave phase velocity vp, is vp = vg = 0.999c.

2.6.1 Optical guiding in plasma

Since the electron density ne and mass me appear in the definition of plasma frequency,
which in turn determines the plasma refractive index, electron density perturbation and
relativistic mass increase will influence the laser propagation in a plasma. Expressing the
modified plasma frequency as ω∗

p = ωp

√
ne/n0γ, with n0 denoting the ambient plasma

density, the radial profile of refractive index in a sufficiently under-dense plasma can be
approximated accordingly [61]:

η∗(r) ≈ 1−
ω2
p

2ω2
L

ne(r)

n0γ(r)
, (2.51)

where the cycle-averaged Lorentz factor γ(r) = 1 +
〈
ã2(r)

〉
/2 = 1 + a2(r)/4 is determined

from the laser envelope a(r) assuming a linear polarization; cf. Subsec. 2.2.2. The fast optical
oscillation of the laser field is averaged over because the plasma response time ∼ 1/ωp is
comparatively large, which yields the additional factor of 1/2 in the expression for γ(r). In
the limits of small density perturbation, ne = n0 + δn with δn ≪ n0, and low intensity,
a2 ≪ 1, the refractive index profile in Eq. (2.51) can be written as

η∗(r) ≈ 1−
ω2
p

2ω2
L

(
1 +

δn(r)

n0
− a2(r)

4

)
. (2.52)

The δn/n0 term can be the result of either preformed density channel, or the plasma response
to the drive laser’s ponderomotive force. As such, a density profile with a minimum on-axis,
or an intensity profile with a peak in the center, e.g. a Gaussian beam, leads to ∂rη

∗ < 0,
which acts effectively as a focusing lens and offers the possibility of optical guiding. Stable
guiding is achieved when focusing caused by the refractive index profile balances out that of
the diffraction.

18



2.6. Laser propagation in plasma

Diffraction of e.g. Gaussian beams is characterized by w(t) = w0

√
1 + t2/τ2R, with the diffrac-

tion time τR = zR/c related to the Rayleigh range zR = kLw
2
0/2; cf. Subsec. 2.1.2. The spot

size evolution near the focus (t≪ τR) can be approximated as w(t) ≈ w0(1+ t2/2τ2R), hence

∂2w

∂t2
≈ 4c2

k2Lw
3
0

. (2.53)

Focusing, on the other hand, can be estimated by examining the wavefront bending originat-
ing from the plasma refractive index profile [61]. Let θ denote the angle at which the wave-
front bends inward, vϕ0 and vϕ1 denote the phase velocities on the laser axis and r = w away
from the axis at the peripheral of the beam, respectively. It follows θ = (vϕ1 − vϕ0)∆t/w
over an infinitesimally small time interval ∆t. As the energy flow i.e. Poynting vector is
perpendicular to the wavefront, the spot size w reduces at a rate of ∂tw = c sin θ ≈ cθ.
Hence

∂2w

∂t2
≈ vϕ0 − vϕ1

w
c. (2.54)

Considering only the contribution to vϕ = c/η∗ from the relativistic term a2(r)/4 in Eq. (2.52),
Eq. (2.54) becomes

∂2w

∂t2
≈ −1

8

ω2
p

ω2
L

c2

w
a20, (2.55)

where the term containing a2(w) is neglected at the edge of the beam, and a0 = a(0).
The condition for relativistic self-focusing can thus be given, by comparing Eq. (2.53) and
Eq. (2.55) near the focus (w → w0), as

a20w
2
0ω

2
p

32c2
> 1. (2.56)

This condition can be formulated as a power threshold P/Pc > 1, because a20 is proportional
to the peak intensity I0, cf. Eq. (2.40), and P = I0πw2

0/2 for a Gaussian beam. Thus the
critical power is given by

Pc = 8πε0c

(
mec

2

e

)2
ω2
L

ω2
p

≈ 17.4
ω2
L

ω2
p

[GW]. (2.57)

Density contrast induced guiding can be analysed in a similar manner. The critical channel
depth nc for a parabolic channel can be given as [8]

nc =
1

πrer20
, with re =

1

4πε0

e2

mec2
(2.58)

denoting the classical electron radium (re ∼ 2.8× 10−15m), and r0 the matched spot radius.
A Gaussian beam with w0 = r0 can be stably guided in this channel whereas an unmatched
spot will oscillate in size while being confined by the channel given the channel is sufficiently
broad [8]. The spot oscillation period Λ can be estimated as [62]

Λ =
π2r20
λL

. (2.59)
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2.6. Laser propagation in plasma

Although the equation above is derived for a parabolic plasma channel, it works reasonably
well in the self-guided regime employed in this work; cf. Fig. 5.4.

With the propagation of a laser pulse established, next chapter starts to address the central
question of this thesis: plasma wave excitation and electron acceleration.
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3 Laser wakefield acceleration

The plasma wakefield can support large electric field in excess of 1GV/cm, three orders of
magnitude higher than the acceleration gradient in a state-of-the-art radio frequency accel-
erator. Harnessing the wakefield could potentially shrink the size of a particle accelerator
by the same factor, making accelerators more cost-effective and accessible. However, the
small size (λp ∼ 10 µm) and high phase velocity (vp ∼ c) of a laser driven wakefield poses
stringent requirements on particle trapping and acceleration. In order to build a laser wake-
field accelerator for particles, electrons particularly, these requirements need to be fulfilled.
This chapter discusses the condition of electron trapping in the wakefield, techniques to
achieve electron injection, limitations and scalings of a laser driven wakefield accelerator,
and possible strategies to overcome these limitation.

3.1 Wakefield equations

Vlasov-Maxwell system

In general physical properties of a collisionless fluid can be retrieved from the evolution of the
density distribution f(r,p, t), where r denotes the spatial coordinate, p the momentum, and
t the time. Dropping (r,p, t) for brevity, the dynamics of f follow the Vlasov equation [63]

df

dt
=
∂f

∂t
+

dr

dt
· ∂f
∂r

+
dp

dt
· ∂f
∂p

= 0, (3.1)

which is in essence a continuity equation for the particle density in the in the (r,p) phase
space. As such the equation above is only valid when the total charge in the plasma is
conserved, namely, when ionization and recombination do not play an important role.

In conjunction with Maxwell’s equations (2.1) governing the electromagnetism, the Lorentz
force equation (2.19) driving the fluid motion, and the explicit form for charge and current
density

ρ = −e
∫

f d3p, j = −e
∫

vf d3p, (3.2)

v = dr / dt being the velocity of a fluid element, the system is in principle determined.
One can solve these equations numerically using for instance particle-in-cell (PIC) codes.
Especially with the recent code development such as CALDER-CIRC [38] and FBPIC [39],
fast quasi-3D simulations become feasible, which allows for systematic parameter scans;
cf. section 5.3.
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3.1. Wakefield equations

The particle density distribution f is not very practical to be handled analytically. Instead,
a reduced system can be introduced to intuitively grasp some of the essential physics. Inte-
grating the Vlasov equation (3.1) over the entire momentum space and plugging in Eq. (3.2)
yields the continuity equation in the coordinate space

∂ρ

∂t
+∇ · j = 0. (3.3)

Charge separation sets up an electric potential according to the Poisson equation

∇2ϕ = − ρ

ε0
. (3.4)

Along with the electromagnetic wave equation, cf. Eq. (2.4),

(
1

c2
∂2

∂t2
−∇2

)
Aµ = µ0J

µ, (3.5)

the equation of motion for a fluid element, cf. Eq. (2.23),

∂

∂t
(p− eA) = −∇(γmec

2 − eϕ), (3.6)

completes the set of of fundamental equations.

Conventions and assumptions

To simplify the problem even further, a series of conventions and assumptions are adopted
and listed below:

• immobile, neutralizing ion background;

• cold plasma, since the typical electron temperature of few eV is well below the oscilla-
tion/ponderomotive energy of a few MeV; cf. section 2.4;

• quasi-1D, the laser pulse is not tightly focused, namely, w0kp ≫ 1, with w0 being the
laser spot size, and kp = ωp/c the plasma wave number;

• the linearly polarized drive laser pulse propagates to the z-direction with a group
velocity vg without evolution, i.e. A = A⊥(z − vgt); the assumption of a non-evolving
laser is justified as long as zRkp ≫ 1, i.e., the Rayleigh range (the length scale of laser
evolution) is much larger than the length scale of plasma dynamics 1/kp.

Natural units and normalization

As the discussion is about the motion of an electron fluid in the relativistic regime, there is
a natural set of units to normalize the dynamical variables, which removes distractions and
emphasizes physics. They are listed below in table 3.1.
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3.1. Wakefield equations

Quantity Notation Norm. notation Value

speed of light c n/a 1
elementary charge e n/a 1

electron mass me n/a 1
electron momentum p p̃, or γβ p/mec
electron density ne n ne/n0
vector potential A a eA/mec
scalar potential ϕ φ eϕ/mec

2

Table 3.1: Summary of natural units and normalization. n0 denotes the ambient electron density.

With these conventions, µ0 = ε−1
0 = ω2

p = k2p, hence the dimensionless form of the equations
above reads

Continuity
∂n

∂t
+

∂

∂z
(nβz) = 0, (3.7)

Poisson
∂2φ

∂z2
= k2p(n− 1), (3.8)

EOM
∂

∂t
(γβz) =

∂

∂z
(φ− γ), (3.9)

and EM wave

(
∂2

∂t2
− ∂2

∂z2
)a = k2pnβ⊥ = k2p

na

γ
. (3.10)

To get Eqs. (3.9) and (3.10) conservation of transverse canonical momentum γβ⊥ = a is
used, with β⊥ denoting the transverse fluid velocity. Equation (3.10) accounts for the laser
pulse evolution caused by the transverse plasma oscillation, which will be neglected in the
derivation below.

Co-moving coordinates

These equations are usually solved using the co-moving coordinates τ = t, ζ = z− βpt, such
that [59]

∂

∂z
=

∂

∂ζ
and

∂

∂t
=

∂

∂τ
− βp

∂

∂ζ
, (3.11)

with βp =
√
1− 1/γ2p , and γp = ωL/ωp being the Lorenz factor associated with the plasma

wave’s phase velocity, which roughly equals the group velocity of a non-evolving driver
(cf. Sec. 3.5). Thus the equations become

Continuity
∂n

∂τ
=

∂

∂ζ
[n (βp − βz)] , (3.12)
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3.1. Wakefield equations

Poisson
∂2φ

∂ζ2
= k2p(n− 1), (3.13)

EOM
∂

∂τ
(γβz) =

∂

∂ζ
[φ− γ (1− βpβz)] . (3.14)

Note that the transform into the co-moving coordinate is Galilean and therefore does not
conform with special relativity.

Quasi-static approximation

The advantage of the co-moving coordinates—together with the assumption of a non-evolving
driver—is that it facilitates the quasi-static approximation (QSA) [59], where the partial time
derivatives are neglected, namely, ∂/∂τ = 0. In the QSA, the equation of motion (3.14) can
be easily integrated to give

γ (1− βpβz)− φ = 1, (3.15)

with the initial condition that the plasma is unperturbed before the arrival of the laser, i.e.,
γ = 1, βz = 0, φ = 0 for ζ → −∞. Similarly, the continuity equation (3.12) with βz = 0 and
n = 1 for ζ → −∞ results in

n (βp − βz) = βp, (3.16)

Equation (3.16) implies that the fluid velocity can not exceed the plasma wave phase velocity
i.e. |βz| < βp, otherwise when βp < βz, the electron density n = βp/(βp − βz) < 0. This
negative density can be interpreted as wave breaking; cf. Sec. 3.3. It suggests also that
the electron density becomes very large when βz ≈ βp; such density spikes are a feature of
nonlinear plasma waves. Furthermore the density has a minimum of 0.5 when βz ≈ −βp.

Separating the γ-factor into parallel and transverse components:

γ = γ⊥γ∥ with

{
γ⊥ =

(
1 + a2

)1/2

γ∥ =
(
1− β2z

)−1/2
,

(3.17)

βz can be explicitly solved with the quadratic formula as [59]

βz =
βp − ψ

1− βpψ
with ψ =

√
1− 1 + a2

γ2p(1 + φ)2
(3.18)

by squaring Eq. (3.15) after substituting γ with Eq. (3.17).

The other root β∗z = (βp+ψ)/(1+βpψ) is not physical because β
∗
z −βp = ψ/γ2p(1+βpψ) > 0,

which suggests wave-breaking; cf. section 3.3. The electron density, n, results from inserting
Eq. (3.18) into Eq. (3.16):

n = γ2pβp
(
ψ−1 − βp

)
. (3.19)
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3.1. Wakefield equations

Thus the Poisson equation (3.13) turns into the 1D wakefield equation [59]

d2φ

dζ2
= k2pγ

2
p

(
βpψ

−1 − 1
)

(3.20)

= k2pγ
2
p

{
βp

[
1− 1 + a2

γ2p(1 + φ)2

]−1/2

− 1

}
. (3.21)

In a sufficiently under-dense plasma, the plasma wave’s phase velocity is highly relativistic,
i.e. γp ≫ 1, βp ≈ 1− 1/2γ2p , and ψ

−1 ≈ 1 + (1 + a2)/2γ2p(1 + φ)2. Substituting βp and ψ−1

into Eq. (3.20) yields, to the leading order,

d2φ

dζ2
≈
k2p
2

[
1 + a2

(1 + φ)2
− 1

]
. (3.22)

3.1.1 Linear wakefield

For a weak driver (a ≪ 1, φ ≪ 1), neglecting terms with higher order than O(φ) further
reduces the wakefield equation (3.22) to

(
∂2

∂ζ2
+ k2p)φ =

k2p
2
a2, (3.23)

which is an inhomogeneous Helmholtz equation with a formal solution [59]

φ(ζ) =
kp
4

∫ ζ

∞
dζ ′
∣∣a(ζ ′)

∣∣2 sin
[
kp
(
ζ − ζ ′

)]
. (3.24)

Taking for example a drive pulse with a sin2-shaped intensity envelope

a2(ζ) =

{
a20 sin

2(πζ/ζL) for 0 ≤ ζ ≤ ζL

0 otherwise,
(3.25)

the wake potential behind the driver (ζ < 0) can be solved as

φ(ζ) =
kpa

2
0

4

∫ 0

ζL

dζ ′ sin2(πζ ′/ζL) sin
[
kp
(
ζ − ζ ′

)]

= −Cenv sin [kp (ζ − ζL/2)] , (3.26)

which is a sinusoidal modulation with a period of the cold plasma wavelength

λp = 2π/kp = 2πc

√
meε0
nee2

≈ 33 µm√
ne[1018 cm−3]

. (3.27)

The envelope constant, Cenv = a20 sin(kpζL/2)/(4 − k2pζ
2
L/π2), summaries the properties of

the drive pulse. The longitudinal electric field is simply

Eζ = −∂φ
∂ζ

= kpCenv cos [kp (ζ − ζL/2)] . (3.28)
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3.1. Wakefield equations

This result can be generalized to 3D given the laser pulse is not tightly focused i.e. w0 ≫ ζL,
where w0 is the waist assuming a Gaussian transverse profile a(r) = a0 exp

(
−r2/w2

0

)
, with

r being the distance from the optical axis. As such the radial field is

Er = −∂φ
∂r

= − 4r

w2
0

exp

(
−2r2

w2
0

)
Cenv sin [kp (ζ − ζL/2)] . (3.29)

Close to the axis, the radial field increases with the the distance from the axis, enabling
stable bunch formation in the focusing phase. Along the laser propagation direction, the
radial filed is π/2 out of phase with the longitudinal field. Therefore only one quarter of the
period is simultaneously accelerating and focusing, as shown in Fig. 3.1.

−2 0 2

r [λp]

0

-π

−2π

k
p
ζ

−2 0 2

r [λp]

−0.01 0.00 0.01

Eζ/Ewb

−0.001 0.000 0.001

Er/Ewb

Figure 3.1: Longitudinal (left) and transverse (right) electric field of a linear plasma wave generated
by a laser pulse with a sin2-shaped intensity envelope as in Eq. (3.25), with ζL = λp/2, and a0 = 0.2.
The pulse has a Gaussian transverse profile with a waist of w0 = 2λp and propagates to the top of the
page. The fields are normalized to the cold wave-breaking field Ewb = mecωp/e; cf. section 3.3. The
shaded area represents the phase that is simultaneously accelerating and focusing, kpζ ∈ (−π/2, 0).

When dCenv / dζL = 0, or ζL ≈ 0.83λp, a sin2-shaped pulse drives a linear plasma wave most
effectively, yielding a maximum accelerating field of

|Eζ, max| = kpCenv|ζL≈0.83λp ≈ 0.4a20Ewb, (3.30)

with Ewb = mecωp/e, or Ewb[V/m] ≈ 96
√
ne[cm−3], being the cold wave breaking field;

cf. early work by Dawson [64] and Sec. 3.3. This resonant condition is more often formulated
in terms of the full width at half intensity maximum pulse duration, τ , as cτ ∼ λp/2, to
incorporate other pulse shapes such as Gaussian pulses. Taking a0 = 0.2 for instance, the
peak field strength would be approximately 3GV/m for the typical density of 4×1018 cm−3.

Compared to linear plasma waves, a nonlinear plasma wave offers a higher acceleration gra-
dient (Sec. 3.1.2) and a larger overlap region for accelerating and focusing phase (Sec. 3.1.3),
which is more desirable for an accelerator and will be discussed below.

3.1.2 Nonlinear wakefield

The 1D nonlinear wakefield equation (3.22) is usually solved numerically, as analytical solu-
tions exist only for simple pulse shapes such as rectangular pulses [8]. Figure 3.2 compares
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3.1. Wakefield equations

numerical solutions for laser pulses with a Gaussian intensity envelope at two different peak
intensities—one with a0 = 0.2 on top and the other with a0 = 2.0 on the bottom. Two key
features should be noticed: a) the electron density modulation becomes more spiky hence
the E-field is partwise almost a linear function of space, in contrast to the sinusoidal density
modulation and E-field at the low intensity; and b) the wavelength of the plasma oscillation
becomes longer when the laser intensity gets higher.
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ϕ
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βz

γz√
1 + a2
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Figure 3.2: Comparison of 1D linear and nonlinear plasma waves driven by Gaussian pulses with
peak potentials a0 of 0.2 (upper) and 2.0 (lower). The full width at 1/e of intensity (a2) maximum
pulse length is λp/2 in both panels. The electric field is normalized to the cold wave breaking field
Ewb. Note the difference in the ordinate scale—|E| > Ewb can occurs in a nonlinear plasma wave.

Let λp,nl denote this elongated nonlinear plasma wavelength. Analytical solutions, for square
pulses with optimal length for plasma wave excitation (∼ λp/2), predict an intensity depen-
dency of λp,nl as [8]

λp,nl = λp

{
1 + 3χ2/16 for χ≪ 1

(2/π)(χ+ χ−1) for χ≫ 1
(3.31)

with the scaling parameter χ = (a20/2)/
√
1 + a20/2.

A slightly different scaling of λp,nl can be obtained when the electron oscillation in the plasma
is examined. Since the electron oscillation in a nonlinear plasma wave is relativistic, the wave
lengthening can be attributed to the reduction of plasma frequency due to the relativistic
increase of electron mass [65], i.e., the lengthening factor λp,nl/λp =

√
γ. As the quiver

momentum should scale with the vector potential a, an estimate of the Lorentz factor would
be γ =

√
1 + a20/2. The factor of 1/2 accounts for the average over fast oscillations assuming

a linear polarization, and a0 denotes the peak value of the normalized vector potential; cf. the
lower panel of Fig. 3.2. Consequently, the scaling can be given as

λp,nl/λp = (1 + a20/2)
1/4. (3.32)
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3.1. Wakefield equations

Figure 3.3 compares these two scalings, alongside the wave lengthening drawn from numerical
solutions of the 1D wakefield equation (3.22). All 1D models introduced so far predict a
plasma wave elongation yet their values can differ by more than 20% for a0 > 1, where the
majority of wakefield acceleration experiments are performed. As will be shown in Secs. 5.2
and 5.3, few-cycle shadowgraphy allows for measurement of the nonlinear wavelength at a
precision that distinguishes among these models. Shadowgraphic measurements show that
1D models are insufficient in explaining plasma wave lengthening in a practical experimental
configuration, where 3D effects, transverse electron motion in particular, play a crucial role.
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Gaussian pulse (numerical)

Rectangular pulse (analytical)

Free electron approximation

Figure 3.3: Comparison of nonlinear plasma wavelength scalings found in literature [8, 65] with
wave lengthening obtained from numerical solutions of the 1D wakefield equation (3.22) for Gaussian
pulses. Note the analytical solutions of rectangular pulses have two disconnected regions of validity;
the dashed segment of the red curve is to guide the eye. Parameters for numerical solutions are chosen
to closely resemble experiments performed in this work, namely, the plasma density is 3× 1018 cm−3

and the drive pulse’s FWHM duration is 30 fs. Figure reproduced from Ref. [43].

3.1.3 Bubble formation

Analogous to the linear case discussed in subsection 3.1.1, the 1D nonlinear wakefield theory
can also be extended to higher dimensions for a wide spot (w0 ≫ cτ), where the electron
motion is predominantly longitudinal. As all models outlined above predict that the plasma
wave lengthens as the driver intensity increases, the higher intensity near the laser axis will
result in a larger period of the plasma oscillation, given a Gaussian-like transverse intensity
profile. Hence the phase fronts of a nonlinear plasma wave become curved, with an increasing
curvature farther behind the driver; cf. Fig. 3.4. This phase front curvature makes almost the
entire axially accelerating phase of the nonlinear wake (cf. Fig. 3.2) radially focusing, which
constituents roughly a half of the wake period, superior to the quarter period offered by a
linear wake (Sec. 3.1.1). It will be shown later in Sec. 3.3 that transverse wave-breaking [34]
takes place once the phase front curvature exceeds certain threshold, which can lead to
self-injection of electrons into the plasma wave.
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Figure 3.4: A naive extension of the 1D nonlinear wakefield solution to 3D, indicating plasma wave
phase front curvature caused by the drive laser’s transverse intensity profile. The drive laser is a wide
Gaussian pulse a0 exp

(
−r2/w2

0

)
exp
(
−ζ2/2L2

)
with a0 = 2, w0 = 2λp and L = 0.25λp. Gray-scale

contours represent a ∈ [0.4, 1.0, 1.6].

The situation is more complicated if the laser pulse is tightly focused, i.e., when the spot
size w0 is comparable to the pules length cτ . In this case, transverse ponderomotive force
pushes electron sideways and a region with nearly zero electron density can form behind
the driver, known as the bubble or blowout [9]. Note that bubble formation is necessarily
a three-dimensional effect, because ne = 0.5 is the minimal electron density allowed by a
1D plasma wave; cf. Sec. 3.1. Though closed-form theory for this bubble regime does not
yet exist due to its complexity, some properties of the plasma blowout can be deduced from
simple physical arguments. As electrons are blown out by the drive laser’s ponderomotive
force, which only extends out to the edge of the laser, the blowout radius should be roughly
the laser spot size, i.e. Rb ∼ w0. Assuming an approximately spherical bubble with zero
electron density, Lu et al. [36, 37] deduced the bubble radius, in the unit of 1/kp,

Rb ≃ 2
√
a0 (3.33)

by balancing the transverse ponderomotive force of the laser pulse ∇⊥a20/γ ∼ a0/Rb and
the Coulomb force of the ion channel Er ∼ Rb. The refinement factor of 2 is inferred from
particle-in-cell simulations; and a0 ∼ γ is used to estimate the ponderomotive force.

For a given laser power and plasma density, there is a matched condition allowing for well-
defined narrow bubble sheath formation and good guiding properties for the laser [35]:

a0 ≃ 2(P/Pc)
1/3. (3.34)

Initially unmatched spot will oscillate in size due to the interplay between relativistic self-
focusing and diffraction (cf. Sec. 5.3). In particular, for a spot size much larger than the
matched one, a0 will be too small to cause blowout. Full blowout is only achieved once the
laser relativistically self-focuses to (or below) the matched size. On the other hand, when
the laser is focused too tight, electrons near the laser axis will be blown out rapidly due to
a stronger transverse ponderomotive force while electrons at the laser edge will feel a very
small ponderomotive force hence barely move. This leads to a wide sheath, and an ineffective
guiding due to an insufficient refractive index gradient to counter-act diffraction [36].
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3.2. Electron trapping in wakefield

3.2 Electron trapping in wakefield

As a prerequisite for the discussion of electron trapping, the motion of a test electron in the
wakefield will first be modelled. The Lagrangian for a test electron in a wakefield described
by its potential, φ, and in the presence of a laser field, a, cf. Eq. (2.17), reads

L = −1

γ
− β · a+ φ, (3.35)

with all variables in the natural units listed in table 3.1. The Legendre transformation of
the Lagrangian gives the Hamiltonian [46]

H = β · ∂L
∂β

− L

= γ − φ. (3.36)

To make use of the wakefield potential φ(ζ) obtained in the previous chapter, H needs to be
transformed into the same co-moving coordinates ζ = z − βpt. This transformation can be
performed with a type-2 generating function [66], F2(z, p, t) = p(z − βpt), such thati

ζ =
∂F2

∂p
and p̃z =

∂F2

∂z
= p. (3.37)

The Hamiltonian in the co-moving coordinates then reads

H(ζ, p) = H+
∂F2

∂t

=
√

1 + a(ζ)2 + p2 − φ(ζ)− pβp. (3.38)

Since H(ζ, p) has no explicit time dependence i.e. its value conserves, a contour in the (ζ, p)
phase space corresponds to a stationary orbit of a test electron in the wakefield.

Phase space separatrix

The forward momentum p can be solved from the equation above with the quadratic formula
as

p = γ2p

[
βp(H + φ)±

√
(H + φ)2 − 1 + a2

γ2p

]
. (3.39)

Plotting p versus ζ for various values of H results in the orbits shown in the lower panel of
figure 3.5. Two distinct types of orbits can be identified: open orbits are attributed either
to electrons that oscillate with relatively low energies and are considered to contribute to
the plasma wave formation, e.g. electrons with initial Hamiltonian H0 = 1 or equivalently
p = 0, or to electrons that have very large forward momenta and overtake the wakefield,
which rarely present in a cold plasma; in contrast, closed orbits accommodate electrons that
get trapped and gain a significant amount of energy in the wakefield.

iThe new momentum p is only the longitudinal component of the original momentum p̃z.
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3.2. Electron trapping in wakefield
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Figure 3.5: Top: Numerical solutions of the 1D wakefield equations for a Gaussian pulse with a20 = 1,
cτFWHM = 0.5λp, in a plasma with βp = 0.99. Bottom: Electron orbits in the (ζ, p) phase space.
Dashed black lines are trapped orbits; solid blue lines are fluid orbits. The solid red line represents the
separatrix with the dash-dotted red line indicating p = γpβp. The dash-dotted blue line marks p = 0.
The color scale is for the value of H. Note that the p-axis is shifted by 1 for a better representation
on a logarithmic scale.

The boundary between those two types, the separatrix, belongs to electrons having exactly
the plasma wave phase velocity at nodes (minima) of the wake potential, i.e. p(ζnode) = γpβp,
with φ(ζnode) = φmin. This is the case when the discriminant in Eq. (3.39) is zero, i.e.

Hsep =

√
1 + a2(ζnode)

γp
− φmin. (3.40)

With stationary electron orbits inside the wakefield established, the following sections discuss
electron trapping and acceleration.

Trapping condition

An electron is considered trapped if it has a longitudinal momentum greater than the smaller-
of-the-two value of the separatrixii before the arrival of the laser, i.e. p > psep, when ζ → +∞.

iiThe electron momentum also needs to be less than the larger value of the separatrix, corresponding
to MeV-level kinetic energy before driver’s arrival, which is automatically fulfilled in the cold plasma with
few-eV temperature considered here.
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3.3. Wave breaking and self-injection

This condition translates into a threshold of electron kinetic energy [66]

Etrap =
√
1 + p2sep(+∞)− 1. (3.41)

Shown in Fig. 3.6, the trapping threshold is lower for plasma waves with higher amplitude
or lower phase velocity. As such, various injection methods have been discovered.
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Figure 3.6: Left : Trapping threshold as a function wakefield amplitude for various wakefield phase
velocities; Right : Trapping threshold as a function of plasma wake phase velocity for various wakefield
amplitudes.

3.3 Wave breaking and self-injection

Since trapping favors a stronger wake, questions regarding the maximal attainable plasma
wave amplitude naturally arise. Especially, in the context of electron acceleration the wave
amplitude defines the acceleration gradient.

One can first have an estimate without resorting to numerical solutions of the wakefield equa-
tions. Recall the equation of motion for a fluid element (3.14) and Poisson equation (3.13)
in the quasi-static approximation

∂φ

∂ζ
=

∂

∂ζ
γ(1− βpβz)

∂2φ

∂ζ2
= k2p(n− 1).

Multiplying respectively the LHSs and RHSs of these two equations, and substituting the
electron density with n = βp/(βp − βz) according to Eq. (3.16), results in

∂φ

∂ζ

∂2φ

∂ζ2
= k2p

βz
βp − βz

(
∂γ

∂ζ
− βp

∂γβz
∂ζ

)
. (3.42)
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3.3. Wave breaking and self-injection

Behind the driver, a = 0, and γ = 1/
√
1− β2z ; cf. Eq. (3.17). The equation above, upon

noticing ∂ζ(γβz) = (∂ζγ)/βz,
iii simplifies to

1

2

∂

∂ζ

(
∂φ

∂ζ

)2

=
1

2

∂

∂ζ
E2

ζ = −k2p
∂γ

∂ζ
, (3.43)

which, can be easily integrated and results in [59]

Eζ(ζ) = ±
√

2 [γmax − γ(ζ)]kp, (3.44)

with γmax associated with the maximal velocity of the fluid oscillation.

The fluid velocity can not exceed the plasma wave phase velocity, otherwise neighboring
electron sheaths may cross and the wave loses its coherence, marking the onset of self-
trapping. Therefore in the limit of βz → βp i.e. γmax → γp, the maximal electric field can be
obtained, in physical units, as

|Emax| =
√
2(γp − 1)Ewb, with Ewb =

mecωp

e
(3.45)

known as the cold wave-breaking limit [64, 67]. Setting γ(ζ) = 1 is based on the recognition
that extrema of the E-field occur at the points where fluid electrons have zero momentum;iv

cf. Fig. 3.5 where the blue dash-dotted line (p = 0) intersects the blue curve around it.

One way of injecting electrons into the wakefield is to drive the wakefield to the wave-breaking
limit so that the trapping threshold approaches zero. Thus even the electrons initially at rest
can get trapped and accelerated. This condition relaxes for a warm plasma [68, 69] for two-
fold reasons: on the one hand, plasma thermal pressure prevents density spikes from getting
too sharp; on the other hand, thermal motion in the direction of the wave propagation leads
to self-trapping at a even lower wave amplitude hence damps the wave growth.

3.3.1 2D wave breaking in cylindrical symmetry

The 1D scenario just presented already allows longitudinal wave breaking to take place. In
a real experiment, 3D effects will relax the condition even further [34]. For instance, in a
plasma guiding channel with a parabolic profile, the lower plasma density near the axis leads
to a longer local plasma wavelength. Such a transverse variation of the plasma wavelength
gives rise to curved phase fronts analogous to the relativistic effect introduced in Sec. 3.1.3,
with the radius of curvature getting larger the farther behind the driver.

The curved phase front caused by the transverse variation of the plasma wavelength can be
approximated by a parabolic function 2ρz = r2 in the vicinity of the axis, where ρ denotes
the local radius of curvature, z the coordinate along propagation direction, and r the distance
to the axis. Cylindrical symmetry is assumed here for simplicity. For a nonlinear plasma
wave, the oscillation amplitude of fluid electrons ψ(r) can be very large (∼ λp), and the

iii∂ζγ = βzγ
3∂ζβz, hence ∂ζγβz = γ∂ζβz + βz∂ζγ = (1/βzγ

2 + βz)∂ζγ = [(1 + β2
zγ

2)/βzγ
2]∂ζγ = (∂ζγ)/βz

ivThe inverse statement also holds true and is probably more obvious: extrema of fluid momentum coincide
with zero-crossings of the E-field—otherwise the electron would be accelerated or decelerated by the non-zero
field and the momentum wouldn’t be an extremum.
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3.3. Wave breaking and self-injection

actual position of the plasma wave phase fronts will be shifted accordingly. When that shift
is comparable to the the local radius of curvature, i.e. ψ(r) ≃ ρ, transverse wave breaking
can destroy the regular structure of the plasma wave. Let ψ(r) be perpendicular to the
phase front derived above, the shifts can then be expressed as [34]

z′ = z + ψ(r)ρ/
√
ρ2 + r2

r′ = r − ψ(r)r/
√
ρ2 + r2 (3.46)

z = r2/2ρ.

If the spatial dependence of ψ can be neglected, the model above predicts a swallowtail-
shaped vortex for sufficiently large phase front shift, e.g. when ψ0/ρ = 1.5, with ψ0 being
the on-axis shift; cf. the red line in Fig. 3.7 (a). In reality, the oscillation of fluid electrons
should be stronger on-axis due to the higher local laser intensity. Approximating it with a
Gaussian distribution, the phase front again self-intersects, though with a slightly different
morphology; cf. Fig. 3.7 (b).

0.0 2.5

z [arb. unit]

−2

0

2

r
[a

rb
.u

n
it

]

(a)

0.0 2.5

z [arb. unit]

−2

0

2

r
[a

rb
.u

n
it

]

(b)

Figure 3.7: Schematic representation of 2D wave breaking scenarios. In panel (a) the phase front shift
does not depend on r, whereas in (b) the shift follows a Gaussian function ψ(r) = ψ0 exp

(
−r2/2ρ2

)
.

In both panels, from left to right, ψ0/ρ ∈ [0, 0.5, 1, 1.5]

In both cases, a small amount of electrons may enter the wakefield from the transverse
direction and get trapped and accelerated. As the oscillation amplitude ψ required for
sheath crossing is smaller than the plasma wavelength (ψ ≃ ρ ≃ λp/2 assuming a spherical
bubble; cf. Sec. 3.1.3), transverse wave breaking can happen at a lower wave amplitude than
the longitudinal breaking introduced above. Hence it provides an effective mechanism for
self-injection. In most experiments relying on self-injection to date, transverse wave breaking
is the dominant injection mechanism.

When an electron is transversely injected into the wakefield, it will have a larger transverse
momentum than longitudinally injected electrons [70]. Therefore it undergoes enhanced be-
tatron oscillation and generates more radiation, rendering it an interesting Xray source [26].

Due to its experimental simplicity, self-injection was the primary injection mechanism of
laser plasma based particle acceleration experiments in their early stage [71, 72] and is still
widely used to date [12, 73]. However, it has some drawbacks: First of all, electrons will
be continuously injected into the wakefield once the wave-breaking initiates, which normally
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3.4. Controlled injection schemes

leads to a broadband energy spectrum, whereas many accelerator applications call for mono-
energetic electrons with per-cent level energy spread. It should be pointed out that when
operating an LWFA in the highly nonlinear broken-wave regime [9], self-injection is able
to produce to beams with monoenergetic features, which was experimentally demonstrated
by three independent groups [74–76]. Reaching this regime usually relies on the nonlinear
evolution of laser pulses in the plasma, which makes self-injection very sensitive to small
parameter changes during the experiment hence lags behind in shot-to-shot stability and
little can be done to control the process. These drawbacks make self-injection a less opti-
mal option for a practical accelerator. The following section introduces controlled injection
methods to address these issues.

3.4 Controlled injection schemes

Controlling the injection is of utmost importance for any accelerator development. Within
the rapid progressing LWFA field, several methods of controlled injection aiming at improved
beam quality have been proposed and experimentally demonstrated [13–25]. These methods
are based on manipulating either the gas target—density tailoring and/or gas mixture—or
the laser pulse(s). For the former, density down-ramp injection [13–17] and ionization in-
jection [18–24] will be discussed in this section. For the latter, colliding pulse injection [25]
will be briefly introduced.

3.4.1 Density down-ramp injection

As outlined in subsection 3.2, the trapping threshold is lower for a plasma wave with lower
phase velocity. In a homogeneous plasma, the plasma wave phase velocity roughy equals
the group velocity of the drive laser, which is essentially determined by the density of the
plasma. Tailoring the density profile therefore offers a means to control the particle trapping
conditions.

Injection in gradual down-ramp

Given a highly relativistic driver and 1D geometry, the phase of the wakefield can be ex-
pressed as Φ(z, t) = ζkp(z) [13], where ζ ≈ z − t and kp(z) contains only the explicit spatial
dependence of the plasma wave number (or equivalently, the plasma frequency). As such,
the instantaneous value of the local wave number k(z, t) = ∂Φ/∂z is linked to the plasma
frequency ωp(z) = −∂Φ/∂t via ∂k/∂t = −∂ωp/∂z. The local phase velocity of the plasma
wave can thus be deduced as

βp(z) =
ωp

k
=

(
1 +

ζ

kp

∂kp
∂z

)−1

. (3.47)

In a density down-ramp, ∂kp/∂z < 0, hence the plasma wave behind the driver (ζ < 0)
effectively slows down since βp < 1. Injection takes place if the wakefield phase velocity is
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3.4. Controlled injection schemes

slow enough to trap background electrons. When there is a long (≫ λp) and gradual ramp,
electrons can get continuously injected, which results in a broadband energy spectrum as
shown by Fig. 3.14 in section 3.8 and Refs. [14–16].

In a density up-ramp, the wake phase velocity is super-luminal (∂kp/∂z < 0 and βp > 1)
hence injection is suppressed. Moreover, the plasma wave number decreases, or equivalently
the plasma wavelength increases as a function of time. When the wave number decreases to
near zero, the wavelength of plasma oscillation approaches infinity. As the wave number keeps
on decreasing and becomes negative i.e. the absolute value of the wave number increases, an
interesting effect of wake reversal will occur as reported by Zhang et al. [77, 78]; cf. section 5.4.

Shock front injection

Contrary to slow down-ramps, a sharp (≲ λp) downward density jump can lead to a quali-
tatively different injection process. As illustrated in Fig. 3.8, for a density profile containing
two density plateaus with an abrupt change in between, the electron density peak formed in
the high density region sits in the accelerating phase of the newly excited plasma wave in
the low density region. Hence injection occurs very locally and a mono-energetic bunch can
form. If the first plasma wave bucket is not strongly damped by the injected charge, shock
front injection can also take place in the second wave bucket. As a result, dual bunches with
a separation of ∼ λp can be generated [44].

0

3

6

n
[n

c
]

×10−3

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

ζ [arb. unit]

0.0

2.5

5.0

7.5 I II

a2 E n− 1 (II) n− 1 (I)

Figure 3.8: Upper: The assumed longitudinal density profile of the plasma target. Lower: The dashed
lines represent quantities related to the plasma wave that can be generated after the density jump
inside region II. The green solid line is for the normalized electron density distribution of the plasma
wave formed in the high density region I. Due to the sudden change in plasma wavelength, the green
density peaks can get trapped in the newly formed plasma wave and mono-energetic electron beams
can be produced.
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3.4. Controlled injection schemes

Such a sharp density jump can occur at the shock front produced by introducing an obstacle,
e.g. a sharp razor blade or a silicon wafer as used in the experiments underlying this work,
to a supersonic gas flow; c.f. Sec. 3.6.1. Consequently, this injection scheme is commonly
referred to as shock front injection [17].
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Figure 3.9: Demonstration of quasi-monoenergetic electron beams generated with a supersonic gas
jet equipped with a silicon wafer as the shock front injector. By courtesy of J. Götzfried.

Figure 3.9 exemplifies the performance of properly set up shock front injection with electron
spectra of 110 consecutive shots taken during the course of this thesis work. The spectral
peak is around 200MeV (limited only by the length of gas jet used for the experiment) and
the charge density is well above 10 pC/MeV. This charge density is of a more than 5-fold
increase compared to the self-injection data shown in Sec. 3.8, owing to the much narrower
energy spread of a few percent. Interested readers are referred to J. Götzfried’s work [44]
for more details.

Besides a high bunch quality, shock front injection offers energy and charge tunability. The
beam energy can be easily controlled by altering the accelerator length; the bunch charge can
be tuned by modifying the shock length and gradient—realized by properly positioning the
blade/wafer for shock creation relative to the gas nozzle. With further refinements, shock
front injection offers a promising path towards practical particle accelerators.

3.4.2 Ionization injection

Besides trapping electrons from the background plasma as required by self-injection and
density down-ramp injection, one can also create electrons directly inside the wakefield.
Thanks to the large difference in the ionization threshold between the inner and outer atomic
shells of a high-Z gas, e.g. N2, its first ionization levels occur at the low intensity foot
(typically below 1016 Wcm−2) of the drive laser to form the plasma wave. Only near the
peak of the driver, the laser intensity is high enough to ionize the innermost shell. Via
barrier suppression, an electron is born within the wakefield at ζion, such that a(ζion) ≈ 0,
and p(ζion) ≈ 0; cf. section 2.4. Therefore its Hamiltonian is simply

Hion = 1− φ(ζion). (3.48)
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Hence ionization injection requires a) Hion < Hsep;
v cf. Fig. 3.5; and b) sufficiently high

intensity. The phase space volume fulfilling simultaneously those two conditions affects the
injected charge as well as the energy spread. Apparently, a larger injection volume leads
to a higher charge and most likely a larger energy spread. That hints at two limitations
of ionization injection: electrons will be continuously injected as long as the laser intensity
remains above the ionization threshold; there can be multiple points within the drive pulse
where the phase condition Hion < Hsep is fulfilled so that injection takes place in a sizable
volume—both limit the achievable energy spread.

Experiments employing ionization injection typically use a gas mixture as plasma source,
where the low-Z target gas, e.g. H2 or He, is doped with a few percent of high-Z gas such as
N2 or Ar. In case a small energy spread is desired, the injection can be terminated by using
a very short jet of mixed gas, in combination with an energy boosting stage of pure low-Z
gas. Using a single stage of mixed gas, reduction of the injection volume can also be achieved
by localizing the inner-shell ionization to a well-defined point. Quasi-mono-energetic spectra
can be produced by engineering either the laser’s focusing geometry or its temporal profile.
For the former, ionization self-truncates as the result of the interplay between the oscillation
of an initially unmatched focus spot and over-loading of the wakefield [20–22]. For the latter,
it has been proposed to use a counter-propagating ionization laser [23] or a co-propagating
third harmonic wave [24] to create a sharp region where the threshold E-field for ionization
is reached. These advanced ionization schemes employing multiple beams, yet to be experi-
mentally demonstrated, promise high-quality bunches with percent-level energy spread and
µm-level transverse emittance, making ionization injection an active area of research.

3.4.3 Colliding pulse injection

A counter-propagating laser can lead to injection not only by ionizing the gas mixture [23],
but also by localized electron heating [25]. In the region where two pulses collide, their
interference creates a standing beat wave with a node separation of half the laser wavelength,
λL/2.

vi The ponderomotive force in the beat wave is hence on the order of a0a1/λL, where
a0,1 denotes the peak normalized vector potential of each pulse, in contrast to the single
pulse’s ponderomotive force of the order a20/cτ with cτ being the pulse length. For the 30-
fs-pulses used in this work, cτ ≫ λL so the beat wave’s ponderomotive will be much larger
than that of the driver when a1 ∼ a0. This large ponderomotive force can preaccelerate the
plasma electrons and effectively lower the trapping threshold.

Colliding pulse injection is experimentally demanding as it requires precise temporal (∼ fs)
and spatial (∼ µm) overlap between two, or even more laser beams for more sophisticated
collision schemes. Once these technical challenges have been overcome, the colliding pulse

vA trapped electron has a smaller Hamiltonian than that of the separatrix, because the Hamiltonian
corresponds to the sum of the kinetic energy with the potential energy that is negative valued for a trapped
electron. This can also be understood when one considers an electron moving in the wakefield as an analogy
to an electron moving in the Coulomb potential of an ion. A trapped electron is thus the counterpart of a
bound electron whereas a fluid electron is the counterpart of a free/ionized electron.

viIt is assumed here for simplicity that the two colliding laser pulses have equal wavelength. In general
they can have different wavelengths so the node separation is the average of the two wavelengths and the
beat note is determined by the wavelength difference.
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injection scheme features several advantages: first, localized injection results in very narrow
(< 10 per cent) energy spread and short (< 10 fs) electron bunch [25]; second, the injection
position is prescribed by the collision point, offering a knob to tune the acceleration length
hence the accelerator’s energy output in a wide range (cf. Fig. 3.10); third, the colliding laser’s
intensity and focal spot size determine the injection volume, hence the charge and energy
spread of the bunch can also be tuned; last but definitely not least, a wakefield accelerator
with an colliding pulse injector can be turned into an all-optical Thomson scattering source
offering photon energies tunable in the hard Xray to gamma ray range [27, 79], when electrons
can be injected via a shock front injector, or a third injector beam.

Figure 3.10: Illustration of colliding pulse injection. A scan of the collision position from 32.79mm
to 32.09mm with a step size of 0.1mm results in an increase of electron beam energy from 10MeV to
60MeV as shown by the blue line. An injection probability at 90%-level was achieved for all settings
but the one with the highest energy. At each setting, the spectra are sorted according to the injected
charge as indicated by the green curve. By courtesy of J. Wenz.
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3.5 Acceleration limits and scalings

The research field of laser wakefield acceleration has seen tremendous development in the
past few decades: methods for controlled injection introduced in the previous section dramat-
ically improved the beam quality. Multi-GeV beams are routinely generated in laboratories
around the globe. LWFA-based light and particle sources are seeing increasingly more appli-
cations. To achieve the overarching goal of energy-frontier colliders and make LWFAs more
competitive for near-term applications, there are several limitations intrinsic to the LWFA
process that must be addressed, which are usually summarized as three“D”s—depletion,
dephasing, and diffraction. This section discusses these limitations and strategies to tackle
them.

Depletion

During previous discussions of wakefield excitation, the drive laser’s evolution was neglected
for simplicity. In reality, however, energy conservation demands a net energy transfer from
the driver to the wakefield, and eventually to the injected electrons. Analysing the evolution
of intense (a ≫ 1) laser pulses in under-dense plasmas, Decker et al. [80] showed that
nonlinear wakefield formation leads to a localized pump depletion—the driver’s head etches
back at a velocity of βetch ≃ ω2

p/ω
2
L while the tail propagates in the blow-out created by the

head. Thus the laser energy depletes over a pump depletion length of

Lpd ≃ cτ

βetch
≃ ω2

L

ω2
p

cτ, (3.49)

with cτ being the pulse length. Recall the conditions of the gas cell experiment presented
in subsection ??: cτ ≈ 9 µm and ne = 1.67× 1018 cm−3, corresponding to ω2

L/ω
2
p ≈ 1042. A

pump depletion length of Lpd ≈ 9.4mm can be calculated, roughly equal to the dephasing
length of Ldeph = 9.7mm.

Apparently, the pump depletion length is larger in lower-density plasmas (Lpd ∝ n−1
e ), but

so is the plasma wave phase velocity hence the injection threshold; cf. Sec. 3.2. Furthermore,
a wider spot and longer pulse length—both meaning higher laser energy in a pulse for a given
a0—are required at a lower density to resonantly drive the wakefield; cf. Secs. 3.1.2 & 3.1.3.
One can therefore not indefinitely reduce the plasma density to extend the pump depletion
length, as the ultimate limit is the total energy contained in the driver. With pulse energies
at 100-J level readily available with contemporary fs-laser technologies and kJ-class on the
horizon, a single-stage LWFA’s energy output can soon reach 10GeV and beyond.

To reach even higher energy levels, e.g. TeV required by the HEP community, staging is
probably the most viable path for LWFAs. Intriguing results on multi-stage coupling have
blossomed in the literature [81, 82]. Another way to realize TeV electron beams is to use
relativistic particle beams as the wakefield driver instead of lasers, which is a vibrant research
field commonly referred to as (for historic reasons) plasma wakefield acceleration (PWFA).
For example, the AWAKE collaboration at CERN uses the proton beam from the Super
Proton Synchrotron (SPS), which contains 19 kJ of energy in the bunch.

40



3.5. Acceleration limits and scalings

Dephasing

An important consequence of pump depletion is that the plasma wave phase velocity βp will
be slower than the drive laser’s linear group velocity βg = η by the amount of βetch, namely,

βp ≃ η − βetch ≃ 1− 3

2

ω2
p

ω2
L

(3.50)

for a sufficiently under-dense plasma. In contrast, a highly relativistic electron bunch can
move at almost the vacuum speed of light c. Therefore an electron bunch—initially injected
at the back of the wakefield period—can gradually catch up with the driver and transition
from the accelerating phase of the wakefield to the decelerating phase. The dephasing length
Ldeph is defined as the distance in the lab frame over which an electron can advance its wake-
field phase to the dephasing point. Since only the rear half of a wake period is accelerating
(Secs. 3.1.1 & 3.1.2), an estimate for the dephasing length Ldeph can be give as [35]

Ldeph =
Rb

1− βp
≃ 4

3

ω2
L

ω2
p

√
a0
kp

, (3.51)

where Rb ≃ 2
√
a0/kp denotes the bubble (blow-out) radius introduced in Sec. 3.1.3. Again,

the dephasing length favors a low plasma density as Ldeph ∝ n
−3/2
e .

For an optimal LWFA performance, the acceleration length should be slightly larger than the
dephasing length so that the phase space rotation leads to the minimum achievable energy
spread. Imposing Lpd ≳ Ldeph results in cτ ≳ 2Rb/3, complementing the resonant condition
cτ ∼ λp/2 introduced in Sec. 3.1.2

Great efforts have been invested to battling dephasing. To name a few examples, a scheme
for bunch rephasing has been proposed and demonstrated [83, 84], where the key element
is a density up-ramp to shorten the bubble by locally increasing the plasma wave phase
velocity—the exact opposite of density down-ramp injection outlined in Subsec. 3.4.1. This
scheme can delay dephasing until acceleration is limited by other factors such as pump
depletion or diffraction (details below), but it can not completely counteract dephasing as
infinite plasma densities would eventually be required. Methods based on advanced optical
design such as flying focus [85, 86] and axiprabola [87, 88] have attracted broad interest.
Utilizing pulse front tilt, Debus et al. [89] proposed a propagating wave LWFA. Alternatively,
a relativistic particle beam driver can be used instead of a laser driver.

Diffraction

Another limiting factor arising from a laser driver is natural diffraction. Assuming a laser
pulse with transverse Gaussian intensity profile propagating in a uniform plasma, the spot
size evolves as [8]

w2(z)

w2
0

= 1 +

(
1− P

Pc

)
z2

z2R
, (3.52)

where zR = πw2
0/λL is the Rayleigh range (Subsec. 2.1.2), and Pc is the critical power for

relativistic self-focusing (Subsec. 2.6.1). Hence P ≳ Pc is required so that self-focusing can
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maintain the relativistic intensity over the acceleration length, which poses a lower bound for
the plasma density. More specifically, Lu et al. [35] showed that stable self-guiding requires
a0 ∼ (ω2

L/ω
2
p)

1/5.

When external guiding is employed an even lower density can be used and the acceleration
will then be limited by depletion or dephasing.

3.6 Experimental arrangement

Experimental study of laser wakefield acceleration (LWFA) requires various instruments. At
the very least, one needs a suitable laser system as the driver, a plasma (or neutral gas)
source as the target. Figure 3.11 depicts a schematic of the experimental setup used during
the measurement campaign underlying this work. Inside an 8-m-long vacuum chamber, laser
pulses from the ATLAS laser system (Sec. 3.7) are focused with an off-axis parabolic (OAP)
mirror into a gas target, e.g. a supersonic jet with a shock front injector (Sec. 3.6.1) or a
varying-length cell. As the laser pulses propagate, they excite plasma waves where electrons
can get trapped and accelerated.
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Figure 3.11: Schematic overview of experimental setup. By courtesy of M. F. Gilljohann.

3.6.1 Supersonic gas jet with shockfront injector

A popular choice of target for LWFA experiments is de Laval (converging-diverging) nozzles,
because they allow formation of gas jets with desired shape (a few-mm-long density plateau,
with sharp rising/falling edges) and density (∼ 1018 cm−3) with relatively simple and robust
setup. The open geometry also makes diagnostic access straight forward. All experimental
results presented in this thesis were obtained with de Laval nozzles, with the only exception
of those presented in Sec. 3.8 where a gas cell was used. For the nozzles used in this work,
Hüther [90] carried out the design and characterization during his master thesis, which also
forms the basis of this subsection.
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3.6. Experimental arrangement

The gas jet produced by such a nozzle is usually modelled as an isentropic flow. The relation
between the flow’s Mach number M and its cross-sectional area A can be given as

dM

dA
=

M

(
1 +

κ− 1

2
M2

)

A(M2 − 1)
, (3.53)

where κ = Cp/CV is ratio of the specific heat for constant pressure over that for constant
volume, which amounts κ = 5/3 for monoatomic gases and κ = 7/5 for diatomic gases.
Since κ > 1, A > 0, and M > 0, the sign of this derivative is purely determined by the
sign of M2 − 1. That is, for a subsonic flow (M < 1) the stream velocity decreases with
the increase of the area. On the contrary, a supersonic flow accelerates with a larger area.
In a de Laval nozzle, the cross section first converges to a minimum, the so-called throat,
where the initially subsonic gas flow accelerates until it becomes sonic and locally choked.
A supersonic flow is then generated in the diverging segment of the nozzle.

To reach the desired gas density at the nozzle exit, the required nozzle geometry can be
deduced from the stagnation ratios

T

T0
=

(
1 +

κ− 1

2
M2

)−1

(3.54)

ρ

ρ0
=

(
1 +

κ− 1

2
M2

)κ−1

(3.55)

p
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=
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2
M2

)κ−1
κ

(3.56)
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1

M

(
2

κ+ 1
+
κ− 1

κ+ 1
M2

) κ+1
2(κ−1)

(3.57)

where T denotes the temperature, ρ the density, and p the pressure. The subscript 0 indicates
the initial condition at the nozzle inlet, and the asterisk is for the condition at the throat.

Disturbance of a supersonic flow leads to shock formation. A normal shock is a sharp change
of the gas properties along the flow, with an extremely thin interface perpendicular to the
flow direction. The flow’s Mach number immediately before (denoted with subscript 1) and
after (denoted with subscript 2) the shock are linked via

M2
2 =

(κ− 1)M2
1 + 2

2κM2
1 − (κ− 1)

. (3.58)

It can be shown thatM2 < 1 whenM1 > 1,vii namely, a shock wave always turns a supersonic
flow into a subsonic one. Relation for the densities can be given in terms of M1 as

ρ2
ρ1

=
(κ+ 1)M2

1

2 + (κ− 1)M2
1

. (3.59)

Hence the density increases after the shock.viii

viiM2
2 − 1 = (κ+ 1)(1−M2

1 )/[2κM
2
1 − (κ− 1)] < 0

viiiρ2/ρ1− 1 = 2(M2
1 − 1)/[2 + (κ− 1)M2

1 ] > 0
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3.7. ATLAS-300 laser system

Inserting an obstacle into a supersonic gas flow leads to formation of an oblique shock, which
not only brakes but also deflects the flow. Let δ denote the deflection angle, and β the shock
wave angle; cf. Fig. 3.12. The flow velocities’ parallel (to the shock wave) component is
conserved across the oblique shock, and the perpendicular (with respect to the shock wave)
components, i.e. M1⊥ =M1 sinβ and M2⊥ =M2 sin(β − δ), follow equation (3.58).

M1 > 1

 M2< M1

 oblique shock

β δ

Figure 3.12: Illustration of an oblique shock. By courtesy of M. Hüther.

3.7 ATLAS-300 laser system

Looking back to the history of laser driven particle accelerators, milestones are often reached
accompanied by breakthroughs in the laser technology. It is no exception that this work
emerged from an upgrade of the laser. The Advanced Titanium:sapphire LASer system,
ATLAS for short, has been driving the development of the high-field laser physics at the
Max-Planck-Institute for quantum optics over the past decades. In 2013 it was relocated to
the Laboratory for EXtreme photonics (LEX) and upgraded to a specified peak power of
300 TW (detailed in the master’s thesis of Günther [91]). To reach such a high peak power,
ATLAS utilizes the principle of chirped pulse amplification (CPA) [7].

As shown in figure 3.13, a pulse train is generated in the passively Kerr-lens mode-locked
Ti:sapphire oscillator (FEMTOLASERS SYNERGYTM) with an initial pulse duration
below 10 fs. For further amplification, the repetition rate is reduced from 70MHz to 10Hz
by a pulse picker Pockels cell. An Öffer type grating stretcher stretches the pulse duration
to about 300 ps. In the stretcher, a programmable acoustic optical modulator (FASTLITE,
DAZZLERTM) is installed to fine-tune the spectral phase up to the fourth order. The
stretched pulses are then amplified in a regenerative amplifier where the spectrum will be
shaped by another programmable acoustic optical modulator (FASTLITE, MAZZLERTM).
This spectral shaping will pre-compensate the spectral gain narrowing in the regenerative
amplifier and the gain shifting in the power amplifiers. As a result, the FWHM bandwidth
is larger than 50 nm at the end of the power amplifier chain, centered around 800 nm.

One major challenge in operating such a high-power laser system lies in damage prevention.
A top-hat beam profileix is therefore preferred over a Gaussian intensity profile, as it allows
for more energy in the beam for the same peak fluence on the optics. For practical reasons,

ixThe intensity distribution of a top-hat beam is usually modeled with a super-Gaussian function of order
n, i.e. I(r) = Ipeak exp

[
−2( r

w
)n
]
.
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Figure 3.13: Schematic of ATLAS 300 layout. By courtesy of B. Günther.

the beam size is usually kept as small as possible, and the optics are often used near their
damage threshold. Deterioration of the beam quality, such as hot spots in the beam, may
therefore leads to damage of the optical surfaces. In order to minimize the chance of damage,
the ATALS system design incorporated spatial filters in between each two power amplifier
stages, which homogenize the beam near-field profile.

With the limited laser energy available, the highest possible intensity is reached when the
pulses have a flat wavefront (spatial phase) as well as a clean temporal structure (spectral
phase) before the final focusing. Similar to the Dazzler that corrects the spectral phase,
the wavefront aberrations can be mitigated with a close-looped adaptive optics system. The
combination of a deformable mirror based on piezoceramics (AKA Optics SAS Bimorph)
and a wavefront sensor based on quadriwave lateral shearing interferometry (PHASICS S.A
SID4) was employed for that purpose.

Only measured properties can be optimized, therefore various laser pulse diagnostics were
implemented after the compressor, such as a spectral interferometer with crossed polarized
wave generation (FASTLITE Wizzler) and a second-harmonic-generation-based frequency-
resolved optical gating (SHG-FROG) device (Swamp Optics GRENOUILLE) for the pulse
duration, a third-order crosscorrelator (Amplitude Technologies Seqouia) for the temporal
intensity contrast, and an inverted field autocorrelator (internal name Prezelator) for the
pulse-front tilt.
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3.8. LWFA experiment with variable-length gas cell

3.8 LWFA experiment with variable-length gas cell

As outlined in section 3.3, driving a wakefield to the wave-breaking limit allows for self-
injection of electrons into the wakefield. In an experiment employing a hydrogen-filled
variable-length gas cell as the plasma source, electron beams with energies in the GeV range
were generated; see dissertation of Chou [92] for details of the gas cell setup. Figure 3.14
depicts the evolution of electron energy spectrum (cf. Sec. 4.2 for the magnetic spectrom-
eter) as the the gas cell length increases. The spectra feature two peaks: the peak with
higher energy emerges from wave breaking induced self-injection, and its energy depends
sensitively on the gas cell length; in contrast, the lower energy peak below 200MeV is most
likely explained by the injection at the down-ramp (Subsec. 3.4.1) at the very end of the gas
cell, as its energy is almost independent of the gas cell length over a wide range from 4mm
to 8mm (detailed below).
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Figure 3.14: Evolution of the electron spectrum as the gas cell length increases from 3mm to 13mm
with a step of 1mm. Each horizontal slice is an angle-integrated single-shot spectrum measured with
the magnetic spectrometer described in Sec. 4.2. Each cell length contains 30 shots. The high-energy
peak, resulted from self-injection, is accelerated from about 0.4GeV ( ∼ 3mm cell length) to over
1GeV when the cell length exceeds 10mm. The low-energy peak below 200MeV, hypothetically
injected at the gas-cell’s exit down ramp, is less influenced by the gas cell length. The black strip
near 200MeV is not covered by the imaging camera; other black vertical lines are markers on the
scintillating screen for imaging calibration. The data were taken on May-25-2016.

Properties of the high energy peak, such as its central energy, energy spread, and the charge
contained in the peak, of each spectrum are extracted from a skewed Gaussian fit. Evolution
of the peak energy can be well described by a parabolic model as shown in Fig. 3.15, implying
that the acceleration process is limited by dephasing (cf. Sec. 3.5). Extrapolating the fitting
curve to zero energy results in an injection position at 1.1mm and a maximum acceleration
gradient of 210.8GeV/m. It can be inferred that the maximum energy of 1025.3MeV is
achieved at 10.8mm, corresponding to a dephasing length of 9.7mm. According to the
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3.8. LWFA experiment with variable-length gas cell

Lu-scaling [35] for the dephasing length Ldeph and maximum energy E (cf. Sec. 3.5):

Ldeph =
4

3

ω2
L

ω2
p

√
a0
kp

= 9.7mm (3.60)

E
mec2

=
2

3

ω2
L

ω2
p

a0 =
1025.3MeV

511 keV
, (3.61)

an electron density of 1.67× 1018 cm−3 can be deduced along with an a0 of 2.94.

For reference, the ideal gas law predicts a H2 density of 3.2 × 1018 cm−3 for the gas cell
filling pressure of 130mbar (measured at the valve) at a room temperature of 20°C. The
gas density in the cell is as such roughly a quarter of the density at the valve assuming
fully ionized H2, in good agreement with the OpenFOAM 3D fluid dynamics simulation
performed by Chou [92]. Based on this density estimation, the 1D cold wave-breaking field
should be 124.2GeV/m. The acceleration gradient deduced from the high-energy peak,
210.8GeV/m, is therefore 1.79, ∼ √

a0, times the 1D cold wave-breaking field. Furthermore,
this density estimate requires a matched laser strength of am ≃ (P/Pc)

1/3 ≈ 3.14, which
agrees reasonably well with the value of 2.94 deduced from the high-energy peak. This self-
consistency confirms that the LWFA is operated in the bubble regime [9, 35] during this
campaign. A matched spot size of rm ≃ 2

√
am/kp ≈ 15.1 µm, which ensures stable laser

propagation, can be reached by relativistic self-focusing in the plasma prior to the injection
point at 1.1mm.
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Figure 3.15: Analyses of the high energy peak in figure 3.14. Each data point is an average of 30
consecutive shots; error bars represent the standard deviation.

Figure 3.16 depicts the evolution of charge and total beam energy in the high energy peak
and the whole beam. There are several features worth noting:

• about 40% of the charge in the high-energy peak gets lost when lengthening the cell
from 3 mm to 5 mm, whereas the total bunch charge keeps increasing until 7 mm of
cell length. It is hypothesized that this charge loss is due to the wakefield evolution
caused by the strong drive laser leaving the plasma before diffraction or depletion could
sufficiently reduce the driver intensity. This hypothesis is complemented by the energy
boost of the down-ramp injection at the end of the gas cell, i.e. the low energy part
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3.8. LWFA experiment with variable-length gas cell

of the spectrum. The apparent increase in the total beam charge can be attributed to
the low-energy beam being accelerated to above the magnetic spectrometer’s detection
limit of 20MeV.

• after 7 mm of propagation, the total charge in the bunch (above 20MeV) drops, while
the peak charge remains a constant, indicating that the down-ramp injection becomes
less effective. This ineffectiveness could be either a decreased chance of injection, or
a weaker accelerating field hence less charge above 20MeV and more lower-energy
charge—both of which can be linked to the reduction in driver intensity due to diffrac-
tion and depletion.

• the stagnation of total bunch energy is probably due to the cancellation between the
charge reduction and energy gain of individual electrons.

• around the dephasing point of 11 mm, roughly one fifth of the laser energy (∼ 1.5 J
within the first Airy disk) is transferred to the electron bunch, of which about 45% is
in the high-energy peak, i.e. 9% of the clean laser energy is in the high-energy bunch.

• the highest efficiency of energy transfer occurs at 9 mm for both the peak and the
whole bunch

Figure 3.16: Evolution of the charge and total energy contained in the high energy peak and the
whole bunch. Bunch charge and energy are inferred from a skewed Gaussian fit for the high-energy
peak, whereas for the low-energy part a direct integration of the spectrum is used instead. The lines
are only to guide the eye and error bars represent standard deviation.
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4 Basic Diagnostics

The non-linear nature of its dynamics, as well as the limited precision of knowledge and
control over experimental conditions often render a laser wakefield accelerator (LWFA) a
black box. To shed some light into this black box and monitor the performance of an LWFA,
diagnostic tools for key experimental parameters are indispensable. There exist many estab-
lished diagnostic techniques in the radio-frequency (RF) accelerator community, but they
are usually not suitable for LWFAs for the following reasons. First, typical beam parameters
of LWFAs are of a different order of magnitude. For example, the micrometer-scale structure
of a plasma wave limits the maximal possible bunch size in both transverse and longitudinal
directions, which calls for bunch diagnostics with much higher spatial (µm) and temporal
(fs) resolution; the large bunch energy spread, sometimes up to 100%, requires spectrom-
eters with a large energy coverage. Second, contrary to the quasi-stationary accelerating
structure in RF accelerators, the driver pulses and consequently the plasma waves they ex-
cite can evolve significantly during the LWFA process, meaning the diagnostics should offer
time-resolved information on the time scale of plasma oscillation (∼ 10 fs). Moreover, the in-
teraction between a high-intensity laser pulse and a plasma creates a harsh electro-magnetic
environment, which, many conventional electronic detectors cannot withstand. As a result,
the LWFA community has developed a new set of tools. This chapter gives an introduction
to some commonly used basic diagnostics for LWFAs alongside a brief discussion of their
strengths and limitations.

4.1 Scintillating screen

The arguably simplest beam diagnostic is a scintillating screen imaged onto a camera. When
hit by energetic electrons or Xray photons, phosphorescent compounds in the screen absorb
a tiny amount (∼ keV per relativistic electron) of energy and emit scintillation photons over
a typical decay time of milliseconds. Simulations and measurements have shown that the
deposition in the phosphor layer is almost independent of the kinetic energy for incident
electrons that are more energetic than 3MeV [93]. As will be shown in subsection 4.1.1, the
number of emitted photons is proportional to the impinging charge over a wide range. Hence
the scintillation intensity distribution directly reflects the pointing and transverse profile of
the electron beam.

Besides pointing and beam profile, the bunch charge is another important beam characteristic
that can be measured with scintillating screens, if the intrinsic response of the screens but
and the geometry is known. The latter includes the distance from the camera to the screen,
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4.1. Scintillating screen

the f-number of the imaging optics, the observation angle etc. In the remaining part of this
section, methods for quantifying those aspects will be discussed.

4.1.1 Absolute calibration of scintillating screens

Scintillating screens are widely used in cassettes for clinical X-ray radiography purposes,
but their efficiency as an electron detector is usually not quantitatively investigated by the
manufacturer. The efficiency of different screens models can vary dramatically, depending
on the type and concentration of phosphor, as well as the material and thickness of the
cladding. Dozens of models have been used by different labs due to the variety of brands
and accelerator parameters, among which the efficiency of many are unknown yet. For that
reason, many groups using them for LWFA acceleration research still put arbitrary units to
the charge axis.

Within the LWFA community, a handful of attempts [93–97] have been made to determine
the intrinsic efficiency of scintillating screens. Those measurements were usually performed
with well characterized electron sources such as an RF accelerator, whose public access is very
limited. In an effort to improve that situation, we recently characterized the electron response
several popular types of screens and proposed methods for cross-laboratory implementation
of the results Kurz et al. [96]. That series of calibration measurements were carried out at
Helmholtz Zentrum Dresden Rossendorf (HZDR) using the Electron Linac for beams with
high Brilliance and low Emittance (ELBE) linear accelerator (linac). While this campaign
was headed by me, the main results have been described as part of the Master Thesis
by Thomas Kurz whom I supervised at the beginning of his thesis, therefore I will just
summarize the most important results here.

The ELBE linac can generate sub-10 ps electron pulses at 13MHz repetition rate. Alterna-
tively, it can operate in a pulse train mode, delivering trains consisting of a variable number
of 77-ns-spaced pules, at a repetition rate of up to 1000 trains per second. The charge od
each individual bunch is tunable up to 80 pC and the bunch energy is tunable up to 40MeV.
Despite the fact that this energy is far below the typical energy delivered by an LWFA, the
energy independence of the response [93] should still give correct calibration values .

During the campaign for absolute charge calibration, the length of the 23.5MeV, 1Hz pulse
train was varied from 1 to 1400 pulses, as detailed in Ref. [96]. The charge in each pulse
was set to 15 pC, resulting in a total charge range of 15 pC to 21 nC per train. Note that
the duration of the longest pulse train, ∼ 0.1 µs, remained well below the ∼ ms decay time
of scintillation screens.

Figure 4.1 depicts the setup employed for the measurement. Inside a vessel that was directly
connected to the accelerator vacuum, electron beams provided by the ELBE linac were
focused by quadruple magnets to a nearly Gaussian spot with an area of ∼ 2mm2. An
integrating current transformer (Bergoz ICT-082-070-05:1-VAC) recorded the charge of each
individual shot. Six types of screens were mounted on a target wheel at an angle of φ = 22(1)◦

relative to the electron beam axis and imaged with a C-mount telephoto-lens (Ricoh FL-
CC6Z1218A-VG) onto a charge coupled device (CCD) camera (Basler acA1300-30gm) under
normal viewing angle. For the purpose of cross-calibration, a gaseous tritium light source

50



4.1. Scintillating screen

Figure 4.1: Setup for absolute calibration of scintillating screens. Inset: A representative e-beam
profile recorded with the camera, with horizontal and vertical lineouts though the peak. By courtesy
of T. Kurz, figure reproduced from Ref. [96] with permission of the author.

was also mounted on the target wheel; cf. subsection 4.1.2. The wheel angle was chosen
so that the pick-off mirror can be mounted off-axis, while still collecting the light emitted
normal to the screen’s surface. The arrangement was chosen in order to prevent the detection
of optical transition radiation from the screen or from the mirror, which would be generated
if the electron beam intersected the mirror. In order to record a sufficient dynamic range, a
set of calibrated neutral-density filters with optical densities ranging from 0.5 to 4.0 could
be placed before the camera. The effective collection angle was 3.18(7)msr, defined by an
aperture with a diameter of 22.96(5)mm, situated 361(4)mm from the target in front of the
objective. Thanks to the small solid angle, the lateral variation of the signal can be ignored.
A fiber-coupled spectrometer (Ocean optics HR4000) can be put in position of the camera,
as the spectra are required when determining the spectral throughput of the optical system
and the quantum efficiency of the CCD chip.

The absolute calibration of a scintillating screen Cscint, i.e. the photon number Nph emitted
into solid angle Ω upon incidence of charge Q, can thus be given as

Cscint =
Nph

QΩ
=
NCCD cosφ

QΩηtotal
. (4.1)

Here NCCD denotes the total counts within the region of interest of the background-corrected
CCD image. The factor of cosφ accounts for the increase of effective interaction length due
to the incidence angle of electron beam. The total light collection efficiency ηtotal takes
into account the 97(1)% reflection of the off-axis mirror, the 91.3(5)% transmission of the
vacuum window, the 88(1)% throughput of the objective, and the 32.8(17)% photon-to-
count conversion efficiency of the CCD chip (Sony ICX445) that combines the photon-to-
electron quantum efficiency and the loss of the readout electronics.

The absolute photon yield is shown in Fig. 4.2. Up to a peak charge density of ∼ nCmm−2

the response of the measured screens remains linear. A linear fit to the data results in cali-
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Figure 4.2: Absolute calibration of various types of scintillating screens. The solid line and filled
markers of each calibration curve indicate the linear region, whereas the dotted line and open markers
show the non-linear part. For comparison with other published results on Kodak Lanex Fine, the
red square is deduced from experimental data in Glinec et al. [93]. The dashed line and red circle are
reproduced from Buck et al. [94], where the value of red circle is based on the Monte Carlo simulation
reported in [93]. By courtesy of T. Kurz, figure reproduced from [96] with permission of the author.

bration factors listed in Tab. 4.1. Note that only data points with less than −10% deviation
from the linear model (indicated by filled markers) are considered, because saturation and
degeneration effects [96] occur for higher peak charge densities. A model following the Birks’
law

ρscint =
ρICT

1 +BρICT
(4.2)

describes this saturation behaviour, with the Birks’ constant B as the free parameter. The
variable ρICT denotes the peak charge density derived from the bunch charge measured by
the ICT and the beam profile recorded in the linear regime assuming a charge-independent
beam shape. ρscint is obtained from the saturated beam profile on the scintillator using the
absolute calibration Cscint. A saturation threshold ρsat is deliberately defined at 90% level,
cf. Tab. 4.1, that is, the scintillation signal drops to 90% of the prediction by the linear model
when ρICT = ρsat. This choice of the threshold ensures a clear separation between saturation
effects and the statistical fluctuation in the linear regime. The saturation effect observed
in the calibration campaign does not play an important role for the ∼ 100 pC/mm2 of
charge densities relevant in this work; cf. Fig. 4.4. However, in future wakefield acceleration
experiments e.g. those planned for CALA where charge densities above nC/mm2 can be
anticipated, saturation may eventually leads to underestimate of the charge determined
from scintillating screens.

A final remark of this subsection: the scintillating screens are often packaged in pairs, with
one screen intended for the front side of the radiographic cassette and the other back. The
front screen has usually a higher spatial resolution and a lower light yield compared to the
back one. For instance, the front screen of the CAWO OG 16 set used for this work is only
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about 64% as efficient as the back screen; cf. Tab.4.1. A factor-of-1.5 error in electron beam
charge would occur if a front screen is mistaken for a back one or vice versa.

Screen
Abs. calibration
[109 ph/sr/pC]

Sat. threshold
[nC/mm2]

Birks’ constant
[10−5 mm2/pC]

Kodak BioMAX MS 7.6± 1.3 1.6± 0.2 7.1± 0.8
CAWO OG 16 Back 5.8± 1.0 1.8± 0.2 6.0± 0.6
CAWO OG 16 Front 3.7± 0.7 1.8± 0.2 6.1± 0.7

Konica Minolta OG 400 3.7± 0.7 1.9± 0.2 5.8± 0.6
Carestream Lanex Regular B 3.1± 0.6 1.9± 0.2 5.9± 0.6

Kodak Lanex Fine 1.0± 0.2 3.5± 0.3 3.1± 0.4

Table 4.1: Absolute calibration, saturation threshold, and Birks’ constant of some commonly used
scintillating screens. The annotations ”front” and ”back” for CAWO OG 16, and ”B” for Carestream
Lanex Regular indicate the two screens from the same package are different. Values are drawn from
the data presented in Fig. 4.2; cf. main text.

4.1.2 Cross-calibration with constant light source

Implementing absolute calibration results requires careful characterization of the imaging
geometry, which is rather impractical to perform on a daily bases, especially when the
geometry of setup is frequently modified to fit the goal of each experiment day. It would be
therefore desirable to eliminate the geometric dependence of the detector signal.

This subsection introduces a method of cross-calibration originally proposed by Buck et
al. [94], where a constant light source (CLS) serves as the reference, and the bunch charge
Q is simply deduced from the background-corrected CCD image as

Q =
Ne−beam

NCLS
× Ccross, (4.3)

whereNe−beam denotes the total counts caused by the electron beam andNCLS the integrated
counts of the CLS. The cross-calibration factor

Ccross =
ICLS × texposure

Cscint
(4.4)

depends on the CLS’s radiant intensity ICLS, i.e. number of photons emitted into a unit solid
angle per unit time, the exposure time of the camera texposure, and of course, the intrinsic
efficiency of the deployed scintillating screen Cscint. Apparently, to get Ccross in the first
place, the CLS also needs an absolute calibration.

This cross-calibration method is reliable, when the CLS fulfills

• the photon flux does not vary significantly from day to day;

• the spectrum is similar to that of the scintillating screen;

• the emission character is Lambertian;
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• the brightness is comparable to the scintillating screen, i.e., given a properly set in-
tegration time (e.g., ∼ 100ms for the experiments in this work), the CLS produces a
detector signal on the same order of magnitude as the scintillation screen hit by an
electron bunch.

As already forecast in Subsec. 4.1.1, trigalightTM gaseous tritium light sources (GTLSs) from
mb-microtec were implemented as CLSs for the measurement underlying this work. In par-
ticular, the GTLS-4, cf. radioactive source catalogue of LEX photonics, was measured during
an absolute calibration campaign in September 2015, and IGTLS−4 = 3.6(4)× 107 ph/sr/ms
was found. It follows Eq. (4.4) immediately that the cross-calibration factor back then,
e.g. for 100ms of exposure time and CAWO OG 16 Back screen, was

Ccross =
3.6× 107 ph/sr/ms× 100ms

5.8× 109 ph/sr/pC
= 0.62 pC. (4.5)

A GTLS is made of an airtight glass capsule several millimeters in length, filled with tritium
gas. The inner capsule walls are coated with zinc sulphide phosphorescent powders so that
electrons from tritium beta-decay are captured and their energy converted into visible light.
Since the light yield of these capsules depends primarily on the amount of tritium, and
tritium has a half-life of 12.32 years, GTLSs should in theory offer a nearly constant light
output for months at least. In practice, the combined effect of tritium decay and phosphor
aging results in about ten percent signal reduction after only one year. As a result, it is
necessary to re-calibrate the GTLSs every year. Another drawback of GTLSs originates
from their radioactivity. Despite the low average kinetic energy (5.7 keV) of the produced
electrons, tritium gas is radiotoxic once inhaled. Therefore the capsules need to be handled
with care to prevent damage. On the flip side, a GTLS has a good mobility thanks to its
compactness, making an annual re-calibration feasible.

In order to study the decay characteristic of GTLSs quantitatively, T. Kurz built a dedicated
testbed, which consists of a light-proof aluminium case, a CCD camera, a mounting plate
for GTLSs, and an LED-based mater light source, see master’s thesis of Kurz [98] for more
details. Since every component of the setup is installed at a fixed position relative to each
other, the influence of changing geometry can be ruled out. Furthermore the master LED
proves to offer a constant light yield over at least a decade considering its working condition.
Consequently, the radiant intensity of a GTLS is unambiguously determined by its photon
flux, or equivalently, the CCD counts, as long as the total counts of the master LED remain
unchanged.

The decay history of some sources is depicted in Fig. 4.3 (a). Note that the GTLS-4, 6, 7
share a similar decay rate, whereas the GTLS-1 appears to have a significantly slower decay.
A possible cause lies in the fact that the GTLS-1 is about 6 years older than other GTLSs.
The reduced activity of tritium due to the age leads to a slower degradation of the phosphor
hence a longer apparent characteristic time. An exponential function

ϕ̄CLS(t) = exp[−(t− a)/τ ] + b (4.6)

is fitted to the normalized photon flux ϕ̄CLS that combines the data from GTLS-4, 6, 7,
cf. Fig. 4.3 (b), and the parameters are found as a = −35.6, τ = 29.3, and b = 0.713.
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Figure 4.3: (a) decay history of the individual GTLSs in LEX photonics along with a linear fit (blue
solid line; cf. main text) to the radiant intensity of the GTLS-1. (b) exponential fits to the data,
where the flux of each GTLS, excluding the GTLS-1, is normalized on its own by the value in March
2017 i.e. 0 of Time axis. The mean value of normalized flux is taken if multiple GTLSs were measured
on the same day. Note that fits are applied only to blue squares, and the black dot is extrapolated
using the red solid curve.

The offset b in the model is not physically motivated. It is introduced only because the
available data could not constrain exp[−(t− a)/τ ] well enough. Further investigation is
required to clarify this issue. With the absolute calibration of GTLS-4 from September
2015 (cf. subsection 4.1.1) and the extrapolation of the exponential model to that date, the
camera counts in Fig. 4.3 (a) are converted into radiant intensity as shown by the right
y-axis. Contrary to the exponential model above, an over-simplified linear model

IGTLS−1(t) = (−1.65t+ 359)× 105 ph/sr/ms (4.7)

is employed to describe the decay of the GTLS-1 due to limited data availability. The cross
calibration factor Ccross in Eq. (4.4) then follows the decay law given by either Eq. (4.6) or
Eq. (4.7).

4.1.3 Pointing screen in LEX photonics

Combining the intrinsic efficiency of scintillating screens (Subsec. 4.1.1) and the cross-
calibration technique (Subsec. 4.1.2), a functional beam pointing and profile monitor can be
built. During the measurement in LEX photonics, CAWO OG 16 Front screens (B2NV5U)
were implemented in conjunction with the GTLS-1 as the CLS for charge determination.
This screen provided a spatial resolution of 1 LP/mm at 50%, or 3 LP/mm at 10% of the
modulation transfer function. With Gd2O2S:Tb as the phosphor material, the emission
spectrum of the screen peaks around 545 nm.

The stray light from laser would cause undesired background signal hence should be carefully
shielded. An aluminium plate is therefore inserted upstream the vacuum chamber segment
hosting the screen to block scattered laser beam, with a hole around the laser axis allowing
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Figure 4.4: Results from the pointing screen. Left: pointing distribution of 311 shots in the run 3 of
September-22-2016. The pointing of each shot is obtained from a 2D Gaussian fit to the electron beam
profile. The r.m.s. pointing jitter of this run is 0.48mrad in the horizontal direction and 0.88mrad
in the vertical direction. Color-coded is the Gaussian kernel density estimation of the distribution.
Right: pointing-corrected average beam profile with contours at 1σ, 2σ, and 3σ levels. The beam
center is deliberately shifted to the origin of coordinates. The projected r.m.s. beam divergence is
0.74mrad horizontal and 1.0mrad vertical, corresponding to a size of 2.3mm2 on the screen. The
averaged total charge in the beam is about 232 pC.

electron beams to pass through. In addition, the 14-bit camera (Pointgrey Grasshopper
GRAS-14S3M-C) viewing at the screen was equipped with, among others, a band-pass filter
of 550 nm central wavelength that can suppress the laser and transmit the scintillation.

To mitigate laser-induced damage, the non-emitting surface of the screen was attached to
a fifty-micron-thick Al foil. The assembly was positioned 1.8m downstream the target and
0.3m in front of the electron spectrometer, with the Al foil facing towards the laser pulse.

Seen from Fig. 4.4, the scintillating screen allows for online monitoring of the pointing
and profile of electron beams, however, only in an energy-integrated fashion. Moreover the
scattering of electrons inside the screen increases beam divergence significantly. As will be
shown later in the next section, this divergence increase hinders energy-resolved divergence
measurement and further reduces the energy resolution of the spectrometer; cf. Fig. 4.7.
Therefore the screen was mounted on a motorized flipper and can be removed from the beam
path on demand, to allow electron beams to enter the magnetic spectrometer undisturbed.

4.2 Magnetic spectrometer

Unlike electron bunches from RF accelerators, LWFA bunches often do not have a well-
defined energy distribution. Instead, the bunch energy E fluctuates and the energy spread
∆E/E can be sometimes as large as 100%. To cope with such bunch properties, a spectrom-
eter for laser-plasma-based accelerator research is usually made of large-area (up to meters
in length) scintillating screens and dipole magnets that deflect each energy component of the
electron bunch to a different position on the screen; cf. Fig. 4.5. The spectrometer magnet
used in this work is an array of 8 units as shown in Fig. 4.6. Each unit is 10 cm long and has
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Figure 4.5: Schematic side view of the magnetic spectrometer. The shaded area indicates the B-field
of dipole magnets. Dashed lines represent trajectories of electrons with different kinetic energies.
This configuration was used to obtain the data presented in Sec. 3.8

six VACODYM 764 TP [55] magnets attached to a steel yoke. There is a 40mm horizontal
gap between magnets for electrons to pass through, with an in-gap dipole B-field strength
of approximately 0.85T. The spectrometer entrance is 2.1m away from the target, resulting
in a horizontal acceptance angle around 8mrad for the middle section of the spectrometer,
where the most electrons of interest are detected.

The magnet bends the electron beam towards the ground. About 3 cm, or 5mm for exper-
iments prior to raising up the magnet, below the magnet, scintillating screens (CAWO OG
16 A2FL5V Back) are placed in a 2-mm-thick light-tight aluminium case, imaged via folding
mirrors onto a 14-bit CCD camera (Pointgrey Grasshoper GRAS-20S4M). In Fig. 4.7 some
typical spectrometer images taken with the pointing screen in place are compared with those
without the pointing screen. The pointing screen results in a roughly 7-fold increase in the

Figure 4.6: Rendering of the spectrometer magnet, courtesy G. Schilling.
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Figure 4.7: Comparison between images from electron spectrometer with (Run 3, September-22-2016)
and without (Run 4, same day) the pointing screen. Other experimental parameters were set the
same. The color range is chosen to saturate the right column in order to improve the visibility of the
left column. The white vertical bars in the images are due to either markers on the screen or the gap
between folding mirrors in the imaging setup.

slice divergence, measured using the full width at half maximum (FWHM) at the spectral
peak, for the presented shots.

Quantitative conclusions can be drawn from the spectrometer only if its energy and charge
axes are calibrated. As the charge calibration was already mentioned in Sec. 4.1, this section
will focus on the energy axis.

4.2.1 Electron tracking

The distribution of magnetic field is essential to determine the precise correlation between
an electron’s kinetic energy and its final position on the scintillation screen. Therefore a Hall
sensor was scanned over the central volume between the magnets. The fringe field outside
the yoke was also covered by that scan, as shown in the inset of Fig. 4.8.

Taking the measured magnetic field distribution as input, single electron trajectories in the
spectrometer were calculated with the software package General Particle Tracer (GPT) [99].
Figure 4.8 illustrates the final position of an electron on the scintillating screen (3 cm below
magnets) as a function of its kinetic energy. It is apparent that the incidence angle into
the magnetic field plays an important role in determining the energy calibration of the
spectrometer, so an unknown beam pointing leads to an uncertainty in beam energy. For
example, a vertical pointing error of 1mrad corresponds to an energy uncertainty of 5MeV
@ 300MeV; cf. Fig. 4.4.

Inserting a scintillating screen into the beam path and recording simultaneously pointing and
spectrum allows one to correct the energy later on. A caveat is that the screen deteriorate
the beam’s divergence, which in turn causes new errors; cf. Fig. 4.7.
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Figure 4.8: Energy calibration of the magnetic spectrometer for various incidence angles, calculated
with General Particle Tracer. Inset: Magnetic field map measured with a Hall sensor, by courtesy of
S. Raith.

4.2.2 Magnet focusing

The aforementioned energy uncertainty due to pointing error and beam divergence can be
reduced by utilizing the focusing property of magnets.

Figure 4.9 depicts electron trajectories inside a 2.1-m-long 0.85T magnet for various kinetic
energies. The B-field is modeled as a constant of 0.85 T within a rectangular region and
zero outside. The electron source is point-like and situates 2.7m from the magnet entrance,
so-chosen to match initial experimental configuration in CALA. The inclination angles are
±2mrad. When exiting the magnet from the lower edge, electrons with a positive inclination
will experience more bending in the field compared to those with a negative inclination (note
that this effect is does not apply to electrons leaving the field from the right edge). As a
result, the magnet will focus the electron beam. Analogous to a lens that focuses optical
rays, the dipole magnet images the electron source to a focal surface, and each point in the
surface can be associated with a different energy bin.

In general, the focal surface is not flat. Moreover, the measured magnetic field distribution
can not make a perfect focus due to aberrations just as any realistic lens. However, given
the ∼ 1LP/mm spatial resolution of scintillating screens and the ∼ 1mrad converging angle,
a plane is a reasonably good approximation to the focal surface. Electrons of up to 1GeV
energy can be imaged inside the experimental chamber using the setup described above. To
facilitate focusing of multi-GeV of energies for the experiments in CALA, either a stronger
magnet shall be used for more bending, or the spectrometer shall be flipped upside down for
more space.
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Figure 4.9: Focusing of electron beams with various kinetic energies and inclinations of ±2mrad
(solid lines) in a 2.1-m-long dipole magnet with a constant B-field strength of 0.85T (shaded area,
both blue and pink). The source is 2.7m away from the magnet. The dashed line represent the focal
plane, obtained with a linear fit to the energy-dependent focal points.

4.3 Interferometry

4.3.1 Nomarski interferometer

A central question in the LWFA research is the plasma density, to which one often seeks
answers from interferometers. In particular, the Nomarski-type interferometer [100] offers
a simple yet robust solution in a laser-plasma experiment to measure the electron density.
As shown in the Figure 4.10, a Nomarski interferometer is an inline setup consisting of a
Wollaston prism—two birefringent prisms with perpendicular optic axes cemented together,
a pair of polarizers—either orthogonal or parallel oriented, and an imaging system.

The working principle of a Nomarski interferometer is as follows (see Fig. 4.10 for reference):
the lens images the object plane, in which laser-plasma interaction takes place, to the image
plane with a proper magnification; polarizer 1 sets the laser polarization to 45◦ relative to
the optical axes of both segments of the Wollaston prism; as such, the Wollaston prism splits
the beam into two replicas, thus creating two virtual sources in the focal plane of the imaging
lens, with equal intensity but orthogonal polarization; polarizer 2 rotates the polarization of
both beams to the same direction and enables interference in the region where both beams
overlap. Ideally, the overlap region should contain the plasma shadow from one beam and
vacuum propagation from the other beam. The fringe spacing, δ, is determined by the beam
separation angle, ε, and the position of the Wollaston prism as

δ =
λL
ε

dI
dF
, for dI ≪ dF , (4.8)

where dI and dF denote the distance from the beam separation point in the Wollaston prism
to the image plane and the focus position of the imaging lens, respectively, and λL is the
wavelength of the probe laser.
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Figure 4.10: Schematic of a Nomarski interferometer.

An interferogram, recorded with a Nomarski interferometer, of a gas jet interacting with
an ultrashort laser pulse is shown in Figure 4.11, where the bending of fringes encodes the
accumulated phase difference, Φ(r), between the propagation in free space and that through
the laser-generated plasma, namely,

Φ(r) =
2π

λL

∫
dx [1− η(x, r)]. (4.9)

Here r = (y, z) is a shorthand notation for the two dimensional coordinates in the image
plane. λL denotes the probe laser wavelength and η the refractive index of the plasma defined
in Eq. (2.49). The coordinate system is defined so that the drive laser propagates to the
z-direction and the probe laser to the x-direction.

0 200 400 600 800 1000

z [px]

0

200

400

y
[p

x
]

Figure 4.11: Raw data from a Nomarski interferometer.

Expanding the refractive index using Taylor series, and truncating to the first order yields

η =

√
1− ne

nc
≈ 1− ne

2nc
. (4.10)

Eq. (4.9) can thus be simplified as

Φ(r) ≈ π

λLnc

∫
dx ne(x, r), (4.11)

which connects the phase with the electron density.
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4.3.2 Phase retrieval

The quantitative relation between the phase difference Φ(r) and the intensity distribution
I(r) measured in the interferogram can be obtained from a simple two-beam interference.
Let E1 = exp[ik1 · r] and E2 = exp[ik2 · r + iΦ(r)] represent the E-fields of the interfering
beams in the image plane (the amplitude of the two beams is assumed equal for simplicity),
it follows immediately that the intensity

I(r) = |E1 + E2|2

= 2 + 2 cos[∆k · r +Φ(r)]. (4.12)

The wave vector ∆k = k2 − k1 is related to the fringe spacing as ∆k = 2π/δ; cf. Eq. (4.8)

Thus the phase Φ(r) can be retrieved from the raw interferogram using a method based
on fast Fourier transform (FFT). By masking out a narrow band in the Fourier space
and discarding the negative frequencies, the interferogram can be converted into complex
numbers whose complex phase representing the phase accumulation. The software IDEA-
Interferometric Data Evaluation Algorithms [101] offers a powerful suite of tools for inter-
ferogram analysis and was used to obtain data presented in this work.

4.3.3 Abel Inversion

Assuming an axially symmetric electron density distribution and dropping z-dependence for
brevity, equation (4.11) can be written with polar coordinates as

Φ(y) =
2π

λLnc

∫ ∞

y

ne(r)rdr√
r2 − y2

. (4.13)
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Figure 4.12: Interferometic measurement of gas jet density. Left: Longitudinal density profile of the
5-mm nozzle with shockfront. Right: The plateau density as a function of the backing pressure for
the 3-mm nozzle.
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The equation above is an Abel transformation, therefore the inversion formula can be readily
given:

ne(r) = −λLnc
π2

∫ ∞

r

∂Φ(y)

∂y

dy√
y2 − r2

. (4.14)

If the assumption of axial symmetry is not physically justified, special cares need to be taken,
e.g. using the methods proposed in Ref. [102]. Figure 4.12 is an example of applying Abel
inversion to determine the average plasma density produced with de Laval nozzle targets.
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5 Few-cycle shadowgraphy

The basic diagnostic tools introduced in the previous chapter provide mostly information on
the final state properties of a laser wakefield accelerator (LWFA). With this information, the
community has come a long way in maturing the LWFA technology; cf. Refs. [8, 12, 81, 103].
The key to gaining better control over the acceleration process lies, however, in understand-
ing its time-dependence and dynamic evolution. In this regard, great effort has been made
in creating increasingly sophisticated numerical methods [38, 39] to simulate the experi-
mental conditions. Due to the broad range of the involved scales, i.e. the laser wavelength
(∼ µm) and the acceleration length (∼ cm) and the large number (normally > 106) of parti-
cles to be considered, these simulations are inherently computationally costly. Furthermore,
the limited knowledge about the detailed experimental parameters and the imperfections
in modelling often mean that the simulations need to be fine-tuned to reproduce the ex-
periments. As a result, though current particle-in-cell (PIC) simulations could eventually
reach quantitative agreement with experiments, they do not yet lend themselves to visualize
experiments in real-time. In pursuance of validating the simulations and more importantly,
online monitoring of the experiments, time-resolved diagnostics are required. An ultimate
LWFA diagnostic should offer information on the electron density function in the 6+1 di-
mensional (x,p, t) phase space, which is only partially fulfilled in practice. In this chapter,
the few-cycle shadowgraphy technique pioneered by Sävert et al. [40, 45] will be introduced,
which could provide information in 2+1 D, or 3+1 D with some additional effort.

5.1 Few-cycle probe setup

In order to efficiently excite plasma waves, the plasma density in an LWFA experiment is
usually chosen to fulfill the resonant condition cτ ∼ λp/2 (cf. Chapter 3). This implies
that the bandwidth of the laser is often insufficient for time-resolved study of the transient
behaviour of plasma dynamics. To address this issue, a hollow-core fiber based pulse com-
pressor was implemented in the framework of this dissertation, and Felix Daiber’s master’s
thesis [104]; cf. Ref. [43] and Fig. 5.1.

A fraction of the compressed ATLAS beam containing about 20mJ of energy (hereafter
referred to as the probe pulse) is clipped out by a half inch mirror in front of the final focusing
optic. The probe pulse is sent subsequently through a 1-mm-thick fused silica window to an
optical table outside the vacuum target chamber. An iris and ND filters adjust the diameter
and the energy of the probe pulse to about 8mm and 1mJ, respectively. A dispersive
mirror array together with a variable-thickness glass wedge pair compensates the group delay
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Figure 5.1: Schematic of the pump-probe setup. Image adopted/modified from Ref. [43].

dispersion (GDD) accumulated during pre-fiber propagation and therefore ensures effective
self phase modulation (SPM) inside the Ar-filled hollow core fiber. The installed dispersive
mirrors (UltraFast Innovations PC70) are designed for the spectral range of 500 - 1050 nm
and they need to be used in pairs with incidence angles of 5 and 19 degrees. The hollow-
core fiber in this setup (FEMTOLASER KaleidoscopeTM) has an inner-diameter of 240 µm
and a length of 0.9m. With 500mbar of argon pressure, about 400 µJ can be transmitted
though the fiber. A second array of dispersive mirrors and a wedge pair compress the
spectrally broadened pulse to close to its Fourier limit. A motorized delay stage sets the
proper synchronization between the main pulse and the probe. At the same time, it allows
for study of plasma wave evolution by setting the relative delay. The probe pulse is then sent
transversely through the interaction region and collected with a long working distance plan
apochromatic microscope objective (Mitutoyo Plan Apo NIR 5X or 10X, depending on the
magnification requirement of the experiment) to form either shadowgrams or interferograms
with a spatial resolution of ∼ 2 µm. The whole imaging setup as marked by the dashed line
in Fig .5.1, excluding the gas jet, but including the last folding mirror before the target, can
be shifted along the main laser axis thus allowing different part of the target to be sampled
without altering the relative delay.
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5.2. Shadowgraphic observation of linear and nonlinear plasma waves

5.2 Shadowgraphic observation of linear and nonlinear plasma waves

Figure 5.2 depicts a raw shadowgram recorded with a 12-bit CMOS camera (Allied Vision
Mako G-419B-NIR). As in other types of shadowgrams, the measured intensity contrast
originates from phase contrast in the object under probing [105]. The apparent light intensity
is proportional to the second derivative of the refractive index with respect to the spatial
coordinate in the plane transverse to the probe laser’s propagation direction. On the other
hand, the distance between the object plane and the plane being imaged also affects the
intensity contrast. For the typical plasma density used in this work (∼ 4× 1018 cm−3), the
contrast was found the best when the plane about 100 µm away from the plasma wave was
imaged.

ATLAS main beam

colliding beam

plasma wave train

ionization front

collision front
not a shock front

200 μm

Figure 5.2: An example raw shadowgram of two laser pulses colliding in a hydrogen plasma.

At first glance, horizontal striations are probably the most prominent structure. They extend
over the entire region where the laser intensity is (or once was) above the threshold of barrier
suppression ionization (cf. Sec. 2.4). In this region initially neutral gas molecules get rapidly
ionized, decreasing the local refractive index and defining the outer boundary of the observed
pattern, or the so-called ionization front. The actual striations are likely caused by the
speckles from high-frequency diffraction surrounding the laser focus, which modulate the
ionization degree in the low-energy wings and thus cause refractive index gradients.

Owing to the few-cycle duration of the probe pulse, the laser-driven plasma wave can be
directly observed, which manifests as an periodic modulation of the probe beam intensity
along the laser axis. Though the intensity distribution of probe beam does no directly
translates into electron density, the periodicity of the modulation reflects the local plasma
wavelength.

As the starting point of the visible plasma wave marks the position of the high intensity
peak of the laser, the distance between the head of the plasma wave and the ionization front
gives a rough estimate of the temporal intensity contrast of the laser pulse. For instance, the
ionization front is ∼ 300 µm away from the plasma wave in Fig. 5.2, indicating a contrast
of ∼ 10−5 @ −1 ps, considering that the ionization intensity for hydrogen is on the order of
1013W/c2m; cf. Table 2.1.

As already outlined in Sec. 3.1, a plasma wave is excited when a laser pulse with relativistic
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Figure 5.3: Left: Representative shadowgrams of laser driven plasma waves in the plasma density
range of ne = 2−4×1018 cm−3. (a) a nonlinear plasma wave driven by a 70TW pulse. (b) a strongly
nonlinear plasma wave driven by a 70TW pulse with a weaker secondary wave above it. Note that
the secondary wave starts at the same position as the main wave, but its modulation at the front
is poorly visible due to its overlap with a diffraction feature in the probe’s near-field profile. (c) a
quasi-linear plasma wave driven by a 13TW pulse. Right: The wavelength of plasma oscillation as
a function of electron density. The nonlinear wavelengths (orange dots) are obtained from the main
waves whereas the linear wavelengths (blue dots) are deduced from the filaments; cf. panel (b). The
low power shots (green dot) are taken at 13TW; cf. panel (c). Each data point is an average of 2
to 9 shots. The vertical error bars represent the standard error of mean (s.e.m.) of each run. The
horizontal error bars are the estimated uncertainties in the density retrieval from interferometry. A
least square fit to the nonlinear wavelengths (dashed red line) yields the elongation factor λp,nl/λp
of α = 1.13. Figure reproduced from Ref. [43].

intensity propagates inside an underdense plasma. Depending on the intensity of the driver,
there are different regimes. Employing the full pulse energy ATLAS provided during this
experiment (70TW on target, vacuum a0 ≃ 1.6), plasma waves similar to that shown in
Fig. 5.3 (a) were often observed. The curved wave fronts clearly indicate that this wave is
nonlinear. Occasionally, secondary plasma waves with shorter wavelengths appeared in the
vicinity of the main wave; cf. Fig. 5.3 (b). This is likely due to the laser being out of focus
at the gas jet edge and its imperfect mid/far-field intensity distribution. As those filaments
are expected to have lower intensities than the main focus, this observation hints at an
intensity-dependent plasma wavelength. Therefore, a comparative measurement was carried
out at reduced laser power (13TW on target, vacuum a0 ≃ 0.7). The plasma wavelength
was now significantly shorter than that of a nonlinear wave at the same density, yet similar
to that of the filaments; cf. Fig. 5.3 (c).

To establish a quantitative relation between the measured plasma wavelengths and the an-
alytical non-relativistic model Eq. (3.27), Normaski-type interferometry was performed to
independently determine the electron density. Owing to the large field of view of the in-
terferometry camera, this provided an in-situ measurement of the phase difference between
the plasma column fully ionized by the drive laser and the background gas in the jet. The
density can then be retrieved via Abel inversion, assuming a cylindrical symmetry of the
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5.3. Nonlinear plasma wavelength scaling

plasma channel; cf. Sec. 4.3.

In the density plateau of a 3-mm-long hydrogen gas jet (about 1.8mm of propagation in
plasma), at full power the wavelength deduced from shadowgrams is λp,nl = 1.13λp for the
main wave in a density range of ne = 2− 4× 1018 cm−3. In contrast, the wavelength of both
the filament- and low-power driven waves does not significantly differ from the expected cold
λp; cf. Fig. 5.3 (d).

5.3 Nonlinear plasma wavelength scaling

Based on the theory introduced in subsection 3.1.2, it should be straightforward to deduce
the local peak potential a0 from the measured plasma wave elongation. In the 13TW case,
all models predict an elongation of 1 − 2%, which is within the measurement uncertainty.
However, it turns out that relating the measured λp,nl to a realistic value of driver a0 is much
more difficult at 70TW, as is summarized in Table 5.1.

Method Estimated a0
1D nonlinear model for rectangular pulse 1.6
1D nonlinear model for gaussian pulse 1.95
Momentum based estimate 1.15
Momentum based estimate (FWHM average) 2.15

Vacuum focus 1.6
Matched spot size 4.0
Particle-in-cell simulation 4.5

Table 5.1: Upper part: Various estimates for the laser a0 based on models for the nonlinear plasma
wavelength (cf. Sec. 3.1) and the measured value λp,nl = 1.13λp. Lower part: Comparison with
estimates based on the measured focal spot and pulse energy, the matched spot size for P = 70TW
and ne = 3× 1018 cm−3 and the result from a PIC simulation after 2 mm of propagation.

Interpreting the measured elongation factor of 1.13 using the analytical solution of 1D fluid
theory with a square pulse, Eq. (3.31), yields a laser peak potential a0 = 1.6 and a scaling
parameter χ = 0.85. Note that the scaling factor χ considerably differs from the model’s
validity range (χ ≪ 1), rendering this result rather unreliable. Given the experimental
pulse shape cannot be considered a rectangle anyway, a more realistic Gaussian pulse will
be considered next. The numerical solution of Eq. (3.22) suggests a slightly higher value of
a0 = 1.95.

On the other hand, the observed lengthening can be associated with the relativistic increase
of the electron mass, yielding a γ-factor of 1.28 at full power. Based on Eq. (3.32) this
would correspond to a normalized potential of 1.12, even lower than the inferred vacuum
potential. However, the assumption that all electrons experience the same intensity, i.e. the
peak potential a0, is unrealistic. Instead, the retrieved value should be interpreted as an
averaged potential ⟨a⟩. By assuming a Gaussian shape of the intensity profile and taking the
average potential within the full width at half maximum in both transverse and longitudinal
directions to be 1.12, a peak value of a0 = 2.15 is obtained.

68



5.3. Nonlinear plasma wavelength scaling

To sum up, there is a large variation between the estimates from models discussed in Sec. 3.1.
The results are roughly compatible with the vacuum focus intensity, but the laser will self-
focus inside the plasma and a much higher value for a0 is expected inside the plasma. For a
70TW laser in a plasma with ne = 3 × 1018 cm−3, a matched spot has a waist w0 = 12 µm
and a peak potential a0 = 4.0 according to Lu et al. [36], if the energy deposition to the
plasma can be neglected. Hence the a0 values deduced from the measured elongation factor
using the models plotted in Fig. 3.3 are significantly too small. On the other hand, as no
external guiding technique is applied and the initial spot size does not fulfill the self-guiding
condition, the laser is also expected to evolve strongly during the propagation. Consequently,
there is considerable uncertainty in the driver intensity at the measurement point.
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Figure 5.4: Snapshots of a quasi-3D simulation of a 70TW 30 fs (FWHM) pulse propagating in a
3-mm-long hydrogen gas jet with a nominal electron density of ne = 3× 1018 cm−3: upper panels are
for the beginning of the jet and lower panels are for the center of the jet where the experimental data
are taken (cf. Fig. 5.3). From left to right: (a-b) the intensity distribution (false color) together with
the E-field envelope of the laser pulse in transverse and longitudinal direction (red lines), normalized
by mecω0/e, with ω0 the laser carrier frequency. (c-d) the electron density distribution. (e-f) line-
by-line Fourier transform of the electron density with the abscissa converted from wave number to
wavelength and the intensity corrected by the Jacobian (∂kp/∂λp; to account for the non-uniform
sampling; false color), and the position of the intensity maximum at each transverse coordinate x (the
dashed line). Note that the wiggles in (f) are a numerical artifact due to the weak density modulation
outside the drive laser. (g) the evolution of the peak laser potential (red solid line) and the beam
waist (green dashed line). The horizontal lines indicate the matched condition from Lu et al. [36]. (h)
the evolution of the elongation factor (blue line), which shows good agreement with the measurement
(orange dot). The vertical error bar of the measured dot indicates the 95% confidence interval of the
elongation estimate and the horizontal error bar is the sum in quadrature of the length of the visible
wave train and the uncertainty in determining the length of the gas jet up-ramp. Figure reproduced
from Ref. [43].

In order to understand the experimental results in detail, and to gain insight on the evolution
of the drive laser, quasi-3D simulation of the laser propagation and plasma wave formation is
carried out using FBPIC [39]. Similar to other quasi-3D codes such as CALDER-CIRC [38],
FBPIC employs an azimuthal Fourier decomposition, where the lowest two modes are asso-
ciated with the radial symmetric component of the wakefield and the laser field, respectively.
As the wake can become asymmetric at large laser intensities, higher order modes m > 2
might become necessary to model the system [38]. Here m = 4 modes, and the resolution
is ∆z = λ0/30 in longitudinal and ∆r ≈ λp/100 in the radial direction for a simulation
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5.3. Nonlinear plasma wavelength scaling

window of z × r = (100× 65) µm2, initialized with 32 particles per cell for r < 30 µm. The
plasma is considered as completely pre-ionized with a longitudinal density profile consisting
of a 150 µm linear ramp, followed by a constant density of ne = 3 × 1018 cm−3. The driver
is a laser pulse initialized in vacuum with a FWHM duration τ = 30 fs, a FWHM spot size
of 30 µm, and a peak potential a0 = 1.6. The simulation results are summarized in Fig. 5.4.

At the beginning of the gas jet, the 70TW laser pulse has a FWHM spot diameter of
30 µm, larger than its FWHM pulse length cτ = 9 µm and the linear plasma wavelength
λp = 19.3 µm, hence the plasma motion is still predominantly longitudinal. As a result, the
lengthening of the plasma wave train follows roughly the laser’s radial intensity distribution
and the wave fronts become curved with the curvature increasing farther behind the driver;
cf. Fig. 5.4 (c) and (e).

Over the first millimeters of propagation, self-focusing reduces the spot size to below λp and
the transverse component of the ponderomotive force becomes comparable to its longitudinal
one. In this case, transverse plasma oscillations cause complete electron cavitation behind
the driver, leading to the well-known bubble-like structure [9, 106]. Furthermore, comparing
the dashed lines in Figs. 5.4 (e,f), the plasma wavelength ceases to vary in the transverse
direction and appears to be almost a constant throughout the wave due to phase mixing of
plasma oscillation.

As shown in the Fig. 5.4 (g), the peak laser intensity oscillates in the range a0 = 3.5 to 4.5
around the matched value of a0 = 4; this oscillation is caused by the unmatched initial spot
size. At the same time, Fig. 5.4 (h) shows the lengthening of the wave train λp,nl/λp, which is
between 1.10−1.15. This value is much smaller than the prediction of the models in Sec. 3.1
for a pulse with a0 ∼ 4, yet compatible with the experimental data. Indeed, at the center
of the jet, the simulation accurately reproduces the measured plasma wave lengthening of
13%.

The poor performance of the widely established analytical models compared to the good
agreement between simulation and experiment therefore indicates that the physics of plasma
wave trains is also influenced by effects that are not included in the model. In particular, it is
too simplistic to assume that the wave train formation is dominated by a single parameter,
the peak potential a0. As the plasma wave is generated by the ponderomotive force [8],
F⃗p = −mec

2∇⃗(a2/2) (for a0 ≪ 1), which depends on the gradient of the intensity, the
wave formation will not only depend on the peak value a0, but also the pulse length and
width. The latter is particularly important, as it directly influences the transverse motion
of electrons and therefore plays a major role in the breakdown of any 1D laminar model.

To illustrate this behavior, Fig. 5.5 shows simulation results for both the plasma waves and
the trajectories of plasma electrons driven by laser pulses of different peak intensities and
spot sizes, with a width-to-length ratio w0/cτ = 3 in the left, and w0/cτ = 1 in the right
column.

As expected, in the case of a wide focal spot, a simple extension of the 1D theory to higher
dimensions assuming laminar motion still seems reasonable for peak potentials a0 < 3. The
wave amplitude and wavelength asre modulated by the radial intensity profile of the laser,
leading to a horse-shoe like structure in the laser’s wake. With peak potentials a0 > 3, the
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Figure 5.5: Comparison of plasma wave train formation in the wake of a tightly focused spot (right)
and a 3 times as wide spot (left) at various laser peak potentials (a0 = [1.0, 2.0, 3.0, 4.0] from top
to bottom). Colored lines show the trajectories of electrons with different initial position in radial
coordinates. The normalized E-field strength of the laser is shown as grey-scale contour plot and the
transverse field gradient is indicated with an overlaid colormap. The transverse gradient of the tightly
focused laser leads to stronger transverse electron motion and thus prevents them from experiencing
the peak laser potential. This further leads to cavitation and suppresses the elongation of the wave
train. In contrast, the simulations for a wide focal spot are comparable to laminar models, with
a characteristic horseshoe-like shape, until wavebreaking sets in for a0 ≳ 3. All simulations are
performed for a plasma density ne = 3× 1018 cm−3 and using an FWHM pulse duration of τ = 30 fs.
Figure reproduced from Ref. [43].

fields reach the (relativistic) wave-breaking limit and hence the fluid model breaks down,
marked by the self-injection into the wakefield.

For the tightly focused case, the fluid model breaks down even sooner and the dynamics of
the plasma wave fundamentally change. Due to the increasingly transverse motion, many
electrons drift farther away from laser axis even before they experience the local intensity
peak of the laser pulse. As a result, a high proportion of the plasma electrons involved in
the wake formation do not experience the peak laser potential, reducing their oscillation
strength. The fluid model therefore fails in this case for a0 ≳ 1.

To quantify these effects, a series of 20 simulations with a0 = 0.5 − 4.0 and varying aspect
ratios w0/cτ = 1 − 4 of the laser pulse are performed; cf. Fig. 5.6. Within this parameter
range, ∆λ = λp,nl−λp obtained from simulation data can be reasonably well described with
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Figure 5.6: Plasma wave elongation according to PIC simulations with different aspect ratios w0/cτ
of the laser pulse (dots). The fit function (colored dashed lines) agrees well with the simulations,
while approaching the 1D nonlinear model for w0/cτ ≫ 1 and a0 ≲ 2. Figure reproduced from
Ref. [43].

a sigmoid function along a0, while the wavelength also increases proportionally to the aspect
ratio w0/cτ :

∆λ(a0, w0) =
p0

1 + e−p1·(a0−p2)
×
(
1 +

w0

cτ

)
. (5.1)

A least-squares fit yields the parameters p0 = 0.05, p1 = −2.5, and p2 = 2.1. The sigmoid’s
midpoint p2 of this fit function can be taken to be the value of a0 at which damping becomes
significant. This damping, which is absent in the one-dimensional case, can be explained by
the aforementioned effect that the plasma wave is mainly formed by electrons from outer
radii. These electrons only interact with the outer part of the laser where the potential
is a ∼ 1 − 2. An increase in a0 only moves these zones further outwards and leads to a
slightly larger transverse bubble size, but it does not substantially increase the peak intensity
experienced by the plasma electrons which form the wake. In contrast, for a wider laser the
average field experienced by plasma electrons is higher and thus, the plasma wavelength will
increase with the aspect ratio.

For even wider drivers, the electron motion becomes more and more longitudinal and the
plasma wave formation gradually approaches the solution to the 1D nonlinear wave equa-
tion (3.22), and the elongation factor can be λp,nl/λp > 1.2.

On the contrary, the plasma waves driven by tightly (self-)focused drivers clearly differ from
the models plotted in Sec. 3.1, and show only a weak increase of the order of 10% in the
plasma wavelength, as a0 is increased. It is important to note that this behavior is not
covered by the model of Lu et al. [36], which only concerns the first bubble and not multi
bubble trains as shown in Fig. 5.5. The main problem here is that the electrons which form
the first bubble are not that same which oscillate in the second and the third. It is therefore
important to develop new theoretical models for this regime of wakefield formation, which
is central to many future experiments such as multi-pulse wakefield excitation [107, 108].
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5.4. Plasma wave evolution in density up-ramp

5.4 Plasma wave evolution in density up-ramp

Discussion so far concentrates on plasma waves in a uniform plasma e.g. the density plateau
of a gas jet where the dynamics is dominated by the laser evolution. As outlined in subsec-
tion 3.4.1, density gradients will also impact the wave dynamics in a non-uniform plasma;
cf. the electron probing work by Zhang et al. [77, 78]. This section presents direct exper-
imental evidence, obtained with few-cycle shadowgraphy, of plasma wave elongation in a
density up-ramp.

The left column of figure 5.7 shows snapshots at five different time instances of the propa-
gation of a laser driven plasma wave in a density up-ramp before a shock front. The shock
front is produced by inserting a Si wafer into the supersonic flow from a de Laval nozzle;
cf. Sec. 3.6.1. The time 0 is defined as the instance when the bubble is located in the region
of interest between the dashed yellow lines around z = −364 µm, and z = 0 represents the
starting point of the density plateau i.e. the right edge of the shock front’s shadow. By
visual inspection, one could already confirm that the plasma wave at a given z elongates as
the time passes by.
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Figure 5.7: Left: Few-cycle shadowgrams of laser generated plasma waves in the density up-ramp
before a shock front. Right: The plasma wave number in dependence of the probe delay t. The wave
numbers are measured in the region between the yellow dashed lines in the left panel. Vertical error
bars represent standard deviation in the region of interest. Horizontal error bars account for the
timing uncertainty originated from the uncertainty in determining the location of the plasma bubble
and the shock front.

A quantitative analysis is depicted in the right column, where the ROI-averaged plasma
wave number kp = 2π/λp, calculated with continuous wavelet transform [109], is plotted as a
function of the probe timing t. Indeed the wave number decreases gradually. As the plasma
expands into vacuum at the sound speed, the density profile does not change significantly on
a picosecond time scale. Neglecting the plasma density profile evolution, the plasma wave
number should change at a constant rate. A linear fit to the data yields

kp [µm−1] = −0.152t [ps] + 0.386, (5.2)

or ∂kp/∂t = −0.152 µm−1 ps−1. This result is in excellent agreement with the conclusion
drawn from the interferometric measurement shown in Fig. 4.12, where a parabolic fit to
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the density up-ramp results in ∂ωp/∂z = 0.152 µm−1 ps−1. At such a changing rate, the
wake reversal effect reported by Zhang et al. [77] should occur within a few picoseconds (the
zero-crossing point of the wave number is 2.5 ps), which should be easily verifiable by future
experiments employing few-cycle shadowgraphy and a similarly designed gas jet.

5.5 Phase reconstruction and wave amplitude

Besides wavelength, the amplitude i.e. the electron density modulation depth of a plasma
wave is of special interest, as it determines the maximal acceleration gradient of the wakefield.
According to the 1D cold fluid theory introduced in Sec. 3.1, the wavelength of a plasma wave
can be uniquely determined by its amplitude, or vice versa. In an experiment, transverse
electron motion (cf. Sec. 5.3) and beam loading [44] make such an association not trivial
anymore. Therefore it would be desirable if the the wave amplitude could also be deduced
from the shadowgrams.

As shadowgram in essence is a phase contrast measurement, there exist established methods
for phase retrieval. The iterative algorithm proposed by Gerchberg and Saxton [110] was
employed in this work. Implementation of Gerchberg-Saxton algorithm requires the knowl-
edge of the intensity distributions at two different object planes, which can be obtained
either by scanning the imaging lens or by recording the image in multiple image planes after
a splitting the beam.
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Figure 5.8: Schematic of the multi-plane imaging setup employed at Laboratoire d’Optique Appliquée.
Salle Jaune is a Ti:Sapphire laser system delivering 5 J of energy at a repetition rate of 2Hz. The
energy is evenly divided into two main beams P1 and P2, plus a lower energy (> millijoule) probe
beam P3. All three beams are fully synchronized, and independently compressible to ∼ 30 fs of pulse
duration. Plasma waves driven by P1 are probed by P3. Three cameras, labeled as Cam0-3, are
set up to image three equally (50µm) spaced plane 0-3, respectively. A bandpass filer BF700-10 is
placed in the beam path to enable Gerchberg-Saxton reconstruction of the plasma wave and reduce
chromatic aberration.

During the upgrade of ATLAS (Sec. 3.7) to a petawatt system in the summer of 2018, the
hollow-core fiber compressor was transported to Laboratoire d’Optique Appliquée (LOA) and
was successfully integrated into the Salle Jaune laser system; cf. Fig. 5.8. After probing the
laser driven plasma wave, the probe beam was split twice to expose three 16-bit cameras with
the same laser shot. The three cameras were set up to image three planes with a separation
of 50 µm between adjacent planes. Additionally, a bandpass filter transmitting a 10-nm
(FWHM) band around the central wavelength of 700 nm was installed in the common path
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5.6. Plasma wave gallery

of the cameras as the Gerchberg-Saxton algorithm is only strictly valid for a monochromatic
wave. Furthermore, the narrow bandpass filter reduces the chromatic aberration of the
imaging system and improves the shadowgram quality.
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Figure 5.9: Gerchberg-Saxton phase retrieval of a laser driven plasma wave. From left to right, the
columns represent the far-, mid- and near-field, respectively. The far- and midfield data are fed into
the algorithm for calculation and the near-field is used as validation. From top to bottom, panels
(a-c) are the measured intensities, (d-f) the reconstructed intensities, (g-i) the differences between
measurement and reconstruction, (j-l) the reconstructed phases. Note that the iterative intensity
substitution stops at the far-field, hence (d) and (a) are identical and (g) is zero everywhere.

An example of Gerchberg-Saxton phase retrieval with the python package LightPipes [111]
is shown in Fig. 5.9. After 10 iterations, the retrieved phase in panel (j) already allows to
propagate the measured far-field intensity (a or d) back to the mid- (e) and near-field (f)
with high fidelity, indicating a successful phase retrieval.

Phase retrieval is only the first step to reconstruct the plasma wave. Deducing the electron
density distribution from the phase is the next important yet challenging step, which is
beyond the scope of this work. Interested readers are referred to Moritz Förster’s work on
this topic.

5.6 Plasma wave gallery

The remaining of this chapter presents some interesting phenomena recorded with few-cycle
shadowgraphy, without detailed quantitative analyses.

5.6.1 Plasma waves driven by LWFA electron bunches

During the measurement campaign in LEX photonics, the bunch charge from the laser
wakefield accelerator was approaching a nanocoulomb [44]. Taking into account the few
femtosecond duration of these bunches [112], a peak current on the order of tens of kiloampere
was achieved. Sending such dense LWFA bunches into a second gas jet, it is anticipated that
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Figure 5.10: Left: Few-cycle shadowgram of an LWFA-bunch driven plasma wave. The plasma wave
driven the electron bunch is marked with a red rectangle, which is followed by a cone feature as
a signature of ion motion described by Gilljohann et al. [42]. The white rectangle marks the wave
driven by the remaining laser, with no trailing cone feature. Right: Autocorrelation traces of the
corresponding plasma waves marked by the rectangles in the left panel, indicating a strong periodic
modulation of the observed intensity in the region of interest. Figure reproduced from Ref. [42].

the bunches can drive a strong wakefield on their own. The first direct observation of plasma
waves driven by an LWFA-bunch is shown in Fig. 5.10. In this example, two plasma waves
can be seen in the shadowgram: one driven by the electron bunch (on top) while the other
by the remainder laser (on the bottom). The separation of two waves is caused by the laser
refraction due to gas density gradient along the nozzle axis i.e. the vertical direction in the
figure. Interestingly, a cone structure is observed trailing the electron-driven plasma wave,
which is caused by the ion motion induced by the ponderomotive force associated with the
wakefield (see Gilljohann et al. [42] for more detailed discussion).

The result presented above was a collaborative effort led by M. F. Gilljohann and me. While
I carried out the measurement of the plasma waves and identified the cone feature as the
evidence for the electron-driven wave, Gilljohann performed and interpreted the simulations
that unveiled the physics mechanism underlying the cone formation.

5.6.2 Fully broken bubble after shock front injection

Another interesting observation is shown in Fig. 5.11, where the usual wave train structure
extending over more than ten wave periods does not appear. Instead, strong diffraction
from a single plasma bubble, originally described by Pukhov and Meyer-ter Vehn [9], can be
observed. This “lucky” shot was obtained in an experiment studying shock front injection
(Subsec. 3.4.1). At the time of writing this thesis, the exact experimental conditions leading
to this observation are not fully resolved.

Supersonic

Shock

Figure 5.11: Few-cycle shadowgram of a fully broken plasma bubble.
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5.6.3 Bubble shape change in colliding pulse injection

Picking off a portion of ATLAS beam and sending it to counter-propagate and collide with
the ATLAS main beam, a sequence of shadowgraphic snapshots was recorded near the point
where the colliding pules injection (Subsec. 3.4.3) takes place; see Fig. 5.12. The apparent
shape of the bubble changed after the injection event: a crescent-shaped shadow with a
curvature opposite to all other wave periods appeared. This shadow suggests that the density
gradient at the leading edge becomes much sharper, likely due to the laser steepening during
the collision process.
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Figure 5.12: Change of bubble shape at five time instances during colliding pulse injection. t = 0
is the injection time. For t < 0, i.e., before the colliding point, the first wave period appears as a
dark accompanied by a crescent-shaped shadow, very similar to the trailing periods. In contrast,
a crescent-shaped shadow with inverted curvature appears at the leading edge of the first plasma
bucket t ≥ 0, indicating a steepening of density gradient after injection takes place.
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5.6.4 Off-center plasma wave

Sometimes, when things go wrong, plasma waves can give a first hint. An example is given
below in Fig. 5.13, where the plasma wave train does not appear along the symmetry axis as
one would normally expect. Instead, it is offset by roughly a quarter the transverse size of
the observed plasma plume. This offset suggests strong asymmetry of the laser pulse, which
was corrected by a tuning of the pulse front tilt [55] and subsequent alignment of the final
off-axis parabolic mirror.

symmetry axis

plasma wave train

Figure 5.13: Shadowgram of an off-axis plasma wave, suggesting strong pulse front tilt and misalign-
ment of the final focusing optic.
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6 Summary and outlook

In summary, this thesis made two advancements: development of diagnostic tools for the laser
wakefield acceleration (LWFA) experiments powered by the ATLAS-300 laser facility at the
Laboratory for Extreme (LEX) Photonics descibed in Chapter 4, and studies of laser-driven
plasma waves using few-cycle shadowgraphy as the central tool presented in Chapter 5.

Diagnostic tools developed in the framework of this thesis, including calibrated scintillating
screen, magnetic spectrometer, Nomarski interferometer, and the few-cycle shadowgraphy
setup, made significant contribution to the success of the LWFA activities at LEX photonics.
They provided knowledge of the plasma wavelength and density, as well as electron beam
charge, pointing, and spectral density in absolute terms. This enabled quantitative com-
parison of experiments, theories, and numerical simulations, from which sparked numerous
important results. To name a few examples: electron acceleration with steady-flow gas cell
producing double bunches with the high-energy bunch containing > 100 pC of charge above
the (tunable) energy of 1GeV (Sec 3.8); laser-particle hybrid wakefield experiment demon-
strating the first observation of LWFA-bunch-driven plasma waves and ion dynamics [42];
studies on beam loading effects in laser-driven wakefields [44]; and the main finding of this
thesis: a scaling law for the nonlinear plasma wavelength [43].

Combining the plasma wavelength obtained from few-cycle shadowgrams and the plasma
density deduced from on-shot interferograms, it is demonstrated that the analytical- [8] and
phenomenological models [37] currently available are insufficient to capture all important
physics in the nonlinear lengthening of laser-driven plasma waves. Especially in the regime
most relevant to experiments, weakly nonlinear plasma waves are driven by tightly focused
laser pulses, hence transverse electron motion contributes significantly to the plasma wave
formation. A new scaling law is proposed based on a series of particle-in-cell (PIC) sim-
ulations (cf. Ref. [43] and Chapter 5), which accounts for both the laser peak intensity
(quantified by its associated a0) and the laser spot aspect ratio (characterized by w0/cτ).
Given its excellent agreement with the measurement, this new scaling law can be used to
guide the design of future experiments where multiple pulses will be required to drive the
wakefield—to determine the delay between pulses particularly.

There are several aspects that can be considered as natural continuation or short-term
outlook of the current work. Below are some examples.

• Multi-plane shadowgraphy—plasma wave density reconstruction
As alluded in Chapter. 5, reconstruction of the plasma wave density modulation from
experimental observables is an important milestone toward the understanding and
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control of the LWFA process. Few-cycle shadowgraphy proves to be a powerful tool in
this respect. The multi-plane shadowgraphy technique and Gerchberg-Saxton phase
retrieval outlined in section 5.5 mark the first step of reconstructing the plasma density
modulation. What remains is the inversion of the projected phase into 3D density.
Initial analyses by Förster et al. [113] have shown inspiring results: density modulation
has been successfully reconstructed for a linear plasma wave with cylindrical symmetry
using e.g. Abel inversion.

• Single-shot recording of plasma wave evolution
The interaction between the probe beam and the laser-driven plasma wave is described
by linear refraction, given the probe beam is weak enough to not perturb the plasma
under probing. The superposition principle implies that different spectral components
of a chirped probe pulse (cf. subsection. 2.1.1) can be considered as independent probe
pulses arriving at different time instances. It is hence possible to record the plasma
wave evolution in a single shot by intentionally chirping the probe pulse and simultane-
ously measuring multiple spectral bands. Note that the temporal resolution of probing
is not limited by the spectrally integrated duration, which is elongated by the chirp of
the probe pulse. Instead, it is the coherent time of the spectral band of interest, which
is determined solely by the bandwidth, that limits the temporal resolution. Intuitively,
a higher temporal resolution demands a broader spectrum.
Techniques based on similar principle were previously employed to characterize ultra-
short laser pulses. For example, STRIPED FISHi developed at the Trebino group at
Georgia Institute of Technology makes use of holograms for a complete spatial-temporal
reconstruction of a laser pulse [114]; in contrast, TRICii developed by the Schreiber
group at LMU Munich relies on the expansion of near-critical-density plasma to map
out the laser intensity contours in the focal region [115].

• Correlating diagnostics
Each individual diagnostic tool introduced in this thesis has its strengths and can be
useful by its own. However, richer physics can be explored when multiple diagnostic
tools are correlated. For example, Swanson et al. [116] showed that the electron beam
pointing is correlated with the shock front angle by actively changing the orientation
of the whole target assembly during the experiment. Since the shock front angle can
be directly deduced from shadowgrams, this hints at a non-invasive way to monitor
the e-beam pointing, which could enable correcting the pointing-induced beam energy
uncertainty without spoiling the beam by inserting a pointing screen.

Researches outlined above can be carried out at the ATLAS-3000 laser system at the Centre
for Advanced Laser Applications (CALA) with minor (or no) modifications to the existing
hardware.

Going forward, with ATLAS-3000 reaching full-power operation, it is anticipated that a
plasma density in the range of 1017 cm−3 will be necessary [12]. At such low densities, the
contrast of the few-cycle shadowgram is likely to suffer, because the gradient of refractive

iSpatially and Temporally Resolved Intensity and Phase Evaluation Device: Full Information from a
Single Hologram

iiTemporally Resolved Intensity Contouring
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index is diminishing at the current wavelength of the probe pulse. Sävert [45] proposed
to use a longer probe wavelength to recover the shadowgram contrast, e.g. by frequency
down-converting the probe pulse to mid-IR. This approach requires mid-IR detectors with
sufficient spatial resolution that are yet to be developed.

In longer terms, the field of LWFA research could benefit from the rapid development of
the fiber laser technology, and from arguably the hottest topic of the present time—machine
learning (ML).

Fiber lasers, compared with the Ti:sapphire lasers used in this work, excels in the average-
power scalability. The low quantum defectiii and the large surface-to-volume ratio due to
the quasi-1D geometry make fiber lasers less demanding to cool.iv They can readily deliver
kilowatts of average power by operating at multi-kHz repetition rate [117]. Techniques such
as coherent combining of output of multiple fibers [118, 119] can further push the peak power
to meet the requirement of LWFA research, making fiber lasers a promising candidate to
power next-generation accelerators.

Another major boost to the LWFA research is likely to emerge from implementation of
contemporary ML techniques. Several groups have successfully utilized ML schemes such
as Bayesian optimization [120, 121] for the automated optimization of the LWFA operation.
Such advances would eventually relieve physicists from the mundane yet time-consuming
(sometimes impossible) task of manual optimization in a multi-dimensional parameter space.
Furthermore, as the community moves towards advanced control and inference based on
statistical analyses [44, 122], non-trivial correlations among parameters found through ML
could enable virtual diagnostics [123].

iiiFor example, Yb-doped fibers can lase at 1030 nm while being pumped at 980 nm. In contrast, Ti:sapphire
needs ∼ 500 nm pump to lase around 800 nm.

ivBeside the physics limit of quantum defect, there are also technological limitations for further up-scaling
Ti:sapphire systems. One thing particular is that the lasers used to pump the Ti:sapphire crystal, usually a
frequency-doubled Nd:YAG laser, rely on flash-lamp pumping, whose electrical-to-optical efficiency is typically
below one percent.
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A. Köhler, J. M. Krämer, T. Kurz, S. Kuschel, J. Osterhoff, L. F. Schaper, D. Schinkel,
U. Schramm, O. Zarini, and R. D'Arcy. Charge calibration of DRZ scintillation phos-
phor screens. Journal of Instrumentation, 14(09):P09025–P09025, 2019.

[98] Thomas Kurz. Calibration of scintillation screens for bunch charge determina-
tion in laser wakefield acceleration. Master’s thesis, Ludwig-Maximilians-Universität
München, 2015.

[99] General Particle Tracer. URL http://www.pulsar.nl/gpt/.

[100] R. Benattar, C. Popovics, and R. Sigel. Polarized light interferometer for laser fusion
studies. Review of Scientific Instruments, 50(12):1583–1586, 1979.

[101] IDEA - Interferometric Data Evaluation Algorithms. URL http://optics.tu-graz.

ac.at/idea/idea.html.

[102] Paolo Tomassini and Antonio Giulietti. A generalization of Abel inversion to non-
axisymmetric density distribution. Optics Communications, 199:143–148, 2001.
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J. Götzfried, A. Buck, J. Xu, M. Heigoldt, W. Helml, L. Veisz, and S. Karsch. Dual-
energy electron beams from a compact laser-driven accelerator. Nature Photonics, 13
(4):263–269, 2019.

[104] Felix M. Daiber. Generation of Few Cycle Pulses for Direct Observation of the Plasma
Wave. Master’s thesis, Ludwig-Maximilians-Universität München, 2015.

[105] S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Pa-
ganin, D. J. Parry, A. Pogany, and A. W. Stevenson. Quantitative x-ray projection
microscopy: phase-contrast and multi-spectral imaging. Journal of Microscopy, 207:
79–96, 2002.

[106] A. Pukhov, S. Gordienko, S. Kiselev, and I. Kostyukov. The bubble regime of
laser–plasma acceleration: monoenergetic electrons and the scalability. Plasma Physics
and Controlled Fusion, 46:B179–B186, 2004.

[107] S. M. Hooker, R. Bartolini, S. P.D. Mangles, A. Tünnermann, L. Corner, J. Limpert,
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