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j , Ỹ rung

j } as the coordinates of the right-edge of the

rung ligaments, respectively. Similarly we can define {Xedge
ij , Y edge

ij } and

{X̃edge
ij , Ỹ edge
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Abstract

The axial loading of a column is a well known cannonical problem first described by

Euler and Bernoulli. Recently, buckling in columns with regular arrays of circular voids

was studied experimentally for hard materials, indicating a deviation in post-buckling

behaviour from that of elastomeric columns. In this study, we extend the theoreti-

cal model of holey columns to incorporate the effects of material nonlinearities. We

extend the simplified analytical model proposed by Johnson et. al that considers the

column to be a collection of rigid sections connected by a network of thin ligaments

acting like fixed torsional springs. Notably, in the updated model, the ligaments are

modelled as deformable torsional springs that can undergo compressive and shear de-

formations. The total energy cost of the deformations is minimised numerically to

determine the equilibrium state of the system. The response of the ligaments to defor-

mations was modelled using empirical force-displacement curves of a single ligament

under compressive, shearing and rotational deformation. We present results obtained

from simulations of the column under axial compression, confirming that material

nonlinearities can explain the post-buckling behaviour in hard materials, while retain-

ing the assumption of elasticity. Having established that the compressive response of

ligaments in holey columns differs significantly from that of individual ligaments, the

compressive response was modelled for the entire column instead of extrapolating from

single ligaments. We report that for columns with many holes (N ≥ 11), such a model

can reflect the behaviour observed in experimental investigations with good precision.
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Chapter 1

Introduction

Buckling of thin columns under axial loading, originally described by Euler and Bernoulli,

is one of the textbook problems of modern science: if compression exceeds a critical

level, the column does not stay straight but deforms by deforming sideways. The

buckling of columns has been a subject of many studies in fields ranging from material

sciences [5], biology [6], mechanical and civil engineering [7], to physics and applied

mathematics [8]. However, we are only starting to fully characterise the behaviour

of columns with an array of regularly spaced holes across their length. For example,

when compressed, such columns can stay symmetric with respect to the vertical, be-

cause the circular holes transform into an array of vertical and horizontal ellipses that

alternate along its length. Most works so far focused on holey columns (and analogous

perforated sheets) made out of elastic materials. However, holey columns made of

hard materials, such as plastics and metals, also have the same pattern switching be-

haviour despite deforming plasticly. Post-buckling force-displacement measurements

of hard holey columns, however, are qualitatively different compared to that of their

elastomeric counterparts, making them ideal for studying the role of coupling between

geometrical and material non-linearities in buckling. Exploring this interplay between

different sources of non-linearity could find a wide ranging applications, from prosthe-

sis design [9] and soft robotics [10] to automobile design and structural engineering

[11].

In this thesis, we will attempt to reproduce experimentally observed post buckling

behaviours of hard holey columns and understand them by incorporating non-linear

constitutive response of material into a simplified mathematical model. We shall begin

13



14 CHAPTER 1. INTRODUCTION

by recapitulating the phenomena of elastic buckling in axially loaded beams. There-

after, we shall see how this behaviour is linked to pattern switching in columns and

sheets with regularly spaced circular holes, and how these structures form an impor-

tant part of the growing study of auxetics. Finally, we summarise and contextualise

the specific phenomena of buckling in holey columns and explore how material non-

linearities may tie into the behaviour of such columns made from hard materials such

as metals and plastic.

1.1 Classical Euler-Bernoulli Buckling

Figure 1.1: An illustration of buckling in an Euler-Bernoulli column under axial com-
pression

Let us start by considering an Euler-Bernoulli column of length L under axial

compression given by the force F . As the loading force is increased beyond a critical

value given by FCr, the initial straight state becomes unstable. This critical load is

found to be

FCr =
π2EI

(kL)2
, (1.1)

where E is the Young’s modulus of the material, I is the second moment of inertia

of the column and kL defines its effective length (which changes depending on the
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particular boundary conditions applied in the problem, e.g. k = 2 for a beam pinned

at both top and bottom boundaries) [12]. Upon further increasing the loading force,

the left-right symmetry of the system is broken, and the column deforms sideways.

This buckling occurs via the pitchfork bifurcation. For a perfect column, there is

an equal probability of attaining either the right or the left buckled state, but when

imperfect perturbations are applied or if the system contains bias to begin with, an

imperfect bifurcation is observed instead and the system preferentially attains one of

the two final states [13]. Both scenarios are illustrated in the bifurcation diagrams in

Figure 1.2, which can be interpreted as plots of deviation of the column centre from

the vertical as a function of the applied force.

Figure 1.2: a)Perfect and b) Imperfect Pitchfork bifurcations of a system. For our
system we can consider the parameter r to be correspond to the Force or displacement
that the beam is experiencing [1]

1.2 Buckling Phenomena in Holey Columns

In order to gain an understanding of the phenomena of buckling in holey columns,

we hereby recap previous investigations of the system by Pihler-Puzovic et al. [2],

Johnson et al [3] and Box et al [4].

A holey column of N holes is obtained by regularly perforating a rectangular Euler-

Bernoulli beam along its axis of symmetry. Thus, the D2 symmetry of the unperforated

beam is retained. This corresponds to 3 non-identity operators of symmetry, for which

the system is invariant. These are reflections about the horizontal and vertical axes,

and rotations of π
2
. However, in contrast to the Euler-Bernoulli beams, the holes in the

column introduce an additional symmetry to the system. As all the holes are exactly
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Figure 1.3: Explorations of the various bifurcation modes in a three holed column,
using finite element simulations of the column. We can follow the trivial compression
branch denoted by the unfilled squares. The 2 alternating mode branches are denoted
by circles and are red and blue for vertical and horizontal elipses respectively. We
can also observe the Euler branch in black and the mixed modes in pink and cyan
respectively[2].

the same, under the assumption that they are perfectly manufactured, we also can

exchange any of the holes for each other. Thus, before bifurcation, the system also

possesses SN group symmetry due to the invariance of the system to permutations of

the cells. This significantly enriches the bifurcation space [14], as illustrated in Figure

1.3 for the case of columns with 3 holes.

We will refer to the branch of the bifurcation diagram, on which the beam under-

goes Hookean compression, without any symmetry breaking, as the trivial compression

branch. The two branches that correspond to a breaking of the SN symmetry will be

referred to as alternating modes. For columns with odd numbered holes, such as those

illustrated in Figure 1.3, these preserve D2 symmetry and occur through a trans-

critical bifurcation. [15] However, for even holed columns, these do not preserve D2

symmetry and occur through a pitchfork bifurcation. These can occur via the circular

holes transforming into alternating ellipses with semi-major axes parallel to horizontal

and vertical axes, respectively. For columns with odd numbered holes, we can name

the case where the middle hole transforms to an ellipse with a semi-major axis parallel

to the horizontal axis of the column, as the horizontal branch. Similarly we can also
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define a vertical branch. Finally, the bifurcation corresponding to breaking of the D2

symmetry while preserving the vertical reflection symmetry corresponds to the lateral

buckling of the column and is referred to as the eulerian buckling mode.

1.2.1 Role of Geometries of the Columns

There are three major geometric parameters that define the columns, namely the

radius of the holes relative to height of the unit cell, the radius of the hole relative

to the width of the unit cell and the number of holes in the column. Upon numerical

simulations, it has been shown that the method of buckling the column experiences

is determined by the width and height of the column relative to the radius of the

holes. For holes that are relatively small as compared to the length and widths of

the unit cells, the behaviour of the holey column remains close to that of the Euler-

Bernoulli beams. This is because the beams are quite thick due to the small hole sizes,

relative to the width and height of the unit cells. Thus, the columns undergo a global

eulerian buckling. For other relative widths and heights, we see the dominance of the

alternating mode. The parameters and the buckling mode they lead to, can be seen

in Figure 1.4.

Figure 1.4: Explorations of role of the geometry in the primary buckling mode of a
six- holed columns, using finite element simulations of the column. We can observe
the dominance of the alternating mode as both the parameters approach 1, which
is the asymptotic limit for the radius of the holes and the separation between them
approaching the column width[2].
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As mentioned in Section 1.2, the parity of the number of holes is crucial to the

bifurcation structure of the column, with the alternating mode branch arising through

a transcritical bifurcation for odd numbered columns, and pitchfork bifurcation for an

even numbered column. However, the critical stress of a column is also affected by

the number of holes in the column. the Eulerian buckling mode of the columns scales

similarly to the buckling stress of the euler-bernoulli beam, in the limit of columns

with a large number of holes. However, for the alternating mode, the critical stress

can be expected to tend towards a fixed value as the number of holes increases. The

relationship between the critical stress and the number of holes can be seen in Figure

1.5.

Figure 1.5: Scaling of the critical buckling strain of the various modes of buckling,
for increasing number of holes. In the limit of large number of holes, we see the
convergence of the alternating mode (red) to a minimal stress of 0.0349, while the
Euleriean (black) mode scales as 1/N2, which is same as the scaling with increasing
length of a solid column undergoing Euleriean buckling. [2].

In finite-element studies of holey columns, it has been previously observed that

most of the strain energy of the system is concentrated in the ligaments, labelled w

and s in Figure 1.6. It was determined that w and s are much taller than they are thin.

These can thus be modelled as euler-bernoulli beams, for thinking of Euler buckling

modes in the beams. Additionally, Johnson et al. suggested a simplified model for

the holey columns in alternating buckling mode, where the ligaments can be modelled

as torsional springs. These were studied theoretically and for the asymptotic limit of
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as,aw«D, and the relation between the critical stress for each mode and the parameters

as and aw were determined theoretically using the simplified models of the beams.

h

D = 2R

aw

as ws(x
⋆)

W

y⋆

x⋆

(b)

w w

ww

s

s

Figure 1.6: An illustration of the geometry of the system used by Johnson et. al[3].
The diameter of the holes are defined as D, the separation between the holes is defined
as h, while the width of the column is W . Sub-figure (b) shows the limit of the D
approaching W and h approaching D. The thin sections of the column can thus be
thought of as Euler-Bernoulli beams labelled s and w. These have widths as and aw
respectively, which are also the minimum separation between the holes and column
edges.

For beams with elastomeric constitutive behaviour, these models were seen to agree

closely to finite element simulations.

1.2.2 Role of the Material of the Columns

The study of these columns has been subsequently extended into columns constructed

out of hard materials, as opposed to the elastomeric columns initially studied. It

was observed that such columns display significant post-buckling softening behaviour

suggesting that the material nonlinearities of harder materials play a significant role

in the post buckling behaviour of these columns.

This is the primary motivation for our investigations of the columns. We shall

attempt to extend the analytical model of the beam as a torsional, compressive and
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shearing spring by incorporating the nonlinear behaviour of these springs into the

behaviour of the entire columns. We shall also study the effect that noisy perturba-

tions of the geometry have on these columns, and discuss the results yielded by our

investigation.



Chapter 2

Methodology and Model Description

2.1 Model Description

2.1.1 Setting Up the System

As discussed above, Johnson et al proposed a novel, simplified model for modelling

the holey columns, where in the alternating mode, the beams can be modelled as a

network of torsional springs. However, they assumed that the ligaments could only

bend and not otherwise deform. This corresponded to only a single degree of freedom

for each rigid piece of the column connected by these ligaments. However, we aim to

extend this model by no longer assuming the rigidity of the ligaments. We retain the

principle of looking at the rotational deformation of the ligaments as rotation of the

rigid pieces that the ligaments connect, as a torsional spring hinge connecting two rigid

pieces. However, these ligaments are now deformable and can undergo shearing and

compression (or equivalently stretching). However, we consider the ligaments to have

some energy cost associated with the deformation and rotation, which are modelled

experimentally as we will discuss in Section 2.2. Thus, we extend the model from

modelling a two holed column into columns of arbitrary finite lengths characterised

as N repeating unit cells of rigid sections connected by a network of springs attatched

to deformable hinges. Thus, the energy of the entire system can be thought of as

a sum of the individual energy cost associated with the ligaments. To summarise,

the columns can be thought of as a collection of rigid mechanisms (also known as

T-pieces) that correspond to the thicker portions of the material. These are connected

21
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by a network of the thinner ligaments, which act as springs. These ligaments are

resistant to compression, shearing and rotations. This system allows us to model the

stress energy of these beams as shown in Figure 2.2.
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(x11, y11)XXXXz

...
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, y1Nholes
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����:

(x20, y20)����9
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Figure 2.1: The new model of a holey beam with the coordinate system and the rung
and edge pieces highlighted. We can define the degrees of freedom of each rigid piece
as {xij, yij, θij}. The geometries of these pieces are characterised by their half width
(wij) and the half-length (lij). Finally we can define {Xrung

j , Y rung
j } as the coordinates

of the left-edge and {X̃rung
j , Ỹ rung

j } as the coordinates of the right-edge of the rung
ligaments, respectively. Similarly we can define {Xedge

ij , Y edge
ij } and {X̃edge

ij , Ỹ edge
ij } for

the top and bottom edges of the edge ligaments.

We can thus refer to Figure 2.2 in order to define some important terminology. As

defined above, T-piece is the name given to the rigid T-shaped parts of the column that

are connected by the thin deformable parts of the columns, called ligaments. There are

two types of ligaments. The ligaments that are oriented along the horizontal axis are

called rungs, as they resemble the rungs of a ladder. The ligaments oriented vertically

care called edges as they are located on the edges of our columns. We model the beams

as indicated in Figure 2.2, with the origin of our Cartesian coordinate system centered

around first pair of ligaments, as seen in Figure 2.1. Thus, each rigid section with half-

length (l) and half-width (w) can be characterised by 3 coordinates αi = {xi, yi, θi},

corresponding to the position of the center of the rigid section in the x and y axis as

well as the angular rotation of rigid section defined counterclockwise from the vertical

axis. Thus, a beam of N holes can be characterised by 3(2(N − 1)) degrees of freedom

corresponding to the x,y and θ coordinates of the 2(N − 1) T-pieces.
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We can also now calculate the total initial length of the column H0 as

H0 =
N−1∑
j=0

lij +
N∑
j=1

lij, for i = 1,2 . (2.1)

where lij is height of the rigid T-piece i, j where the i = 1 corresponds to left half

beam and i = 2 to the right and j ranges from j = 0 and j = N corresponding to the

bottom and top pieces of the holey columns. For a holey column with N holes with

rigid pieces of uniform lengths, this simplifies to H0 = 2N × l. Thus, for a beam under

δℓ compression, the height of the compressed column is given by H = H0 − δℓ.

We can determine the equilibrium state of the beam by minimising the energy of the

beam after the compression. The energy of the holey column can thus be calculated

as the sum of the individual energies of the ligaments. The energy of each ligament

depends only on the three degrees of freedom of the 2 T-pieces that are connected

by the ligaments. Thus, the energy of the entire holey column is only a function of

the degree of freedom vector αi = {xi, yi, θi} and thus, at the minima, the following

equation is satisfied:
∂E

∂αi

= 0. (2.2)

We shall discuss the problem of minimisation of the energy of the holey columns,

subject to the boundary conditions of the column in further detail in Section 2.3.

2.1.2 Finding the Expression for the Energy of the System

As discussed in Section 2.1, the energy of each of the ligaments is a function of its

deformation and rotation. The Cartesian coordinate system we initially defined allows

us to define the X and Y coordinates of the two ends of the ligaments connecting two

rigid T-pieces, which can help us determine their deformation. We can also determine

from the system the rotation ∆θ of the ligaments. Let us illustrate this in greater

detail.

For the horizontal ligaments, we can describe the coordinates of edges of the liga-

ments as

Xrung
j = x1j + w1j cos θ1j, Y rung

j = y1j + w1j sin θ1j, for 1 ≤ j ≤ Nholes − 1, (2.3)
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for the left edge and

X̃rung
j = x2j − w2j cos θ2j, Ỹ rung

j = y2j − w2j sin θ2j, for 1 ≤ j ≤ Nholes − 1, (2.4)

for the right edge. We can further define the angle rotated by the ligament as

∆θrungj = θ1j − θ2j, for 1 ≤ j ≤ Nholes − 1. (2.5)

The contribution of each of the horizontal ligaments Erung
j to the total energy of the

system Erung is some function of the position and rotation of the edges of the ligaments,

Erung =

Nholes−1∑
j

Erung
j ((Xj − X̃j), (Yj − Ỹj),∆θj). (2.6)

Similarly, for the vertical ligaments, we can define the position and rotation coor-

dinates as follows:

Xedge
ij = xij + lij cos θij, Y edge

ij = yij − lij sin θij, for 1 ≤ j ≤ Nholes − 1, i = 1, 2,

(2.7)

except for the top boundary, which is given by:

X1N = −w1N , X2N = w2N , Y1,N = H − l1,N and Y2,N = H − l2,N (2.8)

for the top ends of the ligaments.

Similarly, for the bottom rungs

X̃edge
ij = xij−1−lij−1 cos θij−1, Ỹ edge

ij = yij−1+lij−1 sin θij−1, for 2 ≤ j ≤ Nholes, i = 1, 2,

(2.9)

except the bottom boundary, which is given by

X̃11 = −w11, X̃21 = w21, Ỹ1,1 = 0 and Ỹ1,2 = 0. (2.10)

Finally, the rotation of the ligament is given by

∆θedgeij = θij − θij−1, for 2 ≤ j ≤ Nholes−1, for i = 1, 2. (2.11)

Thus, the total energy of the edge ligaments is given by

Eedge =
2∑

i=1

Nholes∑
j=1

Eedge
ij ((Xij − X̃ij), (Yij − Ỹij), θij, θij−1), (2.12)
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where Eedge
ij is the energy of each of the edge ligaments.

Thus, from equations (2.6) and (2.12), we can now express the energy of the column

for a given state of the system, specified by the degree of freedom vector (αi). However,

as the principal axes are fixed for the entire column, we are limited to assuming that

the shearing and compression are isotropic for each of the ligaments of the column.

This is because for individual T-pieces that are rotated from their original orientation,

the shearing and compression deformations of the individual ligaments do not align

with the x and y axes that we have defined. In order to generalise the deformation

for such ligaments, and to be able to account for anisotropy of the compression and

shearing energies, we must transform the coordinate system of the problem into a

frame of reference, where the compression deformation of each ligament occurs along

one principal axis of the new coordinate system and the shearing along the other.

This must be done for all the ligaments in our system. Let us illustrate this for a rung

ligament.

(x1n, y1n, θ1n)
�
�7

(x2n, y2n, θ2n)
�
�7

(u1n, v1n, θ
′
1n)
�
�7

(u2n, v2n, θ
′
2n)

�
�7

Figure 2.2: Illustration of the old and new coordinate systems and the transformation
that allows us to transform between them.

Consider a horizontal ligament connecting 2 rigid pieces, characterised by the 6

degrees of freedom corresponding to the left and right rigid pieces connected by the

ligament. These are given by {αl;αr} =
{
xl, yl, θl, xr, yr, θr

}
. In order to have the

compression and shearing deformations align for this ligament, we can transform the

coordinate system under a passive rotation by some angle ϕ. As shown in Figure 2.2,

if θl ̸= θr, in order to align the compressive motion and the shearing motion of the

ligaments, we must transform into a coordinate system so that the two angles are
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equal. In this new transformed coordinate system, the shearing deformation is along

the vertical axis (v) and the compression is along the horizontal axis (u). Thus, we

can describe the new coordinate system {βl; βr} =
{
ul, vl, θ

′l, ur, vr, θ
′r
}
.

In order to define the coordinate transformation, we must determine the angle ϕ.

Considering two T-pieces rotated through different angles (θl) and (θr) for the left and

right T-pieces respectively. In our new coordinate system, we can see that that the

T-pieces will have the same magnitude of the angle they are rotated through denoted

by ϑ. Thus,

θ
′l = θl + ϕ = |θ′r| = ±(θr + ϕ) = ϑ. (2.13)

In the general case (where θl may or may not equal θr), the positive case (θ′r = θr+ϕ)

does not have any non-trivial solutions. Thus, solving for the negative case, we can

determine that

ϕ = −θl + θr

2
. (2.14)

Thus, we can apply a passive rotation of the principal axes of the T-pieces, R(−ϕ) to

obtain our new coordinate system. This transformation is given by

θ
′l = θl + ϕ

θ
′r = θr + ϕ

ul = xl cos(−ϕ) + yl sin(−ϕ)

ur = xr cos(−ϕ) + yr sin(−ϕ) (2.15)

vl = −xl sin(−ϕ) + yl cos(−ϕ)

vr = −xr sin(−ϕ) + yr cos(−ϕ)

Thus, in this new system we can again define the positions of the springs. The

positions of the left edge of the ligaments are defined as

U rung
j = u1j + w1j cos θ

′l, V rung
j = v1j + w1j sin θ

′l. (2.16)

Thus, we can also define {Ũ , Ṽ } corresponding to {X̃, Ỹ } as defined in (2.9), defining

the new degree of freedom vector α = {U, V, Ũ , Ṽ , θ′l, θ′r}. This allows us to model

the response of the spring to the compression and shearing deformations, as for rung

ligaments, all motion in u axis is compressive and in v axis is shear.
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Thus, in the rung ligaments, we can model the energy of the ligaments as

Erung =

Nholes−1∑
j=1

F comp(Uj − Ũj) +Gshear(Vj − Ṽj) +Rrot(∆θ). (2.17)

Similarly, in our edge ligaments we can see that all the motion in v- axis is compressive

while all the motion in u-axis is shear. Thus, we can express the energy of the edge

ligaments as

Eedge =
2∑

i=1

Nholes−1∑
j=1

F comp(Vij − Ṽij) +Gshear(Uij − Ũij) +Rrot(∆θ). (2.18)

We can use a variety of nonlinear and linear functions modelled from experimental data

to serve as our Compression response function (FComp), Shearing response function

(GShear) and Rotation response function (Rrot). The choice of these functions allows

us to model the columns efficiently but effectively and we observe a wide variety of

effects as we will discuss in the Section 3. Thus, we can greatly reduce the complexity

of the methods we use to model the holey columns, especially as compared to the finite

element simulations used previously. However, we still preserve a rich diversity in the

behaviour we can model with out technique, depending on our choice of FComp, GShear

and RRot. Thus, we use experimental data obtained by Dr. Box to fit for these [16].

Hereafter, we donot continue to make the demarcation that the data was obtained by

Dr. Box, but this should be noted.

2.2 Finding the Various Response Functions

2.2.1 Linear Response

Initially, we can begin by assuming a linear behaviour for the response of the springs

to the force being applied to them. We can also at this stage make an assumption of

isotropic compression, and thus, model the spring compression in both x and y axes

by the same constant spring constant kdisp. Finally, we can imagine bending to be

governed by torsion spring of a spring constant kbend. Thus, we can define the rung

energy and edge energies as follows:

Erung =

Nholes−1∑
j=1

kdisp
(
(Xj − X̃j)

2 + (Yj − Ỹj)
2
)
+ kbend (∆θj) (2.19)
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Eedge =
2∑

1=1

Nholes−1∑
j=1

kdisp
(
(Xij − X̃ij)

2 + (Yij − Ỹij)
2
)
+ kbend∆θij (2.20)

and the total energy can be expressed as E = Eedge + Erung

Figure 2.3: An illustration of the experimental techniques employed by Box et al, to
gather data for the response of the ligaments to compressive, shear and rotational
forces , respectively [4]. Here, the quantities d,ws and ls correspond to the thickness,
width and length of the individual ligament tested respectively.

In order to determine the response of the springs to compression, shearing and

rotation, we use data obtained by Box et al. The data was collected by fabricating 3D

printed plastic and milled aluminium ligaments, and subjecting them to compressive,

shearing and rotational forces in a Universal Testing System (5569, Instron). The tests

for compression, shearing and rotational response of the ligaments were conducted as

indicated by Figure 2.3 The typical force and corresponding displacement values from

compressing and rotating single ligaments were fitted to a linear function in order to

get the the stiffness of the compression and bending of the ligaments.

The values for kdisp and kbend obtained were 1005.02 N/mm and 159.12 kJ/rad respec-

tively.
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2.2.2 Nonlinear Response for Rotations

In order to capture the non-linearities of the constitutive response of the holey columns

under compression, we must take into account the nonlinear response in the single

ligaments to rotational torques. Initially the energy of rotation of the springs was

modelled as a symmetric function of the form

Rrot(∆θ) = (a3|∆θ|3 + a2|∆θ|2) (2.21)

. Thus, the torque F corresponding to a rotation through an angle of ∆θ is given by

F (∆θ) = 3a3|∆θ|2 + 2a2|∆θ| (2.22)

Figure 2.4: Typical values for measured force for the experimental ligament (solid blue)
under angular rotation. Indicated alongside are raw measurements (faint blue) from
the experiments as well as the linear (dashed black), even power fit (dashed blue) and
third order polynomial fit (dashed red) given by (2.19), (2.24) and (2.22), respectively.

Figure 2.4 shows us typical values of force and displacement as determined by the

experiments as well as a fit to data for the response given in (2.22). Additionally we

have also indicated the fit for the data for response function given by(2.21). The fit

values for a2 and a3 were determined to be 149.3224 kJ/rad2 and -101.2284 kJ/rad3.
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However as we will discuss in Section 3, the discontinuity of the modulus function in

the constitutive response, has a profound effect on the behaviour of the column. As the

modulus function is not continuously differentiable, it produces a sharp ‘kink’ in the

force-displacement curve of the holey columns, as opposed to the smooth function that

we would expect. Thus, we can alternatively model the rotational energy as an even

polynomial as such a response function would be continuously differentiable. Thus we

define

Rrot(∆θ) =
n∑

i=1

a2n(∆θ)2n (2.23)

. We can choose n in order to incorporate arbitrarily higher order terms, but for the

purpose of this study, we will limit ourselves to fourth order polynomials. We can

determine the coefficients by fitting the torque to the function

F (∆θ) =
n∑

i=1

2na2n(∆θ)2n−1. (2.24)

We can see from Figure 2.5 that both the functions are suitable fit to our experimental

tests, and they are both able to capture the softening behaviour of the ligaments under

large rotations.

2.2.3 Nonlinear Response for Compression and Shearing

In order to allow the modelling of holey columns with nonlinear constitutive responses

to shearing and compression, we model each individual ligament with an nonlinear

constitutive response to the same. To determine this response, as indicated in equation

(2.18) and (2.17), we fit the data obtained by tests conducted by Box et al. Figure 2.5A

and Figure 2.5B indicate typical values of compression and shearing respectively, as

determined by experimental tests described in Section 2. Similar to (2.24), we model

the force of compression and shearing as a sum of even powers of the displacement,

and the fits are indicated in the Figure 2.5A and Figure 2.5B, respectively. We can

see that both these fits appear suitable.

Thus, we can now express the final energy of the column as

Erung =

Nholes−1∑
j=1

(
2∑

n=1

a2n(∆θ)2n +
2∑

n=1

b2n(Xj − X̃j)
2n +

2∑
n=1

c2n(Yj − Ỹj)
2n

)
, (2.25)

where an, bn and cn are the fit parameters corresponding to rotation, compression and

shearing respectively. The values for these can be found in Table 1.
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Figure 2.5: (A) Typical values (solid blue) for measured force against compression
displacement. Indicated alongside are the raw measurements from experiments (faint
blue), as well as linear (dashed blue) and polynomial (dashed red) fits for the data
Equation 2.18. (B) Typical values (solid blue) for measured force against shearing
displacement. Indicated alongside are the raw measurements from experiments (faint
blue), as well as linear (dashed blue) and polynomial (dashed red) fits for the data, as
described by 2.18.

Similarly for the edges, we can express the energy as

Eedge =
2∑

1=1

Nholes−1∑
j=1

(
2∑

n=1

a2n (∆θij)
2n +

2∑
n=1

b2n(Yij − Ỹij)
2n +

2∑
n=1

c2n(Xij − X̃ij)
2n

)
.

(2.26)

We can thus express the total energy as E = Erung + EEdge

Parameters of Compression Fit Value
b2 1107.11 N/mm
b4 −1056.07 N/(mm)3

Parameters of Shearing Fit Value
c2 100.50 N/mm
c4 −641.19 N/(mm)3

Parameters of Rotation Fit Value
a2 159.82 kJ/rad
a4 −394.88kJ/(rad)3

Table 2.1: Table of fit parameters as determined by fitting for the compression, shear-
ing and rotation data
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Figure 2.6: Typical values of Force-Displacement per edge ligament of holey columns as
determined in experiment. The force-displacement relationship corresponds to Equa-
tion (2.27).

2.2.4 Modelling the Compression Response of Entire Columns

Our initial model considers the holey columns as a collection of rigid T-pieces con-

nected by a network of deformable ligaments, where each ligament has an energy cost

associated with deforming through compression, shearing and rotation. These energy

responses are modelled by collecting experimental data from compression, shearing

and rotation of individual ligaments, and fitting their response to the deformations

using a polynomial expression, as covered in Section 2.2. However, as we shall see in

Section 3, this model falls short of accurately reproducing the experimental behaviour

of the holey columns under compression. It was also observed, as covered in Sec-

tion 2.2, that the main drawback with the model is the difference in behaviour of the

individual ligament and the entire column during the initial trivial compression. In

order to model the compression response of the entire column, we must determine the

force-displacement behaviour of individual ligaments in the holey column. We see that

before the pattern switching bifurcation occurs, only the edge ligaments are deformed.
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The rung ligaments are merely displaced downwards under compression. Additionally,

the edge ligaments also have not undergone any shearing or rotation as the symmetries

of the system before bifurcation forbid any shearing or rotation. Thus, we can think of

the columns as a collection of ligaments as seen in Figure 2.7. For a N -holed column

under some compression x, experiencing some force F , we can consider each parallel

collection of edge ligaments to be under F/2 effective force. Also, as the individual

unit cells must be identical to preserve the SN symmetry each ligaments must undergo

x/N compression. Thus, the new function we must fit to model the compression of

the columns is of the form
F

2
=

2∑
n=1

b2n(
x

N
)2n (2.27)

We scale the data collected from compressing each hole by dividing the compression

Figure 2.7: Schematic describing the column while on the trivial compression branch.
Each ligament deforming under compression is modelled as a spring as indicated.

by the number of holes and the force by 2 respectively. We can see the scaled data

in Figure 2.6. Notably, the behaviour of columns with a large number of holes is very

similar. We can thus, fit pre-buckling portion of the scaled data in order to find the

compression response of each holey column, as seen in Figure 2.7, and thereafter change

the compression parameters to reflect the fitted data. The compression response of

the holey column is no longer determined by fitting for the compression response of

the individual ligaments and extrapolating for the entire network. Instead, we have
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decoupled the compression behaviour of the column from the rotation and shearing,

and thereafter fit it on a case by case basis for individual holey columns. These new

fit parameters are thereafter used to simulate the columns.

Thus, we can summarise the most significant shortcoming of our method thus far as

follows: due to significant experimental difficulties in characterising the compression

response of the column, we see that the shorter columns suffer from significant contact

issues leading to their compression response to differ significantly to longer columns.

This is most severe for the individual ligaments, where upon these discrepancies in the

responses of the individual ligaments under compression tests and their counterpart

being compressed in the entire column cause a significant change in the peak Engi-

neering strain the column can withstand pre-buckling. We worked around this issue

by modelling the compression of the individual ligaments from the compression of the

entire column (as shown in Figure 2.7), which gives us much better results (as dis-

cussed in Chapter 3). However, this comes at the cost of the elegance of being able to

model the column entirely by studying only the responses of the individual ligaments

and not needing to study the responses of the entire columns, which was the initial

idea in our study.

2.3 Solving the System

In order to determine the behaviour of the beam when under compression we must

minimise the strain energy inside the column, as indicated by (2.2). In order to do so we

first define a degree of freedom vector as follows: αi = {xi; yi; θi} and βj = {uj; vj; θ
′
j}

in the original and transformed coordinate systems respectively. Thus, we can define

the residual vector as

Fi =
∂E

∂αi

, (2.28)

which is zero at the equilibria.

2.3.1 Solving the Eigenvalue problem

The system as formulated by the residual equation (2.28) can be solved numerically

by Newton-Raphson, to find for the roots of the residual. Each step of the Newton’s
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method is defined as

xn+1 = xn −
f(x)

f ′(x)
(2.29)

In order to implement the NR solver to find the root of the residuals, we must first

define the jacobian matrix (J),

Jij =
∂Fi

∂αj

=
∂2E

∂αi∂αj

(2.30)

. Thus, we can define each step of the NR as

αn+1
j = αn

j −
(
Fi

Jij

)n

. (2.31)

This allows us to solve for the roots of residual function. However, in the symmetric

coordinate system, the residuals and the jacobian must be transformed as per the

transformation of the coordinate system. Thus,

Ri =
∂E

∂βj

(
∂βj

∂αi

)
, and Jij =

∂2E

∂βk∂βl

(
∂βk

∂αj

)(
∂βl

∂αi

)
(2.32)

The linear stability of a system of ODEs is determined by the sign of the real part

of eigenvalues of the Jacobian matrix corresponding to the system. The eigenvalue

problem of the Jacobian can be written as

Jije
n
j = λnenj , (2.33)

where enj are the eigenvectors of the Jacobian matrix with a corresponding eigenvalue

λn. For all eigenmodes enj , if ℜ(λn) < 0 then the perturbations of such form are

asymptotically stable and will decay. Thus, from if the eigenvalues corresponding to

all modes of a particular stationary solution of the system are negative, we can say

that the particular stationary state is a stable solution to the problem, and vice versa

[17].

In order to encourage the system to break symmetry and undergo a bifurcation,

we perturb the system with a perturbation of an amplitude of the eigenvalue (emax
j )

corresponding to the maximal eigenvalue (λmax). When this eigenvalue is positive, the

equilibrium state is unstable, and perturbations of the form

αn+1
j = αn

j + ε(ei) (2.34)

allow the system to bifurcate [18]. We can adjust the amplitude of the perturbations

(ϵ) in order to explore the bifurcation space of the system.
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2.3.2 Solving using the Method of Lagrange Multipliers

The method of solving the residual equation, as described in Section 2.3.1 has two

major drawbacks. Firstly, the system can only be controlled by varying the displace-

ment parameter of the system (δℓ), and solving for the equilibrium state under the

updated boundary conditions. The existence of limit points in the displacement pa-

rameter continuation of the system makes it so that the system frequently is unable

to trace out the entire post bifurcation behaviour of the columns. In order to be able

to move around the limit points, a method of doing a parametric continuation in force

needs to implemented. Secondly, there is no systematic way of following any particular

bifurcation branch of the system and there is a lot of trial and error involved in finding

the particular post bifurcation branch. In order to combat both these problems, we

adapt the solver to be able to also solve for the equilibrium states of the beams for a

given value of force, allowing us to do parametric continuations in both displacement

and force.

In order to do so we add two new degrees of freedom to our degrees of freedom vector,

corresponding to the force and the height of the column at any given time. Thus,

we can solve the minimisation problem for the force by considering a mass of weight

equal to the given force pushing down on the column as shown in Figure 2.7. Thus, we

must add the contribution of this weight to the energy, corresponding to the potential

energy of the weight. Thus, the new energy function of the system (Efinal) of a system

under force (F ) for the column height (H) is given by

Efinal = E + (F ×H), (2.35)

where E is the energy of the system prior to being loaded by the force. Similarly,

the new residual vector has two more terms corresponding to the force applied to the

columns and the difference between the current force experienced by the column and

the given force. This new energy function is again minimised by finding the roots of

the new residual function. Thus, forRi = 0 the force equals the given force as the

last term of the residual enforces this while the height of the column corresponds to

the height that minimises the energy. This new root finding problem is again solved

using the Newton-Raphson method. However in order to solve the problem for a given

displacement of the column, we formulate the problem as a Lagrange Multiplier. The
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Lagrange function (L) for some function f(x) subject to a constraint g(x) is defined

as

L(x;λ) = f(x) + λg(x) (2.36)

, where λ is the unknown Lagrange multiplier. For our system in order to minimise

the energy, given the compression of the column as the constraint we can formulate

the Lagrange equation as

L(αi) = E(αi) + F (αi)(Hg −H), (2.37)

where the force (F) is the Lagrange multiplier and Hg is the height of the column

subject to the current degrees of freedom and H is the desired column height after δl

compression. Thus, we solve the following equations,

∂L

∂αi

= 0 and,
∂L

∂λ
= 0. (2.38)

These equations are again solved using the method of the Newton-Raphson solver.

Both the aforementioned methods were implemented in MATLAB 2021a and were

setup to be able to plot the Engineering Stress-Strain curves as well as investigate the

state of the holey columns under force and displacement parameter control.
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Results

3.1 Holey Columns with Linear Elasticity

We start by considering the case of a holey column with 13 holes, for the widths

and lengths of the T-pieces defined by w = l = 4.25. As indicated in Section 2, we

model the column as a network of deformable ligaments. To begin with, we consider

these ligaments to have a linear response to all the forms of deformation and rotation.

Additionally, we consider the response to deformations along X and Y axes of the

ligaments to be isotropic and thus the energy of the system is given by (2.20). The

corresponding eigenvalue problem is solved to obtain the force-displacement curves

for the column, and these are compared to data obtained by the experimental force-

displacement curves obtained for beams with 13 holes in Figure 3.1. These were

obtained in tests conducted by another member of our group Dr. Box, as seen in

Figure 3.1.

Even in this extremely simplified model, we see that the initial trivial branch of

compression and the subsequent post-bifurcation alternating branch are seen in the

system. Two representative shapes of the column before and after bifurcation are

shown in Figure 3.2 corresponding to points A and B shown in Figure3.1. Thus, at

some force, also called the peak force of the column, the column undergoes a pattern

transformation and the alternating buckling mode is reached. This phenomenon is

also observed qualitatively in the experimental data.

However, the linear model still leaves much to be desired. The peak force of the

modelled columns is significantly larger than the peak force measured in experiments.
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|
B

|
A

Figure 3.1: Force-Displacement curve for a simulated column with linear constitutive
behaviour and experimental data of 13 holes. The state of the column on the initial
trivial branch (A) and after pattern formation (B) are labelled.

Figure 3.2: State of the column during the trivial compression branch (A) and after
the buckling bifurcation (B).
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We have also assumed isotropy in the compression of the springs in the x- axis and

the y- axis. Consequently, we model the compression in the springs as isotropic to

compression and shearing loads, which is an assumption we need to be mindful of

going forward. Even more concerning is the fact that the post-buckling behaviour is

different from the behaviour measured experimentally. In experimental investigations

of hard holey columns, post-buckling softening is observed. Modelling columns that

reproduce this softening was an important motivation for our study as discussed in

Section 2. In order to reproduce the softening behaviour, we must turn to models of

the deformation and rotation of the ligaments with nonlinear constitutive response.

On pattern formation, the stress energy of the rotation of the T-pieces becomes very

significant, and so we first begin by introducing non-linear rotational response to the

system as described in Equation (2.21).

3.2 Adding Nonlinear Rotation to the System

3.2.1 Nonlinearities of the form a3|∆θ|3 + a2|∆θ|2

The rotation energy of the torsion springs must be an even function as the rota-

tion behaviour has to be similar for clockwise and counter-clockwise rotations of the

springs. In order to model the rotations of the beam with nonlinear constitutive be-

haviour we first fit a third order function of the absolute value of the angle rotated,

as indicated in (2.21). The force-displacement curve for 13 holed column with such a

constitutive response can be seen in Figure 3.3, along with experimentally observed

force-displacement for a similar column.

Much like the system with linear response to deformations and rotation, we clearly

see the trivial compression as well as the post-buckling branch. The horizontal and

vertical branches correspond to the alternating mode buckling occurring parallel or

perpendicular to the horizontal axis for the middle (seventh) hole, are also observed,

as detailed in Section 1.3. The typical shapes of the column for each of the two,

for a column of 11 holes can be seen in Figure 3.4. The symmetry breaking of the

SN permutation symmetry , which characterises the alternating mode of buckling oc-

curs via a trans-critical bifurcation at the critical stress. Encouragingly we see the
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Figure 3.3: Force-Displacement curve for a simulated column (blue solid) and experi-
mental data (blue dashed) of 13 holes. The rotational energy is non-linear and has a
constitutive response indicated by (2.21)

Figure 3.4: State of the column during the horizontal and vertical branches of the
bifurcation. We can see the alternating horizontal and vertical deformations and vice-
versa. However, under displacement control (which mimic experiments) we only ever
observe the horizontal branch and henceforth we only plot this branch.
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presence of post buckling softening in the beam, with the system softening rapidly

near the bifurcation and exhibiting post buckling softening throughout the bifurca-

tion branch. This clearly is a closer analogue to the behaviour of the columns when

studied experimentally. However, there are still two major drawbacks to our model

of the system. Firstly, we see that the peak force of the system is extremely high, as

compared to experiments, with there being almost a factor of two difference between

the simulated and the experimental results. Secondly, the transition from the trivial

compression branch to the alternating branches is not smooth, and the force decreases

discontinuously on bifurcation. This sharp kink in the curve, is not seen in the exper-

imental beams. It was determined that this behaviour is a consequence of the choice

of function chosen to model the constitutive response of the system and close to the

bifurcation point, the system behaviour depends on the choice of the constitutive re-

sponse function chosen to model the energy. The modulus operation of the |∆θ3| term

in the rotational energy of the ligaments is not continuously differentiable near 0. In

the case of our chosen function, as described in (2.21), this discontinuous behaviour

causes the horizontal and vertical alternating branches to both be located on the same

side. Thus, we must seek a constitutive response for the rotation that is continuously

differentiable near the point ∆θ = 0 as well as an even function of ∆θ. Thereafter,

we fit the data to get an expression of the rotational energy as a sum of even powers,

as indicated by (2.23) of the angle of rotation, which are always differentiable. We

examine the effect this has on the Force-Displacement curve of the system in the next

section.

3.2.2 Nonlinearities of the Form a4(∆θ)4 + a2(∆θ)2

As can be seen in Figure 3.3, for simulations of columns with rotational energies as

described by (2.23), the typical value of the peak force remains the same as for the con-

stitutive behaviour given by (2.21). However, post-buckling behaviour is significantly

different. The simulation of the column with even powers fitted to the rotation energy

of the springs allows us to resolve the aforementioned kink in the Force-Displacement

curve due to the discontinuity. The bifurcation occurs smoothly, however much like

the rotational compression as described in Section 2.3.1, the peak force remains higher

than the experimentally observed peak force, by a significant degree. Just like for the
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Figure 3.5: The typical values of force and displacement (dashed blue) as recorded
experimentally for a 13 holed column using an Instron, along with the simulated
behaviour for 13 holed column (solid blue) for the constitutive response defined by
(2.23)

previous response, we still have assumed isotropy in the response to compression in X

and Y axes. In order to understand the effect of the fit parameters of the rotation re-

sponse on the column behaviour, we can scale the fitted parameters and then simulate

the columns as before.

3.2.3 Effect of a2 on the Behaviour of the Columns

We investigated the effect of the rotation stiffness on the behaviour of the column,

by modelling the beams at varying the first order stiffness of the rotation (a2) and

examining the effect this had on a column of 13 holes. Figure 3.6 shows the force-

displacement of the system, for a2 = 0, 79.91 and 159.81 kJ/rad, with a4 fixed at

−394 kJ/rad3. As we can see in Figure 3.6, the magnitude of a2 determines the peak

stress of the beam, exceeding which the bifurcation occurs and the column falls into the

alternating mode buckling state. The less value of a2, the easier it is for the column to

fall into the alternating mode of bifurcation, making the column weaker. Also notably,

the post-bifurcation behaviour of the beams does not change with the different values
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Figure 3.6: Plot of simulated behaviour of a column of 13 holes for a2 = 0 (red) , 79.91
(blue) and 159.81 (grey) kJ/rad, while all other parameters are kept as previously
indicated

of a2 as can be seen from Figure 3.6.

3.2.4 Effect of a4 on Post Bifurcation Behaviour

Figure 3.7: Simulated force-displacement curves for a4 = 10−5 (indicated by dashed
lines), we see that the horizontal branch (blue) while the vertical branch (red) emerges
below. However for a4 = −394.88, (solid lines) it is the opposite. All other parameters
are kept as previously indicated
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Thereafter, we examine the effect of a4 on the behaviour of the columns. This

is done by fixing a2, and varying a4 and simulating the behaviour of the columns.

Figure 3.7 shows us the effect of a4 close to the point of bifurcation. We plot the force-

displacement curves for two values of a4. For a4 = 10−5 (indicated by dashed lines), we

see that the horizontal branch (blue) emerges above where the linear case seen in Figure

3.1, while the vertical branch (red) emerges below. However for a4 = −394.88, (solid

lines) we see that the order is reversed and the degree of post bifurcation softening

is larger for both the branches, as can be indicated by the slope of the branches. see

that contrary to the first order bending stiffness, the higher order terms have no effect

on the peak stress of the columns. Instead, they greatly influence the post-bifurcation

behaviour of the columns.

Figure 3.8: Plot of simulated behaviour of a column of 13 holes for a4 = 0 (red)
,197.44(blue) and −394.88 (black) kJ/rad3, while all other parameters are kept as pre-
viously indicated. Also indicated the typical values of force-displacement determined
experimentally for a 13 holed columns (dashed blue). Unlike in Figure 3.7, we are only
considering the horizontal alternating branches.

We can see that a4 contributes to greatly to the post-buckling softening behaviour

of the column, with its sign and magnitude having an effect of whether the horizontal or

the vertical branch occurs at higher force and the degree of post-bifurcation softening

respectively. Figure 3.7 and 3.8 allows us to see the effect of the magnitude of a4
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more clearly. In the case of a4 = 0, we recover the behaviour of the linear constitutive

response depicted in Figure 3.1. As we increase a4 to −197.44 and then to the fit

value of −394.88 , it is seen that the slope of the bifurcation increases with increasing

a4. Thus, the sign of a4 determines which of the horizontal or vertical alternating

branches shall be at higher force, while the magnitude of a4 changes the slope of the

force-displacement post bifurcation.

However, as the alternating mode of buckling is not just a result of rotation but

must also produce some shearing stresses on the T-pieces, we can also further examine

the role played by the shearing response of the ligaments and incorporate their effect

into the model.

3.3 Adding Constitutive Non-linearity to Shearing

Response

Figure 3.9: Plot of simulated behaviour of a column of 13 holes for c2 = 100.50N/mm,
while all other parameters are kept as previously indicated. Also indicated the typical
values of force-displacement determined experimentally for a 13 holed columns (grey)

As there still remains a significant gap between the peak stress of the experimental
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and the simulated beams, we must now examine assumptions we had made before.

Chief among these is the assumption of the isotropic response of the beams to com-

pression and shearing stress. Thus, we now model beams with different response to

shearing and compression and furthermore model these beams with nonlinear com-

pression and shearing, as given by (2.18) and (2.17). This is also supported by the

results of the fits, as the shearing fit parameters are almost an order of magnitude

smaller than the compression, as can be seen in Table 1.

We implemented the nonlinear shearing by implementing the transformed coordinate

system and simulating the beams with energy functions as fitted for in Table 1. The

resulting force displacement curve as compared to the experimental columns is shown

in Figure 3.9.

From the simulations of the nonlinear shearing response, we see, rather encourag-

ingly, that the peak force is within the range of the experimentally measured peak

forces. The significant difference between the stiffness of the shearing stress and the

compressive strength seems to have been the underlying reason that the experimental

columns were much ‘weaker’ than the simulated ones. Much like the rotational fit

parameters we now examine the effect of c2 and c4 on the behaviour of the column.

3.3.1 Effects of c2 on the Columns

Figure 3.10 shows the force-displacement of the system for varying c2, while c4 is kept

constant at −641.19N/mm3. The other fit parameters are all fixed as per Table 1.

Figure 3.10: Plot of simulated behaviour of a column of 13 holes for c2 = 10.050N/mm
(red), c2 = 100.50N/mm (green) and c2 = 1005.0N/mm (black) while all other param-
eters are kept as previously indicated. Trivial compression branch is marked (black)
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We see that just like the parameters of the rotation energy, we see that the c2

influences the peak force of the column, with lower shear stiffness corresponding to

lower peak stresses. For the case of zero shear stiffness, the column has a peak stress

of 0 and buckling occurs immediately. So we model the system at the values of c2

being 10.050 N/mm, 100.50 N/mm and 1005.0 N/mm . Just like rotations, the post-

bifurcation behaviour of the columns, seems largely unaffected by c2, with only the

peak force and the point of bifurcation changing.

3.3.2 Effects of c4 on Post-Bifurcation Behaviour

Figure 3.11 shows the force-displacement of the system for varying c4, while c2 is kept

constant at 100.50N/mm. The other fit parameters are all fixed according to Table 1.

Figure 3.11: Plot of simulated behaviour of a column of 13 holes for c4 = −0.0064 (red),
c4 = −641.19 (green) and c4 = −3205.95N/mm3 (black) while all other parameters
are kept as previously indicated. Trivial compression branch is marked (black)Inset:
Zoomed in view of the bifurcation branches to illustrate the weak effect on the beams

From the results of the simulations presented in Figure 3.11, we can conclude
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that just like for rotation parameter a4, c4 only affects the post bifurcation softening

behaviour of the columns and not the bifurcation point or peak force of the columns.

However, unlike the non-linear terms of the rotational energy, the post-bifurcation

slope does not depend as sensitively on the shearing non-linear terms. This is due to

the fact that the rotation of the springs in the alternating mode of buckling is much

larger as compared to the shearing displacements of the springs.

3.4 Modelling the Compression Response

Finally we incorporate the fit parameters from the compression data and implement

the nonlinear compression in the simulation, as given by the equation (2.25). The

combined effect of the non-linear compression, rotation and shearing, with their pa-

rameters as indicated in Table 1, can be seen in Figure 3.12.

Figure 3.12: Force-Displacement curve of the beam with nonlinear compression, shear-
ing and rotational responses as given by Table 1. Note the peak stress of the beams
as well as the close resemblance in the post bifurcation behaviour.

We can see that the peak stress of this column is very close to our experimental

data. The post bifurcation behaviour of the beams closely resembles experimentally

determined behaviour. However, the displacement that the bifurcation occurs at is

very different between the experimental and modelled columns. The difference arises
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from the compression stiffening effect that is clearly seen in experimental investigations

of the columns as seen in Figure 3.12, while the individual ligaments (Figure 2.5 A)

do not display the same. Thus, by incorporating the rotational and shearing non-

linear response, we have successfully managed to model the peak stiffness of the 13-

holed column as well as capture the post bifurcation slope of the experimental data.

However, the compression response of the beam in the trivial branch is not adequately

captured by the model. Clearly, the stiffening effect of the compression in the trivial

branch is not accounted for in individual springs. The most likely explanation of this

difference in behaviour is variation in the experimental setup of the two systems as

well as contact issues in the experiments for the individual springs. In order to better

model these beams we no longer extrapolate the compression response of the ligaments

in the holey columns from the measured compression response of the single ligaments.

Instead this is done individually for each holey column from data collected during axial

compression tests.

3.5 Fitting Nonlinear Compression for Entire Columns

As discussed in section 2.4, the nonlinear model of the compression response of indi-

vidual ligament is insufficient to capture the compression stiffening behaviour of the

ligaments of the column in the trivial branch. The behaviour of the entire column

appears to be much more nonlinear than the behaviour of an individual ligament un-

der compression. In order to account for this we fit the compression response for each

holey column and as described in Section 2.4.1 use this to model the ligaments in the

holey columns

A comparison between the compression of fit parameters that were obtained for

the case of 7, 13 and 19 holed columns are described in Table 3.1

Thus, in comparison to the fit parameters for a single column, we clearly see that

while b2 for the columns is close to the individual springs, the b4 terms is an order

larger, which would explained by the stiffening effect seen in the columns. However,

Thus, we see that this model improves our ability to model the longer columns like

those with 13 or 21 holes. However, for the 7 hole column, there is still a difference in

the experimental data obtained and the modelled behaviour. Encouragingly however,
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Figure 3.13: Simulated behaviour (solid) compared to typical experimental behaviour
(dashed) for beams of 7 (green), 13 (purple) and 19 (orange) holes. The constitutive
response to shear and rotation is as indicated by parameters in Table 1, while com-
pression is as indicated in Table 2

Number of Holes Fit Parameters
b2 b4

7 1068.91 N/mm 11446.72 N/mm3

13 1344.77 N/mm 44055.48 N/mm3

19 1787.68 N/mm 27835.89 N/mm3

Table 3.1: The values of b2 and b4 ascertained by fitting the force-displacement curves
of holey columns before they buckle as outlined in (2.27). The rest of the parameters
are kept fixed as per Table 2.1.

the post bifurcation behaviour is quite close to the real columns and we have gained

an understanding into the effect that these constitutive non-linearities have on the

buckling of these holey columns.

3.6 Effect of Perturbations to the Columns

In order to examine the effect of geometric perturbations on the behaviour of the

beams, we perturb the half-widths (wij) and half-lengths (lij) by some randomly chosen

factor ρ. ρ is generated by using a random number generator built into MATLAB to
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Figure 3.14: Force-displacement curves produced by simulating 13 holed beams for
amplitude of geometric perturbation (ε) = 0 (black), 0.005(orange) and 0.01(purple).
The other parameters are as described in Section 3.2.1

generate a number from -1 to 1 with a uniform probability distribution. However,

these are scaled through some scaling amplitude ε . Thus, the resultant widths are

given by w′
ij = wij + ερ, and similarly for the lengths. We look at the behaviour of

the beams for varying values of the scaling amplitude and these are plotted in Figure

3.14.

Figure 3.14 shows the simulated behaviour of a holey column of 13 holes, when

the amplitude is set to 0 (black), 0.5% (orange) and 1% (purple). The constitutive

response of the beams chosen for these was the same as the one used in Section 3.2.1.

Thus, we still maintain linear compression of stiffness kdisp and assume that the dis-

placements are isotropic along the X and Y axes. It was observed that when the

perturbations are applied to the columns, the sharp kink in the Force-Displacement

curve gets smoothed out.The peak stress also decreases thus reduces the discrepancy

between the experimental holey columns. Also, interestingly sometimes the beams

undergo a stress hardening before they undergo the bifurcation and subsequent soft-

ening. This deserves further investigation, as we do not yet understand the cause of

this effect.
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Discussion

Continuing from work done by Johnson et. al [3] and Box et. al [4], we suggested a

novel model for holey columns, in order to simulate the role of material nonlinearities

in hard holey columns. We proposed modelling the columns as rigid sections con-

nected by a network of thin ligaments that can deform through compression, shearing

and rotation. By minimising the energy of the system, we determined the equilibrium

state of the column under compression. Since the outset, there were two major aims

of the investigation. Firstly, we aimed to recreate the buckling behaviour and the post

buckling softening behaviour seen in the holey columns. Secondly, we wanted the peak

force of our simulation to be close to the peak force experimentally determined in our

tests. The constitutive response of the ligaments to rotation, shearing and compression

was modelled by fitting a polynomial to experimental data collected using an Instron.

The constitutive response of the single ligaments to compression, shearing and rota-

tion was then extrapolated to all the ligaments in the network and the behaviour of

the column was simulated. We examined the effects of the different parameters of the

polynomial fit on the behaviour of the columns. We observed that this extrapolated

model was not indicative of the behaviour of columns in experimental investigations.

The post-buckling behaviour and peak force of our simulated columns were close to

the experimental observations for columns whose compression was extrapolated from

tests conducted on single ligaments. However, the compression associated with the

bifurcation was not and the model could not accurately reflect the behaviour of the

experimental columns. Thus, the compression response of the ligaments in the ho-

ley column were modelled using the force-compression behaviour of the entire column

53
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while under compression. With this technique, our simulations are accurately able to

reflect the bifurcation point, peak force as well as post bifurcation behaviour of the

hard holey column, especially for longer columns (N ≥ 11). However, these improve-

ments are made at the cost of no longer having the generality of the previous model.

Finally the weakening effects of geometric perturbations on the system was presented.

Despite best effort to provide a comprehensive and accurate picture of behaviour of

hard holey columns before and after buckling, there are many untied threads and

open questions. During experiments, it was observed that the pattern transformation

needed for the materials to buckle were compression rate dependant. However, as the

model is quasi-steady, we have been unable to gain any insight into explaining this

very unusual phenomena with our model. Moreover, the inability of the compressive

behaviour of predicted by the network single ligaments to accurately reflect that of

entire columns collected remains a mystery. We suspect it may be cause by systematic

issues in the experimental technique employed while collecting the compressive data

of springs, though more exotic phenomena may also be causing it. However many

refinements to the experimental method must be made before we can hazard an expla-

nation for this discrepancy . Other interesting avenues of research to continue this line

of investigation would be to extend the model to 2D sheets from 1D columns. Finally,

while we added small random perturbations to geometry of the system, there is reason

to investigate the effect of perturbing the geometry of specific units, as such techniques

have previously been applied to create tunable and programmable materials.
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