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Abstract
This project presents the idea of constructing a Computational Aesthetics

Learning System in the Traditional Chinese Painting(TCP) domain. The system

tends to imitate the human visual system of processing TCP data and related

aesthetic information. To achieve this target, four individual tasks are set. They

are feature extraction and analysis, image classification, object detection, and

neural style transfer in the TCP domain. Four components were designed to

consist of our computational aesthetic system.

First, an image representation descriptor combines both hand-crafted and

deep learning representations by employing Hash mapping with Hamming dis-

tance and similarity thresholding. This descriptor interprets TCP domain knowl-

edge by applying Sobel’s kernel to HOG, and TCP colour palette based on Basic

Color Terms [7]. Second, a set of TCP style classifiers, both hand-crafted ML

(SVM) and DL (VGG) models, are introduced to distinguish TCP styles and

content schools by using the image representations resulting from the stage-one

descriptor. The classification process allows us to verify which models and which

features are more sensitive to TCP so that we can integrate them to train the

backbone network for later use. Next, a two-stage Deep CNN object detector

is proposed to improve our aesthetic learning system’s ability to recognise ob-

jects of TCP artworks. Objects of art are the basis of aesthetic analysis. The

Assembled Region Proposal Network (A-RPN), which we promoted, enhanced

a general RPN by a CN-Kitten RPN with transposed convolutional feature in-

formation. The RoI pooling layer is replaced by a top rank-voting model and

position-sensitive score maps. This model is sensitive in detecting small objects

and incorporating translation variance. The A-RPN significant outperformed

YOLO 2 and original Faster R-CNN with p-values of as p<0.001 and p=0.008

when their backbone networks were pre-trained on the natural image data. By

applying TCP domain knowledge to initialise the backbone CNN, our A-RPN

increased around 7% in mAP. The IOU detection rate is also improved by 20%.

Generating TCP images is one of our aims for computational aesthetics study. A

patch-based neural style transfer (NST) algorithm is proposed for the final stage

of our TCP computational aesthetics learning system. The TCP NST algorithm

calculates the style loss, both global and local. The model introduces Target

Mask Matrix to obtain more precise semantic segmentation so that more accu-

rate content loss is computed. Our model generated competitive TCP artworks.

17



The data used in this project consists of the online museum collections and

high-resolution images licensed by the Chinese Painting and Calligraphy Com-

munity. We manually annotated and constructed four datasets based on TCP

styles, content schools, landscape with dynasties, and objects.
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Chapter 1

Introduction

One of the greatest mysteries in cognitive science is the human visual system’s

architecture and its virtuosity in compiling a set of visual tasks. Completing

a visual task like the human brain is complicated, such as depth perception,

edge detection, object tracking, etc. It is taken for granted that the human

brain scans the environment and positions objects when things are in view. The

human brain holds secrets, which underline its impressive ability to recognise

a visually-presented target at lightning speed with high accuracy. For a long

time, researchers may never have thought of creating a computational system

that imitates the human brain’s procedures. However, in the past 50 years, they

have moved from observing seemingly small breakthroughs in neuroscience to

describing scenes in images with “computers”.

There are two competing principle’s of human perception. One is the the top

down approach proposed by Richard Gregory [11]. Another is the bottom-up
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principle which introduced by the Nobel prize winners of 1981, Hubel and Wiesel

[12]. They discovered the visual system concerning information processing and

indicated that the visual cortex is hierarchical. This laid the foundation for many

research studies about human vision and computer vision.

The bottom-up approach suggests that human vision starts with the ingestion

of raw signals at pixel level. The cells in the cerebral cortex preliminary process

information to find features, such as edges and directions. The final step is that

the brain determines the object’s shape when seen. Finally, further abstraction

is specified with the decision.

Extending the work of Hubel and Wiesel, the computational neuroscientists

Olshausen and David.J.Field, promoted a sparse grating model to represent visual

features using gradient descent to minimise the number of coefficients (figure 1.1).

The sparse coding encode and decode how the human brain simple cell simulate

sensory respect to information in 1996 and 1997 [13, 1, 14].

When the Convolutional Neural Network (CNN) entered a new era, Olshausen

and David.J.Field’s assumption made in 1996 became a reality. Inspired by

and similar to their sparse neuroscience model, Andrej Karpathy and Li Fei-Fei

demonstrated a multi-layer recurrent neural network [2] that provided an image’s

description (figure 1.2). The recurrent neural network recognises primary image

features at lower layers and concatenates features through multiple levels. The

convolutional layers perform similar actions as human cortical visual areas from
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Figure 1.1: Olshausen and David.J.Field’s sparse model in computational neuro-
science representation [1]. Sparse grating is a computational strategy
that allows brains to encode sensory information using a small number
of simultaneously active neurons at a given time. The image on the left
shows the optimized sparse representations of natural scenes in the re-
ceptive fields that emerge the simple cells of the primary visual cortex.
The image on the right shows the principal components calculated on 8×8
monochromatic image patches extracted from natural scenes in higher cor-
tical visual area.

Figure 1.2: Deep visual-semantic alignments for generating image descriptions [2]

lower level to higher level. The final combination constructs an image represen-

tation of the corresponding image for classification. In another word, Karpathy

and Li’s CNN structure provides machines with the ability to compute similar

visual representations as the human brain (bottom-up model) in mathematics.

This set of milestone papers drove the research direction of “computational

thinking” from neuroscience to computer vision in the past fifty years. Computa-

tional thinking is a set of problem-solving methods designed to get a machine

to explain or interpret a human’s complex knowledge. When computational

thinking is applied to computer vision, a new subject is produced. Based on
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computational thinking, neural networks, more precisely CNN, go beyond image

classification. They can be employed in several computer vision tasks, such as

object localisation, object detection, semantic segmentation etc. They all repre-

sent Computational Vision. When we try to cross-domain between computational

vision and art aesthetic, Computational Aesthetic [15] is defined.

Computational Aesthetic [15] is defined as the research of computational

methods that can similarly make appropriate aesthetic decisions as humans can.

It aims to use machine to learn what features or visual saliency that can develop

aesthetic measurements and use them to test aesthetic relevance problems.

The human visual system can detect visual saliency extraordinarily fast and

reliable from aesthetic attributes and prior feature knowledge of the objects. But

computational methods do not have the basic intelligence to replicate this be-

haviour. Visual saliency detection remains a challenge in the computer vision

domain. However, in paintings, aesthetic attributes and features that affect aes-

thetic decision making can find their reflections in the computer vision domain

[16].

Following the definition of art [17], the research units of computational aes-

thetics can be ranged from basic features to general representations. Basic fea-

tures describe low-level visual concepts, such as colour, edges, light and shadow.

General representations provide structures that dispatch favourable high-level vi-

sual concepts. They are comprehensive compositions that can be divided into

plane formation, colour formation and three-dimension composition. Each of
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them could be considered various couples of attributes. These aesthetic attributes

and features have their interpretations in the computer vision domain as either

low-level pixel values or high-level feature representations in computer vision

study. For example, the plane formation could be a skeleton feature vector that

is formulated from hand-crafting features such as lines, edges, shapes; and the

colour formation could be a colour histogram that describes low-level features

such as colour and texture.

Aesthetic features play critical roles in machine computational aesthetic anal-

ysis [15]. But what features contribute effectively to computational aesthetics

learning? And how do these sets of features react in various learning tasks when

the machine tries to “understand” paintings? These are the questions we try

to answer in the later sections. Moreover, in computer vision, objects can be

represented by clusters of features, and images can be segmented into various

categories of objects. Therefore, doing computational aesthetic learning can be

unified into feature level, object level and image level analysis. In this thesis, we

attempt to address this new discipline in the Traditional Chinese Painting domain

from these three different levels, respect to chapter 4, chapter 5 and chapter 6.

1.1 Motivation

The challenge in Computational Aesthetic

One major motivation for studying computational aesthetics [15] is to improve

tools or algorithms used in CS to have a greater awareness of good aesthetics. To
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achieve this target, researchers allocated a strict application plan and a pragmatic

view of the measurement of computational aesthetics. There are three main

aspects [15]. First, computational aesthetics aim to develop computation systems

for aesthetic decision-making. Second, human perception should be taken into

account. Third, it is essential to focus on formal aesthetics (style) rather than

associations between content and human mental level. However, to satisfy all

aspects simultaneously throughout the imitation of the human aesthetic decision-

making process is very difficult, especially the second and third. The reason for

this situation is because of the definition of aesthetics.

Human beings make aesthetic judgements about art based on knowledge ac-

quired over millions of years of Darwinian evolution. The presentation of visual

art dates back to the Paleolithic age. The word “aesthetic” is of Greek origin

and means “perceiver”. According to Kant’s [18] definition, aesthetics is the

reinforcing supplement to logical ideas or concepts. The quantification of aes-

thetics is complex. Humans have diverse opinions about whether an object of

higher(additional) value is beautiful, fairly beautiful or not at all. The aesthetic

satisfaction level of one particular object can vary among different individuals.

This relies on personal experience and cultural background. Also, aesthetics is

ergonomics. This might not be obvious in paintings but is in commercial design.

For example, clothes are designed to be worn for comfort but they also have a

“fancy” appearance. In other words, good aesthetics need to meet satisfaction in

terms of both psychological and physical requirements.
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Unfortunately, computer science does not have built-in internal logic between

aesthetics, ergonomics and psychology. This leads to the fact that computers

cannot possess dedicated aesthetic judgement and design in every aspect. In

order to obtain better computational aesthetic learning progressively, an entry

point was suggested [15]. Objects of art are aesthetically versatile, so they are

promoted as an explorative basis for analysis.

There are several reasons for choosing objects of art as the fundamental re-

search unit of computational aesthetics. As introduced in the previous section,

objects of art are comprehensive compositions of aesthetic attributes and fea-

tures. They form general representations that deliver high-level visual concepts

which affect aesthetic decision-making. Moreover, aesthetic attributes and fea-

tures can be interpreted as computer vision features. This offers the ability that

every object of art can be described and analysed as a set of computer vision

features. Once the object of art has found its representation in a computer vi-

sion model, domain knowledge might be able to be applied to the computational

aesthetic system to imitate human perception. However, the machine learning

process requires a large amount of data for training and testing purposes. Limited

resources in art might prevent the model from being expanded. Hence, whether

the computational system can “learn” the formal aesthetics (style) of the objects

of art remains a question.

The limitation of DL in Computational Aesthetics
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With the widespread concept of Deep Learning, people have started think-

ing about how similar the internal representations of artificial neural networks

(ANNs) are to the neural ones measured experimentally. ANNs are designed to

imitate the primate brain when dealing with object recognition. Martin Schrimpf

et al. [19] introduced a composite of multiple neural and behavioral benchmarks,

known as Brain Score, to explain how similar a ANN is to human brain mech-

anisms for object recognition in 2018. They compared 61 ANNs with a set of

integrating experiments, then followed specific steps to obtain the Brain Score

for each and the top-1 accuracy of ImageNet performances. Based on their re-

search, the highest a Brain-Like ANN ever scored were Densenet-169 (0.549;

75.9% top-1), CORnet-S (0.544; 74.7% top-1) and ResNet-101 (0.542; 77% top-

1), while the lowest is SqueezeNet1-0 (0.454; 57.5% top-1). Most ANNs were

able to achieve approximately 70% accuracy regarding top-1 accuracy of Ima-

geNet performances, with the highest at 82.9% (PNASNet-Large scores 0.528)

and the lowest at 47.64% (best basenet scores 0.5). Schrimpf further expanded

their work with an integrative benchmarking platform to accurately explain do-

mains of human intelligence as executable, neurally mechanistic models [20] in

2020. This platform allows researchers to submit ANNs so that they can obtain

the respective Brain Scores. And the current top three models submitted are

VOneResNet-50, VOneCORnet-S and ResNet-152.

The DL structure promoted by Karpathy and Li [2] allowed machines to

interpret images into similar visual representations to the sparse neuroscience
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bottom-up model [1] in mathematics. This model made DL powerful for studying

computational aesthetics [15]. To be able to carry out the research, the DL model

should have the ability to identify objects of art, i.e. the computational aesthetic

basis.

DL has proven its success in natural image object detection [21, 22, 23]. How-

ever, is it true that DL recognises an object as a human can? What will happen

when these models are applied to paintings rather than to a natural image?

Unfortunately, there are few computational aesthetics or object recognition ap-

proaches in this area. Elliot J. Crowley [24] provided a response in 2016. He ran

an experiment on the western paintings dataset from UK Art with both natural

image-trained classifiers and painting-trained classifiers. The results showed that

natural image-trained classifiers are inferior to painting-trained classifiers when

recognising objects of art in paintings. But the limitation of art forms and styles

in his data meant that there was not enough evidence to render this statement

true for all types of paintings. DL’s transferability between the natural image

and art domains remain uncertain.

Limited research in the TCP domain

Traditional Chinese Paintings (TCP) play a significant role in East Asian

cultural heritage, have their own unique identification, and most of them have

been recognised as world treasures over decades. Different art forms and styles

do not have a considerable effect on human visual-base decision making. But

the significant difference between Western paintings and Chinese paintings might
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result in opposite outcomes in machine object recognition tasks. Inspired by

Crowley’s research [24], Gu [25] discovered that DL’s performance on TCP object

detection did not meet the expectation. A natural image-trained Faster R-CNN

can achieve at least 63% mAP of Western painting object detection, while the

highest mAP in TCP is around 59%.

Since related studies in the TCP domain are rare, it became our primary

motivation to devote our research in this domain (check section 3.4 for details).

1.2 Hypothesis and Objectives

In this research, the goal is to deliver a computational aesthetics learning system

in the TCP domain. This system is designed to simulate the process of human

cognition and learning regarding TCP’s formal aesthetics (style) and objects of

art (object). The system is divided into four components. Each of them corre-

sponds to one computer vision task: image representation, classification, object

detection, and style transfer. The hypothesis of this project is stated as the

following:

• The formal aesthetics style of TCP can be learnt.

• The object of art in TCPs can be recognised.

• The machine can use the art style and content knowledge of TCP to generate

TCP artworks.

Respectively, the objectives of this project are stated below:
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• To investigate effectiveness of features when constructing the precise image

representation of TCP.

• To develop TCP Classifiers when distinguishing TCP’s style and content.

• To propose a TCP object detector that can recognise the basis (content

element) of computational aesthetics.

• To establish a TCP’s style sensitive style transfer algorithm.

These four objectives are implemented in steps. Contributions obtained dur-

ing the research are summarised in the next section.

1.3 Contributions

This project aims to investigate whether Deep Learning (DL) image analysis

performs relatively well as human image analysis on Traditional Chinese Paint-

ings(TCPs). The goal is to simulate the process of learning computational aes-

thetics in the TCP domain. This target is achieved by designing a computational

aesthetics learning system with TCP domain knowledge across the model. The

contributions obtained are outlined as follows:

• Feature extractor and image representation descriptor are established and

improved by applying TCP domain knowledge. Basic Color Terms [7] in cul-

ture learning is introduced to create a TCP colour palette encoding process.

A mathematical transformation of Hash mapping with Hamming distance
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and similarity thresholding is defined. This offers the chance to concate-

nating hand-crafted representation and DL representation.

• Four self-identified and manual-annotated datasets are constructed. Each of

them is employed in end-to-end training and testing with a set of TCP clas-

sifiers. Both hand-crafted classifiers and DL classifiers perform well when

distinguishing TCP styles and their content schools. They also provide

competitive classification results when recognising objects and dynasties.

• A new DL object detection method A-RPN (Assembled Region Proposal

Network), is introduced. A-RPN is an enhanced RPN (Region Proposal

Network) [26], followed by an R-FCN (Region-based Fully Convolutional

Networks) [27]. The A-RPN replaces the general RoI pooling layer with

a top rank-voting position-sensitive RoI pooling layer. It achieved lower

coarseness and higher sensitivity of small object detection by concatenat-

ing low-level visual features and high-level semantic features. It managed to

beat some state-of-the-art object detectors (p-value for YOLO 2: p<0.001,

for Faster R-CNN: p=0.008) at both image recognition on the natural im-

age (Pascal VOC2007, mAP (mean Average Precision) for A-RPN: 75.25%,

mAP for YOLO 2: 71.37%, mAP for Faster R-CNN: 73.22%) and TCP im-

ages (mAP for A-RPN: 61.85%, mAP for YOLO 2: 58.48%, mAP for Faster

R-CNN: 59.98%). The A-RPN can achieve 69.18% mAP when employing

TCP cross-feature image representation.
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• A TCP Neural Style Transfer model is proposed to calculate the combina-

tion of local style loss, global style loss, and Target Mask Matrix content

loss. This TCP NST model enables more precise content and style repre-

sentations to generate TCP artworks.

• A TCP computational aesthetics learning system is delivered. The system

diagram is shown in figure 1.3. All CNNs in the model share the same TCP

image representation. Both A-RPN and TCP NST are initialised with the

TCP pre-trained VGG backbone networks in chapter 4.

Our TCP computational aesthetic learning system imitates the human visual

system of learning TCP and making related aesthetic decisions, such as generative

art. Though it cannot achieve a qualitative aesthetic judgement, it recognises

objects of art and re-renders them in TCP style.

These contributions have resulted in the following publications:

• Qianqian Gu and Ross King. Deep learning does not generalize well to

recognizing cats and dogs in chinese paintings. In International Conference

on Discovery Science, pages 166 - 175. Springer, 2019.[25]

• Qianqian Gu, Tim Morris and Ross King. Computational Aesthetics: On

Recognising and Drawing Kittens in Chinese Paintings. In Visual Science

of Art Conference 2019 (Poster Presentation)

(Each chapter has an achievement list at the end of the chapter’s summary.)
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Figure 1.3: This system diagram is designed for our TCP computational aesthetics
learning system. The system can: extract TCP image representations,
distinguish TCP styles, recognise objects of TCP art, generate TCP art-
works. In the diagram, the most practical components have been listed.
The yellow module (chapter 4) shows the procedures of how the system
extracts TCP sensitive features. After TCP style classifications, the sys-
tem obtains a train-from-scratch VGG backbone that can be used for the
initialisation of the TCP object detector and NST model. The blue module
is the TCP object detector which is constructed by A-RPN and R-FCN
(chapter 5). The pink module (chapter 6) is the TCP NST model, whose
major components are an FCN that computes the semantic masks, and a
VGG used to perform the style transfer.
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1.4 Thesis Overview

Here is a summary of the rest of this thesis:

In Chapter 2, we introduce the background of computational aesthetics and

traditional Chinese painting. We first provide the formal definition of computa-

tional aesthetics. Next, we explain why making an aesthetic decision is difficult

for a machine. Then we describe the Art Composition Rule that is a set of

mathematical theories representing objects of arts. Last, we give an overview of

traditional Chinese paintings.

In Chapter 3, we provide an overview of the essential background knowledge

of our project in the computer vision domain. We first review the definition of

low-level features and two popular types of image representations: hand-crafted

representation and deep learning representation. Then, we give an overview of

visual recognition tasks and explain object detection in detail, i.e. explanations

about both hand-crafted machine learning models and DL models. Next, we

describe what generative art and style transfer are. Last, we review existing

computer vision study in the TCP domain.

In Chapter 4, we introduce TCP cross-feature between hand-crafted image

representation and DL representation; simultaneously, we obtain a pre-trained

backbone CNN with TCP knowledge applied. We first construct four TCP

datasets. Then, we attempt to investigate the difference between various feature

extractors and image representation descriptions. Next, we examine all combi-

nations of feature extractors and image representations through the traditional
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ML classification model and DL classification model. Last, experiments are con-

ducted to validate the effectiveness of the proposed image representations and

classifiers for TCP style recognition.

In Chapter 5, we present a two-stage Deep CNN object detector A-RPN.

This novel framework is composed of a general RPN and a CN-Kitten RPN with

transposed convolutional feature information. The RoI pooling layer is replaced

by a top rank-voting model and position-sensitive RoI pooling layer. We exam-

ine the framework’s ability to incorporate translation variance and small object

sensitivity. Extensive experiments are carried out on the natural image and the

TCP data.

In Chapter 6, we present a patch-based TCP neural style transfer (NST) algo-

rithm. We first redefine the NST style loss function as the combined calculation

of global style loss and local style loss. Then, we introduce a target mask ma-

trix to calculate the area-controlled content loss. Experiments are conducted and

exhibit several generative TCP artworks.

In Chapter 7, we draw conclusions from our research and discuss the limita-

tions and potential improvements for future work.



Chapter 2

Background of Computational

Aesthetics and Traditional

Chinese Painting

Computational Aesthetics is a set of cross-domain computer vision tasks. Re-

search study related to Computational Aesthetics focuses not only on natural

image processing but also on the bridge between art and computer vision.[15]

This project aims to develop a computational aesthetics system that can make

similar aesthetics decisions on traditional Chinese painting as humans can. This

chapter aims to provide a brief introduction to aesthetics concepts in art and TCP

background. Also, this chapter presents an overview of the relationship between

human aesthetics and computational aesthetics. It provides an introduction to

Computational Aesthetics in section 2.1.1 and how it relates various computer
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vision tasks under this research category in section 2.1.2 and section ??. Sec-

tion 2.2 offers background knowledge of TCP and summarise related research on

computational aesthetic in the TCP domain.

2.1 Background of Computational Aesthetics

2.1.1 What is Computational Aesthetics

Computational Aesthetics’ history can be traced back to 1933 since George David

Birkhoff wrote the first quantitative theory of aesthetics in his book Aesthetic

Measure [28]. Birkhoff’s formula suggested that the complexity of paintings is

considerable so that the content of a painting is analogous to a fine composition

of ornamental patterns. These ornamental patterns are objects of art that must

be appreciated one by one for comprehension. After then, several researchers

tried to develop a solid approach or methodology for computational aesthetics,

but they only made apparent aspects of aesthetics, such as order and complexity.

The historical summary on this could be checked in Gary Greenfield’s notes [29].

With many disciplines showing interest in aesthetics of computer science, the final

proper definition was first introduced to the Computer Science research area by

the first Eurographics(EG) Workshop on Computational Aesthetics in Graphics,

Visualisation and Imaging in 2015 [15].

Computational Aesthetics is defined as the research of computational

methods that can similarly make appropriate aesthetic decisions as humans can.
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The general approach for computational aesthetic involves investigating a col-

lection of features to developing aesthetic measurements and integrating them to

test aesthetic relevance problems. It is also a research task that refines its incom-

pleteness and defines new findings.

2.1.2 Aesthetics in Computational Aesthetics

In the human aspect, aesthetics is the philosophical study of beauty and taste.

Humankind can easily distinguish beauty according to experiences. However, the

true meaning of aesthetics can be various from individuals’ subjectivity. More-

over, proved by philosophy study, the judgment of taste is affected by subjectivity

and normativity and recasting normativity [30]. Normativity implies an “ought-

type” statement, which is oriented to effecting an action without describing true

or false [31]. Measuring one individual’s aesthetic preference is easy, but a group

of people’s would be challenging. To find a universal guiding principle or an

absolute standard in matters of artistic beauty and taste is nearly impossible.

This statement leads to a consequence that the significant challenge of compu-

tational aesthetics is how to evaluate the validity among all and provide logical

and reasonable judgements, respectively.

Art grows from conflict of contradictions. Even experienced artist or aca-

demics could not describe a full explanation of it. There are at least 62 well-known

art movements in the world nowadays. Some of them are representing opposite

ideas for example, Constructivism and Deconstructivism. Constructivism uses
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Euclidean geometry to reflect the suprematism spirit and focus on the movement

within the space [32]. While, Deconstructivism uses symbols to reflect the truth,

showing the antipathy of structure, which initially came from Martin Heidegger’s

Einführung in die Metaphysik (Metaphysics) [33]. Paintings of various art move-

ments vary in their art forms and styles. Simultaneously, each particular form

and style have their visual representations in computational aesthetics analysis,

respectively.

Human holds various standard on making aesthetic judgement while facing

different art movements or styles. Machine learning is designed based on similar

pipelines as human learning but has dependencies on the training of art move-

ments or styles. It is challenging to have only one solution to satisfy all types

of art movements or styles when designing a computational aesthetics model.

Accordingly, when solving computer vision tasks for computational aesthetics

study, every approach should be designed and evaluated along with a particular

art movement or style.

2.2 Traditional Chinese Painting

As a part of significant East Asian culture heritage, Chinese painting has its

unique identification. Chinese painting could be categorised into multiple groups

based on different classification standards [34]. The most widely used standard

to classify Chinese painting is to divide them according to painting techniques.

According to this standard, the paintings could be categorised into two primary
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schools of styles: either XieYi or GongBi, which means freehand strokes and

skilled brush, by justifying their brushwork styles [35]. For more elaborations, the

XieYi school is represented by exaggerated forms and freehand brushwork, which

means the painted objects are abstract and sometimes without fully connected

edges. Freehand painting generalises shapes and displays rich brushwork and ink

techniques. While the GongBi, or meticulous approach, is characterised by close

attention to detail and fine brushwork, which means the painted objects are more

realistic.

TCP always specialises in tools and materials, consisting of brushes, ink and

pigments, xuan paper, silk and various types of ink slabs. There are several

principal forms of traditional Chinese paintings. They are the hanging scroll,

album of paintings, fan surface and long horizontal scroll. Hanging scrolls are

usually mounted and hung on the wall. They can be either horizontal or vertical.

Most of the existing TCP art pieces are in this form [34]. The album of paintings

is a format that is designed to store conveniently. Artists paint on a specific

size of xuan paper and then binds several paintings to create an album. Fan

surface is a typical form for folding fans and round fans made of bamboo strips

with painted paper or silk pasted on the frame. The long horizontal scroll is also

called a handscroll. It is usually less than 50 centimetres high but can be up to

100 meters long. Most of the world-famous TCP art pieces are presented in long

horizontal scrolls. All of the above variants of TCP specialisations increase the

complexity of solving computer vision tasks in TCP domain.
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Figure 2.1: Chinese Painting is divided into either XieYi or GongBi according to
painting techniques, and be further classified as Landscapes, Figure and
Flower-and-Bird

TCPs can be further classified as landscapes paintings (figure 2.3), figure

paintings (figure 2.4), and flower-and-bird (figure 2.2) paintings based on their

contents. Existing work has been done on defining ontologies and classes for TCP

[36]. Overview of TCP category is shown in figure 2.1.

Landscapes paintings are mainly depicting mountains and rivers’ natural

scenery. Representing a major category in TCP, landscape painting had estab-

lished itself as an independent expression form by the fourth century. In the

later centuries, landscape paintings gradually branched out toward two distinct

styles: blue-and-green landscapes and ink-and-wash landscapes. The blue-and-

green landscape paintings use bright blue, green and red pigments, and it is a

fashion in Tang (618 to 906 A.D.) and Song (960 to 1279 A.D.) Dynasties [34].

The ink-and-wash landscape paintings rely on vivid brushwork and inks, and it

is popular in Ming (1368 to 1644 A.D.) and Qing (1644 to 1912 A.D.) Dynasties.
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The forms of expression in landscape painting changed between dynasties, as the

range of subjects did in figure painting. The range of subject matter in figure

painting was extended far beyond religious themes during the Song Dynasty be-

tween 960 to 1127 A.D.. Flower-and-bird painting originated from within decora-

tive art to form its own independent genre around the ninth century. Both figure

paintings, and flower-and-bird paintings, depict objects as their main subject.

Figure 2.2: Emperor-Huizong-Song’s flower-and-bird painting from Song Dynasty

Chinese Ancient believed that “Painting in poetry and poetry in the painting”.

This is the criterion for excellent TCP artworks. A TCP art pieces should consist

of all necessary components: traditional Chinese painting, poetry, calligraphy,

painting and seal engraving. Inscriptions and seal impressions help explain the
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painter’s ideas and sentiments, and add beauty to the painting. Every component

in TCP is that supplement and enrich one another. However, in this project, we

only focus on the painting part of the TCP but not the others.

Figure 2.3: Landscape paintings. From left to right: ordered by dynasties Tang, Yuan,
Ming, Qing. The first and third paintings are ink-and-wash landscape
paintings, while the second and fourth are blue-and-green landscape paint-
ings

Figure 2.4: Figure painting <Yang Gui Fei Mounting Horse> from Tang Dynasty



Chapter 3

Literature Review

Computational aesthetics is a research field belonging to machine learning and

computer vision. The main focus of this chapter presented here centres on review-

ing a number of research hot-spots linked to this topic. Since the core of compu-

tational aesthetics is to employ suitable computational methods that allow the

machine to imitate the human visual system and how it makes aesthetic decisions.

A number of computer vision tasks are employed when studying computational

aesthetics. However, it is impossible to cover all of them in our project. Our

project concentrates on three sets of computer vision tasks. There are extracting

image representation, visual recognition (classification and object recognition)

and generative art. This chapter reviews each of them in the coming sections.

46
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3.1 Image Representations

As mentioned in section 2.1, when doing research on computational aesthetics,

every single type of paintings should be treated individually from its form and

style to its content. And the approaches for selection in features and attributes

for computational aesthetic analysis vary in terms of domains and applications.

In this thesis, we centred on our applications into the domain of TCP and feature

evaluations on how machines learn TCP. These research trends of computational

aesthetics can be employed in areas as image representation, visual recognition

and generative art.

Image representations are visual concepts denoted by various meaningful fea-

tures computed from raw data by multiple methods. One of the keys to the

computer vision problem is to extract meaningful high-level visual information

from the low-level pixel values from graphical data and evaluate how they perform

in computer vision algorithms. Image representation is the mathematical repre-

sentation defined in computer vision that describes aesthetic features knowledge

that might affect aesthetic judgements. Low-level features, such as colour and

texture, underlying the raw data can be adequately characterised as high-level

concepts. High-level concepts are skeleton, shape, object, motion and e.t.c. They

form image representation. In computer vision domain, image representations

can be generally grouped into two major categories, hand-crafted ones and deep

learning ones. Researchers have devoted many efforts to hand-crafting variant

features to obtain more precise image representations when analysing computer
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vision research topics. In this section, we present reviews on the low-level feature,

hand-crafted representation and deep learning representation.

However, with the wide-spread of Deep Learning(DL), deep learning represen-

tations have outperformed hand-crafted representations across most areas in the

computer vision community. Hand-crafted representation has its limitation. The

computational cost of model training and the demand for large-scale data can pre-

vent hand-crafted representations from being routed. In that case, deep learning

representations can push it closer to the line and provide a transferable ability

to achieve success across computer vision tasks. But is it true that deep learning

representations beat hand-crafted representations? The answer is no. There are

many reasons. One of them is that deep learning representations require a great

demand for training data, opposite to hand-crafted representations. This has been

validated in our research in chapter 4. Therefore, will combining DNN with hand-

crafted features be useful to improve the learning process? Bogdanova et al. [37]

stated that “if you cannot beat them, join them”. Hand-crafted representations

incorporate domain knowledge during selections. Complementary information

provided by hand-crafted representations can enhance the deep learning repre-

sentations. In some particular model architectures, hand-crafted representations

can even guide deep learning. For example, since the optical flow plays influen-

tial roles in hand-crafted video representations, the two-stream framework [38]

for human action recognition feeds optical flow data into the temporal network

for improvement. Researchers employ dense trajectories in local representation
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to the pooling process of deep features to obtain better performance [39, 40].

Therefore, we introduce and evaluate both hand-crafted and deep learning

representations in our computational aesthetic learning models.

3.1.1 Low-level Feature

The low-level features are relatively stable information which are measured di-

rectly from images. They give a similar image capture environment and help

to define secondary qualities, which are properties that produce sensations in

observers [41]. They can be affected by the camera’s setting. They are the fun-

damental elements to construct an image representation. One important task

of computer vision is to rebuild the truth from these secondary qualities to ex-

tract more precise image representation. Therefore, colour and texture are briefly

introduced in this section.

Colour is a fundamental element in photographs and is an essential low-level

feature in image processing. Colour is not only a secondary quality, but also an in-

trinsic property of a solid object [41]. It provides local information about objects

which can be used in object recognition and segmentation. Research papers show

that image segmentation can be achieved by utilising colour features [42, 43]. As

the original reflection of the ground truth object, an object’s colour appearance

is mostly stable. However, some attributes can affect colour appearance. Since

the visible light with different wavelengths defines the colour, different viewpoint
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and illumination can affect the colour appearance [44]. The complexation result-

ing from illumination conditions and texture can lead to a change in a colour’s

appearance. Therefore, it is common to construct a colour-texture descriptor to

better represent low-level information on the retinal image in computer vision. A

colour-texture descriptor is a general approach to determine the pattern’s rela-

tionships within the retinal image and reveal the hidden information. Review of

descriptor is given in section 3.1.2.

Texture represents the reflection over closely composed elements such as sim-

ilar intensities or patterns [45]. There are numerous methods of texture extrac-

tions and measuring in computer vision history, but none of them helps to offer

an explicit definition of texture. As one of the “old fashion” terms of texture

definitions, texton presents the discriminative information from the local con-

spicuous features [46]. Texton used to be a kind of image representation that

describes shape on the object surface or the primary fractal, such as drawing

composed of line segments [47]. However, this definition has no longer been used.

The general texture definition researchers adopt now-a-day is that texture is the

low-level image representation that depicts a spatial mixture of surface properties

by accumulating and modelling local elements.

Similar to colour feature, as a secondary quality, texture can help to refine im-

age classification and segmentation. Feature extraction methods transfer either

a single texture or a set of multiple textures into mathematic vectors. These vec-

tors contain the local texture information of target patterns or background for an
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individual pixel. This results in improving image classification and segmentation

based on distance methods [48]. Moreover, texture feature also plays significant

roles in Deep Learning of image challenges [49].

In this project, we apply colour-texture descriptors to TCP data for obtaining

image representations that describe low-level information. This information is

used to distinguish TCP categories, and the details are given in chapter 4.

3.1.2 Hand-crafted Representation

Following the traditional machine learning flow, hand-crafted image represen-

tation is the image representations constructed by a set of manually extracted

features. For examples, it includes but not only histogram, edge detection, corner

detection, etc. The problem with this approach is that there is no guarantee that

the simple features are good descriptors for computer vision tasks.

Figure 3.1: Hand-crafted image representation in traditional machine learning flow

The hand-crafted image representation for computer vision could be catego-

rized into two types, global and local. The global hand-crafted image representa-

tions include but not only colour histogram [50], texture [51, 52] and shape [53].

They directly characterize the raw images or typical regions-of-interest, such as

area fragmented by selections and segmented objects as a whole. This type of
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representation’s weakness is that these applications are only appropriate for im-

ages whose intra-class variability is small. However, in real-world applications,

the intra-class variability can be huge. It is impossible to have complete control

of the intra-class variability in every condition due to the diversities in illumina-

tion, perspective, background, scale, etc. On the other hand, local hand-crafted

image representations identify the whole images in a bottom-up manner. Local

representations denote generic features extracted from salient local regions in im-

ages [54, 55], such as regions defined by sliding windows in object detection [56].

They can be drivein from but not only colour, edge detection, threshold decom-

position, the distance transform, and thresholding [55]. Local representations are

more robust against variations than the global representations in general so that

local representations help to achieve better performance in many computer vision

tasks.

Good local hand-crafted image representations constitute three crucial compo-

nents, interest-point detection, local descriptor, and encoding method. Interest-

point detectors detect salient image regions, which are then characterised by local

descriptors. Last, encoding methods allow information from the previous process

to be regenerated into a compact feature vector, which is the local representation

for the current salient image region. Every combination of these three components

can drive different local representations. The mixture of multiple representations

holds the potential to improve computer vision tasks in practice [57].

Interest-point detectors intend to gain salient points or regions in an image
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to extract the most valuable information. It helps compress redundancy. Re-

searchers from the computer vision community have invented numerous interest-

point detectors. Laplace detector and Harris-Laplace detector [58] are two widespread

interest-point detection approaches for image representations. They tend to em-

phasize the corners and edges by searching salient points or regions in an image.

Unlike them, the dense grid [58] approach divides the raw image into grids and

computes local descriptors based on each grid, preventing loss in information suf-

fered by other detectors. In this sense, the dense grid approach can obtain image

representations from local features and global ones simultaneously. Histograms

of Oriented Gradients (HOG) [59] is one of the most effective hand-crafted im-

age representations [60] employed by the dense grid approach. HOG is a feature

descriptor that counts occurrences of gradient orientation in a localised area of

an image. It is also one of the most commonly used local descriptors in object

recognition literature [60].

As the building blocks of image representation, local descriptors derive higher-

level visual features from the raw pixels’ low-level information. Besides HOG[59],

there are other popular local descriptors, for examples, Scale-Invariant Feature

Transform (SIFT) [61], Speeded Up Robust Features (SURF) [62], Binarized

Statistical Image Features (BSIF) [63], Haar [64]and Local Binary Pattern [65].

An encoding method aims to construct a compact image representation vector

that union extractions of local descriptors from an image. Three methods can
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succeed in this purpose: concatenation, Fisher Vector and Bag of Words. Con-

catenation aims to consider independent features together in a feature vector. It

is the simplest and the most basic way to combine all the extracted local descrip-

tors. But it is only feasible if and only if the number of visual descriptors and the

dimension of local descriptors are moderate. Thus, it is commonly employed with

dense grid approaches since the number of grids is moderate. Fisher Vector and

Bag of Words are both generic processes that construct lower-dimensional com-

pact representation vectors from many extracted local descriptors. Fisher Vector

(FV) [66, 67, 68] defines an image by modelling the extracted local descriptors’

distribution. The FV encoding method assumes that local descriptors of images

follow Gaussian Mixture Models (GMM) so that the gradients of log-likelihood

can be used to compute the single image representation by concerning the pa-

rameters of pre-learned GMMs. Meanwhile, the Bag of Words encoding method

[69] cluster local descriptors into a collection of descriptors to form a codebook.

Each cluster centre is representative of a distinct individual pattern of visual de-

scriptors as a codeword. The image representations, the codebook, are assembled

by the histograms of the codewords.

3.1.3 Deep learning Representation

Deep Learning(DL) is an extensively studied topic in recent years. Deep learning

image representations driven from DL models have shown their strength in many
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computer vision tasks compared to hand-crafted ones, especially computer recog-

nition and segmentation [70, 71, 72, 73]. DL’s identical network architectures

and the diversity of DL models’ tricks have brought innovation to the computer

vision community, lifting the performance evolutionarily. While the PReLU-net

[74] first introduced, it even outperformed human accuracy with 4.94% against

5.1% for top-5 classification error in the ImageNet large scale object classification

challenge. There are many state-of-the-art DL models for image classification

include AlexNet [75], OverFeat [76], VGG19 [77], ResNet [78], Google Inception

V1-4 (GoogLeNet Family) [79, 80, 81]. They are the pre-trained backbone net-

works that can be used to draw pre-trained deep learning image representations

for other computer vision tasks. As example shown in figure 3.2, the activation

(ReLU) layers inference from a pre-trained deep model can serve as high-level

visual features which carry meaningful visual concepts such as edges, texture,

shapes and object contours etc., from image data.

Figure 3.2: A generic CNN architecture with intuition of low to high level feature
learning with ReLU activation function [3]

DL models are powerful but have limitations. Existing models do not translate
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well into all settings. Transfer learning only works when domains similarities, and

there is a large body of research investigating domain adaptation, also the demand

of volumes of training data. Fine-tuning is one possible effective approach that

might improve performance. Fine-tuning is to retraining the generic model as

a starting point on a new data set. The fine-tune technique employed on pre-

trained DL models on generating image representations might be more effective

and better-fit on some datasets like the natural image dataset. However, this

might not be the case for transferring current pre-trained deep learning image

representation into computational aesthetics study on TCP. Related experiments

and results provide an answer to our research.

3.2 Visual Recognition

Visual recognition in computer vision intends to analyze the content of images

or videos automatically. It describes a collection of computer vision tasks in-

volving identifying objects from visual data. The series of computer vision tasks

are image classification, object localisation, object detection and object segmen-

tation. This thesis mainly concerns image classification, object detection and

object segmentation along with it in DL models.
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Visual Recognition Task Input Output Locations

Image Classification An image with

one or a set of

concepts associ-

ated to it to de-

scribe its content

One or more integers

that are mapped to

single or multiple class

labels

No

Object Localisation An image with

one or more ob-

jects

One or more bound-

ing boxes defined by

point, width, and

height

Yes

Object Detection An image with

one or more ob-

jects

One or more bound-

ing boxes defined by

point, width, and

height and the asso-

ciated class label for

each bounding box

Yes

Object Segmentation An image with

one or more ob-

jects

One or more masks

mapping pixels for the

same object and their

associated class label

for each mask

Yes

Table 3.1: Table summary of visual recognition task that shows input data, target
output and localisation ability

Distinguish computer vision tasks can be confusing, but ImageNet Large Scale

Visual Recognition Challenge(ILSVRC) in 2015 [21] provided proper outlines,

seen table 3.1. Image classification refers to annotate or categorize a class label

to given visual data. Object Localisation involves locating one or more objects

in visual data and indicates their location by drawing a bounding box around.

Object Detection is more challenging since it combines image classification and
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object localisation. Object detection locates objects with a bounding box and

assigns them a class label in an image. These three problems are referred to a

topic that extensively studied in recent decades as Object Recognition. Object

Segmentation is a task driven by object detection. Unlike bounding box location,

object segmentation clusters pixels as an object mask to identify both location

and class label at the pixel level. This section explains the development and

state-of-the-art visual recognition algorithms from two aspects our research focus

on, object detection and associated object segmentation with DL.

3.2.1 Object Dectection

Object detection is one of the most widely studied topics in image processing.

It differs from the classical image classification problems, where models classify

images into a single category corresponding to their most salient object. This

traditional setting is problematic, as images are usually complex and contain more

than one object. Therefore current object detection models generally identify

various objects and locations within one single image. A naive approach to solving

this problem is to take different regions of interest from the image and classify

the object’s presence within that region.

After the rapid development of Deep Learning(DL) in the recent decades,

there are two representative pipelines for solving this problem: the traditional

hand-crafted Machine Learning(ML) model and the end-to-end DL model; usu-

ally, CNNs [75, 82]. Computational aesthetics focus on modelling machine to
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make appropriate aesthetic decisions similar to humans. Since DL models per-

form much better than traditional hand-crafted ML model, the DL overwhelm-

ingly dominate most computational methods in this research area. Therefore,

this section introduces the traditional hand-crafted ML model, in brief, and con-

centrates on the object detection algorithms based on deep convolutional neural

networks (CNN).

3.2.2 Hand-crafted Machine Learning Model

As the most popular and successful pipeline for object detection before DL strat-

egy fits prevalent, the traditional hand-crafted ML model is feature-based meth-

ods that use feature extraction followed by classifier training. The traditional

hand-crafted ML model’s basic architecture for object detection can be divided

into three components: region selector, feature extractor, and classifier. It aims

at the construction of image representation and the design of classifiers. The

review of hand-crafted image representation has been given in section 3.1.2. And

the widely-used classifiers involved in the hand-crafted ML models include sup-

port vector machine (SVM) [57, 83, 84, 85, 86, 87], random forest [88, 89, 90, 91],

nearest neighbour [92, 93] and so on.

As the model we have chosen in the chapter 4 for experiments, support vector

machines (SVM) [94] is the classifier widely used to produce a state-of-the-art

object detection performance in hand-crafted ML models. The basic idea of

SVM is to generate a hyperplane to separate binary classes with the maximised
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margin. SVM is theoretically clear and convincing, and the effectiveness and

efficiency in practice leads to success in traditional object detection models, such

as DPM (HOG+Latent SVM) [84], Oxford-MKL (HOG+Cascade SVM [95]) [85],

Selective Search (SIFT+SVM) [86], and NLPR-HOGLBP (LBP/HOG+Latent

SVM/Boosting) [87], etc. All the listed example models can achieve more than

80% recall-overlap performance rate of the PASCAL dataset. While the DPM

obtains AP as 0.869, Selective Search has 0.879, and NLPR-HOGLBP boosted

the result by 4% as an improvement compared to the baseline.

The traditional hand-crafted ML models in object detection are relatively

mature but have inherent weaknesses. There are two major shortcomings. The

first one is the difficulties facing in manually designing robust features to con-

struct effective hand-crafted image representations. As stated in section 3.1,

image representations extracted from visual data have diversity and impact on

object detection performance. Appearances, illumination, and background are

all morphologic factors that increase the difficulty. Another weakness is the high

computing complexity in the salient region selection. Methods like sliding-window

[56] is computational intensive. And window redundancy in some salients also

aggravate this situation.

From computer vision research aspects, the use of ensemble learning can usu-

ally boost object detection performance. Researchers keep examining building

ensemble systems from different base models that are complementary [96]. Fi-

nally, Deep CNN turn researchers’ attention to itself [75, 97].
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3.2.3 Deep Learning Model

Localizing and classifying objects into the concerned classes is the aim of object

recognition. With the increment of computing power, Deep CNN-based object

detection develops rapidly [70]. Deep CNNs are robust and can learn image

features from low-level to high-level [71, 72, 73]. The variety of image datasets

[98, 99, 100, 101] is another key to boost object detection performance. Pascal

Visual Object Classes (VOC) Challenges [22, 23] promoted object detection to a

large extent by handling 20 concerned classes in one goal with VOC07 [98] 2007

and VOC12 [98] datasets. ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [101, 21] expand the class number to a large-scale with more than 1000

concerned classes.

We provide brief performances of some improved object detection models and

will summarize their main ideas in the section 3.2.3.1 and section 3.2.3.2.

As an ILSVRC winner, A. Krizhevsky et al. proposed a Deep CNN model

called AlexNet [75] in 2012. The AlexNet minimized the top-5 error rates to

15.3%, while a top-5 accuracy means a model’s top 5 highest probability predic-

tions match with the ground truth.. Afterwards, the PReLU activation function

[74] released in 2015 boosted this results. Instead of zeroing out the negative input

in ReLU, PReLU multiplies the negative input with a small value learned during

training. For the first time in object recognition performance, human beings have

been surpassed with the top-5 classification error less than 5% in ILSVRC by a
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Deep CNN model. Deep CNN models are diverse in various backbone architec-

tures. And this diversity further reduced the top-5 classification error in ILSVRC

to 4.49% by ResNet [78] and 4.1% by Inception-v4 [81].

The success of the Deep CNN model triggered a devotion to applying deep

CNN models to object detection. Based on the backbone networks of Deep CNNs,

researchers divided their research directions into two categories, two-stage object

detection strategy and one-stage object detection strategy.

In the following sub-sections, we will introduce two types of backbone networks

in section 3.2.3.1 and section 3.2.3.2. Then we will provide a summary of the two-

stage object detection strategy and one-stage object detection strategy in section

3.2.4.

3.2.3.1 Complex Backbone Network

Yann LeCun proposed the first CNN called LeNet-5 bases on his CNN study in

1998 [102]. LeNet-5 [103] is a traditional CNN designed to recognise handwritten

numeric characters. It achieves an average precision of 98% on the MNIST dataset

but did not overwhelm at that time. LeNet-5 determines a Deep CNN’s basic

architecture by specifying basic components: the convolutional layer, pooling

layer, and fully-connected layer. Unfortunately, the first exhibition of CNN does

not greatly impact object detection at that period, and little expansion has been

made in the next decade due to the limitation of computing power. Things

start changing from the time stamp when AlexNet won the championship of the



CHAPTER 3. LITERATURE REVIEW 63

ILSVRC 2012 competition. Deep CNN attracts researchers’ eyes to it.

AlexNet [75] consists of five convolutional layers (Conv), three max-pooling

layers, and three fully-connected layers (FC). It expands the depth and breadth of

the LeNet-5 architecture and determines 60 million parameters in total. AlexNet

has excellent success in ILSVRC 2010 testing data with top-1 and top-5 classi-

fication error rates as 37.5% and 17.0%. And they managed to minimize top-5

classification error rates to 15.3% in ILSVRC 2012. AlexNet combines multiple

technologies to obtain this progress. It replaces the traditional CNN activation

function such as Sigmoid and Tanh by ReLu [104] to overcome gradient dispersion

problem in deep networks. Dropout [105] regularization is employed to remove

some neurons randomly to avoid inter-adaptive complexity and overfitting bet-

ter. AlexNet also applies data augmentation methods such as horizontal flipping,

random clipping, translational transformation, colour illumination transforma-

tion to extend the dataset and reduce overfitting. Furthermore, AlexNet allows

Multi-GPUs to run in parallel so that which layers can communicate between

each other to speed up training.

ZFNet [106] uses unpooling layers and deconvolution layers [107, 108] to vi-

sualize feature maps. The visualization ability for the convolutional layers in

ZFNet intuitively describes the feature maps’ changes at each layer. To preserve

low-level features more accurately, Zeiler reduced the convolution kernel size of

the first Conv layer in AlexNet [75] from 11×11 to 7×7 and adjusted the stride

size from 4 to 2. A similar approach is employed in DetNet [109] and evidence
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has shown that smaller convolutional kernels are conducive to reduce the down-

sampling rate, localise large objects and identify small objects

GoogLeNet is a Deep CNN family [79, 80, 81] popular in use of two-stage

object detectors. As the two-stage object detection strategy utilises low-level

features to locate the object and the Deep CNN to classify the salient region,

effective image representation of features can improve both location and classifi-

cation performance. To achieve this target, GoogLeNet [79] increases the number

of Conv layers and the number of neurons of each layer. But simultaneously, the

expansion of network size, depth, and width leads to dramatic growth in the num-

ber of parameters, and the computation-intensive rises exponentially. In order to

overcome this problem, GoogLeNet [79] introduces 1×1 convolution kernel pro-

posed by Min Lin et al. [110]. The Network-in-Network 1×1 convolution kernel

trick can decrease the dimension so that the computational complexity can be re-

duced and cross-channel information can be integrated. Furthermore, GoogLeNet

[79] replace the fully connected layer with an average pooling layer and proposed

Inception module [79] with dimension reductions to convert serial structure to

parallel structure, so that the calculation of parameters further reducted from

7×7×1024 to 1×1×1024.

VGG enhanced AlexNet’s architectures by depth to 16 or 19 layers (VGG16

and VGG19) [77] to highlight and extract features precise for generating a DL

image representation. Since a smaller convolutional kernel promotes Deep CNN

models performance, VGG reduces the convolution kernel size in every Conv layer
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to 3×3 with the stride of 1, while AlexNet has 11×11 convolution kernel and stride

of 4; and ZFNet has convolution kernel size 7×7 and stride of 2. The smaller

kernel and stride of VGG increase the network’s depth but keep the receptive

field unchanged. It also enhances the network model’s feature representation

capability, conducive to object localisation by reducing parameter calculations.

CBN model Top-1

Accuracy

Top-5

Accuracy

Params(M) Year

AlexNet 57.20% 80.30% 60M 2012

ZFNet 64.00% 85.20% 58M 2013

GoogLeNet 69.80% 93.30% 6.8M 2014

VGG16 71.50% 89.80% 138M 2015

InceptionV2 79.90% 95.20% 12M 2015

InceptionV3 82.70% 96.50% 23.6M 2015

InceptionV4 83.50% 96.90% 41M 2016

ResNet50 79.30% 96.40% 23.4M 2015

ResNet101 80.10% 96.40% 42M 2015

Table 3.2: CNN Summary of complex backbone networks(CBNs). The Top-1 Accu-
racy and the Top-5 Accuracy represent the classification accuracy on the
ImageNet dataset. Params indicate the number of network parameters.

ResNet is a deep residual learning approach for image recognition proposed

by Kaiming He et al.. The purpose of this model is to ease congestion of gradi-

ent explosion and dispersion caused by degradation [78] in Deep CNN training.

Degradation is a phenomenon that when a Deep CNN model’s accuracy in train-

ing reaches saturation, then start to decline dramatically with the increment of
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the network’s depth during training. Deep CNN holds the ability and ambition

on large-scale dataset handling. To gain more validated features, the depth of

Deep CNN grows. Before ResNet was proposed, VGG and GoogLeNet [77, 79]

employed stochastic gradient descent (SGD) trick [111, 112] to permit networks

continuously converging after a certain layer, for example, ten. This SGD trick is

effective but does not provide a proper solution to training degradation. ResNet

invites an assumption to its model. The model assumes the input value is X,

and F(X) is the result taken from one layer or multiple stacked layers, respec-

tively. ResNet creates a shortcut connection between them as essential output

H(X)=F(X)+X. This approach prevents degradation from worsening and allows

Deep CNN to keep coverage despite many layers added on. The performance

continuously improves after ResNet solves degradation, the increasing depth of

networks (ResNet50 and ResNet101) enhance the capability of image represen-

tations from features. ResNet is one of the most popular backbone networks for

object detection now-a-day, and it achieves 3.57% top-5 classification error rates

in ILSVRC 2015 [21].

Except for the widely-used backbone Deep CNN architectures listed above,

several complex backbone networks are inspired and integrated from them. GoogLeNet

family is one example. InceptionV2 inherits the design of GoogLeNet InceptionV1

[79] and split the 5×5 convolution kernel into two 3×3 kernels with Batch Nor-

malisation (BN) [113]. Then, Christian Szegedy et al. concatenates 1×N kernel

sequencing by N×1 kernel as N×N kernel to propose GoogLeNet InceptionV3
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[80]. Combining the ResNet [78] and Inception model, researchers demonstrates

the InceptionResNets [81]. There are other Deep CNN backbone network such

as ResNeXt [114], DenseNet (who has thousands of layers) [115], and SE ResNet

[116].

A summary of complex backbone networks’ performance in ILSVRC is given

in table 3.2 with top-1 accuracy, top-5 accuracy and the number of parameters.

3.2.3.2 Lightweight Backbone Network

The complex backbone networks we described above focus on deepening Deep

CNN models’ depth and employing decomposition methods on convolution ker-

nels to increase image representation capability. However, from AlexNet to

ResNet and DenseNet, the number of Conv layers grow from 7 to hundreds,

and thousands [75, 78, 115]. With the rapid growth of depth, kernel decom-

position methods loss can only guarantee Deep CNN convergence but not the

calculations’ depreciation. The incremental change of parameters results in in-

tensive computation, shortage of storage space, and lack of efficiency. As the core

of Deep CNN-based object detection, the backbone network defines the model’s

calculation and memory requirements. If the visual data involved is an offline

image dataset, the Deep CNN model can digest this problem by consuming more

time in practices. But online video datasets do not have a tolerance on these

issues. Therefore, researchers invented lightweight backbone networks to replace
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the complex ones to ensure performance and limit the number of parameters si-

multaneously. The computer visions tasks employed with this area cover but not

only autonomous driving [117, 118], face recognition [119], embedded systems

[120], mobile phone searching [121, 122] and e.t.c.

LBN model Top-1

Accuracy

Top-5

Accuracy

Params(M) Year

SqueezeNet 57.20% 80.30% 1.25M 2016

Xception 79.00% 94.50% 22.8M 2017

MobileNetV1 70.70% 89.50% 4.24M 2017

MobileNetV2 72.00% 91.00% 3.4M 2018

ShuffleNet 71.50% - 3.4M 2017

NASNet-A 74.00% 91.60% 5.3M 2018

PeleeNet 71.30% 90.30% 2.8M 2018

SqueezeNext 67.50% 88.20% 3.2M 2018

MnasNet 70.60% 89.50% 4.2M 2018

MnasNet-92 74.80% 92.10% 4.4M 2018

PNASNet 74.20% 91.90% 5.1M 2018

Table 3.3: CNN Summary of lightweight backbone networks(LBNs). The Top-1 Ac-
curacy and the Top-5 Accuracy represent the classification accuracy on the
ImageNet dataset. Params indicate the number of network parameters.

Current invented lightweight backbone networks exist in computer vision com-

munity include SqueezeNet [123], Xception [124], MobileNet [125], MobileNetV2

[126], ShuffleNet [127], NASNet-A [128], PeleeNet [129], SqueezeNext [130], Mnas-

Net [121], MnasNet-92 [121], PNASNet [131] and e.t.c.
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Since our research only focuses on offline image dataset, the project focus on

CBNs rather than LBN. This section does not go into an in-depth review of the

lightweight backbone network. Still, a performance summary is given in table 3.3

on ILSVRC with top-1 accuracy, top-5 accuracy and the number of parameters

for the lightweight backbone network.

3.2.4 Deep CNN Object Detectors

Object detection is a combined visual recognition task from object localisation

and object classification. As the most widely studied pipeline of object detection

in recent years, the Deep CNN model has proved its strength in feature repre-

sentation [75, 132, 71, 72, 73], and the outstanding performance overwhelming

hand-crafted ML model. The object detection architectures are diverse in two

mainstreams: the two-stage object detector and the one-stage object detector.

A two-stage object detector is constructed with a salient region extractor and

an object classifier concerning the object localisation task and the object classifi-

cation task, respectively. The salient region extractor is a model that retrieves a

set of regions of interest RoIs. And the object classifier is independent of selected

RoIs with concerned class labels. These two sub-models are not necessary shared

computationally. Two-stage object detectors are accurate but time-consuming

and low in speed. The representatives of two-sage object detectors include R-

CNN [97], SPPNet [133], Fast R-CNN [134], Faster R-CNN [26], Mask R-CNN

[135] and R-FCN [27] and e.c.t. They are also the state-of-art object detection
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models in the computer vision community.

The R-CNN(Regions + CNN)[97] is a milestone toward applying two-stage

object detection strategy with Deep CNN models. A series of papers derived from

it. The R-CNN method was developed to avoid the use of excessive numbers of

regions in object detection. It relies on an external region proposal system based

on a selective search algorithm [97]. The Fast R-CNN model [134] was developed

to reduce problems with R-CNN. It feeds the input image to the CNN to generate

a convolutional feature map. Faster R-CNN eliminates the selective search algo-

rithm to produce a faster object detector called Faster R-CNN [26]. Although

the very deep CNN model ResNet can achieve good results in object detection,

it is slow [78]. The cost-reduced computational shared model R-FCN [27] at-

tempts to balance translation-invariance in image classification and translation

translation-variance in object detection. The Mask R-CNN approach [135] ap-

plies FCN (Fully Convolutional Networks) [136] to each Region of Interest (RoI)

and then performs classification and bounding box regression in parallel. All

these object detection algorithms use regions to localise objects within images:

networks only examine regions in the image with an estimated high probability

of containing the object. They are therefore termed semi-convolutional in which

adopted a two-stage object detection strategy.

Since the two-stage object detection strategy is slow and computationally in-

tensive, the one-stage (single-stage) detector is designed to directly locate and

classify objects through Deep CNN without separating them into two individual
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components. The one-stage object detectors do not require a salient region ex-

tractor and an object classifier. It abandon the region proposal process used in

two-stage ones and compute object location coordinates along with class proba-

bilities in the same stage.

The one-stage object detector outperforms the two-stage object detector in

speed but has lower detection correctness (mAP) in general. They allow one

to use only a single network for prediction with a set of pre-defined boxes, like

OverFeat [76], YOLO series [137, 138, 139], SSD (Single Shot MultiBox Detector

[140]), DSSD [141] can obtain relatively good results. However, it is no doubt that

Deep CNN models lead object detection into a new era. The Deep CNN-based

object detection algorithms break traditional hand-crafted ML object detection

methods’ bottleneck by using DL techniques. In order to provide a more detailed

review, comparisons on Deep CNN-based object detection algorithms will be

summarised in the following content.

Both the two-stage object detector and the one-stage object detector are intro-

duced below. Some milestone object detectors are summarised into a performance

table 3.5 and a characteristic table 3.4.
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Table 3.4: The summary of object detectors with their properties and weakness

Model Properties Weakness

R-CNN Use selection search to gen-

erate region proposals; Use

SVM to classify regions; Use

bounding box regression to

refine regions.

Very slow; Storage

space consuming; No

end-to-end training.

SPPNet Use selection search to gen-

erate region proposals and

map them to feature map;

Use spatial pyramid pooling

to feed multi-scale input to

Deep CNN backbone.

Slow; No end-to-end

training.

Fast R-CNN Use selection search to

generate region proposals

and map them to feature

map; Use ROI Pooling layer

for downsampling features

to obtain fixed-size feature

maps; Use Multi-task loss

function.

Slow; No end-to-end

training.

Faster R-CNN Replace selection search

with Region Proposal Net-

work (RPN) to generate

region proposals and map

them to feature map; Share

feature maps between RPN

and Deep CNN backbone;

End-to-end training.

Weak handling of

multi-scale objects

and small objects;

Detection speed is not

capable of real-time.
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Mask RCNN Use ROIAlign pooling layer

instead of ROI; Object de-

tection and segmentation si-

multaneously; Conducive to

small target detection; Ac-

curacy improved.

Detection speed is not

capable of real-time.

FPN A multi-level feature fu-

sion Feature Pyramid Net-

work. Conducive to multi-

scale object and small ob-

ject detection.

Detection speed is not

capable of real-time.

YOLO A novel one-stage detector;

Detection speed is fast and

capable of real-time.

Detection accuracy is

not high; Weak han-

dling of multi-scale

objects and small ob-

jects.

YOLO2 New backbone network,

DarkNet19; Use k-means

clustering to generate an-

chor boxes; Multi-dataset

joint training.

Difficult in training.

YOLO3 New backbone network,

DarkNet53; Use multi-level

feature fusion to achieve

multi-scale detection;

Accuracy improved.

IoU increases while

performance drops.

YOLO4 New backbone network,

CSPDarknet53(Cross-

Spatial-Partial connec-

tions); Use path aggrega-

tion network to improve

accuracy. Use bag of

freebies and bag of specials

Inference time in-

creased.
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SSD Multi-layer detection;

Multi-scale anchors mecha-

nism at different layers.

Not promoting small

object detection.

DSSD Multi-layer feature fusion;

Replace with Upsampling

using deconvolution; Accu-

racy improved of small ob-

ject detection.

Detection speed de-

creases.

Table 3.4: YOLO4 was released after submission.

3.3 Generative Art

The statement “Computer can generate artwork” was proved to be true decades

ago, in the early 1960s. Simultaneously, Frieder Nake [4] introduced the term

“Generative Art” and created a program to generate computer art at the same

time. The idea of “Generative Art” describes a process with various autonomy

levels; thus, it is not limited to the digital realm. The art pieces driven by the

system are a chemical reaction performed by the collaboration of machines and

artists. The artist’s role in generative art is to design or influence this process to

some degree. As shown in figure 3.3, the result is remarkable, but “as beautiful

as humans think” is a topic that is reserved for later study.

In recent years, one of the most outstanding achievements in the area of

computational aesthetics study has been the implementation of style transfer

algorithms from Werner Reichardt Centre for Integrative Neuroscience, which is
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Figure 3.3: Hommage à Paul Klee, Frieder Nake 1965, Victoria and Albert Museum
online collection [4]

mostly known as Google project DeepDream (figure 3.4) as well. They introduced

an artificial system based on a Deep Convolutional Neural Network (Deep CNN)

that creates artistic images of high perceptual quality in the summer of 2015 [5].

There is no doubt that this research result shocked not only lots of artists, but

also people who have little knowledge in this area.

As mentioned in the previous paragraphs, compared to psychology or philoso-

phy clarification, a lesser abstract form of aesthetic study is the Art Composition

Rule [17]. Most of the current pieces of AI-work in computational aesthetics try

to learn the pattern from existing artworks, focusing on replicating the style of

artists using machine learning and computer vision techniques. Style Transfer is
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Figure 3.4: The system uses neural representations to separate and recombine content
and style of arbitrary images, providing a neural algorithm for the creation
of artistic images. [5]

a new research field outcome as the combination of computational interpretation

and deep neural networks. These algorithms can be elaborated a bit further;

they capture low-level local features from input at lower layers in the Deep CNN.

Higher layers of Deep CNN organise high-level visual concepts, for example, an

object is identified to generate output.

The explosion of papers in Machine Learning and Art shows people’s interests

in investigating the area of computational aesthetics. Modern techniques of ma-

chine learning and computer vision, such as Deep CNN [75, 79, 80, 81, 77, 78, 136],

Kernelized Deep CNN [142], Generative Adversarial Networks (GAN) [5] etc., are

all considered as valuable attempts to achieve this target. Some of those methods

have produced excellent results under research. But unfortunately, few of them

have been applied to art with domain knowledge. In most cases, their results in

mathematics or computer science are hard to evaluate and verify [17, 4, 29, 15].



CHAPTER 3. LITERATURE REVIEW 78

To model AI “thinking” or acting much closer to how humans do while gen-

erating paintings, a more feasible approach is to adjust the miming process by

applying the Art Composition Rule. For example, both using the building colour

quantisation scheme for oil paintings so that it acts like image transformation

[143] and comparing aesthetics measurement for evolutionary art [144, 17], aim

to pass the “sense of art” to machines. A person who has been formally educated

in art would generally follow the composition rule subconsciously. According

to a given entry requirement schema, some academic assistants from schools of

art would set aside personal opinions and expectations while grading a piece of

painting. This strategy offers the possibility in theory that machines could replace

humans in this position. However, full replication of human aesthetic actions is

currently impossible. A machine does not have the aesthetic consciousness of a

human being. One of the biggest problems of generative art in computational

aesthetic research is to establish a linkage between aesthetics features and the

Deep CNN style transfer method.

Object segmentation and precise feature selections would be reasonable meth-

ods to extract essential image representation for building art-sensible machine

learning algorithms. Some topics could be specified in detail as: generation

of colour palettes to compare colour aesthetic preferences between the types of

paintings and use them to improve colour control on style transfer [145]; dy-

namic sketching simulation of typical brush stock types [146], and art-movement

classification to evaluate art generation. These are some of the current research
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directions for applying relative domain knowledge to style transfer models.

Our research suggests that art style could be learned and used by a machine

to generate paintings. And more precisely, the machine should have the ability to

learn the art style of Traditional Chinese Painting(TCP) and generate TCP using

the knowledge obtained. Therefore, we review popular state-of-art style transfer

models in the next section 3.3.1 and refer to collaborations from researchers across

the art painting domain.

3.3.1 Style Transfer

As the most popular form of art, painting requires well-trained techniques to

reproduce or redraw appealing artworks. Computer vision researchers strive to

develop a mechanism that allows a machine to “paint” like a human being. Gen-

erative art is the computational aesthetic research topic in machine learning and

computer vision. Meanwhile, the style transfer is a derivative of it but well-known

as a computer vision task.

Style transfer is a type of generative art that proposes transforming one image

into another artistic style. Before Deep CNN attracted attention, many studies

were carried out in the computer vision community. Non-photorealistic rendering

(NPR) [147, 148, 149] is one inspired technique structured thoroughly in recent

decades. NPR offers an image the ability to be automatically transferred into syn-

thetic artworks. This traditional pipeline is a generalisation approach known as

texture synthesis [150, 151, 152, 153]. Texture synthesis in style transfer performs
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the extraction and transformation of the texture from the input image to the tar-

get. Image analogies is a framework [154] that learns un-stylised and stylised

images pairwise in training and generates an analogous transformation, which

guides the style transfer. However, these stylisation methods have limitations.

Most NPRs only manage to handle one artistic style at a time [149, 155]. They

are designed and trained with particular art styles and do not have the compacity

to be transferred to others. The analogous transformations of these stylisation

methods consist of low-level features without high-level visual concepts, so the

traditional style transfer model is not sensitive to image structure either.

There is evidence that CNN can extract image representations from image

data [70, 71, 72, 73]. Extending the previous research, Gatys et al. [5] estab-

lished a Neural Style Transfer (NST) mechanism in 2015 to render an arbitrary

content image into different styles. NST obtains content information from the

input image and style information from the artwork. It intends to model the

input image’s content as the feature responses from pre-trained CNN and illus-

trates the artwork’s style as the summary feature statistics. The key to success

in the objective of producing a stylised target image is to match CNN feature

distributions by iterative image optimisation.

The innovation of NST is that it has no restriction on the types of art style and

does not require ground truth for training. This mechanism breaks the constraints

of NPR and image analogies stylisation, which only satisfies explicit styles.
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NST can be categorised into Image-Optimisation-Based Online Neural Meth-

ods (IOB-NST) and Model-Optimisation-Based Offline Neural Methods (MOB-

NST) based on image reconstruction algorithms from CNN representations. IOB-

NST delivers style by iteratively optimizing images. MOB-NST optimizes the

generation model offline, and generates a stylized image through a single for-

ward pass. And it can be further categorised based on different Visual Texture

Modelling strategies employed.

Visual texture modelling [156] is the algorithm used in NST to extract style

representation. It is influenced by the visual texture algorithms [157, 158] in tradi-

tional style transfer mechanisms. It is concerned with modelling visual texture as

style information. There are two distinct approaches in the computer vision com-

munity: Parametric Texture Modelling with Summary Statistics [159, 160, 161]

and Non-parametric Texture Modelling with Markov Random Fields (MRFs)

[157, 158]. The parametric texture modelling with summary statistics exploits

texture that is captured to summarise the statistics as the statistical property of

style. One recent milestone approach is Gram-based representation by Gatys et

al. [162, 77] that correlates second-order statistics of the responses of different lay-

ers in CNN domain. Berger and Memisevic further improved it by horizontal and

vertical feature map translation to address long-range symmetric structures. The

non-parametric texture modelling with Markov Random Fields (MRFs) assumes

that spatial neighbourhood entirely characterises each pixel [163]. An individ-

ual pixel is searched and synthesised by its similar neighbourhood corresponding
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pixels in the source texture image.

The taxonomy of NST is shown as figure 3.5.

IOB-NST with parametric texture modelling with summary statistics pro-

posed by Gatys et al. [155, 5, 162] does not require ground truth of explicit

styles. They preserved relatively good style representation during stylisation,

but Gram-based style representation inevitably loses low-level information in the

CNN domain. Li et al. [164, 165, 166] employed Domain Adaption and Maxi-

mum Mean Discrepancy to preserve better the stylisation coherence of delicate

structures in the CNN domain. The result was impressive but there was a lack

of knowledge in semantics, depth, and variations in brush strokes.

Non-parametric IOB-NST with MRFs was first proposed by Li and Wand

[167] and achieved success in photorealistic style transfer. To constrain the spatial

layout, they introduced a patch-based MRF loss function. However, this model

cannot handle the situation when the content image and style image significantly

differ in terms of perspective or structure.

Compared to IOS-NST, MOB-NST reduces computational cost and speeds up

the stylisation process by optimising a feed-forward network. MOB-NST includes

Per-Style-Per-Model Neural Methods (PSPM), Multiple-Style-Per-Model Neural

Methods(MSPM), and Arbitrary-Style-Per-Model Neural Methods (ASPM).

Parametric PSPM pre-train a feed-forward style-specific network and gener-

ate test result with a single forward pass [168, 169]. This can be improved by

adopting batch normalisation (BN) [170] and instance normalisation (IN) [171].
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Non-parametric PSPM [172] from Li and Wand was established by applying ad-

versarial Markovian feed-forward network to their patch-based Non-parametric

IOB-NST.

MSPM incorporates multiple styles relying on one single style transfer model.

It is theoretically reasonable to integrate multiple styles within one model. For

example, TCPs have various styles, but styles like XieYi (Freehand) and GongBi

(Skilled) share many similarities (or shared features), such as similar colour

palette or paint stroke information. Therefore, training the networks on each

explicit style is inherently redundant and is a waste of resources. MSPM pro-

posed to keep the same sets of parametrics by holding a set of convolutional

parameters constant but introducing conditional instance normalisation (CIN)

in IN layers to scale and shift parameters that sufficiently adjust multiple styles

[170, 173, 174].

ASPM is known as Zero-shot Fast Style Transfer that is designed to be capa-

ble of a new style without training. MRF patch-based ASPM [175] tends to find

a style patch that can match the content patch in the CNN feature space, and

exchange them to achieve Style Swap. The model uses the fast image reconstruc-

tion algorithm to build the exchanged feature map. Huang et al. [171] managed

to bring ASPM to a real time approach with Adaptive Instance Normalisation

(AdaIN) inspired by CIN, following work by Ghiasi et al [176].

Since our project concentrates on TCP data, MSPM seems to be the most

relevant and suitable model. Unfortunately, this is not implemented in the thesis,
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but research work for applying NST to the TCP domain is presented in chapter

6.

3.4 Computer Vision and Traditional Chinese

Painting

Traditional Chinese Painting is a world-famous heritage. Its unique techniques

and relatively abstract styles attract the attention of many artists. It is one of

the oldest art styles that the current academy has not fully interpreted. With the

rapid development of computing power and the wide-spread of machine learning

technologies, computer vision researchers started experimenting visual recogni-

tion tasks with the TCP domain in the early twenty-first century [35, 184]. Jiang

et al. [185] proposed an SVM based ML classifier for TCP images in 2006, but

progress was limited afterwards. The TCP integrated ontology was first deter-

mined in 2013 [35]. Most research studies regarding cross-domain TCP-computer-

vision approaches are at the classification level. Author classification approaches

include Monte Carlo convex Hull Model [186], brushstroke based hybrid CNN

[187], and the VGG16 with Dropout [188] which was proposed for TCP style clas-

sification etc. Inspired by the object detection model for oil paintings presented

by Crowley [189, 24], an assembled Region Proposal Network was introduced as

an attempt at detecting objects in TCPs [25]. There are IOB-NST models that

work with TCP data [190, 191, 192, 193]. However, few computer vision models,
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Style Transfer

Traditional Style Transfer[147, 148, 149, 154]

Neural Style Transfer

Image-Optimisation-Based(Online)

Parametric with Summary Statistics

[5, 164, 165, 166, 145]

Non-parametric with MRFs

[167, 10, 177, 178]

Model-Optimisation-Based(Offline)

Per-Style-Per-Model(PSPM)

Parametric [168, 169, 170, 171]

Non-parametric[172]

Multiple-Style-Per-Model(MSPM)

Non-Parametric

[170, 173, 174]

Arbitrary-Style-Per-Model Method(ASPM)

Parametric[175]

Non-Parametric[171]

Generative Adversarial Networks(GAN) in NST

[179, 180, 181, 182, 183]

Figure 3.5: A taxonomy of Neural Style Transfer(NST) techniques. Our NST taxon-
omy inspired by research from Jing et al. [6]. GAN is a neural network
framework that can be used to implement style transfer. GAN-based style
transfer is a promising direction, especially in the field of MOB-NST. It
can be applied with PSPM, MSPM and ASPM.
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cooperating with the TCP domain, can guarantee to be state-of-the-art.

3.5 Summary

This chapter presents an overview of research topics related to computational aes-

thetics in the machine learning and computer vision community, including image

representation, visual recognition and generative art. Each topic is employed in

the context of a research application of computational aesthetics and is studied

from a computer vision perspective. The chapter ends with a brief overview of

the situation regarding current research studies across co-operations between the

TCP and computer vision research fields.

• The first section 3.1 describes image representation and the types of image

representation. This section also defines low-level features and explains how

they construct the hand-crafted representation and deep learning represen-

tation. How image representation holds “reflection” of aesthetics features in

computational aesthetics representing domain knowledge is also explained.

• Section 3.2 provides an outline of visual recognition by specifying related

computer vision tasks, followed by the backbone CNN performance sum-

maries of hand-crafted machine learning models and deep learning models.

Section 3.2.4 also discusses effective Deep CNN detectors on natural image

training with pros and cons, then raises the question of whether these set

of methods can be transferred into the TCP domain.
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• In section 3.3, after the descriptions of the history and knowledge of gener-

ative art, the definition and derivation of style transfer are given. Section

3.3.1 suggests a backbone model that might satisfy TCP style transfer by

specifying properties and explaining limitation in neural style transfer.

• Section 3.4 summarises computational aesthetics investigations between the

computer vision and the TCP domain, but the situation is not optimistic

in most trending research tasks as explained above.



Chapter 4

Traditional Chinese Painting

Representation and Classification

4.1 Motivation

Unlike western painting, there is no existing official and well structured Chi-

nese Painting Image Database and Ontology System. This is a limitation that

avoids computer vision crossing domain with TCP. Nearly all of the current com-

puter research papers on TCP drive their experiment with their self-constructed

datasets. This increase the difficulties in cross-comparisons between models that

existed with our promoted designs. However, this problem remains unsolved due

to the restriction on licenses for using high-resolution TCP data.

As stated in section 3.4, the number of previous research studies of applying

88



CHAPTER 4. TCP REPRESENTATION AND CLASSIFICATION 89

computer vision models to TCP data is limited. But there are many effective nat-

ural image classification methods which were established in the past decade, listed

as the hand-crafted base (section 3.1.2 and section 3.2.2) and the deep learning

base (section 3.1.3 and section 3.2.3). Hand-crafted image classification methods

mainly use SIFT or HOG local features to achieve success in natural images clas-

sification. Researchers transferred this knowledge to the TCP domain and obtain

relatively good performance [185, 186, 187]. With DL’s fast development in the

computer vision community, TCP classification started taking its steps into the

research field, though only a few attempts invited. It is a worth-studied research

topic of computational aesthetic learning.

This chapter focuses on modelling machine to distinguish TCP style and in-

vestigate what features and image representation designs play significant roles in

identifying TCP style and content school. The shallow attempts on TCP classifi-

cation with dynasty domain knowledge and object classification are also proposed

in this chapter.

4.2 Data and Pre-processing

The word “traditional” that emphasised in TCP indicates its lack of image data.

As mentioned in the last section, the first problem that our project facing is to

solve is to construct a valid and structured TCP dataset.
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4.2.1 Dataset Description

Our primary TCP dataset consists of two source datasets. One small dataset

is a self-generated dataset resourced from several museums’ open resources and

online collections. The large dataset is a high-resolution image dataset provided

and licensed by the Chinese Painting and Calligraphy Community (CPCC). The

sizes of source datasets are 3000 images and 10000 images, respectively. Images

licensed by the CPCC are scanned copies with the same image sizes as the original

art pieces. They guarantee high resolution with min and max dpi as 300 and 400.

In comparison, the TCP images from the small dataset collected online are various

in qualities. Their min and max dpi of these images are 72 and 144.

All TCP image data employed in our project are manually categorised with

class labels by me. TCP images were annotated with ground truth (bounding

boxes and polygonal segmentation) if objects are contained. The application used

to annotate objects are LabelImg[194] and LabelMe [195].

In section 2.2, we introduced an overview of the TCP category and some

unique forms only presented in TCP (such as fan surface). Our project follows

the tree-like TCP category to annotate the TCP data. As explained in figure 4.1,

TCP images whose special forms are irregular shapes or incomplete paintings

can leads to “noise” blocks. Identifying every single “noise” blocks requires lots

of human efforts and time consuming. Therefore, we remove TCP images with

special forms to reduce workload in later computer vision learning. There is

overlap between the sources datasets, the redundant one with lower resolution
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would be removed. All these steps markedly narrow down the size of our TCP

dataset. Finally, four TCP datasets are created and shown as:

Figure 4.1: TCP image with irregular shapes, such as fan surface, will results in
“noise” blocks when we further process our data as proposing in section
4.2.2. As shown, Block C contains TCP object. Block A, Block B and
Block D do not cover any object and can be named as “background”. How-
ever, Block A represents “background outside of the TCP painting”; Block
B is “background partially covers the TCP”; and Block D is the “back-
ground in TCP”. Since Block A and Block B do not fully cover the TCP
itself, their features should not be contributed as TCP’s features. They
are “noise” blocks.

4.2.1.1 GongBi and XieYi Dataset

A binary dataset with 3872 in total, while 1723 in GongBi style and 2149 in XieYi

style. This dataset is the pure primary TCP dataset.

4.2.1.2 Landscape, Figure and Flower-and-Bird Dataset

A three-class dataset re-generated from the primary TCP, based on the content

of the TCP. Since some of the TCP images can be classifying into more than
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one categories, for example, some religion paintings can be categorised as either

Figure or Flower-and-Bird paintings. We dropped this type of data to avoid being

ambiguous. This dataset’s size is 3492, with 1278 landscape painting images, 1002

figure painting image and 1212 flower-and-bird painting images.

4.2.1.3 Landscape in Dynasty Dataset

A four-class dataset only with a size of 400 images. There are evenly distributed

into four different dynasties: Tang, Yuan, Ming, Qing. This is a small dataset.

This dataset’s characteristic is that all painting images in this set are handscroll

( long horizontal scroll ) paintings from CPCC.

4.2.1.4 7-Class TCP Object Dataset

A seven-class dataset consisted of 1400 images in seven classes: human, horse,

cow, bird, plant, cat, and dog. Each class has 200 images in either figure or flower-

and-bird category. The number of objects presented in one image may be various.

All images come with class labels and segmentation knowledge (bounding box)

as ground truth.

We always store one-third of the dataset separately as pure and clean testing

data to prevent overfitting. The others are randomly divided into 90% and 10%

for training and validation, respectively, for experimental purpose.
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4.2.2 Sliding Window

Sliding Window (SW) [56] is a method widely used to define salient regions for

object detection in many image processing research [56, 27, 109]. It aims to ex-

tract local feature of specific salient regions by running a moving window of fixed

size to segment the image into grids. Feature extraction and encoding methods

will then be applied to salient regions or segments to obtain local representation

vectors. These sets of vectors can be determined as the input for image classifiers.

Segmenting image into salient regions improve checking of any objects’ pres-

ence. In the object detection approach with SW, SW [196] is run over the whole

image. Salient regions extracted and interpreted directly connect to the classifi-

cation model. SW is not only providing satisfaction in object detection but also

being used to generate local representation [54, 55] for large-size high-resolution

images.

In the TCP, handscroll is a typical TCP form for painting landscape in a long

horizontal scroll. The high-resolution data we purchased for the licence is one-to-

one in their original size (generally speaking, they can 50 centimetres high and up

to 100 meters long). Segmentation and resize of these TCPs are indispensable.

Therefore, we defined a set of fixed sizes of SW according to the input data size

of image classifiers.

To better represent local features in large-size images, our project will pre-

process data to generate SW in the following two trends:

• To run sliding window over the whole image to generate salient regions with
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Figure 4.2: Sliding Window (SW) defining salient regions for generating local image
representations. Blank patches generated is ambiguous in classification
but can be refined by dynasty domain knowledge in a sense

three sets of patch size 128×128 pixels, 256×256 pixels, 512×512 pixels,

respected stride keep the same as the width of the patch size. For this

approach, there are chances that blank patches can be segmented.

• To resize the whole image with height as 128, 256, and 512 pixels by using

linear interpolation. Then, to run the SW with the same patch size and

stride defined as previous. This approach rarely segments blank patches

and can represent the image in a reasonable global manner.
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Since this section concentrates on TCP style classification but not object de-

tection, the salient region segmentation methods with SW try to avoid overlap-

ping, except that the original image’s width cannot be divided with no remain. In

this situation, the SW model will shift to align the patch’s edge with the original

image’s boundary.

4.3 Feature Extraction and Image Representa-

tion

A crucial step to deal with image data is to extract features from the images and

encode those features into a vector, known as hand-crafted image representation

in traditional ML algorithms, and DL image representation in DL algorithms.

Our project are interested in two important features in TCP domain, which are

Edges and Colours. Due to the water-and-ink diffusion impacts, most TCPs’

textures and edges are much smoother than natural images. The decreasing

local features knowledge reduces the effectiveness in the TCP classification field.

Therefore, enhancement of feature extraction is also an essence.

Section 4.3.1 describes what is HOG[59] and how we use it to derive hand-

crafted image representation. Computer vision techniques used to rephrase hand-

crafted representation with TCP domain knowledge are explained in section 4.3.2.

Then section 4.3.4 promotes our cross-feature concatenation mathematics model

that combines hand-crafted representation (HOG) and DL representation.
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4.3.1 Histogram of Oriented Gradient (HOG)

Histogram of Oriented Gradient (HOG) is a widely-used feature descriptor which

proven by Dalal [59] to be an innovation concerning hand-crafted image repre-

sentation. It is coherence with the salient region that is the region of interest

generated by either detection window or image griding. HOG descriptor has five

significant steps in feature extraction.

RGB colour space is chosen for better handling in data with complex structure[59].

Gamma and colour space normalisation are used as the preliminary means of

HOG feature extraction. The Gamma Correction equation is:

f(I) = Iγ (4.1)

Where, I represents values in each colour channel of the input region; and γ

describes the RGB intensity values in this paper. The Gamma correction intends

to reduce the influence of brightness and background to improve the robustness

of detection.

To compute gradients of pixel p(x, y), the model uses filter kernels, such as

Prewitt or Sobel, to filter the input region I. One simple and effective kernel is

horizontal and vertical kernel filter, shown as Fx =
(
−1 0 1

)
and Fy =

( −1
0
1

)
The gradient information of the input region I can be driven from the deriva-

tives of Gx(x, y) and Gy(x, y). Gx, Gy are estimates of the partial derivatives of

the image in the (x, y) directions, and are estimated as the convolution of F and

G. The formulas are as follows:
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Gx(x, y) = G ∗ Fx = I(x+ 1, y)− I(x− 1, y) (4.2)

Gy(x, y) = G ∗ Fy = I(x, y + 1)− I(x, y − 1) (4.3)

To accumulate weight votes for gradient and orientation over spatial cells, the

magnitude G(x, y) and the gradient orientation θ, for any pixel p(x, y) in image

I are driven from:

G(x, y) =
√
Gx(x, y)2 +Gy(x, y)2 (4.4)

θ = arctan
Gy(x, y)

Gx(x, y)
(4.5)

For a target region, the HOG descriptor normalises contrast within overlap-

ping blocks of cells. The cells have the same size and then calculate each cell’s

gradient information, including the gradient size and the gradient direction. The

original paper of HOG [59] point out that the gradient direction of the pixel is

divided into nine bins evenly in the range of 0-180 degrees. If the number of bins

exceeds 9, the calculation becomes significantly intensive with little performance.

Every pixel in each cell performs weighted voting for the histogram of the

gradient orientation. The weighted weight can be the amplitude of the gradient

and the square or square root for the amplitude. Since the square or square

root for the amplitude decreases the performance[197, 59], using the gradient

amplitude is the best choice.



CHAPTER 4. TCP REPRESENTATION AND CLASSIFICATION 98

There are many normalisation methods introduced to collect HOGs. Overall,

the basic idea is to combine several cells into a larger block with their gradient

information. Then the image can be regarded as the detected regions. Let v be

the non-normalized vector containing all histograms, and ξ is the exact value as

a small constant.

L2 − norm : v ← v√
||v||22 + ξ2

(4.6)

L2 − Hys is a scaled version of L2 − norm. It computes the normalization

factor by calculating the L2 − norm first, then limit the vector v to maximum

value 0.2, and then renormalize[198];

L1 − norm : v ← v

||v||1 + ξ
(4.7)

L1 − sqrt : v ←
√

v

||v||1 + ξ
(4.8)

The block information is normalised separately, and different cell unit sizes

and different block sizes will affect the final extraction of HOGs. There are three

different sizes used in our research, and further setting can be found in section

4.5.

4.3.2 Enhancing HOG with TCP domain knowledge

With the water-and-ink diffusion impacts and small-range colour palette in TCP,

most TCPs’ textures and edges are much smoother and weaker than those in
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natural images. Enhancing feature sensitivity is necessary. Our project propose

some computer vision techniques to improve the hand-crafted image representa-

tion extraction for TCP data.

4.3.2.1 Sobel’s Kernel

For Edge Orientation, we use Sobel’s kernel to enhance HOG detection with

five kinds of edge: 0-degree edge (horizontal), 45-degree edge, 90-degree edge

(vertical), 135 degrees, and no edge detected. This Sobel’s edge detectors’ theory

is to use particular filters to intensify various kinds of edge and choose the most

substantial edge to represent the pixel. The filters we used to detect each kind

of edge are shown below.

0◦Edge =

∣∣∣∣∣∣∣
−1 −2 −1

0 0 0

1 2 1

∣∣∣∣∣∣∣ (4.9)

90◦Edge =

∣∣∣∣∣∣∣
−1 0 1

−2 0 2

−1 0 1

∣∣∣∣∣∣∣ (4.10)

45◦Edge =

∣∣∣∣∣∣∣
2 2 −1

2 −1 −1

−1 −1 −1

∣∣∣∣∣∣∣ (4.11)

135◦Edge =

∣∣∣∣∣∣∣
−1 2 2

−1 −1 2

−1 −1 −1

∣∣∣∣∣∣∣ (4.12)
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NoEdge =

∣∣∣∣∣∣∣
−1 −2 1

0 0 0

1 0 −1

∣∣∣∣∣∣∣ (4.13)

Enhancing edge extraction sensitivity and maximise the knowledge gained,

two different Gaussian filters blur the image then extract fine-scale and coarse-

scale edge simultaneously. This process returns twenty-five kinds of pixels char-

acterised by fine-scale and coarse-scale edge orientations.

4.3.2.2 TCP colour Palette

As one of the aesthetic features, colour aesthetics learning has been proved that

plays an essential role in predicting an individual’s aesthetics preference [199].

Related papers published in the previous EG Workshops on computational colour

formation analysis could be checked online [200].

However, due to the variation of human’s body structure and cultural back-

ground, decision or judgement made on colour sections can have a huge difference

of visual tracking. Linguistic researchers Berlin and Kay performed their study

related to this problem in their book Basic Color Terms[7]. The book concludes

that language contains eleven basic colour terms: black, blue, brown, grey, green,

orange, pink, purple, red, white and yellow. Human can use this set of basic

colour terms to represent colours in the world. The colour interpretations are

affected by the inter-logic basing on a sort of cultural background. The theory

can be shown in figure 4.3
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Figure 4.3: Berlin’s primary colour word theory showing the interpretation of cultural
logic in colours [7]

In the area of machine vision, Colour Attributes, or Colour Name [201], is

defined as a collection of labelled color chips. It is an artificial intelligence strategy

that interprets how people communicated with each other in early society, and

the order of colour appearance follows the primary colour word theory. Colour

name [201] has been proven to be crucial to many visual tracking problem, such

as object recognition, object detection and action recognition[202, 203, 204, 205].

The primary colour palette is a mapping to eleven basic colours in linguistic

provided by Weijer and Schmid [201]. It maps the RGB values to a probabilistic

eleven dimensional color representation which sums up to 1. It represents a

quantisation result of raw images’ colours [201, 205].

Inspired by this idea, we quantise the TCP’s colours with a TCP colour palette

with eleven primary colours. We proposed the inverse colormap algorithm [206] to

convert a full colour TCP image into an indexed image with a limited set of colours

in RGB. The colours in this limited set are named as representative colours. In

our paper, the representative colours are the eleven basic colour terms. Therefore,

the specified colormap is a c×3 matrix with values in the range [0, 1] and c = 11.

Each row of the matrix represents a three-element RGB triplet that specifies the

red, green, and blue components of a single colour of the colormap. The square
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of the Euclidean distance from a pixel colour (r, g, b) to a representative colour

(rc, gc, bc) is

d(r, g, b) = (r − rc)2 + (g − gc)2 + (b− bc)2 (4.14)

After distance computation, we can obtain an 11 dimensional vector for each

pixel. This vector can be used to automatically assign the representative colour

with the minimum distance to the respective pixel. The table of the the RGB

values for the 11 primary colours could be found in figure 4.4.

The dithering algorithm [207] is also employed in the quantisation process

to preserve the smoothness of the image. Colour dithering applies a diffusion

of coloured pixel and create illusion of color depth in the defined colour palette

[206, 208, 209].

Concerning the colour feature, our model encodes information of each pixel

with the edge features. For example, the HOG extractor with Sobel edge de-

tectors will be further encoded into 275 descriptions, 5×5×11. Then transform

the description of each pixel to vector by normalising the histogram of 275 de-

scriptions. Normalisation is the general approach to avoid scale invariance and

rotation invariance.
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Figure 4.4: A table shows the 11 primary colours used in the experiments with HEX
codes and RGB decimal values [7, 8].

4.3.3 Deep CNN Feature Map

Deep CNN feature maps can be equivalent to the DL image representation. CNN

is powerful but has leakages in constructing image representations. Referring to

section 3.1.3 and section 4.4.2, CNN extracts deep features from convolutional op-

eration in Conv layers [75]. This kernel matrix defined within the filter slides over

the input data to output a feature map, the DL representation [142, 155, 162].

The number of filters establishes the number of feature maps. The different set-

tings of filters will produce different outcomes, such as colour depth and contour

(edge and shapes). The feature maps resulting from this approach represent dif-

ferent deep features. The fully connected layer functionally perform as an image

representation to image classification [73, 49].



CHAPTER 4. TCP REPRESENTATION AND CLASSIFICATION 104

However, the pooling layer, which reduces the data dimension more produc-

tively, can lead to another loss of spatial location information [132, 136]. There

is a dilemma in Deep CNN models balancing the computational cost and feature

preciseness.

4.3.4 Crossing Feature Between Hand-crafted and DL

This section explains a problem-solving approach that we introduce to the Deep

CNN model. Our mathematic model provides DL representation with an ability

to obtain domain knowledge defined by the hand-crafted representation. We then

name the feature consisting of HOG and DL representations and TCP domain

knowledge as the TCP cross-feature.

Figure 4.5: A basic system flow on how to cross-feature between hand-crafted image
representation and DL image representation with a similarity approach

The model we propose to concatenate hand-crafted features and DL features

was inspired by Cross-Model Hashing(CMH) algorithm. CMH is widely used

for similarity search in multimedia retrieval applications. The basic concept of

CMH is to map data points with multi-modalities features from the original space
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into a Hamming space with binary code references so that the similarity can be

preserved by computing the Hamming distance.

Since the features sampled by Deep CNN have high-dimensional characteris-

tics, we employed a Hash layer to be added to the original CNN architecture to

process the DL features. Taking VGG’s structure as an example, we keep all the

convolution layers, pooling layers, and the first and second fully connected layers

(FC 6 and FC 7), but remove the last fully connected layer. Then, we add the

Hash layer as a replacement. The feature map of the last convolutional layer is

selected as the n-frame feature vector GDL to be extracted. In our CNN model

with HOG, the hashing algorithm encodes the high-dimensional data into a set

of binary codes and maintains the meta-similarity of dimensional in image data

simultaneously [210]. As shown in figure 4.5, we also perform the hand-crafted

feature vector as an input to a fully connected layer(FC7) for configuration. The

Hash layers represent the latent concepts with a set of binary values which domi-

nate the class labels. Activation function, such as sigmoid, is applied here to keep

the feature value in the range of [0, 1] and constructs the feature Hash code. The

Hash code then computes the image’s feature vectors with Hamming distance.

The smaller the Hamming distance, the higher the similarity of the feature vector.

Assuming each data point(patch) has two modalities of features, these two

feature vectors are α and β, respectively, and the Hamming distance D. The

Hash codes mapping and Hamming distance are defined as shown in equations:
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α = α1, α2, ...αn

β = β1, β2, ...βn

I(αi, βi) =

{
1, if αi 6= βi

0, if αi = βi

D =
∑n

i I(αi, βi)

(4.15)

Similarity crosses between hand-crafted representation and DL representation

is given by the below equation, with weight of hand-crafted HOG representation

w1 and weight of DL representation w2:

S = w1 · SHOG + w2 · SDL (4.16)

During the training process, the Hash codes should be regulated by the suc-

ceeding fully connected layer that encode semantics and implement classification.

The similarity threshold is defined as:

ε =
1

N

N∑
i=1

S(fi+1, fi) + τ (4.17)

With f represents the feature vector for the current image; N is the number

of images, and τ is the adaptive adjustment factor.

4.4 Classifying TCP

There are two classification methods applied to our TCP data to identify them

into different categories. This section aims to verify which models and image

representations are more reliable and effective for later computational aesthetics

research applications, object detection and NST. Support Vector Machine and
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Convolutional Neural Network are under experimentations.

4.4.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a traditional statistical ML algorithm for clas-

sification proposed by Vapnik [94]. It promotes the idea of creating a hyperplane

that is then used to separate binary classes with the maximised margin. SVM

claims its great success in various aspects since its establishment. It achieves

outstanding performance in recent year object detection, such as the stage-wise

pioneering approaches based on the Deep CNNs [97, 133]. In this section, we will

give a brief intro to this milestone traditional ML model (Figure 4.6).

4.4.1.1 Linear separation of a feature space in SVM

In binary classification, the a hyper plane in an n-Dimensional feature space can

be defined by the following sets of equation:

f(x) = xTw + b =
n∑
i=1

xiwi + b = 0 (4.18)

Dividing by ||w||, we have

xTw

||w||
= − b

||w||
(4.19)

This equation indicates the projection of any point x on the plane onto the

vector w is always −b/||w||, while w is the normal direction of the plane, and

|b|/||w|| is the distance from the origin to the plane. Since the equation of the
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hyper plane can be various, c f(x) = 0 represents the same plane for any c.

Figure 4.6: Linear separation of a feature space in SVM [9]

The n-Dimensional feature space can be partitioned into regions, two in binary

classification, by the mapping function y = sign(f(x)) ∈ {1,−1}, given as:

f(x) = xTw + b =

{
> 0, y = sign(f(x)) = 1, x ∈ P
< 0, y = sign(f(x)) = −1, x ∈ N

(4.20)

Points x ∈ P in the positive side of the plane are mapped to 1,while points

x ∈ N from the opposing side assigned value -1. During testing, point x will be

classified as P if f(x) > 0, vice versa, N if f(x) < 0.

In binary SVM classification, the aim is to find the optimal plane H0 in the

middle of the two classes and separates them with the largest distance between the

decision plane and the closest samples [94]. Since for both xi ∈ P = {(xi, 1)} and

xi ∈ N = {(xi,−1)} should satisfied if and only if the data is linearly separable,
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the hyperplane equation can be re-written as:

yi(x
T
i w + b) = yi (4.21)

For all points on the positive side xi ∈ P :

xTi w + b ≥ 1, yi = 1 (4.22)

and all points on the negative side xi ∈ N :

xTi w + b ≤ −1, yi = −1 (4.23)

By combining these into one inequality U = P ∪N , we have:

yi(x
T
i w + b) ≥ 1, (i = 1, · · · ,m; xi ∈ U) (4.24)

H0 is obtained when yi = 0. In the meanwhile, yi = 1 for the positive plane

H+ and yi = −1 for the negative one H−. Points on plane, either H+ or H−, are

called Support Vectors, which is

xTi w + b = yi (4.25)

and the equation that holds for all support vectors is shown as follows, while

αi ≥ 0 (i = 1, · · · , αm) is the Lagrange coefficients.

b = yi − xTi w = yi −
m∑
j=1

αjyj(x
T
i xj) (4.26)

Minimising the norm w with b can obtain the maximal margin with the fol-

lowing objective function:
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1

2
wTw =

1

2
||w||2 (4.27)

Under the constraint (Linear) of:

Lp(w, b, α) =
1

2
||w||2 +

m∑
i=1

αi(1− yi(xTi w + b)) (4.28)

4.4.1.2 Soft Margin

SVM has ability in solving not linearly separable classification problem. In this

condition, extra term should be added to the original function of the optimal

hyper-plane:

yi(x
T
i w + b) ≥ 1− ξi, (i = 1, · · · ,m) (4.29)

The objective function on minimizing ||w|| with minimum error, ξi ≥ 0 be-

comes:

wTw + C

m∑
i=1

ξki (4.30)

subject to (i = 1, · · · ,m):

yi(x
T
i w + b) ≥ 1− ξi (4.31)

With C as a regularisation parameter that controls the trade-off between

maximising the margin and minimising the training error. The model is shown

as overfitting if a large C returned. When k = 2, the problem is transferred into

a 2-norm soft margin problem.
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4.4.1.3 Kernel Mapping

For non-linearly separable data, we can map the samples x into a higher dimension

feature space:

x −→ φ(x) (4.32)

where the classes can be linearly separated. And the decision function be-

comes:

f(x) = φ(x)Tw + b =
m∑
j=1

αjyj(φ(x)Tφ(xj)) + b (4.33)

w =
m∑
j=1

αjyjφ(xj) (4.34)

and b are the parameters of the decision plane in the new space. A kernel is

defined as a function that takes two vectors xi and xj as arguments and returns

the value of the inner product of their image φ(xi) and φ(xj) [211]:

K(x1,x2) = φ(x1)
Tφ(x2) (4.35)

SVM algorithms can be converged with kernel function to satisfy non-linearly

separable data in higher-dimensional spaces by replacing all inner products in the

learning algorithm in the original space with the kernels. Some popularly used

kernel are listed below.

Linear Kernel with assumption that x = [x1, · · · , xn]T , z = [z1, · · · , zn]T ,
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K(x, z) = xTz =
n∑
i=1

xizi (4.36)

Polynomial Kernels that map data from a 2-D space to a 3-D space, assuming

x = [x1, x2]
T , z = [z1, z2]

T ,

K(x, z) = (xTz)2

= (x1z1 + x2z2)
2

= x21z
2
1 + x22z

2
2 + 2x1z1x2z2

=< (x21, x
2
2,
√

2x1x2), (z
2
1 , z

2
2 ,
√

2z1z2) >

= φ(x)Tφ(z)

(4.37)

Gaussian kernels to radial basis function [212]

K(x, z) = e−||x−z||
2/2σ2

(4.38)

4.4.2 Convolutional Neural Networks

In this section, we provide a general overview of the methodology of CNN.

A neural network consists of a large number of neurons that connected to

each other. After each neuron receives the linear combination input, it is only a

simple linear weighting at the beginning. Then a non-linear activation function is

added to each neuron to perform a non-linear transformation and output. Each

connection between two neurons represents by a weighted value, know as weight

w. Choices in different weights and activation functions will lead to varying

outputs of the neural network. The mathematical representation can be written

as:
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z = XW T + b (4.39)

Where x is the input vector, w is the weight, b is the bias and z as the output.

Figure 4.7: A representative example of a perceptron with three inputs associated with
either bias or weight. The perceptron has an activation function G(z) (or
σ) and the output is a scalar of value a.

When the neural network first established, researchers defined the activation

function as a linear function so that the output is a linear transformation of the

input as shown in figure 4.7. For example, a simple linear activation function is

G(z) = z. However, the linear activation function was too limited in practical

applications. Non-linear activation functions are then promoted.

Commonly used non-linear activation functions include Sigmoid, Tanh, Re-

LUs [104], etc. The former two activation functions, sigmoid and Tanh, are

popular in the fully connected layer, while the ReLUs is generally applied to the

convolutional layer. The activation functions are formulated as:
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σSigmoid(z) =
1

1 + e−z
(4.40)

σTanh(z) =
ez − e−z

ez + e−z
(4.41)

σReLUs(z) =

{
0, z ≤ 0

z, z ≥ 0
(4.42)

The most basic Sigmoid function is equivalent to compressing a real number

to between 0 and 1. When z is a huge positive number, G(z) will approach 1,

vice versa, G(z) tends to 0 when z is a small negative number.

Set of neurons forms an artificial neural network (ANN), and an artificial

neural network consists of three types of layers:

• Input layer: Neurons accept a large number of non-linear input, called

the input vector.

• Output layer: the information is transmitted, analyzed, and weighed in

the neurons’ connection to form the output vector as a result.

• Hidden layer: this layer is referred to as “hidden”, composing many

neurons and links between the input layer and the output layer. If there

are multiple hidden layers, multiple activation functions are employed.

Meanwhile, each layer may consist of single or multiple neurons, and each layer’s

output will be used as the input data of the next layer.
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With the rapid development of computing power, Convolutional Neural Net-

works (CNN) voted the best in the computer vision community [213, 77, 21].

General ANN processes data at the input layer with techniques, such as nor-

malization, PCA/whitening and de-average, etc. The de-average approach is

designed to remove the mean of input data so that all input data dimensions are

centred on being 0, which avoids excessive data deviation and affects training.

CNN only employs the “de-average” step in training.

CNN consists of the convolution calculation layer (Conv layer), activation

(excitation) layer, and pooling layer at the middle level and ends with a fully

connected or fully convolutional layer [82, 103]. Conv layer is the core of CNN,

which calculate linear product summation of the input data. The activation layer

is employing the idea of activation function, such as ReLU. The pooling layer is

where the average or maximum of the area are computed. The fully connected

network outputs of the classification results representing one neuron per class.

The Conv layer’s operations require defining in an input matrix and a kernel

filter and applying convolution operation on them. The filter is with a set of

neurons with fixed weights, which performs convolution calculations on local input

data. After each calculation of the local data with a fixed size matrix (3×3 or

5×5), the data window keeps shifting and sliding until all data is computed. In

this process, there are several parameters: The number of neurons determines the

depth of the output. It also represents the number of filters; Stride determines

how many steps to slide to the edge. Conv layer has zero-padding employed so
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that the total length is divisible by the step length.

Pooling layer downsample feature map output from the Conv layer. Max-

pooling is a widely-used approach to transfer the local maximum value to the

next layer. Nagi et al. [214] suggested max-pooling with 2×2 in size can decrease

the computational cost but keep features’ sophistication by halving the feature

map’s size. It can not only significantly reduce the amount of calculation but also

effectively avoid overfitting.

The data processed by the Conv layers and the pooling layers is input to the

fully connected layer to obtain the final desired result.

4.5 Experiment and Evaluation

This section describes various experiments set up to evaluate TCP classification

performance with two different types of image presentations. Our experimental

works aim to find out the answers to the questions listed below:

• Question 1: Which classification algorithms achieve better performance

in the TCP domain, hand-crafted ML classifier or Deep CNN classifier?

• Question 2: Which features better perform in the TCP classification,

HOG (hand-crafted representation), DL feature map (DL representation),

or combined TCP cross-feature?

• Question 3: By implementing TCP domain knowledge to image repre-

sentation, is it true that it significantly improves classification results?
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In this section, our project uses four datasets, two types of classifiers, four

hand-crafted image representations, one DL image representation and four TCP

cross-feature with DL image representations to provide answers to these three

questions.

4.5.1 Experiment Setting

All four dataset promoted in section 4.2.1 are involved in TCP classification

experiments: GongBi and XieYi Dataset, Landscape Figure and Flower-and-

Bird Dataset, Landscape in Dynasty Dataset, and 7-Class TCP Object Dataset.

We always keep one-third of our data as the test set and the rest of the data is

divided into 90% for training and 10% for validation.

Since the 7-Class TCP Object Dataset contains images with bounding boxes

and respective class labels as ground truth, which is suitable for object detec-

tion, we slightly re-construct it as an object-recognition-satisfied dataset. Object

recognition is an object classification task that does not require location detec-

tion. Therefore, we run a random selection on the ground truth bounding box

we annotated in the 7-Class TCP Object Dataset and generate another set of

1400 TCP images that only one object each. In other words, the ground truth

bounding box is no longer RoI but input image data. This refreshed 7-Class TCP

Object Dataset keeps evenly distributed in classes.

Feature extractions processes come with sliding windows and HOG. Sliding

windows are automatically applied to large-scale painting images. The logic of
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sliding window presented as pseudo code algorithm 1.

Algorithm 1 Sliding Window Algorithm

1: procedure SlidingWindow(image) . Logic of Sliding Window
2: System Initialisation, define size
3: Read the image with height and width
4: current grid centre is [x, y] . Start from bottom left
5: while (height ≥ size)&(width ≥ size) do
6: Run sliding window over image horizontally
7: if width− x ≥ size/2 then
8: x += size/2
9: else
10: x = width - size/2

11: Extract salient region
12: if x = width− x then
13: y += size/2
14: x = size/2

15: Resize image to fit the region and compute one extra feature vector

HOG feature extractor is then applied to sets of salient regions. There are

three types of cells defined in our project, 4×4, 8×8 and 16×16. Hand-crafted

image representation from HOG features extraction is given examples in figure

4.8 and figure 4.9.

By default, HOG computes image representation with the horizontal and ver-

tical kernel. Then, Sobel’s Kernel and TCP colour palette are employed to the

original HOG descriptor. Finally, we have three types of HOG hand-crafted im-

age representation: HOG, HOG with Sobel’s Kernel, HOG with TCP colour, and

HOG with Sobel’s Kernel and TCP colour.

DL representation is the feature map extracted during the Deep CNN learning

process.

To evaluate whether the hand-crafted image representation can improve DL
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classification, TCP cross-feature algorithms concatenate DL image representation

with HOG, HOG with Sobel’s Kernel, HOG with TCP colour, and HOG with

Sobel’s Kernel and TCP colour.

Both linear kernel SVM and VGG-16 are employed to represent the hand-

crafted ML model and DL model for TCP classification, respectively. The SVM

which is applied here is a linear kernel SVM with no slack variable used. For

the VGG-16, we initialise the model with the ImageNet pre-trained model, then

fine-tuned and local trained it with our datasets. These two models are coherent

with the corresponding image representations described above. Then, our project

has ten classifiers.

In final, these ten classifiers train end-to-end and test on four TCP datasets

with three different cell size of HOG and three separate sliding window’s size.

(Examples of image representation of HOG feature vectors are given in figure

4.8 and figure 4.9.). The mean average precision (mAP) are used for evaluation

measures.
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Figure 4.8: Image representations of HOG feature vector. Variations in relations
between the input image size and the size of selected cell for skilled brush
landscape painting

Figure 4.9: Image representations of HOG feature vector. Variations in relations
between the input image size and the size of selected cell for freehand
brush flower-and-bird painting
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4.5.2 Experiment Result

This section presents TCP classification testing performance evaluations, and

summarises them in three tables (Table 4.1, Table 4.2, Table 4.3). The TCP

classification performances are explained in the order of datasets, which interprets

TCP art style recognitions. The best performances of each dataset are highlighted

in bold.

4.5.2.1 GongBi and XieYi Dataset

This section highlights the best and worst classification performance when iden-

tifying GongBi and XieYi TCP art style.

CNN model with the whole image as an input can achieve 91.4% mAP in

recognising GongBi and XieYi styles.

With a region size of 128, SVM with colour knowledge and cell size as 4

achieves the best mAP 90.3%, while CNN, with Sobel’s detector and cell size

as 8, performs the best 90.9%, but with a p-value of 0.21 compared to best

SVM model, a p-value equals to 0.13 against with a general CNN. The worst

performances from SVM is 77.3% with Sobel’s in cell size 16, simultaneously,

CNN with Sobel’s and cell size 4 has 87.9%.

In region size of 256, SVM with colour info success in cell size 8 as 91.2%. The

worst performance SVM has are those with Sobel’s detector, 78.9% in cell size 4.

CNN can achieve 90.6% mAP with cross-feature in cell size 8, but disappointing

in cell size 16 with colour enhancement as 87.7%.
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When the region size is 512, SVM can obtain 89.3% in cell size 16 with colour

enhancement. The worst performance with SVM is 74.5% in cell size 4 with

Sobel’s kernel. CNN with colour enhancement only obtains 87.6% in cell size 16.

But applying cross-features on CNN brings it a success with 92.9% in cell size 8.

In GongBi and XieYi style classification, classifiers with the same model struc-

ture (SVM or VGG) do not have significant difference in when they are defined

with same region size and cell size. But increasing the size of the salient region

did not boost the performance in classification, the same as scaling up the cell

size.

4.5.2.2 Landscape, Figure and Flower-and-Bird Dataset

This section indicates the best and worst classification performance when classi-

fying TCP’s landscape, figure and flower-and-bird.

CNN model with the whole image as an input has 90.7% mAP in recognising

Landscape, Figure and Flower-and-Bird paintings.

In region size of 128, SVM with colour enhancement successes in cell size as

4 with 90.1% mAP, while failing in cell size 16 with Sobel’s kernel. The worst

performances from CNN is with colour info in cell size 16, 87.2%. But CNN with

Sobel’s kernel can achieve 91.% in cell size 4.

In the region size of 256, TCP colour knowledge helps SVM achieve the best

performance in cell size 8 with 91% mAP. In the meanwhile, SVM with Sobel’s

approach only obtains 78.7% in cell size 4. CNN with HOG has 88.2% mAP in
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cell size 16, but 90.6% with cross-features in cell size 8.

While the region size is 512, CNN with cross-features can achieve 90.8% in cell

size 8, while show negative in cell size 16 with HOG but no domain knowledge

enhancement as 83.7%. SVM with colour info have 86% in cell size 16. The

lowest mAP of SVM has 78.4% with no enhancement in cell size 4.

Both CNN and CNN with hand-crafted cross-features in cell size being 8 are

good at classifying TCP data with their contents. They show little difference in

the McNemar test while the z-test score is 1.369 and the p-value is 0.86.

We can observe that SVM performed a similar progression when TCP colour

is applied to HOG in this dataset, compared with the previous dataset. Simulta-

neously, SVM with HOG and TCP colour weakened their prediction when Sobel’s

kernel was integrated. This is also the same as the situation in GongBi and XieYi

classification. Also, there is still no investigation on whether region size and cell

size can have an impact on the classification.

4.5.2.3 Landscape in Dynasty Dataset

This section shows the best and worst classification performance when classifying

TCP’s landscape paintings into four dynasties.

Recognising TCP landscape style by dynasty is a critical challenge. CNN

model can only obtain 30.7% mAP. And the highest mAP across all methods is

around 61% as maximum.

Within region size of 128, SVM with colour enhancement has the best 59.9%
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in cell size as 4. The lowest mAP is 47% in cell size 16 with no enhancement.

CNN with cross-features shows its sensitivity to HOG cell size when failing in

cell size 16 as 27.9%; it has 51.3% mAP in cell size 4.

While the region size is 256, SVM with colour enhancement outperforms others

with 61.6% mAP in cell size 8. The worst performance of SVM is with Sobel’s

approach as 48.7% in cell size 4. CNN with cross-features only has 27.9% mAP

in cell size 16, but 54.9% with cross-features in cell size 8.

If the region size is 512, CNN with cross-features can produce 60.4% mAP in

cell size 8. But, CNN with colour enhancement only has 41.9% in cell size 16.

The lowest mAP from SVM is 40% in cell size 4 with Sobel’s kernel. The highest

mAP of SVM is 52.9% with colour enhancement in cell size 8.

SVM, a hand-crafted ML model, shows its strength in a small-size dataset. It

achieves success with colour domain knowledge enhancement with descriptor size

as 8, with 61.6% mAP.

The Landscape in Dynasty Dataset is a small dataset with four classes identi-

fied. The simple CNN shows its weakness in data requirements when handling a

small dataset. The alternatives with crossing features present their strength and

perform better than simple CNN in most scenarios of classification. But their

results with the cell size of 16 demonstrate again that the size of the cell is not

proportionally to the performance. Also, this set of experiments suggested that

SVM’s reaction to a small dataset is more stable than CNN.
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4.5.2.4 7-Class TCP Object Dataset

The refreshed dataset proposed here can provide an end-to-end fine-trained fea-

ture map on TCP object recognition. This feature map is an essential DL repre-

sentation for our A-RPN TCP object detection model in chapter 5.

This section gives the best and worst classification performance when recog-

nising objects in TCPs.

CNN obtains reasonable result as 57.9%.

In region size of 128, SVM with colour enhancement has the best 57.1% in cell

size as 4. The lowest mAP is 36.7% in cell size 16 with Sobel’s kernel associating

with HOG. CNN with hand-crafted features act worse, with the highest mAP

41.9% in cell size 4, and the lowest 28.4% in size 16.

If the region size is 256, the lowest mAP of SVM is 40.5% with Sobel’s kernel

in cell size 4. The highest is 53.4% with colour info in cell size 8. CNN with cross-

features beat the original CNN model in cell size 8 with a 2.447 difference in the

McNemar test, which shows its significant improvement. But the performance

dramatically drops when cell size increased to 16. The worst mAP of CNN is

37.2% with colour enhancement.

While region size is defined as 512, no SVM model can achieve mAP higher

than 50%. The greatest is 47.4% in cell size 8 with colour domain knowledge,

and the smallest mAP is 40.6% with Sobel’s approach in size 16. Similar results

from CNN returned. The worst is one with colour info in cell size 16, 30.4% in

number. The best is 46.6% with cross-features in cell size 8.
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As stated, the CNN model with cross-features outperforms the others with

nearly 60% mAP when hand-crafted feature combined with HOG, Sobel’s kernel

and TCP Colour when cell size is 8. The p-value between it and the simple CNN

is 0.455. Therefore, this CNN alternative can be promoted as the best CNN

model for classifying our 7-Class TCP Object Dataset.

4.5.3 Discussion

This section discusses the results obtained from our TCP classification models.

There are 97 pairs of end-to-end training and testing involved in our research.

Each of them has a different setting in the classifier model, feature representation,

HOG descriptor’s cell size, sliding window’s size. Meanwhile, referred to table

4.1, table 4.2, and table 4.3, we obtained the answers to the questions defined at

the beginning of section 4.5.

Since the number of experiments is relatively large, the model which achieved

best performance for each dataset has been presented in table 4.4. (The 2-Style

is the GongBi and XieYi dataset. LFF stands for the Landscape, Figure, and

Flower-and-Bird dataset. L Dynasty is the Landscape with Dynasty dataset.

TCP Object is the dataset with 7 classes of TCP objects.)

Question 1: Which classification algorithms achieve better performance in

the TCP domain, hand-crafted ML (SVM) classifier or Deep CNN classifier

(VGG-16)?
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In the TCP domain, the VGG-16 outperformed SVM in most contexts, espe-

cially in a larger dataset. Vice versa, SVM could achieve overwhelming perfor-

mance in a small-scale dataset, as shown in Landscape with Dynasty dataset. But

VGG-16 presented its strength in object recognition. Both SVM and VGG-16’s

were strong coherent with feature representation used as input.

Question 2: Which features better perform in the TCP classification, HOG (

hand-crafted representation ), DL feature map ( DL representation ), or combined

TCP cross-feature?

SVM has shown its sensitive to colour enhancement. However, Sobel’s edge

kernel decreased the performance of SVM when classifying TCP data. A similar

conclusion was driven in the natural image domain from Dalal [59]. The reason we

promoted Sobel’s edge kernel is to enhance edge detection to reduce the impacts

of water-and-ink diffusion but received a negative response from SVM. The reason

is that SVM is a linear based model, but Sobel’s is non-linear. Applying Sobel

kernel to the hand-crafted representation is not only increasing the computation

complexity but preventing the model from linearly fitting.

Combining DL representation with hand-crafted representation can improve

the the performance of CNN model. Although the VGG-16 is not as sensitive to

colour as SVM, TCP colour can slightly improve its classification performance.

Enhancing edge knowledge and refining it with colour information in VGG-16

can significantly improve the classification performance. This might because the

CNN model has low sensation on colour over stridden convolutions, especially
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2-Style LFF L Dynasty TCP Object

Best

Model CNN SVM SVM CNN

Features
in Model

HOG,
Sobel,

TCP Colour

HOG,
TCP Colour

HOG,
TCP Colour

HOG,
Sobel,

TCP Colour
Cell Size 8 8 8 8

Window Size 512 256 256 256

Worst

Model SVM+ SVM CNN CNN

Features
in Model

HOG,
Sobel

HOG,
Sobel

HOG,
Sobel,

TCP Colour

HOG,
TCP Colour

Cell Size 4 16 16 16
Window Size 512 128 128 128

Table 4.4: A table to highlight the best and worst performance in feature evaluations
for TCP style learning to classify in a total of 97 experiments. All listed
include the classifier model, its associating features, descriptor’s size, and
window size.

after Conv3. Though local edge information will weaken during convolutions,

there is research [49] proved that enhancing edge feature could improve higher-

level features, such as shape and contour, which can lead to an improvement in

accuracy performance.

Question 3: By implementing TCP domain knowledge to image representa-

tion, is it true that it significantly improves classification results?

Based on our research, the answer is “yes”. When applying TCP domain

knowledge to both for SVM and VGG-16 classification models, they achieved

better performance. However, the effective features which significantly improved

the models are different, while SVM’s is TCP colour, and VGG-16’s is the TCP

cross-feature combined with TCP colour palette and the Sobel’s kernel.
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4.6 Summary

This chapter proposes two research topics related to computational aesthetics in

the TCP domain: image representation and classification.

The first half of the research undertaken in this chapter focuses on finding ef-

fective image representation, which is most suitable for TCP image data. Detailed

evaluations of TCP feature extraction and image representation are provided with

evidence resulting from the TCP classifications we properly constructed in the

second half of this chapter.

The second half of this chapter introduces two representative classification

models: the traditional hand-crafted ML model, SVM, and VGG-16 Deep CNN

model. Both of them are state-of-art classification algorithms in their era, respec-

tively.

The achievements in this chapter are outlined as follows:

• Constructing four structured TCP datasets with manual processing, fil-

tering, redundancy removing and annotation. They are TCP style-based

binary-class dataset with GongBi and XieYi schools; three-class TCP content-

based dataset with landscape, figure and flower-and-bird; the dynasty-base

landscape style dataset and the 7-class TCP object dataset. These are

datasets that can be used in other research applications in our project,

discussed in chapter 5 and chapter 6.

• Introducing the sliding window for pre-processing data, which enlarges the
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number of images when the classifier has to face a small dataset limitation.

• Reviewing of traditional hand-crafted feature extractor - Histogram of Ori-

ented Gradient (HOG). And computing hand-crafted representation using

HOG for TCP classification.

• Applying TCP domain knowledge by defining TCP colour palette encoding;

and Sobel’s edge kernel, which reduces the impact of water-and-ink diffusion

on the TCP image edge information. And evaluating their effectiveness and

influences on TCP classifiers.

• Proposing a mathematical procedure that is suitable for crossing DL rep-

resentation with hand-crafted representation. It is a Hash code mapping

transformation with Hamming distance and similarity thresholding. By im-

plementing this algorithm in feature extraction, our project obtains TCP

cross-features consisting of DL representation, HOG, and two enhanced

features with TCP domain knowledge.

• Explaining the SVM hand-crafted ML classifier and VGG-16 DL classifier

methodology and comparing them with different types of image represen-

tation as input. Simultaneously setting up end-to-end training and testing

on all combinations of the classifier models and feature representations that

our project is concerned with, along with variations in sizes of descriptor

and sliding window. Evaluation of all 97 experiments is summarised and

discussed.



Chapter 5

DL Object Detection in

Traditional Chinese Painting

5.1 Motivation

Computational aesthetic tends to model machine to have similar performance as

human behaviours. As shown in chapter 4, both hand-crafted ML model and

DL model can achieve relatively good performance on recognising TCP art style,

while all model can achieve more than 91 % in mAP. However, object recognition

with hand-crafted ML model (SVM) and Complex Backbone Network (CBN)

DL model (VGG16) do not perform as they generally do in the natural image

domain. Can the performances of object recognition be improved by Deep CNN

stage-wise development in object detection? This chapter presents experimental

investigations on this TCP object detection problem.

134
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There are two main challenges in applying DL to detecting objects in Chinese

Paintings: there does not exist an official well-structured Chinese Painting Image

Database and associated Ontology; most of the popular DL object detection

algorithms are natural-image-trained.

The first one cannot be solved because of licences. But our project insists on

the dataset generated and consisted in chapter 4 to provide horizontal compar-

isons.

In Deep CNN models, higher layer convolutional feature capture high-level

semantic knowledge. Low-level visual information is processed in lower layers and

then processed in higher layers [132]. With differing low-level visual information,

the high-level convolutional features may be too coarse when we project our RoIs

from the feature map to the original image. This may be problematic with TCPs,

as one might expect XieYi school images’ characteristics hugely differ from natural

images as shown in figure 5.1.

Deep CNN is known as an ML model that has strong transferability across

domains. But there is a few evidence that Deep CNN-based object detectors can

keep their success in the TCP domain, comparing to ones in the natural image.

We propose our own Deep CNN architecture, named Assembled Region Pro-

posal Network (A-RPN) object detection models, in the following sections. The

A-RPN are invented to investigate the transferability of Deep CNN models from

the natural image domain to the TCP domain. And provide pieces of the exper-

imental evidence on its improvement with TCP cross-feature.



CHAPTER 5. TCP OBJECT DETECTION 136

Figure 5.1: The image on the left is a XieYi painting of a black horse, while the the
right one is a natural image of a black horse. As shown in the figure,
color of an object in a natural image is solid. And the color shading can
show differences of brightness and shadow. However, highlight in XieYi
painting is demonstrated as white space. Also, it is not necessary to have
fully connected edges in XieYi painting, such as the legs of the horse are
not connected to the body.

5.2 Two-stage Object Detector with TCP

As the state-of-the-art object detection architecture, two-stage object detection

architecture separates the object location task from the object classification task.

Respectively, one region selector generates the region proposal and a classifier to

the regions. A two-stage object detector can produce high detection accuracy,

but they are slow in detection speed.

The choice of region selectors [215, 216, 86, 217] determines computational cost

and storage space of the model. One bottleneck of two-stage object detectors is

to find a satisfying region selecting method. Therefore, Ren et al. propose Region

Proposal Network (RPN) [26] , which integrates region proposals extraction with

shared convolution features of the whole image in the detection network. This

implementation allows region proposals to be computed on the GPU, which means
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the computational cost is minimised.

The RPN [26] is an extra fully convolutional network added after the last

Conv layer of the backbone Deep CNN. After initialising by feature map, RPN

can then creates rectangular object proposals with objectness scores. In original

Faster R-CNN models, the RPN makes K predictions based on scales and aspect

ratios of every sliding region of the feature map. One fully-connected layer defines

boxes with four coordinates, presents in 4 × K vector. Another fully-connected

layer identifies whether the box contains an object, a 2 × K vector returned. RoI

is the integration of these two vectors. There are N×N×K RoIs generated from

the RPN when the initial feature map has size N×N.

The RPN reduces computation-intensive caused by a large number of pro-

posals in the traditional methods [26] and significantly boosts the localisation

accuracy and speed. However, the RoI pooling layer between the RPN and the

object classification network converting the feature map from multiscale to fixed-

size. It suppresses the translation invariance of the network and conduciveness on

object classification. Then the object detector is not position-sensitive to small

objects. If the model is not position-sensitive, it might miss to localise objects

in flower-and-bird paintings. Flower-and-bird paintings often contains small ob-

jects. The ratio between objects’ sizes against the image’s size can be minimal in

the TCP domain. For example, the birds and the person in HuiZong’s painting

(figure 2.2). This characteristic of TCPs pushing the two-stage object detector

to improvement and remaining questions:
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• Question 1: How to balance translational invariance and translational

transformation in TCP object detection?

• Question 2: And how to retain position-sensitive to small objects?

The answer can be stimulated by R-FCN [27]. It is an approach to share

fully-convolution and introduce position-sensitive RoI pooling so that transla-

tional variances are blended into the Conv layers. R-FCN transmits and convo-

lutes throughout the whole image in all learnable layers with spatial information

encoded.

Another is Mask R-CNN [135] extended from Faster R-CNN [26] that pro-

motes a Mask network. The Mask network integrates RoIs’ object detection and

prediction segmentation in parallel. Each RoI is predicted with a pixel-level mask

by using bilinear interpolation, known as RoIAlign [135].

Inspired by devoting effort from researchers in the computer vision community,

our project proposes a new two-stage object detection architecture that adjusting

it with TCP’s characteristics in the next section 5.3.

5.3 Assembled Region Proposal Network (A-RPN)

This section promotes an adjusted two-stage object detection architecture with

TCP’s characteristics, called Assembled Region Proposal Network (A-RPN) [25].

The architecture of our TCPs Object Detector A-RPN is a VGG-16 [77] back-

bone base model, adopting the popular two-stage object detection strategy of
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Faster R-CNN [26], as shown in Figure 5.2. Comparing to very ’deep’ backbone

architecture ResNet (ResNet has 152 layers) [78], VGG-16’s depth is appropriate

given the limitation of TCP data. Moreover, choosing VGG-16 can better syn-

chronise with the end-to-end pre-trained TCP Deep CNN resulting from chapter

4.

The A-RPN has three components:

• A general Region Proposal Network (RPN) [26] that return RoIs and In-

tersection over Union (IoU) scores. (The IoU is defined as the region of

interest union with the ground truth bounding box.)

• A Chinese-Kitten RPN (CN-Kitten RPN) concatenates both lower-level and

high-level features to generate small object sensitive proposals and refines

the RoIs. (The reason for naming the model as CN-Kitten RPN is because

the draft model was confusing in recognising TCP kittens as described in

the appendix.)

• A Detection Network R-FCN that takes proposal RoIs, and classifies object

labels and background.

All the sub-networks within our A-RPN are fully convolutional with respect to

RoIs. More details will be described in the coming paragraphs.

The A-RPN first load a hierarchical feature map through shared convolutional

layers, which forms a pre-trained resembling VGG-16, and use this feature map

M0 to initialise the general RPN, the CN-Kitten RPN, and the Detection Network
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R-FCN [27].

Differing from the original work of Faster R-CNN [26], A-RPN has two regional

proposal networks: a general RPN and a CN-Kitten RPN

The general RPN generates coarse object proposals from the high-level con-

volutional layer conv5. Each of these regions is associated with an Intersection

over Union(IoU) score, which estimates the probability that the current RoI con-

tains an object. The NMS [218] with a default threshold as 0.7 is applied to the

set of RoIs so that only the top 2K scored proposals (RoIs-set1) are returned

when K is the number of prediction coherent with scales and aspect ratios of the

window. RoIs-set1 is then passed to the next stage, CN-Kitten RPN.

CN-Kitten RPN is an enhanced RPN that combines multi-layer features

knowledge and RoI pooling layer to refine RoI proposals. This approach is de-

signed to increase the model’s sensitivity to small-scale object detection inspired

by the principles of Feature Pyramid Networks[219]. CN-Kitten RPN integrates

features from both Conv4 and Conv5 as FCN-16s [136] to serve as input feature

maps during convolutions. The upsampling filter is applied on Conv5 to obtain

transposed convolutional layer [107, 108] Conv5’. Then L2-normalise each layer

per spatial location and re-scales it with the same resolution as Conv4 so that

multi-layer features can be concatenated. After normalising Conv4, it is concate-

nated with Conv5’ to obtaining a fine-grained feature map, named convCNK. The

final step is to reduce the dimension of the combined feature map to 256 chan-

nels with 1 × 1 convolutoinal layer. Then, we can build a fully-connected layer
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for computing an alternative set of 2K scored proposals, RoIs-set2 as explained

in figure 5.2. Simultaneously, we applied a bilinear interpolation on convCNK,

and obtained a semantic segmentation heat-map of the entire image for later

refinement.

Figure 5.2: Assembled Region Proposal Network(A-RPN) architecture. The Conv4
and Conv5 represent the last convolutional layers of the Conv4 block and
Conv5 block in the figure, respectively. For the CN-Kitten RPN, a de-
convolutional is used to upsampling Conv5 so that the features (Conv5’)
can have the same resolution as Conv4 (but the number of channels stays
the same). Before concatenating Conv4 and Conv5’, we proposed to use
L2-normalisation and scale each feature map extracted from these layers.
This is to make sure the downstream values of the pooled features are at
reasonable scales when training is initialised. (The re-scale process can
be implemented with a learnable “scale layer” that is initialised to 20 in
Caffe.) Finally, the dimension of the combined feature is reduced to 256
channels with 1 × 1 convolutional layer. The small object proposal re-
gression is the sliding window process on convCNK with a single scale of
32×32 pixels which return RoIs-set2.
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The region proposals (RoIs) processed in our A-RPN are divided into two

sets. One set comes from the generated 2K proposals in the general RPN (RoIs-

set1): the other is the small-scale region boxes selected by the sliding window

run on convCNK (RoIs-set2). Comparing to Conv5, convCNK can fit small

objects better and better utilise fine-grained features. Due to this characteristic,

convCNK is used to better developing small-scale object proposals. The same

NMS operation in RPN was applied to reduce redundancy. It returned us another

set of 2K proposals, RoIs-set2.

We observed no significant drop in recall with small objects (32×32 pixels)

comparing to Faster R-CNN when running on the same dataset. In other words,

this is a feasible solution to observe locations of small scale objects in TCPs.

Pioneering DL object detector, such as R-CNN family [97, 134, 26] consisted

of two sub-networks (two stage-wise). They are discomposed by RoI pooling

layer [26], a shared ’fully convolutional’ object detection subnetwork. The RoI-

wise image classification subnetwork does not share computation. However, this

causes a dilemma between optimising translation variance for object detection and

translation invariance for image classification. Object translation inside an anchor

should produce a meaningful estimation of how well it detects an object. ResNet

[78] addresses this dilemma by inserting an RoI pooling layer and a considerable

number of region-wise layers in convolution. This region-specific operation deals

with the puzzle but causes low efficiency and increased computation. There is fast,

accurate, and low computation cost fully shared and convolutional architecture,
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known as the region-based fully convolutional networks (R-FCNs) [27]. As a

member of the FCN [136] family, they construct a set of position-sensitive score

maps to incorporate translation variance.

To addresses the dilemma between optimising translation variance for object

detection and translation invariance for image classification, the A-RPN replaces

the general RoI pooling layer in Faster R-CNN with a position-sensitive RoI

pooling layer that is coherent with a top rank-voting model.

The model projects sets of anchors and refines their IoU scores with the se-

matic segmentation heat-map. Then a top rank-voting model applied to cross

between RoI-set1 and RoI-set2. All anchors were ranked with their IoU scores

from the highest toward the lowest into a descending list. The top rank-voting

model tracks from the beginning of the list and tries to achieve two tasks:

• To project the selected anchor to the semantic segmentation heat-map and

compute an additional IoU score with an overlapped percentage. The over-

lapped percentage is the ratio between area in common to both segmenta-

tions and the total area.

• To remove redundant or highly similar anchors in two sets. The overlapped

percentage is calculated by comparing the anchor with one in the opposite

set. If the overlapped percentage is higher than 0.7, two anchors have

merged by averaging their coordinates. This procedure kept repeating until

the model obtains proposals with the highest pair of IoU scores. Eventually,

300 proposals are selected after the top rank voting strategy.
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The proposal regions are then entered into the detection network. The detec-

tion network identifies and regresses the bounding box of regions likely to contain

classes. Classification is applied to each proposed region. Regions are then ranked

according to the highest confidence object detection score to finalise the ranked

list. Unlike in the original Faster R-CNN [26], we employ R-FCN [27] on the

Deep CNN to construct the detection network.

R-FCN uses a bank of specialised convolutional layers to encode as score maps

position information concerning a relative spatial position [27]. All the FC layers

are removed; instead, all learnable weight layers are computed on the entire image.

The final convolutional layer returns a bank of position-sensitive score maps for

C + 1 categories (C object categories + 1 background). Each set of score maps

for one particular class represents a k× k spatial grid describing relative position

information ( top-left, top-centre, top-right etc.) These shared sets of score maps

are then used to perform average voting as described in a position-sensitive RoI

pooling layer [27]. Selective pooling only returns one score out of k × k on class

prediction. As there are no learning layers, our model reduces the computation

cost but have a competitive mAP.

5.4 Experiment and Evaluation

This section sets up two scenarios to verify the performance of our A-RPN archi-

tecture. They are:
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• Object Detection without TCP Domain Knowledge: The first

scenario uses pre-trained natural image feature maps from ImageNet [21]

to initialise the model. This is to do computational aesthetic study on the

Deep CNN’s transferability from the natural image to the TCP domain

without highlighting TCP sensitive features. This scenario is designed to

simulate how a human being makes object recognition decisions in TCP

only with a natural image learning background.

• Object Detection with TCP Domain Knowledge: The second sce-

nario is to apply TCP domain knowledge to our A-RPN architecture. This

scenario is an investigation of how TCP domain knowledge influences Deep

CNN’s performance in object detection? To enable our A-RPN to get TCP

domain knowledge, we use the feature maps from the Deep CNN backbone

network (VGG) which was pre-trained in chapter 4 to initialise the model.

5.4.1 Object Detection without TCP Domain Knowledge

5.4.1.1 Experiment Setting

This section evaluates the object detection performance of A-RPN on natural

image data and TCP data without TCP domain knowledge.

Our experiment introduces the TCP object dataset we generated in chapter 4.

The 7-class TCP object dataset contains 1,400 images in seven classes, including
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human, horse, cow, bird, plant, cat, and dog. Each image in this dataset is an-

notated with class labels and segmentation knowledge (bounding box) as ground

truth. The number of objects in each image is not equivalent. For comparison

with object detection in natural images, we employed the natural image dataset

from PASCAL VOC2007 [98]. And regenerate it with the same set of classes

contained in the 7-class TCP object dataset, which are randomly selected sub-

sets with these classes for 200 images each. Since the PASCAL VOC2007 only

has “potted plant”, we randomly selected 100 images from the set. Then, we

concatenated them with another 100 images randomly selected from the Oxford

102 flowers dataset [220].

We separately trained DL models on features from both the natural image and

our 7-class TCP object dataset and evaluated their predictions. We compared

our A-RPN’s outputs with two popular DL object detection models: single shot

detector method YOLO2 and Faster R-CNN to further investigate image-level

classifiers.

Since the scenario is to evaluate A-RPN without TCP domain knowledge, the

pre-trained hierarchical feature map used to initialise our detector is a hierarchical

feature map pre-trained from VGG 16 in PASCAL VOC2007 [98].

We always keep one-third of our data as the test set and divided the remaining

data into 90% training set and 10% validation set. And all the methods were

trained and tested on the same data.

The DL models involved are YOLO2 [138], Faster R-CNN [26], and A-RPN.
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(The reason why we did not test with YOLO3 [139] is that we failed to manage

training and fine-tuning the object detector in the limited period.)

5.4.1.2 Results

In this scenario, we run six experiments: Single Shot detectors on natural im-

ages, YOLO(N), and on Chinese paintings, YOLO(P); Faster R-CNN on natural

images, Faster R-CNN(N), and on Chinese paintings, Faster R-CNN(P); A-RPN

on natural images, A-RPN(N), and on Chinese paintings, A-RPN(P). The results

are shown in table 5.1 and figure 5.3, figure 5.4, figure 5.5.

Methods Natural Image Chinese Painting

YOLO 2 71.37% 58.48%

Faster R-CNN 73.22% 59.98%

A-RPN 75.25% 61.85%

Table 5.1: The mAP comparison of YOLO2, Faster R-CNN, A-RPN object detection
performance in 7-class TCP object dataset.

Table 5.1 shows that all the DL models can achieve more than 70% mAP

(mean Average Precision) on natural image object detection. A-RPN achieved

the highest classification performance and has significantly higher mAP (P <

0.02) than YOLO2 and Faster R-CNN. (Using the McNemar test, the Z-test

statistic against YOLO2 and Faster R-CNN are respectively -3.7905 and -2.4188.

The P-value are 0.000075 and 0.007786, which means the results are significant).

Object recognition performance significantly drops when applied to TCPs

without TCP domain knowledge. The YOLO2 model has an mAP performance
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drop of 12.9% while Faster R-CNN falls 13.2% and A-RPN drops 13.4%. The

statistical difference in performance between the three methods of TCP object

recognition is slight. But A-RPN has proved that it outperforms the other two

models on TCP data. Details are below.
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Figure 5.3: One Shot Object Detector YOLO2 performance of natural image and Chi-
nese painting with classes specification

The success of object recognition varies greatly between object classes (figure

5.3, figure 5.4, figure 5.5). The performance on classes “Human” and “Bird” was

stable and accurate for all methods. Performance on class “Plant” was stable but

had low mAP in all models. There are a couple of factors that might lead to this

performance. For the natural images, the “Plant” class dataset is constructed

from potted plant data and outdoor flower data. These categories are generally

separated in the ImageNet dataset, which means the pre-trained network might

require more training to narrow the gap in diversities. The second reason is
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that most of the “Plant” objects in TCP exist in flower-and-bird paintings as

introduced in section 2.2. Sometimes, they could be drawn at the centre but they

may act as background (as small objects) with birds and figures. Another reason,

plants do highly possible overlap with each other in both cases.
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Figure 5.4: Faster R-CNN Object Detector performance of natural image and Chinese
painting with classes specification

Class “Cow” is more easily recognized on the natural image dataset, but the

difference is relatively small (YOLO2: 6.3%, Faster R-CNN:2.1%), while A-RPN

increases with 1.8% mAP. All three models confused “Cat” and “Dog” in Chinese

paintings. For class “Cat”, the drops were 13.6% for YOLO2, 29.3% for Faster R-

CNN, and 27.2% for A-RPN. For class “Dog”, the drops were 17.6% for YOLO2,

28.6% for Faster R-CNN, and 31.4% for A-RPN. These are the only two cases

that the YOLO2 method that has higher accuracy than our A-RPN on TCPs.

The largest drop in performance was in the class “Horse” in TCPs: only A-RPN
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Prediction
Truth Human Horse Cow Bird Plant Cat Dog N/A

Human 0.82 0.18
Horse 0.35 0.03 0.18 0.02 0.27 0.15
Cow 0.09 0.72 0.01 0.18
Bird 0.78 0.01 0.03 0.18
Plant 0.04 0.38 0.01 0.01 0.56
Cat 0.02 0.01 0.51 0.38 0.08
Dog 0.01 0.09 0.29 0.51 0.10

Extra RoI

Table 5.2: Heat-Map for A-RPN classification without TCP domain knowledge. Miss-
classification scenarios with error more than 15% have been highlighted in
the table. The N/A column represents the scenario that – there is no
bounding box detected over the current ground truth bounding box. The
Extra RoI represents the scenario that bounding box is detected an object
but the ground truth is false.

could achieve more than 40% mAP, while their mAPs on Nature Image data are

all above 70%.
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Figure 5.5: A-RPN Object Detector performance of natural image and Chinese paint-
ing with classes specification
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In the experimental scenario that is without TCP domain knowledge, the heat-

map table 5.2 shows that our assemble region proposals network architecture has

limitation when allocating object-bounding boxes. There are five classes (out

of seven in total) failed to achieve a certain detecting rate, above 85%, when

localising objects of TCP art in the images. Also, the model confused itself on

distinguishing “Cat” and “Dog”. Moreover, mis-classifying “Horse” into “Bird”

was a general case.

Figure 5.6: In this figure, we show some bounding box detection samples (if the thresh-
old is 0.5), when IsObj and NotObj represent the predicted binary outcome
of identifying whether the current region contains an object. The black
outline is the ground true bounding box of an object. Left: object detected
with IoU score greater than the threshold; Middle, NotObj, but detected
(IOU < 0.5); Right, the object is detected as NotObj.

To further analyze object segmentation ability of the model, we introduced the

concept of Intersections over Unions (IoU) (examples are given in figure 5.6).

We set a threshold 0.5 (can be any value above 0.5) as the IoU ratio in an RPN:
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if the detector has a score greater or equals to this threshold, then the bounding

box is marked as an object, vice versa. After verifying object segmentation with

IoU in our model, we found that only 63% of the ground truth bounding boxes

were detected with ratios above threshold. Around 22% of the objects were not

detected, especially in the “Plant” class. Furthermore, there were at least 15%

out of all cases, which our A-RPN generated a bounding box over an area that

does not contain any object.

5.4.2 Object Detection with TCP Domain Knowledge

5.4.2.1 Experiment Setting

This section is designed to evaluate the A-RPN’s object detection performance

on TCP data with TCP domain knowledge.

This scenario intends to address a question – whether TCP domain knowledge

can improve machine aesthetic learning when detecting and recognising objects of

the TCP art. Therefore, the A-RPN is initialised with the features map resulting

from our pre-trained VGG-16 in chapter 4. This is a VGG network trained from

scratch with feature extractors that observed to improve TCP classifications in

chapter 4. The TCP cross-features selections were based on experiments, so that

we expected they are TCP sensitive. Then, we validate the results by comparing

the results from previous scenario, which is A-RPN tested without TCP domain

knowledge.
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This experiment keeps the TCP objects dataset we employed in the last sec-

tion. The 7-class TCP object dataset integrated with seven classes: human,

horse, cow, bird, plant, cat, and dog. The total number of images is 1400. The

number of images is even in each class, but the number of objects in each image

is not equivalent. Every individual image is annotated with class labels and seg-

mentation knowledge (bounding box) as ground truth. We always keep one-third

of our data as the test set and divided the remaining data into 90% training set

and 10% validation set. And all the methods were trained and tested on the same

data.

5.4.2.2 Results

In this scenario, we run an experimental comparison. We applied TCP domain

knowledge to the A-RPN and obtained object detection results for the 7-class

TCP object dataset. The summaries of the comparison results of this experiment

are given in table 5.3 and figure 5.3.

Methods A-RPN w/ TCP A-RPN w/o TCP

Prediction (mAP) 69.18% 61.85%

isObj IOU≥0.5 84.74% 63.24%

NotObj IOU<0.5 12.79% 22.14%

NotObj but Detected 2.47% 14.62%

Table 5.3: The mAP and IoU detection rate comparison for A-RPN object detection
performance with 7-class TCP object dataset.
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Table 5.3 shows that A-RPN’s overall performance gained significant improve-

ment by applying TCP domain knowledge to the initialisation of A-RPN object

detector. The A-RPN without TCP domain knowledge was beated. The A-RPN

with TCP domain knowledge boosted the object detection performance with a

7.33% increment in mAP. For class “Horse”, A-RPN, with awareness of TCP

domain knowledge, overwhelmingly outperformed the model that has no TCP

knowledge background. Every individual class in the dataset achieved competi-

tive enhancement when detecting objects of TCP art, but the class “Plant” was

not able to get great improvement.
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Figure 5.7: A-RPN Object Detector performance with and without TCP domain
knowledge with classes specification

Compared the heat-map table 5.4 with table 5.2, we can conclude that to

apply TCP domain knowledge to the Deep CNN object detector can increase the

position-sensitive of the model in object detection. Our region proposal network
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Prediction
Truth Human Horse Cow Bird Plant Cat Dog N/A

Human 0.915 0.085
Horse 0.645 0.06 0.05 0.015 0.045 0.07 0.115
Cow 0.045 0.83 0.005 0.045 0.04 0.035
Bird 0.045 0.005 0.795 0.065 0.005 0.085
Plant 0.105 0.47 0.425
Cat 0.015 0.005 0.645 0.27 0.065
Dog 0.035 0.01 0.005 0.245 0.62 0.085

Extra RoI 0.005 0.025 0.035 0.005 0.03 0.04

Table 5.4: Heat-Map for A-RPN classification with TCP domain knowledge. Miss-
classification scenarios with error more than 15% have been highlighted
in the red. The N/A column represents the scenario that – there is no
bounding box detected over the current ground truth bounding box. The
Extra RoI represents the scenario that bounding box is detected an object
but the ground truth is false.

achieved an 85% detecting rate when allocating object-bounding boxes with TCP

domain knowledge. Only one class (out of seven in total) failed to target the state-

of-the-art detecting rate (85%) for object localisation (Plant class). Moreover, by

improving the A-RPN network learning strategy with TCP domain knowledge,

the situation that the network generated bounding boxes over area that does not

contain any object has been reduced to only 2%.

5.5 Discussion

This section presents a discussion refers to the collections of experimental com-

parisons in section 5.4.1 and section 5.4.2. We first describe the investigate of

DL’s transferability in object detection from the natural image domain to the
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TCP domain. We provide an answer to a computational aesthetic research ques-

tion – can machine recognise objects of art as human being can without training

in art? Then, we evaluate the influence to DL model when applying TCP domain

knowledge. Will this enhance the learning process as humans trained to perform

better with domain knowledge?

• Transferability from Natural to TCP

Putting to one side the differences between human and DL image recognition,

it is interesting to consider whether in principle, images in TCPs are harder

to recognize using DL. There are a number of possible reasons for the drop in

performance of DL in TCPs. First of all, DL models require large training sets,

but the number of TCPs that exist in the world is quite limited, and their usage

generally involve licenses. Therefore the size of the data set we used potentially

prevented the DL models to be fully trained.

Another related reason may be the initialisation of the layer M0 feature map.

When the RPN is initialized, we use a pre-trained CNN layer trained on natural

images. Natural images differ in a number of ways from images in TCPs. For

example, they inherently include perspective, while most Chinese paintings do

not use perspective. In TCPs objects are often depicted in a highly abstract

manner, easily comprehended by the human visual system, but quite different

from natural images.

A third possible cause for reducing performance may be ineffective feature

formation when we compute feature maps during convolution. Elgammal et
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al.[221] demonstrated that shifts in artistic style could be analyzed and cate-

gorized according to five binary characteristics. One was whether the work was

‘linear’ (contour-led) or ‘painterly’ (reliant more on brushstrokes denoting light

and shadow).[221, 222] Chinese paintings are produced using specialized tools,

materials and techniques, which may limit the number of possible low-level fea-

tures. For example, the majority of Chinese paintings are only black and white.

In image processing, white color is often treated as ’no color’, with a probability

of being an object of zero. Furthermore, CNN models have their own texture rep-

resentations [219, 107, 108]. Lower layer preserve color and small-scale structure.

However, color information is discarded in the upper layers, and edge information

is more important.

• DL with TCP domain knowledge

DL object detection in the TCP domain is facing two challenges that lead to

deterioration in performance. One is the concept of “Empty Space” ( Designing

of White Space ) in TCP. Another is the insufficiency edge features cause by

water-and-ink diffusion or TCP abstract manner “Qi”.

Many principles of TCP derive from Daoism [223]. For example, empty space

is an important concept and a symbol of the void or nothingness. The most

crucial text in Daoism states: ’Having and not having arisen together’ (Laozi 2).

TCP has also been influenced by Buddhism, which emphasizes that ’What is the

form that is emptiness, what is the emptiness that is form’ (Paramita Hridaya

Sutra). These beliefs have led TCPs to stress the concept of Designing White
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Space — if one’s mind can reach there, there is no need for the touch of any brush

and ’formless is the image grand’ (Laozi 4). Related to this, an essential canon

of TCP describes its rhythmic vitality as Qi, a metaphysical concept of cosmic

power: with Qi empty space is not blank; it is alive, like air. This prominent

characteristic of TCP turns its treatment of empty space into solid space. Taking

the horse in XieYi style in figure 5.1 as an example, the absence of precise edges

depicting the outline of a horse feed the human imagination. The horse’s body

is fragmented into solid ink colour blocks and “white spaces”. This might not be

difficult for a human to identify it as a horse. However, machine vision analysis

can be precise to pixels. Some algorithms use similarity to cluster pixels to

generate feature representations or to achieve classification and segmentation.

The information delivered by a “white space” and a solid ink colour block can

have huge differences, especially when the background is white in the painting.

We hypothesize that the abstract nature of TCPs may fundamentally restrict

the ability of DL systems to recognize objects in TCPs. Objects in TCPs do not

have fully connected edges as example given in figure 5.1 in chapter 5. When

CNN edge detection filters are applied on non-edge pixels in low-level layers, the

result matrices are filled with really small numbers or even zeros. Convolutions

are then computed based on these inputs. In the CNN texture representation

strategy, the smaller the edge detection matrix is, the lower the convolution value.

Besides, this CNN problem gets worse during stridden convolutions. Therefore,

the application of CNNs can weaken the contribution from ambiguous edge pixels
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and further separates edges that should be treated as connected in TCPs.

By applying the TCP cross-features model driven from chapter 4, the A-RPN

is enhanced its sensitivity of edge detection and the interpretation of TCP colour.

Also, initialisation with TCP domain knowledge further fine-tuning the model in

end-to-end training. In conclusion, our A-RPN can achieve better prediction on

recognizing TCP objects. This explains that the DL model can be improved by

learning domain knowledge to the specific domain.

Figure 5.8: An example of testing on small object detection with A-RPN

The figure 5.8 shows a successful example of small object detection with A-

RPN, but the object augmentation problem remains unsolved in our promoted

architecture. Object augmentation handling is a technique of altering the existing

data to generate more data so that the object detection process can be artificially

expanded to available data, such as re-scaled data or rotated data. However, this

is not implemented in our project due to the limitation of time, examples are

shown in figure 5.9. The reason for this unexpected performance is that ML

models that we used are sensitive to scales of images. Similar to evidence from
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chapter 4 classification, the salient region size impacts feature learning, either

positive or negative. Two rotated inputs at the bottom more emphasis that

object augmentation is one shortcoming of our A-RPN.

Figure 5.9: TCP Object Augmentation problem in Deep CNN, when the upper right
corner is the detection running on the ground truth bounding box

5.6 Summary

This chapter introduces and investigates the object detection task related to com-

putational aesthetics in the TCP domain. After briefly describing the methodol-

ogy of the two-stage DL object detector and TCP object detection challenges in

section 5.2, we propose our two-stage DL object detector A-RPN and evaluate

its performance in both the natural image and TCP domains. The achievements

we obtained in this chapter are outlined below:

• Proposing two-stage object detection architecture A-RPN in section 5.3.
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This A-RPN introduces a CN-Kitten RPN, which imports transposed con-

volutional layers on the concatenation of feature maps. Then the approach

is to balance translational invariance and translational transformation. The

A-RPN consists of a general RPN and a CN-Kitten RPN and replaces RoI

pooling with top-rank voting and position-sensitive pooling. Position sen-

sitivity on small object detection is then enhanced (shown in both sections

5.4.1 and section 5.4.2).

• Evaluating transferability of DL object detector from the natural image

domain to the TCP in section 5.4.1. Three sets of experimental comparisons

are set up and show the negative responses on domain transformation.

• Investigating how TCP domain knowledge influences Deep CNN model A-

RPN on object detection experiments and the model returns positive feed-

back in the section 5.4.2.



Chapter 6

Traditional Chinese Painting

Style Transfer

6.1 Motivation

The way in which human beings learn artistic aesthetics and establish a struc-

tured understanding of particular art styles is a gradual process. From classifying

and recognising artistic styles to analysing the content within, these all provide

the basis for developing painting skills. So can the machine also replicate this

sequence of advancing process? The answer to this question is what our compu-

tational aesthetic system needs to provide.

In chapter 4, our computational aesthetic system has shown its ability to

learn TCP image representation and use this domain knowledge to recognise

TCP style better. In chapter 5, our model develops better content recognition,

162



CHAPTER 6. TCP STYLE TRANSFER 163

object detection in our case, with TCP knowledge. Therefore, we challenge our

computational aesthetic system to “draw” a TCP painting in this chapter.

We describe the methodology of two milestone applications, Gram-based Style

Transfer and Patch-based Style Transfer in NST. Then we promote an enhanced

NST application by applying TCP domain knowledge sensitivity.

6.2 Neural Style Transfer with TCP style

6.2.1 Gram-based Style Transfer

As stated in section 3.3.1, before DL bring style transfer applications to the

new era, traditional style transfer replying to texture synthesis transformation

[147, 148, 149, 150, 151, 152, 153].

The first Deep CNN style transfer model proposed by Gatys et al. [155, 5, 162]

is a parametric texture modelling with summary statistics in IOB-NST. The

researchers provide a solution by matching content and style’s statistics with a

minimal loss function. This is implemented by using Gram matrices to represent

the style features.

In Gram-based style transfer, the content loss of a chosen content layer is the

Mean Squared Error between the feature map F of the content image and the

feature map P of the generated image:

Lcontent =
1

2

∑
ij

(F l
ij − P l

ij)
2 (6.1)
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Minimising the content-loss, the model drives the target image feature acti-

vation towards the activation of the content image. The smaller the content-loss,

the more similar the images. Contours of the content are then transferred to the

target image with selections of layers.

Similar approach is employed to the style layers. Gatys’s [155, 5] model mea-

sures feature in the activated style layers and copy this activation pattern to the

target image. The Gram-matrix, comprising correlated features, is introduced

to the calculation of tensors output by style layers. Each Gram-matrix is a dot-

products between feature activations’ vectors of a style layer. If the feature map

is F, the Gram matrix G can be formulated as:

Gij =
∑
k

FikFjk (6.2)

If the Gram-matrix has a tiny value close to zero, these two features are not

activated simultaneously for the given style image. Target image on this style

activation pattern will only be generated when the Gram-matrix returned a large

value. Then the style loss Lstyle function is calculated as the Mean Squared Error

for the Gram-matrices:

Lstyle =
1

2

L∑
l=0

(Gl
ij − Alij)2 (6.3)

If feature maps from two different images produce the same Gram matrix at a

particular layer, the model assumes they have the same representation. Therefore,

when the model has two content representations with the same Gram matrix, the
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images are expected to hold the same style. Gatys [155, 5] suggests that the

combination of features both from shallow and deep layers can lead to the best

performance for the Gram-based style transfer model.

A pre-trained CNN generally initialises the Gram-based style transfer model,

then takes a pair of content image and style image as inputs. To generate the

output result, the model is to minimise the network losses such that the style

loss, content loss and the total variation loss were at a minimum. The total loss

is written as a weighted sum of both the style and content losses:

Ltotal = αLcontent + βLstyle (6.4)

By retrieving the minimal of the above equation, the model resembles the

content image to have stylish attributes from the style image and secures pixel-

wise smoothness in the output result.

6.2.2 Patch-based Style Transfer

The Gram-based method combines both low-level features and high-level features

to get impressive NST result. However, this approach only considers global cor-

relations but ignores local pixel information. Li and Wand [167] employ Markov

Random Field (MRFs) and CNN to replace the Gram matrices. The researchers

apply the nearest neighbour calculation with neural patch size 3×3 on both con-

tent and style Conv layers, while the neural patch is a sub-area of an image with

the same size as the convolutional filter. This is known as the fundamental model
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of Non-parametric with MRFs in IOB-NST, a NST model that deliver style by

optimizing images. Champandard [10] enable a more accurate semantic match

with this model by incorporating a segmentation mask over the MRF Loss.

When xc is the guidance content image, xs is the style image, and x is the

target mixed image at the current Conv layer. The Φ(x) represents x’s feature

map. Therefore, the MRFs loss function is formulated as the below equation set:

Style Loss function: The Es denotes the style loss function, which is MRFs

constraint in this context. Then the list of all local patches extracted from Φ(x) is

defined as Ψ(Φ(x)). Each neural patch is indexed by i of the size m = h×w×C,

where h is the height, w is the width, and C is the number of channels for the

current layer.

Es(Φ(x),Φ(xs)) =
m∑
i=1

||Ψi(Φ(x))−ΨNN(i)(Φ(xs))||2 (6.5)

The nearest neighbour NN(i) is computed using normalised cross correlation

to achieve stronger invariance. And in Champandard’s [10] research, the weighted

semantic map is taken into account to a further improvement. Where ms is the

size of the semantic map.

NN(i) := argmin
j=1,2,...,ms

=
Ψi(Φ(x)) ·Ψj(Φ(xs))

|Ψi(Φ(x))| · |Ψj(Φ(xs))|
(6.6)

Content Loss function: Ec guides as the content loss, taking the minimal

value of the squared Euclidean distance between Φ(x) and Φ(xc):

Ec(Φ(x),Φ(xc)) = ||Φ(x)− Φ(xc)||2 (6.7)
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The total loss as a weighted sum of both the style and content losses:

Ltotal = αLcontent + βLstyle (6.8)

6.2.3 TCP Sensitive Patch-based NST

Semantic segmentation is a natural step located at classification as a progression

from coarse to fine inference. It consists of predicting localisation or detection for

a whole input with classes or additional information regarding a spatial location.

Making dense predictions inferring labels for every pixel can lead to a fine-grained

inference.

From Li and Wand’s and Champandard’s research, semantic segmentation has

demonstrated its strength in increasing NST generation. Therefore, our project

proposes a patch-based NST to modelling our TCP computational aesthetic learn-

ing system to “draw” TCP artwork.

Since our model aims to achieve style transfer between natural image and

TCP, simultaneously, we expect our model can cover all NST scenarios such as

TCP to TCP; a detected object in the content image to TCP object, etc. We

import all previous research outcomes in chapter 4 and chapter 5.

The section 2.2 and section 4.5.3 indicates that TCP has a rigorous insis-

tence on the unity of style across local to global. Therefore, our TCP sensitive

patch-based NST employs global style loss to the original model from Champan-

dard’s. Meanwhile, the model proposes content loss control with a Target Mask
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Figure 6.1: This system diagram provides an overview of our TCP NST model. Both
the FCN and the VGG16 are initialised with the pre-trained VGG back-
bone network (train-from-scratch) in chapter 4. Module A is the auto-
mated segmentation function. It returns semantic masks for content in-
put and style input. Module B describes the system flows of the TCP
sensitive patch-based NST. The blue block encounters between module A
and module B is the binary parameter that activates the area targeted con-
trol. Module C is an example of semantic mask results from module A,
which denotes the mask matrix to enable the area targeted control. The
calculation of content representation and style representation in module
B require fused feature maps of content and style. The deep convolutional
aggregation process computes the fused feature map FFN is visualised in
Module D, while F1 denotes F 1 in equation 6.11. (Module D only shows
4 conv blocks as the limitation of space.)

Matrix. This is to enable the NST model to have area control on the content

loss. For example, only apply NST on a detected object and set all other pixels

as background.

The system flow of our promoted TCP sensitive patch-based model is shown

in figure 6.1. All initialisations of CNN are with our pre-trained TCP backbone

CNN.
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6.2.3.1 Local Style loss and Global Style Loss

The TCP sensitive patch-based NST model computes style loss from both local

and global perspectives.

Local Style Loss function Es is defined as:

Es(Φ(x),Φ(xs)) =
m∑
i=1

||Ψi(Φ(x))−ΨNN(i)(Φ(xs))||2 (6.9)

The nearest neighbour NN(i) is computed with normalised cross correlation:

NN(i) := argmin
j=1,2,...,ms

=
Ψi(Φ(x)) ·Ψj(Φ(xs))

|Ψi(Φ(x))| · |Ψj(Φ(xs))|
(6.10)

The FFs is the fused feature map of style, and FFx is the fused feature map

of the target image. The aggregation process to obtain the fused feature map is

defined as follows:

Let FN denotes the output feature map of convN , BR(J,K) represents the

bilinear resizing that downsamples J to have the same resolution as K with

channel remains unchanged, ⊕ denotes the concatenate operation on channels,

FFN is the interactive aggregation from conv1 to convN .

FFN =

{
BR(F 1, F 2)⊕ F 2, N = 2

BR(FFN−1, FN)⊕ FN , N > 2
(6.11)

To compute global correlation matrices of the fused feature maps, the fused

feature map has to be reshaped as C×A. C represents the channels, andA = h×w

denotes the height h and the width w in the current layer.
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Gs =< FFs, FFs
T > and Gx =< FFx, FFx

T > (6.12)

Global Style Loss is defined by the global correlation matrices of style and

the target images. The equation is:

LglobalStyle(Gs, Gx) =
1

4C2A2

h∈H∑ w∈W∑
(Gshw −Gxhw)2 (6.13)

6.2.3.2 Local Targeted Content Loss

In the traditional content loss function, Ec is the minimal value of the squared

Euclidean distance between Φ(x) and Φ(xc). By enabling area targeted control,

Mt denotes as a targeted mask matrix, filled with [0, 1]. Its offset non-targeted

mask matrix is written as Mnt. E is an all-one matrix, such that:

E = Mt +Mnt (6.14)

While doing encoding, mask is M = [M1,M2, . . .Mn], and n ∈ category =

[1, 2, . . . n]. The Local Targeted Content Loss is formulated as:

LtargetContent(Φ(x),Φ(xc)) =
m∑
i=1

||Ψi(Φ(x))Mt −Ψi(Φ(xc))Mt||2

HtWtCt
(6.15)

Then the Non-targeted Content Loss is defined as:

LnonTargetContent(Φ(x),Φ(xc)) =
m∑
i=1

||Ψi(Φ(x))Mt −Ψi(Φ(xc))Mt||2

HiWiCi −HtWtCt
(6.16)
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6.2.3.3 Weighted Total Loss

In conclusion, our total loss function contains a targeted area content loss weight

by α, a non-targeted area content loss weight by β, a local style loss weight by γ,

and a global style loss weight by σ, which is:

Ltotal = αLtargetContent + βLnonTargetContent + γLstyle + σLglobalStyle (6.17)

For experimental comparison purposes to better evaluate the contribution of

employing the global style loss in TCP NST, we derive another total loss function:

Ltotal = αLcontent + βLstyle + γLglobalStyle (6.18)

which consists of a content loss weight by α, a local style loss weight by β,

and a global style loss weight by γ.

An experimental comparison will be included in section 6.3

6.3 Experiment and Evaluation

In this section, we set up four different scenarios: TCP to TCP, natural im-

age (landscape) to TCP, natural image (object) to TCP, natural image (object)

to TCP with excluding the background. The background can be set offline by

assigning value 0 to the Mnt.

The NST experimental comparisons employed three IOB-NST models: Cham-

pandard’s [10], our TCP Sensitive Patch-based NST (TCP NST) without targeted
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area control, the TCP Sensitive Patch-based NST with targeted area control. We

aimed to obtain 300 generated images from each individual model. Each output

image was generated after 500 epochs on running a NST model.

Unlike classification or object detection, the NST does not have a standard

mathematical explanation of its performance evaluation. The evaluation in this

research remains an open but important problem. There are two major ap-

proaches of evaluation methodologies that might be suitable in the NST research.

One is a qualitative evaluation determined by the observers’ aesthetic judgments.

The other is the quantitative evaluation, such as time complexity. We promote

three types of evaluation of our TCP sensitive patch-based NST model. The first

one is Fréchet Inception Distance (FID), the second is a machine-based qualitative

evaluation, and the second one is the speed-per-iteration quantitative evaluation.

To evaluate the performance, we introduce the concept of Fréchet Inception

Distance (FID). FID represents the distance between the feature vector of the

generated image and the feature vector of the style image. The closer the distance,

the better the effect of the generated model, that is, the sharpness of the image

is high and the diversity is rich.

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2) (6.19)

where Tr is the trace of a matrix, Xr ∼ N (µr,Σr) and Xg ∼ N (µg,Σg) are

the 2048-dim activations of the InceptionV3 pool3 layer. µr is the mean of style

image feature. µg is the mean of generated photo’s feature. Σr is the covariance
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matrix of real photo’s feature. Σg is the covariance matrix of generated photo’s

feature

Figure 6.2 shows the FID curve against the epochs of generation three different

NST models. The Champandard’s is the state-of-the-art model. As shown in

the figure, the larger the number of epochs, the smaller the FID. Both TCP

NST models we promoted perform better than the Champandard’s. And the

TCP NST with target control achieves slightly better results than the TCP NST

without target control, as the first one’s FID is steadily decreasing. However, as

the difference between them is not large and the figure shows a dramatic drop

in FID of the TCP NST without target control at the 350th epoch. We further

introduce the machine-based qualitative evaluation to compare these two models.

Figure 6.2: FID curve against number of epochs to show which model obtain better
effect of TCP generation. All models are analysed with 300 images and
500 epochs. We computed the FID every 50 epochs to deliver the figure.
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Machine-based qualitative evaluation is a evaluation method widely used in

computational aesthetics [15] area. It can be designed as a classifier to distin-

guishing natural images and artworks, in our case, TCP images. Our project

retrieved the GongBi-and-XieYi dataset and Deep CNN with TCP cross-features

employed in chapter 4. Next, the project trained a natural-TCP image classifier

with the TCP dataset and 3872 natural images randomly selected from ImageNet.

This classifier ends with 93.5% accuracy on recognising natural images and TCP

images.

In order to retain the consistency, especially for the speed evaluation, we

reshaped all images to 512×320 pixels with bicubic interpolation. Then we eval-

uated 300 TCP artworks generated from our TCP NST model. Results are shown

in table 6.1.

Accuracy(%) and Speed(s)

TCP style recognition Speed per iteration

TCP NST w Target 85.32 0.775

TCP NST w/o Target 89.78 0.533

Table 6.1: TCP NST’s classification accuracy and artwork generation speed. The
speed per iteration is the time required for running one single epoch of
generation.

According to table 6.1, although the TCP NST with target control can obtain

better FID, it is more time-consuming than the TCP NST without target control.

The accuracy difference is 4.46% but the p-value is 0.502, which does not suggest

the classification in predictions is significant.
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Therefore, we determine not to make any judgement on which TCP NST we

promoted in our project is the best at this stage. But we will provide some

example outputs and discussion of them.

Figure 6.3: Examples outputs for four different scenarios with our TCP Sensitive
Patch-based NST, while (A) and (B) are both TCP to TCP style transfer.
(C) is natural image to TCP transfer. (D) is a horse photo to TCP
transfer example of TCP NST with target control but keep the background
of the object. (E) is a horse photo to TCP transfer example of TCP NST
with target control and set the background as empty.

Figure 6.3 shows examples outputs of four different scenarios resulting from
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our TCP sensitive patch-based model with targeted area control. Both A and

B are TCP-to-TCP style transfer, while A is GongBi to XieYi, and vice versa,

B is XieYi to GongBi. Their FID scores between the output and the style are

188.33 and 158.76 respectively. Compared to the average FID values in figure

6.2, this pair of examples show that the TCP NST does a good job on landscape

transferring between GongBi and XieYi styles.

C is a style transfer from a natural landscape photo to a TCP landscape

painting with an FID score of 243.21. The outcome in C compared with A and

B suggested that our model might be sensitive to the brightness of the content

image. We modified the brightness of the content image B1 along with the bright-

ness of the style image B2 and computed the FID scores for brightness adjusted

generations. As shown in table 6.2, brightness level does have an impact on NST.

This experiment offers an alternative hypothesis that less difference of brightness

between the content image and style image might produce better generation.

Brightness FID

B1 234.207

B1-0.33*(B2-B1) 222.579

B1-0.66*(B2-B1) 179.265

B2 147.630

Table 6.2: Example C in figure 6.1 with brightness adjustment and the respective FID
scores between the outputs and the style image.
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D in figure 6.3 is a natural object, a horse, “painting” in TCP XieYi style

with FID value as 292.87 without setting the background as off. We tended to

set example E as the background to be off. But the result is a negative response

of re-drawing object in TCP style, as its FID is 579.74. ( There is another pair

of on-or-off background controlling examples of an object, a cat, in GongBi style.

The results are shown in figure 6.4.)

In order to better evaluate the on-and-off target area controlling TCP NST,

we manually prepared a set of segmentation masks that provide the ground truth

outlines of objects in the images. This is to make sure an object of interest could

be “cut-off” precisely in all situations. And this is particularly important for

segmenting masks from TCP paintings, especially XieYi paintings. Simultane-

ously, our project has automatically segmentation function on sub-parts learning

of objects which is a FCN [136] model enhanced from chapter 4. In other words,

the sub-parts of an object is learned while the outline is defined.

Besides the computational aesthetic system provides its answer on the NST

results, the figure 6.4 offer human observers to make aesthetic decision on our

TCP NST model. Gatys’s[5] and Champandard’s[10] research are listed as ref-

erences. The content mask and style mask are saliency detection results respect

to content images and style images. Ordering from A to D, the outcomes are:

Champandard’s, TCP NST without target area control, TCP NST with target

area control, TCP NST with target area control and set background off. The

respective FID scores are 137.72 for A, 136.31 for B, 143.79 for C, 97.84 for D.
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From FID aspect, the output of D holds the most similar feature vector to the

original style image. But from the human aspect, both C and D’s outputs have

an extra eye in front of the chest of the cat. Especially it is obvious that there is

no sub-part returned in their content masks. Where the eye comes from remains

a question.

Unfortunately, our project cannot provide an objective and confident solution

to solve the NST problem in the TCP domain. Neither figure 6.3 figure nor

6.4 can claim that our TCP NST model is able to return one-hundred-percent

positive response. Though style recognition is competitive, the art generation

speed is slow compared to some state-of-art NST models verified before [6].

6.4 Summary

For the final stage of our computational aesthetic learning system, we employ

an NST application. This chapter summarises the core mathematic behind two

milestone IOB-NST models, Gram-based style transfer and patch-based style

transfer. Then we introduce TCP domain knowledge to re-design a TCP style

transfer application that might be more in keeping with a human being’s level of

satisfaction. We outline our achievements as follows:

• Proposing a TCP NST model that combines local style loss and global style

loss to better synchronise the image style. This model also invited Target

Mask Matrix to the content loss calculation. The targeted area control
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enables the TCP NST model to have more precise content representation

to improve detail generation.

• Evaluation of the TCP NST model’s outcomes is provided but not as posi-

tive as expected. Generated TCP artworks are entered back into our com-

putational aesthetics learning model and return reasonable responses. But

far more can be improved in the future.



Chapter 7

Conclusions and Future Work

In this thesis, we address computational aesthetics learning in the TCP domain.

We focus on imitating the human visual learning process on TCP and trying

to provide computational aesthetic decisions and outcomes, respectively, recog-

nising objects of arts and generating TCP artworks. Computational aesthetics

learning regularly starts with extracting essential aesthetics information, and this

is implemented by our image representation descriptor. Based on the TCP im-

age representations, our TCP computational aesthetics learning system achieves

good recognition results in TCP styles, content schools, and objects. The system

also presents reasonably good quality TCP generative artworks in some cases,

such as landscape. We provide our answers through theoretical analysis and

empirical investigations on extensive experiments. Conclusions regarding compu-

tational aesthetics learning on TCP and potential directions of future work are

summarised in this chapter.

181
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7.1 Conclusions

In the following, we will summarise our approaches and draw conclusions from

research studies which are described in Chapters 4, 5 and 6. We will also outline

how our project met the objectives stated in section 1.2.

• To investigate effectiveness of features when constructing the pre-

cise image representation of TCP.

Our computational aesthetics learning system can learn and interpret TCP

formal aesthetics style as image representations in the computer vision domain.

The image representation descriptors proposed in section 4.3 provide the solu-

tions. These image representation descriptors deliver both hand-crafted repre-

sentations (HOG) and DL representations (VGG feature maps). In order to

represent TCP aesthetics information more precisely, TCP domain knowledge is

applied to the descriptors. HOG with Sobel kernel is proposed to reduce the

impact of water-and-ink diffusion on edges, and TCP colour palette encoding

based on Basic Color Terms [7] is invited to interpret the logic of culture. We

also promote a cross-feature mathematical transformation to concatenate hand-

crafted and DL representations in section 4.3.4, which is Hash mapping encoding

with Hamming distance and similarity thresholding. All these TCP related fea-

ture extractions improve feature selection performance at different levels. And

our descriptors have shown their successes to achieve the effectiveness of fea-

ture selections. Extensive experiments in section 4.5 provide evidence to these
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investigations.

• To develop TCP Classifiers when distinguishing TCP’s style and

content.

Our computational aesthetics learning system can classify TCP art styles and

contents. This function is implemented by a pair of TCP classifiers employed

in section 4.4, a hand-crafted ML model SVM and a DL model VGG-16. We

evaluate these TCP classification models in section 4.5 and obtain large amounts

of empirical evidence to draw some conclusions. First, both SVM and VGG-16

can achieve competitive results in TCP image classifications. Our computational

aesthetics learning system can achieve 92.9% mAP on classifying GongBi and

XieYi paintings; around 91% on identifying main contents in TCP; 61.6% on

distinguishing dynasties of landscape paintings; and approximately 59% when

recognising seven types of TCP objects. Second, the TCP classification perfor-

mance when identifying styles or contents can be improved by entering the image

representations with TCP knowledge defined in section 4.3. SVM is sensitive to

TCP colour palette encoding, and VGG with cross-features can achieve better

performance. Last, the DL model outperforms the hand-crafted ML model in

most contexts, but SVM can achieve better results in a small dataset.

• To propose a TCP object detector that can recognise the basis

(content element) of computational aesthetics.

Our computational aesthetics learning system can recognise objects of art in
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TCP. A two-stage object detection architecture A-RPN is proposed to implement

this function in section 5.3. This architecture consists of a general RPN and a CN-

Kitten RPN. The CN-Kitten RPN concatenates feature maps with transposed

Conv layers to balance translational invariance and translational transformation.

We replace the RoI pooling with a top-rank voting model and position-sensitive

pooling to enhance position sensitivity on small objects. The A-RPN outper-

forms some state-of-the-art models such as YOLO2 and Faster R-CNN when

detecting TCP objects. This performance can be further improved by applying

TCP domain knowledge. A-RPN with TCP knowledge achieves 69% mAP in

TCP object detection task. Empirical evidence is shown in both section 5.4.1

and section 5.4.2.

• To establish a TCP’s style sensitive style transfer algorithm.

Our computational aesthetics learning system can generate TCP artwork us-

ing content information from a content image and style representation from a style

image. A TCP NST algorithm is proposed in chapter 6 with a combined calcula-

tion of global style loss and local style loss. We promote Target Mask Matrix to

enable area control on content loss computation in section 6.2.3. Therefore, the

TCP NST algorithm can achieve more precise saliency detection. Our system can

produce good quality TCP artworks. Also, these outcomes can be recognised by

the computational aesthetics learning system. Results are shown in section 6.3.
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7.2 Future Work

In spite of the contributions we had made in this research study, our project has

some limitation and unexplored problem. Concerning our research objectives, the

computational aesthetics learning system we promoted managed to achieve the

key results but not accomplished all of them. In this section, we will discuss its

limitations and suggest potential directions for future work.

• Human visual learning on artistic aesthetics is a gradual process. Our com-

putational aesthetics learning system was designed to imitate this. However,

according to Hawkins’ theory [224], “what cortical columns do is to attach

reference frames to objects in the world and also to abstract concepts.” Hu-

man brains can attach frames to external objects in “what” columns and

use “where” columns to internal mapping them to all related reference in

our body. This means any information our brains process will activate all

the knowledge in every domain. Our system has been designed to share

TCP knowledge by employing unifying initialisation to all CNNs involved

(in classification, object detection, and NST), but their communications

were lost after target-specific training. How to retain the interconnection

among all? This seems to be a question that a P.h.D cannot answer.

• Essential TCP skeleton features can be used to define the contours of objects

and brushstroke identifications. Its importance was proved by previous

research studies [186, 193]. However, constructing an effective TCP skeleton
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feature extractor is difficult. The influence factors of water-and-ink diffusion

can be diverse based on materials’ chemical structures. This is the reason

that most existing TCP brushstroke identification is determined concerning

a single artist. Furthermore, the TCP concept, “Designing White Space”,

leads to the fact that most TCP objects do not have fully-connected edges

and clear contour. But recently, SketchGAN [225] was proposed to solve the

problem of sketch completion. This model can recognise and edit incomplete

sketch after identifying their types. This might be a sensible solution to

the problem of TCP incomplete contour. In conclusion, building a TCP

skeleton feature extractor is a valuable research direction we should carry

on.

• In section 4.3.4, we define a mathematical transformation that allows the

image representation descriptor to concatenate hand-crafted and DL repre-

sentation. We use [0, 1] Hash mapping is because it is straight forward and

easy to fit popular DL activation functions (Sigmoid and ReLUs) so that

the computational cost can be reduced. However, these formulations can be

rewritten in Euclidean space to keep higher feature space instead of hash-

ing. Simultaneously, the Hamming distance can be replaced, for example,

by chi-square calculation in unmapped data.

• The A-RPN is not perfect. Although it can achieve competitive results, the

additional RPN, CN-Kitten RPN, slows the model down. The detection
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network, which is determined in the A-RPN model, can be used to gener-

ate a semantic segmentation mask of the detected object. These semantic

segmentation masks can be entered as inputs to the TCP NST model. How-

ever, the current model is trained on only seven object classes. In order to

fully connect A-RPN and the TCP NST, more training should be employed

in the future.

• As stated in 1.1, good aesthetics need to meet satisfaction in terms of both

psychological and physical requirements. There is a statement [224], “in-

telligent machines will not have human-like emotions and drives unless we

purposely put them there.” A machine has no understanding of what is

satisfaction. Therefore, most NST algorithms promoted now-a-day remain

on the stage of “mapping” content to style, so do ours. We used to have a

designed (figure A.2) that allowed the NST to “learn” a generic represen-

tation for a specific TCP style and generate artworks without any content

image, but we failed to implement it because of the due to time also the

complexity of involving relational knowledge graph or NLP which might be

needed. This is another potential direction of studying NST and computa-

tional aesthetics.

As a new discipline, there are many topics in computational aesthetics that

remained un-investigated. We could not attempt all of them in our thesis, neither

list every possible research direction for future work in this section. But we will

carry on related research in the future.
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Appendix A

Appendix

This chapter presents some history on recording the negative attempts on our

project during the past four years.

A.1 Pilot Landscape classifier without TCP knowl-

edge

As first attempt, we only had 100 landscape images per class per dynasty. We

first employed a natural image pre-trained VGG and a binary-classifier SVM

with HOG to our dataset. The results returned was disappointing. The VGG-16

falied to fully converge and was not able to provide sensible predictions. The

SVM return reasonable predictions and we summarised them in table A.1.

Predictions

Dynasty Tang Yuan Ming Qing

Tang 67.3% 12.3% 11.1% 9.3%

Yuan 10.3% 57.3% 13.1% 19.3%

Ming 9.3% 15.7% 58.0% 17.0%

Qing 11.7% 20.3% 15.7% 52.3%

Table A.1: Summary of predictions for four dynasties landscape painting classifier

The performances was evaluated and validated with the form of confusion

matrix, witch have been shown in detail is tables A.2, A.3, A.4, A.5, A.6 and

212
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A.7. Further F1-values was computed and summarised in table A.8 as well.

TRUE

TEST Tang Yuan

Tang 63 37
Yuan 31 69

Table A.2: Confusion matrix of Tang
and Yuan

TRUE

TEST Tang Ming

Tang 67 33
Ming 28 72

Table A.3: Confusion matrix of Tang
and Ming

TRUE

TEST Tang Qing

Tang 72 28
Qing 35 65

Table A.4: Confusion matrix of Tang
and Qing

TRUE

TEST Ming Yuan

Ming 53 47
Yuan 39 61

Table A.5: Confusion matrix of Ming
and Yuan

TRUE

TEST Ming Qing

Ming 49 51

Qing 47 53

Table A.6: Confusion matrix of Ming
and Qing

TRUE

TEST Yuan Qing

Yuan 42 58

Qing 61 39

Table A.7: Confusion matrix of Yuan
and Qing

F1-value

Dynasty Tang Yuan Ming Qing

Tang - 0.649 0.676 0.696

Yuan 0.669 - 0.587 0.414

Ming 0.702 0.552 - 0.500

Qing 0.674 0.396 0.519 -

Table A.8: The F1-value computed for four dynasties landscape painting classifier
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When we first started this research project, we were facing a lack of data and

unstructured dataset. We did spend a long period collecting data and annotating

them manually. Even worse, the first dataset we constructed for landscape paint-

ings did not contain all high-resolution images. Therefore, in the pilot attempt,

the sliding window size was defined as 32×32.

We did not include the Song Dynasty in our dynasty classification because

the TCP developed rapidly during this period. People did not manage to agree

on relatively consistent aesthetics. The TCP art style of this dynasty is diverse.

A.2 Flower-and-Bird & Figure classifier for four

dynasties

Another testing of the previous classification is to figure out a reliable algorithm

on n distinguishing flower-and-bird and figure painting. This requires the TCP

Style Learning system should have object detection ability. However, most existed

object recognition aimed CNN have failed to segment objects on Chinese painting

in most cases. The average accuracy is 32.7%, which is much lower than ground

true.

Accuracy

Dynasty Flower-and-Bird Figure

Tang 41.2% 71.3%

Yuan 63.6% 62.7%

Ming 61.8% 64.8%

Qing 70.25% 56.9%

Table A.9: Accuracy of TCP Flower-and-Bird & Figure classifier for four dynasties

A.3 Pilot Object Detection on TCP

A.3.1 Methodology

For Chinese Painting object detecting, we used to use the origin VGG-16 [77]

Faster R-CNN network [97] model. The detection was proceeded in two stages,
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the Region Proposal Network (RPN) [26] and the Detector Network. Inspired by

Crowley’s research [24], the RPN was initialised with an architecture resembling

VGG-VD-16. The aim of an RPN is to take an input image and predict up to 300

rectangular regions, RoIs. The set of RoIs resulting from the VGG-VD-16 based

RPN was various in scales and aspect ratios. Each of these regions produced a

score describing the possibility of it contains an object. Then, these proposal

regions were passed to a pre-trained Fast R-CNN [134] network. This identified

and regresses the bounding box of areas likely to contain classes. The VGG-16

Faster R-CNN [26] network was then applied to each painting in the test set.

Images were ranked according to the score of the highest confidence detection

window to finalise the ranked list. The detector networks was run on each single

proposal regions to do classification. The training process could be described in

below algorithm.

Algorithm 2 PilotObjectDetecting

1: procedure TrainingProcedure
2: M0← loadpretrainedcnnfeaturemap
3: M1← trainRPN(M0)
4: P1← generateProposals(M1)
5: M2← trainFastRcnn(M0, P1)
6: M3← trainRpnFrozenConv(M2) . RPN customer layer
7: P2← generateProposals(M3)
8: M4← trainFastRcnnFrozenConv(M3, P2) . Fast RCNN FC layer
9: P2← generateproposals(M3)
10: return addRpnLayers(M4,M3.RPN)

As mentioned in the previous chapter, we always have both natural images and

Chinese paintings datasets. We trained the networks on features from these two

datasets and evaluated them by dataset, respectively. We evaluated the outputs

from the single-shot detector method YOLO2 on the test set of both the natural

images and Chinese paintings datasets by comparing image-level classifiers. The

classifier trained on paintings was expected to represent the ‘best-case scenario’

since there was no domain shift to the target domain. However, due to the lack

of data, we failed to retrain all Conv features in CNN but only the last five layers.

The pre-train Fast R-CNN, which was used to initialise the M0. M0 was a pre-

trained ResNet feature map on natural images in our pilot testing model. The

later experiment showed that this initialisation had effects on the outcomes. And

results are summarised in the coming section.



APPENDIX A. APPENDIX 216

Figure A.1: Out-of-date accuracy summary of TCP Object Detector with classes spec-
ification

A.3.2 Experiment and discussion

This previous experiment was to evaluate the reliability and accuracy of the pi-

lot object detection methods. We designed four scenarios: Pre-trained YOLO2

[138] algorithms on natural images evaluated on natural images, YOLO(N); Pre-

trained YOLO2 algorithms on natural images evaluated on Chinese paintings,

YOLO(P); Our object detector trained on natural images evaluated on natural

images, MINE(N); Our object detector trained on Chinese paintings evaluated

on Chinese paintings, MINE(P). After running all the above scenarios, the per-

formance of object detectors was summarised in table A.10.

Methods Accuracy

YOLO(N) 71.10%

MINE(N) 74.96%

YOLO(P) 57.96%

MINE(P) 58.01%

Table A.10: Out-of-date accuracy comparison for Flower-and-Bird and Figure Clas-
sification in pilot approach
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From the results, both YOLO and our models achieved more than 70% accu-

racy on natural image object detection (YOLO:71.10%, MINE: 74.96%). How-

ever, the object recognition performances had dramatically drop when the testing

domain was changed into Chinese Painting. According to table A.10, our pilot

object detector confused with “cat” and “dog” in TCP. (Problem remains in our

current model.) Also, it had big trouble on recognizing “horse”. (Our A-RPN

with TCP knowledge provides solution to this problem.)

A.4 Previous designs of NST

Since our computational aesthetics learning system is designed to imitate the

human visual system on learning TCP, our previous system design targeted the

model should have the ability to learn to unify style representation for NST. In

the origin design, the aesthetic system should be able to generate two or more

generic TCP style (representation) transformation. We expected our NST could

produce generative TCP artworks without taking style image as input but with

style class control. However, we failed. The old system design is shown in figure

A.2.

Later, inspired by the ideas of [181, 183], the model has been re-designed.

We expected the model to take both style images and content images as input,

but to follow a GAN-based training methodology. A discriminant network is

introduced to classify TCP styles (GongBi and XieYi), also the natural images.

The discriminator should return a binary variable to identify the image is fake or

true, and a vector that describes the style of the image, either GongBi, XieYi or

natural. The generator should be able to extract the semantic mask of the content

image and use style images as the training data to apply a similar approach to

the content image with a conditional GAN framework [180].

The figure A.3 is not a fully correct system diagram, just keep it here as a

record.

.........
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Figure A.2: Out-of-date system diagram shows how to construct images whose feature
maps at a chosen convolution layer match the corresponding feature maps
of a given content image
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Figure A.3: The system diagram shows how to construct images whose feature maps
at a chosen convolution layer match the corresponding feature maps of
a given content image with semantic information learning from a pre-
trained detail segmentation network. The pre-trained VGG represents
the VGG backbone network initialised with the train-from-scratch VGG
in chapter 4. The A-RPN from chapter 5 holds the same initialisation
and contribute to sub-parts detail learning of objects to refine segmen-
tation masks. The pair of ConvNets is the discriminant network and
generating network for a GAN model. (The dotted line that links Con-
vNets means the discriminant network and generating network are treated
as one combined network in our design.)
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