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Abstract

The UK’s advanced gas cooled reactors use graphite as a moderator and

structural component. The graphite core degrades over time, and this is a

concern to both controlling reactivity and the safety of the core. To inspect

the graphite core, inductance spectroscopy is used as the soft-field imaging

modality. This thesis considers the reconstruction of the conductivity depth

profile and the detection of subsurface cracks.

Within the thesis, multiple iterative inversion algorithms are compared

for reconstructing the conductivity depth profile; of the iterative algorithms,

second order methods are shown to be the best performing in different cases

considering the prior estimate and noise level.

Two machine learning algorithms are compared for direct inversion: multi-

variable polynomial regression and a convolutional neural network. The re-

sults show that the two algorithms have a comparable performance.

A finite element model is used to generate data to train machine learning

algorithms and in the iterative inversion of eddy current data. The model

must accurately represent the physical experiment; therefore, there must be

a rigorous calibration procedure. A constrained optimisation algorithm is

presented for calibration and inversion of the eddy current data. The mean

signal-noise ratio after calibration was 29.47 dB for a 3D coil model and 28.96

dB for the filament; prior to optimisation, the signal-noise ratio was 1.48 dB

and 4.98 dB, respectively.

In the inversion of graphite data, it is shown that the iterative algorithm
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generally does not improve on the prior estimate because the residual norm

is below the discrepancy, causing steps to be rejected. The restrictions on

the step could be relaxed but this increases susceptibility to modelling error.

Instead, improvements can be made by increasing modelling accuracy.

Feature extraction and classification algorithms are investigated for detec-

tion of subsurface notches. The best balanced accuracy achieved on synthetic

test data was 71.45% using principle component analysis and a neural net-

work. It is not clear how this compares with existing techniques.
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Chapter 1

Introduction

1.1 Aims and Application Scope

The fleet of Advanced Gas-cooled Reactor (AGR) stations in the United King-

dom (UK) use graphite channels to: moderate neutrons, direct the coolant

flow and provide a structural material in the core. Over time, the irradiation

of the core degrades the graphite. Understanding the degradation processes

is important for the safety case and for potentially controlling reactivity (due

to loss of graphite); this requires measuring the density of the graphite.

The density of the bricks is currently determined by trepanning the graphite

core and testing the sample. This is a destructive process which is limited to

carefully selected sites. Furthermore, the trepanned samples do not span the

full width of the brick, and therefore, the graphite behaviour at the periphery

is generally unknown. This thesis presents the development of eddy current

inspection of the graphite channels. The advantages of using eddy current

inspection can be summarised as:

• Deployable in harsh environments, such as a reactor core. This is pos-

sible because the sensor is a coil of wire and has no active components
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which would otherwise need shielding from the radiation.

• Non-contact and single sided inspection.

• Increased data acquisition. Trepanning is slow and has to be done in

specific locations to minimise damage to the bricks.

• Reconstruction of the depth profile spanning the full width of graphite;

the trepanned sample does not penetrate the full width of the graphite.

• A method of detecting subsurface cracking.

• Non-destructive, and thus, inspections can be repeated in the same lo-

cations for continued monitoring.

The aim is to recover the material properties from a set of measurements: this

is an inverse problem. To date, the time taken to solve the inverse problem

limits the reconstruction process to be offline. The objectives of this project

are to speed up the reconstruction process without loss of accuracy (relative

to the methodology used in previous iterations of the program), improve mod-

elling methodology and to develop the crack detection capabilities. There is a

balance to be found with speed and accuracy; tomographic images of a poor

quality will be of little use for understanding the degradation of the core but

slow algorithms limit the reconstructions to be offline and may take too long

to be useful. Ideally, reconstructions could be performed whilst inspecting the

core which would help identify locations which may require further testing.
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1.2 Achievements

1.2.1 Publications

Primary Author

• J. Hampton, H. Tesfalem, A. Fletcher, A. Peyton, and M. Brown, “Re-

constructing the conductivity profile of a graphite block using induc-

tance spectroscopy with data driven techniques.” Insight — Non De-

structive Testing and Condition Monitoring, vol. 63, no. 2, pp. 82–87,

2021.

• J. Hampton, A. Fletcher, H. Tesfalem, A. Peyton, and M. Brown, “Com-

parison of Non-Linear Optimisation Algorithms for Recovering the Con-

ductivity Depth Profile of an Electrically Conductive Block Using Eddy

Current Inspection.” NDT and E, vol. 125, 2022.

• J. Hampton, H. Tesfalem, O. Dorn, A. Fletcher, A. Peyton, and M.

Brown, “Calibration of a Finite Element Forward Model in Eddy Cur-

rent Inspection.” IEEE Sensors Journal, vol. 22, no. 11, pp. 10699 -

10707, 2022.

Co-Author

• H. Tesfalem, J. Hampton, A. Fletcher, A. Peyton, and M. Brown, “Elec-

trical Resistivity Reconstruction of Graphite Moderator Bricks From

Multi-Frequency Measurements and Artificial Neural Networks.” IEEE

Sensors Journal, vol. 21, no. 15, pp. 17005 - 17016, 2021.
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1.2.2 Conferences

• J. Hampton, H. Tesfalem, A. Fletcher, A. Peyton, and M. Brown, “Elec-

tromagnetic non-destructive testing of the graphite cores of advanced

gas-cooled reactors (AGRs).” British Institute of Non-Destructive Test-

ing Webinar Week, 2020 (Presented)

• J. Hampton, H. Tesfalem, O. Dorn, A. Fletcher, A. Peyton, and M.

Brown, “Calibration of a Finite Element Forward Model in Eddy Cur-

rent Inspection.” Research Centre in Nondestructive Evaluation Con-

ference, 2022 (Presented)

• J. Hampton, H. Tesfalem, A. Fletcher, A. Peyton, and M. Brown, “Us-

ing a Machine Learning Forward Model in an Iterative Depth Profile

Reconstruction Algorithm.” British Institute of Non-Destructive Test-

ing/59th Annual British Conference on Non-Destructive Testing 2022

(Accepted)

1.3 Thesis Organisation

The thesis is written in standard format. There are 7 chapters in total, not

including the introductory and closing conclusion chapters. Chapter 2 — The

Graphite Core — aims to provide sufficient background detail in order to un-

derstand the use, material properties and degradation mechanisms of nuclear

graphite. Chapter 3 — Inductance Spectroscopy and The Inverse Problem

— is the most substantial component of the thesis and is concerned with

the mathematical formulation of the problem, the background physics, the

modelling of the graphite and inversion theory. Chapter 4 — Comparison of

Iterative Algorithms — consolidates previous research with a comprehensive

study on the performance of inversion algorithms in a number of different
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cases studies. Chapter 5 — Inversion by Inference — reports on inversion

using inferential techniques and compares two different algorithms. Chapter

6 — Sensor Characterisation — describes the calibration of the forward model

using the laboratory and reactor probes. Moreover, the resonant issues with

the reactor system are discussed. Chapter 7 — Depth Profiling the Graphite

Core — introduces the algorithm used for inverting inductance data collected

from a nuclear reactor, and specifically, the difficulties encountered with the

iterative algorithms. Chapter 8 — Crack Detection — reports on a study

of feature extraction and classification algorithms for distinguishing cracks in

the measurement response from conductivity variations.

1.4 UK Research Centre in Non-Destructive

Evaluation (RCNDE)

This research project is funded by the RCNDE Centre for Doctoral Training

(CDT), grant number EP/L022125/1, and Électricité de France (EDF) En-

ergy. The RCNDE is concerned with the generation of research relating to

the quantitative assessment of the condition of components, plant and engi-

neering structures of all kinds during manufacture and in-service. Moreover,

it is concerned with the design of novel sensors and algorithms for the capture

and processing of data. The sensor technology can be from any number of

modalities, with the two main being electromagnetic and ultrasonic.

There are two arguments for the development and continued research of

Non-Destructive Evaluation (NDE): public safety and reduced downtime if

monitoring must be performed online. Therefore, it is key that NDE be

as efficient as possible, with reliable, quantitative results and robust sensor

technology. The RCNDE is connected to industries such as aerospace, power

generation, defence and oil and gas; through improving safety, new engineering
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designs are facilitated as the risk of catastrophic failure is lowered. Therefore,

the benefits are multi-faceted. The complete mission statement of this grant

can be found in [1].

Over the duration of the project the RCNDE provides a number of com-

pulsory and optional training courses. These courses are typically offered at

one of the member universities, where corresponding expertise are held. The

key benefit of the CDT is that students in the cohort can share ideas, sup-

port each other and have access to high quality research and teaching. These

courses are usually divided into a theory constituent and practical laboratory

sessions, providing an opportunity to apply and test the understanding of the

theory within a controlled environment. For each course an assessment must

be completed, either through coursework, presentation or exam. The courses

completed to date are:

• Intro to NDE

• NDE of Composites

• Practical NDE

• Acoustics and Ultrasonics

• Electromagnetic NDE

• Ultrasonic Transduction

• Signal Processing

• Intro to Matlab

• Finite Element Modelling

• Radiography
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Chapter 2

Background and Industrial

Motivation

2.1 Overview

This chapter begins with a discussion of historic and projected energy and

electricity usage, in the context of achieving net zero greenhouse gas emissions

by the year 2050. The implications of achieving net zero are a vast shift in the

way electricity is used and sourced, and consequently, there is a large amount

research and development of technologies such as carbon capture, hydrogen

and heat pumps.

To facilitate understanding of the next generation of nuclear reactors, basic

concepts of reactor designs are explained, where key differences in reactor de-

signs are: the fuel cycle, the point of operation in the neutron spectrum (neu-

tron energy), the coolant used and the temperature of the core. Introduced

are the promising generation IV reactor designs capable of heat, hydrogen and

electricity generation; these capabilities make nuclear extremely attractive for

achieving net zero. The UK will likely adopt the high temperature gas-cooled

reactor, which is capable of heat, electricity and hydrogen production. These
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are considered an evolution of the UK’s current reactor technology; therefore,

there already exists the expertise and regulatory standards for such a reactor.

The relevance of the work presented is then given in the safety case, where

it is essential that core components are monitored for failure and operation;

the loss of density of a moderator affects both the structural integrity of the

core and reactivity. The economic value of Non-Destructive Testing (NDT)

is then provided in terms of service and equipment industries, where growth

in both of these areas is expected with a projected combined market value of

$11.6 billion dollars in 2022.

The AGR is briefly described, specifically the role of graphite and its

degradation mechanisms. Further detail is provided on the manufacturing

process of graphite and how this process affects the material properties and

degree of isotropy — this is important in modelling the graphite,

Current inspection technologies are described, which are: visual inspection

with a camera, displacement measurements to measure channel distortion and

eddy current inspection for crack detection and depth profiling. The harsh

environment and single sided access limits the tools available. Additionally,

inspection mostly concerns the fuel channels; there is scope and motivation

for developing tools for the inspection of the control rod channels. In this

thesis, only the fuel channels are considered.

A literature review is presented with regards to eddy current inspection.

In the graphite application, there are no analytic solutions to the inverse

problem; therefore, iterative techniques are used. This requires a forward

model which accurately describes the experimental problem. To tune a for-

ward model, a grid search can be used to determine some optimal model

parameters. However, this process is slow, and thus, optimisation techniques

are more favourable. Although there are no analytic inverse solutions in this

application, Machine Learning (ML) methods can be used to approximate the
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mapping.

2.2 Industrial Context

2.2.1 Energy and Electricity Demand

The UK is at the beginning of a vast shift in the way that energy is both

used and sourced. Recently, an independent public body, the Committee on

Climate Change (CCC), released its target of reaching net-zero greenhouse

gases by 2050 [2]. It is expected that in order to reach net-zero, extensive

electrification of current energy sources is required; the electricity generated

must be derived from low-carbon sources. A cautious estimate of double the

current electricity demand is given by the year 2050 [2]. Further reductions in

emissions will come from the use of hydrogen, heat pumps and carbon capture

technology [2], [3]. The current plan set by the CCC is to source at least 59%

the electrical energy in 2050 from renewables [4]. The remainder is to be

sourced from nuclear, natural gas and bioenergy, with emissions balanced

using carbon capture technology. The full 10 point plan laid out by the

government can be found in [5].

Fig. 2.1 shows the total breakdown of energy usage into four sectors:

industry, transport, domestic and other — other includes agriculture, com-

mercial and services. The most energy intensive sector is transport, followed

closely by domestic, industry and then other. There is a clear low utilisation

of electricity within the transport sector; in 2020 almost 95% of the energy

used was sourced from petroleum, mainly owed to the reliance of petroleum in

aviation and road transport [6]. This is in sharp contrast to the other sectors

where electricity and natural gas are much more substantial constituents. In

the UK, natural gas is currently the largest source of energy used to generate
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Figure 2.1: The breakdown of energy consumption across the four sectors in
2020 [6].

electricity. Recently, wind has overtaken nuclear to become the second largest

source, the complete breakdown is shown in fig. 2.2.

The path taken towards achieving net zero is a highly divisive subject.

This path can be chosen according to the current lowest carbon sources of

energy or the potential to be the lowest. The best approach to achieving net

zero is complex and requires consideration of a technologies maturity, deciding

where best to direct investment and the social and environmental impact of

action or inaction. It is prudent to remember the words of Watson-Watt:

Give them the third best to go on with; the second best comes too

late, the best never come.
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Figure 2.2: The sources of fuel used for the generation of electricity over time
[7].

2.2.2 Development of Nuclear Energy in the UK

The civil nuclear industry was born out of military applications of weaponising

atomic energy during the second world war. In the UK, the first nuclear

reactors were built in Harwell, Oxfordshire at the Atomic Energy Research

Establishment, starting operation in 1947. The success of the initial research

programs led to the construction of the air-cooled Windscale Piles site in

Cumbria, followed by the construction of Calder Hall and later the Windscale

AGR. The expansion of the nuclear program was, in part, a response to the

Suez crisis in 1956; as such, the use of nuclear energy is both a strategic and

low emissions asset.

The world’s first commercial nuclear power station was built at Calder

Hall, UK. The reactor built at Calder Hall used fuel elements clad in a mag-

nesium alloy; hence, these were called the Magnox reactors. Following the

success of the Magnox reactors (in producing commercial levels of power),

attention shifted to the next generation of reactors. There was some debate

surrounding whether the UK should adopt a design based on its own AGR
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Figure 2.3: The timeline for decommissioning the current AGR fleet [9].

technology or American water-cooled reactors. The decision was to use AGR

technology which could attain much larger thermal efficiencies compared to

the Magnox reactors and Pressure Water Reactor (PWR) designs. The ther-

mal efficiency of various reactor designs is given in table 2.1 — the thermal

efficiency is defined as the percentage of input thermal energy that is con-

verted to useful work in the electrical generator output. AGRs have since

Table 2.1: Summary of different reactor types, considering thermal efficiency,
coolant and fuel [8].

Reactor Fuel Moderator Coolant Thermal efficiency
Magnox Natural uranium Graphite Gas ≈ 31%
AGR Enriched uranium Graphite Gas ≈ 42%
PWR Enriched uranium Water Water ≈ 32%

been built at 7 different sites, currently with a combined total of 14 reactor

cores, where the majority of these sites will be closed in the next few years

(see fig. 2.3). Now that the AGRs are due to be decommissioned, the question

of future reactor designs has reappeared.
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2.2.3 The Future of Nuclear Energy

Nuclear power stations have a lifetime measured in decades, and consequently,

nuclear reactor designs are split into generations. Generation I reactors refer

to the experimental reactor designs, such as Calder Hall, and generation II are

the reactors subsequently built, designed for increased economy and reliabil-

ity; for example, the AGR and PWR. Generation III reactors are essentially

the same designs as the second generation but with improvements to safety

and efficiency; the European PWR is a generation III reactor. The generation

IV reactors are currently being developed, with an international consortium

researching the different reactor designs. The focus of the generation IV re-

actor designs is on safety, sustainability, cost-effectiveness and resistance to

weapons proliferation.

Nuclear Role in Combating Climate Change

The use of nuclear energy for the reduction of greenhouse gas emissions is an

ongoing source of debate in academic literature. It has been argued that nu-

clear power does not associate with lower carbon emissions, and additionally,

that nuclear and renewables show a tendency to be mutually incompatible

[10]. Within [10], it is posed that nuclear and renewables tend to “crowd each

other out”, where the larger scale requirements of nuclear energy conflict with

the infrastructure required for smaller scale renewables sites; for example, the

two may require different energy grid designs, with renewables being more

distributed. However, this is not necessarily true of all nuclear technologies;

for example, the modular reactor may have a higher compatibility with re-

newable technologies and this is given as a limitation of the study by the

authors: in the study all nuclear and renewable technologies were grouped

into two classes, and therefore, the relative merit of different reactor designs

was overlooked. These findings have been directly challenged in the literature
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and evidence has been provided that both are environmentally beneficial in

reducing national Carbon Dioxide (CO2) levels [11]. Further, it is argued

that, in some countries, the geography and weather may not be conducive to

renewable generation [11]. Additionally, there are some promising next gen-

eration reactor designs that have broader capabilities in electricity, hydrogen

and heat generation: comparing these with renewables is more complex.

Nuclear Fission Fundamentals

“Fission” is derived from the Latin word findere, meaning ‘to split’. Nuclear

fission is the splitting of an atom into smaller atoms by inducing instability,

typically with neutron capture (an alternative is photofissioning). This pro-

cess occurs as the nuclei of large atoms decay into a more stable form, in which

there is a more favourable balance of the nuclear and electric force exerted by

neutrons and protons respectively. The fissioning of a single uranium-235 iso-

tope releases approximately 162 MeV in kinetic energy of its daughter atoms,

with residual energy in emitted gamma rays, neutrons etc. [12]. Uranium-

235 has an atomic mass of 235.043930131 u [13], meaning that in one gram

of uranium-235 there is a potential 1.59201× 1013 Joules of kinetic (thermal)

energy. This value is subject to the probability of capture and fissioning. In a

realistic design, nuclear can achieve up to 28 GJ/g and is considerably larger

than natural gas alternatives which generate approximately 0.05 MJ/g [14].

The fissioning process is shown in fig. 2.4. The elements of concern in

nuclear engineering are the actinides, a group of rare earth metals which are all

radioactive [15]. Over time, radioactive isotopes decay and convert from one

type of element to another (known as transmutation). There is considerable

research into the separation and transmutation of waste products from nuclear

fuel [16]–[18]. There is potential to extract further energy from these elements

and also to reduce the amount of radioactive waste that is sent to a geological
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Figure 2.4: The fissioning of an element through neutron capture.

repository.

Consider fig. 2.5, in which the number of neutrons emitted per neutron

absorbed is plotted against the incident neutron energy. There are two char-

acteristic regions of operation, referred to as the fast neutron regime and

thermal regime. The difference between the two regimes is in the probability

of neutron absorption and subsequent fission. In the fast regime, the proba-

bility of neutron absorption is lower but if absorbed it has a higher probability

of fissioning than in the thermal regime [12]. The regime of operation is one

of the key distinctions in nuclear reactor designs, where those that operate

in the fast regime are referred to as fast reactors and those which use the

thermal regime thermal reactors.

Due to the differences in the probability of neutron absorption and fis-

sioning, the thermal regime generally requires less fuel but has a poorer fuel

economy. Additionally, the fast reactor is better at reducing the amount of

radioactive waste products because the larger neutron energy increases the

probability of the minor actinides fissioning [16]. The recycling of the waste

products is an active area of research for both regimes [17], [18]. The recy-
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Figure 2.5: The average number of neutrons released per neutron capture, as
a function of incident neutron energy [20].

cling of the spent fuel is referred to as the closed fuel cycle and its complexities

and cost in reprocessing the fuel make it less favourable than simply using

it once and safely disposing, i.e. the open cycle [19]. Further, there are in-

creased short term proliferation threats from reprocessing in the closed fuel

cycle because of the extraction of plutonium and other usable fissile material;

this increased risk is from the transport of materials and the extraction of

weapons grade material, such as plutonium-239. However, in the long term,

the burn up of the recycled material means that these would not be present

in spent fuel, and therefore, there would be a lower risk associated with the

disposal of spent fuel [19].

Further differences between reactors include the type of fuel used, such

as uranium-235, uranium-233 or plutonium-239; these isotopes can be found

naturally or by transmutation of a fertile material, such as thorium-232 or

uranium-238. Some reactor fuels use a mixture of recycled plutonium and

uranium, called mixed oxide. Transmutation of thorium-232 has a number of

benefits: thorium is more abundant than uranium, it has a higher fuel burn up

(more efficient), it has less long-lived radioactive waste and is considered more
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difficult to make nuclear weapons [21] [22]. However, the National Nuclear

Laboratory released an independent review of fuel technologies, concluding

that a thorium fuel cycle does not yield much benefit over a fast reactor using

uranium-238 to breed fissionable plutonium [23]. Further, they discuss the

over-statement of proliferation resistance of thorium, since it needs a fission-

able uranium isotope to induce the reaction. Although they do not dismiss

thorium based reactors in the future, it is widely considered an immature

technology with further research and development required. Additional dis-

tinguishing features include the use of a solid or liquid fuel, the coolant used

and the heat engine cycle — some potential reactors have a single primary

circuit directly driving a steam turbine. Reactors which use a gas or water

coolant require pressurisation of the core, and thus, have a larger footprint in

components concerning safety.

Not all of the nuclear fission products are waste: the decay products

bismuth-213 and actinium-225 are examples of a widely researched alpha emit-

ting isotopes for the treatment of cancers, such as prostate and leukemia, in

a process known as targeted alpha therapy [24], [25]. Similarly, radium-223

(a product of the uranium-235 decay chain) is currently being researched for

the therapy of bone cancer [24]. The production of these isotopes remains a

challenge. The bismuth and actinium radionuclides are largely sourced from

stockpiles from previous nuclear research programs. The sustainable produc-

tion of these isotopes is being pursued, without reliance on the nuclear fuel

cycle.

Proposed Designs

In designing any power generation system that relies on the transduction of

thermal energy, the maximum efficiency is dictated by the Carnot theorem:

ζmax = TH−TC
TH

, where TH is the temperature of the hot reservoir and TC the
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cold. This means that the maximum efficiency is dictated by the difference of

inlet and outlet temperature in the primary heat exchanger, not withstanding

the losses in the thermal circuits. Therefore, to increase the thermal efficiency,

reactors should be run at higher temperatures, but this has consequences in

designing a system that can withstand such temperatures. As an example

of limited efficiency, the AGR reactor has a gas inlet and outlet tempera-

ture of approximately 339°C and 669°C, respectively [26] and therefore has

a maximum thermal efficiency of ζmax = 49%, whilst the actual efficiency is

ζ ≈ 40%. Besides thermal efficiency, the total efficiency of a reactor is driven

by the fuel economy: how much energy is extracted from the fuel.

There are six reactor types being considered:

• Super-critical water-cooled reactor: this design is an advancement of the

light-water reactor, with several improvements to safety and efficiency.

The water coolant is operated at super critical condition, meaning it

is indistinguishable as a gas or liquid. This requires operating the re-

actor at high pressure of 22.1 MPa (218.11 atmospheres) and temper-

ature in the range of 510-625 °C, resulting in a thermal efficiency of

approximately 44% [27]. The need for steam dryers, steam separators,

recirculating pumps, and steam generators is eliminated, reducing the

size of the core. The operation of the coolant at super-critical condi-

tion also avoids the formation of bubbles within the circuit, which can

otherwise affect the moderator abilities of the core. The concept of the

super-critical water cooled reactor can be used in either a fast or thermal

reactor design with an open or closed fuel cycle [28] and has the possi-

bility of being used with a thorium fuel [27], [29]. However, this reactor

would need significant research and development before demonstration

[28].

• Very high-temperature gas reactor: this is conceptually very similar
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to the UK’s AGRs. It is a helium cooled, graphite moderated reac-

tor, operating in the thermal neutron spectrum with an open cycle [28].

Because of the open cycle this design has a larger number of waste prod-

ucts when compared with the other generation IV designs; however, it

does have the adaptability of burning plutonium and minor actinides

[28]. Operating at upwards of 1000 °C, it has a high thermal efficiency

of approximately 50% [27]. It is attractive as a means of both power

and thermal generation for process industries such as steel and alu-

minium, chemical and oil. It can also produce hydrogen as a bi-product

and is, therefore, attractive for the broader aims for achieving net zero

emissions. It can operate with a uranium, plutonium and thorium fuel

types, allowing potential design modifications as research into thorium

progresses [28].

• Molten salt reactor: the molten salt reactor has been researched for

many decades, with the first experimental reactor operating in the

1960’s at the Oak Ridge National Laboratory. Instead of using a solid

fuel it effectively uses a liquid fuel by dissolving the nuclear fuel into

the coolant — a molten salt. The reactor can be operated as either

a fast neuron, thermal or breeder reactor. In the latter two reactors,

the moderator is a matrix of graphite cylinders in which the coolant

flows through; however, modern research in this generation IV design

is focused on the fast reactor [28]. Due to the high output tempera-

ture, this reactor can be used for process manufacturing and for the

production of hydrogen [27]. The thermal efficiency is approximately

45%. It has inherent safety properties such as operating at atmospheric

pressure and passive draining of the fuel from the core if required [30].

This reactor would be operated under a closed fuel cycle [28]. A unique

characteristic of the molten salt reactor fuel-coolant is the ability to

process the fuel online without handling, making it attractive for waste
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minimisation and lower proliferation risks (compared with other closed

cycle designs). However, there are significant barriers in research and

development and the lower level of expertise of such a reactor design

within the UK.

• Gas-cooled fast reactor: similar to the very high-temperature gas re-

actor, this design uses helium but is operated as a fast reactor with a

closed fuel cycle [28]. This type of reactor is a direct-cycle, meaning

there is no separation between the turbines driving the electrical gen-

erator and the reactor core, with the advantage being fewer losses and

higher efficiency [27]. With a high outlet temperature of 850 °C it is

suitable for heat, electricity and hydrogen generation and has a ther-

mal efficiency of approximately 45%. However, this technology requires

extensive research and development before demonstration.

• Lead-cooled fast reactor: This design operates in the fast region of the

neutron spectrum, with a closed fuel cycle. This reactor uses molten

lead as a primary coolant, which is highly abundant, and therefore, in-

expensive to source [28]. Further, there are a number of safety features

which make this attractive: atmospheric pressurisation of the core, high

boiling point of lead (boiling would produce voids in the coolant) and

passive natural circulation safety systems [31]. Moreover, the inher-

ent safety of the design lowers the footprint of the plant and systems

within it, reducing the cost. However, lead is corrosive above 500 °C

and has complications in terms of fuel and coolant inspection due to

being optically and electromagnetically opaque. Due to the lower outlet

temperature of approximately 550 °C, this reactor is suitable only for

electricity generation and has a moderate thermal efficiency of 41% [28].

• Sodium-cooled fast reactor: a fast reactor which uses liquid sodium

as a coolant, operating at atmospheric pressure and a temperature of
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approximately 550°C [27], [32]. This reactor uses a closed fuel cycle,

and therefore, has fewer waste products [28]. This reactor is conceptu-

ally similar to the lead-cooled fast reactor in that it would use a liquid

metal as a coolant; however, sodium is a highly reactive metal which

reacts with air and water. Therefore, additional safety features are re-

quired, such as the use of three separate coolant circuits to minimise

problems with interactions with water [32]. The primary attraction to a

sodium-cooled fasted reactor is that it is a mature technology, capable

of having an extremely high fuel utilization and low waste products — it

is considered the nearest term deployable system for waste management

[28] . The lower temperatures make this technology attractive for the

production of electricity but not for process manufacturing; the lower

temperature means the thermal efficiency of this design is approximately

38% [28].

Considering the following factors: required research and development, UK

expertise, safety, waste products, proliferation resistance, generation of heat

and electricity and the ability of the UK to manufacture the components

— the nuclear innovation and research office has recommended that the UK

government pursue a high temperature gas-cooled thermal reactor design [28].

This would benefit from the decades worth of experience the UK has in AGR

and Magnox reactors, alongside the infrastructure already in place to regulate

such a reactor.

Within the future it is perhaps best to develop and demonstrate the fea-

sibility of other reactor designs, such as the molten-salt reactor where the

radiotoxicity of waste products can be greatly reduced. There could be an

intermediate research and development phase where the molten-salt reactor

recycles waste from other rectors, perhaps treated as a waste and reprocessing

facility; disadvantages of such a setup would be in the handling and repro-
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cessing of the fuel. However, it would be beneficial to the UK to expand

its expertise and skills in different reactor technologies; something which is

currently a hindrance to adopting other reactor technologies. In the future,

designs such as the super-critical water reactor or molten salt reactor may be

significantly improved, in which case the UK would have to rely on interna-

tional partners to supply knowledge and expertise in designing, constructing

and operating the nuclear technology.

2.2.4 The Safety Case

The use of nuclear energy is a highly divisive subject, particularly in the so-

cial and political context. The main discussion point is that of safety because

any nuclear emissions are highly hazardous to both human health and the

environment. To minimise risk, there is a large amount of regulation and

research into the operation, maintenance, and present and future condition

of a nuclear reactor power station. The hazards associated with nuclear en-

ergy form a large part of the public debate on operating a nuclear facility.

Therefore, safety is paramount to enable any company to continue operating

as a business. Nuclear safety concerns installations, transport of radioactive

material, security and safeguards [33]. The installations criterion includes the

construction, operation and decommissioning of nuclear power stations [33].

To ensure nuclear safety in the UK, the nuclear industry is regulated by the

Office for Nuclear Regulation (ONR). The ONR is a member of the Western

European Nuclear Regulators Association (WENRA). WENRA was initiated

in 1999 as a means of providing a baseline in nuclear safety using standards

from the international atomic energy agency; membership allows applicant

countries to exchange knowledge and experience, enriching nuclear safety. The

ONR is a government body that evaluates whether any business related to

nuclear energy is safe, where a license is issued based off the ONR’s evaluation.
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However, it is the responsibility of the applicant to show that risks are As

Low As Reasonably Practicable (ALARP) and to provide this evidence to

the ONR. The demonstration that the risks are ALARP is achieved through

good practice in engineering, operation and safety management [33]. This

requires an understanding of the condition of the facility, presently and in the

future, and also its behaviour in a variety of situations. The ONR state that

[34]:

the onus is on the dutyholder to implement measures to the point

where it can demonstrate that the costs of any further measures

would be grossly disproportionate to the reduction in risks achieved

by their adoption

Regarding the graphite core, the ONR specify that the safety case should

demonstrate that the graphite core is free of defects that could impair safety

or that the safety of the core is tolerant to the possible defects, where a defect

is defined as a deviation from the design specification. The main concern

relating to graphite is if defects prejudice the delivery of a safety function,

such as impeding the control rod, fuel element or coolant flow. Accordingly

[35]:

There should be appropriate monitoring systems to confirm the

graphite structures are within their safe operating envelope (oper-

ating rules) and will remain so for the duration of the life of the

facility.

In addition to measurement systems, analytic models of the core are re-

quired to enable predictions of the graphite core material properties, dis-

placements, stresses, loads and overall condition. These analytic models can

be used to simulate the behaviour of the core in a fault condition given the

current condition of the core; therefore, the accuracy of the measurement
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has a direct impact on evaluating the risk of operating or decommissioning a

station. The complete set of the ONR’s safety assessment principles can be

found in [33].

Safety cases need to adopt what the ONR call a ‘multi-legged’ approach,

using independent and diverse arguments to provide defence in depth. This

PhD is to aid the safety case through the development of an inspection system

which provides data that will enhance the assessment of the risks involved in

operating or decommissioning EDF’s AGRs.

2.3 The Non-Destructive Testing Market

The use of NDT is primarily to ensure safety but it also provides a mechanism

for manufacturers to ensure the quality of their goods and to reduce waste.

The NDT services and equipment market is expected to grow, with the ex-

pansion of infrastructure, increase in safety standards and the development

of alternative materials such as carbon fibre composites.

Services

The global market revenue for third party NDT services in 2020 was $8.9

billion USD and is projected to grow to over $10 billion by 2025 [36]. The

growth will, in part, come from a need to adhere to domestic and foreign safety

standards (exports). However, growth is mainly driven by global investments

in infrastructure such as rail and power generation; for example, the Chinese

belt and road initiative [36]. The main industries supporting NDT are oil and

gas, manufacturing and transportation; the COVID-19 pandemic significantly

impacted the NDT sector, but this is only projected to be superficially (see fig.

2.6). More concerning to NDT will be the long term decline of oil and gas and

the need for inspecting pipelines. This vulnerability to the dependence on oil
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and gas can be seen in the recent volatility in the oil and gas market, which

directly affected the NDT services sector [36]. This will be partly negated

through the development of technologies such as wind turbines, which use

carbon fibre composite blades, and perhaps an increase of the use of hydrogen,

which will require pipelines.

Growth of NDT services is partly fuelled by companies outsourcing NDT

services to remove the expense associated with expert training for operation

of equipment. There are additional factors such as the internet of things,

industry 4.0 and artificial intelligence which will no doubt influence the way in

which NDT is carried out; for example, permanent monitoring systems can be

interconnected and evaluations made using artificial intelligence, particularly

useful for structural monitoring. This is an example of a push-pull situation

between safety regulations and NDT, where improved NDT methods will

enable stricter safety regulations, in turn supporting the NDT market. The

market share according to the different NDT modalities is shown in fig. 2.7,

where it can be seen that ultrasonic test equipment has the largest share.
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Figure 2.6: The growth of NDT services, which is forecast to bounce back
from the pandemic [36]. The forecast period is from 2021–2025, where prior
dates relate to the actual revenue.

Figure 2.7: The forecast market share of different NDT service modalities in
2022 [36].
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Equipment

Unfortunately, at the time of writing there has not been an update of the

forecast for the equipment market since 2017; therefore, the forecast growth

and revenue may not be reliable and does not reflect the circumstances of

the pandemic. For this reason, only brief comments are made about the

equipment market.

The total market value in 2017 was $1.955 billion USD and was expected to

grow to $2.718 billion USD in 2022 [37]. Similar to the services market, growth

is expected because of the global increase in safety standards. Additionally,

the shift to carbon fibre composite material is given as a driver for developing

new NDT techniques and equipment. Using the data from 2017, the forecast

market share according to NDT modality is plotted in fig. 2.8. It can be seen

that radiography has the largest share, likely due to the cost of the equipment

relative to other methods..

Overall, growth is expected in NDT services and equipment, with the

development of new materials to inspect, the increase in safety standards and

the expansion of infrastructure. Therefore, research and development will

continue to be instrumental to the NDT market.
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Figure 2.8: The forecast market share of different NDT equipment modalities
in 2022 [36].

2.4 Advanced Gas-Cooled Reactors

In AGRs, CO2 gas is used to transfer heat from the core to the boilers. CO2 is

used because it has a low probability of absorbing neutrons, does not become

radioactive and is relatively abundant [38]. Graphite was initially chosen as

a moderator since it has a high scattering cross-section and a low absorption

cross-section [39]. Additionally, the graphite moderator bricks provide a path

for the coolant to flow and housing for the fuel elements and control rods to

slide into. The interconnections between lattice of graphite bricks is shown in

fig. 2.9 and a channel specific labelled diagram in fig. 2.10. The inspection

of the fuel channels is of main concern in this work.
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Figure 2.9: Typical lattice of graphite channels [38]. There are three channels
types: fuel, control rod and cooling channels. The latter two are generally
grouped together and termed interstitial channels.

Figure 2.10: Key characteristics of graphite channel.
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2.5 Nuclear Graphite

2.5.1 Manufacturing

The Magnox reactors used a type of graphite known as Pile Grade-A (PGA);

this was changed in the AGR design to Gilsocarbon. Although Eatherly et

al. describe the manufacturing process for PGA [40], there are only a few

differences to the way that Gilsocarbon graphite was produced, namely: the

type of coke (Gilsonite was used for manufacturing Glisocarbon) and that

PGA was produced using extrusion and Gilsocarbon by vibration-moulding

[41]. The difference between the type of coke results in a needle shaped

particle in PGA and spherical particles in Gilsocarbon [41].

The petroleum coke used to make PGA is a by-product of cracking (break-

ing down hydro-carbon molecules) crude oil. After the initial cracking of crude

oil, the heavier residuals are sent to be further refined until the desired coke is

obtained. There are several degrees of freedom to how coke is manufactured

at different oil refineries; therefore, there may be some variability in petroleum

coke just from the manufacturing stage.

The next stage in producing graphite is calcination, where the raw coke

is heat treated to remove volatile hydro-carbons and effect a shrinkage in the

coke. This stage is crucial because ≈ 25% of the weight of raw coke is lost

in calcination. If this step is missed then it can result in extremely weak or

cracked material later in the manufacturing process. Due to variability of the

crystal alignment of the raw coke, because of the different refinery practices

and in the material used, the calcined coke can vary in shape. An elongated

particle shape results in a highly anisotropic graphite body.

The calcined coke is then bound together with coal-tar pitch, the residue

left from distillation of coal tar. After mixing, the material is then sent
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Figure 2.11: Crystal structure of graphite [42].

to be formed (in the case of PGA by extrusion), after which the formed

‘green article’ is left to cool down and is then baked. In extruded graphite,

the filler coke particles become aligned with their long dimensions parallel

to the direction of extrusion, resulting in the strong anisotropy of graphite;

properties such as the thermal and electrical conductivities are greatest in the

direction of extrusion. After baking, the article is then impregnated with a

substance which deposits carbon in the voids upon reheating, reducing the

porosity of the material. Finally the impregnated article is heat treated in

order to grow the crystals inherent in the raw coke. The resultant graphite

crystal has the structure shown in fig. 2.11.

The properties of the nuclear graphite depend on the raw materials used

and the mode of fabrication; nuclear graphite was produced to have high

thermal conductivity and resistance to radiation damage. When enriched

uranium became available the irradiation levels increased, necessitating new

strength and density requirements. These new requirements were met with

the use of gilsonite coke as the raw material. The difference in formation

and type of particle means that PGA has a much higher degree of anisotropy

than Gilsocarbon. The degree of conductive isotropy of Gilsocarbon graphite
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blocks is important because it is a potential source of modelling error. In this

work, the graphite is modelled as isotropic.

2.5.2 Irradiation

There are two types of radiation of concern with respect to graphite: ionising

gamma radiation and neutron radiation. The ionising radiation dissociates

the CO2 coolant into carbon monoxide and oxygen that chemically reacts with

the graphite in a process known as Radiolytic Oxidation (RO), resulting in

loss of graphite density: this is referred to as weight loss [41], [42]. Generally,

weight loss is not expected to be uniform because the dosage is attenuated by

the graphite [42].

The result of RO is a change in various material properties [41]. For

example, Marsden et al. note that the compressive and tensile strength,

Young’s modulus and thermal conductivity is significantly modified by RO

[42]. RO is reduced by adding a methane inhibitor; however, the amount

of inhibitor is limited as it can lead to carbon deposition around the fuel

assembly [43]. The methane travels through holes drilled throughout the

brick to inhibit the gasification of the carbon across the graphite volume (see

fig. 2.10).

Emitted neutrons in the reactor have an average energy of 2 MeV, far

greater than the 60 eV required to permanently displace a carbon atom from

the Crystal lattice [42]. Collisions between the neutrons and carbon atoms

produce clusters of displaced carbon atoms between the basal planes [42].

This is the consequence of Fast Neutron Radiation (FNR).
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2.5.3 Stresses and Keyway Root Cracking

Over the course of the reactor lifetime, the difference in radiation dosages and

temperature throughout the graphite creates stresses within the bricks [41].

The stresses within the graphite are dependent on the dimensional change

and material properties; for example, the coefficient of thermal expansion

and Young’s modulus [44].

Early in the reactor life, the bore experiences tensile stress and the periph-

ery compressive; this reverses later in life and is called stress reversal [41][45].

Further, the stresses generated are dependent on temperature: the difference

in the coefficient of thermal expansion across the brick means that the ther-

mal stresses become significant at reactor shutdown. The normalised stresses

are plotted as a function of lifespan in fig. 2.12. Prior to stress reversal, there

is a high possibility of cracks initiating from the bore and post stress reversal

a high possibility of cracks initiating from the keyways at the periphery [45].

The theoretical explanation for the dimensional change and the stress re-

versal is a key part of the safety case. Under irradiation, the graphite crystal

expands in the c direction and shrinks in the a direction (see fig. 2.11) [44].

The model used by EDF explains the reversal in stress by means of accom-

modation porosity, in which the expansion in the c direction is unconstrained

to a point; once the accomodation porosity is depleted, the expansion in the

c direction dominates and leads to overall expansion [44].

Keyway root cracking occurs later in the reactor life when the periphery

of the bricks experience tensile stress and compression at the bore [46]. The

keyway contains sharp angles which are stress concentration sites and when

placed under stress cracks are likely to propagate from these sites [47]. It is

likely that once a crack is initiated it will propagate through the width of

the material, terminating at either the bore or at one of the methane holes
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Figure 2.12: The normalised hoop (circumferential) stress at the graphite
bore and periphery [41]. The spikes are thermal stress induced at reactor
shutdown.

[46]. Detection of these cracks is crucial for the safety case, as the number of

keyway root cracks is limited under the operational license.

2.6 Literature Review

2.6.1 Current Inspection Systems

In service inspection of the reactor is carried out using cameras, a treppaning

tool, an instrument called the Channel Bore Inspection Unit (CBMU) and

eddy current probes.

The variation in radiation dose results in uneven shrinkages within the

graphite channels, causing channel distortion. The channel distortion is traced

by measuring the diameter, ovality, channel bow and channel tilt using the

CBMU. With this information the CBMU is capable of detecting the presence

of significant axial cracks originating at the bore or periphery, as well as
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circumferential cracks [48]. The system is deployed vertically into the fuel

channels and it remains centred within the channel using two sets of four self

adjusting wheels. There are linear displacement sensors placed at every 90

degrees around the device which measure the displacement from the centre.

The New in-Core Inspection Equipment (NICIE) was developed to provide

a faster method of inspecting the graphite channels using cameras; it was then

upgraded in the mark 2 NICIE by fitting the cameras onto a CBMU.

Inspection capabilities within the interstitial channels is much more lim-

ited. However, at several stations there is the core-restraint viewing winch,

which has a control rod viewing camera and an eddy current probe; this is still

a prototype arrangement. The development of the interstitial eddy current

inspection would be a good area of research to develop.

The use of cameras and linear displacement sensors is limited to surface

measurements. To make volumetric measurements of the core, a trepanning

tool is used. The trepanning tool cuts a cylindrical sample in the radial direc-

tion of the channels. A trepanned sample does not extend the full width of

the brick, only between 40 − 60 mm; a new version recently put into service

can retrieve longer samples. These samples are used to determine many ma-

terial properties, such as the density of the brick, Young’s modulus and the

coefficient of thermal expansion. As the sample does not extend the full width

of the brick, the behaviour of the graphite at the periphery is less understood

than the bore.

Eddy current techniques were initially developed for the detection of cracks

within the graphite core [49]. Research in eddy current inspection methods

resumed in 2006 with the development of the Proof of Principle Eddy Current

Tool (PoPECT). Following the initial iteration, the Prototype Eddy Current

Inspection Tool (PECIT) was developed, where this tool had three eddy cur-

rent probes instead of one and had the ability to perform helical scans [49].
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A key issue in inspecting graphite is in discriminating variations in a signal

due to cracking and electrical conductivity; however, the sensitivity of the

measurement to conductivity variations demonstrated that the electrical con-

ductivity distribution could be reconstructed, and therefore, porosity [50][51].

The post-processing capabilities were successfully extended by Fletcher and

Tesfalem in reconstructing the conductivity profile of the graphite channels

and in providing methods of mitigating noise originating from conductivity

variations in crack detection [52], [53]. Additionally, the eddy current sensor

itself was developed to have a greater sensitivity at a further depth, using

an elliptical probe geometry [54]. This Prototype Elliptical Probe (PEP) was

manufactured and integrated into the inspection tool, where this iteration was

called the Eddy Current Inspection Tool (ECIT).

2.6.2 Eddy Current Inspection

Inversion techniques are based on either direct or iterative methods. Within

eddy current inspection, there are few direct methods for the reconstruction

of the conductivity profile. In [55], a direct solution was obtained by linearis-

ing eddy current problem via the Born approximation and explicitly solving a

decoupled Laplace-Fourier transform in the time domain to recover conductiv-

ity. This technique considered a specific coil geometry, and it is not clear how

this translates to complex elliptical geometries. Tamburrino et al. developed

a direct inversion technique for imaging anomalous regions [56]; however, this

technique does not recover the depth profile of electrical conductivity. Depth

profiling using optimisation techniques has been applied for some time and in

different modalities [57][58]; therefore, there is a large amount of experience

and knowledge currently in the literature. It has been previously demon-

strated that non-linear iterative algorithms can be used to reconstruct the

conductivity depth profile of a nuclear graphite brick [51]. However, to date,
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the algorithms used in inverting nuclear graphite data have been limited in

scope: inversion using Gauss-Newton (GN) type directions continued up until

the work of Tesfalem [52], where trust region methods were employed instead.

The objective function used for graphite inversion has always considered

the absolute error. Beyond the graphite application, the absolute error has

been dominantly used in electromagnetic tomography, where some examples

are: electrical impedance tomography for medical imaging [59], depth profiling

in inductance tomography [60][61] and permittivity reconstruction in electri-

cal capacitance tomography [62]. However, the inductance spectrum spans

orders of magnitude, meaning the residual error is typically much larger at

higher frequencies than at low frequencies. Therefore, the higher frequency

information dominates the step direction. Instead, the relative error can be

used, where this places an equal weighting to each spectral component: the

step direction is then equally informed by all the spectral data [63]. However,

the Signal-Noise Ratio (SNR) may be poorer at low frequencies, and therefore,

the relative error objective function may be more susceptible to noise.

Iterative reconstruction algorithms require a forward model. For problems

which consider simple geometries there are analytic solutions [64][65] but there

is no analytic formulation of the forward model for the complex graphite

geometry; therefore, a Finite Element Model (FEM) is used. However, with

the development of ML techniques, the forward and inverse model can be

found empirically from data. More generally, outside of the nuclear graphite

application, ML techniques in eddy current inspection have been investigated

for several decades for inverse modelling [66]–[69]. Additionally, they have

been used in forward modelling, where an example is using a ML forward

model surrogate in place of a FEM [70] [71]. Other applications considered

the theory developed in neural networks to solve finite element equations by

re-formulating the equations in a form in which they can be represented by

a neural network [72][73][74]. However, in safety critical systems (such as
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inspecting nuclear graphite) the use of ML methods must be supported by a

deductive method embedded in the physics.

A forward model must accurately describe the experimental problem and

be properly calibrated. In electromagnetic inspection of the graphite core, the

FEM has been previously calibrated using a grid search of the coil diameter

[52] and by a transfer function approach [53]. In the former technique, the

time to tune the FEM increases rapidly with the number of coil parameters,

and the latter approach assumes that the calibration factors are invariant to

conductivity. Instead, optimisation techniques can be used to tune the coil

parameters. Optimisation techniques have been previously used to calibrate

an eddy current model; in [75] the forward model was calibrated by minimising

the difference between the measured and simulated responses by solving a

least squares problem via the update of model lift off. There are numerous

constraints that must be adhered to in calibration, such as lift off being strictly

positive and non-zero; therefore, a constrained optimisation algorithm must

be used.

A crack can be viewed as a sharp change in density, and therefore, the

depth profiling algorithm may be capable of imaging such a defect. Research

has been published in comparing penalty terms in an iterative algorithm for

imaging sharp contrasts in conductivity [62]. However, the resolution of the

FEM may not be fine enough to resolve cracks. The FEM used in this thesis is

discretised only in the radial direction and not azimuthal. Alternatively, direct

methods can be used; for example, using the monotonicity principle or ML

algorithms. In the monotonicity principle an anomalous region can be rapidly

imaged using an impedance matrix characterised by a set of coils [56][76]. In-

ferential techniques offer an alternative methodology for crack detection. ML

classification algorithms have been widely used for several decades in eddy cur-

rent NDE, where examples include support vector machines [77] and neural

networks [78][79]. Crack detection within a nuclear graphite brick has histori-
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cally used averaging techniques to remove the effect of conductivity variations

in the measurement; averaging can be seen as a feature extraction technique

in which it is assumed that the underlying conductivity profile is derived from

the same probability distribution in the azimuthal direction. Other feature

extraction techniques have been used on eddy current data: Principal compo-

nent analysis (PCA) [80], the Hilbert transform [81], Independent Component

Analysis (ICA) [82] [77] and k-means clustering on Lissajous curves [83].

2.6.3 Other Non-Destructive Testing Methods

The eddy current response can be measured using a frequency sweep or tran-

sient response, where analysis can be performed in the time or frequency

domain. In pulsed eddy current, attributes such as the time to peak height,

the peak height, the rising point time and the zero-crossing point can be used

to determine defects, lift off and material thickness [84], [85]. A key disad-

vantage of pulsed eddy current techniques is that the energy in the excitation

current is spread across the spectrum, and therefore, SNR is generally lower

than in frequency sweeping.

If ultrasonic methods are used, they must be non-contact and capable of

operation in radioactive environments. Electromagnetic acoustic transducers

can be used to induce ultrasonic waves in a radioactive environment but these

require sufficient electrical conductivity to produce a strong Lorentz force.

Generally, ultrasonic attenuation is much higher in graphite compared with

steel; it has been found that there is a loss of 0.93 dB/mm, whereas for

stainless steel 304 it is 0.2 dB/mm [86]. Furthermore, ultrasonic techniques

may be unsuitable because of the graphite geometry; the methane holes may

considerably scatter the ultrasonic signal.
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2.7 Chapter Summary

• The electricity market demand is set to dramatically increase because

of the net zero carbon emissions target. Additionally, the electricity is

to be sourced from low carbon sources, where nuclear is expected to be

a key part of the net zero strategy.

• The commercial power stations built in the UK have all used graphite as

the moderator and a gas-coolant to transfer heat; this will be unchanged

for the next generation, which will use graphite and a helium gas coolant,

operated at a higher temperature for improved efficiency.

• Irradiation of the graphite moderator results in weight loss and dimen-

sional changes within it. The irradiation of graphite changes its material

properties, such as the co-efficient of thermal expansion, Young’s modu-

lus and density. Understanding and measuring weight loss is important

for modelling and the safety case.

• Direct solutions to the inverse problem are not available for the graphite

inversion problem; although there are techniques such as the mono-

tonicity principle (for anomaly detection) and the decoupled Fourier-

Transform technique (for depth profiling), these would need either a

re-design of the sensor system or generalising to the graphite inverse

problem.

• Iterative reconstruction algorithms typically consider the absolute rela-

tive error. For the eddy current problem, the relative error may be more

suitable. Further, search directions have historically used second order

methods, where there is no broader comparison of search directions for

graphite inversion.

• Calibration of the forward model is essential in iterative algorithms.
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Typically, experimental data is mapped to simulated data using a trans-

fer function approach or some other scaling factor. Alternatively, the

forward model can be tuned by adjusting some model parameter, such

as coil diameter, until there is sufficient agreement between the experi-

mental and simulated data. The search for the ideal model parameters

can be done using a grid search but this is slow and computationally

expensive. Instead, optimisation algorithms can be used to adjust the

model parameters, which are faster to converge and are more feasible

with a larger number of model parameters.

• To detect the presence of cracks, previous attempts used averaging to

minimise the effect of conductivity variations in the measurement. This

assumed that the measurement is a linear function of conductivity and

crack height; moreover, it assumes that conductivity variations are de-

rived from the same probability distribution. This is perhaps sufficient,

but there may be other feature extraction and classification algorithms

that are better suited for crack identification.
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Chapter 3

Inductance Spectroscopy and

the Inverse Problem

3.1 Overview of Chapter

The chapter opens with a review of basic electromagnetic theory, which is

necessary for describing the classes of electromagnetic tomography and the

material affects on electromagnetic signals; for example, the skin effect. Induc-

tance Spectroscopy (IS) is an ideal imaging modality for the nuclear graphite

application because it requires only passive components in the sensor and can

be operated at some distance from the point of inspection. The principle in

IS is to measure the multi-frequency eddy current response of the material

under test, where different frequencies correspond to different eddy current

distributions.

In the following sections, the need for a numeric forward solver is ex-

plained. In certain applications, there are analytic formulations relating elec-

trical conductivity to mutual inductance [65][64]; however, the complex geom-

etry of the graphite makes an analytic solution impractical. Instead, Finite

Element Analysis (FEA) is used to solve the problem numerically.
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To solve the inverse problem, optimisation techniques are used and are

introduced in this chapter. There are other methods, such as the HyperBand

[87] algorithm or grid search, which are global optimisers but these typically

require many more iterations to find a solution, and therefore, are infeasible

with a FE forward model. There are a wide range of iterative solvers, where

those that are introduced are based on Newton or Gradient Descent (GD)

directions.

The Multi-Variable Polynomial Regression (MVPR) algorithm is described,

which is a simple inferential technique mapping the input and target data us-

ing a polynomial function approximation. There are only two hyper-parameters

in the model and it is, therefore, a simple regression technique that can be

easily optimised. It is useful for bench marking more powerful regression

techniques such as neural networks.

3.2 Fields in Matter

An electric field strength E⃗ is, by definition, the electric force experienced by

a unit charge. When an electric field is applied on free charge a current arises,

with a current density J⃗f . In the time domain the current density is defined

as eq. 3.1 and in the frequency domain eq. 3.2, where σ is the electrical

conductivity [88].

J⃗f (t) =

∫ ∞

−∞
E⃗(τ)σ(t− τ)dτ (3.1)

J⃗f (ω) = E⃗(ω)σ(ω) (3.2)

When an electric field is applied on a material there is a polarisation of bound

charge. The polarisation vector, P⃗ , is defined as the dipole moment per unit

volume [89] and it encapsulates the polarisation of charge within an atom.
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The electric flux density, D⃗, is then given by eq. 3.3 [89]. The constant ϵ0 is

the permittivity of free space.

D⃗(ω) = ϵ0E⃗(ω) + P⃗ (ω) (3.3)

A magnetic analogue of the electric polarisation vector is the magnetisation

vector M⃗ . The magnetic flux density is then given by eq. 3.4, where H⃗ is the

magnetic field strength and µ0 is the permeability of free space.

B⃗(ω) = µ0(H⃗(ω) + M⃗(ω)) (3.4)

These two constitutive relations can be condensed into eq. 3.5 and 3.6, where

the polarisation and magnetisation vector have been subsumed. The constants

µ, ϵ and σ are characteristic of the material under test and determine the

resulting fields B⃗, D⃗ and J⃗f within it. In graphite it is expected that µ = µ0

and ϵ = ϵ0; the effects of the magnetic and electric polarisation are minimal.

B⃗(ω) = µH⃗(ω) (3.5)

D⃗(ω) = ϵE⃗(ω) (3.6)

To understand the effect of the material on incident electric and magnetic

fields, it is helpful to use the monochromatic plane wave (more complicated

wave descriptions can be made from this using Fourier analysis). The monochro-

matic wave has an electric and magnetic field of the form eq. 3.7 and 3.8 [90].

E⃗ =
∥∥∥E⃗∥∥∥ (ej(k⃗·r⃗−ωt) + e−j(k⃗·r⃗−ωt)

2
) (3.7)

H⃗ =
∥∥∥H⃗∥∥∥ (ej(k⃗·r⃗−ωt) + e−j(k⃗·r⃗−ωt)

2
) (3.8)
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The wave vector k⃗ describes how the wave spatially changes. In dispersive

matter, the amplitude of the wavevector can be written as eq. 3.9 [88].

∥∥∥k⃗(ω)∥∥∥ = ω

√
µ(ϵ0 + j

σ(ω)

ω
) (3.9)

This can be expanded further by using the Drude model of electrical con-

ductivity: σ(ω) = σDC

1−jωτ , where τ is the mean-free time of collisions. At low

frequencies limω→0 σ(ω) = σDC and in a conductor such as graphite ϵ0 ≪ σDC

ω
;

therefore,
∥∥∥k⃗∥∥∥ is approximately imaginary and the electric and magnetic fields

are damped. The damping term is given by e−δ, where δ is called the skin

depth. However, this is considering a monochromatic plane wave; the fields

emanating from the coil and the corresponding penetration depend on the coil

geometry [91][92].This skin depth equation is valid for any frequency of a plane

wave transmitted into a conductive halfspace but may not be representative

of the decay of more complex fields. Nevertheless, the monochromatic wave

decay is useful for understanding how the material properties affect the decay

of the fields within a conductor. The skin depth of a plane wave transmitted

into a halfspace is given by eq. 3.10.

δ =

√
1

µσDCπf
(3.10)

Defining a new term, the plasma frequency ωp, at high enough frequencies the

wavevector can be approximated by

∥∥k(ω)∥∥ = ω

√
µϵ0(1−

ω2
p

ω2
)

When the frequency of the electromagnetic wave is above the plasma fre-

quency of the material, the wave vector is essentially real and the medium

becomes transparent to the wave [88]. This is what defines classes of tomog-

raphy. High penetrating frequencies (e.g. x-ray and gamma rays) are used in
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hard field tomography which generate high resolution localised images, dis-

playing sharp contrasts in the attenuation of the wave/photon intensity. Hard

field tomography typically requires the source and detector either side of the

material under test (but not exclusively, Compton scattering is sometimes

used in x-ray imaging). In soft field tomography, a low frequency range is used,

typically below 10MHz. In this regime the displacement term in Ampere’s

equation can be ignored, the effect being that the oscillating electromagnetic

fields no longer conform to the wave equation, but to the diffuse equation.

The key advantage of using soft field tomography is that both the source and

detector can sit on the same side of the material and it only requires passive

components. The large amount of high frequency ionising radiation in the

core would destroy active components unless they are radiation hard. For the

inspection of the graphite channels in this project, soft field tomography is

employed with IS as the imaging modality.

3.3 Depth Profiling

Depth profiling with IS has been used in a range of applications, such as

imaging electrical conductivity and permeability in metal [60], [93], thickness

evaluation of turbine thermal barrier coating [94] and in nuclear graphite

inspection [51]. In all of these examples, non-linear optimisation techniques

are used to solve the inverse problem iteratively. Iterative techniques are

typically required since there are no analytic inverse solutions available in

this modality. Norton et al. [61] used an analytic forward model and the

Levenberg-Marquart (LM) optimisation algorithm for image reconstruction

of a “pin in sleeve” problem, where a cylindrical metal core was surrounded

by a sleeve of differing conductivity.

The problem to be solved is the spatial reconstruction of electrical con-
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ductivity. Ideally, this would be a 3D reconstruction of the continuous pro-

file. This could be done by describing the conductivity distribution us-

ing a set of basis functions [51], [52]. The parameters of the function can

then by tuned rather than the conductivity itself. For example, consider

σ(r, θ, z) = ar3 + br2 + cr + d, the conductivity distribution in cylindrical

co-ordinates with no azimuthal or height variation and only radial; this axi-

symmetric conductivity distribution can be described with only four param-

eters. An example of this is given in fig. 3.1. However, there is difficulty in

choosing what the functional should be, and in safety critical systems the jus-

tification of the functional. Instead, the conductivity profile can be modelled

as piecewise constant and the conductivity of each region solved for directly.

To reduce the complexity further, the conductivity can be assumed to vary in

one direction only and this is the approach used; the conductivity is assumed

to vary with depth only as a piecewise constant function. The conductivity

of each layer is tuned until there is sufficient agreement between the model

response and measured response and such an example is given in fig 3.2.
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Figure 3.1: An example of what a continuous depth profile reconstruction
might look like.

Figure 3.2: An example of what a discrete depth profile reconstruction might
look like.
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3.4 Eddy Current Formulation

Electromagnetic problems can be formulated in a number of different ways.

The appropriate formulation depends on the problem and solving method

[95] [96]. For example, the V formulation is used when no magnetic field

is present [97], where only two of Maxwell’s equations are required and the

differential equation can be expressed in terms of the electric potential: this is

not appropriate for the eddy current problem. In the solver used in the thesis,

the A formulation is used to encapsulate the eddy current problem [97], where

Maxwell’s equations are expressed using the magnetic vector potential.

The magnetic field can be written in terms of the magnetic vector poten-

tial, A⃗, with

∇× A⃗ = B⃗

Substituting this into Ampere’s law and ignoring the displacement current

yields

∇× 1

µ
∇× A⃗ = J⃗f

The free current density can be separated into the current density due to the

applied magnetic field, J⃗eddy, and the source current, J⃗source. Further, using

Faraday’s law the electric field can be written as −∂A⃗
∂t
. Combining these gives

∇× 1

µ
∇× A⃗ = J⃗source −

∂A⃗

∂t
σ

For a single frequency excitation, this simplifies to eq. 3.11.

∇× 1

µ
∇× A⃗+ σjωA⃗ = J⃗source (3.11)

In [96], analytic solutions to this equation are given for a few simple ge-

ometries, such as a straight filament parallel to a conductive slab. The well
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known paper written by Dodd and Deeds provides an analytic solution of

the magnetic vector potential for an axi-symmetric air cored coil above a

two conductor half space [64], where this was extended upon by Theodoulidis

for a continuous depth profile of a conductive halfspace [65]. Kriezis et al.

state that problems that have inhomogeneous material parameters, non-linear

media or complex geometries cannot be solved analytically except in simple

two-dimensional problems. Thus, to solve eq. 3.11 a numeric method is

needed. In this work the FEA package COMSOL® is used.

3.5 Numeric Solution

The COMSOL® package uses FEA to numerically solve a wide range of

physics problems. In FEA, the problem domain is discretised into sub-domains

referred to as elements. Each element conforms to the given differential equa-

tion of the problem and is solved according to the boundary and initial values.

In two dimensions, a single triangular element can be used to approximate

the magnetic vector potential within the element, A⃗e, where such a triangular

element is show in fig. 3.3. Using a set of basis vectors, N⃗ e
j , the magnetic

vector potential over the element can be written as

A⃗e =
3∑
j=1

ajN⃗
e
j

The vector N⃗ e
j is a vector field and is called the vector shape function for edge

j over the element e. The scalar term aj corresponds to the line integral of

the field along edge j [98].
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Figure 3.3: A 2-D finite element.

The co-ordinates of a point within the triangle can be described as weightings

of the vertices

x = ξ1x1 + ξ2x2 + ξ3x3

y = ξ1y1 + ξ2y2 + ξ3y3

with the condition

ξ1 + ξ2 + ξ3 = 1

If a point P sits in the triangle and lines are drawn from P to each vertex,

the triangle would be split into a further three sub-triangles. The ratio of the

area of a sub-triangle, K, to the area of the entire triangular element is given

by ξk. The vector shape function, N⃗j, using the area co-ordinates is given by

eq. 3.12, where Lj is the length of the edge [99][100]. These are plotted in

fig. 3.4.

N⃗j = (ξi∇ξk − ξk∇ξi)Lj, j ̸= i ̸= k (3.12)

The vector in eq. 3.12 has a number of useful properties. It has no tangential

component along the other edges; therefore, if P is on edge 1, a2N⃗
e
2 and a3N⃗

e
3

have no tangential components, and therefore, the A⃗ field along edge j can

be written as ajN⃗
e
j [98]. Furthermore, edge element shape functions are well

suited for modelling electromagnetic interface conditions because only tan-
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Figure 3.4: The shape functions using eq. 3.12. These were computed nu-
merically using the finite difference method to compute the gradient.
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gential continuity is enforced across the element boundaries but continuity of

normal components is not [98].

There are a selection of elements available in COMSOL®, such as the

tetrahedron, pyramid, prism and hexahedron. The vector shape functions for

all of these elements are defined in a similar way as the 2-D triangular element

already discussed, the only difference is volume co-ordinates are used instead

[99].

To solve eq. 3.11 there are a variety of methods. In COMSOL® a weighted

residual method is used, where

∇× 1

µ
∇× A⃗app(x, y, z) + σjωA⃗app(x, y, z)− J⃗source = e⃗(x, y, z)

The approximate solution is found by solving
∫
e⃗(x, y, z) · v⃗(x, y, z)dV = 0,

where v⃗(x, y, z) is a vector field which weights the error [101]. This can be

understood from a geometric point of view as minimising the projection of

the error onto the vector field v⃗. In FEA, both the weight function and A

field are expressed in terms of basis functions. In COMSOL®, the Galerkin

method is used [102] where the basis functions for both A and the weight

function are the vector shape functions, Nj [101].

COMSOL® has several linear and non-linear numerical solvers of differing

types, either direct or iterative. The numeric solvers differ in the amount of

memory usage, the speed of convergence, stability and the computation time.

If a solver is not selected COMSOL® automatically sets what it thinks is the

best solver for the problem defined.
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3.6 Mutual Inductance

The voltage, ψ, produced over a loop is given by 3.13, the integral form of

Faraday’s law.

ψ(t) = − d

dt

∫
S

B⃗ · n⃗ds (3.13)

Electric circuits that are not directly connected, are coupled by a mutual

magnetic and electric field between them. The induced voltage in one circuit

due to a current (I) in another can be expressed as a lumped component

model and this is given in 3.14. The mutual inductance, M, is a constant

that describes how much of the magnetic field is linked between one circuit

and another, independent of the driving current.

ψ(t) = M
dI

dt
(3.14)

The measurement made is always the open circuit induced voltage across a

receive coil. In air, the total flux linked depends on the geometry of the

problem, orientation of the coils, the frequency and current of the driving

signal and the conductivity, permeability and permittivity of the air. In the

presence of a graphite target the same is true, but with the addition that now

the coupled magnetic field is altered by the eddy currents induced within the

material itself. The change in the magnetic field alters the voltage measured

on the receiver.

When the sensor coils are in the vicinity of the graphite target, the mutual

inductance variable is a complex quantity because of eddy current losses,

where the real part pertains to the phase change and imaginary the eddy

current losses. Furthermore, M becomes a frequency dependent quantity.

This is encapsulated by eq. 3.15, which considers a single frequency excitation.

ψ(ω) = jωM(ω)I(ω) (3.15)
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The difference between the mutual inductance between two coils in the pres-

ence of graphite and in air, is useful in practice for mitigating background

noise; to a first order approximation, the differential measurement is due en-

tirely to the presence of the target.

m = (Mc
Rx)− (Mair

Rx) (3.16)

In the same manner, a gradiometer can be used to produce a response which is

ideally due to the presence of graphite: when the gradiometer is balanced the

measurement in air is (ideally) equal to zero. However, gradiometer coils are

generally not perfectly balanced, and therefore, the gradiometer response can

be differenced with air to eliminate residual mis-balance. The gradiometer

measurement is given by eq. 3.17. The measurement is broadly described as

the Differential Mutual Inductance (DMI) for both eq. 3.16 and 3.17; which

measurement is being referred to will be explicitly stated.

m = (Mc
Rx1

−Mc
Rx2

)− (Mair
Rx1

−Mair
Rx2

) (3.17)

In practice, the air measurements are taken using a nylon ring of the same

diameter as the graphite channel. A nylon ring is used because the gradiome-

ter probes are deployed from an inspection tool made of metal, and therefore,

the response is a function of distance from the probe. Ideally, the effect of the

metal casing would be minimal or would be mitigated through coil balancing;

unfortunately, the coils were not balanced in the inspection tool with the ca-

bles attached, and therefore, there is a reliance on the subtraction of the free

space response to reduce the effect of casing etc. to at least a first order.
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3.6.1 Gradiometer Coil

The PECIT and the recently deployed ECIT, deploy a gradiometer sensor.

The PECIT gradiometer was symmetric and flat, meaning that the two receive

coils were geometrically symmetric about the transmitter, having the same

number of turns and having no curvature. A flat and symmetric gradiometer

coil is simple to balance but has the consequence that it does not optimally

fit against the curvature of the graphite. The optimal fit would have the

transmitter and receiver as close to the graphite as possible, to maximise the

transmitted and received magnetic fields. Furthermore, a key disadvantage of

a flat coil is that a larger diameter would necessitate a larger lift-off, creating

a dilemma in increasing coil sensitivity.

The limitations of the PECIT sensor were studied by Tesfalem et al. and it

was shown that an asymmetric and curved gradiometer configuration can be

tuned for increased coil sensitivity to eddy currents at larger depths; the initial

study showed that an optimised asymmetric probe had an average of 43.7%

sensitivity improvement compared with the PECIT probe, and five times

higher sensitivity at a maximum depth [103]. This work led to a deeper study

into asymmetric gradiometers for the nuclear application and the increased

sensitivity to deeper cracks [54]. In both of these studies, the gradiometer size

was constrained, such that the maximum diameter corresponded to negligible

effects of the steel casing of the inspection tool — the larger the diameter

of the coil, the more susceptible to field interactions from the steel casing.

Further, the consequence of a larger coil is a trade off between resolution and

penetration. The differences between the induced eddy currents of the two

different coils is shown in fig. 3.5.
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Figure 3.5: The induced current density for a single filament in the asymmetric
and symmetric probes. The colour maps are on the same scale. It can be
seen in the larger probe that there is a much stronger field produced and
at a greater depth but over a greater volume. Ideally, the sensitivity would
be of the same magnitude in each layer and the results in [103] shows the
asymmetric sensor is closest to this.
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3.6.2 Sensitivity Equations

Theory

To compute the coil sensitivities the perturbation method can be used. In

the perturbation method, the sensitivities are computed numerically using a

technique such as the forward difference method [60]. In COMSOL® the mea-

surement spectrum is computed in a parametric sweep; therefore, to compute

the sensitivities this would require at least n + 1 executions of the forward

problem, where n is the number of layers. Thus, it is computationally expen-

sive.

The sensitivity of the receiver coil voltage to some electromagnetic vari-

ables can be found using Tellegen’s reciprocity theorem [104]. Tellegen’s the-

orem is a statement of quasi-power for two topologically identical systems;

thus, it is an extremely general reciprocity theorem. The power flow into a

closed volume can be found as eq. 3.18 by integrating the Poynting vector

over a closed surface [105].

∮
S

(E⃗ × H⃗) · n⃗dS = −
∮
V

(E⃗ · ∂D⃗
∂t

+ H⃗ · ∂B⃗
∂t

)dV −
∮
V

(J⃗ · E⃗)dV (3.18)

Tellegen’s theorem is given as eq. 3.19 [106]. The subscripts A and B de-

note the field quantities for two different, but topologically identical systems,

illustrated in fig. 3.6.

∮
S

(E⃗B × H⃗A) · n⃗dS −
∮
S

(E⃗A × H⃗B) · n⃗dS

= −
∮
V

(E⃗B · ∂D⃗A

∂t
+ H⃗A · ∂B⃗B

∂t
)dV −

∮
V

(J⃗A · E⃗B)dV

+

∮
V

(E⃗A · ∂D⃗B

∂t
+ H⃗B · ∂B⃗A

∂t
)dV +

∮
V

(J⃗B · E⃗A)dV

(3.19)
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Figure 3.6: Topology of a typical measurement using IS

To obtain the sensitivities, Dyke and Freeman considered three systems, given

in table 3.1 [104]. After various substitutions of these systems into eq. 3.19

and after some manipulation, eq. 3.20 is derived.

Table 3.1: Three Systems used to determine the analytic sensitivity equations

System 1 System 2 System 3

µ µ+ δµ µ

ϵ ϵ+ δϵ ϵ

σ σ + δσ σ

J⃗sA J⃗sA + δJ⃗sA J⃗sB

E⃗A E⃗A + δE⃗A E⃗B

B⃗A B⃗A + δB⃗A B⃗B
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∮
V

J⃗sB · δE⃗AdV

≈
∮
V

E⃗A · E⃗Bδσ + E⃗A · E⃗Bjωδϵ+ E⃗B · δJ⃗SA
− jωH⃗A · H⃗BδµdV

+

∮
S

(E⃗B × δH⃗A + H⃗B × δE⃗A) · n⃗dS

(3.20)

Assuming the fields themselves are generated by the source currents and that

the fields generating these source currents are internal to the domain boundary

(there is no power flow across the boundary), collecting terms and rearranging

gives eq. 3.21. In COMSOL®, the outer boundary is defined with the normal

components of the magnetic field set such that n⃗ × A⃗ = 0; therefore, the

condition of no power flow across the boundary is enforced.

∮
V

δE⃗A · J⃗SB
dV

≈
∮
V

E⃗A · E⃗Bδσ + E⃗A · E⃗Biωδϵ+ E⃗B · δJ⃗SA
− iωH⃗A · H⃗BδµdV

(3.21)

It follows that if system B corresponds to a receiver being excited (with other

coils open circuit) and system A the transmitter excited (with other coils

open circuit) both with current I, then the change in receiver voltage due

some perturbation in an electromagnetic variable is given by eq. 3.22 [104].

δψ

≈1

I

∮
V

E⃗Tx · E⃗Rxδσ + E⃗Tx · E⃗Rxjωδϵ+ E⃗Rx · δJ⃗Tx + jωH⃗Tx · H⃗RxδµdV

(3.22)

In the limit of small perturbations, this is the definition of the total differential

of a function. Through inspection, the sensitivities to the material properties
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are given in eq. 3.23-3.26.

∂ψ

∂σ
=

1

I

∮
V

E⃗Tx · E⃗RxdV (3.23)

∂ψ

∂ϵ
=

1

I

∮
V

jωE⃗Tx · E⃗RxdV (3.24)

∇J⃗Tx
ψ =

1

I

∮
V

E⃗RxdV (3.25)

∂ψ

∂µ
=

1

I

∮
V

jωH⃗Tx · H⃗RxdV (3.26)

Fletcher [52] looked at three types of dot product and found experimentally

that the product,

E⃗Tx · E⃗Rx =
k∑
i=1

E⃗i
TxE⃗

i
Rx

where E⃗i is the ith component of the vector E⃗, to be the most accurate. For

a gradiometer coil configuration, the sensitivity to conductivity is

∂(ψRx1 − ψRx2)

∂σ
=

1

I

∮
V

E⃗Tx · E⃗Rx1dV − 1

I

∮
V

E⃗Tx · E⃗Rx2dV

=
1

I

∮
V

E⃗Tx · (E⃗Rx1 − E⃗Rx2)dV

This was first shown by Fletcher and applies to both a symmetric and asym-

metric coil configuration. Tesfalem modelled the coils as filaments with a

single turn and scaled the voltages accordingly [53]. From Faraday’s law, the

voltage across the ends of a coil is equal to the total flux penetrating a turn

(a loop) multiplied by the number of loops. If the pickup has TRx1 turns and

the backing off has TRx2, the scaled sensitivities are

∂(ψRx1 − ψRx2)

∂σ
=
TRx1
I

∮
V

E⃗Tx · E⃗Rx1dV − TRx2
I

∮
V

E⃗Tx · E⃗Rx2dV

This is provided that the flux through each turn is equal. Tesfalem compared

the modelled and measured DMI and showed some divergence between the

two at higher frequencies.
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Yin et al. derived the sensitivity equations that include velocity effects

of the sensor [57], where the sensitivity to conductivity is found by including

the current due to the relative movement of the conductor. In this thesis, the

measurements are statically taken, and therefore, there are no velocity effects.

Practical Computation

The sensitivity equation is broad its generality: it is derived without any as-

sumptions on the geometry of the problem, presence of other materials (as

long as they are included in the model) and can be used with other electro-

magnetic probes such as hall effect sensors [57]. In the discretised model, the

sensitivity to any-one layer can be approximated by dividing each layer into

a three dimensional grid with L number of voxels. The sensitivity to a layer

conductivity can then be numerically approximated by eq. 3.27.

∂ψ

∂σn
≈ 1

I

L∑
i=1

(E⃗Tx(i) · E⃗Rx(i))V (i) (3.27)

where E⃗(i) is the electric field strength evaluated at at the centre of voxel i,

with volume V (i).

For complex geometries, it can be difficult to analytically define exact

points in which to evaluate sensitivity and voxels which perfectly tessellate

over the geometry. Instead, a numeric approach is used. Since all station

bricks are machined from cylindrical geometries, the evaluation grid is defined

in cylindrical co-ordinates. To determine which grid points are within the

material under inspection, the conductivity map is first extracted from the

model. The next stage is to find the points where the conductivity is equal

to air and to remove them. This process is demonstrated in fig. 3.7; it can

be seen that with more points, there will be a smaller voxel size and greater

accuracy. This method of selecting points to evaluate is simpler and more
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Figure 3.7: A slice of the evaluation grid of a Heysham-type brick. It can be
seen that the methane holes can easily be resolved with a small enough voxel
size.

robust to different geometries than analytic methods.

3.7 Inverse Problem

3.7.1 Jacobian

The total differential of some measurement due to a number of different con-

ductive regions is given in eq. 3.28, where dσn is an infinitesimal change in a

layer conductivity.

dm =
∂m

∂σ1
dσ1 +

∂m

∂σ2
dσ2 · · ·+

∂m

∂σn
dσn (3.28)

When σ⃗ is perturbed by some amount δσ⃗, the approximate change in mea-

surement is given by eq. 3.29.

∆m ≈ ∂m

∂σ1
∆σ1 +

∂m

∂σ2
∆σ2 · · ·+

∂m

∂σn
∆σn (3.29)

Chapter 3 89



Inductance Spectroscopy and The Inverse Problem

A simple inversion technique is to use eq. 3.29 to map changes in the mea-

surement to changes in the material conductivity (relative to some starting

point). For p different interrogating frequencies, the approximate change in

the measurements can be written as the following system of equations



∂m1

∂σ1

∂m1

∂σ2

∂m1

∂σ3
. . . ∂m1

∂σn

∂m2

∂σ1

∂m2

∂σ2

∂m2

∂σ3
. . . ∂m2

∂σn

...
...

...
. . .

...

∂m2p

∂σ1

∂m2p

∂σ2

∂m2p

∂σ3
. . . ∂m2p

∂σn





∆σ1

∆σ2

...

∆σn


≈



∆m1

∆m2

...

∆m2p


The number of rows is twice the number of frequencies because the real and

imaginary parts of the data are concatenated. The matrix is called the Jaco-

bian (J). The system of equations is written in simpler notation as eq. 3.30,

where the residual vector here is defined as r⃗(σ⃗) = m⃗model − m⃗actual. This ap-

proximation is exact if the relationship between the conductivity profile and

measurement is linear.

J p⃗ ≈ r⃗(σ⃗) (3.30)

3.7.2 Over-determined system

An over-determined system of equations refers to when there are a greater

number of rows than columns in the Jacobian: the number of equations is

greater than the number of unknowns, and therefore, the column vectors do

not span the full space they are described in [107]. This is simplest to under-

stand with two vectors describing a plane in 3D space, where any vector within

the plane of the two vectors can be expressed but not outside the plane. Typ-

ically, in the Jacobian the number of measurements (rows) is greater than the

number of columns (unknowns). For an over-determined problem, any small

amount of noise (or approximation error, such as in eq. 3.30) may make the

problem unsolvable. However, a useful solution can still be found by instead
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finding the combination of column vectors which has the smallest distance

between them and r⃗(σ⃗). Geometrically, this is the orthogonal projection of

r⃗(σ⃗) onto the column space of J . This solution is called the Moore-Penrose

pseudo-inverse, given by eq. 3.31.

p⃗ = (JTJ)−1JT r⃗(σ⃗) (3.31)

3.8 Non-Linear Optimisation

The inverse problem is highly non-linear. This can be recognised by sim-

ply considering that a highly conductive surface layer will affect the incident

magnetic field, and thus, the eddy current distribution in lower layers. This

means for some matrix A a linear mapping does not exist between σ⃗ and m⃗,

such that Aσ⃗ = m⃗. To determine the underlying conductivity distribution,

the minimum of some objective function f(σ⃗) is determined with respect to

the conductivity profile; this is denoted by argminσ⃗(f(σ⃗)).

3.8.1 Generalised Search Directions

It is helpful to re-write the conductivity variable as some step p⃗ from a point

σ⃗k, such that σ⃗ = σ⃗k+ p⃗. This equation can be used to define the recursive re-

lation σ⃗k+1 = σ⃗k+p⃗. The step p⃗ is chosen such that a minimum is approached.

The choice of algorithms is extremely rich in optimisation literature and is

Algorithm 1:

1 define σ⃗0 ;
2 while Some Condition do
3 compute p⃗ ;
4 σ⃗k+1 = σ⃗k + p⃗ ;

5 end

subject to the scale of the problem, the required accuracy, how much a priori
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knowledge there is of the solution and the speed of the inversion.

The choices of step can all be derived from the second order Taylor series

approximation of f(σ⃗), which is given by eq. 3.32, where ∇σ⃗f(σ⃗k) is the

gradient at some point σ⃗k and Hf (σ⃗k) is the Hessian matrix at that same

point. The Hessian matrix contains the second order derivative information

of the objective function. The function q(p⃗) is the quadratic approximation

of the objective function.

f(σ⃗k + p⃗) ≈ q(p⃗) = f(σ⃗k) +∇σ⃗f(σ⃗k)
T p⃗+

1

2
p⃗THf (σ⃗k)p⃗ (3.32)

The step can be decomposed as p⃗ = αd⃗, where α is the step length and d⃗

the search direction. If f(σ⃗) = q(p⃗), the optimal step length in the direction

d⃗ can be found analytically, otherwise a numeric search for the step length

would have to be performed.

The simplest search direction is to move in the opposite direction to the

gradient, given by eq. 3.33. This is the GD direction. This direction is always

perpendicular to the contours of the objective function and is, therefore, slow

to converge when the current iterate is near a minimum.

d⃗ = − ∇σ⃗f(σ⃗k)∥∥∇σ⃗f(σ⃗k)
∥∥ (3.33)

A method which has a faster rate of convergence is the Newton step, which

uses the local curvature to yield a more direct step towards a minimum.

This step can be derived by finding the gradient of eq. 3.32 with respect to

conductivity, where equating this to zero and re-arranging yields the Newton

step given in eq. 3.34.

p⃗ = −Hf (σ⃗k)
−1∇σ⃗f(σ⃗k) (3.34)
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In trust region methods, a constraint region is applied around the objective

function, such that ∥p⃗∥ < ∥∆∥. The step towards the minimum of q(p⃗) in

this region can then be derived using Lagrange multipliers as eq. 3.35 [108],

where γ is the damping parameter. This step can be seen as a combination

of the Newton and GD methods, where as γ → 0 the trust region direction

converges towards the Newton method, and as γ → ∞ the direction converges

to GD with α →
∥∥∇σ⃗f(σ⃗k)

∥∥ /γ.
p⃗ = −(Hf (σ⃗k) + γI)−1∇σ⃗f(σ⃗k) (3.35)

The size of the constraint region can be altered depending on the quadratic

model agreement with the actual objective function. This agreement can be

quantified by defining a function called the gain ratio, given in eq. 3.36. If the

quadratic model of the objective function accurately represents the problem

then ρ ≈ 1 and the solution of argminp⃗(q(p⃗)) in this constraint region is

trusted to be the step towards a minimum of f(σ⃗). The size of the constraint

region can be altered depending on user defined ranges of ρ, i.e. levels of trust

in the quadratic model.

ρ =
f(σ⃗k + p⃗)− f(σ⃗k)

q(p⃗)− q(0)
(3.36)

3.8.2 Scaling

An alternative problem can be solved by defining Dp⃗ = ω⃗, or equivalently p⃗ =

Sω⃗, where commonly the choice of the matrix D is to scale the components

of p⃗ in order to create equal sensitivities across the component parts of ω⃗. In

[109], the transformed problem is considered by having

qs(σ⃗k + ω⃗) ≈ f(σ⃗k + Sω) = f s(ω⃗)
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The current point is then given by setting ω⃗ = 0, such that f s(0) = f(σ⃗k). The

gradient and Hessian of the scaled function at the current iterate is then given

by eq. 3.37 and 3.38, respectively [109]. The direction towards the minimum

in the scaled problem can then be transformed into the original co-ordinates

as p⃗ = Sω⃗. Note that for GD methods that p⃗ = αSST∇σ⃗f(σ⃗k), meaning that

the GD direction is not invariant under co-ordinate transformation, therefore,

convergence can be improved using an appropriate scaling matrix.

∇ω⃗f
s(0) = ST∇σ⃗f(σ⃗k) (3.37)

Hfs(0) ≈ STHf (σ⃗k)S (3.38)

For the trust region method, using the scaled version of the problem, the

minimum in the constraint region can be found by substituting the scaled

gradient and Hessian into eq. 3.35, and simplifying to give eq. 3.39 [108].

Substitution of the modified Hessian and gradient into the Newton equation

will not yield any benefit as the Newton method is invariant under re-scaling

[110].

p⃗ = −(Hf (σ⃗k) + γDTD)−1∇σ⃗f(σ⃗k) (3.39)

A common choice for the matrixD is to use the diagonal values of the Hessian,

such that DTD = diag{Hf (σ⃗k)} [111], [112], this choice of scaling matrix is

known as the Jacobi pre-conditioner. However, non-diagonal matrices can be

used; for example, in consideration of the eigenvalue analysis of the Hessian

[109]. Scaling the variables in this way was discussed in Marquardt’s seminal

paper [113] and has been used in inverse problems for many decades [114]. In

[51] and [115] the diagonals of the Hessian were used to solve an unregularised

objective function, similar to the method used by Cheney et al. [58]. The

matrix D is referred to as the scaling matrix in this work.
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3.8.3 Objective Function

The function to be minimised must consider the error between the simulated

and measured response, given by r⃗(σ⃗). This term alone is not a sufficient

formulation since an inversion algorithm would move towards the largest neg-

ative residual. A norm must be applied. There are many different norms, such

as the L1 (Manhattan) where the absolute values of the components of r⃗(σ⃗)

are summed. The L1 norm is a piecewise linear function, and therefore, min-

imising objective functions using this norm requires non-smooth optimisation

methods. In this work the L2 norm is used to formulate the objective function.

Fig. 3.8 and 3.9 show the difference between the two norms. The objective

function used is given in eq. 3.40, where for mathematical convenience the

L2 norm is squared and multiplied by a factor of 1/2.

f(σ⃗) =
1

2

∥∥r⃗(σ⃗)∥∥2

2
(3.40)

An alternative objective function is the weighted least squares, given in eq.

3.41. The gradient and Hessian are given by eq. 3.42 and 3.43, where the

matrix W has only diagonal components with Wii = P 2
i [116]. The weighting

could be chosen to be the measurement data, such that the objective is to

minimise the sum of the squared relative error.

f(σ⃗) =
1

2

∑
(Piri(σ⃗))

2 (3.41)

∇σ⃗f(σ⃗k) = JT
k W r⃗(σ⃗k) (3.42)

Hf (σ⃗k) ≈ JT
k WJk (3.43)
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Figure 3.8: An example of the L1 norm for a two dimensional vector, x⃗.

Figure 3.9: An example of the L2 norm for a two dimensional vector, x⃗.

3.9 Regularisation

The Singular Value Decomposition (SVD) of the Moore-Penrose pseudo-inverse

is given by eq. 3.44

(JTJ)−1JT =

rank(J)∑
i=1

viσ
−1
i uTi (3.44)
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where the vector u⃗i is the i
th eigenvector of the matrix JJT , and v⃗i is the i

th

eigenvector of the matrix JTJ and σi are the singular values of the matrix J

[117]. It can be seen in the SVD of the Jacobian that small singular values

close to zero can cause erroneous results; this type of problem is referred

to as ill-conditioned because of numerical instability. It is expected that

the Jacobian matrix will be ill-conditioned and small errors will result in

large errors in p⃗. The purpose of regularisation is to improve on numerical

stability and to prevent over-fitting to noise. Hansen describes the purpose

of regularisation as follows [118]

it is necessary to incorporate further information about the desired

solution in order to stabilize the problem and to single out a useful

and stable solution. This is the purpose of regularization.

The physical reason for the ill-conditioning can be understood as a direct

consequence of the skin effect, where the sensitivity is typically greatest near

the coils and decays rapidly with increasing distance. The conditioning of the

Jacobian matrix can be improved through careful selection of the frequency

range and in the discretisation of the problem. However, these considerations

alone are not sufficient for correcting the ill-conditioning of the problem.

There are many types of regularisation, where different types of regular-

isation have different filtering actions [118], [119]. The most common types

of regularisation use penalty functions and have been historically used in

graphite inversion [51], [52], [120]. The regularisation of the solution can be

explicitly defined by incorporating a penalty R within the objective function,

such as in eq. 3.45.

f(σ⃗) =
1

2

∥∥r⃗(σ⃗)∥∥2

2
+R(σ⃗) (3.45)

In Tikhonov regularisation an L2 penalty norm is added to the objective

function. There are other regularisation methods based on different norms of
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the penalty term; for example, the total variation method uses the L1 norm of

the depth profile gradient to produce a non-smooth penalty. The advantage

of total variation is in reconstructing images with discontinuities present such

as voids. Soleimani et al. were the first to apply total variation to electrical

capacitance tomography, showing the superior performance to Tikhonov in

reconstructing images with sharp edges [62].

3.9.1 Truncated Singular Value Decomposition

One regularisation technique is to not sum over the rank of J in eq. 3.44,

but to a smaller index; this is called Truncated Singular Value Decomposition

(TSVD). In TSVD, a matrix with improved conditioning is extracted without

too much loss of information from the original matrix. TSVD is an alternative

to penalty methods that explicitly lowers the condition number of a matrix

through the elimination of small singular values. The point of truncation

must be determined according to the acceptable minimum size of the singular

values.

3.9.2 Generalised Tikhonov Regularisation

The Tikhonov regularised least squares objective function used in this work

is given by eq. 3.46. The parameter λ controls the amount of biasing towards

the penalty. The quantity σ⃗0 is an a priori estimate of the solution, which

could be derived from a typical conductivity profile or a ML algorithm. In

this work, σ⃗0 is used as the initial guess of the conductivity depth profile in

the iterative algorithms.

fλ(σ⃗) =
1

2

∥∥r⃗(σ⃗)∥∥2

2
+
λ

2

∥∥Γ(σ⃗ − σ⃗0)
∥∥2

2
(3.46)
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The gradient of eq. 3.46 is given by eq. 3.47 and the Hessian approximated

as eq. 3.48, where these are derived in the appendix. Note that eq. 3.48

gives the approximate Hessian and when this is used in the Newton step it is

referred to as the GN method.

∇σ⃗fλ(σ⃗k) = JT
k r⃗(σ⃗k) + λΓTΓ(σ⃗k − σ⃗0) (3.47)

Hfλ(σ⃗k) ≈ JT
k Jk + λΓTΓ (3.48)

There are numerous choices for the regularisation matrix Γ, which reflects how

the penalty is to be chosen. The simplest to use is the identity matrix and

another is the finite difference operator. When the finite difference operator is

employed the approximate gradient information is used and the penalty term

is scaled by the size of the gradient or change in gradient relative to some a

priori solution.

3.10 Regularised Least Squares Directions

3.10.1 Modified Gauss-Newton

The GN direction can be modified such that the direction is multiplied with

a constant α, this method is called the Modified Gauss-Newton (MGN) or

Hartley’s method [111]. The regularised MGN direction is then given by eq.

3.49.

p⃗ = −α(JT
k Jk + λΓTΓ)−1(JT

k r⃗(σ⃗k) + λΓTΓ(σ⃗k − σ⃗0)) (3.49)

It can be seen that with regularisation, the GN direction is the Moore-Penrose

pseudo-inverse of the linear least squares problem in eq. 3.50, where

p⃗0 = σ⃗k − σ⃗0 (more details can be found in [121] and the appendix).

p⃗ = argminp⃗(
1

2

∥∥Jkp⃗+ r⃗(σ⃗k)
∥∥2

2
+
λ

2

∥∥Γ(p⃗− p⃗0)
∥∥2

2
) (3.50)
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3.10.2 Levenberg-Marquardt

The regularised LM step is given by eq. 3.51, this is the direction used in

Tesfalem’s inversion algorithm [120].

p⃗ = −(JT
k Jk + λΓTΓ+ γDTD)−1(JT

k r⃗(σ⃗k) + λΓTΓ(σ⃗k − σ⃗0)) (3.51)

Without regularisation of the objective function (λ = 0), the LM direction is

the solution of the linear problem eq. 3.52

p⃗ = argminp⃗(
1

2

∥∥Jkp⃗+ r⃗(σ⃗k)
∥∥2

2
+
γ

2
∥Dp⃗∥22) (3.52)

At first glance of eq. 3.50 and 3.52, the scaling matrix and regularisation

matrix appear to be performing the same operation, since both regularise the

step direction. However, relating these back to the objective function, it can

be seen that although the LM regularises the step, it does not regularise the

objective function. In particular, the trust region algorithm is a Tikohnov

regularisation of the step, but with p⃗0 = 0. In this view of the trust region

approach, the matrix D can be chosen in consideration of the conditioning

of the problem, and the regularisation matrix Γ can independently be chosen

with regards to preventing over-fitting to the noise. In practice the regularisa-

tion of the step and objective function both contribute towards conditioning

and preventing over-fitting. The scaling matrix is not guaranteed to produce

approximately equal sensitivities, the shortfall of which is made up through

the regularisation of the objective function. Further, if there is too much noise

near the solution then the gain ratio will not be near unity, and the damping

parameter will be increased, preventing too much deviation from the current

iterate and preventing over-fitting.
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3.10.3 Quasi-Newton

Quasi-Newton (QN) methods use the Newton direction with an approximation

of the Hessian. It is especially useful when the Hessian is not known or

when the approximation in eq. 3.48 no longer holds, i.e. the so called large-

residual problem [122]. Two examples of QN approximations are the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) and the NL2SOL, the former makes an

approximation of the inverse of the Hessian, whilst the latter is a hybrid

technique which predicts the terms not included in eq. 3.48. Specifically,

in the NL2SOL algorithm Hfλ(σ⃗k) ≈ JT
k Jk + λΓTΓ + Sk, which is a more

accurate approximation to the Hessian. Conversely, the BFGS algorithm

makes a prediction of the approximate inverse, Bk ≈ Hfλ(σ⃗k)
−1. The BFGS

algorithm uses a Newton step, whilst the NLS2OL algorithm uses a trust

region method [123].

3.11 Multi-Variable Polynomial Regression

(MVPR)

Forward modelling using finite element software is slow and limits image re-

construction to be offline. Instead, data driven approaches can be employed

using many samples of modelling data. Both an inverse model and forward

model can be derived for direct and iterative inversion, respectively.

In MVPR, the mapping between conductivity and inductance is approxi-

mated by fitting polynomial curves. The data used for determining the model

parameters is referred to as the training data. A further two sets are reserved,

called the validation and test. The validation set is used for finding the hyper-

parameters of the ML algorithm, and the test is an unused dataset used to

evaluate the ML algorithm performance.
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Given a set of input and target data, the multi-variable polynomial equa-

tion can be written in matrix form as eq. 3.53. The matrix P contains the

terms of each sample polynomial expression, where the number of rows is

equal to the number of samples and the number of columns is the number of

polynomial terms. The matrix C contains the desired coefficients of the poly-

nomial terms, and T is a matrix containing the target data. Each row of a

given column in P contains the different sample evaluations of the same term.

To help with conditioning, each column can be standardised by subtracting

the mean and dividing through by the standard deviation, or alternatively,

the maximum absolute value.

PC = T (3.53)

To find the coefficient matrix the TSVD of the Moore-Penrose pseudo-inverse

can be used. MVPR using TSVD is a simple ML technique consisting of a

single model hyper-parameter (the polynomial order) and a single inversion

hyper-parameter (the truncation point). Finding the optimal results for this

algorithm is simple, which makes it extremely attractive for use as a bench-

mark for more complicated ML regression models, such as neural networks.

3.12 Chapter Summary

• Basic electromagnetic concepts were introduced, in particular the mate-

rial response to a plane wave. This provided an opportunity to introduce

the skin effect and explain the division of electromagnetic inspection into

soft and hard field modalities.

• The differential equation governing the eddy current problem was in-

troduced. There are several different formulations, depending on the

problem to be solved. The A formulation is used by the numeric solver
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COMSOL®.

• FEA for electromagnetic problems was described; the problem domain

is discretised into elements, in which the vector field is defined in terms

of area or volume co-ordinates and the A-field within interpolated. The

system of equations is then assembled and solved for.

• A gradiometer coil is used to collect reactor measurement data. The

gradiometer coil may not be perfectly balanced, and therefore, resid-

ual mis-balancing can be reduced by subtracting the response with the

graphite target absent. The sensitivity of the measurement to conduc-

tivity can be found by the forward difference method or the E⃗ · E⃗.

• A description of the Jacobian was given in §3.7, in which the Moore-

Penrose pseudo-inverse was presented. This pseudo-inverse is essential

when there are more equations than unknowns. For linear problems,

the Jacobian would be constant, and therefore, the minimiser can be

found in a single step.

• For non-linear problems, the solution is found iteratively by locally ap-

proximating the objective function and bounding the step size. This is

the subject of §3.8, where the methods described are derived from the

second order Taylor series expansion of the objective function. The nu-

clear graphite inverse problem is ill-conditioned, meaning there is large

differences in sensitivity between the underlying parameters.

• Regularisation is important for stopping over-fitting and for improving

conditioning. There are different types of regularisation, which cor-

respond to different filtering actions on the step direction. Tikhonov

regularisation is to be used.

• MVPR is a simple inferential technique, in which there are few hyper-

parameters, and therefore, it is simple to optimise. This makes it ideal
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to use as a benchmark for more complex algorithms.
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Chapter 4

Comparison of Iterative

Algorithms

4.1 Overview of Chapter

The iterative algorithms historically applied in graphite inversion used either

GN or LM directions. The work presented in this chapter investigates a broad

class of first order and second order methods for the inversion of nuclear

graphite data, whilst considering different levels of noise and prior estimates.

There are two different prior estimates employed in the study: one from a

ML algorithm and the other using a homogeneous conductivity of 45 kS/m.

The ML algorithm used was a Convolutional Neural Network (CNN), trained

using synthetic data; the procedure used to generate the synthetic data is

outlined and is repeatedly used throughout the thesis.

The results show that the NL2SOL direction is in the top class for all cases;

in particular, the improved performance of QN methods indicates a possible

performance limit due to the residual error in the Hessian. In general, the

LM algorithm is sufficient and competitive with other techniques for graphite
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inversion.

4.2 The Study

In [124], a study was conducted on a wide range of algorithms. These al-

gorithms were tested on five different problems and assigned into classes of

performance; no such study has been completed for the nuclear graphite ap-

plication (and more generally in eddy current NDE). Dekdouk et al. pre-

sented a small scale study of three GN type algorithms for reconstructing

the depth profile of a conductive nuclear graphite block. In other work,

the LM algorithm has been used for inversion and, again, the GN direction

[52][53][120][125].

This chapter presents a wider study into search direction algorithms for

the inversion of nuclear graphite data and considers both trust region and line

search directions: the GN, LM, QN, GD, non-linear Augmented Conjugate

Gradient (ACG) [126] and Powell’s Dogleg (PD) [112]. Further, different reg-

ularisation methods are investigated. The study was not extended to different

objective functions.

4.3 Coil and Problem Geometry

A cylindrical conductive block was used as the graphite target and this is

shown in fig. 4.1. The cylindrical geometry was to allow a 2D axi-symmetric

model to be used in the FEM, decreasing computation times. The conduc-

tive block model was discretised into ten layers, with every layer assigned its

own independent conductivity variable. The sensor was composed of a single

receive coil embedded in a transmit coil. The measurement made was the

DMI (corresponding to eq. 3.16), where this measurement was made at 10
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different frequencies from 600 Hz to 10 kHz. The bounds of the measurement

frequency are typically determined from a calibration stage, wherein there is

ideally good agreement between the simulated and experimental data: the

frequency range determined is dependent on modelling accuracy, where

600 Hz to 10 kHz is appropriate for graphite inversion; for example, in previ-

ous work 100 Hz to 10 kHz has been successfully used [53].

Figure 4.1: Inspection of a cylindrical block of material, that can be simulated
using 2D FEM with an axi-symmetric model.

4.4 Direct Solution

4.4.1 Generation of Synthetic Data

Generating Conductivity Profiles

Each conductivity variable was assumed to belong to a uniform distribution

between 0 kS/m and 95 kS/m; this conductivity range was used because

conductivity cannot be negative and the conductivity of virgin Gilsocarbon

is approximately 95 kS/m (loss of density in graphite means that electrical

conductivity cannot be larger than its virgin value). The profile was then

smoothed by fitting an nth order polynomial. The algorithms were tested on

10 profiles, where each profile has a different order from n = 1 to n = 10.
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As the number of layers is also 10, the highest order polynomial amounts

to no smoothing. This method of modelling the conductivity profile has few

assumptions about the behaviour of the graphite. An example of a generated

profile is shown in Figure 4.2.

Figure 4.2: Smoothed conductivity profile, generated by fitting a polynomial
to unsmooth profiles.

Measurement Noise

In order to avoid an inverse crime, it is critical to include realistic levels of

noise in the synthetic data [127]. After a conductivity profile was generated,

the DMI response was computed using the FEM forward solver. For the

samples used as training data, noise was added such that the SNR was in the

range [20 60] dB of the weakest amplitude component in the DMI response,

where the noise distribution was also modelled as a uniform random variable.

For the test profiles, two SNR levels were investigated: 20 dB and 60 dB.
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4.4.2 Machine Learning Algorithm

Each algorithm was tested using two different a priori estimates: one using a

ML prediction and the other using a homogeneous conductivity of 95 kS/m.

The algorithm used for determining the ML prior was a CNN.

CNNs are commonly used on images, where a filter is convolved with the

image. Electromagnetic data can be arranged in a similar format to image

data for use in a CNN [69][128]. In this manner, the real and imaginary parts

of the DMI signals were arranged into an array with a depth of two. Following

this, each feature of the data was standardised by subtracting the mean and

dividing by the standard deviation, where the mean and standard deviation

correspond to the training dataset.

After pre-processing the data, the network hyperparameters were selected.

The structure of the network was fixed: the input data was convolved with fil-

ters, down-sampled and then inputted into a Fully Connected Network (FCN).

The rest of the network hyperparameters were free to be selected, such as the

number of layers and the amount of down-sampling. These hyperparameters

were chosen by randomly selecting combinations and manually testing. The

Keras library was used, which has a large amount of functionality for build-

ing and training networks (including the hyperparameter random search). In

total, 10,000 sets of DMI data were used to train the network.

4.5 Performance Metric

To compare the performance of the algorithms, the Mean Percentage Error

Norm (MPEN) was used, denoted by ϵ. The MPEN as a function of iteration,

ϵ(i), is given by eq. 4.1, where n is the number of different conductivity profiles

and σ⃗kp(i) is the predicted conductivity profile of the ith iteration and kth test
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profile.

ϵ(i) =
1

n

n∑
k=1

∥∥∥σ⃗kt − σ⃗kp(i)
∥∥∥∥∥σ⃗kt ∥∥ × 100 (4.1)

Each algorithm performance was split into three classes, this approach to

evaluating algorithm performance was used in [124], in which classification

was done qualitatively. Here, the algorithms were grouped into clusters with

k-means clustering, providing a more robust classification procedure.

4.6 Algorithm Selection

The types of search direction used were MGN, GD, LM, PD, BFGS, NL2SOL

and ACG, most of which were introduced in §3.10. All of the algorithms,

except those that use the GN or BFGS direction, used the diagonal of the

Hessian as a scaling matrix. Tikhonov regularisation was used, where the

regularisation matrix was either the finite difference operator or the identity

matrix. All methods updated the regularisation parameter every iteration.

TSVD of the MGN direction was also included, denoted by MGN†. The

algorithms studied are summarised in table 4.1.

Table 4.1: Algorithms compared for graphite inversion.

Algorithm Search direction Γ
1 MGN I
2 MGN FD
3 MGN† -
4 LM I
5 LM FD
6 PD I
7 PD FD
8 NL2SOL I
9 NL2SOL FD
10 BFGS I
11 BFGS FD
12 GD I
13 GD FD
14 ACG I
15 ACG FD
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The ideal regularisation and damping parameters were found using the

knowledge of the optimal step direction; this is not possible in practice but

allowed for the comparison of the optimal results of each algorithm. These

parameters were selected by using a grid search corresponding to the step

closest to the optimal direction. The total number of iterations executed

was 10, where more iterations may have resulted in greater accuracy but at

the expense of increased computation times: 10 iterations was chosen as a

compromise such that the simulation times were not excessive.

4.7 Results and Discussion

The results are discussed with reference to the four cases shown in table 4.2.

The top 5 algorithms for cases 1 and 2 are plotted in fig. 4.3 and, similarly,

cases 3 and 4 in fig. 4.4. These figures are included to provide some visual

appreciation of an algorithm as a function of iteration.

Table 4.2: Cases in which the inversion algorithms were applied.

Case SNR (dB) Selection of σ⃗0
1 60 Direct Inverse Solution
2 20 Direct Inverse Solution
3 60 Homogeneous Conductivity
4 20 Homogeneous Conductivity
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Figure 4.3: Comparing iterative algorithms: Top 5 algorithms for (a) Case 1
(b) Case 2

The first notable details are that the BFGS and NL2SOL algorithms per-

form extremely well for cases 1 and 2. This provides evidence that the Hessian

approximation suffers from large-residual errors at the minimum. This can be

seen in fig. 4.3 (a), where the NL2SOL algorithm has a notably lower error

than the LM, with an equivalent regularisation matrix. The NL2SOL direc-

tion is the same as the LM direction, but approximates the residual terms

in the Hessian; therefore, there is a notable difference in this case due to the

large-residual error.
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Figure 4.4: Comparing iterative algorithms: Top 5 algorithms for (a) Case 3
(b) Case 4

For cases 3 and 4 the QN performances were not as dominant, perhaps

because the initial estimate was further away from the minimum (possibly af-

fecting the Hessian approximation) or because the prior estimate (the penalty)

was limiting convergence. With a poor prior estimate, the BFGS and NL2SOL

algorithms may not get close enough towards the minimum where the residual

terms of the Hessian become more important.

For cases 1 and 3 it can be seen that the ML prior estimates facilitate

a lower final error; however, in cases 2 and 4 it can be seen the final error

is larger when the prior is an ML prediction. This shows that the noise is

limiting the benefit of the ML prior estimate.
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Table 4.3: Case 1, where ϵ(0) = 24.8606%.

SD Γ Class ϵ(Nf ) (%)
NL2SOL FD I 6.6414
BFGS FD I 6.6494

NL2SOL I I 7.3824
BFGS I I 7.4219
LM FD I 8.288
LM I I 8.8147
MGN FD II 12.2979
MGN† - II 12.7794
MGN I II 13.0636
PD I II 15.1056
PD FD II 15.7665
ACG FD III 19.5224
GD FD III 19.8481
ACG I III 20.1281
GD I III 20.2562

Case 1 has six class I algorithms, with no notable pattern in regularisation

types across all classes. For this case there were clear groupings of types of

search direction, with clustering of Newton, QN and first order methods;

therefore, for this case the type of search direction was most important.

Case 2 has three class I algorithms. In this case it can be seen that the

choice in regularisation matrix becomes more important than in case 1, with

more mixing of the search direction and a tighter grouping of the choices in

regularisation.
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Table 4.4: Case 2, where ϵ(0) = 37.7533%.

SD Γ Class ϵ(Nf ) (%)
BFGS I I 18.6098
BFGS FD I 19.4251

NL2SOL I I 22.8146
NL2SOL FD II 23.2381

LM I II 25.6369
LM FD II 26.1631
ACG FD II 26.486
PD FD II 26.7359
MGN FD III 28.7902
ACG I III 29.0787
GD FD III 29.1565
PD I III 29.2477

MGN† - III 31.0074
GD I III 31.1869
MGN I III 32.885

Table 4.5: Case 3, where ϵ(0) = 93.1785%.

SD Γ Class ϵ(Nf ) (%)
LM FD I 8.5943

NL2SOL FD I 10.159
LM I I 10.2874
MGN FD I 11.3183
PD FD I 12.8849

MGN† - I 13.0246
MGN I I 13.0857

NL2SOL I I 13.7814
PD I II 15.1985
ACG FD II 16.5015
BFGS FD II 18.3074
GD FD II 18.3488
ACG I III 24.6189
GD I III 25.8199

BFGS I III 30.1816

Case 3 has eight class I algorithms. Notably, the QN methods were poorer

than in case 1 and 2: with a penalty or initial estimate further from the

minimum the benefit of including the residuals in the Hessian decreases and

so it should be expected that QN methods are not as good.

Case 4 has seven class I algorithms. There was a greater mix of directions

in this class, with a greater weighting on the importance of regularisation
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compared to the other cases. The choice of regularisation matrix was tighter

than in case 3. GD and ACG perform particularly well for this case.

Table 4.6: Case 4, where ϵ(0) = 93.1785%.

SD Γ Class ϵ(Nf ) (%)
NL2SOL FD I 14.3276

LM FD I 17.2233
ACG FD I 17.7059
BFGS FD I 18.2785
GD FD I 19.3066
MGN FD I 19.4388
PD FD I 20.4059
LM I II 22.2847
PD I II 23.6394

NL2SOL I II 24.4398
ACG I II 24.7409
BFGS I II 25.2689
GD I II 27.9869
MGN I III 38.6137
MGN† - III 39.4183

It can be seen when comparing cases 1-2 and 3-4 that when the a priori

estimate was the homogeneous conductivity, there were a greater number of

algorithms in class 1. This was perhaps because the penalty chosen was either

in the zeroth or first order deviation in some constant profile, and therefore,

there was less flexibility in the reconstructed profile; thus, the algorithms

converge to some limit in case 3-4. The choice of search direction is less

relevant if there is a poor a priori estimate than if a good prior estimate is

known. Generally, it can be seen that when there was a lower SNR that the

regularisation matrix becomes as important as the choice in search direction.

The results show that there was not one particular search direction or

choice in regularisation which dictates the performance. The choice was also

dependent on the prior and number of iterations to be run. However, a

strong candidate would be the hybrid technique NL2SOL, an algorithm which

performs well across each case.

The criterion for a top performing algorithm was chosen to be the lowest
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error at the 10th iteration, therefore, other algorithms could be more or less

superior depending on a number of design choices. For other applications, the

computation of the Hessian may be costly and therefore, GD or ACG may be

more appropriate.

4.8 Chapter Summary

• To date, there has been no comprehensive study into the different search

algorithms available for graphite inversion and this extends to eddy

current NDE in general. Typically, second order methods have been

used for graphite inversion.

• The study investigated two different prior estimates: one of homoge-

neous conductivity and the other a ML prediction. The ML algorithm

was trained using synthetic data, where the methodology for generating

the synthetic data is used throughout the thesis. First, a conductivity

depth profile is randomly generated and smoothed using a polynomial.

The conductivity profile is then used to obtain the corresponding induc-

tance data from a forward model. Noise is then added to the inductance

data.

• The performance of algorithms was classified by a k-means clustering

algorithms. There is no single algorithm which is optimal for all cases —

the search direction and regularisation type depend the prior estimate

and noise level. However, the augmented LM is consistently in the top.

Generally, the LM algorithm with the finite difference regularisation

matrix is a sufficient and competitive algorithm.
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Inversion by Inference

5.1 Overview of Chapter

In the previous chapter, a CNN was used to obtain a direct solution to the

inverse problem for use as a prior estimate in an iterative algorithm. A CNN

algorithm may be more complicated than necessary and requires extensive

tuning of hyper-parameters. This chapter considers the suitability of a CNN,

by comparing it with a simple MVPR algorithm. In the comparison, a num-

ber of statistical measures are used to assess performance: the correlation

coefficient (between error and SNR) and error range, standard deviation and

mean.

Currently, there is little information about the behaviour of the graphite at

the periphery; therefore, three different studies are contained, one on smooth

conductivity profiles (up to order four), another on unsmooth profiles and

the last on reactor type profiles (derived from previously trepanned graphite

and are extrapolated for the purpose of the study). In all of these cases, the

two algorithms are mostly comparable in performance. Although a CNN has

the capacity to model complicated functions, the MVPR algorithm is much

simpler to design and faster to train.
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5.2 Direct Inversion

The application of neural networks to electromagnetic data has been reported

for several decades, with some of the earliest work done by Udpa et al. in

defect characterisation [78]. In the following years, research was published

showing the applicability of neural networks to recovering electromagnetic

parameter distributions, such as conductivity depth profiles [66]–[69]. The

use of neural networks in electromagnetic NDE, ranges from medical imaging

[66] to monitoring CO2 emissions [69].

Using data driven techniques, it is possible to obtain a solution to the

inverse problem directly. This solution could be used as a prior estimate in

an optimisation algorithm or it could be trusted as a sufficiently accurate

approximation to the true solution.

5.3 The Study

The methodology for generating the synthetic data was the same as in §4.4.1,

with the same SNR bounds. The conductivity profiles were limited to an order

between zero and four. The same coil was used and the same measurement.

The key difference was the use of a cuboid block instead of the previously

used cylindrical block. In total, 5000 synthetic samples were generated for

training, 500 reserved for testing and 500 for validation.

Three different cases are investigated: smooth conductivity profiles (up to

order four), unsmooth and reactor type profiles. The reactor profiles are not

expected to be random; however, the unsmooth case provides insight into the

ability of the ML algorithms in mapping conductivity to inductance.

To compare the algorithms, a number of statistical measures are used to
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assess performance: the correlation coefficient (between error and SNR) and

error range, standard deviation and mean. If each of these these statistics is

represented by si, then the mean ratio of the statistics is

r =
1

4

4∑
i=1

∥∥∥∥∥ sCNNi

sMV PR
i

∥∥∥∥∥ (5.1)

This ratio can be used to encapsulate the performance of each algorithm

with a single number. If r < 1 then the CNN can be said to have a better

performance, if r > 1 then the MVPR is better and if r = 1 they are equal.

5.4 Hyper-parameter Determination

5.4.1 Convolutional Neural Network

The CNN was trained as in §4.4.2. First, the data was arranged into a 3-

dimensional matrix, similar to an image; the real part of the data formed

one channel and the imaginary another. The data was standardised in the

same way. The same CNN structure and tuning process was used, with the

hyper-parameters found by manually tuning.

5.4.2 Multi-variable Polynomial Regression

The disadvantage in MVPR is that the number of polynomial terms grows

rapidly with order. Table 5.1 shows the memory requirements to store the

matrix P with 5000 training samples and 20 dependent variables. For the

machine used and code written, an order of 5 was the greatest achievable,

where orders greater than this would crash the program when computing the

matrix inverse.

In MVPR, the data is transformed by a polynomial expansion, where the
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Order Memory (GB)

1 8.4× 10−4

2 9.2× 10−3

3 7.1× 10−2

4 4.3× 10−1

5 2.1× 100

6 9.2× 100

7 3.5× 101

8 1.2× 102

Table 5.1: Memory requirements of the MVPR algorithm for type double.

coefficients are to be determined. To determine the polynomial coefficients,

TSVD was used to regularise the Moore-Penrose pseudo-inverse of the trans-

formed training data, with the ideal truncation point found using a golden-

section search. The golden-section search is a derivative free optimisation

method and is given in algorithm 2. The polynomial order and truncation

point are found according to the minimum error corresponding to the valida-

tion data. This is a simple regularisation technique in which the regularisation

Algorithm 2: Univariate search algorithm for minima. It is the
golden-section search algorithm when 1

a
= 1+

√
5

2

1 define xl and xu; // xu is the upper bound and xl the lower

2 define a, s.t. 0.5 < a < 1;
3 while Some Condition do
4 d = |xu − xl|; // distance between bounds

5 xtu = xl + d× a; // xtu is the trial upper bound

6 xtl = xu − d× a; // xtl is the trial lower bound

7 if f(xtu)> f(xlu) then
8 xu = xtu;
9 else

10 xl = xtl;
11 end

12 end

parameter (the truncation point) is bounded. The metric used for tuning the

hyper-parameters was the MPEN. Fig. 5.1 shows the golden-section search

in finding the ideal truncation index. The red markers are the updated upper

limits in the golden-section search and the black are the updated lower limits.
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Figure 5.1: Golden section search for truncation point in TSVD of the Moore-
Penrose pseudo-inverse (used for finding the coefficients in MVPR)

The above procedure is repeated for the different polynomial orders: the

validation error in fig. 5.2 corresponds to the minimum error found in the

truncation point search for a given order. For this work an order of 3 was

found to be optimal.

MVPR using TSVD is a simple ML technique consisting of two hyper-

parameters: the polynomial order and regularisation parameter (the trunca-

tion point). Finding the optimal results for this algorithm is simple, making it

extremely attractive for use as a benchmark for more complicated regression

models, such as neural networks.

Chapter 5 122



Inversion By Inference

Figure 5.2: Determining the polynomial order in MVPR: the validation error
as a function of polynomial order.

5.5 Results and Discussion

5.5.1 Smooth Depth Profiles

The results of testing on 500 smoothed samples are shown in fig. 5.3, with

four example profiles shown in fig. 5.4 to provide some visual context for the

error data. The correlation coefficient measures the dependence of the error

on the SNR. It can be seen that the CNN has a larger correlation coefficient,

a smaller error bound, a larger MPEN and a smaller standard deviation. In

this case r = 0.9123, indicating that the CNN is marginally better.
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Figure 5.3: Test statistics of two regression models for direct inversion of
inductance data corresponding to smooth conductivity profiles: CNN Vs
MVPR.

Figure 5.4: Examples of recovered depth profiles for direct inversion of induc-
tance data corresponding to smooth conductivity profiles.
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5.5.2 Unsmooth Depth Profiles

The performance of the MVPR and CNN models could be seen as unrealistic

because the profiles were smoothed beforehand, i.e. a predetermined relation-

ship was built between the inductance data and conductivity profile. This

is an issue of data generation, and the only way to mitigate this is to lower

the smoothing and to generate more training data so that the models learn

an improved understanding of the fundamental physical relationship between

the conductivity and DMI data. This is a more global issue in data-driven

approaches, where bias can exist in the input training data. Therefore, it

is beneficial to see how both models perform on profiles that are completely

random.

Figures 5.5 and 5.6 show the results on 500 unsmoothed test profiles. In

this case, the MVPR algorithm has a larger mean, standard deviation, error

bound but a smaller correlation coefficient. The mean ratio of the statistics

is r = 1.0784, indicating that the MVPR is narrowly better.

Even though both models have been trained with smoothed profiles they

can still both provide a useful approximation of profiles of a higher order.

Although the behaviour of the graphite at the periphery is unknown, the pro-

files are also not expected to be random, and therefore, the assumption that

the profiles have some smoothness is likely valid. Moreover, the assumption

that these profiles can be approximated by a fourth-order polynomial is a

reasonable one.
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Figure 5.5: Test statistics of two regression models for direct inversion of
inductance data corresponding to unsmooth conductivity profiles: CNN Vs
MVPR.

Figure 5.6: Examples of recovered depth profiles for direct inversion of induc-
tance data corresponding to unsmooth conductivity profiles.
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5.5.3 Reactor-type Depth Profiles

The previously discussed test profiles are not indicative of actual reactor con-

ductivity depth profiles. To model typical reactor-type profiles, trepanned

density measurements were used. As mentioned, the trepanning machine does

not penetrate through the entire through-wall thickness of the graphite chan-

nels. The length of a trepanned sample is approximately 2/3 of the thickness

of the channel wall. To estimate the behaviour beyond this point, a curve can

be fitted to the trepanned data and the remainder of the depth profile extrapo-

lated. Fig. 5.7 shows the estimated depth profiles from 6 trepanned samples.

In total, 193 extrapolated profiles were generated by fitting a second-order

polynomial to the trepanned data.

Figure 5.7: Conductivity profiles based on reactor data, extrapolated by fit-
ting a quadratic curve.

Fig. 5.8 shows the test statistics of the two regression models on reactor-

type data, with example inversions shown in fig. 5.9. It can be seen from these

statistics that the CNN has a larger MPEN, a smaller standard deviation, a

smaller error bound and a marginally larger correlation coefficient. In this

case r = 0.6708, indicating a notable performance difference in the CNN and
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MVPR.

Generally, it can be seen that the CNN reconstruction has better noise

immunity compared with the MVPR. The mean ratio across the smooth, un-

smooth and reactor-type data is r̄ = 0.8871, indicating that overall the CNN

is better; however, the MVPR is competitive with the CNN algorithm and

it is concluded that the MVPR algorithm is sufficient for graphite inversion.

For larger sets of training data, the neural network may be more appropriate

because of the memory requirements in MVPR.

Figure 5.8: Test statistics of two regression models for direct inversion of
inductance data corresponding to reactor-type conductivity profiles: CNN Vs
MVPR.
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Figure 5.9: Examples of recovered depth profiles for direct inversion of induc-
tance data corresponding to reactor-type conductivity profiles.

5.6 Chapter Summary

• Data-driven techniques can be used to obtain a direct inverse solution.

A CNN has been previously used in inverting graphite data; however, it

may not be the simplest and most efficient solution because they have

many hyper-parameters to tune.

• A comparison of a CNN against a simple MVPR algorithm has shown

that they are competitive against a number of test statistics: correla-

tion coefficient (error and SNR), mean error, error bounds and error

standard deviation. Therefore, an MVPR algorithm is used throughout

the rest of this work. However, the memory requirements for a MVPR

algorithm are significant, which may limit the polynomial order with

larger datasets. It is noted that the CNN seems to have better noise

immunity when reconstructing the depth profile.
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6.1 Overview of Chapter

The previous studies in inferential and iterative techniques considered syn-

thetic data. To apply the algorithms on measured data, it is necessary to

calibrate the forward model. This is the subject of this chapter.

This chapter begins by observing that there are low frequency resonant

effects in the deployed measurement system. In the DMI measurement, the air

response is subtracted and the resonant effects nulled to a first order degree.

This may not be sufficient for inversion, and therefore, damping circuitry is

used to carefully extend the operating frequency range.

Optimisation techniques are used to calibrate the forward model, where

there are constraints on coil sequence, lift off, turns etc. The constrained

optimisation algorithm, used for both calibration and inversion, is presented.

This algorithm is based on the LM trust region algorithm, which inherently

finds a step towards a minimum of an objective function within a spherical or

elliptical constraint region. The feasibility of the algorithm is demonstrated

on the calibration of the reactor and laboratory probes. It is shown how
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the calibration procedure can be used to determine the coil model, frequency

range and mesh. For this application, a filament model is as accurate as a 3D

coil model.

It is concluded from the calibration of the reactor probes, that damping

does reduce the resonant effects and improves the forward model approxima-

tion. Therefore, damping goes beyond visibly reducing resonant effects.

6.2 Resonance and Damping

The work done in studying and characterising the resonance effects was led

by A. Fletcher, where credit and thanks are given. The contribution of the

author was in collecting the data, tuning the lumped equivalent circuit and

on-site testing of damping components.

The eddy current formulation in the magnetic fields interface in COMSOL®

does not include the displacement current. Further, the FEM does not model

the capacitance between each turn of a coil. A more accurate description

would include the capacitance of the coils and the cables connecting them to

the measurement instrument. As the frequency is increased, the capacitance

between coil windings and cables becomes increasingly important. This can

be better understood with a lumped circuit model of the problem. Fig. 6.1

shows the equivalent circuit for a gradiometer coil, where the self-inductance,

L, describes how an individual circuit’s magnetic field is coupled to itself.

The resonant characteristics of the coil are not necessarily problematic if

they are included in the modelling. To model the resonance in COMSOL®,

both the electric and magnetic fields interface would be required. There are

then challenges in coil modelling, since each turn would need to be individu-

ally defined — this then raises complications with meshing because the model

computation time would significantly increase. Another option is to use the
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Figure 6.1: The lumped equivalent circuit model of a gradiometer coil and
connecting cables.

electric circuit interface in COMSOL® and to apply this in conjunction with

the magnetic fields interface. In either case, the modelling of resonance is not

guaranteed to provide suitable inversion results because the resonant problem

is significantly ill-conditioned. Instead, it is simpler to truncate the spectrum

to a suitable range to avoid resonant effects altogether. Inversion of induc-

tance data with resonant effects is perhaps an avenue for future research.

There are three PEP sensors which are discussed, all manufactured with

the same specification. In reactor conditions, the sensor is connected to the

instrumentation device with a long umbilical cable. The umbilical cable is

approximately 60 m long and adds a large amount of capacitance into the

circuit. The deployed reactor probe is compared with a replica system at the

James Fisher Nuclear Laboratory (JFNL) site, which is intended to closely

model the reactor setup. The measured resistance of the umbilical at the

JFNL site was Ru = 19.8 Ω and the capacitance 2.05 nF. The free space
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(air) measurement of the three PEP sensors is shown in fig. 6.2. The JFNL

and reactor probe were connected to the console with different umbilical ca-

bles and the laboratory probe had no umbilical cable. The reactor and JFNL

probes are deployed from a tool with metal casing, and therefore, two different

probe extensions are included with a diameter of 263 mm and 270 mm. The

differences between the various responses could be due to manufacturing vari-

ations and/or balancing of the sensors and/or the umbilical and hoist. It can

be seen that there is little sensitivity to the metal casing of the inspection tool

because the two different extensions of the probe are almost identical in the

response and this is expected since it was designed to have little sensitivity to

the casing [54]. Comparing the reactor and JFNL probes, it is observed that

there is a possible defect in the reactor system (hoist or probe) and that the

differences between the two systems is not related to the probe distance from

the metal casing. Overall, resonant effects in the reactor probe are visible at

a significantly lower frequency than the JFNL and laboratory probes.
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Figure 6.2: The measurement of three different PEP sensors in air. The
laboratory sensor is not in the ECIT housing and does not have an umbilical
connected. The JFNL and reactor probes are both in the ECIT housing and
are connected to the measurement device via an umbilical. Included are two
extensions of the reactor probe, at a distance of 131.5 mm diameter and 135
mm from the centreline of the tool.
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Determining Lumped Component Model

To extend the bandwidth of the deployed reactor probe, damping circuitry was

added. To choose the damping components, the equivalent circuit model of

the undamped gradiometer must first be determined. The model parameters

(such as coil resistance) were found according to the minimum error between

the experimental and analytic measurement. Tuning the model parameters is

difficult for resonant circuits because the difference between the largest and

smallest measurement spans several orders of magnitude. Therefore, optimi-

sation techniques are not employed and instead a grid search was used. The

gradiometer measurement can be segmented for coil tuning; for example, the

low frequency data will have little sensitivity to coil capacitance. This can

be used to simplify the fitting problem. First, a curve was fitted to the low

frequency data up to 100 Hz by tuning the mutual inductance between the

transmit and receive coils. The frequency range was then increased beyond

the dip at approximately 600 Hz and the self-inductance and resistance of

each coil tuned, in addition with the mutual inductance between the two re-

ceive coils. Following this, the capacitances of all the coils were tuned, using

the full measurement bandwidth.

The tuned model and experimental response, using the reactor probe, are

plotted in fig. 6.3. This free space experimental measurement was made

using a nylon section within the hoist (shown in fig. 6.4) and not in air. The

resonant peaks are not well modelled. There is a large amount of error in

the second peak, likely due to the limited data available; however, this is not

as important because it is the low frequency resonant effects that are to be

smoothed.
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Figure 6.3: The measured response of the nylon brick using the deployed
reactor probe and the tuned equivalent circuit of this measurement.
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Figure 6.4: The calibration brick that is placed within the hoist.

Selecting The Damping Components

To smooth out the ‘dip’, damping circuitry is added and this is shown in fig.

6.5. The damping components were determined by first finding the lumped

equivalent circuit equation with the additional damping circuitry. The pre-

viously determined equivalent circuit values are then used to define the coils

in the damped circuit equation. The damping components are chosen such

that the ‘dip’ is smoothed out and the phase approximately equal to π/2

radians. These modelled damping component values are used as initial val-

ues for the experimental work, where a selection of components are taken on

site. The result of this process is shown in fig. 6.6. On site, the damping

parameter values chosen were: Cd1 = 0 pF, Cd2 = 0 nF, Rd1 = 11.5 kΩ and

Rd2 = 10.5 kΩ. As a heuristic observation, the magnitude response was most

sensitive to the damping resistors and the phase response to the capacitors.

There were difficulties with tuning the phase because there was very little
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Figure 6.5: Additional damping components are added to smooth out resonant
effects.

sensitivity to any of the capacitors. Additionally, the phase response of the

damped nylon measurement is significantly different to the damped response

of the same gradiometer in air. The equivalent circuit was found using the free

space measurements from the calibration brick in the hoist, and therefore, the

damped and undamped circuits were tuned to the same experimental system

used for on-site testing of the damping components: it is not clear why there

was little sensitivity to the capacitors on site, whilst in the model they were

sufficient — perhaps the lumped equivalent circuits have a very small range

in which the components accurately model the experimental system.
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Figure 6.6: The measured free space responses with and without the damping
circuitry.
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6.3 Coil Characterisation and Noise

Prior to employing a FEM in an inversion algorithm, the forward model pa-

rameters need to be calibrated, such that the FEM accurately encapsulates

the physical system. Further, ML methods are becoming increasingly popular

for image reconstruction, wherein large amounts of training data are required.

This training data can be acquired experimentally, numerically or analytically.

If a numeric or analytic model is to be used to produce synthetic training data,

then good agreement between model and simulated data is essential.

Calibration procedures vary in eddy current inspection, a common ap-

proach is to obtain a series of reference measurements for materials of known

characteristics. Properties of the measurements can then be inferred from the

reference samples; for example, in determining the presence of a notch [129].

In methods which require forward models, the calibration stage must min-

imise modelling inaccuracies. In electromagnetic inspection of the graphite

core, calibration procedures for tuning forward models have included various

techniques: varying coil diameter and finding the diameter corresponding to

the best model agreement [52] or mapping the FEM and physical system using

a transfer function approach [53] or a mixture of both. In [75], the forward

model was calibrated by first accounting for losses and stray capacitance be-

tween coil windings and then minimising the difference between the measured

and simulated responses by solving a least squares problem via the update of

model lift off.

6.3.1 Constrained Optimisation Algorithm

An algorithm is needed to calibrate a set of model parameters η⃗ subject to

constraints. This section introduces an algorithm for solving a constrained

optimisation problem using a LM trust region method. Ideally, a matrix D
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exists which satisfies some arbitrary boundary conditions, such as in fig. 6.7.

However, for most cases where there are boundaries this would require non-

linear, piecewise transformations. Further, it is not practical to determine the

matrix D for arbitrary constraint boundaries.

Figure 6.7: An arbitrary constraint region in an optimisation problem. The
algorithm must find the minimiser of the objective function within the con-
straint region (in this example η∗1 and η∗2).

Consider a set of coil parameters which are to be tuned to the experimental

data (for example, lift off or turns), the update of any-one parameter, ηjk+p
j,

must be within the constraint boundary. In the algorithm developed, if a

predicted value ηjk + pj has a constraint violation and the previous value ηjk

was within the permissible boundary, then a bisection search was used to

place ηjk + pj within or on the boundary. If ηjk is already on some boundary

and ηjk + pj is in an impermissible set of values, then ρ cannot be computed.

To proceed, the jth parameter is omitted from the step for the remainder of

the iteration by eliminating the variable from the gradient and Hessian; the

damping parameter is then altered until the conditions on ρ are satisfied, as

normal. During the next iteration, any previously omitted parameters are

re-introduced into the inversion and the full process above repeated. This
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freezing step ensures that other parameters can take on new values towards

a minimum and, thus, the inversion can progress. In practice it has been

observed that values that have been frozen later move from the boundary into

the permissible space, as the algorithm navigates around some boundaries in

the parameter space towards a minimum. The set of variables that are within

the feasible region are referred to as F1, those that are to be used in a bisection

as F2 and F3 for those that are to be frozen — these three sets are disjoint

and are formally written in eq. 6.1.

(lj < ηjk < uj) ∧ (lj ≤ ηjk + pj ≤ uj), j ∈ F1

(lj < ηjk < uj) ∧ (ηjk + pj < lj ∨ ηjk + pj > uj), j ∈ F2

(ηjk ≤ lj ∨ ηjk ≥ uj) ∧ (ηjk + pj ≤ lj ∨ ηjk + pj ≥ uj), j ∈ F3

(6.1)

The algorithm used for the bisection search is shown in algorithm 3.

Within the bisection search, the γ corresponds to a step such that the re-

sultant point is close to the boundary because it is numerically difficult to

find a step landing exactly on the boundary. Due to this, γ = 10low is re-

turned, corresponding to a violation slightly beyond the boundary and into

the impermissible region, where this ensures that the j ∈ F2 will correctly

be considered in the variables to be frozen in the next iteration. Alterna-

tive search algorithms could be used; however, the relative speedup between

algorithms is negligible and a bisection is used for its simplicity.

The constrained algorithm used is shown in algorithm 4. The first stage

is to perform a bisection search to find the damping parameter corresponding

to all the variables in F2 moving on or within the boundary; this stage is

completed first because the indices in F3 may change with γ. The variables

in F3 are then frozen by truncating the gradient and Hessian. Two bisection

searches in a single iteration are not permitted. The next stage is to compute

ρ and determine whether the quadratic model constraint region requires alter-
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Algorithm 3: Bisection Search for the damping parameter exponent.

1 low = log10(γ);
2 upper = log10(γ);
3 determine F2 with p⃗(γ = 10upper);
4 while F2 is not empty do
5 upper = upper ∗ 2;
6 determine F2 with p⃗(γ = 10upper);

7 end
8 i = 1;
9 for i < bisection iterations do

10 mid = (low + upper)/2 ;
11 compute p⃗(γ = 10mid);
12 determine F2 with p⃗(γ = 10mid);
13 if F2 is not empty then
14 low = mid;
15 else
16 upper = mid;
17 end
18 γ = 10low;
19 i+ = 1;

20 end
21 return γ;

ing; an important stage is to check if a bisection search has been performed in

the check for the over-constrained ρ — this is required because the damping

parameter cannot be lowered as it will potentially place the variable further

into the impermissible region. However, the damping parameter is free to be

increased.

For the damping parameter selection if 0.8 < ρ < 0.95 or 1.05 < ρ < 1.2

then the step is accepted, otherwise the region is contracted by increasing the

damping parameter. The value of ρ = 1 was avoided as it is possible the con-

straint region is contracted to the point that the numerator and denominator

tend to zero (producing numerical instability) and also provides the ability to

lower γ.
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Algorithm 4: Computing the step direction

1 ρ = Nan;
2 count = 1;
3 already bisected this iteration = False;
4 while ρ does not satisfy constraints or count < count limit do
5 compute p⃗(γ);
6 find F2 corresponding to p⃗(γ);
7 if F2 is not empty and not already bisected this iteration then
8 γ = compute bisection();
9 already bisected this iteration = True;

10 compute p⃗(γ);

11 find F3 corresponding to p⃗(γ);
12 if F3 is not empty then
13 Truncate gradient and Hessian;
14 Compute reduced step, p⃗r, corresponding to indices in F1 ∪F2;

15 Assemble full step p⃗ using p⃗r, where p
j =

{
0, j ∈ F3

16 compute ρ using step, gradient and Hessian corresponding to
F1 ∪ F2;

17 if over-constrained then
18 if already bisected this iteration then
19 η⃗k+1 = η⃗k + p⃗;
20 break;

21 γ = γ/2;

22 else if under-constrained then
23 γ = γ × 3;
24 else if Not under-constrained or over-constrained then
25 η⃗k+1 = η⃗k + p⃗;
26 break;

27 count += 1;

28 end

Figure 6.8: The gradiometer coil used to collect and invert reactor data,
characterised by the inset parameters.
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6.3.2 Constraints

The elliptical coils are defined using the parameters in fig. 6.8. The sequence

of the coils is as follows: Rx2-Tx-Rx1, from smallest to largest. The large

receive (Rx1) and transmit coil (Tx) lie on the same plane, where the curvature

of the surface is described by the major and minor radii of a 2D ellipse. In

contrast, the small receive coil (Rx2) lies in a flat plane. All coils are elliptical

in shape, as seen in the front view. In order to simplify the problem, the depth

(d) and thickness (t) of Rx2, Rx1 and Tx are fixed; the wire cross section is set

so that the turns fit exactly according to the fixed depth and thickness. The

fixed values are d1 = 14 mm, d2 = 9 mm, t1 = 6.35 mm and t2 = 6.5 mm.

The diameters of Rx1 and Tx are not updated individually but instead

defined by the inner diameters of the curved plane, Vc and Hc. The advantage

of which is a reduced set of variables. For example, the horizontal inner

diameter of Rx1 is HRx1 = Hc + t1 + 3.3 × 10−3 and HTx = Hc, where 3.3

mm is added because this is the measured separation between the Rx1 and

Tx coil. Similarly, a single lift off parameter is defined, Lc, for the Tx-Rx1

pair. The smaller backing off coil has its own lift off parameter, LRx2. The

number of turns, T , on each coil is treated individually.

The constraints used are given in table 6.1. The constant s is the minimum

separation between the inner diameters of the Rx2 and Tx and is defined as

the Rx2 coil thickness plus some offset. The offset used was 3 mm to ensure

the coils can be suitably meshed. Additionally, the upper limit of Rx2 is

tied to the lower of Tx; therefore, if one is in violation then so is the other,

enforcing the sequence of the coils. The lift off for each coil has no upper

bound, but has a lower constraint of 3 mm, again to ensure the coils can be

suitably meshed. The rest of the variables are constrained using the measured

values with a 25% tolerance.
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Table 6.1: Constraints used in coil modelling

Parameter lj uj

HRx2 0.001 Hc+HRx2−s
2

Hc
Hc+HRx2+s

2
∞

VRx2 0.001 Vc+VRx2−s
2

Vc
Vc+VRx2+s

2
∞

TRx2 562.5 937.5

TTx 75 125

TRx1 112.5 187.5

LRx2 0.003 ∞

Lc 0.003 ∞

rmin 0.1 0.12

rmaj 0.1 0.12

To compute the Jacobian, the perturbation method was used. In this

approach, the sensitivities are found using the forward difference method,

given by eq. 6.2, where f is the objective function. For large values of γ

(decreasing constraint region radius), the gain ratio can become numerically

erratic; this is because the scale of the constraint region radius approaches

that of the perturbation. Therefore, the damping parameter was limited to

γ < 10.

∂f(η⃗)

∂ηjk
≈ f(ηjk +∆ηjk)− f(ηjk)

∆ηjk
(6.2)

6.4 Results and Discussion

6.4.1 Laboratory System

In the calibration procedure, it is prudent to use a variety of calibration blocks

with different conductivities, such that the calibration error would be ideally

conductivity invariant. Further, the use of multiple calibration bricks helps
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prevent over-fitting. In the laboratory, three blocks were available that have

Low Conductivity (LC), Medium Conductivity (MC) and High Conductivity

(HC), where high and low are respective to the nuclear graphite applica-

tion. The conductivity of the calibration bricks was physically measured us-

ing a four point probe [130]. The conductivities determined were 11.0 kS/m,

39.6 kS/m and 85.3 kS/m. A homogeneous cuboid block of graphite (see

fig. 6.9) was used and provided a basic geometry which could be easily and

accurately be defined and was faster to compute, compared with station ge-

ometry. A template was used to fix the position of the coil for measurement

consistency. The objective function which was used is given by eq. 6.3. The

term r⃗k(η⃗) is the residual error between the measured and simulated response

of the kth calibration block and n is the number of calibration blocks. No

regularisation was used.

f =
1

2

n∑
k=1

∥∥∥r⃗k(η⃗)∥∥∥2

2
(6.3)

Figure 6.9: The setup used for calibration of the laboratory system; a cuboid
block of graphite with a template to fix the sensor position.
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To model the experimental system, a filament or 3D coil model can be

used. In the filament model, each receive and transmit coil is approximated

with a wire filament, which has zero cross sectional area. Within the filament

model, the total voltage across a coil can be found by integrating the flux

penetrating the filament and multiplying by the number of turns, assuming

the flux through each coil is the same. However, the field is spatially varying

and the amount of flux penetrating each turn of the physical coil is not nec-

essarily uniform. This could be improved through the use of more filaments,

capturing the spatial variation of penetration. The use of a filament model is

simplistic but results in faster computation times because the number of finite

elements in modelling the coil is reduced. In contrast, the 3D model captures

the variation in flux between turns. Therefore, this model is generally more

accurate but has longer computation times.

The agreement of the FEM with the physical measurements was quantified

using the SNR (θ), given by eq. 6.4, where mi
s is the simulated measurement,

mi
p the actual at the ith frequency measurement. The frequency range was

initially 10 Hz - 10kHz. After tuning to this it was truncated according to

the range of frequencies with the largest SNR.

θi = 20× log10

 ∣∣mi
s

∣∣∣∣∣mi
p −mi

s

∣∣∣
 (6.4)

The experimental and simulated filament model responses prior to optimi-

sation are shown in fig. 6.10 and the SNR given in table 6.2. Similarly, the

measurements post optimisation are shown in fig. 6.11 and the SNR given in

table 6.3.

From fig. 6.11 it can be seen that the experimental and simulated re-

sponses begin to clearly deviate at 215 Hz in the real part of the measurement

of the LC block; the low frequency error is expected because the measurement
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Table 6.2: Laboratory system: SNR of the filament model using the full
spectrum, prior to optimisation.

frequency (Hz) HC (dB) MC (dB) LC (dB)

10 0.62 -4.58 -5.39

21.54 5.54 4.22 7.27

46.42 5.27 3.52 2.91

100 5.29 3.67 3.96

215.44 5.24 3.7 3.95

464.16 5.17 3.73 3.95

1000 5.05 3.73 4.02

2154.43 5.09 3.83 4.13

4641.59 5.25 4.28 4.52

10000 6.43 5.79 6.25

signal decreases in accordance with Faraday’s law and the limiting noise floor

of the measurement device. Therefore, the spectra are truncated to 464 Hz -

10 kHz and optimisation procedure repeated.

The results for the truncated spectra are shown in table 6.4. From table

6.3 and 6.4 it can can see that there is not much improvement in the SNR’s,

thus, the lower frequency measurements were not necessarily limiting the

convergence of the model parameters. Further, there may be coil modelling

or measurement inaccuracies which are limiting convergence.

The procedure was repeated with the 3D coil model, where the truncated

results are shown in table 6.5. The mean SNR across the truncated spectrum

and across the three calibration bricks is 29.43 dB for the 3D model and

28.27 dB for the filament. From this, it is clear that there is little difference

between the two coil models, and therefore, the non-uniformity of the mag-

netic field between turns and coil losses were not the deciding factors between

the two models. This could indicate that there is a common modelling er-

ror in both cases or that there is systematic error in the measurement data.
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Table 6.3: Laboratory system: SNR of the filament model using the full
spectrum, post optimisation

frequency (Hz) HC (dB) MC (dB) LC (dB)

10 11.45 -0.72 -3.77

21.54 32.29 18.26 22.84

46.42 39.19 21.03 16.83

100 43.29 22.46 22.73

215.44 41.32 22.82 23.73

464.16 36.43 22.95 24.25

1000 32.88 22.84 24.82

2154.43 31.23 22.99 25.71

4641.59 31.36 24.75 28.75

10000 31.97 46.16 29.24

Table 6.4: Laboratory system: SNR of the filament model using the truncated
spectrum, post optimisation

frequency (Hz) HC (dB) MC (dB) LC (dB)

464.16 32.54 26.71 22.44

1000 30.28 26.08 22.84

2154.43 29.82 25.49 23.46

4641.59 31.59 27.64 26.01

10000 30.99 35.03 33.09

A four point probe was used to measure the electrical conductivity of the

blocks; therefore, the accuracy is potentially limited by the four point probe

measurement. This would also go some way in explaining the asymptotic

nature of the accuracy in both coil models. The assumption made was that

the electrical conductivity distribution throughout the bricks is homogeneous

and this is not necessarily a very good assumption, since there can be some

spatial variations. To gain accuracy, it may be better to obtain bricks which

have greater homogeneity or an electrical conductivity measurement more in-

dicative of the brick average; the latter can be obtained by using a different
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four point geometry (greater distance between probes) and a larger number of

measurements at different locations. Furthermore, accuracy may be limited

by the finite element mesh. The optimisation procedure was repeated with a

finer mesh within the calibration block, using 111810 elements instead of the

40811 previously used; the optimisation on the truncated spectrum with the

filament model achieved a mean SNR of 29.09 dB, where previously this was

28.27 dB. This indicates that the mesh size was not significantly limiting the

accuracy, in this case.

Finally, the 3D model took ≈ 89 s to compute and the filament ≈ 54 s —

this is for the truncated spectrum where the computations were performed on

a Lenovo ThinkStation P520, with 128GB RAM. This is subject to change

with coil parameters and model geometry studied, but provides a useful gauge

for the relative speed up of a filament model.

Table 6.5: Laboratory system: SNR of the 3D Model using the truncated
spectrum, post optimisation

frequency (Hz) HC (dB) MC (dB) LC (dB)

464.16 36.96 24.13 25.65

1000 33.68 24.05 26.35

2154.43 31.28 24.11 27.31

4641.59 31.54 25.45 31.04

10000 30.61 41.93 27.4
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Figure 6.10: Laboratory system: the simulated filament model and actual
measurement of the three calibration bricks, prior to optimisation. The pre-
fixes A and S stand for actual and simulated, respectively.
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Figure 6.11: Laboratory system: the simulated filament model and actual
measurement of the three calibration bricks, post optimisation. The prefixes
A and S stand for actual and simulated, respectively.
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6.4.2 Reactor Systems

The reactor measurement system is shown in fig. 6.12. The reactor data was

collected at two sites; the two sites have different channel geometries, with

different diameters, methane hole spacing and keyway size. The data at one

site was collected with the damped gradiometer probe and the other site the

undamped, where the gradiometer coil, hoist and umbilical were the same:

the only differences between the two sites were the graphite channel geometry

and the presence of damping circuitry. This provided an ability to study the

effectivity of damping, and specifically, if the FEM accuracy is improved upon.

There was only one set of calibration data for each of the deployed damped

and undamped gradiometer coils. In the laboratory, it was simple to obtain

small graphite samples of differing conductivities. Practical issues complicate

the choice of calibration brick when on site. These issues are: the availability

or transport of graphite, the extended distance of the probe from the tool and

the fixed vertical position of the gradiometer because it is deployed from a

hoist.

Figure 6.12: Schematic of reactor measurement system, including the hoist,
pile cap, the ECIT and console where the data is collected.
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The objective function used to calibrate the laboratory data was the least

squared absolute error. This was suitable since the COMSOL® physics was

adequate for modelling the experimental setup. However, although damping

was added to mitigate resonance, there are still possibly resonant effects in the

damped system. The least squared absolute error objective function would

be most sensitive to the frequency point with the largest absolute error, i.e.

the high frequency data which would be affected by resonance to a greater

degree than the low frequency. Therefore, instead of the absolute error, the

relative error was used given by eq. 6.5, where k is the number of real and

imaginary components.

f =
1

2

k∑
i=1

(
mi
s −mi

p

mi
p

)2 (6.5)

Damped System Calibration

The damped gradiometer was deployed on graphite channels with an inner

bore diameter of 270 mm. The conductivity of the calibration brick was

determined, from four point probe measurements, to be 90.5 kS/m.

In fig. 6.13, the amplitude response is plotted from 10 Hz to 100 kHz, us-

ing the measured coil parameters. It is seen that the COMSOL® simulation

and experimental response cross at 4.46 kHz, diverging thereafter. Initially,

the model was calibrated from 400 Hz — 4.46 kHz. The spectrum was then

further truncated to the range 631 Hz - 1.26 kHz in order to improve mod-

elling accuracy. The SNR spectrum is plotted in fig. 6.14. The frequency

range cannot be lowered any further because of limited available data. The

experimental and calibrated FEM DMI response is plotted in fig. 6.15, where

the peak in the SNR is due to the crossing of the experimental and simulated

DMI data. The mean SNR across the spectrum is 33.99 dB, which is higher

than the laboratory system.
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Figure 6.13: Damped reactor probe: experimental and simulated measure-
ment amplitude

Figure 6.14: Damped reactor probe: the SNR spectra after tuning to the full
frequency range 400 Hz to 4.46 kHz and truncated frequency range 631 Hz to
1.26 kHz. Included is the initial SNR spectrum when FEM is not tuned.
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Figure 6.15: The experimental and the tuned FEM DMI response: damped
reactor probe.

Chapter 6 157



Sensor Characterisation

Undamped System Calibration

The undamped gradiometer was deployed on graphite channels with an inner

bore diameter of 263 mm. The conductivity of the calibration brick was

determined, from four point probe measurements, to be 80.5 kS/m.

The frequency ranges used are the same as previously. The SNR spectrum

is given in fig. 6.16: comparing this to the damped gradiometer coil, it can

be seen that damping does help with removing resonance effects and is not

just superficial. The mean SNR across the spectrum is 20.59 dB, considerably

lower than the damped and laboratory system.

Figure 6.16: Undamped reactor probe: the SNR spectra after tuning to the
full frequency range 400 Hz to 4.46 kHz and truncated frequency range 631
Hz to 1.26 kHz. Included is the initial SNR spectrum when FEM is not tuned.
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Figure 6.17: The experimental and the tuned FEM DMI response: undamped
reactor probe.

6.4.3 Discussion

The average SNR of the reactor and laboratory system indicates that the

damped probe is possibly modelled better than the laboratory probe, but fig.

6.18 shows that it is more nuanced. There is a peak in the SNR spectrum of

the damped system because there is a crossing but the SNR drops considerably

thereafter, possibly due to remaining resonance issues. However, the damped

system does yield a clear increase in modelling accuracy compared with the
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undamped.

Figure 6.18: Comparing the SNR of the calibrated models of the laboratory
and reactor probe.

6.5 Chapter Summary

• There are visible low frequency resonant effects in the deployed gra-

diometer probe air measurement. The DMI measurement would re-

move these effects to a first order degree, but this may not be sufficient.

Damping was used to lower the severity of resonant effects.

• It may be possible to model resonanance within COMSOL®, using the

electric fields or circuits and magnetic fields interface. However, invert-

ing with resonant effects is unproved, and therefore, the strategy used

was to truncated the measurement spectrum.

• A constrained optimisation algorithm has been presented and demon-

strated. This calibration algorithm was used to determine that a fila-

ment model was as accurate as a 3D coil model; therefore, a filament

model is used in the proceeding chapters.
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• It has been shown that damping does improve the forward model accu-

racy, and therefore, that damping goes beyond visibly remove resonant

effects.
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Depth Profiling the Graphite

Core

7.1 Overview of Chapter

This chapter concerns the design and application of inversion algorithms for

reconstructing the electrical conductivity radial depth profile of a nuclear

reactor fuel channel. The reactor data was collected using the undamped

gradiometer probe. There is no discussion of the damped probe within this

chapter because the trepanned data was not available for the damped system

at the time of writing.

The reactor sensor was calibrated using the relative error to avoid over-

fitting to resonant effects. However, it is unclear whether the absolute or

relative error is preferential for reconstructing the depth profile; therefore,

the relative and absolute errors are compared. The search direction used was

the LM algorithm, using the diagonal of the Hessian as the scaling matrix

and the finite difference operator as the regularisation matrix. The initial

damping and regularisation parameters were determined from testing on a re-

served set of synthetic data. The discrepancy principle was used for updating
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the regularisation parameter, where the noise floor was determined from the

calibration stage. The damping parameter was updated according to stan-

dard trust region theory. The prior estimate was determined from a MVPR

algorithm. The use of the MVPR algorithm was decided upon due to the

small amount of data collected.

The reconstruction of the depth profiles is first demonstrated on noise

free data, where it is shown that there is a trend in increasing error in the

depth profile from numerical error and ill-conditioning alone. This is the base

error of the algorithm. The application of the algorithm on data with noise

indicates that the relative error in the objective function is more susceptible

to noise; this is because the low frequency data has a higher weighting and

the low frequency data generally has a lower SNR. The inversion of reactor

data is compared with trepanned data, in which there is close agreement at

the bore but otherwise diverging with increasing depth.

It is seen that the algorithm is overly restrictive of the step direction. To

study the restrictive movements of the iterative algorithms, the inversion of

graphite inductance data is repeated with a more informed prior and varying

the discrepancy multiplier. The regularisation matrix used for the repeated

inversion was the identity matrix. The results show that the restricted steps

are not from over-regularisation but that the steps are typically rejected be-

cause the residual norm is lower than the discrepancy. Moreover, the residual

of the prior may never be large enough for the step to be accepted. To com-

bat this, there are a number of options: a step can be accepted even if it is

below the noise floor, another prior could be used in which the residual norm

is larger than the discrepancy or the modelling error can be lowered.
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7.2 Model Geometry Reduction

The measurement sensitivity to a graphite channel reduces with angular and

vertical distance from the gradiometer. It is unnecessary to model a full

graphite fuel channel, where these channels have a full height of approximately

10 metres. Further, modelling the full cylinder is not necessary. A model is

sought in which the full graphite geometry can be represented with reduced

dimensions with minimal loss of accuracy.

To investigate the reduced model, a brick of height 1 m was used to rep-

resent the full graphite stack, with the coil positioned in the centre. The

complex measurement of the “full” model is denoted by mfull. The error is

then given by eq. 7.1.

Percentage Error =
100

2

∥∥∥∥∥Re(m)− Re(mfull)

Re(mfull)

∥∥∥∥∥+

∥∥∥∥∥Im(m)− Im(mfull)

Im(mfull)

∥∥∥∥∥


(7.1)

This percentage error is a function of frequency and graphite conductivity.

Therefore, the percentage error is determined according to two frequencies,

400 Hz and 10 kHz, and two conductivities, 10 kS/m and 100 kS/m. The

Mean Percentage Error (MPE) is then found. A filament model was used to

model the coil. The graphite geometry was of the reactor type.

The MPE of the reduced model is plotted in fig. 7.1 as a function of the

distance between the outer filament and the edge of the graphite. Similarly,

the MPE of the reduced model is plotted in fig. 7.2 as a function of the

sector angle. It can be seen that a graphite cylinder can be conservatively

approximated with a 180◦ graphite sector. However, the MPE as a function

of height has no obvious corner point in which the error suddenly rises. In

previous studies, EDF Energy determined that the distance between the top

of the coil and the brick edge must be no smaller than 1.5d, where d the
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Figure 7.1: Determining the reduced model dimensions: the error with respect
to graphite cylinder height.

diameter; therefore, the edge to coil distance should be no less than 230 mm

— this seems reasonable according to fig. 7.1. The reduced model is shown

in fig. 7.3 and 7.4.
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Figure 7.2: Determining the reduced model dimensions: the error with respect
to the section angle.

Figure 7.3: The reduced model: isometric view.
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Figure 7.4: The reduced model: top view.

7.3 Direct Algorithm for Prior

7.3.1 Generating Synthetic Data

The studies in the previous chapters did not use noise profiles derived from

experimental data. In these studies, the noise amplitude was arbitrarily set

such that the SNR of the lowest amplitude signal was in the range of [20

60] dB. To improve this, realistic noise in the experimental data is consid-

ered; specifically, the noise profile was derived from the discrepancy between

calibrated FE models and the corresponding experimental measurement.

The fewest assumptions were made about the probability distribution of

the noise: the uniform random distribution was used. The synthetic noise

is formulated in eq. 7.2 and 7.3, where ni is the complex noise at the ith

frequency point, U is the uniform distribution and r⃗cali defined by eq. 7.4.

The residual, rmi , is the residual at the ith frequency for the mth calibration
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block.

∥ni∥ ∼ U{min(r⃗cali ),max(r⃗cali )} (7.2)

arg(ni) ∼ U{0, 2π} (7.3)

r⃗cali =

[∥∥r1i ∥∥ ∥∥r2i ∥∥ . . . ∥rmi ∥
]
∈ R1×m (7.4)

The noise profile generated for the laboratory system is shown in fig. 7.5

for two frequency points. The true discrepancy is included to illustrate eq.

7.2 and to show the noise bounds. It can be seen that the true discrepancy

across the three calibration bricks is grouped closely together, typically within

a single quadrant. However, a conservative estimate was used and the noise

assumed to be anywhere within the lower and upper bounds of the discrep-

ancy amplitudes, which is the reasoning being eq. 7.3. In the case where

there is only a single calibration brick, the uniform distribution reduces to

the generation of a constant amplitude value. However, the phase is still ran-

domly sampled from 0 to 2π. The discrepancy according to the undamped

gradiometer is shown in fig. 7.6.

The conductivity depth profiles were determined as in §4.4.1. In total,

1000 samples were generated for training and 20 for testing. The low number

of samples for testing is because of the considerable amount of time it takes

to reconstruct a profile.
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Figure 7.5: Laboratory System: noise characterisation using the calibration
discrepancy from multiple bricks. The true discrepancies are denoted by dis.,
the synthetic noise by syn. and the bounds of the noise by max and min.
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Figure 7.6: Damped reactor probe: noise characterisation using the calibra-
tion discrepancy.
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7.3.2 Machine Learning Algorithm

The MVPR algorithm was used because of the low amount of training data.

TSVD was used as the regularisation method, using a golden-section search to

determine the truncation point. The polynomial order was determined using

the same methodology as in §5.4.2.

7.4 Iterative Algorithm

7.4.1 Objective function, Constraints and Search Di-

rection

In the calibration of the FEM, a weighted error objective function was used.

The weights were chosen such that the objective function was minimising the

least squared relative error; this gives an equal importance to the real and

imaginary parts of the measurement for each spectral component. It is not im-

mediately clear whether the absolute or relative error produces better results

for depth profiling. Therefore, in this chapter, both are used and compared,

where synthetic and trepanned data is used to perform error analysis.

The modelling error is expected to be too large for the missing residual

terms in the Hessian to have an affect. Therefore, the search direction used

was the LM algorithm. The regularisation matrix was the finite difference

operator and the scaling matrix the diagonal of the Hessian.

In imaging conductivity the following constraint must be satisfied,

0 < σ < 100 kS/m; therefore, the constrained optimisation approach de-

scribed in §6.3.1 was used.
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7.4.2 Regularisation Parameter Selection

In practice, the damping and regularisation parameters each help to prevent

over-fitting to noise and in constraining the step size. Therefore, the starting

value of the regularisation and damping parameters should be selected care-

fully; a reserved set of data (consisting of five samples) and a grid search was

used to determine these initial parameters. In this search, only the initial

step was computed and not the full algorithm. The initial values found to be

optimal are given in table 7.1.

Table 7.1: Initial damping and regularisation parameters.

Error λ0 γ0
Absolute 5.62 · 10−21 7.19 · 10−19

Relative 1 · 10−11 1.12 · 10−08

There are many methods for updating the regularisation parameter, two

of which are the L-curve and discrepancy principle [131]. In the L-curve

method,∥r⃗∥ is plotted against the solution norm,∥σ⃗k∥22, and the regularisation

parameter corresponding to the corner point of this plot is used [131][132].

The corner point can be determined from the maximum curvature and can be

found using optimisation techniques such as the golden-section search [133].

Tesfalem et al. found the regularisation parameter by observation of the L-

curve and fixed it throughout the inversion algorithm [120][52]. In this thesis,

the discrepancy principle was used to control the regularisation parameter.

There is no knowledge of the true discrepancy between the FEM and any

given measurement. The discrepancy across the real and imaginary parts of

the spectrum was predicted using the discrepancy in the calibrated data. The

real and imaginary parts of the calibration discrepancy were concatenated

into the vector d⃗. The discrepancy principle is given in eq. 7.5 [131].

∥∥r⃗(σ⃗k)∥∥ >∥∥∥c · d⃗∥∥∥ (7.5)
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The discrepancy multiplier, c, is user defined and is typically c = 1. If the

residual curve is below the discrepancy then the regularisation parameter is

increased and vice versa for above. This procedure is given by algorithm 5. It

can be seen that the conductivity depth profile is only updated if the residual

norm is above the discrepancy norm, otherwise the step is rejected. Fig. 7.7

and 7.8 each illustrate the principle of the algorithm: if the residual norm is

below the discrepancy, then no step is taken and the regularisation parameter

is increased. By increasing the regularisation parameter the objective function

is weighted more towards the penalty and it is assumed that the residual norm

increases.

Algorithm 5: Regularisation parameter update

1 if
∥∥r⃗(σ⃗k + p⃗)

∥∥ <∥∥∥c · d⃗∥∥∥ then

2 λk+1 = λk ∗mk ;
3 mk+1 = mk ∗ 2 ;

4 else if
∥∥r⃗(σ⃗k + p⃗)

∥∥ >∥∥∥c · d⃗∥∥∥ then

5 λp = λk/3 ;
6 mk+1 = 2 ;
7 σ⃗k+1 = σ⃗k + p⃗ ;
8 if λp > λ0 then
9 λk+1 = λp ;

10 else
11 λk+1 = λ0 ;

For the damping parameter update, if 0.8 < ρ < 0.99 or 1.01 < ρ < 1.2

then the step was accepted, otherwise the trust region was contracted. To

update the damping parameter the Nielson method was used [134].
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Figure 7.7: Updating the regularisation parameter: initial residual norm
above discrepancy norm.

Figure 7.8: Updating the regularisation parameter: initial residual norm be-
low discrepancy norm
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7.4.3 Exit Conditions

There was a timeout condition on the search for the damping parameter — if

ρ was not satisfied after 5 updates of the damping parameter then the current

iteration was aborted, not the full inversion. This allows updates to the

regularisation parameter, as it may be noise causing poor model agreement.

There was also a timeout condition if ρ > 10; this was required not because

of being under constrained but because ρ can diverge if the constraint region

was too small (error in the Hessian, gradient and measurement will begin to

dominate). Finally, the optimisation algorithm stops if f(σ⃗k + p⃗) > f(σ⃗k).

7.4.4 Laboratory Demonstration

This algorithm has been successfully demonstrated on laboratory data, where

a reconstructed profile is shown in fig. 7.9. The noise was quantified from

the respective calibration data and the regularisation parameter adjusted as

described by algorithm 5. This plot corresponds to the squared absolute

error objective function. The initial damping and regularisation damping

parameters were different, but obtained via the same procedure.
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Figure 7.9: Demonstration of algorithm on laboratory data: Top). ML prior.
Bottom). Homogeneous conductivity prior

7.5 Inversion Results

7.5.1 Synthetic Results and Discussion

Without Noise

Although a trivial inverse problem, using synthetic data without noise offers

the ability to observe the ill-conditioning of the problem and to check the

algorithms work as expected. The error in the reconstructed profiles is shown

in the boxplot in fig. 7.10, where the interquartile range, median, maxima and

minima of the error are shown. The trend in error is clear: error increases
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with depth, where this is expected in accordance with the ill-conditioning.

This shows that the algorithms are highly accurate near the bore and more

erroneous at the periphery. This error can be used to define the base perfor-

mance of the algorithm, where the expected error can be no smaller than this

with realistic measurement data.

Overall, the optimisation algorithms only marginally improve on the ML

prior. This could be because the ML prior is sufficiently accurate in this simple

case (prior estimate being close to the solution) or possibly over-regularisation.

It is suspected to be the former. It is difficult to make comments regarding

the two different objective functions as there are no obvious differences.

Figure 7.10: The reconstruction error using the ML prior and the two iterative
algorithms: synthetic data without noise.

With Noise

The error is presented in fig. 7.11, again using box plots for each layer. Ex-

amples of reconstructed profiles are given in fig. 7.12 and 7.13; for readability,

the depth profiles in these plots are interpolated from the trepanned sample

and the discrete conductivity profile.
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It can be see that there is no consistent reduction in the error in the

iterative reconstructions relative to the ML prior. However, there is a trend

in increased error in the relative error objective function compared with the

absolute error. This may be explained by the increased weighting of the

low frequency data in the relative function, where the low frequency data is

more susceptible to noise. Fig. 7.13 gives an example where the step is not

too restricted: for these particular profiles, the algorithm makes a good step

towards the true solution.

Figure 7.11: The reconstruction error using the ML prior and the two iterative
algorithms: synthetic data with noise.
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Figure 7.12: Examples of reconstructed profiles using synthetic measurement
data with noise
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Figure 7.13: Examples of reconstructed profiles using synthetic measurement
data with noise
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7.5.2 Reactor Results and Discussion

The inverted reactor data is shown in fig. 7.14-7.15, where these plots corre-

spond to different trepanning locations. It can be seen that the bore value is

accurately predicted, but the profile diverges with depth; this trend has been

previously shown [53][52]. Qualitatively, there is some agreement regarding

the trend of the conductivity depth profile: the conductivity initially increases

and plateaus.

Figure 7.14: The trepanned depth profiles and reconstructed depth profiles
from reactor data using a ML prior estimate.
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Figure 7.15: The trepanned depth profiles and reconstructed depth profiles
from reactor data using a ML prior estimate.

Again, the conductivity depth profiles reconstructed from the iterative

algorithms only marginally move from the ML prediction. This could be due

to over-regularisation or the residual of the prior estimate being lower than the

discrepancy: the regularisation parameter could be continually increased and

it may not push the residual norm above the discrepancy. This is encapsulated

by eq. 7.6, where fλ(σ⃗) is the regularised objective function and σ⃗∗ is the
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minimum of the objective function.

lim
λ→∞

argmin(fλ(σ⃗)) =


σ⃗∗ → σ⃗0 and r⃗(σ⃗∗) → r⃗(σ⃗0), if R(σ⃗) = λ

2
∥σ⃗ − σ⃗0∥22

σ⃗∗ → 0⃗ and r⃗(σ⃗∗) → r⃗(⃗0), if R(σ⃗) = λ
2
∥σ⃗∥22

(7.6)

According to algorithm 5, a step is rejected if the resultant residual norm

is below a threshold: it is possible that a step is never accepted. This is a

possible explanation for the lack of spread in the reconstructed profiles. This

could be mitigated by lowering the discrepancy multiplier, using a prior with

a residual above the noise floor or by allowing the conductivity profile to be

updated when the residual is below the noise floor. The latter option could

cause errors to propagate through the algorithm, resulting in early termination

or divergence; therefore, this option is not favourable.

The possibility of modelling error means that the ML algorithm may not

be the most appropriate prior (this was discussed in §4.7). It may be better

to not predict the depth profile but instead the coefficient σc, σd and σs in

eq. 7.7. This has the advantage of having fewer parameters to predict and

resembles the expected behaviour of the graphite.

σ(r) =


σc − σde

−σs·r, if r ≥ 0

0, otherwise

(7.7)

To study the restrictive movements of the algorithms, the inversions are re-

peated with a more informed prior and with different discrepancy multipliers.

The relative error is not used because of the susceptibility to noise. For the

benefit of time, instead of using an ML algorithm to predict the coefficients in

eq. 7.7 from inductance data, eq. 7.7 was fitted to the trepanned depth pro-

files. These fitted curves were used as priors in the same iterative algorithm

but with the identity as the regularisation matrix.
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Figs. 7.16—7.19 illustrate the sensitivity of the algorithm to the dis-

crepancy multiplier. From this, it can be seen that the initial damping and

regularisation parameters are not too large because the iterative algorithm

moves away from the prior estimate when the discrepancy multiplier is low-

ered. Further, this demonstrates that over-regularisation is not preventing

movement, but that a step is rejected because the residual is below the noise

floor. A further study should be conducted to obtain a suitable value of c, in

the same manner as the initial damping and regularisation parameters; from

these profiles, it seems a value between 0.5 and 0.6 would be ideal. It should

be noted, that although the residual norm decreases with the lower discrep-

ancy multiplier (as shown in fig. 7.20) the reconstructed profile diverges from

the true solution. This demonstrates the issue of lowering the discrepancy

multiplier and the increased susceptibility to error.

Instead of determining some optimal values for c, the error in the recon-

structed profiles can be reduced by reducing modelling error. This could be

achieved by using the damped probe or with a further calibration stage using

a transfer function method.

Figure 7.16: The trepanned depth profile and reconstructed depth profiles
with a more informed prior and various discrepancy multipliers.
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Figure 7.17: The trepanned depth profile and reconstructed depth profiles
with a more informed prior and various discrepancy multipliers.

Figure 7.18: The trepanned depth profile and reconstructed depth profiles
with a more informed prior and various discrepancy multipliers.
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Figure 7.19: The trepanned depth profile and reconstructed depth profiles
with a more informed prior and various discrepancy multipliers.

Figure 7.20: The residual norm of the objective function with no regularisation
parameter update. This corresponds to the conductivity depth profile in fig.
7.16.

Chapter 7 186



Depth Profiling The Graphite Core

7.6 Chapter Summary

• The inversion algorithm consisted of a prior estimate from a ML al-

gorithm and a step derived from the LM direction. Two errors were

compared: the absolute and relative error.

• The inversion algorithms were tested on synthetic data, with and with-

out noise, and reactor data. The study on data without noise defined

the base performance of the algorithms; the ill-conditioning of the prob-

lem was illustrated using the error of the reconstructed profiles. The

study on data with noise demonstrated the increased susceptibility of

the relative error to noise compared with the absolute error. In both of

these cases, the iterative algorithms only marginally deviate from the

prior estimate.

• The inversion of reactor data was similar to the study on synthetic

data with noise. Specifically, the step was too restrictive. This was

not because of over-regularisation but because a step was rejected if

the residual norm was below the discrepancy norm. This could be rec-

tified by decreasing the discrepancy multiplier or by allowing updates

to the conductivity profile even if below the noise floor; however, this

would introduce error into the reconstructed profile. Instead, it would

be favourable to lower modelling error.
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Crack Detection

8.1 Overview of Chapter

Crack detection is complicated by the fact that a crack can be viewed as a

loss in electrical conductivity, and therefore, there are significant overlaps in

features in the inductance measurement. Averaging has previously been used

as an attempt to increase the sensitivity to a crack.

The objective of this chapter is to investigate data driven techniques for

feature extraction and classification, without using averaging techniques. It

is shown that for measurements with a SNR in the range of approximately

40-55 dB the balanced classification accuracy is no larger than 71.45%.

A notch was used to characterise a crack; this is generally not representa-

tive of crack propagation in a nuclear graphite channel, but it does simplify

the methodology and results. A limitation given by Fletcher et al., was that

stresses in a nuclear reactor brick force the crack faces together, significantly

lowering sensitivity; this was not overcome in this study. A more accurate in-

vestigation would include the crack width and boundary conditions, perhaps

modelling the crack boundary by varying porosity.
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8.2 Averaging Techniques

The investigation of crack detection by Fletcher et al. was accomplished by

varying the depth of a machined notch, emulating the keyway root cracks

[135]. In the experimental study, the measurement made was m−mav, where

mav was the average of the responses over the spatial extent of the brick. The

phase was most sensitive to the presence of a notch change, where notches

were detectable at a distance greater than 10 mm from the keyway. Fletcher

et al. gave two limitations to this study of crack detection:

1. The width of the crack was assumed to have negligible affect on the

phase compared to the radial width. In the core, surrounding bricks

may force the crack open or close it. A crack which is closed may have

sufficient electrical contact that the eddy current has little disturbance,

producing a very small phase response.

2. The study used virgin graphite blocks that have not been irradiated.

Therefore, the graphite blocks were homogeneous and the electrical con-

ductivity profile could be modelled using a single probability distribu-

tion.

Tesflalem investigated more realistic cracks than the machined slot model.

This was achieved by using a wedge fitted in a keyway to provide a tensile

force to push the corners apart. This process would initiate a crack originating

at the keyway corners extending preferentially in the radial direction towards

the bore [53]. When inspecting, the wedge was left in place leaving the crack

open. Tesfalem compared three different averaging methods for detecting

cracks:

1. Use a spatial average of the measurement using the same block the

defect lies in (mdef
av ) and subtract this average from the measurement at
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a given position (mdef )

mdef −mdef
av

2. Use an additional defect free reference brick and determine the spatial

average for both the reference (mref
av ) and material under test (mdef

av ).

Next, difference each measurement and the spatial average,

∆mref = mref − mref
av and ∆mdef = mdef − mdef

av . Follow this with

subtracting the change in the reference brick data from the change in

the defect brick data

∆mdef −∆mref

3. Use an additional defect free reference brick, calculate a spatial average

just on the reference brick, subtract this average from the measurement

of the defected brick at a given position

mdef −mref
av

Method two was found to provide the best circumferential positioning of sub-

surface cracks, possibly due to the reduction in both measurement variation

owed to noise and non-uniform conductivity distributions [53]. Tesfalem found

that a machined slot with an extent of 15mm from the keyway could be

located, whereas the realistic crack was only detectable at a distance of 32mm

from the keyway.

The use of a spatial average in these methods is important for isolating

changes in the data due to the crack. However, the effectiveness of this de-

pends on the similarity between the spatial average of conductivity and the

underlying conductivity profile at the defected location (i.e. azimuthal con-

ductivity variations are more or less constant). This can be overcome by using

a local average instead, but this would require a study into the azimuthal con-

ductivity variations.
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8.3 Machine Learning Techniques

In determining the existence of a crack, the unknown electrical conductivity

distribution can be seen as noise in the measurement. Ideally, the inverse

function would output a binary 1 or 0 to indicate the presence of a crack,

without the use of averaging

f(m) =


1 Crack present

0 No Crack

This function is not known but can be approximated by ML techniques.

8.3.1 Feature Extraction

Principal Component Analysis

PCA is one of the simplest techniques for extracting features from measure-

ment data. PCA compresses the data by finding the projection of samples

along some directions, called the principle components; these directions are

determined such that the variables in the new feature space are uncorrelated

and have maximal variance [136]. The principal components can be found

by evaluating the data’s mean-centred co-variance matrix, given in eq. 8.1

[137]. Alternatively, the correlation matrix can be used, by dividing through

by a variable’s standard deviation; the benefit of which is to scale the vari-

ables such that they are of a similar magnitude and the choice of principal

direction is not then dominated by any one variable [138]. The standardised

observation is then placed in the row space of X ∈ Rn×m, where n is the

number of samples and m is the number of variables.

C =
1

n
XTX. (8.1)
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The principal components are the eigenvectors of the matrix C in eq. 8.1.

These eigenvectors can then be normalised such that ⟨m⃗, v⃗⟩ = ∥m⃗∥ cos(θ),

where v⃗ is an eigenvector, m⃗ is a sample of measurement data and θ is the

angle between these two vectors.

Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is conceptually the same as

PCA, but with the measured data transformed prior to compression. More-

over, the projection of the transformed data with its principle components can

be computed without computing the transform. The transformation is usu-

ally a higher dimensional view of the measured data. This is useful when the

data cannot be linearly separated. PCA is then applied on the transformed

data, ϕ(m⃗), such that the co-variance matrix can be written as eq. 8.2.

C ′ =
1

n

n∑
i=1

ϕ(m⃗)ϕ(m⃗)T (8.2)

The eigenvectors can be found by solving C ′v⃗ = λv⃗ [139]. The projection of

the data on the principal axes is then given by eq. 8.3, where the vector v⃗j

can be described in terms of ϕ(m⃗) as v⃗j =
∑n

l=1 αlϕ(m⃗l) [139].

⟨ϕ(m⃗i), v⃗j⟩ = ⟨ϕ(m⃗i),
1

λ
C ′v⃗j⟩ (8.3)

The trick in KPCA is to use the kernel defined by eq. 8.4. There are additional

steps in centring the data, details of which can be found in [137], [139] and

[140].

kij(m⃗i, m⃗j) = ⟨ϕ(m⃗i), ϕ(m⃗j)⟩ (8.4)

The polynomial, gaussian and sigmoid kernels are common transformations;

the polynomial, Gaussian and sigmoid kernels are given in eq. 8.5, 8.6 and

Chapter 8 192



Crack Detection

8.7 respectively.

k(m⃗i, m⃗j) = (γ⟨m⃗i, m⃗j⟩+ c0)
β0 (8.5)

k(m⃗i, m⃗j) = e−γ∥mi−m⃗j∥2

(8.6)

k(m⃗i, m⃗j) = tanh(γ⟨m⃗i, m⃗j⟩+ c0) (8.7)

Independent Component Analysis

ICA is conceptually very similar to PCA but uses different principle compo-

nents. In ICA, the measured data is modelled as some mixing of independent

variables. The components are determined by maximising the statistical in-

dependence of the variables [141]. Once the independent components are

determined the projection of the data can be found.

Auto-Encoder

An Auto-Encoder (AE) is a type of neural network. In this type of network

there are two distinct components: an encoder and a decoder, where the input

is also used as the output target. The advantage of such a network is when

the encoder output dimension is less than the number of input variables, this

is the undercomplete AE [142]. The aim of the network is to extract the most

relevant features of the input data such that the input can be accurately

reconstructed.
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8.3.2 Classification

K-Nearest Neighbours

In k-nearest neighbours (KNN) the test data is compared with the k-nearest

training samples. A classification is made based on the classification of the

neighbours. The classification of the neighbours is averaged and a decision

made based on some threshold.

Logistic Regression

In Logistic Regression (LR), a continuous function is desired in which a prob-

ability that a feature of interest is present can be associated with a measure-

ment. If the measurement is represented by the random variable vector m⃗,

then the probability desired is P (c = 1|m⃗), where c is a binary variable in-

dicating the presence of a particular feature. In this work c = 1 is given to

bricks that are defective. The probability function is not known and it is the

aim of LR to derive it, details can be found in [143].

Support Vector Machine

A Support Vector Machine (SVM) splits data by explicitly defining a hy-

perplane in the feature space, i.e. the decision boundary. The hyperplane

normal is described by the vector ω⃗ and constant b, where these unknowns

are to be determined. This hyperplane is found such that the maximum mar-

gin is found between the decision boundary and the closest data point from

each class, where the margin is the perpendicular distance from a data point

to the hyperplane given by eq. 8.8. For the hyperplane defined using SVM,

the distance between the closest data point in either class and the hyperplane
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is to be maximised.

⟨ω⃗, m⃗i⟩+ b = δ (8.8)

If the data is linearly separable then the hard-margin case can be used, where

there is a constraint condition that no samples in either class can be on the

wrong side of the decision boundary. For cases which are not linearly separable

the soft margin is used, where a penalty term is included in the objective

function for data-points on the wrong side of the margin. See [144] and [145]

for further details.

Similar to KPCA, kernel methods can be used for using a SVM in alter-

native representations without directly computing the transformation.

8.4 Geometry and Measurement

The problem geometry considered is shown in fig. 8.1. All modelled notches

had a fixed width of 5 mm, whilst the notch height was varied. The graphite

brick had a width and length of 240 mm and height of 100 mm. A cuboid ge-

ometry considerably simplified the methodology for changing the conductivity

depth profile in the experimental study.
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Figure 8.1: The problem investigated: conductive layers stacked together to
obtain a conductivity depth profile, σ⃗. The notch height was defined with
respect to the base of the brick.

The sensor consisted of a receive coil embedded within a transmit coil,

where the measurement was made according to eq. 3.16. The FEM was

calibrated as in §6.4.1.

8.5 Generating the Synthetic Data

The conductivity depth profile was generated as described in §4.4.1. The

height of a notch was selected from the tuple (5, 10, 15, . . . , 95, 100) mm, us-

ing 148 samples of each. The total number of datasets generated was 5920

samples, with 2960 having a notch and 2960 not having a notch.
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The measurement noise was determined from the calibrated data and the

noise profile was modelled by the methodology in §7.3.1.

8.6 Generating the Experimental data

8.6.1 Conductivity Depth Profile

The graphite grades which were available are given in table 8.1, where there

are two of each density in any-one-stacking sequence. There are a large num-

ber of permutations for the possible conductivity profiles; there are

3.6288×106 permutations. The number of unique permutations is 1.134×105.

Table 8.1: Grades of graphite available - each graphite layer was 10 mm thick.

Graphite Grade Electrical Conductivity (kS/m)
Z645 9.82E+03
No.26 1.66E+04
IVC032 2.41E+04
R7660 3.79E+04
NC 9.82E+04

In practice, a smooth trend would be expected in the conductivity profile,

such as linear or quadratic. To Find profiles of a smooth trend, the number

of maxima, nmax, and number of minima, nmin, in a given permutation was

counted and the order computed by 1 + nmin + nmax (there were not enough

plates for order 0). Profiles which had an approximate order of 1, 2, and 3

were then selected. This initial step provided a fast way to filter out profiles.

However, some filtered profiles are better than others; for example, some pro-

files may have a greater degree of linearity than others. Therefore, out of these

selected profiles, those which have the smallest error with a fitted polynomial

curve of the same order were selected. Fig. 8.2 shows an, approximately,

linear experimental stacking sequence and its fitted curve. Two profiles of

each order were used; therefore, there were 6 different profiles to choose from
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for a given notch height.

Figure 8.2: An experimental profile with an order 1 and its equivalent fitted
profile. Profiles with the smallest error between them and the fitted curves
were selected.

8.6.2 Notch Profile

For each conductivity profile, a notch height was selected from the tuple

(0, 10, 20, . . . , 90, 100); in total this amounted to 66 experimental samples.

An example of a stacking sequence with a notch of 90mm is shown in fig 8.3.
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Figure 8.3: An example of a stacking sequence.

8.6.3 The Measurement Function

To see how the measurement behaves as a function of frequency and notch

height, the average relative change in the measurement was found; this is

defined by eq. 8.9, where n is the number of different depth profiles. This is

shown in fig. 8.4 using the experimentally measured data, where n = 6.

δ(f, h) =
1

n

n∑
k=1

| m(f, h)−m(f, h = 0) |
| m(f, h = 0) |

× 100 (8.9)

This shows the difficulty of the problem, as the sensitivity to the notch height

drops orders of magnitude with decreasing height.
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Figure 8.4: The change in measurement with respect to a defect free brick as
a function of notch height.

8.7 Algorithm Selection

The feature extraction and classification algorithms used are given in tables

8.2 and 8.3, where each classification method is tested on each feature ex-

traction method; therefore, 49 different algorithms were tested. Both linear

and non-linear methods are included for feature extraction. The polynomial,

gaussian and sigmoid kernels are used in both the KPCA and KSVM type al-

gorithms, denoted by P-KPCA, G-KPCA, S-KPCA and P-KSVM, G-KSVM,

S-KSVM, respectively. The linear (untransformed) PCA and SVM algorithms

are denoted by LPCA and LSVM, respectively.

Table 8.2: Feature extraction
algorithms used.

Feature Extraction
None
ICA
LPCA

P-KPCA
S-KPCA
G-KPCA

AE

Table 8.3: Classification algorithms
used.

Classifier
KNN
LR

LSVM
P-KSVM
G-KSVM
S-KSVM
FCN
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8.7.1 Parameter Selection

The Hyperband algorithm [87] was used to find the hyper-parameters in the

neural networks, and the halving grid search for the other feature extraction

and classifier algorithms. These algorithms are similar in that they iteratively

restrict the search space, rather than sample the entire search space such as in

a grid search. Both of these algorithms are available through the open source

python packages, Keras and scikit-learn [146].

There were several methods used to speed up the parameter selection

process. The first was in recognising that the AE hyper-parameters can be

determined independently of the classifier, meaning the AE network archi-

tecture only has to be found once for each encoder output dimension. This

same trick cannot be used for the FCN classifier because the architecture will

depend on the input from the feature extraction algorithm; therefore, a Hy-

perband search would need to be run in every single trial in the halving grid

search search. Thus, the second method for speed up was to initially use a

low number of epochs (number of runs through entire dataset) etc. within the

Hyperband algorithm; when called upon in the halving grid search the ini-

tial Hyperband algorithm is fast and a good set of hyper-parameters quickly

determined outside of the neural network. Once this initial search was com-

pleted, the hyper-parameters outside of the neural networks was fixed and

those within the neural networks found using a finer search by increasing the

number of epochs etc. in the HyperBand algorithm.

8.7.2 Performance Metric

When selecting the performance metric, it is useful to know the distribution

of samples according to the presence of a notch. The distribution of samples is

shown in fig. 8.5 for the experimental and synthetic training data. The exact
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number of samples in each class within the validation and training set is not

known, since the data is shuffled before splitting for validation. Further, the

number of each class in the experimental set is imbalanced. This imbalance

requires the use of a metric other than overall accuracy, such as the F-score

or balanced accuracy.

Figure 8.5: The distribution of defected and undefected samples in the
dataset.

The balanced accuracy was used to train and test the different ML algo-

rithms, i.e. the average accuracy of each class. This is given by eq. 8.10,

where T0 and T1 correspond to the number of correctly labelled samples from

each class and F0 and F1 the number of incorrectly labelled samples from each

class.

Ab =
1

2
(

T0
T0 + F1

+
T1

T1 + F0

) (8.10)
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8.8 Application of Algorithms, Results and

Discussion

8.8.1 Synthetic Data with Noise

The results on the synthetic test and experimental data are presented in two

parts. First, the accuracy is shown according to the binary classification;

i.e. if there is a notch present or not. Following this, the breakdown of the

accuracies within the defected bricks is shown, such that the performance of

the ML algorithms with varying height can be reported.

Figure 8.6: Results on synthetic test data. The accuracy of ‘all’ is the balanced
accuracy of the binary classes.
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Figure 8.7: Breakdown of synthetic test results in terms of the accuracy of
the samples belonging to each range given.

The results on the top five algorithms, corresponding to the synthetic test

data, are shown in fig. 8.6 and fig. 8.7. The best balanced accuracy of

all the synthetic test data was 71.45%. It can be seen that the PCA feature

extraction algorithm correlates with a top performing algorithm and similarly

the SVM and FCN algorithms for classification. However, there is no obvious

trend in the different kernels. The breakdown of the notch accuracies, in

terms of ranges of notch height, reflects the decay in the eddy currents with

increasing depth, and therefore, decay in sensitivity.

8.8.2 Experimental Data

The results on the top five algorithms, corresponding to the experimental test

data, are shown in fig. 8.8 and fig. 8.9. The first notable difference is that the

best balanced accuracy on the experimental data is larger than the synthetic:

80.83%. This possibly indicates that the simulated noise was too large and

could, perhaps, be lower. Further, the breakdown shows a generally more even

distribution of accuracies and an accuracy of ≈ 58% of those with a notch in

the range of 0 to 25mm. However, there were only 12 experimental samples
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within this region, and therefore, this is not very informative in general.

Figure 8.8: Results on experimental data. The accuracy of ‘all’ is the balanced
accuracy of the binary classes.

Figure 8.9: Breakdown of experimental results in terms of the accuracy of the
samples belonging to each range given.

8.8.3 Synthetic Data without Noise

Finally, in order to see the limiting factors, the results of synthetic test data

with no noise in the measurement response are presented; these algorithms

have been re-trained and tested on the same set of data but with no noise.
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This affords the ability to see the limiting factor in using ML techniques for

notch detection and observe whether the limiting factor is the SNR of the

measurement response or the underlying conductivity variation. For this, a

significantly higher accuracy was achieved, approximately 99.5% using the

FCN classifier and ICA feature extraction algorithm. Moreover, the ICA

algorithm is the only feature extraction algorithm in the top five. Again,

the FCN and SVM classification algorithms are in the top five for this case.

However, the top performing algorithms are different from the case using

samples with realistic SNRs; this is possibly because some feature extraction

algorithms are better at noise suppression than others. These results also

show that ML algorithms can discriminate between notches and conductivity

variations with a high accuracy. However, when combined with realistic noise

in the measurement this discrimination is much poorer, probably because

delicate features are overwhelmed.

Figure 8.10: Results on synthetic test data with no noise. The accuracy of
‘all’ is the balanced accuracy.
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Figure 8.11: Breakdown of synthetic test results with no noise, in terms of
the accuracy of the samples belonging to each range given.

8.9 Chapter Summary

• Past work in crack detection used spatial averaging to separate out the

response due to conductivity variations and the presence of a crack.

The study in this chapter assumed no prior knowledge in the measure-

ment: no averaging was used. The aim of the study was to investigate

whether ML algorithms could extract distinguishing features from the

data, which could be attributed to the presence of a notch.

• 49 different ML algorithms were investigated for binary classification

of a notch within a conductive block of material, in which there were

variations in electrical conductivity. It was shown that for a SNR in

the range of approximately 40-55 dB that the balanced classification

accuracy was no larger than 71.45%; this accuracy was not limited by the

underlying conductivity variations since a significantly higher accuracy

can be achieved when there is no noise present.

• Alternative measurements that use averaging may result in improved ac-
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curacies for a similar SNR level. Further, the accuracy may be sensitive

to the frequency range used and coil geometry.
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Conclusions and Future Work

9.1 Contribution

This thesis has investigated and developed existing eddy current inspection

methodologies for depth profiling and crack detection of nuclear reactor bricks.

The areas studied and developed were: the choice of step direction (including

first and second order methods), direct inversion using ML, calibration using

optimisation, an iterative LM algorithm using the discrepancy principle and

ML feature extraction and classification methods for crack detection.

Overall, the project aims have been met: the time to complete an inversion

has been lowered, without loss of accuracy, with the use of ML algorithms; the

inversion of reactor data showed that the iterative algorithms only marginally

improved on the ML estimate. Further, a robust modelling methodology has

been demonstrated, in which a constrained optimisation algorithm tunes the

forward model. Additionally, ML methods for crack detection were studied

for feature extraction and classification; it was shown that ML methods could

separate the effect of conductivity variations and cracks on the measurement

response, but requires a low amount of noise in the system and good mod-

elling accuracy. The comparison of algorithms consolidates previous work in
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the graphite area and supports the past use of the LM algorithm. The study

included variations in the choice of search direction, regularisation matrix,

prior estimate and noise level in the inductance data. Generally, QN meth-

ods and the LM algorithm performed well. However, with increased levels of

noise the type of regularisation becomes as important as the search direction.

Further, if there is considerable noise in the data, there may be no benefit to

the QN methods because the residual error in the Hessian does not become

significant. The study used knowledge of the optimal step to determine the

hyper-parameters, and therefore, in a realistic algorithm the classifications

may be different; however, it is a useful comparison of the baseline perfor-

mance of the different algorithms.

ML methods for graphite inversion, and specifically, their use in tandem

with deductive iterative techniques has been reported. Direct solutions ob-

tained using inference were investigated; two ML algorithms were compared,

one using a MVPR model and the other a CNN. The MVPR algorithm is suit-

able when there is a low amount of training data, in which it remains compet-

itive and computationally inexpensive compared with a more advanced CNN

model. With respect to the results on smoothed test data, the CNN had a

MPEN of 17.8% and the MVPR 17.3%. For reactor-type profiles the CNN

had a MPEN of 14.9% and the MVPR 14.3%. Generally, the CNN seemed to

have a greater noise immunity compared to the MVPR algorithm.

Beyond the nuclear graphite application and in electromagnetic tomog-

raphy in general, there is a lack of literature surrounding the calibration of

a forward model. Typically, the forward model is mapped to the measured

experimental data using either a scalar value or a transfer function. These

methods assume that the scaling factor or transfer function is conductivity

invariant and independent of the measurement and this may not be justifiable,

particularly if there are resonant effects present. Instead, the model can be

tuned by varying the properties of the coil until there is sufficient agreement
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between the model and experimental data. In previous work, the diameter

of the coil has been tuned by using a grid search. This is feasible for a low

number of parameters but the computation time exponentially increases with

respect to the parameter number. An optimisation method has been pre-

sented for the calibration of a FEM for use in an eddy current inspection

application. The algorithm requires no further theory beyond trust region

algorithms; further, it can be used in both constrained and unconstrained

optimisation. It has been demonstrated how the choice of FEM and measure-

ment can be determined through this calibration procedure; for example, the

coil model, mesh size and operating frequency range. It has been shown that

a filament coil model is as accurate as a 3D model of the eddy current probe.

In the deployed rector probe, there were visible resonance effects in the low

frequency measurements. This is problematic if resonance is not included in

the modelling; therefore, damping circuitry was used to reduce resonance ef-

fects. The calibration of the reactor probe with and without damping, showed

that the damping circuitry did improve modelling accuracy. Using a filament

model, the mean SNR of the laboratory system was 28.27 dB, the undamped

reactor system 20.59 dB and the damped 33.99 dB. The resonant issues ne-

cessitated the use of the relative error in the objective function because the

errors due to resonance would dominate the choice of coil parameters if the

absolute error was used.

In the inversion of graphite inductance data, the iterative algorithm was

highly restrictive of the step direction. This was not because the regularisation

and damping parameters were too large but because the residual norm was

below the discrepancy norm. The repeated inversions with a lower discrep-

ancy multiplier revealed this to be case. However, lowering the discrepancy

multiplier increases susceptibility to modelling errors. Therefore, to improve

the accuracy the modelling error should be lowered. This modelling error

may be sufficiently reduced with the damped gradiometer probe; it is to be
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seen whether this is the case or not. Generally, the bore values were highly

accurate, but the error increases with depth. This is partially due to the ill-

conditioning of the problem, where this same trend is shown on synthetic data

without noise. It was demonstrated that the reconstruction using the relative

error is more erroneous than the reconstruction using the absolute error; this

is due to the increased weighting of the low frequency data, in which there is

a lower SNR.

Crack detection has previously relied on a running average of the experi-

mental measurement, in an attempt to smooth out the effect of conductivity

variations on the measurement data. This is inadequate if the azimuthal

conductivity profile is not derived from the same probability distribution. A

possibility is to not use averaging but instead use a feature extraction tech-

nique to predict the presence of a crack. The difficulties with this is that a

crack can be understood as a sharp loss of conductivity, and therefore, there

are a significant overlap in features in the measurement data from conduc-

tivity variations and cracks. A wide range of ML algorithms were studied

for binary classification of a notch within a conductive block of material, in

which there are variations in electrical conductivity. It was shown that for

synthetic data with realistic levels of noise that the balanced classification

accuracy was no larger than 71.45%. This accuracy was not limited by the

underlying conductivity variations since a significantly higher accuracy can

be achieved on synthetic data without noise. It is difficult to compare these

ML feature extraction and classification algorithms to techniques that use

averaging because the conductivity variations need to be well understood to

study averaging. However, alternative measurements that use averaging in

the ML algorithms may result in improved accuracies for a similar SNR level.
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9.2 Future Work

Although there were many contributions to previous work in the inspection

of graphite, there are incomplete areas of research. This section discusses

some of these incomplete areas, where it is hoped that this would be useful

to not just the graphite application but the wider community in eddy current

inspection.

The ML prior estimate used in this thesis predicted the conductivity depth

profile directly. Further, the algorithm was trained using polynomial conduc-

tivity profiles of up to order 5 (for the inversion of reactor data). This may be

too general, since the conductivity is typically expected to be monotonically

increasing. It would perhaps be better to define the functional explicitly and

to use an ML algorithm to predict the coefficients of the functional. However,

this may be unfavourable for the safety case. Alternatively, the inspections

could be limited to trepanned locations only, where the trepanned data could

then be used to determine the prior and not the measured inductance data.

This would make the use of an ML prior redundant, greatly simplifying the

problem.

In characterising the measurement noise, it may be best to conduct a wider

study across a greater number of calibration bricks to see if the noise profile

can be modelled more precisely than using a uniform random distribution.

This may improve the accuracy of direct solutions using inferential techniques.

Although ML methods may not be necessary for predicting the prior,

there is significant scope for replacing the FEM forward model with a ML

forward model. Moreover, there may be a possibility of combining the two for

a hybrid methodology. The ML algorithms designed in this thesis make no

consideration of the physics of the problem. There may be great performance

benefits to training a ML algorithm subject to the constraints of the physics.
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In this thesis, the conductivity map in the forward model was approxi-

mated with a discrete depth profile. Similar to the ML prior comments, it

may be simpler to use a functional to define a continuous depth profile. A

possible benefit to this is in solving a problem with improved conditioning

because the functional could regularise the solution; for example, a linear

function could be used in which there are no high frequency variations in the

depth profile. It would be sufficient to obtain the sensitivities using a forward

difference approximation; however, analytic solutions may be obtained using

the E · E formulation and the chain rule, an example derivation is given in

the appendix. It is suspected that a further benefit of using a continuous

depth profile is a simplification of the meshing in the numeric solver, since

the material under test would not need to be discretised (the depth profile can

be analytically specified in COMSOL®). This would lead to a faster solution

time.

Another possibility is to use a global optimisation technique, rather than

the local iterative methods. Iterative methods find a local minimum and this

may not be the optimum solution. With the development of ML, there has

been an expansion of research into fast global optimisation algorithms, such

as the HyperBand technique. It is envisioned that a fast ML forward model

could be embedded in such an algorithm.

Although this is the third iteration of the project, there are many possible

areas of development which remain relevant to the wider eddy current modal-

ity. It is difficult to see where significant reductions in time can be gained

from the design of the iterative algorithm; however, there may be gains in

speedup with the use of a continuous depth profile in the FEM. The use and

development of iterative techniques remains important as a deductive tech-

nique, where they can be used to validate batches of inverted reactor data

derived from data-driven techniques.
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Sensitivities of Regularised

Objective Function

A.1 Gradient

f(x⃗) =
1

2
r⃗T r⃗ +

1

2
(Γ(x⃗− x⃗0))

TΓ(x⃗− x⃗0)

Make the substitution ∆ = x⃗− x⃗0

=⇒

f(x⃗) =
1

2
(r21 + r22 · · ·+ r2n)+

1

2
(



γ11 γ12 . . . γ1m

γ21 γ22 . . . γ2m
...

...
. . .

...

γm1 γm2 . . . γmm





∆1

∆2

...

∆m


)T



γ11 γ12 . . . γ1m

γ21 γ22 . . . γ2m
...

...
. . .

...

γm1 γm2 . . . γmm





∆1

∆2

...

∆m


=⇒
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f(x⃗) =
1

2
(r21 + r22 · · ·+ r2n)+

1

2



γ11∆1 + γ12∆2 + · · ·+ γ1m∆m

γ21∆1 + γ22∆2 · · ·+ γ2m∆m

...

γm1∆1 + γm2∆2 + · · ·+ γmm∆m



T 

γ11∆1 + γ12∆2 + · · ·+ γ1n∆m

γ21∆1 + γ22∆2 · · ·+ γ2n∆m

...

γm1∆1 + γm2∆2 + · · ·+ γmm∆m


=⇒

f(x⃗) =
1

2
(r21(x⃗) + r22(x⃗) · · ·+ r2n(x⃗))+

1

2
(γ11∆1 + γ12∆2 + · · ·+ γ1n∆n)

2+

1

2
(γ21∆1 + γ22∆2 · · ·+ γ2n∆n)

2+

1

2
(γm1∆1 + γm2∆2 + · · ·+ γmn∆n)

2

Taking the gradient

∇f(x⃗) =



∂
∂x1

∂
∂x2

...

∂
∂xm


(
1

2
(r21 + r22 · · ·+ r2n)+

1

2
(γ11∆1 + γ12∆2 + · · ·+ γ1m∆m)

2+

1

2
(γ21∆1 + γ22∆2 · · ·+ γ2m∆m)

2 · · ·+

1

2
(γm1∆1 + γm2∆2 + · · ·+ γmm∆m)

2)

Using the chain rule =⇒
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∇f(x⃗) = JT r⃗+

γ11(γ11∆1 + γ12∆2 · · ·+ γ1m∆m)

γ12(γ11∆1 + γ12∆2 · · ·+ γ1m∆m)

...

γ1m(γ11∆1 + γ12∆2 · · ·+ γ1m∆m)


+

γ21(γ21∆1 + γ22∆2 · · ·+ γ2m∆m)

γ22(γ21∆1 + γ22∆2 · · ·+ γ2m∆m)

...

γ2m(γ21∆1 + γ22∆2 · · ·+ γ2m∆m)


· · ·+

γm1(γm1∆1 + γm2∆2 + · · ·+ γmm∆m)

γm2(γm1∆1 + γm2∆2 + · · ·+ γmm∆m)

...

γmm(γm1∆1 + γm2∆2 + · · ·+ γmm∆m)



=⇒

∇f(x⃗) =JT r⃗(x⃗) + ΓTΓ(x⃗− x⃗0)
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A.2 Hessian

The Hessian is populated with second order derivatives:

Hf (x⃗) =



∂2f
∂x1x1

∂2f
∂x1x2

. . . ∂2f
∂x1xm

∂2f
∂x2x1

∂2f
∂x2x2

. . . ∂2f
∂x2xm

...
...

. . .
...

∂2f
∂xmx1

∂2f
∂xmx2

. . . ∂2f
∂xmxm


=



∂
∂x1

∂
∂x2

...

∂
∂xm


∇f(x⃗)T

=⇒

Hf (x⃗) =



∂
∂x1

∂
∂x2

...

∂
∂xm


(r⃗TJ + (x⃗− x⃗0)

TΓTΓ)

Using the Gauss-Newton approximation [121], this simplifies to

Hf (x⃗) ≈ JTJ + ΓTΓ

A.3 Linear Mapping

In the case where the residual can be written with a linear mapping, r⃗ =

Ax⃗ + b⃗, the regularised Gauss-Newton direction is an exact solution of the

step towards the minimiser of argminx⃗(
1
2

∥∥∥Ax⃗+ b⃗
∥∥∥2

2
+ 1

2

∥∥Γ(x⃗− x⃗0)
∥∥2

2
), with

J = A

p⃗ =− (ATA+ ΓTΓ)−1(AT r⃗(x⃗k) + ΓTΓ(x⃗k − x⃗0))
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Instead of computing a step from a current iterate, the direct solution can be

obtained by setting the initial point as x⃗k = 0⃗. The optimum solution is then

x⃗∗ = p⃗ =− (ATA+ ΓTΓ)−1(AT r⃗(⃗0) + ΓTΓ(⃗0− x⃗0))

=− (ATA+ ΓTΓ)−1(AT b⃗− ΓTΓx⃗0)
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Continuous Depth Profile of a

Conductive Cuboid Block

Consider the discretisation of a cuboid block with a thickness L, shown in fig.

B.1. The number of layers, n, controls the thickness of any-one layer, such

that d = L/n. If the number of layers increases, the thickness of each layer

Figure B.1: Left: Discretisation and co-ordinate system. Right: Cuboid block
with two layers: d = L/2.

decreases, as shown in fig. B.2. Consider the limit as the number of layers

goes to infinity: d → 0 and the volume of a layer reduces to a surface, S. In

the simple case of a cuboid block, the surface is a flat plane described by the

function S(x, y, r) = x + y + r, simply denoted as S(r). This surface has a
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conductivity σ(r). The sensitivity of the measurement voltage to a surface is

∂ψ

∂σ(r)
= lim

d→0

∫
E⃗Tx · E⃗RxdV =

∫
E⃗Tx · E⃗RxdS(r) (B.1)

In the discrete case, the voltage is a function of each conductivity vari-

Figure B.2: Discretisation with 20 layers.

able, ψ(σ1, σ2 . . . , σn), and if each of these is a parametric function, such that

ψ(σ1(t), σ2(t) . . . , σn(t)), then the voltage sensitivity to t is

∂ψ

∂t
=

n∑
i=1

∂ψ

∂σi

∂σi
∂t

(B.2)

Analogously, the continuum version is

∂ψ

∂t
=

∫ r1

r0

∂ψ

∂σ(r)

∂σ(r)

∂t
dr (B.3)

If the continuous depth profile in the material under test is written in terms

of a sum of basis functions as σ(r) =
∑m

i=1 bi(k⃗i, r), s.t. 0 ≤ r ≤ L, where

k⃗i are the coefficients of the ith basis, then the sensitivity of the voltage to

the kji coefficient is denoted by

∂ψ

∂kji
=

∫ L

0

∂ψ

∂σ(r)

∂bi(k⃗i, r)

∂kji
dr

=

∫ L

0

∫
E⃗Tx · E⃗RxdS(r)

∂bi(k⃗i, r)

∂kji
dr

(B.4)
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For example, if b(r) = {σc,−σde−σs·r}, then

∂ψ

∂σc
=

∫ r

0

∂ψ

∂σ(r)

∂σ(r)

∂σc
dr

=

∫ L

0

∫
E⃗Tx · E⃗RxdS(r)dr

(B.5)

Similarly

∂ψ

∂σd
=

∂ψ

∂σ(r)

∂σ(r)

∂σd

=−
∫ L

0

∫
E⃗Tx · E⃗RxdS(r) · e−σs·rdr

(B.6)

and

∂ψ

∂σs
=
∂ψ

σ(r)

∂σ(r)

∂σs

=

∫ L

0

∫
E⃗Tx · E⃗RxdS(r) · rσde−σs·rdr

(B.7)

The Jacobian is then 

∂ψ1

∂σc

∂ψ1

∂σd

∂ψ1

∂σs

∂ψ2

∂σc

∂ψ2

∂σd

∂ψ2

∂σs

...
...

...

∂ψm

∂σc

∂ψm

∂σd

∂ψm

∂σs


where ψm is the mth voltage measurement. This theory can be generalised

further, with variations in all directions such that σ(x, y, r). This would be

an exciting area to develop further.
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