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Abstract

The atomic force microscope (AFM) was first created in 1986 and was initially used to measure
topography and magnetisation[?, but has continually evolved over the 30 years since its introduction.
A common application is in precise measurements of electrical properties including the local resistivity
of semiconducting materials!®!, however metallic samples cannot presently be characterised due to the
complexities of applying nanoscale resistivity measurements to such surfaces. This missing technique
needs to be addressed, and in this work a solution is developed and evaluated which uses a voltage divider
to measure the contact resistance between a solid-metal probe and a metallic conducting surface. The
oxide layer of the FeRh sample under investigation has to be removed prior to characterisation, but
following this the expected pattern is resolved and it is concluded that any non-oxidising metallic sample

with resistivities varying by at least one order of magnitude should be resolvable with this methodology.

Antiferromagnetic (AF) spintronic devices are an active area of study at present and FeRh is one of the
most promising materials for these devices. Equiatomic FeRh is antiferromagnetic at room temperature
and becomes ferromagnetic at around 100°C, with the transition temperature being ~ 10°C higher
during heating than cooling[*®. The room temperature magnetic ordering may be manipulated by
irradiating the surface with noble gas ions(®7], and the possibility of using lithography to produce
magnetic patterns is being explored. This work provides nanoscale magnetic characterisation of an
FeRh thin film which has been patterned into 100 nm stripes. The patterning is shown to be successful
and is not disrupted by exposure to magnetic fields of up to 2T nor by temperatures above the FeRh
transition temperature. It is seen that the specific FM domain structure of the irradiated regions remains

stable throughout the heating and cooling cycle.

An artificial magnetoelectric multiferroic may be formed by depositing FeRh onto the ferrolectric sub-
strate PMN-PT, where the coupling between ferroic layers is mediated through strainl’l. The local
piezoelectric coefficient and coercive field are related to the local stoichiometry 879 so the distributions
of these characteristics are therefore needed to be modelled and characterised on the nanoscale. It is
shown that rapid charging and discharging causes damage to the surface and that electrostatic effects are
dominant over relatively thick materials with high electric permittivity, so a series of OFF-field scans are
determined to be the optimal solution with the localised spectroscopy achieved through concatenation of
the measured piezoelectric response values. This characterisation agrees with the models which suggest
the inhomogeneity in piezoelectric coefficient to be negligible, and so PMN-PT is an ideal candidate for

the ferroelectric substrate used in artificial magnetoelectric multiferroics.
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Chapter 1

Introduction

This chapter aims to provide an overview of the work contained in this thesis. The concept of atomic
force microscopy is introduced, along with the materials of interest and some of the motivations for
characterising them using bespoke advanced measurement techniques. One of these is FeRh, a metal
exhibiting unusual magnetic properties and of great interest in spintronics, and the other is PMN-PT, a
ferroelectric ceramic featuring strongly piezoelectric behaviour and of great interest for use in artificial

multiferroics. The aims of the work are outlined and the structure of the thesis is summarised.

1.1 Atomic force microscopy

Scanning probe microscopy (SPM) has been responsible for significant advances in nanoscale research
since the invention of the scanning tunnelling microscope (STM) by Binnig and Rohrer in 1981019 who
were awarded the Nobel Prize in 1986!"]. Binnig subsequently created the atomic force microscope
(AFM) in 19861, which consists of a sharp tip on a cantilever that is deflected by particular forces
produced by a sample, nominally the van der Waals forces. This deflection was initially measured using

an electron microscope but this was later replaced by a diode laser and quadrant photodetector.

AFM was initially used to measure the topology and magnetisation!? of samples, but has continually
evolved over the 30 years since its introduction. In this time, resolution has been increased and fur-

d['213] and AFM has been adapted to operate in a range of thermal and magnetic

ther modes adde
environments. The tip can additionally be used to measure the mechanical properties of the sample
via nanoindentation['?, and using novel techniques precise measurements of electrical properties can
be made including resistivity, capacitance, and tunnelling®]. These modes, along with further novel
modes, can together produce a more comprehensive analysis of a sample. However, the localised char-
acterisation of electrical resistivity has been restricted to semiconductor materials until now due to the
complexities of applying nanoscale resistivity measurements to metallic surfaces. The consequence is a

missing characterisation methodology that needs to be developed in order to enable electrical resistivity

characterisation of samples such as metal thin films using AFM techniques.
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CHAPTER 1. INTRODUCTION

The umbrella term SPM describes any measurement technique utilising some probe being rastered over
a sample, and so includes all STM and AFM derived modes. Some authors define AFM to purely
describe characterisations using the basic van der Waals repulsion and categorise the derived modes
such as magnetic measurements to be SPM techniques, while other authors use AFM to describe
characterisation via any force acting on a tip that is mounted on a cantilever and brought close to a
sample surface. This thesis shall use the latter definition, using atomic force microscopy to describe
all cantilever-based techniques and clearly distinguish them from other SPM modes such as STM. The

device upon which these measurements are performed shall be referred to as the atomic force microscope.

1.2 FeRh

In 1939, Fallot and Hocart[* published their seminal paper demonstrating a sudden rise in the magneti-
sation of bulk equiatomic FeRh when heated past a certain temperature, which exhibited a hysteresis
of ~ 10°C upon cooling. It was later determined by Muldawer and de Bergevin* to be a consequence
of the magnetic ordering transitioning from antiferromagnetic at room temperature, to ferromagnetic
above some threshold temperature, and to be accompanied by a positive strain in the lattice. This tran-
sition is also accompanied by sudden changes in other properties, including a decrease in the electrical

resistivity ! and a rise in the elastic modulus[%!.

This means that by heating to the readily achievable temperature of ~ 100°C, the properties of this
material may be toggled between two values which may be exploited in spintronic devices. One possible
application is in data storage['®l, where the bit may be written at elevated temperatures but read at
ambient temperatures when it is insensitive to external magnetic fields. It is even possible to deposit
the FeRh film on a flexible MgO(001) substrate[*” which may eventually permit flexible data storage

devices.

It has recently been shown that irradiation of equiatomic FeRh thin films with energetic noble ions such

[6:18] " This has been demonstrated for

as neon can induce ferromagnetic ordering at room temperature
uniform irradiation of thin films, but utilising this phenomenon requires that it be localisable and so work
must be done to investigate the feasibility of patterning an FeRh thin film with localised ferromagnetic
regions. The characterisation work involved may be performed using magnetic measurement techniques

on an AFM.

1.3 Multiferroics

A multiferroic is a material or structure which features two or more ferroic properties with large coupling

constants between them['%, and the four primary ferroic properties are ferromagnetism, ferroelectricity,
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ferroelasticity, and ferrotoroidicity. Ferroic properties are bistable with a hysteretic transition between
states, meaning that once switched they remain fixed in the induced state until they are coerced into
the opposite state. This allows them to be used as toggle switches and through the coupling enables
one ferroic property to be used to reverse a second. Magnetoelectric multiferroic materials are of great
interest in spintronics because they demonstrate both ferromagnetic and ferroelectric behaviour with
some magnetoelectric coupling between them 291

There are very few natural multiferroic materials but these are supplemented by artificial, or ‘composite’,
multiferroics[*®). These are formed by layering thin films of ferroic materials onto a substrate which
may itself be ferroic, and interlayer coupling arises between these which typically yields a superior
magnetoelectric coupling than observed in natural multiferroics/?!!. The interlayer coupling in composite
magnetoelectrics is mediated through strain, generated by the ferroelectric layer, which induces a change
in magnetic ordering of the ferromagnetic layer!”). An FeRh film deposited onto a substrate formed from
the solid solution of lead magnesium niobate and lead titanate, commonly abbreviated to PMN-PT, is
a good candidate for a composite magnetoelectric multiferroic, and electric fields applied to the PMN-
PT substrate are demonstrably able to manipulate the ferromagnetic properties of the FeRh film via
mechanical strain[”). This manipulation is of great interest and applications include reversing a magnetic
logic bit via magnetoelectric coupling, which can use orders of magnitude less energy than direct reversal,

allowing for reduced power consumption and improved miniaturisation 9.

PMN-PT is of particular interest for use as a substrate for multiferroic devices because it exhibits a large
piezoelectric response!?? and thus forms an unusually strong magnetoelectric coupling. However, this
application requires a homogeneous piezoelectric coefficient across the surface in order to achieve precise
control of the magnetic ordering of the ferromagnetic layer. The piezoelectric coefficient is related to
local stoichiometry, which is known to be inhomogeneous!”, and there is seemingly contradictory data
in the literature regarding the significance of this variation[®7. This contradiction must be resolved
and nanoscale characterisation performed so that PMN-PT substrates may be used in multiferroic
applications, however no suitable AFM measurement mode exists for such thick samples. A surface
characterisation methodology such as AFM is required for this application though, rather than an
existing bulk characterisation technique. This is because the magnetoelectric coupling between the
two ferroic materials comprising the multiferroic is governed by piezoelectric strain, and so is critically

dependent on the local distribution of the piezoelectric coefficient at the interface.

1.4 Objectives and thesis outline

The work described in this thesis has a predominantly metrological focus. This means that the devel-

opment and evaluation of novel AFM methodologies are primary aims of the work, in addition to the
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results obtained from the characterisations performed. One aim of the project was to satisfy the need
for localised resistivity measurements of metallic films, by developing a new methodology to achieve
this and demonstrating the proof-of-concept. This characterisation has not been available until now,
and so developing this will significantly expand the electrical measurement capabilities of the atomic
force microscope. A second aim was to investigate the magnetic patterning of an FeRh thin film on
the nanoscale, initially by verifying the success of the patterning and then by characterising the domain
structure during heating and cooling the patterned film past the FeRh transition temperature. The third
and final aim was to investigate thick ferroelectric samples for use as substrates for composite multifer-
roics, including modelling the expected distribution of ferroelectric behaviour. This involved developing
a new measurement methodology to enable piezoelectric characterisation to be performed by the AFM

over samples which are prohibitively thick for the use of existing modes.

The structure of this thesis is outlined below.

Chapter 2 provides a detailed introduction to the fundamental background phenomena for this work.

This comprises crystals and lattices, magnetic fields and magnetism, and electric fields and polarisation.

Chapter 3 introduces the properties and applications of the two materials under investigation in this

work, which are equiatomic FeRh thin films and PMN-PT ferroelectric substrates.

Chapter 4 details the principles of atomic force microscopy and introduces the series of established

modes which are utilised and modified in this work.

Chapter 5 discusses the development of a localised resistivity measurement methodology using the
atomic force microscope, and Chapter 6 evaluates this technique by applying it to a magnetically

patterned FeRh thin film.

Chapter 7 reports the magnetic investigation of the patterned FeRh thin film, with regards to the

success and stability of the patterning.

Chapter 8 presents and evaluates the multiple models and methodologies developed in order to char-

acterise the surface of a thick ferroelectric sample, exemplified by a PMN-PT substrate.

Chapter 9 summarises the results from the experimental work in this thesis and proposes future work

that may be carried out.
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Chapter 2

Fundamental background phenomena

This chapter aims to provide an introduction to basic crystallography and the different crystal and lattice
systems, and introduce the named crystal prototypes which correlate to the samples under investiga-
tion. Additionally, it aims to provide an introduction to magnetism, starting with dipoles and continuing
through to ferromagnetic ordering and domains. The related phenomena of magnetoresistance, magne-
tostriction, and the elastic modulus defect will also be discussed. Finally, the electrical analogue of this
magnetic ordering will be introduced in a more quantitative manner. The ferroelectric switching process

and ensuing effects will be explained and the subcategory of relaxor ferroelectrics will be introduced.

2.1 Introduction to crystals and lattices

2.1.1 Unit cells and lattice vectors

A crystal is a term for a group of atoms arranged in a repeating structure, which may be described by
the ‘lattice’ and the ‘basis' 23], The lattice is the principal arrangement of atoms in the structure that
best describes the symmetries contained therein and may not include all of the atoms present. The

atoms in the vicinity of each lattice point form the basis.

There are two classifications of unit cells: primitive and conventional®!. A primitive unit cell is the
smallest cell possible, containing one lattice point in its basis and having discrete translational symmetry
across the crystal. More commonly used is the conventional unit cell, this is the smallest unit cell whose
symmetries describe the highest order symmetries in the lattice[®*. For example, as will be seen in
Section 2.2.2.2, the C'm crystal structure may be described by either triclinic or monoclinic unit cells;
the monoclinic system has higher order symmetry thus this is the system used to describe the structure.
The result is that the crystal axes of the conventional unit cell align with the symmetry axes of the

124 so any reference to crystal axes equally refer to the lattice vectors of this cell. The

overall crysta
conventional cell may be the same as the primitive cell in some lattices, such as simple cubic, whilst

being different in others, such as body-centred cubic[?4.
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The term ‘basis’ is usually used for conventional unit cells, while the ‘primitive basis’ is the basis in the
primitive unit cell description!?3]. The basis vectors for each atom are typically defined in at least one
of the following two coordinate systems, both of which define the host lattice point to be the origin 2.
The first is fractional coordinates, which state the relative distance along each of the lattice vectors; for
example, fractional coordinates (0.1,0.2,0.3) refer to the point 0.1d@ + 0.2b 4+ 0.3¢. The second is to

just use Cartesian coordinates, so (0.1,0.2,0.3) instead refers to the point 0.1Z + 0.2% + 0.3Z.

The conventional unit cell is the one typically used to describe the lattice and is defined by the lattice
vectors @, 5 ¢ and lattice angles «, 3, v which are colour-coded on the unit cell of the triclinic crystal
system in Figure 2.1. The lattice constants a, b, ¢ are simply the magnitudes of the respective lattice
vectors and the order of labelling these vectors is somewhat arbitrary, but the typical choice is such that
a < b < el The angle between two lattice vectors is labelled by the Greek counterpart of the third

vector[? which means

cos (@) = %
c
a-c
cos () = ae
ab
cos (y) = 5 (2.1)

Finally, the faces of the conventional unit cells are defined by the plane described by two of the lattice
vectors and these are labelled using the capital of the third. For example, face C' contains @ and b and

so both the top and bottom faces of Figure 2.1, shaded blue, are C' faces.

Figure 2.1: The unit cell of the triclinic crystal system with lattice angles and lattice vectors colour-
coded. Red, green, and blue denote @ and «, b and B, and ¢ and ~y respectively. The faces shaded blue

are the C faces.

In most, but not all, cases, the underlying Cartesian basis is oriented such that the lattice vector @ is

parallel to the Cartesian unit vector #. The volume of a unit cell is given by[2*

V:a’~<5><é'). (2.2)
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In lattices where primitive cells and conventional cells differ the parameters of the primitive unit cell will

be indicated with a prime, so the primitive unit cell vectors would be (z_", b_7 c.

2.1.2 Miller indices

It is commonly necessary to describe plane orientation in a crystal and this is typically done using Miller
indices[?]. One reason for doing so is to describe how a sample is oriented relative to the surface or a

substrate. These are a set of three integers h, k, [, which uniquely define a family of parallel planes.

The index values are determined by considering the plane closest to, but not passing through, a particular
lattice point, and recording the fractional distance from this point to where the plane intersects each
crystal axis[®®!. The plane may be defined for every lattice point hence this is a family of planes with
constant separation d and not just a single plane. The reciprocals of these intercepts are then taken and
the values multiplied by the lowest common multiple of any denominators to obtain three integer values.
Any common factors of these integers are not cancelled!?, so for example if the plane had intercepts
0.5, 0.25b, 0.125¢ then the Miller indices would be (248), which is parallel to but has half the spacing

of the family of planes (124). Negative values are represented by a bar above the number.

A Miller index of 0 means the plane is parallel to that crystal axis, thus the value of the intercept tends
to infinity which becomes 0 when the reciprocal is taken. This means that crystal plane A has Miller
indices (100), B has indices (010), and C' has indices (001). In some lattices, such as simple cubic, the
symmetry of the structure means the order of the indices is irrelevant in which case braces {hkl} are
used ). Vectors orthogonal to these planes are given using square brackets, so the vector orthogonal
to (hkl) is hd + kb -+ I& which is written [hk[][25]. If the index order of the vectors is irrelevant then
angled brackets (hkl) are used!?®.

2.1.3 Point groups, space groups, and crystals

A point group is a mathematical group of geometric symmetry operations that results in the transformed
structure mapping onto itself whilst keeping at least one point unchanged[?®!, thereby excluding any
translational symmetries. The allowed operations are thus rotational, reflective, inversion, or improper
rotation (rotation plus inversion, also known as rotoinversions). The ‘symmetry elements’ are any
rotation axes, reflection planes, and centres of symmetry present in a point group. These need not

describe lattice-style arrays of single points; Figure 2.2 shows a point group with Cg symmetry.

A space group is a point group with the relaxation of the rule requiring a fixed point, allowing trans-
lational, screw (translation plus rotation), and glide (translation plus reflection) symmetries[?0l. The
result of allowing translations is a repeating space in all directions, in the context of lattices this forms

a Bravais lattice where the repeating space is the unit cell.
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Figure 2.2: An example of a point group with Cg symmetry. The C stands for cyclic and describes
rotations, whilst the 6 describes the number of non-zero rotations less than or equal to 360° which will

map the group onto itself.

A point or space group has inversion symmetry if each unique point has a corresponding point to which it
maps exactly upon inversion through the origin[?®l, which in the case of space groups may be arbitrarily
defined. A point group with inversion symmetry is said to be centrosymmetric. The piezoelectric effect

discussed in Section 2.12 can only occur in crystals with no inversion symmetry[?7].

It is important here to define the terms crystal system, lattice system, and crystal families. These
are very similar and are at times mistakenly used interchangeably, but there are important distinctions
between them. A crystal system is related to the underlying point groups and describes the mathematical
properties of the structure, while the lattice system describes the underlying Bravais lattice!?*. In three-
dimensions there are seven crystal systems, discussed in detail below, and fourteen Bravais lattices which

may be grouped into the seven named lattice systems[2%].

Five of the crystal and lattice systems are identical in name and categorisation, however the trigonal and
hexagonal crystal systems do not correlate directly to the remaining rhombohedral and hexagonal lattice
systems; trigonal crystal systems may have rhombohedral or hexagonal lattice systems and hexagonal
lattice systems may have trigonal or hexagonal crystal systems!?l. Note that there is no such term as
a trigonal lattice system or rhombohedral crystal system. One mitigation for this confusion is to speak
instead of there being six crystal families and grouping the hexagonal and trigonal crystal systems into

the hexagonal crystal ‘family’.

2.1.4 Hermann-Mauguin notation

A widely used notation style to concisely describe point and space groups is Hermann-Mauguin notation,
also known as international notation following its inclusion in the International Tables for Crystallography
from 1935129 It was introduced by Carl Hermann in 1928 and later modified by Charles-Victor Mauguin
in 1931 into the form used today[?. It describes the system more thoroughly than some other styles,

such as Schoenflies notation, because it includes more detail on symmetries and orientation 2!, Figure
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2.2 used Schoenflies notation.

The notation consists of a capital letter to denote the conventional cell type followed by up to three
more terms which uniquely identify the point group[®l. It is common for the full description to be
condensed slightly to a simpler shorthand in regular use. The leading capitals are summarised in Table

2.1.

Symbol Name Multiplicity Notes

P Primitive 1 In this case the conventional unit cell is just the

primitive unit cell.

I Body-centred 2 The symbol comes from the German ‘Innenzentriert’.
F Face-centred 4 The symbol comes from the German 'Flachenzentriert’.
A Base-centred on 2

A faces only
B Base-centred on 2
B faces only
C Base-centred on 2
C faces only
R Rhombohedrally- 3 The base is a rhombus but ¢ runs perpendicular
centred to C to form a right rhombic prism with the

next rhombus directly above.

[26]

Table 2.1: The seven conventional unit cells and their Hermann-Mauguin symbols!“®!. The multiplicity

is the ratio of conventional cell volume to primitive cell volume.

In space groups the three trailing terms describe the lattice symmetries in the directions of the crystal

axes|2dl

, with any directions lacking non-translational symmetries being denoted by 1 or absent. An
integer represents the smallest fraction of 360° through which a rotation may map the lattice onto
itself, so the value for Figure 2.2 in the direction of an axis perpendicular to the page would be 6. A
bar above the index means each rotation is accompanied by an inversion through some point on the
axis meaning these are improper rotations. A letter m denotes a reflection in the plane normal to
the axis and is equivalent to 2; as such the symbol 2 is never used. If both a rotation and reflection
are present then the two are written as a fraction, with the integer on the top and the m on the
bottom[®].  Any even numbered improper rotations inherently include the symmetry 2 so are never
written in this way because m is accounted for by the improper rotation itself. A rotation of 1 means
that only translational symmetries are present for this axis, whilst a rotoinversion of 1 means the group

is additionally centrosymmetric!25.

If a rotation and rotoinversion are both present for the same axis then the operation with higher symmetry
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is chosen!®. In this context the symmetry refers to the number of times the transformation must be
applied before the points are restored to their initial position, so for rotation 3 the symmetry is 3 whilst
for rotoinversion 3 the symmetry is 6. If both transformations have the same symmetry then the rotation

takes precedence.

There are further symbols and subscripts used in Hermann-Mauguin notation of space groups that cover
additional symmetry operations, however these are not relevant for the space groups of the crystals in

this thesis so will not be discussed here.

2.2 Crystal systems

The seven crystal systems are triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and

cubic®. Each of these are detailed in the following pages.

2.2.1 The triclinic system

In the triclinic system the three lattice constants are all different and the three lattice angles are not

241 The conventional and primitive unit cells are equal and the structure

equal to each other or to 90°
is shown in Figure 2.1. There are only two space groups in this system!?* and this is the only lattice

type to have no mirror planes.

The lattice vectors for this system are (24l

i=ai
b=bcos (7) 2+ bsin (7) 9
E= ol + ) + .2 (2.3)
where
¢z = ccos (B)
¢, = ¢[cos (@) — cos (8) cos (7)] esc (7) (2.4)
and
o= J2 -2 -
— ¢ [1 = cos? (@) — cos? (8) — cos? (7) + 2 cos () cos (B)cos ()] P esc(7) . (25)
The unit cell volume is thus
V = abe, sin ()
= abe [1 — cos? (a) — cos? (B) — cos® (v) + 2 cos (@) cos (8) cos (7)] 7 . (2.6)
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The plane separation d for planes with Miller indices (hkl) in the triclinic lattice system satisfies

2hk 2hl

g [cos () cos (B) — cos (7)] + o [cos () cos () — cos (B)]
1 2 2 2
2 +2b—lzl [cos (B) cos () — cos ()] + % sin? (a) + IZ—Q sin? (B) + i—Qsin2 7) (27)

1 — cos? (a) — cos? (B) — cos? (7) + 2 cos () cos () cos (7)

with the full derivation provided in Appendix A.1.

This crystal system may be obtained by straining a primitive cubic system in the direction (hkl) where

Il>k>h>0.

2.2.2 The monoclinic system

In the monoclinic system the lattice constants are again all unequal but two of the angles now equal
90°[241. This means the system forms a conventional unit cell akin to a slanted cuboid, with four of
the faces being rectangular and two being parallelograms. There are 13 space groups in this system,
split into two lattice types: 8 being primitive and 5 being base-centred 2. The primitive monoclinic
lattice has equivalent primitive and conventional unit cells; however, the base-centred system has an
extra lattice point in the centre of two of the rectangular faces, with the coordinate system defined such

that these are the C-oriented faces. PMN-PT forms two monoclinic space groups: Pm and Cm [?8].

2.2.2.1 The Pm space group

The Pm space group, numbered 6 in the International Tables for Crystallography, is the short form of
the Hermann-Mauguin notation P1m1 or P11m[®. P11m describes a simple monoclinic lattice with
the C-oriented planes being parallelograms and the others rectangular, while P1m1 describes the version
where the B-oriented planes are the parallelograms!?!. The difference between these is just choice of
crystal axes and by modern convention P1ml1 is typically chosen in symmetry to the base-centred lattice.
The point group m11 is never used because it can always be changed to 1m1 by a trivially different

choice of axes. The unit cell for P1m1 is shown in Figure 2.3.

The lattice vectors for the primitive monoclinic crystal system with o = v = 90° are[2*!

a=ad
b= bj
¢=ccos(B) &+ csin(B) 2 (2.8)
giving the unit cell volume to be
V = abesin (B) . (2.9)
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Figure 2.3: The unit cell of the primitive monoclinic crystal system when a = v = 90°, with lattice

angles and lattice vectors colour-coded as in Figure 2.1.

The plane separation for planes with Miller indices (hkl) in the monoclinic lattice system is described
by substituting o = v = 90° into equation (2.7) yielding

1 — <}12+/€251I12(5)+122hl€08(ﬂ)> CSC2 (B) . (210)

d? a? b2 c? ac

This crystal system may be obtained by straining a primitive cubic system in the direction [h0l] where

l>h>0.

2.2.2.2 The Cm space group

The C'm space group, numbered 8 in the International Tables, is the short form of the equivalent
Hermann-Mauguin notations C1m1 or Bllm. The former is typically used by modern convention so
that g is the only non-perpendicular lattice angle. This results in a more intuitive geometry. Figure 2.4

shows the unit cells for the base-centred monoclinic system with a = v = 90°.

Figure 2.4: The unit cells of the base-centred monoclinic crystal system when o = v = 90°, with their
respective lattice angles and lattice vectors colour-coded as in Figure 2.1. (a) The conventional unit
cell. (b) The primitive unit cell of this system shown as a shaded region spanning two conventional unit

cells.

The conventional lattice vectors are the same as in the primitive monoclinic crystal system, while the
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primitive lattice vectors are [24]

- 1 1- b
R S
2 2 2 2
- 1 1- a b
G =-G+-b=ct+t-9
2a+ 5 2x+ 2y
d =&=ccos (B) %+ csin (B) (2.11)
giving the primitive unit cell volume to be
1 .
V= iabcsm B) . (2.12)

The resulting primitive cell has half of the volume of the conventional cell and is shaped somewhat like
a rhombohedral lattice. However, only two of the lattice constants (a’ and b') and two of the lattice

angles (o’ and ') are equal so it is actually classed as triclinic.

This crystal structure may be obtained by straining a primitive cubic system in the direction [hhl] where

I>h>0.

2.2.3 The orthorhombic system

The orthorhombic system is similar to the monoclinic except the angle 5 now also equals 90°[?4 yielding
a cuboid lattice structure. This system is the second most populous, with 59 space groups divided across

four lattice groups: primitive, body-centred, face-centred, and base-centred!?*. The structures of these

are all shown in Figure 2.5.

Figure 2.5: The conventional unit cells for the orthorhombic system with lattice angles and lattice
vectors colour-coded as in Figure 2.1. C-centring is shown for the base-centred case, although A-
centred orthorhombic lattices also exist as defined space groups. (a) The primitive lattice. (b) The

body-centred lattice. (c) The face-centred lattice. (d) The base-centred lattice.
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The conventional lattice vectors for this system are trivially defined as[2*

ad=at
b="bj
c=cZ (2.13)
giving the unit cell volume to be
V = abc . (2.14)

The plane separation for planes with Miller indices (hkl) in the orthorhombic lattice system is described
by substituting & = 8 = v = 90° into equation (2.7) yielding
1 h?  K? 2

E 2 TETa

(2.15)
The primitive unit cells for the body-centred, face-centred, and base-centred lattices will not be discussed

here because they are not relevant for this work.

The primitive, body-centred, or face-centred orthorhombic structures may be obtained by straining the

respective primitive, body-centred, or face-centred cubic system in the direction (110).

2.2.4 The tetragonal system

The tetragonal system is similar to the orthorhombic except the two lattice constants a and b are now

equal ¥ making the conventional unit cell a square-ended cuboid. This system is the most populous

[24]

with 68 space groups divided between two lattice groups: primitive and body-centred The structures

of these are both shown in Figure 2.6.

Figure 2.6: The conventional unit cells for the tetragonal system with lattice angles and lattice vectors

colour-coded as in Figure 2.1. (a) The primitive lattice. (b) The body-centred lattice.
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The conventional lattice vectors for this system are trivially defined as[2*

a=azt
b= ay
c=c2 (2.16)
giving the unit cell volume to be
Y =ad’c. (2.17)

The plane separation for planes with Miller indices (hkl) in the tetragonal lattice system is described by
substituting o« = 8 = v =90° and a = b into equation (2.7) yielding
1 h?+k? 2

d? a? 2’

(2.18)

PMN-PT and FeRh both form lattices in the same primitive tetragonal space group: P4mm, number
99 in the International Tables[?82%1. The primitive unit cell for the body-centred lattice will not be

discussed here because it is not relevant for this work.

The primitive or body-centred tetragonal structures may simply be obtained by straining the respective

primitive or body-centred cubic system in the direction c.

2.2.5 The hexagonal family

The hexagonal family will be described together because of the significant overlap. The core structure
of this family is that the atoms in the C plane form a triangular lattice, which could be thought of
as tessellating rhombi, equilateral triangles, or regular hexagons. The lattice constants are related as
a = b # ¢, with the lattice angles being o = = 90° and v = 120°[?*]. There are 25 space groups in
the trigonal crystal system, split between the rhombohedral and hexagonal lattice systems, and 27 in the
hexagonal crystal system, all of which are the hexagonal lattice system[?*l. The conventional unit cells
for each lattice are shown in Figure 2.7. The conventional unit cell in the hexagonal lattice is equivalent

to its primitive unit cell, whilst in the rhombohedral lattice the primitive unit cell is a rhombohedron.

A hexagonal lattice may have six-fold or three-fold symmetry about an axis, depending on subtleties in
the structure, while a rhombohedral lattice may only have three-fold symmetry because the extra two
lattice points in the cell prohibit any higher symmetries. Recall that space groups are representations of
the symmetries of a system, with the crystal system names trigonal (‘tri") and hexagonal (‘hex’) referring
to the orders of symmetries of their respective space groups. Typically the symmetries of the lattice and
crystal align but in the hexagonal family this is not the case. The result is the hexagonal lattice system

straddling both crystal systems and the trigonal crystal system straddling both lattice systems.
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Figure 2.7: The conventional unit cells for the hexagonal family with lattice angles and lattice vectors
colour-coded as in Figure 2.1. (a) The hexagonal lattice. (b) The rhombohedral lattice, with two atoms

on the long diagonal between the bottom-left and top-right.

The conventional lattice vectors for this family are defined as!?4

Looa, \/gaA
d=-&— ——
2" Y
- a \/§a
b=—-+—9
2:z:+ 9 Y
g=c2 (2.19)
giving the unit cell volume to be
V= ?a%. (2.20)

The primitive unit cell of the rhombohedral lattice system runs up the middle of three neighbouring unit

cells as shown in Figure 2.8.

b /a
c

Figure 2.8: The primitive unit cell of the rhombohedral lattice system shown as a shaded region in the

centre of a hexagonal supercell, with lattice vectors colour-coded as in Figure 2.1. Primitive lattice

angles are all equal but not shown here.

The corresponding primitive lattice vectors arel?4

- 2_,+1l—)»+1_, a a A+CA
o =zd+ b+ -C=-—-———=9+ -2
3973737 T 9 BY T3

. 1 1- 1 a c

B =@+ bt -C= g+l
3T 3P T3 /YT’



CHAPTER 2. FUNDAMENTAL BACKGROUND PHENOMENA

3 (2.21)

YV =—=ac. (2.22)

The resulting primitive cell has one third of the volume of the conventional cell and forms a rhombohedral

lattice because all three primitive lattice constants and all three primitive lattice angles are equal.

The plane separation for planes with Miller indices (hkl) in the hexagonal lattice is described by substi-
tuting o = 8 = 90°, v = 120°, and a = b into equation (2.7) yielding
(2.23)

a2 2 2

14 (h*+hk+k +52
2 3 c

a

The plane separation for planes with Miller indices (hkl) in the primitive rhombohedral lattice is described

by substituting o/ = ' =+’ and @’ =V’ = ¢ into equation (2.7) yielding

i _ (h2 + k% + l2) sin? (a') + 2 (hk + kl + hl) (COS2 (') — cos (a/))
& a2 (1 — 3cos? (o) + 2 cos? (o)) : (2.24)

In addition to the previously mentioned space groups, PMN-PT also forms R3m 28] which is a rhombo-

hedral lattice in the trigonal crystal system and is number 160 in the International Tables.

The rhombohedral crystal structure, albeit with an additional lattice atom in the centre of the primitive
unit cell, may be obtained by straining a cubic system in the direction (hkl) where h =k =1> 0. For
comparison, the hexagonal crystal structure may be obtained by instead straining in the direction [hk0]

where h =k > 0.

2.2.6 The cubic system

The cubic system is a special case of the orthorhombic or tetragonal systems where all three lattice
constants are equal[®l, producing the simplest of the crystal systems. There are 36 space groups in
this system divided amongst three lattice groups: primitive, body-centred, and face-centred?*l. The

structures of these are all shown in Figure 2.9.

The conventional lattice vectors for this system are trivially defined as[2*

a=ax
b= ay
c=aZ (2.25)
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| @ | %

Figure 2.9: The conventional unit cells for the cubic system with lattice angles and lattice vectors colour-

coded as in Figure 2.1. (a) The primitive lattice. (b) The body-centred lattice. (c) The face-centred

lattice.

giving the unit cell volume to be

V=ad*. (2.26)

The plane separation for planes with Miller indices (hkl) in the cubic lattice system is described by
substituting o« = f = = 90° and a = b = ¢ into equation (2.7) yielding

1 R+ k2412
2 a? '

(2.27)

The primitive unit cells for the body-centred and face-centred lattices will not be discussed here because

they are not relevant for this work.

PMN-PT and FeRh both also form space group Pm3m 2839 numbered 221 in the International Tables,
and FeRh additionally forms Fm3m (number 225) and I'm3m (number 229)[B%. These three space

groups are all based on the %3% point group which shortens to m3m in common usage[?®].

2.3 Named crystal prototypes

Some lattices and their associated basis appear frequently in nature and so are given natural-language
names to aid description and signify their importance. These include perovskite and caesium-chloride

structures.

2.3.1 Perovskites

The eponymous mineral of this structure is calcium titanate (CaTiO5) which was first discovered in 1839

[31]

in the Ural Mountains, and is named after the Russian mineralogist Lev Perovski The perovskite

PMN-PT is of interest in this work due to exhibiting strong ferroelectric properties[32.
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The perovskite structure has the general form ABX;. A and B denote cations, typically metals, while X
denotes an anion32. This anion is usually oxygen, although one of the halogens may instead occupy the
X site in some perovskite structured minerals. The space group is determined using the A cations with
the B and X sites defined in the basis, and within this lattice the X sites form vertex-sharing octahedra

with the B site at their centroids32.

The idealised structure is Pm3m, shown in Figure 2.10, with basis vectors stated in Table 2.2. In this
case the A ions form a simple cubic structure, with the B site at the body-centre and the X sites at
the face-centres, forming a regular octahedron around the B site. It should be noted that some authors
reverse the labelling of A and B and some papers consider the lattice to be in the B cation rather than

the A. This is just a case of notation and both cases are physically identical due to the centring.

Figure 2.10: The ABX; perovskite in the idealised cubic structure Pm3m. The A cations are coloured
blue, the body-centred B cation yellow, and the face-centred X anions red. The lines joining the ions

are purely geometric and should not be taken as representative of the chemical bonds.

lon Basis vector

(0,0,0)

o
=
(=)

)

= D=
S W=

~—_ — —

A
B
X
X
X

N N /N T

S ni= = NI
(==}

N[= =

=

Table 2.2: The basis vectors in fractional coordinates for the ABX; perovskite in the cubic structure

Pm3m/32,

This structure is readily distorted and as such the Pm3m space group is rarely observed; orthorhombic
and tetragonal structures are far more common 32, Calcium titanate itself typically forms the orthorhom-
bic space group Pnma (number 62) rather than the idealised Pm3m. In the tetragonal case, such as
the P4mm space group observed for room temperature lead titanate[?®l the perovskite structure is

strained from the cubic group in the € direction by a factor of ¢/a, as stated in Section 2.2.4. The
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resulting structure is shown in Figure 2.11 and has the same basis vectors in fractional coordinates as

in Table 2.2.

2y

b

Figure 2.11: The ABX; perovskite in the tetragonal structure P4mm, colour-coded as in Figure 2.10.

PMN-PT also forms the monoclinic structures Pm and Cm!28], via the strains stated in Section 2.2.2,
and this is where the structure starts to become more complex. In the case of the simpler Pm the
perovskite octahedron still just fills the primitive unit cell. This is shown in Figure 2.12 and still has the

same basis vectors in fractional coordinates as in Table 2.2.

Figure 2.12: The ABX; perovskite in the monoclinic structure Pm, colour-coded as in Figure 2.10.

The case for the base-centred structure C'm is more interesting. The perovskite octahedron clearly does
not occupy the conventional unit cell due to the extra A cations that would be present in lieu of two of
the X sites. Instead, when the lattice forms a C'm space group the perovskite octahedra fill the primitive
unit cells. The resulting primitive and conventional unit cells are shown in Figure 2.13 with basis vectors

given in Table 2.3.

The final perovskite structure that is relevant for this work is the R3m trigonal space group; this is
by far the most complex of the space groups discussed in this section. One would naively assume at
first glance that the perovskite may occupy the primitive unit cell, shown in Figure 2.8, in the same
manner that it does for the C'm space group. Instead, the deformation from the Pm3m group results
in a rhombohedral lattice with an additional A site at the centroid of each of the principal unit cell
rhombohedra, with the unexpected result that the primitive basis contains two A sites!33. This means

that the ABX; perovskite has structure A,BX; in the primitive basis.

37



CHAPTER 2. FUNDAMENTAL BACKGROUND PHENOMENA

Figure 2.13: The ABX; perovskite in the monoclinic structure Cm, colour-coded as in Figure 2.10.
(a) The primitive unit cell, clearly showing the perovskite octahedron. (b) The conventional unit cell

showing the monoclinic crystal structure, but the perovskite structure is much harder to see.

Basis vector

lon
Primitive  Conventional

A (0,0,0) (0,0,0)
A N/A (3:30)
B (333 (50.3)
X (330 (300
X (303  (0,0,3)
X (0,33 (333

Table 2.3: The basis vectors in fractional coordinates for the ABX; perovskite in the monoclinic structure
C'm. The primitive basis vectors are given in terms of the primitive lattice vectors. Note that there is

one less A ion in the primitive basis than in the conventional.

The consequence is that the A sites form a ‘pseudocubic’ structure within the rhombohedral lattice, and
the perovskite octahedra instead populate this lattice[®3]. Pseudocubic lattices are qualitatively defined
structures used to describe perovskites where the cells are close to being cubic, but are not actually so.
These cells are geometrically rhombohedral, but they do not display the requisite symmetry operations
to form the R3m space group by themselves. This lack of symmetry is the reason the lattice is defined
such that there are two perovskite octahedra per unit cell®¥ rather than following the pseudocubic

perovskite structure.

The primitive and conventional unit cells for the R3m perovskite are shown in Figure 2.14 with basis

vectors given in Table 2.4.
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@ I\
&

A
N/

X

Figure 2.14: The ABX; perovskite in the trigonal structure R3m, colour-coded as in Figure 2.10, with
the addition of grey ions representing the centroid ions of the neighbouring primitive cells which form
half of the vertices of the pseudocubes. (a) The rhombohedral primitive unit cell showing the two
perovskite octahedra. (b) The conventional unit cell showing the trigonal crystal structure containing

four perovskite octahedra.

Basis vector
lon

Primitive Conventional
A (00,00 (333 (0,00 (003 (333
A N/A NA G (3:53) (Ghsd)
B (o) (i) (003 (003 (55%)
B N/A NA G Gen) GEw)
X (3000 (05,00 (5000 (0,500 (5,5:0)
X (003  NA - G Goes) (3556)
X (330 :03) Gws) Ges) (G53)
X (033 NA (5303 053) (333)
X (310 (L03)  Ggs) (Ges)  (6:55)
X (031 NA  Gse) God) (58)

Table 2.4: The basis vectors in fractional coordinates for the ABX; perovskite in the trigonal structure
R3m. The primitive basis vectors are given in terms of the primitive lattice vectors. Note that there

are far fewer ions in the primitive basis than the conventional.

2.3.2 Caesium-Chloride

Another named structure of significance in this work is the two-element caesium chloride (CsCl) structure,
named after the common salt which forms this lattice at room temperature and pressure as do certain
phases of FeRh[3%. This may be described as an interpenetrative primitive cubic structure!?! because
both of the elemental atoms form identical Pm3m lattices offset from one another by the fractional

vector (1/2,1/2,1/2). Alternatively, one may consider it to be an Im3m lattice with alternating atoms.
) Y, y g
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In this work the former definition shall be used. It can be intuited that this structure tends to present
itself in compounds that are at or around the equiatomic regime. The CsCl structure is shown in Figure

2.15 with basis vectors given in Table 2.5.

(b)

B

b

Figure 2.15: The CsCl structure with the two atoms colour-coded for clarity. The lines joining the ions
are purely geometric and should not be taken as representative of the chemical bonds. (a) The typical
Pm3m structure. (b) The less common tetragonal P4mm structure which forms under inhomogeneous

strain conditions.

Atom  Basis vector
Blue (0,0,0)
Red ( )

Table 2.5: The basis vectors in fractional coordinates for the CsCl structure.

N|—

1
)92

SIS

2.3.3 Heusler alloys

This structure is named after the German mining engineer and chemist Friedrich Heusler who published
his studies of AlICu,Mn in 1903134, Heusler compounds are of great interest in spintronics[®!, due to
some examples demonstrating large magnetoresistance via half-metallicity, Hall effects, and long-range

magnetic ordering via the double-exchange effect.

Heusler compounds have two forms: full-Heuslers X,YZ and half-Heuslers XYZ[3%!. In true Heusler
compounds X and Y are transition metals and Z is one of the p-block elements, which are those located
to the right of the transition metals in the periodic table (excluding helium). However, the Heusler
structure can also be used to describe a geometrically-similar lattice which does not satisfy the latter
criterion. The structure of a full-Heusler may be thought of as a CsCl lattice in alternating Y and Z with
X forming the centroid atom 3%, as shown in Figure 2.16b. In the case of a half-Heusler, alternate X
atoms are missing from this lattice, meaning X forms an F'm3m lattice with lattice constants doubled

from the full-Heusler case.
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An alternative way of viewing the full-Heusler structure is as Y and Z forming a pair of interpenetrating
Fm3m lattices!3 offset from one another by half a lattice vector. In this case the X lattice would
present itself as a cube concentric to and with half the side length of the lattice cubes. This choice of

conventional unit cell is the one shown in Figure 2.16a with basis vectors given in Table 2.6.

Figure 2.16: The full-Heusler structure X,YZ. X is shown in red, Y in blue, and Z in yellow. The lines
joining the ions are purely geometric and should not be taken as representative of the chemical bonds.
(a) The conventional unit cell for the Fm3m lattice. (b) The underlying CsCl type structure in the

full-Heusler lattice.

Atom Basis vector

Yo 0,00 (330 (5053 (0553)
Z  (333) (003) (050 (500
X (hhD (GAD GRD (R
x  Gad Gh) Goi) G139

Table 2.6: The basis vectors in fractional coordinates for the conventional unit cell of the full-Heusler

structure X,YZ, which is considered to be an Fm3m lattice in Y.

2.4 Introduction to magnetism and spintronics

Electromagnetism is one of the four fundamental forces and underpins a significant quantity of atomic
interactions. Magnetism is the result of atomic and electronic spins hence the area of research seeking
to create devices from magnetic properties is known as spintronics. There are two main unit systems
in use in the study of magnetism: the S| system is of course one of these, while the second is the
centimetre-gram-second (CGS) unit system, often favoured in earlier work. This thesis will be using the

S| system for the most part and any use of the CGS system will be made explicit.

The conversion between the two systems is mostly through powers of 10, however 47 is also a common
factor and the vacuum permeability 139!

o = 1.256637... x 1075 NA™? ~ 47 x 107" NA™? (2.28)
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appears in Sl equations whilst in CGS units the vacuum permeability is unity. The four most useful

conversion factors are provided in Table 2.7.

Quantity Symbol Sl Unit CGS Unit
Magnetic flux density B 1T =10*G
Magpnetic field strength H 1Am~! =~ 471 x 1072 Oe
Magnetisation M 1Am~! ~103emucm™3
Magnetic moment i 1 Am? ~ 10% emu

Table 2.7: Conversion between Sl and CGS units for four key magnetic parameters. The CGS units are
the gauss, the oersted, and the electromagnetic unit. The definition of uq is no longer exact following

the 2019 SI redefinition3”]. Table adapted from the appendix of Magnetism in Condensed Matter 38,

The following sections aim to provide an overview of relevant magnetic phenomena. A rigorous treatment
is not necessary because this work was focussed on advanced metrology and a qualitative understanding

will be more than adequate to understand this thesis.

2.4.1 Magnetic dipoles

A dipole is essentially a nanoscale bar magnet, with two opposite poles and magnetic field lines looping
around the outside and connecting the poles externally[3!, as shown in Figure 2.17. The Biot-Savart
law states that for a closed loop of moving charge a magnetic field is produced normal to the centre
of the loop, with magnitude proportional to current and inversely proportional to radius!*®). On the
atomic scale both of these are small and not well-defined, however the ratio is much larger and thus
better defined, and this allows a macroscopic magnetic field to be observed. The orbital angular motion
of an electron around an atom forms such a loop and thus individual atoms are able to form magnetic

dipoles 9.

Figure 2.17: The magnetic field lines for a magnetic dipole.

These orbital magnetic dipoles only occur in atoms with non-zero orbital angular momentum, because

when the net orbital angular momentum is zero then the opposing orbits will mean the ‘current’ cancels
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out. Hund's rules state that orbital angular momentum states are populated with spin-up electrons first,
followed by spin-down electrons (', meaning that a net magnetic moment is observed for the electrons
surrounding an atom when a particular spin state of the outermost shell is partially filled. This typically
occurs when there are unequal numbers of spin-up and spin-down electrons, with the exception of the

special case when spin-up electrons occupy all orbital states and no spin-down electrons are present.

The dipole moment ji, also denoted 7 in the literature, is a measure of the field direction and strength
and has S| units of Am?[1% The terminology ‘moment’ is because this is also a measure of the moment
required to alter the dipole orientation. The potential energy U of a dipole in an external field H is
given by 3]

U= —poji- H (2.29)

and the resulting torque 7 is given by 3]

7= o x H . (2.30)

The potential energy, known as the Zeeman energy when the dipoles are formed by electrons!*, is
minimised when dipole moment and external field are parallel and maximised when dipole moment and

external field are anti-parallel. The torque T acts to minimise this energy.

The magnetisation M of a medium is a measure of the alignment of magnetic dipole moments, and as

such is also known as the intensity of magnetisation. It is defined with respect to volume V' as[*%

M

Il
Q.)‘ Q
<|=

(2.31)

2.4.2 Magpnetic fields

The field observed outside a magnetic medium is the H field and in this case is related to magnetic flux

density B by simply multiplying by the vacuum permeability, i.e. 1%
B = puoH . (2.32)

Permeability is the measure of induced magnetisation in a medium®. In CGS units the B, H, and
M fields share the same units, so the vacuum permeability is unity, while in the Sl system it has value

solely for purposes of unit conversion.

The flux density is a measure of the number of field lines per unit area, meaning inside a magnetic

medium the magnetisation also contributes to the flux density, with this relationship being[3%

—

B = o (H + M) . (2.33)
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Some authors also define a magnetic polarisation I= MOJ\ZTBQ], analogous to the electric polarisation,
giving
B=pugH+T. (2.34)

However, this will not be used here.

2.5 Atomic origins of magnetic ordering

2.5.1 Classical dipole interaction energy

The classical model is to consider a series of dipoles interacting with one another as if they were just

(191 In this model the magnetic potential energy of two dipoles is

a series of localised bar magnets
calculated using equation (2.29), where the field is now produced by one of the dipoles. It may be
shown from the magnetic potential field A that the field produced by a dipole at some point 7 relative

to the dipole location is[*%]

3 T o Mo LT po | 3F(H-7)—fi

Thus for two dipoles of moments fi; and iy with a separation 715 the magnetic energy is

oL o L B o 1 - flo — 3 (fi1 - 7 [io - T
U(M17M2,7‘12)Z—M2~B(M1,7‘12)=%; [ul = (A;j |312) (£ 12)] . (2.36)
12

The B field is used here in lieu of Moﬁ to reflect the fact this is occurring within a magnetic medium.

The total energy for each of four common alignments are given in Table 2.8 where the shorthand
U = |jia| |fie] —"2— >0 (2.37)
4 ‘7’12|

has been used. The result of these calculations is that from a classical dipole perspective
U(—)z2UMMM=2UM) 22U (——) . (2.38)

This helps to explain why in thin films the dominant arrangements are ferromagnetic dipoles parallel to
the surface and antiferromagnetic dipoles normal to the surface: energy may be minimised by arranging

the highest energy alignment to be in the smallest crystal dimension.

It can be shown that the magnetic moment for some angular contribution ¢ for some particle with mass

m and charge ¢ is given by

- 94>
A= 5t (2.39)

where g; is the a corresponding constant known as the g-factor. The most significant contribution is

for electron spin S, where S, may take the value of +%/2; nuclear contributions are suppressed by the
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Alignment  fi; - jio (fir - P12) (fiz - P12) U (fiv, fiz, T12)

— = || 2| — || |2 2Uo

N — || | 2| 0 =Uy
—— || | 2] || | 2] —2Up
i || |22 0 Us

Table 2.8: The dipole interaction energy for four relative orientations of dipole moments of an idealised

two-dipole system.

mass term in equation (2.39). Thus equation (2.39) becomes

—gse [, h gs eh gs
z = i = — = —_— s 240
K = ome ( ) Ty om, — T tB (2:40)

2

where f is the reduced Planck constant, e is the elementary charge, m, is the electron mass, and up is

the Bohr magneton['®, a useful constant in dipole dynamics.

The electron g-factor g, has a value!39 of
ge &~ —2.0023 (2.41)

and would be exactly —2 if not for the effects of quantum electrodynamics!ll. The electron spin g-factor
gs is defined as

gs = [gel = 2, (2.42)
thus

[z = TUB - (2.43)

The magnitude of the dipole interaction energy Uy can now be calculated for FeRh where || ~ 3 A
and |f1| = |fi2| = pup, using equation (2.37) to give

Up=~3.19 x 1072 J ~ 1.99 peV . (2.44)

In comparison, the electrostatic potential energy between these electrons may be calculated using the

Coulomb energy 19,

q142
Uee == = 5 2.45
! 47T€0 |’I“12‘ ( )
where ¢ is vacuum permittivity, to be
Uee = 7.69 x 10719 J & 4.80eV > U . (2.46)

Thus showing that the energy from classical dipole interactions is inadequate to cause significant mag-
netic effects on its own without being overridden by electrostatic interactions. This suggests that there

must also be some other large contribution to the energy of the system occurring.
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2.5.2 Exchange interaction energy

This section discusses the exchange interaction energy in more analytical detail than the other magnetic
concepts introduced in this chapter thus far. This is because it is the least intuitive magnetic interaction
due to its quantum mechanical nature, and following the analytical origins of the behaviour can aid in

comprehending the phenomenon.

Consider two neighbouring protons a and b located at R, and ﬁb respectively, and two electrons 1 and 2
located at 7} and 75 respectively. The spatial wavefunctions of the electrons surrounding protons a and b
will be denoted ¢, and ¢y, respectively, thus the difference between ¢, (71) , ¢p (72) and ¢, (72) , dp (71)
is merely which nucleus the electrons are considered to be affiliated with.

2.5.2.1 The overlap integral

The overlap integral S,;, confusingly defined using the same symbol as spin, describes the overlap of

the orbitals of two atoms and is given by[*2

Sup = /V 67 (7) d (7) dF, (2.47)

where the integral runs over all space V.

In Dirac notation this is

Sab = (¢alPb) - (2.48)

Note that for any normalised wavefunction S,, = Sp, = 1 by definition, and if the wavefunctions ¢, (¥)
and ¢, (7) are orthogonal then S,;, = 0. Note also that Sy, = S;,, but the wavefunctions dealt with in
this section are all real so S, = Spe. Some authorsB3919 assume the overlap to be maximal and just

set Sgp to 1, but it will be retained here for a more complete picture.

For the two electron positions 7, and 7 it can be seen that 42l

//¢> ) 65 (75) 0 (71) b (72) Ay = /¢ )y (7) dn/¢>b ) b () dF

= abSba = Sab . (249)

Defining [¢a¢p) = ¢a (1) @b (72) and |dpga) = dp (1) ¢a (72), this means

ab - <¢a¢b|¢b¢a> - <¢b¢a|¢a¢b> . (250)

2.5.2.2 Spin singlets and triplets

The total spin S of two electrons can either be 0 or 1.
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In the S = 0 case the spin wavefunction is antisymmetric and is described by

1 1
04, 0p) = —= Oa op) — Oq op)| = — — 2.51
Xs (0a;,05) 7 [x1 (0a) x4 (08) = x4 (0a) X1 (0)] 7 (114 = 1) (2.51)
where o, and oy, are the respective spin states of protons a and b, while x4 and  describe the direction

of the encapsulated spin state.

In the S = 1 case there are three possible wavefunctions, which are symmetric and described by[*?]

XT,l (Ga7ab) = H\T> SZ = +1 ) (252)
X2 (G 0) =\% (1) + 141) S.—0, (2.53)
x1.3 (0a,00) =|41) S, =-1. (2.54)

2.5.2.3 Spatial wavefunctions
There are two possible spatial wavefunctions for the system 19,
|p+) = Az (|¢ats) £ [P60a)]) (2.55)
where ¢ is the symmetric wavefunction, ¢_ is the antisymmetric wavefunction, and
2\ —Y2
Ay = (2 + 2Sab) (2.56)

is the corresponding normalisation constant.

The total wavefunction is the product of spatial and spin components. The Pauli exclusion principle
requires that the total wavefunction of a fermion must be antisymmetric, thus the symmetry of the

spatial wavefunction must oppose that of the spin wavefunction 9.

This means that the singlet and triplet spatial wavefunctions are given by

(6s) = |64) = (24 252) " (|6aths) + |606a) (2.57)
and

o) = [¢-) = (2= 252) " (|$at) — |$66a)) - (2.58)

Each electron is assumed to be independent!*? so the spatial wavefunctions are separable into

@) oc [(144) [a) + (1 = i) |¢p)] @ [(£1 + ) [$a) + (1 — i) |0)] (2.59)

which holds because the coefficients in equation (2.55) are merely the real components of the true
wavefunction. The real components shall once again be taken to aid comprehension by reducing the

number of dimensions and enabling the drawing of 2D curves, yielding
[¢+) o< (|¢a) £ [¢6) © (|a) = |¢0)] (2.60)
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where a factor of 1 has been applied and thus each electron independently satisfies |¢) o |dq) £ |dp)-

These spatial wavefunctions are typically considered for the case of the hydrogen atom with only the
innermost 1s orbitals occupied. The expression for the wavefunction of a 1s electron at some spatial

radius r is3l

|¢) o exp (—T) (2.61)
ap
where ap ~ 53 pm 3% is the Bohr radius, and this modifies for the two electron system to give
|6a) o exp ('T — a/2|) (2.62)
ap

and

68) o exp (—'”') (2.63)

ap
where the host nuclei have separation a with the origin at the midpoint. The symmetric and antisym-
metric wavefunctions are shown in Figure 2.18 and the corresponding spatial probability distributions

are shown in Figure 2.19. The overlap area of the absolute value of the wavefunctions is the overlap

integral.
A A

) (v) N o
|¢5)

— l¢-)

""" >
""k-rﬁg{‘Z +a/2
> r v
—af2 +a/2

Figure 2.18: The symmetric and antisymmetric spatial wavefunctions for two 1s electrons such as those

in a H, hydrogen molecule. (a) The symmetric wavefunction |¢) (b) The antisymmetric wavefunction

o).

The symmetric spatial wavefunction, correlating to the antisymmetric spin wavefunction, permits the
electrons to occupy any location between and around the two nuclei whilst the antisymmetric spatial
wavefunction, correlating to the symmetric spin wavefunction, directly prohibits the electron from being
located midway between the two. This is a consequence of the Pauli exclusion principle which prohibits
symmetric spin states from occupying the same spatial state and thus each electron must be localised to
a specific nucleus. In a real crystal this is much more complex, however, with 1s orbitals being occupied

and higher orbitals instead mediating the interatomic bonding and magnetic properties. For example,
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(a) — g (b) — 1l

—aj2 +a/2 —al2 +a/2

Figure 2.19: The symmetric and antisymmetric spatial probability distributions for two 1s electrons
such as those in a H, hydrogen molecule. (a) The symmetric probability distribution ||¢4)|>. (b) The

antisymmetric probability distribution ||¢_)|°.

the incomplete orbital for the transition metal Fe is 3d for which 3!

r

e () aon

ap

and thus the spatial wavefunctions are far more localised than those in the H, molecule.

2.5.2.4 Coulomb integral

Consider the case where ’ﬁa — }?b‘ — 00, so the energy of each atom is the ground energy Fy. The

stationary Schrodinger equation may then be used[*? which states that

H|¢) = Eylo) | (2.65)

where for the two electron system

A A

Ho. = H, + H, . (2.66)

As the atoms approach one another additional Coulomb terms appear[*! due to interactions between
the two nuclei, the two electrons, and each electron with the nucleus of the other atom. The result is
that equation (2.66) becomes

Hye = Hy + Hy + Hyy (2.67)

where H,; has been used to represent the non-operator terms.

The total energy is thus obtained using this operator, yielding diagonal matrix elements of

(Hae) = (@utn|Hac|6atn) = Eo+ Eo + (@un|H|$ut) (268)

=2Ey + C, (2.69)

where C' = (dqop|Hap|da®p) = 0 is the two-site two-electron Coulomb integral.
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2.5.2.5 Exchange integral

In contrast to the Coulombic effects of the diagonal matrix elements, the cross-terms are purely quantum

mechanical in origin[*l. Evaluating them gives

<¢a¢b’f{26

D100 ) =Fo |Sarl” + Bo [Sanl” + (daul Hasld60) (2.70)

=2E0 |Sap|* + Jea (2.71)

where Jeo = (0o ®b|Hap|PpPa) = 0 is the exchange integral.

2.5.2.6 Energy of the singlet and triplet states

The energies of the two states are given by

~ C=xJey
i = (u|a|6s) =280 + =22 272
0 1+ |Sab|2 ( )
This means the singlet state, with antisymmetric spin wavefunction, has an energy of
CH+ Jeg
Es=F, =2Fy+ —— (2.73)
1+ [Sap)?
and the triplet state, with symmetric spin wavefunctions, has an energy of
C - JP’I'
Er=FE_ =2Ej+ ———— . (2.74)
1- |Sab‘
The difference in energy between the two states is therefore
2C |Sup|* — 2Jes
Eg— FEp = 2C1Sa|” = 2Jer (2.75)

2.5.2.7 Exchange constant

The exchange constant J,;, is defined as half of the energy difference between the singlet and triplet

states*¥ thus
C ‘Sab|2 - Jem

1
(Es — Er) =
1— |9

Jab£§

(2.76)
The magnitude of J,;, is a measure of the strength of the exchange interaction, because this is the

energy that must be overcome by the thermal excitations in order to disrupt the magnetic ordering.

The sign of Jg, and thus the preferred arrangement of the system, is determined by the relative sizes
of J., and C|Sab|2. If Jup < O then the singlet state is preferred with its antisymmetric spin states
and antiferromagnetic behaviour is favoured, while if J,; > 0 then the triplet state is preferred with its

symmetric spin state and ferromagnetic behaviour is favoured.
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The exchange integral is a measure of how ‘exchangeable’ the electrons are. This is due to the indis-
tinguishable nature of electrons[*? which allows their properties to be exchanged without creating a
degenerate microstate. A small value of J., means the electrons are minimally coupled and thus their
parameters are not correlated and they have low exchangeability, whilst a larger value reflects stronger
coupling and higher exchangeability. The Coulomb integral is a measure of electrostatic interaction

strength between the two halves of the system.

A large value of J., and small CSgb (Jap < 0) suggests electrons are minimally interacting but are
spread between both nuclei. This would require antisymmetric spins to minimise occupied energy levels
due to the Pauli exclusion principle and indeed equation (2.76) returns the antisymmetric configuration
as the minimal energy state in this case. On the other hand a small value of J., and large CS?,
(Jap > 0) suggests the electrons are keeping to their respective nuclei but strongly interacting. In this
case the Pauli exclusion principle does not prohibit parallel spins and in fact the Coulombic interactions
will encourage the electrons to synchronise their spins, yielding symmetric ferromagnetic ordering. Once
again equation (2.76) agrees. If the orbitals are orthogonal then S,;, = 0 and Ju, = —Je,. This occurs

for electrons orbiting the same atom ¥, where symmetric spins clearly cannot occupy the same orbital.

This is a useful model of the quantum mechanical magnetic interactions between dipoles, however this
model makes the assumption that electrons are localised to the vicinity of a host nucleus. The delocalised

electrons present in a conducting system cause issues with this nearest-neighbour focus[**!.

2.5.3 RKKY interaction

A correction to address the limitations of the exchange model discussed in Section 2.5.2 is the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [*64%47]  This provides a coupling mechanism between nuclear
spins[*®! or between non-neighbouring, localised, inner-shell electrons in systems where both delocalised
and localised single-orbital electrons are present!*®l. The nuclear spin is not significant for the magnetic

material discussed in this thesis, and it is the latter application which is of interest.

In rare-earth metal systems there are both localised and delocalised electrons!®!. The dipole moments
of the localised electrons would naively be expected to interact following the nearest-neighbour exchange
interaction, but this model yields interaction energies with far lower magnitude than are observed, so
evidently another interaction is dominating. The RKKY interaction is a long range magnetic ordering
phenomenon using the conducting electrons as intermediaries. A localised electron couples to a nearby
conducting electron through the exchange interaction, which then travels through the medium and
couples to another localised electron through another exchange interaction[*®l. The result is the two
localised electrons being able to establish long-range interaction between one another and this has a

magnification effect on the strength of the magnetic ordering.
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2.5.4 Atomic orbitals and magnetic dipole ordering

The emergence of ordered magnetism requires the presence of unpaired electrons so that a net spin and
thus dipole moment may be observed['. The s and p orbitals are not suitable because these readily
form covalent bonds with neighbouring atoms and create shared electron pairst8l. Additionally, the
limited population of electron levels in these orbitals do not provide a high enough density of states
at the Fermi energy for ferromagnetic ordering[*¥; the need for high density of states is explained in

Section 2.9.2 using Figure 2.33.

This suggests that unpaired d or f orbitals are the condition for magnetic ordering, but it is the 3d orbital
in particular which is primarily responsible[®®. This is because the orbitals in 4d and higher are further
away from the nucleus and so are less tightly bonded and thus able to overlap with neighbouring orbitals
to form covalent bonds, while the orbital 3d is close enough that the nuclear attraction dominates and
any overlap with neighbouring atoms is very weak[%. The 4f orbitals are similarly tightly bonded to
the nuclear charge and thus the lanthanide elements, which feature incomplete 4f orbitals, are also
[50].

magnetically ordered however these are not common elements. The importance of the 3d orbital

led to the development of the Bethe-Slater curve3% shown in Figure 2.20.

o

Ferromagnetic
Ni

Mn ra/r3d >

: H

Antiferromagnetic

Exchange integral J,,
=

Figure 2.20: The Bethe-Slater curve showing the dependence of the exchange integral J,, on the ratio
of atomic radius r, to the radius of the 3d orbital r34. Figure reproduced from Introduction to Magnetic

Materials (391

The concept behind the Bethe-Slater curve was published in 193015%48] by Slater and is used to predict
the magnetic properties of a lattice using the 3d shell radius 734 and overall atomic radius r,; the atomic
diameter 2r, is equal to the lattice spacing due to the close-packed nature of solids?3%. The curve shows
negative exchange coupling for smaller atoms and thus AF ordering and positive exchange coupling for

larger atoms and thus FM ordering. The exchange coupling falls off for very large atoms.
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2.6 Induced magnetisation

The magnetic properties of a material are well characterised by the magnetisation, more specifically
the relationship between M and H. Magnetisation curves are drawn to show how an applied field is
able to manipulate the magnetisation of the medium, and the differential of this curve is the magnetic
susceptibility x™ (ﬁ) 39, Magnetic susceptibility is always a dimensionless property due to M and
H sharing the same units in both unit systems. This susceptibility depends on the dipole moment per
unit volume so is also known as the volume susceptibility®%. Other susceptibilities may be defined by

considering dipole moment per some other quantity such as mass or moles.

There are two common types of magnetism which have linear but shallow magnetisation curves, and
thus exhibit a constant but small susceptibility. These are diamagnetism and paramagnetism, and the

linear relationship allows the definition of a constant relative permeability j,., where!3]
B = <ﬁ+M>=uo (ﬁ+xmﬁ) = g0 (14+X™)H = poprH . (2.77)

Diamagnetism occurs in all materials and is a nanoscale manifestation of Lenz's law. The applied field
acts on the charged electrons driving the ‘current’ in such a way that the magnetisation forms opposing
the field%. This causes a negative susceptibility and repels the medium from the field. However,
due to the electrostatic force between electron and nucleus, and the restrictions imposed by the Pauli
exclusion principle, this susceptibility is very slight[3%. It is typically of order x™ ~ —10=511% and as

such overshadowed by any other magnetism manifestations.

Paramagnetism on the other hand occurs only in materials with unpaired electrons. These are free to
align with the applied field without hindrance from such phenomena as Pauli's exclusion principle, and
result in a magnetisation which is aligned with the applied field and possesses a positive susceptibility,

meaning the material is attracted to the field[39.

The alignment is limited by thermal excitations,
however, so the induced magnetisation is not as strong as in ordered magnetic systems . Hund’s rules
require orbitals to be populated singly where possible!*) so there may be multiple unpaired electrons in
each atom resulting in a stronger paramagnetic effect. The paramagnetic susceptibility is typically of

order 1075 to 103 [19.

In an electrically conductive material the electrons are delocalised and the phenomenon differs somewhat.
The applied field shifts the energy levels of the up and down spin states to be offset by the dipole potential
energy, as shown in Figure 2.21, resulting in a net magnetisation aligned with the field[*®. This induces
Pauli paramagnetism which is a weaker form of paramagnetism than the localised form, and is of similar

order of magnitude to the diamagnetic effect but of opposite sign.
Materials which exhibit paramagnetic and diamagnetic responses have no inherent magnetisation of
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Zero field Applied field H

Figure 2.21: The density of states for an electrically conductive material in zero field (left) and applied
field (right). The arrows show the electron spins and are opposite to the dipole moment directions due
to the negative electron charge. The blue region represents magnetic dipole moments aligned with the
field and the red represents those opposed. The relative change in density of states results in a net
magnetisation parallel to the applied field. The Bohr magneton pp is the magnitude of the electron

spin dipole moment and is discussed further in Section 2.5.1.

their own and only align in the presence of an external field. This is because there is insufficient energy

exchange occurring between neighbouring dipoles to overcome the thermal excitations of each dipole39.

2.7 Ordered magnetisation

Unlike in paramagnetic and diamagnetic materials, some materials are able to sustain magnetic ordering
after the external field has been removed. The exchange energy in these materials is able to surpass the
thermal excitations and maintain stable alignment. There are three types of magnetism in this category:
ferromagnetism, antiferromagnetism, and ferrimagnetism3¥. However, all of these may be heated
past some critical temperature at which point thermal excitations become dominant and paramagnetic

behaviour ensues.

2.7.1 Ferromagnetism

In ferromagnetism the exchange energy is minimised when neighbouring dipole moments are aligned in
parallel [ as shown in Figure 2.22. This produces a strong magnetisation which persists when the field
is removed. The magnetisation curve is non-linear and forms a hysteresis loop[® as shown in Figure

2.23.

The magnetisation rises monotonically with magnetic field and plateaus once the saturation magnetisa-
tion M is reached. This is the point where all magnetic dipole moments are aligned with the field. Upon

field removal the interactions between dipoles ensure they remain parallel, maintaining the remanence
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Figure 2.22: A representation of ferromagnetism in one dimension. The arrows represent relative dipole

moment orientations and magnitudes.

Mg .

+Mr/

4T

» H

Figure 2.23: The magnetisation hysteresis loop for a ferromagnetic material. The curve from the origin
O is the virgin curve and describes the initial magnetisation process. The curve crosses the zero-
magnetisation axis at the coercive magnetic field H. and crosses the zero-field axis at the remanence
magnetisation +M,.. The magnetisation asymptotes to the saturation magnetisation +M, for fields

much larger than the coercive field.

magnetisation M,. This is less than the saturation magnetisation and in a homogeneous crystal this

difference may be analytically described by the Stoner-Wohlifarth model 3.

The magnetically ordered structure remains unchanged until an opposing field of critical magnitude is
reached, known as the coercive field H.. This field strength is able to overcome the energy barrier
between the existing alignment and the alignment parallel to the new field direction resulting in a
magnetisation reversal 39, This shift also results in a change in the density of states, which is asymmetric
due to the field in a magnified version of the offset seen for Pauli paramagnetism '] in Figure 2.21. The

energy difference is now provided by the exchange interaction which is discussed in Section 2.5.2.

This process is repeatable indefinitely with a stable and consistent hysteresis loop. The area within the
loop is the energy cost of each cycle and this is typically dissipated as heat [, Ideally the loop would be
a pair of step functions, however due to multiple factors such as inhomogenieties the coercive window

is widened and a sigmoid is more appropriate.
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The loop may be collapsed and magnetisation reset by heating the ferromagnet past a critical temper-
ature above which it becomes paramagnetic3¥; this temperature is the Curie temperature T¢. If the
material is cooled back down in the absence of an external field the magnetisation will remain zero until
an external field is reapplied. A second method to reduce the remanence to zero is to apply a series of
magnetic fields with decreasing magnitude in alternating directions. This forms a series of diminishing
hysteresis loops which spiral towards the origin of the magnetisation axes[*]. The process is called AC

demagnetisation.

2.7.2 Antiferromagnetism

Antiferromagnetism is an alternate dipole ordering with no net magnetisation in contrast to the high
magnetisation of ferromagnetism. The exchange interaction now minimises energy for antiparallel neigh-
bours['9 resulting in an alternating dipole moment pattern, as shown in Figure 2.24. The structure may
also be thought of as a pair of opposed ferromagnetic lattices each with double the lattice spacing
of the crystal. Typically only one alignment exists, but it is possible to instead have two interlocking

antiferromagnetic lattices oriented perpendicular to one another®2.

Figure 2.24: A representation of antiferromagnetism in one dimension. The arrows represent relative

dipole moment orientations and magnitudes.

The alternating spins result in no net magnetisation, thus making this structure unresponsive to external
magnetic fields unlike ferromagnetic materials. A material which supports magnetic ordering while being
unresponsive to disruptive external magnetic fields is an interesting concept, and this will be discussed
in Section 3.3.1. In antiferromagnets the threshold temperature above which paramagnetic behaviour is

(39]

observed is the Néel temperature T. This is often much lower than room temperature!>®!, so crystals

with antiferromagnetic properties may appear to simply be paramagnetic when first studied.

Figure 2.25 shows the three types of antiferromagnetic ordering which commonly occur in three di-
mensional crystals. A-type ordering occurs when the crystal planes perpendicular to the magnetisation
direction alternate dipole orientation, C-type occurs when a particular family of planes parallel to mag-
netisation direction are alternating, and G-type occurs when all nearest neighbour dipole pairs are

opposing each other. Equiatomic FeRh is an example of a G-type antiferromagnet 3%,
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Figure 2.25: Three common types of antiferromagnetic ordering, the arrows represent relative dipole
moment orientations. (a) A-type antiferromagnetism. (b) C-type antiferromagnetism. (c) G-type

antiferromagnetism.

2.7.3 Ferrimagnetism

There exists a hybrid example of the two magnetic orderings mentioned thus far. Ferrimagnetism occurs
when the moments of the constituent dipoles are arranged antiferromagnetically but the two directions
have differing magnitudes, for example due to differing elements!3?. This is represented in Figure 2.26.
The result is reduced strength ferromagnetic behaviour, where the magnetisation still forms hysteresis
loops and a Curie temperature still applies. This ordering is not relevant for this work and is included

solely for completeness.

Figure 2.26: A representation of ferrimagnetism in one dimension. The arrows represent relative dipole

moment orientations and magnitudes.

2.7.4 Spin-flop transitions

A crystal naturally magnetises along the easy axis with the result that the susceptibility perpendicular
to the magnetisation direction x'[" is greater than the susceptibility in the parallel direction Xﬂ” B9 The
energy density in an external field H is obtained from differentiating equation (2.29) to obtain

ou S
= = M- -H=— mHQ’ 2.78
B Mo HoX « ( )
where * has been used to represent L or ||. This equation being negative shows that dipoles oriented
perpendicularly to H with susceptibility x']" feature lower potential energies than those oriented parallel

and antiparallel with susceptibility XIT (391,
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Low field strengths cannot overcome anisotropy so magnetisation initially grows with applied field as
Xﬁ"ﬁpgl. This magnetisation of an antiferromagnetic lattice is possible because it can be considered to
be formed from two interpenetrating FM lattices, one of which increases in magnetisation and the other
decreases in response to the external field1%. As the field strength continues to rise the anisotropic
energy barrier is overcome by dipole energies, and the dipoles rotate to form a new antiferromagnetic
ordering perpendicular to the applied field. Magnetisation now grows more rapidly due to following
xTﬁ and this process is described as a spin-flop[39. Continuing to raise the applied field strength
overcomes the exchange energy and causes the dipole moments to cant in the direction of the field by
increasing angles and ultimately lie parallel to it in a ferromagnetic state 3.

Strongly anistropic crystals have anisotropic energies not less than the exchange energy. The result is
a crystal that forgoes the spin-flop stage and rotates directly from AF to FM alignmentsB9. This is
the metamagnetic effect and induces an artificial ferromagnetism that is not a consequence of a phase

transition 39,

2.7.5 Spin canting

Spin canting occurs in some antiferromagnetic crystals and is a rotational offset of magnetic dipole
moments from the magnetisation axis[3!. This induces a net magnetic moment perpendicular to the
antiferromagnetic ordering direction and thus weak ferromagnetic properties are observed [°3. The effect
of canting in the three types of antiferromagnetic ordering introduced in Figure 2.25 are shown in Figure

2.27.

(a) (b) (c)

Figure 2.27: The effect of canting on the three common types of antiferromagnetic ordering introduced
in Figure 2.25 with net magnetic moment perpendicular to magnetisation direction. The arrows rep-
resent relative dipole moment orientations. (a) Canted A-type antiferromagnetism. (b) Canted C-type

antiferromagnetism. (c) Canted G-type antiferromagnetism.

Spin canting is a result of the Dzyaloshinskii-Moriya interaction (DMI) which is the antisymmetric
exchange interaction®3! and is of particular importance in skyrmionic research®. The canting angle

and thus the strength of the net magnetic moment is determined by the relative magnitudes of the
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isotropic and antisymmetric exchange interactions which respectively seek to align neighbouring dipoles
to be antiparallel (dot-product of spins in the Hamiltonian) or perpendicular (cross-product of spins in

the Hamiltonian) and this ratio is typically sufficient that the canting angle is only minor (53],

2.8 Magnetic domains

2.8.1 Magnetostatic energy and anisotropy

A magnetically ordered material has minimised exchange energy[®%, however there is a stray field em-
anating from the two ends of the magnetically ordered material and looping around the outside of the
surface. This stray field Hy is also known as the demagnetising field 3% because it opposes the applied

field H being used to induce the magnetisation M. This is shown in Figure 2.28.

applied
//_)_\
< N > s <
\_y_‘__/

Figure 2.28: The demagnetising field which forms for an elongated magnetised crystal. Figure reproduced

from Magnetic materials: fundamentals and applications9.

The stray field may be calculated using!3°!

Hai = —Na,ij M; (2.79)

where M; is the j*" component of the magnetisation vector M and Ng; is the demagnetising tensor

which depends on the material geometry.

The flux within a rectangular magnetised crystal is variable due to divergence of the field lines towards
the ends of the crystal, but it has been shown that an ellipsoid of revolution is analytically calculable
because the shape perfectly counters this divergence and thus sustains a constant flux within[®%. The
divergence means that the demagnetisation tensor Ng;; of a rectangular crystal is not analytical, so
for convenience crystals are approximated as ellipsoids where possible and thin films are approximated

B9, However, ellipsoids have well-known analytic demagnetising tensor

as very flat oblate spheroids
components where only the leading diagonal is non-zero and the values sum to 139, The three radii
of an ellipsoid are labelled a, b, and ¢ and so the Voigt notation used for these diagonal components is
Ny = Ng11, Ny = Ng 22, and N; = Ng 33. The tensor components for the three types of spheroids are

provided in Table 2.9 where the ratio m = ¢/a is used for clarity.
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Spheroid  Radii relation N, N, N,
1 1 1
h =b= z - 1
Sphere a c 3 3 3
1-N. 1—N, 1
Prolate a=b<c 5 5 m2_1{¢%ln(m+m)l}

1-N. 1-N, 1 m
2 2 m2—1 \/1—m2

Oblate a=b>c

arcsin (M) — 1}

Table 2.9: The non-zero demagnetisation tensor components for spheroids 39
The oblate spheroid used to approximate thin films has a = b > ¢ so m < 1 and the demagnetisation
components may be approximated from the expressions in Table 2.9 to yield

e

b 4a ( )
and
T
Ne~1——~1. 2.81
50 (2.81)

Flux outside the magnetic material comes with an energy penalty and the total magnetostatic energy
Umag may be determined using the Zeeman energy equation (2.29), where the applied field is now the
stray field arising as the result of the other dipoles. The energy may be found by summing over all
dipoles ji; and introducing a factor of 1/2 to avoid double counting each dipole pairing, and in the case

of an ellipsoid this yields!39

1 L o= 1
Unag = 5 37 (—pofis Fla) = =Zp0 (NaME + NoMj + NoM) (282)

K2

where M7, M5, and M3 are the three components of the magnetisation vector M.

The stray field strength is higher, with larger IN;;, for shorter pole separations[®°. This encourages the
magnetisation to point along the longest axis of a crystal and is the classical mechanism responsible for
encouraging ferromagnetic domains in thin films to lie in-plane where possible as discussed in Section
2.5.1. This favoured direction is known as the easy axis and is the result of crystalline structural

properties such as defects 3!

, While the other axes are known as hard axes. A single easy axis such
as in prolate spheroids results in uniaxial anisotropy where the magnetisation seeks to align parallel or
antiparallel to this axis where possible. In oblate spheroids such as approximated thin films there is

instead an easy plane because all in-plane directions have equal dimension[39.

2.8.2 Formation of domains

Once the magnetising field has been removed, and Zeeman energy no longer contributes, a magnetic

material must find a compromise between exchange energy, related to ordering, and magnetostatic
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energy, related to lossy stray fields.

This may be done by creating ferromagnetic regions of different alignment to one another, known as
domains['®l. The basic case with a single homogeneous domain is shown in Figure 2.29a. In a uniaxial
crystal a pair of these may lie antiparallel, so the stray field is eliminated from the sides and exists
only between adjacent poles, as seen in Figure 2.29b. The exchange energy within each domain is still
minimised, however. The stray field may only be wholly eliminated and magnetostatic energy reduced
to zero in cubically anisotropic crystals!® and this is achieved by creating perpendicular domains at
each end of the antiparallel domains, forming a closed loop as shown in Figure 2.29c. The stray field
extends from one pole and seeks the nearest opposite pole, but in this domain structure all poles are in

direct contact with their opposing counterpart without requiring flux outside the crystal boundary.

oo
S

e em-"
e

e e

Figure 2.29: The magnetisation and stray fields for different domain structures. (a) Homogeneous
magnetisation with significant stray field. (b) Antiparallel magnetisation with reduced stray field. (c)

Cyclical magnetisation with no stray field.

An additional energy penalty arises in the form of magnetostriction3%, which is a phenomenon whereby
a crystal expands in the direction of magnetic flux, including the flux from magnetisation, due to the
structure seeking to minimise the free energy. In strongly magnetostrictive materials this limits the
creation of adjacent domains along differing easy axes due to the competing strains causing significant
lattice mismatch at the domain boundaryB®. The solution is the creation of additional domains to
minimise total energy!*!, and Figure 2.30 shows a domain structure that seeks to minimise exchange,

magnetostatic, and magnetostrictive energies.

A large number of domains results in a crystal with no significant net magnetisation in the absence
of an applied field. This can occur through multiple mechanisms, including heating past the Curie

temperature, AC demagnetising, or sharp impacts.
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A V4
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Figure 2.30: A domain structure with multiple cyclical domains to eliminate stray field whilst also

minimising magnetostrictive strain.

2.8.3 Domain walls

It is immediately apparent that there is an energy penalty to creating domains. The dipoles either side
of the boundary will have very high exchange energies due to being antiparallel in close proximity. The
solution is to spread the wall across multiple dipoles, each at a small angle from one another, and these

139, The exchange interaction would be minimised if the domain

rotating dipoles form a domain wal
wall were infinite, but a second phenomenon is present and conversely seeks to minimise wall width.
The dipoles in the wall are either not aligned along an easy axis of the crystal, and thus have anisotropic
energy penalties, or induce poles across a narrow region of the crystal, and thus have magnetostatic

energy penalties[®%].

The exchange length of a magnetic material is the distance over which the exchange interaction domi-
nates the anisotropic or magnetostatic effects!®®, and this is related to the thickness of the domain walls
which form within this material to minimise the energy from these competing interactions®!. There
are two types of domain walls commonly found in magnetic materials: Bloch walls and Néel walls, both
shown in Figure 2.31. In Bloch walls (Figure 2.31a) the dipoles rotate in the plane of the wall, so the
moments of the wall dipoles point within the plane of the wall rather then through the wall itself and
the resulting magnetic poles form on the crystal surface. In Néel walls (Figure 2.31b) the dipoles instead
rotate out of the plane of the wall, meaning the moments point through the wall and the poles form on
either end of it. This difference controls which type appears in a particular crystal, because magneto-
static energy is maximised over shorter distances so the dipoles forming the wall will attempt to orient
along the longest axis available. This means that if the thickness of the domain wall is smaller than the
crystal thickness then Bloch walls will form, while if the film is thinner than the domain wall thickness
then Néel walls will form. Domain walls typically span up to a few hundred atoms[9, which is large

enough that individual atom defects or vacancies do not significantly disrupt domain wall structures39.
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Figure 2.31: The rotation of magnetic dipole moments across the two types of domain wall. Figures

reproduced from Magnetism and Magnetic Materials®®1. (a) A Bloch wall. (b) A Néel wall.

2.8.4 Domain nucleation

Domain walls cost energy so a ferromagnetic crystal will seek to minimise how many it creates. Thus a
crystal becoming magnetically ordered will expand existing domains where possible rather than pay the
penalty of creating additional domains. When an external influence is used to magnetise a crystal, the
first dipoles to align with the applied field will form a small domain surrounded by a domain wall %]
and multiple seed domains will form across the crystal; as the field rises the Zeeman energy rises with it
causing additional dipoles to align until the crystal is fully magnetised. In certain crystals such as FeRh

films[7] the sites of these seed domains are consistent between magnetisation/demagnetisation cycles

and arise due to some local crystal properties. The exact cause of this is still not fully understood.

2.9 Dependence of crystal properties on magnetisation

2.9.1 Elastic response

The magnetostrictive strain discussed in Section 2.8.2 has a significant effect on the elastic properties
of a crystal. Previously this phenomenon was discussed in terms of strain arising from magnetic flux,
however this is a two-way process and strain can also induce a magnetic flux by reorienting dipoles to align
with the strain direction which induces a local magnetisation. This inverse process is the magnetoelastic

effect, and the ensuing magnetisation then adds an additional strain to the applied elastic strain[39.

The result is that the elastic modulus of a demagnetised crystal E; under a stress T is!39

T
Eyj=——F7 2.83
47 S+ S (283)
while the modulus of a magnetically saturated crystal E; will be the usual
T
ES =g 284
5 (284)

where the elastic strain is S, and the magnetoelastic strain is S,,. This means that when a crystal is

magnetised the modulus will change by

AE E,—E; Sp
F B S (2:85)
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The stress-strain curves for these, in which the gradient is elastic modulus, are shown in Figure 2.32[391,
The saturated curve is a simple straight line through the origin as is expected for purely elastic behaviour.
The curves for demagnetised crystals of differing anisotropies are also shown and curve initially due to
magnetoelastic dominance at small stresses, before tending to another linear slope once local saturation

is achieved, albeit offset from the saturated curve by the magnetoelastic strain .S,,.

T
4

Saturated

-~ S,

Demagnetised

> 5

Figure 2.32: The stress-strain curves for magnetoelastic systems, adapted from Introduction to Magnetic

Materials (391

A magnetically-saturated crystal will produce a straight line through the origin while a
demagnetised crystal will produce a curve. The upper demagnetised curve describes a crystal with lower

anisotropy than the lower curve.

Intuitively it can be expected that the Poisson’s ratio v will fall by the same fraction. This is because
the Poisson ratio is the negative ratio of transverse strain S; to longitudinal elastic strain S,[58. The
transverse strain has two components, the elastic S; . and magnetoelastic S; ., strains, both manifesting

via the Poisson effect. This gives

St m + St e
= 2.86
va 5 (2:86)
and
St e
s = ——— , 2.87
v=- (287)
thus the ratio is
Av Vs — V4 St m
— - _Eum 2.88
v Vd Ste (2.88)

Assuming that the unmodified Poisson’s ratio v, applies equally to both of these transverse strains, this

becomes

Av Sm  AE
> s T T E (2:89)

The value of S, is highly variable and depends on the crystal anisotropy as well as extrinsic properties

such as applied stress. This means that even the method used to measure the modulus can affect
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the result, with AE/E being ~ 1% for direct measurements using stress-strain curves and > 100% for

indirect measurements using resonance of small amplitude vibrations 3.

This is an example of the ‘modulus defect’ which makes the elastic modulus a fickle parameter to
measure precisely using small scale measurements. The magnetoelastic effect is not the only property

to affect it, strain arising from any other mechanism can replace S,,, and alter the measured value!39.

2.9.2 Magnetoresistance

The electrical resistance of a magnetic material is also affected by the magnetisation through the

mechanism of magnetoresistance.

One origin of this effect is the magnetisation direction relative to current flow and so magnetoresistance

B9 The orientation driven resistance is maximal when the mag-

manifests in any ferromagnetic metal
netisation is parallel to current flow and minimal when it is perpendicular. This is due to the electron
cloud around each nucleus deforming as a result of the angle between dipole moment and current, via
spin-orbit coupling, and this deformation results in a difference in the local resistivity[3®]. The effect
is the same for parallel or antiparallel dipoles and so the magnetoresistance effect also manifests in

antiferromagnets!19l.

There is also a second resistance phenomenon which occurs due to magnetisation and is significant in
transition metals such as Fe and Rh. The electrical resistance of a magnetic material with localised and
delocalised electrons, as seen in transition metals or certain multilayer stacks, alters significantly with

the presence of magnetisation [5%:45].

The exchange interaction between these electrons has a scattering effect on the delocalised electron %],
and this has two consequences. One of these is the second-order process by which the spin-spin coupling
occurs and is the RKKY interaction discussed in Section 2.5.3. The first-order scattering process causes

electrical resistivity.

A qualitative understanding of the effect of magnetic ordering comes from considering the non-magnetic
and ferromagnetic density of states, shown in Figure 2.33. This large density of states is also a require-
ment for metallic conduction and thus it is common for ferromagnetic materials to be metals! . If
the Fermi energy in Figure 2.33 were slightly higher then all spin-down states would be filled and only
spin-up states would be available. This would make the material a conductor to spin-up electrons but

an insulator to spin-down electrons, and such a material is called a half-metal.

The shifted energy levels of the up and down spins relative to the Fermi level result in most of the down

spin states being filled and most of the up spin states being empty*9. Consequently a spin-down electron
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g(E)

Non-magnetic metal Ferromagnetic metal

Figure 2.33: The density of states for the incomplete energy band of electron dipoles in metals, with
Fermi energy E'r labelled. The shape is purely schematic and does not reflect the true band distribution.
The arrows show the electron spins while the blue region represents magnetic dipole moments aligned
with the field and the red represents those opposed. The relative change in density of states results in

a net magnetisation parallel to the lower energy dipoles.

scattering process has fewer destination states to choose from and so the likelihood of a scattering event
for a spin-down delocalised electron is reduced®. This results in a decrease of scattering events and

increase in relaxation time (601

Resistivity is a measure of expected number of scattering events and so a fall in scattering probability
is a fall in resistivity. Due to the overlapping nature of bands in a transition metal and the relative
probabilities of inter-subshell and intra-subshell scattering, the scattering electrons for resistive events
have an even chance of initially being spin-up or spin-down®?. This means the asymmetric density of

states need only be considered for the destination state and not the prior state.

A quantitative discussion will now follow, considering a two-channel model of resistivity. As previously
stated, the probability P of a scattering event is proportional to the energy density of states g (F) of
the destination subshell. Close to the Fermi level Er the 3D density of states is very well known to

have the energy dependence (61l

g(E)x E". (2.90)
The Fermi energy itself is also very well known, and depends on the electron number density n as[®®!
Ep o n™? (2.91)

thus giving

g(E~ Ep) xn'*. (2.92)
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The number density of each spin direction depends on the magnetisation M and saturation magnetisation

M, of the metal as[®

ny x1F (2.93)

M;
where electrons with spin parallel to the magnetisation are — and antiparallel are +. Recall that the
negative charge of the electron means the magnetic dipole moment opposes spin direction, so antiparallel

spins equate to parallel, and thus aligned, dipole moments.

The scattering event probability of the two spins is therefore

M\
Pr (1 = ) . (2.94)

Consider an antiferromagnetic or non-magnetic material which has M = 0 so P_ « 1 and P; 1.
In other words the probability of the spins scattering is equally weighted, as would be expected for a

symmetric density of states.

Now consider a ferromagnet which has M = M, so P_ x 0 and P, oc 2/%. Only one spin direction is
allowed to scatter but the weighting parameter 2"/ > 1, so the remaining spin is more likely to scatter

than either spin in an antiferromagnet.

Each conduction electron changes spin multiple times whilst traversing the conducting path across the
metal®]. Assuming that this spin reversal occurs over time and distance scales which are much smaller
than the total duration and distance of the conducting path, the resistivity p depends on the average

scattering probability of both spin states, thus
1
PAF X 5 1+1)=1 (2.95)

and
1/
prar o (2 /s 4 o) — oY, (2.96)
Hence the ratio of expected scattering resistances for the two magnetic orderings is

PFM

=27~ 0.63. (2.97)
PAF

This theoretical change in resistance does not usually manifest cleanly due to a myriad of factors, and
so this full change is rarely seen in practice. Certain materials such as FeRh do show this property (6],
however, and this can also be artificially engineered for ferromagnetic/non-magnetic/ferromagnetic

stacks[62],

The local resistivity of a such a material can therefore be modified by manipulating the
local magnetic ordering of the constituent dipoles. For example, it is discussed in Section 3.4.2 that
a room temperature thin film of FeRh may be precisely transitioned from antiferromagnetic to ferro-
magnetic ordering using a beam of noble ions, and the resulting pattern should be accompanied by a

corresponding drop in local resistivity.
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An additional contribution to the total resistivity is electron-phonon scattering, which arises from the
thermal excitations of lattice atoms and is the phenomenon responsible for the temperature dependence

of resistance. This is characterised as[58l
R =Ry (1+aAT) (2.98)

where Ry is the reference resistance at room temperature, « is the thermal coefficient of resistance, and

AT is the change in temperature from the reference temperature, which is typically 20°CI63].

2.10 Introduction to electric fields and polarisation

Magnetism has now been introduced, however the remaining half of electromagnetism is of equal interest
for this work and must now be considered. Much of the earlier parts of this discussion will be familiar
due to the parallels between magnetic and electric field phenomena but one key difference is that the
polarisation behaviour is very strongly tied to the lattice structure, in contrast to the magnetic behaviour

being governed by quantum mechanical spin interactions.

The CGS unit system is much less commonly used in modern literature for electric field investigations
than in magnetic work. Once again 47w appears in conversions between the unit systems, with the
vacuum permittivity (3¢

£0 = 8.854187... x 107 12Fm~! (2.99)

appearing in Sl equations whilst in CGS units the vacuum permittivity is 1/4r.

The following sections aim to provide an introduction to relevant electrical polarisation phenomena and
draw comparisons to the magnetism counterparts of these effects which were introduced in Section 2.4.
The approach is somewhat more quantitative than the magnetic overview, which is necessary due to the

additional complexities and subtleties involved in nanoscale piezoelectric characterisation.

2.10.1 Electric dipoles

Similarly to magnetic fields, electric field phenomena are also underpinned by dipoles. However, an
electric dipole is typically formed from a pair of oppositely charged electric monopoles such as oppositely
charged ions[® in contrast to the point dipoles considered for magnetic dipoles in Section 2.4.1 where
magnetic monopoles do not exist. Alternatively, an electron cloud may be deformed relative to its host

(58] Electric

nucleus and the centres of charge of the cloud and nucleus form the ends of the dipole
dipoles have a moment p given by

P=qd (2.100)

where ¢ is the magnitude of charge of each pole and d is the vector running from the negative pole to

the positive pole.
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The dipole moment is a measure of the field direction and strength and has Sl units of Cm. The

potential energy U of a dipole in an external field E is[64

U=—-p-E (2.101)

and the resulting torque 7 is given by (%4

—

F=pxE. (2.102)

As in the magnetic case, the potential energy is minimised when dipole moment and external field are
parallel and maximised when dipole and external field are anti-parallel, and the torque 7 acts to minimise

this energy.

The polarisation P of a medium is a measure of the alignment of electric dipole moments, and is defined

with respect to volume V asl64

!

p=2 (2.103)

Q
<

2.10.2 Electric fields

The field observed outside a medium is the E field and in this case is related to electric flux density D,

also known as the displacement field, by simply multiplying by the vacuum permittivity, i.e. 6]

o511

D =g (2.104)

Permittivity is the measure of induced polarisation in a medium and describes the ability of said medium
to support an electric field, hence in CGS units the vacuum permittivity multiplied by the unit system

constant 47 is unity.

The flux density is a measure of the number of field lines per unit area so inside a medium the polarisation
also contributes to the flux density. Polarisation is induced by displacing charge carriers to form dipoles,

651,

hence the term displacement field for D The relationship between fields within a medium is

D=eE+P. (2.105)

Polarisation curves are again drawn to show how an applied electric results in a polarisation of the

medium, and the gradient of the curve is £ multiplied by the dimensionless electric susceptibility x¢ (%!,
so
1 0P,
== . 2.106
Xii = 2, 9 (2.106)

2.11 Electrostriction

Any electrical insulator is a dielectric[®®!, which simply refers to the ability to polarise the crystal into

electric dipoles using an external field. Conductors do not support any internal electric fields because the
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free electrons will be attracted by the positive electrode of the poling field until the charge imbalance
cancels out the applied field. The basic relationship is linear, allowing the definition of a constant relative
permittivity ¢, where[6%]

D :eoﬁ+ﬁ:soﬁ+soer:50 (1+XG)E’EEQETE‘ (2.107)

The electric susceptibility is often anisotropic due to crystal symmetries and so is usually written as

951 In contrast to the magnetic case only one direction of linear induced polarisation

a tensor xj;
is possible: parallel to the field. Diaelectricity is not possible in a monopole driven mechanism such
as electric polarisation because an electric monopole will never freely displace against the poling field.
Paraelectricity describes a variation from the basic linear case where the polarisation initially rises quickly

with field strength[®0] before resuming with linear dielectric behaviour.

Magnetic fields were shown in Section 2.8.2 to induce an expansion in the direction of magnetisation and
electric fields are no different. The result is electrostriction, which may occur in all crystals. There are
actually two electrostriction coefficients, M and @, with the choice made depending on whether applied
field or polarisation is the parameter of interest[”l; M relates strain to electric field while Q relates
strain to polarisation. These are rank-4 tensors, relating the square of the poling field or polarisation to
the rank-2 strain tensor, thus®7]

Sij = Mijri Ex By (2.108)

or

Sij = QijPr Py . (2.109)

Due to symmetries in some crystals Voigt notation can be used!®”], reducing the tensors to
2
Si = M;; E; (2.110)

and

Si = QP . (2.111)

The polarisation accounts for any non-linearities in the field response, such as from ferroelectrics which
shall be discussed in Section 2.13.1, so @ is only weakly field dependent to the point that it may be

[68]  On the other hand it is clear that the coefficient M must instead account

considered to be constant
for the non-linearities when relating strain to field thus is highly field-dependent. Consequently, @ is the
preferred value when considering in non-linear dielectrics with high permittivities(®”!, including relaxor

ferroelectrics such as PMN-PT.

The value of @ can vary by several orders of magnitude between crystals and can even be negative

in some cases!®”]. It is usually much smaller than other electromechanical effects and thus negligible,

70



CHAPTER 2. FUNDAMENTAL BACKGROUND PHENOMENA

however there is a great interest in electrostrictive ceramics which exhibit significant electrostriction,

such as for use as highly accurate actuators!®”), and PMN-PT is one such ceramic.

In this work the applied field is E = E32 inducing a polarisation P = P32 and the measured strain is

the out-of-plane strain S3, thus the relations of interest are
S3 = M3 E? (2.112)

and

Ss = Q33P% . (2.113)

An important note here is that due to the nature of the strain response in non-linear crystals these
equations may not be simply rearranged to be

S3

= = 2.114
Q33 P2 ( )

but instead the differential must be taken with respect to field %], The first derivative of equation (2.113)
yields an additional piezoelectric contribution, which shall be discussed in Section 2.12.1. Additionally,
the second derivatives of equations (2.113) and (2.113) provide the quantified relation (€]

_ 1825
9 92

Oe,
= Q3 (20 (er33 — D” + Qas Preg—= (2.115)
0F3

between the constant and variable electrostriction coefficients.

2.12 Piezoelectricity

The piezoelectric effect is a coupling of mechanical and polar properties which occurs in inversionally

7]

asymmetric crystals These are crystals which are not symmetric in at least one plane.

This mechanism has two forms: the direct piezoelectric effect, where deformation leads to polarisation,

and the inverse piezoelectric effect, where poling leads to deformation [°%.

The underlying mechanism is
best understood by considering the respective ‘centres of charge' of the positively and negatively charged

particles. Figure 2.34 shows this for a simple six ion system in a hexagonal arrangement.

Figure 2.34a shows the equilibrium state where both centres of charge overlap (purple) and there is no
net dipole moment. If the system is deformed then the rearrangement in the lattice means that the
centres of charge no longer overlap (shown by small circles in the centres of Figures 2.34b and 2.34c)
and a net dipole moment appears. In a circuit this would cause a current pulse to flow as electrons in
the leads equilibrate with the edge charges induced by the net moment. Alternatively, applying a field

would cause the ions to move in the same way which would result in some strain being induced.
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Figure 2.34: The piezoelectric effect in a six ion system. The field or polarisation is in the z-direction
and the plane of inversion asymmetry is marked with the dashed line. The centres of charge are shown
as small circles within the hexagonally arranged ions. (a) The equilibrium position with equal centres of
charge. (b) The vertically extended (horizontally compressed) position with dipole moment parallel to

2. (c) The vertically compressed (horizontally extended) position with dipole moment antiparallel to 2.

An interesting property to note is that Figure 2.34b could equally be created by compressing the crystal
horizontally as extending it vertically, and in both cases the moment appears in the direction of inversion

asymmetry. This reflects the tensorial nature of the piezoelectric effect.

2.12.1 The piezoelectric coefficient

The direct and inverse piezoelectric effects are not actually true opposites and instead couple different
pairs of parameters(®. The direct piezoelectric effect couples some applied stress T;; to an induced

polarisation .
P=Pz+ Pg+ P3z, (2116)

whilst the inverse effect couples some applied field

E = E\i 4 Eqyfj + Es2 (2.117)

to an induced strain S;;; the stress and strain are rank-2 tensors with six distinct components each.
Voigt notation is usually used to set the strain subscripts 11 to 1, 22 to 2, 33 to 3, 23 to 4, 31 to 5,
and 12 to 6/27]. This allows each tensor to be written as a 6 x 1 matrix where the latter three elements
are shear terms. Consequently, the piezoelectric coefficient may be written as an 18-component rank-2

tensor 271,

The direct effect relates stress to polarisation in constant external field, and is given by %!

oD;\  (OE; opP,\ (0P,
0= (57) == ()« (57) = (o7) 1)

[65]

On the other hand, the inverse effect relates applied field to strain, and is given by

dij = <gij> . (2.119)

72




CHAPTER 2. FUNDAMENTAL BACKGROUND PHENOMENA

Similarly to electrostriction, these differentials are significant and cannot simply be treated as ratios
as is done in most introductions to piezoelectricity which assume linear polarisation properties. The
ratio gives the effective piezoelectric coefficient dfjff, which is equal to the differential coefficient for
linear responses but differs significantly in non-linear crystals, such as ferroelectrics where d;; is in fact
a function of E; itself!]. This plays a critical role in the piezoelectric work in this thesis. The notation

d;i;0 will be used to indicate the constant form in the linear regime of such curves where d;; = dfjff.

The non-zero terms of the d;; tensor are dictated by the crystal geometry and the form of the effective
values can be looked up for the each space group in the literature!?”). The inverse effect is of interest

in this work, and so the strains for PMN-PT in some field E= FEs3Z are

S 0 0 0 0
Sy 0 0 0 . 0
_ Sy 0 0 0 0
S (m3m) = i 0 |= (2.120)
S d5 0 0 0
4 14 o)
Sy 0 dif o 0
Ss o o df A1 By
S 0 —dy’ dif’ ds{’ B
S 0 dp’ df’ . dst’ Es
S5 0 dzf! 53" By
S (3m) = 0 (2.121)
S4 o &0 0
Es
Ss det! 0 0
Se —dgi! 0 0
Sh dif” o asf! ds{’ By
S2 gt o a5l 0 ds{’ B
Sy A (R et A B
S (m) = I o |=|"* (2.122)
S, 0 dff o 5 0
e e 3 e
s | a0 e,
Se 0o dsif o 0
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Sy o o0 dgff Al By
Sy o o daff . Al By
S o o df dTE
Smm)y=| 7 | = 35 o |=] "7 |. (2.123)
Sy o &l o 0
eff B3
S5 00 0
Sg 0 0 0 0

The piezoelectric measurements performed on the AFM can measure the in-plane or out-of-plane com-
ponents, but not the shear components. This means the cubic structure m3m exhibits no measurable
piezoelectric response at all, which is as expected from simple symmetry considerations. The other

space groups show two distinct measurable strains, the out-of-plane contribution
Sy = ds} By (2.124)
and the in-plane contribution
Sy =Sy =di Es . (2.125)

This means contour maps of out-of-plane response show contrast in the longitudinal coefficient ds3 and
maps of in-plane responses show contrast in the transverse coefficient d3;. The out-of-plane response
shows highest contrast and is easiest to probe, and so in this work the piezoelectric coefficient of interest

is the longitudinal d3s.

An additional longitudinal piezoelectric contribution arises from the first derivative of the electrostriction

equation (2.113) which yields 6]

o5 OP:
gy = TEP; = ZQ?’?’PSTEZ =2Q33P3e0 (6733 — 1) . (2.126)

In crystals with induced polarisation this term provides expansion independent of the sign of the applied
field, while in an electrically ordered crystal such as a ferroelectric this response has sign dependence and
so piezoelectric behaviour is seen, even if the crystal is centrosymmetric. Relaxors feature large values

of Q33 and €, 33 and so exhibit strong longitudinal piezoelectric effects regardless of centrosymmetry.

2.12.2 Pyroelectricity

Pyroelectrics are a subset of piezoelectrics and are crystals exhibiting a coupling of electric fields and
thermal energy[®]. The positions of the lattice ions are a direct function of temperature 7 and so as

temperature changes so does the induced polarisation, known as the spontaneous polarisation Ps due to

occurring in the absence of an external field. The pyroelectric coefficient in the ith direction is simply [°%]
aP@ i

;= —— . 2.127

Di oT ( )

The changing polarisation results in a temporary change in edge charges and thus bias, inducing a

current when the crystal temperature changes[©°!.
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This mechanism is not relevant for the work in this thesis and was just included for completeness.

2.12.3 Relation to crystallographic point groups

Hermann-Mauguin notation may be used without the leading capital to describe the 32 crystallographic

point groups!?” and these are provided in Table 2.10.

Crystal System Point groups (short form)

Cubic 23 m3 432 43m  m3m
Hexagonal 6 6 & 62 Gmm 6m2  Zmm
Trigonal 3 3 32 3m 3m
Tetragonal 4 4 ,471 422 dmm  2m Smm
Orthorhombic 222 mm2  mmm
Monoclinic 2 2 m

Triclinic 1 1

Table 2.10: The 32 crystallographic point groups in abbreviated Hermann-Mauguin notation. The
11 point groups exhibiting centrosymmetry are highlighted in red and the 10 polar point groups are
highlighted in bluel?].

Piezoelectricity may only occur in non-centrosymmetric crystals so only the 21 point groups in black
or blue in Table 2.10 are candidates?”l. Uniquely, point group 432 has other symmetry properties that

forbid piezoelectricity being sustained, and thus there are 20 piezoelectric point groups!?7.

Pyroelectricity occurs in polar point groups[2”]

. These are groups where every symmetry operation in the
group leaves a line, a plane, or the entire 3D space unchanged. Axes of rotation and planes of symmetry
are examples of such unchanging points. The triclinic point group 1 is the trivial case which leaves all
of space unchanged, because this is the simplest point group containing no symmetry operations at all;

the vertices of a scalene triangle form this point group.

The subset of pyroelectric crystals that are also ferroelectric is not a purely crystallographic distinction 27,
but instead depends on the interactions between specific elements in the crystal. Thus any of the

pyroelectric point groups in Table 2.10 may or may not exhibit ferroelectricity.

2.13 Ordered polarisation

Similarly to ferromagnetism, some crystals are able to sustain polarisation after the external poling field
has been removed. The interaction energy in these materials is able to surpass the thermal excitations and

maintain long-range stable alignment. All three ordered magnetisation alignments are also present for
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polarisation: ferroelectricity, antiferroelectricity, and ferrielectricity; but only ferroelectricity is relevant
for this work. Once again there is a Curie temperature above which thermal excitations reign and

paraelectric behaviour ensues[®%!.

2.13.1 Ferroelectricity

In a ferroelectric the interaction energy of the electric dipoles is minimised when neighbouring dipole
moments are aligned in parallel, this produces a strong polarisation which persists when the field is
removed. The polarisation curve is non-linear and forms a hysteresis loop!®®! as shown in Figure 2.35.
Following the conclusions of Section 2.12.1 the third components S3 and Ej5 of the strain and electric
field vectors are of interest in this work, along with the coupling piezoelectric coefficient d33, and so the

subscripts of any related tensor or vector components used in this thesis will also be 3 or 33.

af3

H1

+P5‘3

+E_3

Figure 2.35: The polarisation hysteresis loop for a ferroelectric material. The curve from the origin O
is the virgin curve describing the initial polarisation process. The curve crosses the zero-field axis at the

spontaneous polarisation P; 3 and crosses the zero-magnetisation axis at the coercive electric field E. 3.

The polarisation rises monotonically with electric field and plateaus once the saturation polarisation
Pkt 3 is reached. This is the point where all electric dipole moments are aligned with the field. When
the field is removed the interactions between dipoles ensure they remain parallel, maintaining the spon-
taneous polarisation PS)3[69]. This is less than the saturation polarisation due to a similar mechanism as
remanence magnetisation in ferromagnetism, and thus is also described as the remanence polarisation

P 3.

The polarised structure remains unchanged until an opposing field of critical magnitude is reached, known
as the coercive field E. 3 5] This field strength is able to overcome the energy barrier between remaining

in the existing alignment and aligning with the new field direction, resulting in a polarisation reversal.
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Similarly to ferromagnetism this occurs via the nucleation and growth of ferroelectric domains!®%].

Unexpectedly the coercive field is dependent on the thickness of the crystal, following
Eosoxzy (2.128)

where 2 is the thickness[". This relation holds down to zg ~ 100 nm in most crystals, and even holds
as low as 40 nm in some cases such as PZT"%. The consequence is that any reference to literature

values for the coercive field of a particular material must also consider the thickness of the crystal.

Ideally the polarisation curves would be a Heaviside step function located at the reversal point E, for
ferroelectrics, or at zero for non-ferroelectrics. However, in a real system the dipoles do not all flip
simultaneously as the field passes the coercive value thus a sigmoid is more appropriate. A hyperbolic

tangent function can therefore be used to describe the polarisation™], such as
Pi (E3) = Paystanh [ag (B3 T E.3)] (2.129)

where a3 is a positive weighting constant equal to half of the inverse of the sigmoid width. The field
direction is represented by + with Py (E3) giving polarisation for increasing field and P; (E3) giving
polarisation for decreasing field. This function is not strictly derived from theoretical principles but is
a very close mathematical description and is a convenient function to work with"ll. The susceptibility
X5 and hence permittivity ¢, 33 are therefore no longer constant parameters but instead functions of

applied field E5, determined using equation (2.106) to be

e 1 0 asP.
Eras—1=x5 = 0 9F; = %SeChQ laz (E3 F Ec3)] . (2.130)

The remanence polarisation may be determined using TP, = P;- (0) to be

P, 3 = Py 3tanh (asEc 3) (2.131)

and thus the weighting constant is given by

PrAS) 1 (Psat3+Pr3>
arctanh : = In : : . 2.132
<Psat,3 2Ec,3 Psat,3 - P7',3 ( )

as =
c,3

After full polarisation reversal a non-zero gradient is still permitted for the polarisation curve. This is
because the increasing magnitude field can stretch the dipoles and increase their individual moments,
although this is insignificant when compared to other phenomena involved so will be considered negligible

in this work.

As was the case for ferromagnetism, this reversal process is repeatable indefinitely with a stable and
consistent hysteresis loop. The area within the loop is again the energy cost of each cycle and is

also typically dissipated as heat. Again, as in the ferromagnetic case the loop may be collapsed and
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polarisation reset by heating the polarised material past the ferroelectric Curie temperature T. If the
material is cooled back down in the absence of a poling field the polarisation will remain zero until a
poling field is reapplied. A second method to reduce the spontaneous polarisation to zero is to apply
a series of poling fields with decreasing magnitude in alternating directions. This forms a series of
diminishing hysteresis loops which spiral towards the origin of the polarisation axes. The process is

called AC depolarisation.

Ferroelectrics form domains via a similar mechanism to that described for ferromagnets in Section
2.8.2[%91, The polarisations result in an effective charge at the ends of the crystal, with positive charges
replacing the north pole and negative charges replacing the south pole, shown in Figure 2.36. The de-

magnetising field H, opposing magnetisation is replaced by a depoling field E, opposing polarisation (0%,
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Figure 2.36: The polarisation and edge charges for different domain structures. (a) Homogeneous
polarisation with significant edge charges. (b) Antiparallel polarisation with reduced edge charges. (c)

Cyclical polarisation with no edge charges.

Cyclical polarisation does not necessarily imply the electric dipole moments to be wholly in-plane and
can still occur in the presence of an applied external field. For example, an R3m perovskite crystal
polarises in the (111) direction, but this means the polarisations aligned by a [001] poling field may be
[111], [T11], [1T1], or [IT1]. These are mutually orthogonal whilst still being polarised in the same
direction, and provide four degenerate positions (8l which may be used to form domains and reduce edge

charges.

Electrostriction may require the creation of additional domains to minimise total energy!®!, as per
ferromagnetism, to reduce conflicting strain between neighbouring domains of different polarisation

axes.

78



CHAPTER 2. FUNDAMENTAL BACKGROUND PHENOMENA

2.13.1.1 Switching time and capacitive currents

Ferroelectric switching is not an instantaneous process and some switching time applies after the requisite
field is applied[™?. The naive picture would be simultaneous reversal of dipoles across the whole crystal,
which is predicted by Landau theory alongside a coercive field three orders of magnitude higher than is
observed in real structures[™?. The lower reversal field is achieved through the formation of nucleations

and domain wall movement, with only rare exceptions where simultaneous reversal is indeed observed (72

There are three intrinsic contributors to switching time: nucleation time ¢,,, forward-growth time ¢,
and side-growth time t44 [72] " The first step of any polarisation reversal is the formation of surface

nucleations of critical minimum size ~ 1 — 10 nm, which in oxide ferroelectrics takes ¢,, ~ 1 ns[72.

The second step is the forward-growth, meaning the extension of the nucleation through the crystal

thickness z. This occurs at the speed of sound v, which is approximated by [58]
E
vy =4 — (2.133)
P

where F is the elastic modulus and p,,, is the mass density. This expression is truly applicable to rods
rather than bulk solids, but serves for an approximate measure. The resulting forward-growth time is
given by

20 Pm

trg = 2 = 29y )22,
fg Vg 0 E

and is again expected to be ~ 1 ns for oxide ferroelectrics with thicknesses in the micrometre regime!72.

(2.134)

The final contributor is the most significant. The side-growth time describes the time taken for the
forward-growing columns to also expand their domain walls laterally to fill the entire crystall™, a process
which may occur simultaneously with forward-growth. The time depends on field as t,, o< E~%* and
in thick-film or bulk ABX; perovskites is the dominant factor, typically taking up to microseconds to
complete[™. Unlike ferromagnetic domain walls these are constrained by the speed of sound of the
crystal, although the Coulombic field emanating from the wall is able to induce nucleations ahead of

the moving wall leading to an observed group velocity higher than v, [,

In practice there is a further time constraint arising from the limitations of the poling system. Applying
an electric field to a dielectric involves creating a circuit where the dielectric forms a capacitor. Charging

a capacitor from the ground state by applying a potential V induces a charging current [8]

L(t) = %exp (-th) = %exp (-j) (2.135)

where t is time, R is circuit resistance, and C' is the capacitance. The time constant 7 = RC is the time
taken for the current to fall to 1/e = 37% of the initial value[®8 and for the stored charge ¢ to reach 63%

of the equilibrium value; this is also known as the relaxation time!®8]. A good threshold for approximate
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steady state behaviour is five time constants because after this time the charging current will have fallen
below 1% of the initial value and the stored charge will have exceeded 99% of the equilibrium value.
The actual time for the switching to occur after the field has been set is therefore dependent on the

sample capacitance and the system resistance as well as intrinsic switching time.

The maximum ability of the power supply to physically provide the charging electrons and apply the
target potential enforces an additional empirical constraint to total switching time. This is negligible for
slowly changing fields, such as low field setpoints or sweeping values, but in this work high potentials
were required and a response time of ~ 10 ms was observed when attempting to apply > 90V from a

grounded start. This was most likely due to power supply limitations via the high-voltage supply line.

Significantly, the capacitor charging process may be used to observe ferroelectric polarisation reversal 73],

A time-varying potential V' (¢) starting from V (0) = 0V induces a charging current

_ g _0(CV) _ oV
et ot ot

I (2.136)

This means applying triangle waves of potential with constant |dV/a¢| will produce a constant baseline
|I.]. Upon reaching the coercive field the reversing dipoles produce a sudden change in potential
over the capacitor and thus the capacitive current spikes providing an additional contribution from the

ferroelectric switching current I, 73],

An approximately simultaneous reversal of polarisation direction
produces a tall and thin current spike, whilst a more gradual reversal will result in a shorter and broader

peak.

There is also a third current present, the resistive leakage current I3,

This is a consequence of
dielectric leakage and may be calibrated by applying a series of voltages and holding each for at least
57 then measuring the current”3l. This will be the same for all cycles so can be subtracted from other

current measurements to leave I, and Iy..

2.13.1.2 Strain response

The idealised strain response S3 arising from some field E3 is shown in Figure 2.37. This figure assumes

a simultaneous 180° polarisation reversal at a coercive field strength of E, 3.

A ferroelectric is ultimately a piezoelectric whose polarisation curve has been offset from the origin by
the value of the coercive field, so the strain nominally follows the linear response[™! with a gradient of
+d3z3,0. If a field with magnitude beyond the coercive field is applied then the crystal dipoles will be
poled parallel to this field and so positive piezoelectric strain is observed. Reducing this field to zero
also reduces the strain to zero, then as the field passes zero and the direction reverses the piezoelectric
strain becomes negative. Once the field strength reaches the coercive field in the antiparallel direction

the dipoles undergo reversal, which reverts the system to a parallel polarisation to the field and the
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Figure 2.37: The idealised strain Ss arising from a parallel or antiparallel poling field E3 for a ferroelectric

with coercive field strength E 3.

piezoelectric strain jumps back into positive values. In reality the reversal is not simultaneous or through
180° so is nowhere near as straight and sharp, and is instead widened and rounded. This is a much

more complex model with significantly varying ds3 and this is derived as part of the work in Chapter 8.

The full cycle of the ferroelectric strain curve forms a symmetric pattern which is reminiscent of a
butterfly, especially in a real system with rounded curves, and so these are referred to in the literature

7]

as butterfly curves Any electrostrictive strain is independent of polarisation direction so in systems

with large M35 an asymmetric butterfly curve is seen(7].

2.13.1.3 Long-range coordination

The interaction energy U of a pair of dipoles with separation r is described using similar expressions
for both magnetic and electric cases, except with one important distinction. The energy for a magnetic

dipole pair is!®9]

2 3
Mo _ QF fap
Unaos = ~N — (—) 2.137

I 43 T 4 \ ( )

where 11 is the permeability of free space, pp is the Bohr magneton, o ~ 1/13713] is the fine-structure
constant, and ap ~ 53 pm[3% is the Bohr radius. Conversely, the energy for an electric dipole pair is[®]
2

p A? rap\3
Ueezimi(i) 2.138
! 8megrd 4w \ 7 ( )

where p = eAap is the electric dipole magnitude and A = 1 is a parameter relating to atomic dis-
placements and transverse electric charges. This shows that the ferroelectric energy is larger than its

equivalent ferromagnetic counterpart by a ratio of

Uele 1 2
— &~ — ~ 137 = 18769 2.139
A : (2.139)
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demonstrating how the long-range direct interaction effects of ferroelectricity are several orders of mag-
nitude above those for ferromagnetism. This is the reason electric dipoles are able to be described

classically whilst magnetic dipoles must rely on quantum mechanical exchange interactions.

2.13.2 Landau theory

Landau theory provides a symmetry based approach for determining equilibrium behaviour in the vicinity
of a thermodynamic phase transition!®9. It assumes that local fluctuations over the sample average out
thus is best suited for systems with long-range interactions such as ferroelectrics and superconductors.
Landau-Devonshire theory is the formulation applied to poled bulk ferroelectrics whilst the Landau-

Ginsberg formulation relates to thin film and unpoled bulk ferroelectrics!®9).

A phase boundary between regions of different symmetries, such as different space groups, must be
discontinuous by the need to rearrange the crystal from one space group to the other[®!. However, the
local thermodynamic state of the two bordering crystal structures must be continuous across the phase
boundary, which requires that the symmetries of one space group must form a subset of the other,
and so one crystal phase must have a higher symmetry than the other[®. Landau theory uses this
to characterise the transition, by using some ‘order parameter’ which is zero in the higher-symmetry
(disordered) phase and some finite value in the lower-symmetry phase. In ferroelectrics this order
parameter is the polarisation P of the crystal (69

The higher-symmetry phase being the disordered phase seems somewhat contradictory at first glance,
because one would expect an ordered system to have more symmetry than a disordered one. However,
the parameter that is disordered, such as the electric dipole polarisation directions, is so randomised that
they may be neglected when considering the symmetries of the system because they have no effect on
the overall structure of the crystall®®. The ordering induces a preferred direction in the system which

inherently reduces the overall symmetry.

The state of the system in equilibrium is calculated by expanding the free energy density F as a
power series of the order parameter P, and setting the coefficients of any terms incompatible with the
symmetries of the system to 0059, Any other coefficients may be determined empirically or derived
from first principles. This function may then be minimised via differentiation to find the equilibrium
polarisation, and non-zero values of this in the absence of any external stimuli give the spontaneous

9 However, this expansion is only valid in the vicinity of the transition. An additional

polarisation P
caveat is that fluctuations of the order parameter must be very small relative to the order parameter
itself[% which is usually safe to assume in poled ferroelectrics due to the long-range nature of electric

dipole interactions.

82



CHAPTER 2. FUNDAMENTAL BACKGROUND PHENOMENA

2.13.2.1 Interpretation of free energy density

Landau-Devonshire is a formulation of the Landau theory targeting bulk and largely homogeneous crys-
tals, such as PMN-PT substrates. This is a weighty topic which is beyond the scope of this thesis,

however there are some results of note which bear discussing.

The free energy density of an electrically polarised crystal may be written as a power series in polarisation
P, as stated previously, and how it depends on crystal strain S is a matter of symmetry. This power

series expansion is (%]

Fs=aS* +bSP+cSP?+...— ST (2.140)
where T is the applied stress and a,b,c are expansion coefficients.

The equilibrium occurs when (6]

0Fs

= 2.141
=0, (2.141)

yielding

S=——_p_—p2_ . (2.142)

This is another instance of modulus defect, discussed for the magnetoelastic effect in Section 2.9.1,
where this is the electrical analogue. The coefficient 2a is the unmodified elastic modulus for the
crystal % and is recovered for zero net polarisation. The latter two terms of equation (2.142) are the
direct piezoelectric and electrostriction effects, so —b/2a is the piezoelectric coefficient d;; and —¢/2a is

the electrostriction coefficient Q.

In ferroelectrics there is always some spontaneous polarisation, on the nanoscale even if not macro-

(%91 This strain is therefore permanent, as is

scopically observed, meaning P never truly goes to zero
the case for magnetoelastic strain. The result is the distortion of any crystals from their rest states,
such as perovskites rarely being seen to be Pm3m/[32. This always occurs in the direction (111), and
in lead magnesium niobate (PMN) just one strain direction is induced so the unit cells deform in that
direction forming a rhombohedral structure!®9. However, in other crystals this polarisation strain occurs
along multiple axes simultaneously resulting in an alternate unit cell symmetry, such as monoclinic or

tetragonal [*°]

. The polarisation angle of the solid solution of two ferroelectrics is therefore a monotonic
function of the ratio of the constituents, so considering the perovskite primitive unit cells in Section 2.3.1
an alloy of PMN and PT would be expected to rotate from rhombohedral to Cm monoclinic to Pm
monoclinic to tetragonal with rising PT content. This is indeed what the phase diagram of PMN-PT

shows in ambient conditions?8l, as will be discussed in Section 3.6.
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2.13.3 Relaxor ferroelectrics

Ferroelectrics fall into two groups. The normal or conventional ferroelectric has been discussed in the
prior sections, but there is a second category known as relaxor ferroelectrics[’®. Relaxors feature no
inversion asymmetry yet are still able to demonstrate a piezoelectric effect in addition to exhibiting an
unusually strong electrostrictive response!32. The exact reasons for both of these phenomena are still
unknown 7], Relaxation covers a variety of phenomena, and in ferroelectrics it refers to the polarisation

reversal in the presence of an applied field /7],

The relaxation time in this case is simply the switch-
ing time, and the nucleation and forward- and side-growth processes are the dipole and domain wall

relaxations.

A conventional ferroelectric demonstrates long-range ordering as discussed in Section 2.13.1.3. This
results in coordinated polarisation and a single common relaxation™. No such long-range ordering
manifests in a relaxor, instead the constituent dipoles form polar nanoregions (PNRs) which are nanoscale

[7s]

polarisation domains formed via short-range interactions Each of these have their own relaxation

properties hence the term relaxor ferroelectric. These have multiple effects including the broadening

of the temperature dependence of the relative permittivity !’

allowing a thermal stability in relaxor
ferroelectric response which is not observed for conventional ferroelectrics. This stability, along with
being able to form large single crystals, makes relaxors very good candidates for substrates in multiferroic

devices!™.

The PNRs break down above the Curie temperature but in relaxors there are arguably more important
thermal limits to discuss. The Burns temperature T’z is the limit above which thermal energy supersedes
the PNR polarisation direction energy barriers and so the PNRs rotate randomly relative to one another
whilst internally remaining a coordinated collective, although they may be aligned by an external field
in paraelectric style behaviour[™®!. This differs from a truly paraelectric state because the presence of

PNRs mean that local dipole moments remain non-zero.

As the temperature falls below the Burns temperature the PNRs become larger and more numerous which
results in a larger energy barrier between orientations and lower thermal energy fluctuations!”®. Once
cooled to some freezing temperature Tx the PNRs become locked in place!™! in an electric analogue
of magnetic spin-glass["®, and conventional ferroelectric behaviour is observed[™®. At temperatures
between Tr and T'g relaxor properties occur, and the peak of the thermally dependent permittivity is in
this range[™! resulting in a large value of Ms3 and thus large electrostrictive strain via equation (2.110).
The relaxor ferroelectric crystal PMN has a freezing temperature of T ~ 210 K and Burns temperature

of T ~ 620 K32
The large permittivity and thus strongly non-linear strain curve result in a highly variable differential
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piezoelectric coefficient ds3 and so the effective piezoelectric coefficient dggf is of limited use for these
materials. There is very little discussion of this in the literature, especially so when considering nanoscale
behaviour. The dependencies of these parameters on field will be derived and applied to data as part of

this work, and this will be covered in Chapter 8.

2.14 Multiferroic materials

2.14.1 Ferroic properties

A multiferroic is a material or structure which features two or more ferroic properties with large coupling
constants between them9. Ferroic properties are bistable with a hysteretic transition between states,
meaning that once switched they remain fixed in the induced state until they are coerced into the
opposite state. This allows them to be used as toggle switches and through the coupling enables one
ferroic property to be used to reverse a second. There are considered to be four ferroic properties,
characterised by the variance of the bistable property upon space inversion and time reversal 8, which

are summarised in Table 2.11.

Space inversion .
Invariant Transformed
Time reversal
Invariant Ferroelastic Ferroelectric
Transformed Ferromagnetic  Ferrotoroidic

Table 2.11: The four ferroic properties as characterised by their response to space inversion and time

reversal 78]

Ferromagnetics and ferroelectrics were explained in Sections 2.7.1 and 2.13.1 respectively, and the
remaining ferroics will now be briefly described for completeness. Ferroelasticity is conceptually the
simplest and requires a crystal system featuring degenerate skew directions such as rhombohedral and
monoclinic structures!’®l. These may be oriented in different directions and still maintain their polar-
isation direction, as stated in Section 2.13.1, and this results in different strain directions within the
crystal. Ferroelasticity occurs if the strain direction is configurable using an applied mechanical stress*9,

resulting in a stable yet reversible macroscopic deformation.

The remaining ferroic property is ferrotoroidicity, where a looped magnetic field induces a magnetic
toroidal moment along the axis normal to the plane of the loop["8. A macroscopic example is a solenoid
arranged into a torus as shown in Figure 2.38a, where the electric current induces a magnetic field within
which in turn induces a toroidal moment[78. On the nanoscale a circle of spins, and thus magnetic
dipole moments, may induce a much reduced toroidal moment as shown in Figure 2.38b and these

moments align locally to form domains["®. These are both electric and magnetic and the toroidisation
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is theoretically reversible using orthogonal electric and magnetic fields["8].

Figure 2.38: Macroscale and nanoscale examples of magnetic toroidal moments, denoted T, reproduced
from Spaldin at all®. (a) A solenoid with the magnetic field induced by an electric current. (b) A circle

of spins forming a nanoscale toroidal moment.

2.14.2 Magnetoelectric coupling

Magnetoelectric multiferroic materials are of great interest in spintronics because they demonstrate
both ferromagnetic and ferroelectric behaviour with some magnetoelectric coupling between them [2°].

Multiferroic coupling is a tensor property and for magnetoelectric coupling is defined as[9
oB;  OM;
OE; "TOE; "’

(2.143)

Oéij =

Magnetoelectric coupling requires the absence of space inversion and time reversal symmetries so mag-
netoelectric media must be both ferroelectric and ferromagnetic in order to break these respective

symmetries and permit coupling to occur19],
Additionally, as one may expect there is a magnitude constraint enforced by the susceptibilities of the

Qij SA/Xi XG55 - (2.144)

The two susceptibilities are rarely co-optimised due to the incompatible prerequisites of the d orbital for

two phenomena, thus 19

these phenomena to occur: a ferroelectric requires the d orbital to be unoccupied*! but it was outlined
in Section 2.5.4 that a d orbital must contain unpaired electrons to exhibit ferromagnetism. The presence
of these unpaired electrons provide a polarisation field which counteracts ionic polarisation and weakens
it relative to the repulsive field between cations, which can thereby suppress ferroelectric ordering due
to removing the inversion asymmetry arising from the ionic displacements[*®l. This mechanism is the

reason that crystal structure alone cannot predict ferroelectric behaviour, as stated in Section 2.12.3.

The result is that magnetoelectric coupling relies upon non-linear coupling using the ion displacement

[19]

polarisation observed in perovskite crystals'*?!, and this is the reason the perovskite crystal prototype is

of such interest in ferroelectric research. The only known crystal featuring undisputed room temperature

[191 "\which is a perovskite featuring canted G-type anti-

multiferroic magnetoelectric coupling is BiFeO,
ferromagnetic ordering. The non-linearity refers to the fact that the magnetisation direction is unaffected

by reversing the polarisation, meaning only the magnetisation magnitude is tunablel.
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2.14.3 Artificial multiferroics

The limited selection of natural multiferroic materials may be mitigated through the use of artificial, or
‘composite’, multiferroics!*%. These are formed by layering thin films of ferroic materials onto a sub-
strate which may itself be ferroic, and interlayer coupling arises between these which for magnetoelectrics
are typically at least 10x the size of the typical coupling tensor components for natural multiferroics?1l.
The interlayer coupling in composite magnetoelectrics is mediated through strain, whereby the piezo-
electric response of the ferroelectric layer deforms the ferromagnetic unit cells which induces a change
in magnetic ordering!”l. An FeRh film deposited onto a PMN-PT substrate is a good candidate for a
composite magnetoelectric multiferroic, and electric fields applied to the PMN-PT relaxor substrate are

demonstrably able to manipulate the ferromagnetic properties of the FeRh film via mechanical strain 7]

However, there are limitations on the feasibility of strain-mediated multiferroic reversal. An imperfectly
formed interface between ferroic media will result in an internal strain in at least one of them and this
will weaken the effect of the strain induced by the actuating layer[”. Additionally, the induced strain
will dissipate as the thickness of the responding layer increases, requiring very thin films be used where
possible. Poisson’s ratio describes the lateral strain induced by the longitudinal strain from the actuator,
and this lateral contribution provides an additional interfering strain which will again weaken the desired

strain response!”.

2.14.4 Use of multiferroic devices

The advantage of using multiferroics lies in the large and bistable response of one parameter to a second,
allowing the use of a low-energy and focussed input to toggle a ferroic ordering that is ordinarily far
less precise!!®). For example, ferromagnetic reversal using an H field is imprecise and typically involves
solenoids and a large consumption of energy, whilst ferroelectric reversal simply requires the application
of potentials to specific locations; magnetoelectric coupling allows this precise potential application to

control the local magnetisation direction [*9].

The applications of multiferroics range from simply replacing inductor and capacitor pairs with single
components, to doubling potential data storage through polarisation and magnetisation, and on to the
previously mentioned ability to use electric fields to manipulate magnetic properties!*®. This latter
application is of great interest because reversing a magnetic logic bit via magnetoelectric coupling can
use orders of magnitude less energy than direct reversal, allowing for reduced power consumption and

(199 Another application of these structures is to utilise the induced ferromag-

improved miniaturisation
netic domain walls themselves. These may be able to be used as metallic transport conductive pathways
through otherwise insulating ferroelectrics, and given the relative ease of manipulating domain walls this

would allow nanoscale circuits to be created, moved, and annihilated on demand 2%
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2.15 Summary

The work presented in this thesis involves analysis and interpretation of crystalline materials with multiple
structures. In order to understand this work, especially the piezoelectric studies, a background knowledge
of crystals is required and these sections aimed to provide this information. A discussion of each lattice
type was provided and the properties of the CsCl and perovskite prototypes were explained, which form

the two exemplar samples under investigation in this thesis.

An introduction to ferromagnetism and ferroelectricity was essential due to these being the properties
of interest in the samples under investigation. A qualitative discussion of induced and ordered magnetic
dipole ordering and the mechanisms involved was presented alongside the effects of magnetisation on

other crystal properties. The origins and thermal hysteresis of ferromagnetic ordering were also provided.

A corresponding yet more quantitative discussion of electric dipole ordering was also presented and corre-
lated to crystal point groups. The different strain mechanisms were explained and the contrast between
effective and differential piezoelectric coefficients was acknowledged. The ferroelectric polarisation re-
versal process was discussed in detail along with the resulting phenomena, and the lesser-understood
subcategory of relaxors was also explained. The two ferroics may be combined to form multiferroic

materials and so these were explained and the significance of such structures has been discussed.
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Chapter 3

Materials for artificial multiferroics

The work in this thesis involves studies of FeRh and PMN-PT solid solutions so an introduction to the
properties of these materials is required. This chapter will begin by presenting and discussing the thermal
phase diagram for FeRh. The unusual metamagnetic transition of equiatomic FeRh is the phenomenon
of interest for the material so this will be introduced and the properties explained in detail. Possible
applications and required growth conditions will be discussed alongside the effects of and motivation
for noble ion irradiation of the film and complications arising from the oxide layer which forms on
ferrous films such as FeRh. The thermal phase diagram for the relaxor ferroelectric PMN-PT will be
introduced and in particular the phase boundary between the rhombohedral and monoclinic structures
will be discussed. The mechanism of the high piezoelectric response will be explained and the specific
effect of PMN to PT ratio on crystal structure will be considered. The dependence of the ferroelectric
coercive field on the PT content will also be introduced. Finally, the surface effects arising from polishing

will be discussed along with the difficulties of working with such brittle substrates.

3.1 Phase diagram of FeRh

The structure and magnetic properties of the intermetallic Fe; _,Rh,, vary significantly with temperature,
applied magnetic field, and rhodium content, and thus the phase diagrams of this alloy are of great
interest. The most significant phase diagram for this work is on axes of temperature and rhodium
atomic fraction 2. The diagram in common use was first published by Swartzendruber in 19843% and is
shown in Figure 3.1. This builds on and corroborates the initial diagram published by Fallot and Hocart

in 193904,

Many of the phase boundaries are marked by dashed lines reflecting the significant extrapolation involved
in devising the diagram, and Swartzendruber does state the caveat that the thermodynamic model used
only calculated an approximate diagram. However, Balun et al. empirically investigated the phase
diagram in 20077 and confirmed the Swartzendruber phase diagram to be an accurate representation.

An overview of the phases present in this diagram is given in Table 3.1.
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Figure 3.1: The FeRh phase diagram for temperature and Rh content adapted from the work of Swartzen-
druber%. Each phase is labelled with the corresponding allotrope of iron and has been coloured for
clarity. The coloured phases with no label are metastable phases where both neighbouring phases may

coexist.

At the top of the phase diagram in Figure 3.1 is the liquid phase, which is expected in thermal phase
diagrams. Below this in the top left is the small region of § phase, coloured grey, which is a disordered
Im3m structure where the few Rh atoms simply substitute for Fe atoms in the lattice. This is a purely
paramagnetic phase due to being significantly above the Curie temperature. Following this is the ~
phase in red which occurs for high temperatures or high Rh content z. This is a disordered F'm3m
structure where the thermal excitations allow all atoms to redistribute across the lattice thus each lattice
site has an equal chance of being occupied by an Fe or Rh atom. Note from the edges of the diagram
that this is also the structure of pure Fe for 912°C < T' < 1394 °C and for pure Rh at all temperatures.

This phase demonstrates paramagnetic behaviour throughout.

In the bottom left of Figure 3.1, in yellow, is the o phase. This is a disordered Im3m structure as
for 0, except that it exists for lower temperatures and higher z. It is ferromagnetic for the most part,
however it can exist just above the Curie temperature under certain conditions in which case it becomes
paramagnetic. The central phase o’ of Figure 3.1, shaded blue, is one of the phases of interest in this
work. This is a CsCl structure which is ferromagnetic or paramagnetic depending on the temperature.
The peak at x = 0.5 is expected due to the stability of equiatomic CsCl structures. CsCl structures
with = < 0.5 feature vacancies which decrease the stability of the lattice ordering and allow thermal

excitations to more easily disrupt the structure into the disordered FCC phase ~.
The o/ and o’ /~ phase transitions are very broad and are shaded with orange and purple respectively
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Fe Rh at. Phase
Crystal structure Space group Magnetic state
allotrope  content x  notation
0 0—0.03 A2 Disordered BCC Im3m PM
a 0-—0.19 A2 Disordered BCC Im3m FM (below T¢)
0-1 Al Disordered FCC Fm3m PM
o 0.11 — 0.55 B2 CsCl Pm3m FM (below T¢)
o 0.48 — 0.55 B2 CsCl/Heusler ~ Pm3m/Fm3m AF

Table 3.1: Further details on the phases present in Figure 3.113%, BCC and FCC denote body-centred
and face-centred cubic lattices and PM, FM, and AF denote paramagnetic, ferromagnetic, and antifer-

romagnetic ordering respectively. T¢ is the Curie temperature.

on Figure 3.1. These regions are populated by metastable states where both bordering phases can
coexist simultaneously. Additionally, the boundaries where = < 0.3 exhibit significant hysteresis and the
stated boundaries are estimated values based on this. As such, there may be o or o/ phases present in
the region demarcated as v hence it is indeed meaningful to mark a Curie temperature in this ostensibly

paramagnetic regime.

The most significant region for this work is o, which is one of the smallest regions of the phase diagram
and is located at the bottom-middle of Figure 3.1 and shaded green. This region is G-type antiferro-
magnetic(® and as such may be described as a full-Heusler structure RhyFe;Fe 3%, although most
authors simply label it as a CsCl structure®l. This region is an area of active research because it en-
ables equiatomic FeRh to metamagnetically transition from antiferromagnetic ordering to ferromagnetic
via heating to the readily achievable temperature of ~ 100 °C where the structural phase transitions to
o'. There is a significant hysteresis between the two phases, as seen from the wide phase boundary,

and a crystal located within the phase diagram hysteresis is populated by metastable domains and thus

characterising this transition is of great interest.

The remaining white region to the right of o’ is left undefined in the literature, with many authors opting
to neglect the upper phase boundary of this region and to instead consider it part of the metastable

overlap between o’ and ~.

3.2 Metamagnetic transition of equiatomic FeRh

The phase transition of most interest for this work is the metamagnetic /o transition which is
accompanied by a series of changes in crystal properties including electrical resistivity[®! and elastic

response!’]. The o’ /a” transition is called metamagnetic because it is induced by raising an external
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parameter until FM ordering is achieved, which then disappears once the external influence is removed.
The difference here is that temperature is used in lieu of a magnetic field, so the terminology is a
misnomer. In this thesis the different magnetic orderings of an FeRh crystal will be given the respective
shorthand labels AF-FeRh and FM-FeRh for the antiferromagnetic and ferromagnetic cases, and a
hybrid crystal with both magnetic phases coexisting in coherent domains, for example one where the

temperature is close to the transition temperature Tg, will be denoted HY-FeRh.

This transition is particularly remarkable because it occurs at readily achievable temperatures®!, un-
like the cryogenic temperatures required for other thermally metamagnetic crystals®9. In addition it
is accompanied by changes in multiple other properties, as discussed further in Section 3.3, mean-
ing such a material has applications in a range of devices where consistent and reversible property

[16]

switching is required on demand This is therefore a material under active investigation in recent

research [81;57;17,82;18;83;84,7;85]

3.2.1 Magpnetisation curves

The magnetisation of samples of Fe;_,Rh, against temperature was first recorded and plotted by Fallot
and Hocart for multiple values of z[* and their results are presented in Figure 3.2. These curves were
used to generate the initial 1939 phase diagram and show remarkable agreement with the phase diagram
in Figure 3.1, although the rhodium percentages appear to be offset slightly from the corresponding
values in Figure 3.1 and the curves do not accurately follow the shape predicted by the Brillouin function
used for magnetic modelling[®. This offset and the imperfect curve shape are likely to be consequences
of the inevitably qualitative nature of this early work and the low applied magnetic fields used®l. The

temperature dependence of the phase boundaries is very clearly visible, however, including hystereses.

In macroscopic sample measurements such as these the transition occurs via a conventional first-order
process and Figure 3.3 shows the typical curve for equiatomic FeRh as recorded for a 50 nm thick film

r[B71. The curved sigmoidal transition in lieu of a clean Heaviside

on a vibrating sample magnetomete
transition describes a distributed transition temperature across the volume of the sample, which is likely
due in part to inhomogeneity in the Fe;_,Rh, solid solution®”. Another suggested mechanism is strain

inhomogeneity arising naturally from the epitaxial film growth 80l

On the nanoscale the transition occurs via a series of FM domain nucleations, which form and expand
during heating and shrink and divide during cooling and have been characterised using both magnetic
force microscopy Pl and XMCD-PEEM 7], The nucleation sites remain identical over repeated cycles
and the fraction of the film surface showing FM ordering at a range of temperatures aligns with the

57]

normalised magnetisation curve in Figure 3.37], supporting the prior statement that the curve shape

is due to inhomogeneous transition temperature and local crystal structure.
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Figure 3.2: The magnetisation o, in arbitrary units, against temperature, in Celsius, for multiple samples
of Fe;_,Rh, as recorded by Fallot and Hocart in their initial 1939 work[. The atomic percentage of

rhodium is given next to each plot and the Curie temperature of the x = 55% curve is labelled ©.

1200

300 320 340 360 380 400 420 440 460
Temperature (K)
Figure 3.3: The temperature dependent magnetisation of equiatomic FeRh showing the phase transition

hysteresis via the first-order metamagnetic phase transition. Figure reproduced from Warren et all®7].

3.2.2 Tuning the metamagnetic transition

The metamagnetic transition may occur through either the application of temperature or high magnetic
fields, and each may be used to set the transition value of the other. Figure 3.4 shows the phase diagram
for equiatomic FeRh at a range of temperatures and magnetic fields3%.

There is an inverse relationship between the two external stimuli: the application of a high field reduces
the metamagnetic transition temperature and increases the hysteresis width, whilst low temperatures
increase the metamagnetic transition field and decrease the hysteresis width. This does align with the
intuitively expected result because temperature is a measure of dynamic disorder in the crystal. Low
temperatures mean the system is predisposed to the lower energy AF state and thus the required field to

enforce ferromagnetic ordering is high and the dipoles undergo rapid relaxation once the field is removed
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Figure 3.4: The phase diagram for equiatomic FeRh at a range of temperatures and external fields,
adapted from the work of Swartzendruber[%. The application of an external field can clearly cause a

significant reduction in the transition temperature and widening of the phase boundary.

hence exhibit a small hysteresis. On the other axis, the application of a strong field will predispose the
system to an FM alignment so the dipoles will more readily switch once disorder enters the system and
will relax slowly upon removal of the disorder, thus remaining aligned with the field longer and widening

the hysteresis.

3.3 FeRh metamagnetic phase change properties

The o/ and o/ phases both have a CsCl structure with the typical o lattice constant being 2.99 A [4:88:30]
and the corresponding o lattice constant being 3.00 A. Authors often provide this value to four signifi-
cant figures, however the value is extremely dependent on measurement environment and film preparation
to the extent that the fourth value is only valid for relative measurements on the same film. The Fe
atoms carry a magnetic moment of £3.3up in the AF configuration which decreases to 3.2up in the
FM configuration, whilst the rhodium atom exhibits no net moment in the AF configuration and 0.9up
in the FM configuration®). There is again some contention in these values, with other authors giving
values that differ by up to 0.2:5%. The FeRh unit cell in both magnetic configurations is shown in

Figure 3.5 with relative dipole moment directions indicated.

The changing magnetic ordering induces a significant change in the electrical resistivity [’ via magne-
toresistance, discussed in Section 2.9.2. An example resistivity curve for a bulk sample of FeygRhss is
provided in Figure 3.6. The resistance drop in approximately equiatomic FeRh is unusually large with the
figure showing a drop of 33% at 350 K. This is only marginally lower than the 37% predicted for idealised
magnetoresistance, suggesting that the densities of states for each spin direction have very little overlap

at the Fermi energy. The same hysteresis is observed as for the magnetisation in Figure 3.3, supporting
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Figure 3.5: The FeRh unit cell in antiferromagnetic and ferromagnetic configurations. The blue atoms
are iron and the red are rhodium, and the arrows indicate the relative dipole moment directions. (a)

Antiferromagnetic FeRh. (b) Ferromagnetic FeRh.

the surmised causal relationship between the magnetic ordering and electrical resistivity. The curve away
from the phase transition demonstrates a significant gradient arising from electron-phonon scattering,
which was introduced in equation (2.98) of Section 2.9.2. The resistivity at room temperature is seen

in Figure 3.6 to be 3.0 x 1078 Qm.
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Figure 3.6: The temperature dependent resistivity of bulk equiatomic FeRh showing the phase transition

hysteresis via the magnetoresistive effect. Figure adapted from Kouvel and Hartelius[!.

Another crystal property affected by the metamagnetic transition is the lattice constant. In a bulk FeRh
crystal the transition is accompanied by a ~ 0.3% homogeneous strain which increases the unit cell
volume by ~ 1%, This could be a consequence of Pauli repulsion arising from the parallel electron
spin states, which are known from the magnitude of the magnetoresistance effect to be significantly
unbalanced in FM-FeRh. The thin film strain is different due to the lateral pinning effect of the substrate
crystal, and when grown on MgO(001) the result is instead a 0.7% strain in the [001] direction?°]. This

means that the FM-FeRh lattice forms the less common P4mm tetragonal CsCl unit cell shown in
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Figure 3.7.

Fe

Rh

Figure 3.7: The P4mm tetragonal FM-FeRh unit cell as observed in a thin film. The blue atoms are

iron and the red are rhodium, and the arrows indicate the relative dipole moment directions.

The mechanical properties of FeRh have also been observed to change with magnetic ordering['®, as
predicted by the magnetoelastic effect introduced in Section 2.9.1. Figure 3.8 shows an example of the

varying elastic modulus and Poisson’s ratio for bulk Fesq 5Rhag. 5 1%
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Figure 3.8: The temperature dependent mechanical properties of equiatomic FeRh showing the phase
transition hysteresis via the magnetoelastic effect. Figures adapted from Palmer et all*l. (a) Elastic

modulus. (b) Poisson’s ratio.

The same hysteresis is observed as for the magnetisation in Figure 3.3 and resistivity in Figure 3.6, sup-
porting the surmised causal relationship between the magnetic and mechanical behaviours. The relative
change of each of the two properties was equal but with opposite sign, exactly as predicted in Section
2.9.1. Note however that this data was obtained using the small amplitude resonance technique[*®! and
so much smaller changes will be seen if direct force measurements are attempted. The elastic modulus

and Poisson’s ratio at room temperature are seen in Figure 3.8 to be 198 GPa and 0.323 respectively.
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No accepted theory has yet been established regarding the underlying mechanism of the FeRh metamag-
netic exchange inversion. However, one proposal is that the rhodium magnetic moment is critical to the
transition Y. The rhodium atom cannot simply be paramagnetically responding to the M field from the
aligned iron atom dipole moments because the paramagnetic susceptibility is several orders of magnitude
too low. The theory postulates that the rhodium atoms possess two states: one with lower energy and

91 The rhodium atom is

zero-moment and the other with higher energy and non-zero moment ~ ,uB[
therefore raised to the magnetic state via thermal excitation and forms an FM exchange coupling with
the neighbouring iron atoms which dominates the existing AF exchange coupling and creates a stable

FM ordering for the FeRh crystal .

This proposed phenomenon may be a contributor to the observed ferromagnetic stability, however it is
now known that this cannot not be the sole mechanism. The metamagnetic transition is a consequence
of lattice disorder®) and heating the FeRh crystal provides dynamic disorder in the form of thermal
oscillations. Alternatively, static disorder may occur if crystal atoms are displaced from their intended
sites and thus an indefinite ferromagnetic ordering is induced 6181, This is the mechanism used in artificial
multiferroics when using a piezoelectric substrate to control the magnetisation state of a metamagnetic

film 7, as mentioned in Section 2.14.

3.3.1 Potential applications

The magnetic transition is of great interest in spintronics, with one application being in the design of
data storage memristors where it forms a thermally activated exchange layer as part of a multilayer

stack[16],

Memristors are considered the fourth basic electronic element, alongside resistors, capacitors, and in-

[92] [93]

ductors”?, and just over a decade ago were created for the first time They are effectively time
dependent resistors with their name arising from the fact they ‘remember’ their electrical history. This
memory effect is due to the constituent atoms rearranging when exposed to certain stimuli!®l and in

the case of FeRh this rearrangement is the magnetic dipole orientation direction.

A FeRh memristor may be used to create a magnetically stable binary bit for data storage['®!: the data
value stored in the bit is the antiferromagnetic magnetisation axis which may take two perpendicular
positions within the plane of the film, and the value is read by applying a small bias across the width
of the bit and measuring the current!l. The resistance will change between the AF magnetisation
directions due to the magnetoresistance arising from dipole alignment, which is discussed in Section
2.9.2. Figure 3.9 shows this schematically. The writing process for the bit would be to heat it into the
FM phase and apply a magnetic field to change the orientation then cool it back down*l. This results

in a bit which is insensitive to stray magnetic fields and may be read without any risk of affecting the
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value stored within.
(a) [

Figure 3.9: The reading process for a memristor using the magnetoresistance effect of an antiferromag-

netic film. The arrows show magnetic dipole orientations and j denotes the measured current. Figures
reproduced from [16]. (a) Lower resistance due to the magnetisation axis being perpendicular to current

direction. (b) Higher resistance due to the magnetisation axis being parallel to current direction.

It is important to consider that the use of FeRh in such applications is not necessarily suitable for mass
production. Rhodium is a very expensive d-block metal, so in order to be economically viable as a

replacement to existing consumer technology it must be used in minimal quantities in each device.

3.4 FeRh growth and patterning

3.4.1 Thin film growth optimisation

Thin films may be grown by sputter coating a substrate with atoms of the requisite elements, and this
process will be briefly explained in Section 7.1.1. The growth parameters of FeRh thin films are dictated
strongly by the requirement for the CsCl structure with "/ AF ordering. Single crystal MgO(001) is ideal
for high-quality FeRh films due to the compatibility of the two crystal structures!®l. MgO has a rock
salt or NaCl prototype structure!?*l with a lattice constant of 4.212 A%, This structure is an Fm3m
lattice with two atoms in the basis but may also be thought of as a simple cubic lattice with alternating
vertex atoms and a lattice constant of 2.106 A; essentially NaCl is the Heusler structure shown in Figure

2.16 without the X atoms.

The CsCl prototype being body-centred prohibits clean growth of FeRh on a NaCl crystal if the unit cells
are aligned. However, rotating the CsCl structure by 45° about the [001] axis resolves this conflict [95]
and provides each atom of the film with a corresponding atom in the substrate: Fe with Mg and Rh
with O. The lattice constant of the film must therefore be similar to the diagonal between atoms in
the substrate and for MgO(001) this would be 2.987 A, thus FeRh with a lattice constant of 2.99 A

grows well on MgO(001) substrates. The lattice mismatch introduces a strain of just 0.65% which is
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completely suppressed in films greater than 10 nm (%, The substrate must be heated during deposition
to allow the Fe and Rh atoms to possess sufficient mobility to create the desired CsCl structure with

minimal defects; this is finalised by annealing the film at an even higher temperature!°%.

3.4.2 Noble ion irradiation of FeRh

The metamagnetic phase transition parameters of FeRh may be modified through careful control of the
film growth, including the ratio of iron to rhodium or doping with small percentages of other elements
such as iridium. A simpler approach which permits locationally precise transition modification is to alter
the crystal structure after the film has been grown. It has recently been shown that irradiation of the
deposited film with energetic noble ions such as neon may be used to disrupt the lattice and cause
ferromagnetic or even paramagnetic regions to form at room temperature, depending on the fluence

used [6:18],

There are two mechanisms by which the noble ions introduce disorder into the crystal structure!*8l. The
first occurs for lower fluences and results in small displacements of crystal atoms from their intended
sites which induces ferromagnetic ordering. The second occurs for higher fluences and involves the
formation of monovacancies in the structure which induce paramagnetic ordering. It has been shown
that maximal magnetisation for Ne™ ions with energy 25 keV occurs for a fluence of 7.5 x 103 cm—2[18]
so this is the recommended value for work where room temperature ferromagnetic FeRh is required.
The magnetisation curves for FeRh irradiated by a range of fluences are shown in Figure 3.10 where
the high magnetisation values correlate with ferromagnetic ordering while the paramagnetic ordering
exhibits much lower magnetisation due to the low paramagnetic susceptibility. A sufficiently thick resist,

patterned with standard lithographic techniques, can be used alongside this ion irradiation process for

precise creation of FM regions in a nominally AF crystal.
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Figure 3.10: The metamagnetic curves for ion irradiated FeRh at a range of fluences. The maximum

magnetisation occurs for a fluence of 7.5 x 103 cm~2. Figure reproduced from Griggs et al['8].

This work involves electrical resistivity measurements of ion irradiated FeRh and so the effect of the
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bombardment on resistivity should be acknowledged. The ions themselves should not become implanted
in a thin film because they have sufficient energy that they should pass through the film and enter
the substrate[%!. However, the defects may still have an effect. Significant resistivity increases of as
much as > 100% have been observed in thin gold films irradiated by high fluences!®l. Such significant
changes should not occur in the irradiated FeRh films though, for multiple reasons which will now be
explained. Firstly, the gold film was very thin at just 7nm and so the relative current density through
each defect was much larger than it will be through FeRh films of at least 40 nm. Secondly, the high
fluences resulted in monovacancies with the displaced atoms forming debris on the surface[%!. This
provided many scattering opportunities to the conducting electrons that will not be present for a film
which is merely disordered by small displacements. Finally, the baseline resistivity of FeRh is greater than
of gold, so the same absolute resistivity change would produce a smaller relative change. Consequently,
it is reasonable to assume that the irradiation process will not significantly increase the resistivity of the

irradiated film.

3.5 FeRh oxide layer

Iron readily forms oxides in ambient conditions and these have also been observed for multiple thicknesses
of FeRh films using X-ray reflectivity (XRR) 897 and Rutherford backscattering spectrometry (RBS)[98I.
The oxide layer is not problematic in applications where a direct surface contact is not necessary or when
the film is used as part of a stack deposited without exposure to ambient conditions, but an oxide layer
will potentially disrupt any nanoscale measurements requiring electrical contact. This was not necessarily
expected to be an issue for nanoscale measurements because preliminary macroscale measurements by
multimeters and four-point probes used relatively large probes applied with relatively large forces and
so easily penetrated the oxide; effects that are not important for macroscale measurements can become
very significant on the nanoscale. A capping layer such as platinum may be used to minimise oxide
formation [, however this would have the side effect of suppressing surface electrical or mechanical

behaviours and so the sample investigated in this work will not be capped.

The exact composition of the oxide layer which forms is unknown, with Fe;0, [97], a-Fe, 05 (2001 and
FeRhO, [98] each being proposed in the literature. The uncertainty arises because XRR is only sensitive
to the density of the crystal atoms whilst RBS is only sensitive to elemental content so can merely show

that an oxide is present.

The oxide a-Fe,05 is also known as haemetite or iron(lll) oxide and is an A-type antiferromagnet with
spin canting via DMI so exhibits very weak ferromagnetic properties!*?ll. It is a very poor conductor with
reference resistivity 10* Q@ m at 20°C[1%2 The alternate iron oxide Fe;0, is also known as magnetite or

iron(11,111) oxide2%3 and is a strongly ferrimagnetic crystal. It posses an unusually low resistivity for oxide
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layers with an ambient value of 3.2 x 1075 Qm[103104 " The final candidate of FeRhO; has not been
well characterised in the literature so very few properties are known, however it does exhibit a strong

ferromagnetic response with moment 7.7 [19%].

The existence of accurate magnetic characterisation
of the underlying FeRh film [87106:57] therefore suggests that this is not the oxide which naturally forms

on FeRh films.

The typical oxide layer thickness when forming naturally on an exposed FeRh surface is between 1 nm and
2.5nm1897 " This oxide does not grow rapidly thus contact measurements may be made in ambient
conditions provided the FeRh surface has not been exposed to air for any significant length of time
prior to characterisation. Another issue to be aware of is that when performing electrical resistivity
measurements in atmospheric conditions, or even clean room conditions, water will condense on the
sample surface and the droplets will especially coalesce at any tip-sample contact[1%7]. This does not
usually present an issue, but on a readily oxidising film such as this the presence of water can accelerate

the oxide formation.

3.6 Phase diagram of PMN-PT

The sample being investigated for its piezoelectric properties, as a potential substrate for artificial
multiferroics, is formed from the solid solution of lead magnesium niobate and lead titanate with formula
Pb (Mgl/Ssz/S)l_m Ti, 03, more commonly known by the initials PMN-PT 28] This crystal exhibits a
stronger piezoelectric response than PZT, the current gold standard piezoelectric ceramic, so is of great
interest for multiferroic applications 22,

It has a perovskite structure ABX; where the primitive lattice (A sites) are occupied by Pb atoms with
O atoms in the centre of each face (X sites). The centroid atom of each primitive cell (the B site) is
either Mg, Nb, or Ti, which are distributed randomly in the respective ratios (1 — x) : 2(1 — ) : 3z,

where z is the fractional content of PT in the PMN-PT solid solution.

PMN-PT is created by doping lead magnesium niobate (PMN) with lead titanate (PT) to specific
concentrations . Figure 3.11 shows the phase diagram for PMN-PT which was created using boundaries

determined by Zekria et al[28].

The diagonal lines dividing the phase diagram roughly in half describe the Curie temperature T, above
which is the cubic structure Pm3m which is a paraelectric. The bottom left region of the phase diagram
is labelled R and is the pseudocubic rhombohedral structure R3m; in PMN-PT this region of the phase
diagram acts as a relaxor. The regions denoted T are tetragonal P4mm and the region at the right acts
as a normal ferroelectric. The region in the middle is a hybrid of normal and relaxor ferroelectrics and

was identified due to exhibiting some lattice change at its boundaries, but the structure is not certain
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Figure 3.11: The PMN-PT phase diagram using boundaries calculated by Zekria et all?8].

to be tetragonal.

The most interesting region is the morphotropic phase boundary between the PMN and PT properties,
formed by the monoclinic regions C'm and Pm, where there is some overlap of behaviour. The region
Pm was initially thought to be tetragonal and indeed is marked such on some older phase diagrams,
but a transition is observed in the critical temperature line at # = 0.45[?8 and it was concluded that
this region is an area of lower symmetry than tetragonal. It is very similar, however, because the lattice
angle /3 tends towards 90° as x rises!® and thus the boundary is difficult to precisely identify, hence the
dashed line in Figure 3.11. This agrees with the discussion in Section 2.13.2.1 regarding the rotation of
the observed strain direction with rising PT concentration. Determining an accurate phase boundary is

further complicated by a significant coexistence region where the two phases Pm and T overlap[108.

The phase diagram of PMN-PT is contentious, with multiple slightly differing suggestions in the lit-
erature and some authors!1%81%] jncluding an intermediary orthorhombic phase at some or all of the
structural transitions discussed. The work in this thesis involves a PMN-PT substrate with a nominal
PT concentration of x = (0.29 4 0.01), so the only threshold of relevance is the R to C'm boundary.
The argument follows that the eighth-order expansion of Landau-Devonshire theory prohibits a direct
transition from rhombohedral to monoclinic lattice structures, and so an orthorhombic region must act
as an intermediary and lies at approximately 0.30 < x < 0.31[198 However, not all authors propose
this intermediate phase[?81% and indeed only two lattices were observed for these substrates which are

believed to be R and C'm!”l. Consequently the orthorhombic structure will be neglected in this work.
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3.6.1 The rhombohedral boundary

The Curie temperature threshold is not the same value when crossing in each direction but is instead a
hysteretic threshold 28, The hysteresis width of the Curie temperature differs significantly for compo-
sitions either side of the R-C'm phase boundary and so may be used to determine its location. Zekria
et al.[?8] state this to be at approximately z & 0.295 in their paper which was used to obtain the phase
diagram shown in Figure 3.11. In an attempt to obtain a more precise value a sigmoid was fit to the
thermal hysteresis width data provided and the values and fit are shown in Figure 3.12. The fit was
unbounded and performed using non-linear least squares fitting via the Levenberg-Marquardt algorithm
as implemented in the SciPy Python package!™%. The calculated midpoint was z = (0.298 £ 0.001),

which agrees with the approximate value stated.
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Figure 3.12: The thermal hysteresis of the Curie temperature of PMN-PT for a range of PT concentra-
tions . The data is taken from work by Zekria et all?] and the red line is the added sigmoid fit which

has a midpoint of x = (0.298 & 0.001).

3.7 Piezoelectric behaviour of PMN-PT

It was stated in Section 2.3.1 that a pseudocubic structure is one in which all lattice angles are approx-
imately 90° and so the R3m perovskite approximates the m3m point group. This lattice has inversion
symmetry even though the true space group is not centrosymmetric, and so pseudocubic PMN has

approximate inversion symmetry and any longitudinal piezoelectric behaviour will be suppressed.

On average the crystal atoms all occupy their intended sites!''¥], however on a local basis the Pb,
Nb, and Mg atoms are displaced by approximate root-mean-square displacements of 0.3A, 0.19 A, and
0.11 A respectively1. Mg displaces isotropically whilst Pb and Nb displace in an often correlated
(111) direction. This is a result of the Pb and Nb atoms seeking to form stronger bonds with the crystal

oxygen atoms via orbital hybridisation '] and is the origin of the polarisation which induces the strain

103



CHAPTER 3. MATERIALS FOR ARTIFICIAL MULTIFERROICS

responsible for deforming the crystal from Pm3m. This displacement of ions in a direction away from
[001] also provides the rotated dipoles responsible for shear piezoelectricity which shall be discussed in

Section 3.7.1.

The piezoelectric response of rhombohedral PMN-PT is much larger than seen in other conventional
or relaxor ferroelectrics such as PT or PZT. This is a consequence of the Pb, Ti, Nb, and O atoms
displacing significantly in response to external stimuli in a similar manner to the zero-field displacements
that were described for PMN 22, The response of these atoms is two to three times the magnitude seen

for PT, while the Mg atoms have negligible displacements[?2].

3.7.1 Effect of PT ratio

The dependence of the OFF-field piezoelectric coefficient d3s on PT concentration x was investigated
by Li et al.!® and the results from this investigation include the data shown in Figure 3.13. The figure
shows that the response has a maximum at the R-C'm boundary with a smaller local maximum at the
C'm-Pm boundary and only small values observed for Pm. It is reasonable to assume that a local
maximum correlates to a crystal transformation thus the R-C'm boundary is expected to occur at the
peak of the ds3 against x curve. A scaled Lorentzian curve was fitted to this data using the same SciPy
algorithm as used in Section 3.6.1 and determined the peak to be located at x = (0.298 £+ 0.001). This
is in agreement with the value obtained from the thermal hysteresis fit in Figure 3.12 and so for the

purposes of this thesis the boundary will be taken to be located at x = 0.298.

3.0

0.0
0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38
PT content x

Figure 3.13: The piezoelectric coefficient of PMN-PT for a range of PT concentrations z. The data is
taken from work by Li et al.[8] and the red line is a scaled Lorentzian curve fit to the data with peak of

(2.24 £ 0.09) nmV ™! at z = (0.298 £ 0.001) and a vertical offset of (1.02 £ 0.12) nmV ™",

There are two components to the piezoelectric response. The first is longitudinal piezoelectricity, which

is the standard mechanism where the dipoles expand in the presence of a parallel electric field and
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[112]

contract in the presence of an antiparallel field This is the only mechanism present for tetragonal

perovskites and thus also for the approximately tetragonal Pm structure.

The second mechanism is shear piezoelectricity, which is strain induced in the lattice by the applied
field rotating the dipoles away from their spontaneous polarisation directions'?l of R3m to temporarily
form the taller structure of C'm. The term shear is somewhat misleading because it does still produce a
piezoelectric effect in the direction of the applied field, however it is a result of a shear transformation
or rotation of the perovskite unit cell rather than the simple elongation of the longitudinal piezoelectric
effect. The Gibbs energies of the two crystal phases are equal at the phase boundary!*'2 which reduces
the energy cost of reorienting the lattice and serves to enable the rhombohedral to monoclinic phase

change to occur.

The free energy F of the system may be written as[11?
F=F—-P-E (3.1)

where Fy is the internal energy in zero external field, thus it can be seen that the system will seek to

align P to E where possible. The rhombohedral crystal polarisation is in the (111) direction, so

1 0
P-Ex| 1 ]| 0 |=v3cos(0) (3.2)
1 1

giving the polarisation angle relative to the field to be

1
0 = arccos | — | ~ 54.7° . 3.3
(%) G

Meanwhile, the C'm polarisation is in the [hhl] direction for [ > h > 0, thus

h 0
P Ex| n |-| o |=v2r2+12cos(8) (3.4)
l 1

giving the polarisation angle relative to the field to be

l 1

1
0 = arccos | ——— ) = arccos | ——=—=| < arccos | — | , 3.5
(V2h2+l2) 2(@)2+1 <\/§> ( )
1

where the function is expressed in terms of some parameter 0 < /i < 1 giving 0° < 6 < 54.7°.
Lead titanate is naturally tetragonal?®, thus higher z solid solutions will have a lower h/i ratio and

consequently lower 6.

These results explain the peak at the R-C'm boundary in Figure 3.13: the free energy F' seeks to align

the polarisation to the field, which can be achieved by temporarily rotating some of the lattice cells
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from R3m to C'm. The reduced strain angle results in an increase in the cell height which induces a

significant shear piezoelectric effect. The large peak size indicates a low ratio of »/i for Cm.

The second peak is due to the same mechanism. The Pm space group has a polarisation direction [h0I]

where I > h > 0, so

h 0
P-Ex| o || o |=vVh2+2cos(d) (3.6)
l 1

giving the polarisation angle relative to the field to be

l 1

6 = arccos (m> = arccos W s (37)
l

where the latter is again in terms of some parameter 0 < #/i < 1 giving 0° < § < 45°. The relatively
small size of the peak suggests there is less difference between Pm and Cm cell heights than between

R3m and C'm cell heights, which supports the conclusion that %/ is already low for C'm.

These peaks in the piezoelectric coefficient provide an uncommonly high piezoelectric response and as a
result PMN-PT substrates with x ~ 0.29 are of greatest interest. The actual boundary of z = 0.30 would
provide maximal macroscopic piezoelectric response but would also result in an equal split between R3m
and C'm cells on the nanoscale due to inhomogeneous stoichiometry. The slightly lower PT concentration

of z ~ 0.29 provides a much more consistent nanoscale structure.

3.7.2 Ferroelectric coercive field dependence

The previous section showed how the polarisation angle from the z-direction decreases with rising PT
concentration. This means the angle through which the electric dipole must rotate for polarisation
reversal to occur rises with PT concentration and thus the coercive field would also be expected to
rise. This is indeed observed and Skulski et al. recorded the coercive field for a range of values of PT

concentration z[9; this data is shown in Figure 3.14.

An empirical logarithmic fit was applied to the data with the form
E.=Alog(x+ B)+C (3.8)

and the values were A = (6.4 £ 1.0) kV.cm™!, B = (0.01 £ 0.03), and C' = (16.2 + 0.6) KV cm ™. The
data point at = 0 clearly did not match the trend so was excluded from the fit. Recall from Section
2.13.1 that the coercive field is strongly dependent on the crystal thickness so this fit must be scaled to
be applicable to the sample under investigation. Skulski et al. used pelletised powdered PMN-PT so no
crystal thickness was available, but it is known that the PMNg 71PT( .29 substrates under investigation
—1[7]

in this work have a thickness of 250 pm and coercive field of approximately 2kV cm Using equation
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Figure 3.14: The coercive field of PMN-PT for a range of PT concentrations z. The data is taken from

work by Skulski et al.[? and the red line is an empirical logarithmic curve fit to the data.

(2.128) and these values, the effective PMN-PT thickness used to generate Figure 3.14 is found to be
approximately 28 um. Therefore the logarithmic fit obtained here may be scaled to describe any crystal

of known thickness zy by multiplying A and C by the thickness correction factor

() e9)

which is a consequence of equation (2.128).

3.8 PMN-PT observations

3.8.1 Effect of polishing PMN-PT

Prior to being polished a typical PMN-PT substrate has a rough striated surface and an example of this
is shown in Figure 3.15a. The striations are due to the manufacturing process and result in a surface
roughness of ~ 3 — 4 nm with no clear features of note. The substrates must be polished before use

and this results in an interesting phenomenon.

Regardless of the polishing method, whether done in-house or commercially, the surface of PMN-PT
forms two very clear terraces ~ 3 — 4 nm apart in height. An example of this is shown in Figure 3.15b.
The terraces each occupy roughly half the surface and have a roughness of ~ 0.5 — 1 nm, and are
attributed to the ferroelectric domains at the time of polished13!. The up and down polarised domains
have different reduction rates for both mechanical and acid based polishing so the surface forms a

physical snapshot of the domain structure at the time of polishing 113,

It is possible that these terraces are correlated to nanoscale PT distribution in some way, because a

different structure can be readily expected to etch at a different rate. This is one of the motivations for
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Figure 3.15: AFM images of the terraces formed by polishing PMN-PT crystal surfaces. (a) A typical
surface prior to polishing showing striations. (b) A typical surface following polishing, demonstrating

the two terraces.

the nanoscale characterisation of PMN-PT: to attempt to determine the rhombohedral and monoclinic

regions and thus identify and explain any topographic correlation.

3.8.2 Weakness under strain

The PMN-PT substrates exhibit a proclivity for shattering when applying heat and external electric
fields. This occurred during routine measurements and even during a field-cooling cycle with a very low
ramp rate, chosen in an attempt to avoid shattering the crystal. The exact cause is unknown but cannot
be easily investigated due to the substrates being too valuable to deliberately break. The hypothesis is
that the thermal and piezoelectric expansion of the substrate is the cause, with the crystal either being

constrained by the field electrodes or overloading internal crystal boundaries.

The thermal expansion coefficient of PMNg.70PTo.30 is ~ 1075 K1 [12] resulting in a strain of 0.1%
arising from a change in temperature of 100 K, whilst the maximum piezoelectric coefficient in Figure
3.13 also yields a strain of 0.1% at the maximum applied field. This strain is too low for the electrode
constriction to be problematic but these strains are certainly sufficient for crystal boundaries to fracture

in response to unaligned expansions on either side.

3.9 Summary

The work presented in this thesis involves the analysis of equiatomic FeRh films and PMN-PT substrates
as two components of an artificial multiferroic system. The properties of the materials therefore needed
to be explained and this chapter aimed to provide a detailed introduction. The thermal phase diagrams

for each material were discussed and the properties of interest introduced.

108



Chapter 4

Fundamental principles of atomic force

microscopy

This chapter introduces atomic force microscopy and provides the groundwork for the advanced AFM
techniques which are developed and used in this work. A detailed introduction to the fundamental
principles of the atomic force microscope is provided, including a discussion of the scanning mechanism
and the geometry and calibration of AFM probes. The multiple modes of operation used in this work
are quantitatively explored in detail and the sample preparation process and thermal measurement stage

are described.

4.1 Introduction to atomic force microscopy

The atomic force microscope (AFM) is a useful technique with a myriad of applications in nanoscale
characterisation 23115116 " |t is commonly used simply as an efficient topography characterisation tool
to verify deposition and lithography of structures prior to further analysis, but is a powerful instrument
in its own right. In this work a Bruker Dimension Icon system was used, alongside a Bruker NanoScope
V controller and Bruker NanoScope V9.4 control software. The system and its enclosure is shown in

Figure 4.1.

The basic operation of an AFM is shown in Figure 4.2. A diode laser, typically red with a wavelength of
630 nm, is reflected off the back of the cantilever onto a quadrant photodetector 7] (front view inset),
whose position is calibrated such that the laser hits the centre for an undeflected probe. The probe is
deflected by topographic features or other forces, even as small as femtonewtons!!, and the deflection
is measured using the photodetector. The difference in photodetector voltage between the top and
bottom halves gives the vertical deflection whilst the horizontal difference gives the torsional rotation of
the cantileverM8. The optical lever effect means that sub-nanometre deflection of the cantilever may

be accurately detected using this arrangement.
The AFM probe consists of a sharp pyramidal tip attached to a long thin cantilever™8!, with the other
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Figure 4.1: The Bruker Dimension lcon AFM used in this work with components labelled. The Dimension
platform is shared by The FastScan and Icon scanning heads so the front of a Dimension AFM may

feature either FastScan or Icon branding. This is just cosmetic and there is no functional difference.
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Figure 4.2: The basic operation of an AFM measuring the topography of a sample surface.

end attached to a small wafer called the probe substrate. The tip-apex is approximately spherical. AFM
users generally use the terms ‘probe’ and ‘tip’ interchangeably, but for clarity this thesis shall use tip
to mean the pyramidal region and probe to mean the tip and cantilever combination. AFM probes
are usually manufactured from antimony doped silicon[1%, this n-type doping does not allow them to
carry currents but does minimise electrostatic charge build-up at the tip which would cause artefacts in
biased measurements. Some probes instead use silicon nitride in order to achieve lower spring constants
without requiring impossibly narrow cantilevers!™&119  Prior to imaging the probe is mounted in a
probe holder containing one or more piezoelectric crystals[!8] and these crystals are used to drive the

probe accurately and precisely.

A thin reflective coating is often applied to the rear of the cantilever during manufacture to ensure spec-

ular reflection of the laser and thus maximum intensity at the photodetector. Functional coatings may
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also be applied to the lower side of the cantilever, such as conductive layers for electrical measurements
or ferromagnetic coatings for magnetic applications[1?9. The thickness of the coating is a lower bound
to the tip radius, as may be seen by considering a locus of a fixed distance around the silicon tip, shown
in Figure 4.3. This underlying tip typically has a near infinitesimally sharp point so the tip radius equals

the coating thickness 19

Care must be taken when using coated probes for heated measurements,
however, because mismatches in thermal expansion coefficients could induce strain which would result

in artificial cantilever deflection.

5

Figure 4.3: Schematic of a silicon probe (dark grey) with a thin functional coating (light grey). The
thickness normal to the surface is the tip radius 7; in cases where the underlying silicon tip is infinitesi-

mally sharp.

The scanner head is positioned above the sample using precise stepper motor control. The scanning
process itself is beyond the precision of these motors so instead multiple piezoelectric actuators (piezos)

are used. These are arranged inside the scanner head in a tube[!!]

, as shown in Figure 4.4. The
opposing pairs of x and y piezos are used to raster the probe across the sample in a zig-zag pattern
and each have a range of £45pm, whilst the z crystal is used to raise and lower the probe through a
range of 6 pm (18], The rastering occurs by oscillating the tube in the manner of a pendulum meaning
the resulting measurement is bowed and must be corrected by the software!*8. This correction is done
as the first step in the data processing pipeline, which allows users to observe meaningful data during

acquisition.

The first scan of the probe (the ‘zig') is the trace line and the return scan (the ‘zag’) is the retrace
line[18]: this is shown in Figure 4.5a. A relatively low density of scan lines, as shown in the figure, will
result in significantly skewed measurements, whilst a typical scan will have negligible skew. Figure 4.5b
shows the relationship between number of scan lines and the resulting skew angles. Typically the data
is captured using just one of the raster directions, but both can be used simultaneously to double the
number of lines in the resulting AFM image. However, this doubling is not typically used because small
line separations would result in double-measuring each line, while large line separations could result in

image distortion resulting from the opposing skew angles between the trace and retrace measurements.
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Figure 4.4: The geometry of the piezoelectric actuators within the Dimension Icon scanner head. Figure

adapted from the Piezoelectric Scanners page of the NanoScope internal user guide.
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Figure 4.5: The skewed trace and retrace paths of the probe during typical AFM scans using the
Dimension lcon scanner head. (a) The path drawn by the piezoelectric actuators during a standard
AFM scan, the blue lines are the trace lines and the red lines are the retrace lines. (b) The skew angle
of the actual trace and retrace rasters from the raster direction, depending on the requested number of

lines per scan. This assumes a square scan area.

4.1.1 Tip geometry

The tip geometry is relevant for many AFM measurements and there are several distances that need to

be defined. Figure 4.6 shows a diagram of the tip with key distances indicated.

The tip is formed from a skewed pyramid which is defined by its height and slope angles. The different
angles are the front-angle oy, side-angle o, and back-angle ay, with the front being the edge furthest
from the probe substrate. These are typically related as oy S a5 S ap. The probe holder mounts the
cantilever at an angle of ~ 10°, meaning the back edge of the tip is near vertical and the front angle is

shallower than one would expect!™8l and this is demonstrated in Figure 4.6a. One simplification that
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Figure 4.6: Schematic illustration of the tip geometry of an AFM probe. (a) The side of the probe
showing the front-angle oy and back-angle a3, depicted at an angle to reflect the tilted mounting
position. (b) The end of the probe above a sample surface showing the significant distances and the

side-angle a.

may be made is to approximate the tip as a truncated cone with angle @ = a with the end rounded
off by an approximately spherical cap of radius 7, and this simplification is shown in Figure 4.6b. The
radius of the truncated end of the cone is r; cos (), which may be trivially derived by realising the
slope of the cone forms a tangent to the cap meaning the two angles marked « are equivalent. The tip
height h; is usually used to refer to the full distance from the base of the cone to the furthest point of
the spherical cap, but equations are simplified if the height of the truncated cone is taken instead. A
typical tip height is of order h; = 1 pm while the tip radius r; < 35 nm and slope angle o ~ 20°, so this

correction is minor in practice.

The height z is the distance between the lowest point of the tip and the sample surface and is the usual
measure of tip-sample separation. The height z; is the distance between the surface and truncated end

of the cone, and may be derived to be
2y =241 —resin(a) = z+ 7 [1 —sin(a)] . (4.1)
The distance z, from the top of the cone to the surface is the sum of cone height and 2z, thus
Za =2+ he + 1 [1 —sin(a)] . (4.2)

The height z. is the distance between the surface and the location of the point of the cone were it not

truncated, and is derived to be

ze =z + 1 [1 —sin (a)] [1 — cot (a)] . (4.3)

In electric field based experiments the distance of interest is from the tip to the second electrode so
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these definitions become tip-electrode distances. If thick insulating materials such as substrates are the
sample of interest then the definitions become tip-stage distances and due to the thickness of such a

sample the approximations

2p =z (4.4)

and

2o~ 2+ Iy (4.5)

may be used.

The AFM measures the distance z from some arbitrary baseline so the absolute values obtained do
not describe any of the parameters in Figure 4.6. Instead it is the difference in measured height value
between points on the sample surface that is of interest. The notation 2’ will be used for the raw height

values recorded by the system.

The finite size of the AFM tip enforces a lower limit on the size of features that may be resolved 118l as
shown in Figure 4.7. This shows how if any region of the tip other than the apex makes contact with a
feature then the cantilever will still be deflected, but the result is a measurement artefact representing
the path the tip was forced to traverse rather than the true dimensions of the feature. Sharper probes
mitigate this problem, but these are more difficult to manufacture and wear much faster, hence there is

a compromise to be made when choosing a probe18l,

Artefact

Substrate Substrate

Figure 4.7: The measured artefact resulting from the path the finite tip was forced to traverse when

passing over a small feature.

The default scan angle of 0° means the trace line is captured by the cantilever moving forwards and
the retrace line is moving backwards. This coupled with the tip mounting angle shown in Figure 4.6a
means that the trace line will show descending features more accurately whilst the retrace line will show
ascending features more accurately. A scan angle of 90° means both the trace and retrace are captured

with equal tip angles a5 and both ascending and descending features are equally affected on both passes.
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4.1.2 Probe calibration

The AFM is only able to measure the deflection of a cantilever via the photodetector signal, which is
arbitrarily scaled and measured in volts['!8]. In order to know the actual deflection or forces applied
to the cantilever two conversion parameters must be calibrated. The first of these is the cantilever
deflection sensitivity ~, which has units of nmV ™! and is the term which relates the photodetector
output to the true cantilever deflection. The exact value depends on many factors, including the exact
position of the laser spot on the rear of the cantilever, so must be calibrated every time a probe is loaded

for accurate results[118].

The deflection sensitivity of a probe may be calibrated by recording a deflection against height curve
on a hard surface, typically a sapphire reference sample[118]. This relates the piezo height to measured
deflection and the gradient of the curve is then 1/y. The forces used are typically in the nN regime so a

full nanomechanical treatment is not required when a hard sample is used.

The second parameter is the spring constant k of the cantilever, which simply relates the deflection to

the corresponding force and remains constant for each individual probe 2.

Typically this is given in
units of Nm™!, but due to the vast majority of AFM forces being nN and deflections being nm this thesis
will use the equivalent units NN nm™*. This is considered to be more intuitive, especially in conjunction

with the deflection sensitivity units of nmV ™.

The spring constant is then determined in one of two ways. The first is a thermal tune technique, where
the cantilever is allowed to oscillate freely and the elastic potential energy is related to the thermal

energy via the equipartition theorem to yield [120]

kT
(22)

where kg = 1.380649 x 10722 J K~! is the Boltzmann constant3¢l, T is the surrounding temperature,

k (4.6)

and <zf> is the mean square cantilever displacement. The proportionality constant is a correction
factor used to account for the differences between the idealised model and reality; the idealised model
would have a constant of unity and equation (4.6) would become an equality. The correction factor for
rectangular cantilevers is 0.817 but it is much more complex to determine for V-shaped cantilevers 20,
This calibration technique is most suitable for cantilevers with low spring constant because this improves
the signal-to-noise ratio of the measurement. However, the main source of error in this technique is that
the calibration calculation requires the deflection sensitivity to be known, and consequently Ohler[120]
derived a typical total uncertainty in this technique of ~ 8%. The other approach is known as the
Sader method 2], and allows direct calculation of the spring constant using cantilever dimensions, the
resonance frequency, and the quality factor @; the latter two may be obtained accurately by fitting a

Lorentzian curve to the ‘power spectral density’ (PSD) curve of the thermal oscillations. This is only
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applicable to rectangular cantilevers but Ohler derived an uncertainty of 4% for this method, half that

of the direct thermal method 120,

The setpoint is a user-defined deflection value which the AFM controller will attempt to maintain via a
feedback loop and allows control over the force exerted by the probe on the sample surface*8. The
calibrated spring constant and deflection sensitivity allow the defined setpoint to be given in units of
V, nm, or nN, the choice of which simply depends on which is most intuitive in context. The choice
of probe allows these factors to be tailored to the application. The photodetector has a photovoltage
measurement range of +£12.3 V'8 with finite precision, so k and v should be chosen such that the

desired setpoint is comfortably within this range.

Low force setpoints will require small values of k£ and v while higher forces will require larger values of
these parameters. Typically, rectangular cantilevers are used for k > 1 nN nm™" and V-shaped cantilevers

~1[120] * Setpoints between 1V and 10V have been found to be optimal for

are used for k& < nNnm
precise force control because they are large enough that the relative error in force is negligible whilst
avoiding the end of the measurement range so that any larger forces which occur may be measured and

controlled.

4.1.3 Lock-in amplifiers

Lock-in amplifiers (LIAs) are critical components of any AFM based measurement, however they are
poorly understood and frequently considered as black boxes. They actually provide a rather elegant
solution to screening out any components of an AC signal which are undesired, and may be used whenever
a sinusoidal signal is to be applied to the sample with a sinusoidal response being measured*?2. This
initial signal is split into two identical branches: one connected to the experimental equipment and the
other to the LIA. The measured response signal is then also fed to the LIA, where both signals are

combined and the amplitude and phase of the measured signal may be reported.

Any AFM modes that do not use constant contact, such as TappingMode, PeakForce Tapping, and
their derivatives, will involve an AC signal being directed to the tip drive actuator to oscillate the tip.
In this case the measured tip response from the photodetector is the response signal, and in common
with many other instruments the AFM uses an LIA to accurately extract the intended measurement
from this, with a very low signal-to-noise ratio compared with direct measurement techniques??. The
Bruker NanoScope Controller V features three LIAs, two of which are high frequency devices with a
frequency range of 1kHz to 5 MHz while the third is a lower frequency device with a range of 5Hz to
50 kHz 1231,
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The LIA reports an output value of [122]

X = Acos (0) (4.7)

where A is the amplitude of the response signal and @ is its phase. The value X is known as the in-phase
component of the measured signal because it reports the oscillations in phase with the generated signal.
In basic LIAs this may be the sole output, in which case a phase shift is applied to the reference signal
before it enters the signal multiplier?? and is manually adjusted until X is maximal, meaning the

applied phase shift matches the phase difference 6 between the signals.

(123:122] | this case

In more advanced systems, such as those in an AFM, a two-phase LIA is used
two lock-in circuits are present: one receives the reference signal directly and the second receives the

reference phase shifted by 77/2[122]. This second circuit outputs the value
Y = Asin(0) , (4.8)

which is known as the quadrature component of the measured signal and reports the oscillations 7/2 out
of phase with the generated signal. The name arises from the manner in which the amplitude may be

calculated from the reported values, which is!*22

AV/X2+ Y2, (4.9)

whilst the phase may be obtained using

Y
0 = arctan (X) . (4.10)

4.2 Contact and tapping AFM modes

Each AFM measurement technique is a ‘mode’ of operation and the simplest technique is contact mode.
The tip is held against the sample with some set cantilever deflection, known as the deflection setpoint,
and is then dragged across the surface. A feedback loop is used to actuate the z piezo and maintain the

[118]  However, the preferred

setpoint and the variation in z position is recorded as the ‘Height' channel
height data channel for the Bruker system is the ‘Height Sensor’ channell!¥8]. This is the change in z

piezo size as measured by an external capacitor bridge circuit 18],

Contact mode is conceptually the simplest but can lead to sample damage and tip wear, especially if
the sample is soft or the tip is coated. One solution to this is tapping mode, which was the first mode
to be developed for the AFM!. The cantilever is driven at a frequency slightly below resonance using
a piezoelectric actuator in the probe holder, and is then scanned across the surface where it only makes
contact with the sample surface at the lower region of each oscillation!*l. The force of this contact

causes a shift in the cantilever resonance frequency and the amplitude and phase of the cantilever
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oscillations will change accordingly. These parameters, measured in a modern system using LIAs[118,

may be used to maintain a constant value of ‘amplitude error’ by adjusting the scan height!%118].
The amplitude-frequency curve is symmetric in resonance frequency, so driving the cantilever slightly
off-resonance means that the curve is locally monotonic and the direction of the resonance frequency
shift is known. The resonance decreases slightly upon approach to the surface following calibration, so
frequencies below resonance are used instead of above resonance to avoid this resulting in inadvertently

driving the cantilever at the new resonance frequency 18],

High amplitudes and low amplitude error setpoints result in higher forces and energy dissipation into
the sample, but allow the cantilever to respond faster and more prominently to changes in sample

surface height 18],

Evidently the oscillation frequency must be much faster than the scan rate across
any roughness variation in the sample, but AFM cantilevers have resonances from ~ 10kHz[!?* to

~ 2MHz[19 5o this is rarely an issue.

4.3 Magnetic force microscopy

Atomic force microscopes may also be used to measure the magnetic properties of a surface, and
the ability to perform magnetic characterisation was the first mode developed after the initial tapping
mode[?. This technique uses an interleave measurement in ‘lift mode’, where interleave simply means
that a trace/retrace is performed twice at each row and different settings may be used for the ‘main’
and ‘interleave’ passes!!*8]. A very useful tool for interleave techniques is the ‘Rounding’ setting in the
NanoScope software, which configures the scanner to overscan each row. This allows the system to
settle after the change in settings and reduces artefacts, for example if the cantilever drive settings for
topography and lift mode measurements differ. The rounding setting value is the fraction to crop from
the edges of the scanned area, so a value of 0.2 means only 80% of the rastered width is seen and the
defined scan width is divided by 0.8 to obtain the applied raster width. During lift mode interleave the
probe is raised to a set height above the surface and the z-piezo recreates the exact topographic surface

recorded from the first pass!!8l

, as shown in Figure 4.8. This allows a measurement to be performed
at an accurate height above the surface at every point. The short-range interatomic forces are far too

weak to affect the probe whilst in lift mode[?.

In magnetic force microscopy (MFM) the probe performs tapping mode whilst raised, and the force
causing the amplitude and phase shifts of the oscillation is now the dipole-dipole magnetic force. The

[118] "and has a typical range of

phase data typically yields higher contrast images than amplitude data
up to £3° for a material with high saturation magnetisation M. The phase baseline is offset from zero
by some arbitrary amount, so phase data is often normalised by subtracting the mean value of the phase

data from every point. When carefully optimised, MFM is capable of resolving domains on the order
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'/ height
Topography

Figure 4.8: Schematic of a lift mode measurement being taken. The probe recorded the topography

during the main pass then follows the dashed line during the lift mode interleave pass.

of 10nm!. MFM requires a tip to be magnetised as a single domain prior to measurement and this is
done using a strong permanent magnet, with the dipoles in the tip usually aligned normal to the sample
surface18]. A typical MFM probe has a magnetic moment of 10~'3 emu[*'®! and during measurement
can perturb the magnetisation of magnetically soft materials[!?], so for these materials a low-moment

(LM) probe should be used.

The force between two dipoles separated by 715 is the differential of the magnetic energy equation
(2.36) 1. This is inversely proportional to 7{, and so the force acting on the tip varies with cantilever
deflection, hence the important parameter for MFM is the force gradient 8F/az which may be thought
of as a spring constant. The phase shift A¢ is obtained from this gradient for a calibrated probe of

Q-factor Q and spring constant k using!126]

Ap=—<— (4.11)

This MFM response depends strongly on the angle 6 between each pair of dipole moments. If § ~ 0°,
meaning the sample is magnetised parallel to the tip magnetisation, then the attraction force gradient
is positive and the probe is negatively phase shifted. If § =~ 180° then the attraction force gradient is
negative and the probe is positively phase shifted. Significantly, if 8 ~ 90° then the force gradient is zero,
meaning an MFM measurement may only interact with magnetic fields that do not lie entirely within
the plane of the sample. If the sample magnetisation is mostly in-plane, as expected from observations
in Section 2.8.1, then the MFM probe will only be able to interact with the stray fields emanating
from domain walls[2118l Figure 4.9 shows the phase shift experienced by an MFM probe as it crosses

different domain walls, and the widths of these curves grow with domain wall width[?.

The principal optimisation to consider for this mode is balancing lift height and interleave drive amplitude.
The probe cannot be allowed to contact the surface during the lift measurement because this will obscure
any magnetic effects, so the amplitude must always be less than the lift height. A lower lift height means

stronger force but larger amplitude means a wider range of force gradients are sampled. Both of these
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Figure 4.9: The phase shift A¢ experienced by an MFM probe as it crosses a domain wall between
different orientations of magnetic domains, indicated by the arrows, where z is the lateral position of the
tip relative to the domain wall. This is drawn for a tip magnetised such that the magnetisation points
downwards, towards the sample surface. Figures adapted from Saenz et all?l. (a) Domains magnetised
perpendicular to the sample surface. (b) Domains magnetised at an angle of 45° to the sample surface.

(c) Domains magnetised in-plane, the alignment most commonly encountered in thin films 18,

aid magnetic domain detection, however the absolute force is ultimately more experimentally significant

so lower lift heights should be prioritised where possible.

4.4 Quantitative nanomechanics

The forces experienced by a tip during contact with a surface provide a great deal of information about
the mechanical properties of the sample. Once the tip reaches a critical distance z,q4, from the sample,
attractive intermolecular forces pull it downwards and it ‘snaps’ to the surface; this critical distance is

[127]

typically in the range 3A < 2,4, < 6A The magnitude of the force acting on the probe at this

point is the adhesion force Fy 4.

As the probe continues to be lowered the sample presses against the tip, deflecting the probe increas-

ingly upwards. The equilibrium position where the cantilever is instantaneously experiencing no net
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deflection is denoted zp. Simultaneously, following Newton's third law of motion, the tip also presses
into the sample deforming them both. The elastic deformation of the sample is denoted d, and the tip
deformation is denoted d;. Usually the tip is much harder than the sample under investigation, thus
the tip deformation may be neglected and the total deformation § = J; + &5 is approximated as just
being due to the sample deformation. Once the probe reaches the setpoint deflection dget = Fset/k the

downwards motion is halted.

When retracting from the surface the processes occur in reverse, with tip and sample returning to their
original shapes and attractive forces holding the tip close to the surface until the elastic force of the
deflected cantilever is stronger. The adhesion force on retraction from the surface is typically greater

than on approach.

These forces experienced by a tip approaching a sample may be approximated by a Lennard-Jones

function 2"l This typically has the form

12 6
F(2) = 4F,q, {(ZO) - (@) ] : (4.12)
z z
although for AFM purposes it is sometimes useful to rewrite equation (4.12) as the equivalent statement
12 6
F(2) = Fuan {(’Z“Zd"> —2 (Z“Zdh) } (4.13)

using the property that z.q, = 2"°z9. The mechanical force F exerted on the tip by the sample points
perpendicularly away from the sample surface. The tip-sample separation z is the separation between the
sample and the position the tip would occupy if the cantilever were infinitely stiff and thus unbending.

The form of the Lennard-Jones function is shown in Figure 4.10.

.ILF

Fset

—Faan]

Figure 4.10: The Lennard-Jones function used to approximate AFM tip-sample interactions. The force
setpoint Fi.;, adhesion force F,q4p, adhesion deflection z,4p, and instantaneous equilibrium position z

are all labelled.

However, if the sample is very hard then the deformation effects are minimal and the observed potential
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will appear to follow the linear piecewise function

F2) 0 for 2 > zaan (4.14)
z) = 4.14
k (zaan — 2) — Faan  for z < zaan

where k is the spring constant of the cantilever. This alternative form is shown in Figure 4.11.

F

A
Fset

0 Zadh

—Fadn

Figure 4.11: The linear piecewise function used to approximate AFM tip-sample interactions for hard
samples. The force setpoint F,., adhesion force F,q, adhesion deflection 2,45, and instantaneous

equilibrium position zy are all labelled.

The deformation effects are dominated by the elastic modulus E and the Poisson’s ratio v, which will
be subscripted with ¢ for tips and s for samples. It is often convenient to write these as the reduced

elastic moduli

Es t
N 4.15
s,t 1— Vit ’ ( )
with the reduced elastic modulus for the system as a whole given by 128!
1 1 1 1—-1v2 1-0v?
- % (4.16)

BB "B E, E,
An AFM tip usually has elastic modulus much greater than the elastic modulus of the sample, in which
case the tip contribution is negligible and E* ~ E. However, in this work FeRh will be characterised
which features similar elastic properties to those exhibited by solid-metal or metal-coated tips and thus
the tip contribution is significant. The majority of literature on quantitative nanomechanics (QNM)
makes the assumption that E; > E, and as such the models they provide cannot be used directly to

understand the tip-sample dynamics for mechanical measurement of FeRh thin films.

4.4.1 The Sneddon and Hertzian models

The definition of elastic modulus is well-known to be the ratio of mechanical stress to longitudinal strain,

and the stress for both sample and tip will evidently be equal while the strain will be proportional to the
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respective deformations. Thus, it may be deduced that the deformations are related as
55E5 = 6tEt (417)

where ¢, is the deformation of the sample and §; is the deformation of the tip. The strain is the ratio
of deformation to equilibrium length, however this model considers infinitesimal deformations and so
the strain will only affect a finite region of the tip or sample surface. Assuming that this finite depth is
approximately equal in both the tip and the sample means that this depth cancels out along with the
stress term. The relation given in equation (4.17) is not a robust treatment but is adequate for the

purposes of the work reported in this thesis.

There are two common indentation models used for modelling the deformation arising from tip-sample
interactions. In both cases the equations are in base Sl units, however they are also compatible with a

more intuitive set of units where distances are measured in nm, forces in nN, and elastic moduli in GPa.

The first model is the conical or ‘Sneddon’ model[*29 which is valid for sharp probes on soft samples
such that the tip radius 7; is much larger than the maximal contact radius .. This model is shown in

Figure 4.12a. In this case E} may be neglected and the model states [129]
F = nE*r?tan (a) (4.18)

where the half-angle of the tip is denoted «. It may be shown that the sample deformation J, relates

to maximal contact radius as[129

0s = grc tan (o) (4.19)
giving
* £2
F= 4B ) (4.20)
7 tan («)

Equation (4.19) shows that the maximal contact radius 7. occurs at a depth of

()

below the sample surface, as labelled in Figure 4.12a.

The second model is the parabolic or ‘Hertzian’ model, so named because it follows the principles of

elastic contact derived by Hertz. This is valid for larger probes on harder samples, and states that [1?°]

AE*r3

where the terms are defined as in equation (4.18). This model is shown in Figure 4.12b and it may be

derived that the maximal contact radius r. for this model occurs at a depth of
1
=0
2 S
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below the sample surface[29],

Note the appearance of 7. in equation (4.21). This is used because the expression is in terms of
the contact radius if Poisson's ratio were zero. The true contact radius 7. may be deduced from the

definition of Poisson’s ratio to be

Te =Tc0 (1 + Vt6t> . (422)

Tt

This is not considered in the Sneddon model in equation(4.20) because, as stated previously, the elastic

properties of the probe may be neglected in this case. In most AFM probes th—i < 1, and as such the

Poisson’s ratio may be neglected and the approximation 7. ~ 7.y may be used.

®) N

/

Figure 4.12: The Sneddon and Hertzian indentation models showing the resulting sample deformations
and contact radii. (a) The Sneddon indentation model for a conical tip with half-angle «. (b) The
Hertzian indentation model for a parabolic tip with radius ;. The tip radius line in purple does not
meet the end of the contact radius 7. marked in green due to the transverse deformation characterised

by the Poisson's ratio v;.

4.4.2 Tip-sample contact area

Approximating the contact as perfectly flat and circular in the x-y plane, the contact area for the

Hertzian model may be calculated as

A, = mr? (4.23)

which holds for E; 2 E;. However, if E; < E; then a more accurate model would consider a contact
in the shape of a spherical cap. In this case the contact area is found, using standard expressions for a

spherical cap, to be

a2 %
Ac=m(r2+2) . (4.24)

The true probe is deformed via longitudinal strain and Poisson's effect so an oblate spheroid cap would
be more appropriate. However, no neat analytical form exists for this case, which would lie between the

bounds provided by the flat and spherical cases.

The resolution of a QNM measurement is limited to the contact diameter 2r, and reflects an averaged

mechanical response over the contact area A..
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4.4.3 Characterising elastic modulus using AFM

During nanomechanical measurements the force is set and the maximal contact radius is the dependent

variable. Consequently it may be beneficial to rewrite equation (4.21) as
3FTr; Y8 3Fr, (1—v2 1-— Vf /s
0 = = = . 4.2
Fe <4E* ) 1 \ "B TE (4.25)

It is shown in Appendix A.2 that the system deformation is described by

68 1 T?O
6,4+ =2 =25 4.26
¢+ 5 =3, (4.26)
and equations (4.17) and (4.26) may be combined to obtain

1 TQQ
o= —— o0 4.27
1+2E-</Et e ) ( )

1 r2,
G =— 0 4.28
t 2—|—Et/ES T ’ ( )
Gty bm (1o — L )0 4.29
T 2+ B/E.) (4.29)

As a sanity check, note that for E; > F, equation(4.29) tends to "% o/r, while for E; >> E; it tends to

r,0/2r.. Both of these limits are in agreement with those for equation (4.26).

Equation (4.25) may be rearranged to give

r2 3F /s —1/3
< = . 4.30
T¢ (4E*> rt ( )

Using r. &~ 7 and equation (4.29), this becomes

1 2 [ 3F \7*
§=(1-c— ) B 4.31
(- grmm) 7 () (+31)
which rearranges to give
B 4.\/r¢ " 1 —¥ 3/2
F= 3 x B (1_24—&/&) X 67, (4.32)

comprising a constant term, a modulus term, and a deformation term. The modulus term rises mono-
tonically with sample modulus so mapping this term provides a qualitative map of sample modulus

variation.

The AFM returns force curves as cantilever deflection d against arbitrary probe height z’. Deflection
may be converted to total force using the spring constant k and deflection sensitivity -y of the cantilever.
Nominal values of these will suffice when no calibration was performed. The arbitrary height 2’ axis is

then converted to a calibrated height z axis by defining 2z = 2y — 2’ and discarding any points where
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z < 0; this retains only the region of curve where the sample is under load. This approach assumes
Foaqn = 0, but this is a reasonable simplification given the tip-sample adhesion in this work was observed

to be negligible.

The deflection force experienced by the probe is
F=k(z-9), (4.33)

so the z axis may be converted to deformation using § = z — ¥/k for each data point. The deflection
force on the probe is equal to the tip-sample load force through Newton’s third law. In systems with
very soft samples F' =~ k& and the height z may be used directly in lieu of deformation. A linear fit
may be applied to a plot of F against 672 and the gradient of this fit gives a map of relative sample

modulus.

44.4 The DMT and JKR models

The Hertzian model discussed so far in this section does not account for adhesion forces, which is
permissible for measurements of FeRh but not necessarily in other cases. The Derjaguin, Muller and
Toporov (DMT) model [130] is an extension of the Hertzian model which handles adhesion forces explicitly.
An alternative model to handle this is the Johnson, Kendall, and Roberts (JKR) model[!31]. The JKR
model is appropriate for systems of large bodies and low modulus, and describes adhesion such that the
contact area is non-zero when the two bodies detach!*28l. The DMT model is appropriate for systems
with small bodies and higher modulus, and describes adhesion such that the two bodies detach from a
point contact!28]. Muller et al['?”] derived a quantitative parameter which uses system parameters to

describe the behaviour of the contact, and thus objectively determine which model is most suitable.

The Bruker NanoScope Analysis software provides options for Hertzian, Sneddon, and JKR models to
be used during analysis. The Hertzian model actually implements a DMT model since the DMT model
is essentially the Hertzian model with adhesion considerations. The DMT model is appropriate for most
AFM users because a standard probe has a small tip and high modulus. This means most elastic modulus
data obtained using Bruker AFM systems will be labelled as DMT modulus data. The Hertzian model
described in this section yields the same contrast map as seen in the NanoScope Analysis software,

which supports the assumptions made here.

4.5 PeakForce and DataCube

PeakForce Tapping (PFT) modes are an implementation of rapid quantitative nanomechanics (QNM)
where the probe height is ramped until the trigger, which is the QNM analogue of the setpoint, is

reached'']. The ramp height at the trigger is recorded for a topography map and the force-distance
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curve is used to produce contour plots of any requested QNM parameters such as DMT modulus or
adhesion. The PeakForce family of modes feature precise force control allowing very soft samples to be
accurately characterised without damage. They are also performed away from cantilever resonance and
thus are less sensitive to noise while still providing the same avoidance of lateral friction observed for
tapping mode™7]. PeakForce ramp rates may be as high as 10 kHz[!17].

The ForceVolume AFM mode performs QNM ramps across the entire scan region but instead of just
capturing the calculated maps the approach and retract force-distance curves are captured at each pixel,
allowing for offline analysis of the data. Ramping across multiple sites is usually a very slow process,
however the Bruker FastForce Volume (FFV) mode is an advanced implementation which permits ramp
rates as high as 300 Hz and allows rapid QNM characterisation of a sample surface['3.

This mode may be further enhanced by holding the probe at the trigger value for some defined period,
and during this time one parameter is swept and a second measured 32, In common parlance the terms
ramp and sweep may be used interchangeably, however in DataCube work the ramp is the approach
and retract force spectra and the sweep is the hold spectrum. This thesis will therefore use ‘ramp’ for

force-distance curves and ‘sweep’ for spectra obtained using a stationary probe.

There are DataCube variations of most electrical modes, such as TUNA and PFM 132l which will be
introduced in later sections. The main advantage of DataCube is that it is based on FFV so spectroscopy
may be rapidly performed at many sites across the sample surface, allowing dynamics to be seen or
functions to be fit to the spectral data in order to extract various local material properties!*32. Slices
may be taken from ramp or hold spectra and these are contour plots where the measured value is

shown for a specific applied value at each pixel[132].

For example, a slice from the ramp data shows the
cantilever deflection at some fixed height above the surface, or a slice from |-V spectra would show the

current produced by a particular bias at each pixel.

4.6 Measurements of electrical resistivity

A useful AFM technique is characterising the electrical resistivity of semiconducting samples[!, which
requires the use of conductive probes in a dedicated electrical measurements probe holder. This holder
has a wire attached which is electrically connected directly to the main body of the AFM probe via
a contact on the underside of the spring loaded clamp. The other end of the wire is plugged into
an application module, a black box which contains sensitive electronic components to amplify and
characterise current flow and which then communicates the measured values to the AFM controller

using a data cable[11%],

A module is shown mounted on the AFM in Figure 4.13.

The sample itself must be grounded in some way 18l to complete the resistivity characterisation circuit.
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Figure 4.13: A PF-TUNA application module mounted onto a Dimension lcon scanning head.

Samples on non-conductive substrates may be grounded by mounting the substrate onto a steel puck
and using conductive paint to electrically connect the sample surface to the puck[*8l. The puck then
grounds through the AFM sample stage, or alternatively the stage may be biased and the tip serve as
the ground ™8], The sample must also be clean of contaminants such as oxides or debris to allow the
tip to form a good electrical contact!!33l. If these conditions are met then the spatial resolution of AFM
resistivity measurements is theoretically limited only by the tip-sample contact area(!33].

There are multiple implementations of conductive AFM techniques. The simplest is just called conductive
AFM (C-AFM) and is a contact mode performed with a biased probe[*33l. A variant of this is tunnelling

[133] " Spectroscopy may

AFM (TUNA) which uses a more sensitive amplifier to detect lower currents
also be performed using C-AFM or TUNA, where the probe is held in a specific location and the bias is

swept between two values, producing an |-V curve at that point['33].

However, these modes suffer from some important drawbacks. The first is that the electrically conductive
coating on the tip is highly susceptible to wear from the constant friction, or the sample itself could be
damaged 33!, The second is that the feedback loop responsible for maintaining tip-sample contact takes
a finite time to respond, meaning the exact force applied, and thus the area of the contact, is not held

[134]

constant This has a significant effect on the measured resistancel®!, and can result in resistance

values which vary by as much as 3 orders of magnitude™3* when they should be largely constant.

One alternative to these issues is to use PeakForce Tapping to perform a force curve at each point and
record the current at the trigger thus ensuring the contact force is consistent across the sample[1%].
This mode, developed by Bruker, is PeakForce TUNA (PF-TUNA). The advantage is that varying
setpoint and tip wear are no longer major concerns, however PF-TUNA does have a significant flaw in
certain samples. The bias is held constant throughout the measurement while the tip is approaching or
retracting from the surface, so if the sample is highly conductive or the bias is high there will likely be

arcing, which can lead to significant damage to an electrically conductive film.
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The solution to this is to perform DataCube TUNA measurements (DCUBE-TUNA) 6] where a bias is
swept during the hold period of each force curve and the current is measured. The setpoint consistency
from PF-TUNA is still present but the bias is kept to 0V unless a sweep is being performed 1%l meaning
arcing is not an issue. Additionally, each point of the image now produces an |-V curve rather than
a single value, so it is easy to identify where ohmic contacts were made and where poorer Schottky
tunnelling contacts were formed instead (119, making it easier to identify and account for erroneous

measurements.

(1331 The small electrical

Another approach is to use scanning spreading resistance microscopy (SSRM)
contact between an AFM tip and a conductive sample is akin to a constriction®, which in a wire of

radius r. and resistivity p introduces a resistance 13

p

= . 4.34
2r. (4.34)

This is equally the sum of each half of the constriction
R=L 42 (4.35)

Cdr.  Ar.’

which allows two materials of differing resistivities to be considered.

Equating this to an AFM measurement with contact radius r., one half of the contribution is from the
tip and the other from the sample. The tip contribution may be neglected because the probe and system
as a whole has some constant resistance and the tip constriction resistance is absorbed into this value.
This just leaves the sample resistance, known as the spreading resistance ]

S 4y

(4.36)

This technique requires good electrical contact and so SSRM is performed at high setpoints, typically
between 1 and 100 uN[13¢]. The effective contact radius will be slightly larger than the true contact
radius owing to tunnelling effects between the spherical tip and the conductive sample, reducing R

relative to the theoretical value.

Standard C-AFM and TUNA modes are often used to produce a semi-qualitative resistivity map of
semiconductor materials on electrically conductive substrates!*% as opposed to quantitative resistance
analysis, and as a result the spreading resistance need not be considered during these measurements.
As with most AFM modes, these measurements are used to observe contrast between different regions
of the sample rather than quantitatively characterise the surface, and so a quantitative characterisation
is not required. SSRM mode uses a logarithmic amplifier[!37] to characterise the changing order of
magnitude of the current signal across the surface and thus differentiate between regions such as semi-

conductors and high resistivity metallic conductors. The spreading resistance provides the localisation
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of the measurement in such samples, while the rest of the current path between the contact site and

ground will simply take the average of resistivities en route.

The Bruker C-AFM, TUNAZ2, and PF-TUNA application modules have a maximum measurable current
of 1 pA138l and the SSRM module has a maximum of 0.1 pA[38] These current ranges are adequate for
almost all uses because AFM is typically used to characterise semiconductors with measured resistances
no lower than the megaohm regime. Indeed, it is thought that AFM cannot be used to characterise the

electrical resistivity of metallic surfaces[!33] due to the low resistivities involved.

4.6.1 Resistive heating

The power dissipated by an ohmic device with constant resistance R and time varying current I () is 58]

oE
—=P@t)=It)°R (4.37)
ot

where F is dissipated energy and t is time. If the current is held constant over some period 7 then the

energy dissipated is
7-/2
E :/ I’Rdt = I’Rr . (4.38)
—7/2
If the bias is linear, sweeping from —I to +1 over this period 7, then

()= 215 (4.39)

SO
/2 ) 1
E = I(t)°Rdt = 51237 . (4.40)
—7/2

Thermal energy changes the temperature of an object with mass m and specific heat capacity ¢ by!58l

AT () = E0 (4.41)

mc

The mass of the object may be calculated from the mass density p,, and volume V giving the total

temperature change from ambient conditions to be

I’7R

AT (7) = e2pmVe

(4.42)

where €2 = 1 for constant currents and €2 = 3 for linearly sweeping currents. The ratio /e represents

an effective current for resistive heating purposes.
The resistance also has a temperature dependence seen in equation (2.98) which stated
R(t) = Ry [1 + aAT (t)] (4.43)
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where Ry is room temperature resistance and « is the temperature coefficient of resistance. The period
T is chosen to be small enough that R may be considered constant over each period, but the thermal
dependence must be considered over longer time scales. Due to the recursion between temperature and

resistance the calculation is best solved iteratively, with the nt iteration AT, being given by

I2TR0
A7-n = Aﬁfl + m (1 + OéAnfl) (444)

where n € N and A7y = 0.

In a right prismatic conductor with reference resistivity py this becomes

J*Tpo
€2p

AT, = ATy + (1+ AT, 1) (4.45)

m C

where J is the current density.

This temperature change is Joule heating and means that there is a limit on the quantity and duration
of scans which may be made during a single measurement session before pausing to allow some of the
heat to dissipate and avoid the probe failing or the sample being excessively heated. This prohibits long
sweep times 7, large current values I, or high numbers of sweeps n from being used. Lowering the ramp
rate would extend the cool-down time between sweeps and hence extend the available scan duration,
but AFM measurements drift with time and high resolution DataCube measurements take several hours
even with relatively high ramp rates. Increasing the setpoint would reduce the risk of conductive probe
failure, due to reducing the current density through the apex and increasing thermal contact area with
the sample, however heating the sample is to be avoided where possible and the current density change

is likely to be minimal without severe tip or sample deformation.

There are three heat dissipative mechanisms from media: radiation, conduction, and convection[58l. All
of these are dependent on external contact area, which is very small for an AFM probe, but the flat shape
of a cantilever is beneficial due to the high surface area to volume ratio allowing efficient movement of
heat energy to the surface. Radiative energy loss is limited by the very low emissivity of the platinum
forming the tip and cantilever, which is just 3% of blackbody behaviour!3?l. Thermal conduction is
limited by the small dimensions of the connection between the cantilever and tip, which will throttle the
heat flow into the probe substrate or the sample. Convection requires currents in the surrounding fluid,
in this case air, but the AFM enclosure is closed during measurements forming a sealed environment
with minimal air movement. So while the probe has a high thermal conductivity and efficient surface
area to volume ratio, the geometry of the system does not lend itself to rapid thermal dissipation and

so Joule heating remains a limiting boundary on the values of several scan parameters.

The preceding discussion is difficult to quantify due to the multiple mechanisms at play, however the

Preece equation may aid with this because it provides a quantitative expression for the fusing current
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of an infinite wire[14%141] |t is most suited to highly thermally and electrically conductive metals such
as gold and platinum 1] so is of interest when considering the failure of electrically conductive AFM
probes. The equation was obtained by considering the limiting case!*% where the dissipating electrical
power

P=1I°R (4.46)
is equal to the thermal power loss

P = hA, (4.47)

where h is the thermal power per unit area through the wire wall and A is the exterior surface area of
the wire. The relation for the resistance of a conductor with resistivity p, length [, and cross-sectional
area A, is[®

rR=2 (4.48)

Iy = \/Ai\/?\/f~ (4.49)

so the fusing current Iy becomes

For a cylinder of radius r this yields

Iy = g %(27")3/2 = B (2r)"? (4.50)
which is the Preece equation where B is the Preece coefficient for the material. This does not necessarily
apply to non-cylindrical conductors due to assuming uniform radial thermal dissipation but this will at
least provide an order of magnitude estimate!**?l. Considering a cuboid with length [, width w, and
thickness ¢, equation (4.49) becomes

B
It = /8wt (w+1)

o (4.51)
Theoretical analyses have limited success when modelling resistive heating behaviour due to the complex
dynamics of the system, and even finite-element-analysis will not perfectly represent the reality. The
remaining solution is therefore to perform an empirical investigation, which was reported by Jiang et
al.'%%1 who investigated the failure process of metal-coated AFM probes due to resistive load. Figure
4.14 shows the |-V curves for repeated bias sweeps performed with a metal-coated probe on a 100 nm
thick platinum film. It is not specified whether this was done using the PFTUNA or SCM-PIT-V2 probe,

however both have a 25 nm Ptlr coating[*% so the difference is minimal.

The first curve initially displays the lowest resistance, however this conduction degrades during the first
sweep once the current reaches 3.5 mA. This weakening without total failure suggests that the coating
has thinned but remained continuous['%’l. The resistance then jumps to the MQ regime where the

probe remains stable, shown by the yellow curves. This stability is likely a result of the higher resistance
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Figure 4.14: Repeated |-V curves performed over a metal-coated probe on a 100 nm thick platinum

film[97 The blue curve shows the initial degradation to the coating during the first -V ramp and
the green curve shows the total failure of the electrically conductive coating at higher biases. Figure

adapted from Jiang et al[107].

significantly reducing the Joule heating due to P = V?/r. The problem here is that the resistance
measurement is purely an artefact of the damaged probe, obscuring the true values and providing

misleading results[107].

The contact still appears ohmic and so it is not obvious that the measurement
has failed; indeed, ohmic curves with metal-coated probes were observed in the early stages of the work

in this project and implied that the initial trial measurements were more successful than the reality.

The resistance increases slightly over consecutive sweeps, which is likely just the effect of gentle Joule
heating as observed in all electrical conductors, but is otherwise stable within the swept range. The bias
was then raised further until the degraded probe reached 510 pA and failed completely[197] as seen in the
green curve. The final red curve is measuring the poor electrical conductivity of the probe itself. These
failure currents are far above the range of the usual measurement regime, with the Bruker application
modules designed for sub-pA values, and so metal-coated probes are perfectly suited to standard electrical
resistivity characterisation measurements. However, when measuring the higher currents arising during
metallic film characterisation it is clear that metal-coated probes are inadequate and solid-metal probes

must be used in their place.

4.7 Kelvin probe force microscopy

Kelvin probe force microscopy (KPFM) probes the electrostatic surface potential of a sample. An

electrically conductive probe is used in TappingMode whilst an AC potential is applied to the probe or
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sample stage. The AC potential has the form 143!

V (t) = Vae sin (wt) + Vpe (4.52)
where V4o is the AC magnitude, w is the AC angular frequency, t is time, and Vp¢ is some DC offset.

The capacitive force in the positive z-direction is derived from the differential of capacitive energy 144

_ 91
T 022

_10C

F C()V?= 55, Vepa + Vacsin (wact))? (4.53)

rather than the naive consideration of Coulomb'’s law (58]

C(2)* V2

F=—
dmez?

, (4.54)

because the energy considerations account for the geometry of the system whilst Coulomb’s law assumes
both capacitor electrodes may be approximated as point charges. The capacitance gradient is inherently
always a negative value thus equation (4.53) is negative in the positive z-direction and hence attractive.

The cantilever therefore experiences a resultant force of [143]

ocC 10C

. 1_.
F =FkAz Via+ QVjC} + —VipaVac sin (wact) — Viccos(2wact)  (4.55)

9z 40z

_1ac
T 20z

and mechanical frequency shift [143]

w OF
Awr ———
“ 2k 0z
w (10°C 1 o2c 192C
- _% {2822 |:‘/(:2'pd + 2Vj({| + 07‘/(’1,([‘/14(7 S1n (wA(jt) — zw‘/jc COS (QOJACt)} .

(4.56)

Here C' is capacitance, k is the cantilever spring constant, and V,,4 is the contact potential difference,
which is a linear combination of the potentials and work functions of the tip and sample surface and

represents the effective DC potential of the system.

These expressions have three main components: the DC term, the w term, and the 2w term, which con-

(193] The amplitudes

tribute towards topography, potential, and capacitance measurements respectively
of each of the oscillating terms are measured using lock-in amplifiers, and for the cantilever deflection

Az the amplitudes are

1]10C _ .
44;‘: — ? (‘—)77‘/(‘1)(/ ‘/AC (457)
and
1 0C
Asy = 15 95 Ao (4.58)

The latter is simply the root-mean-square of the AC potential V¢ sin (wt) and is equal to the DC term

with Vopg = 0.
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4.7.1 Probe capacitance and capacitive forces

KPFM is not used in this work intentionally, but in any situation where an electrically conducting probe
is not in contact with a grounded conductor, a capacitor is formed and the application of a potential will
result in electrostatic charge build-up and thus the observation of electrostatic behaviour. This means
that the term with frequency w4 will be picked up by lock-in amplifiers when performing any AC based
measurement and the electrostatic contribution A, will be added onto any measured amplitude; when
the total DC term V,,q is negative the sign-reversal of the amplitude manifests as a phase shift of 7.
Strictly speaking the exact form of the terms provided is applicable solely to metallic systems, while for
dielectric samples the contact potential difference is replaced by an expression considering electrostatic

surface charge, but which still exhibits the phase shift of 7 when the net potential changes sign 143,

The parallel plate capacitor equation gives the capacitance C' for parallel plates with area A and sepa-
ration zq to bel®8

c -4 (4.59)
20

but this is invalid here because it requires both lateral dimensions of each electrode to be much larger
than the plane separation zy, which is evidently untrue for an AFM probe so a more specific treatment
is required. The truncated cone and spherical apex of the AFM probe may be considered separately and

(1441 The modelling of each component then extends

summed as capacitors connected in a parallel circuit
this concept by considering each infinitesimal area of the tip to form a capacitor with the electrically
conducting sample or stagel'*4l. This model applies equally to metal-coated and solid metal-probes
because charges within conductors migrate to the outer surface[®®, thus it is only the outer geometry

which contributes to capacitance. The cantilever itself was neglected in this model.

The contribution of the tip-cone to the DC capacitive force of the tip-electrode system shown in Figure

4.6 is given for potential V' and electric permittivity ¢ by [144
2 a 1 1
Frone (2,V) = —LQ {m (’Z) t 2 ( - )] (4.60)
In [tan (¢/2)] 2p Za %
and in the large separation limit z > r; this becomes
meV? z z
Feone (2, V) = — —In —1f . 4.61
cone (2, V) In [tan (2/2)]* L’"‘ht <Z+ht> ] (401

The contents of the right-most square brackets have been written thus because the function z—In (z)—1
is non-negative for all real x, and hence it is clear that the force is attractive. Using equation (4.53) the

differential capacitance for the cone is

aCcone _ 27(-6 5 |: ht + ln ( Z ):l (462)
0z In [tan (2/2)]" |z + he z+ ht
which integrates to yield
2 h
Ceone (Z) = e 3 In (Z s t) ) (463)
In [tan (e/2)] z

135



CHAPTER 4. FUNDAMENTAL PRINCIPLES OF ATOMIC FORCE MICROSCOPY

assuming € to be approximately constant in z.

The contribution of the tip-apex to the capacitive force of the tip-electrode system shown in Figure 4.6

is given by [144]
1 —sin ()
Fapex (2, V) = — 7 & 4.64
pex (%, V) 7T5”,2{2'—&—7} [1 —sin(a)]} (4.64)
and in the large separation limit z > r, this becomes
2
Fapex (2, V) = —7e (%) 1 — sin (a)] V. (4.65)
Using equation (4.53) the differential capacitance for the apex is
OCapex - T\ 2 .
5 = —2me (;) [1 — sin (a)] (4.66)
which integrates to yield
r? re [ AapexE Ty
Capex (2) = 2me—L [1 —si == =) = ZCur, 4.67
pex (2) me- [1 — sin ()] . < " 5 Celf ( )

where Cseif is the self-capacitance of a spherical cap with surface area A,pex. Again, € was assumed to
be approximately constant in z. The presence of the ratio /= in the force and capacitive expressions
highlights that the cone contribution dominates the apex contribution in the regime where z > ry,

which does make intuitive sense.

In contrast to a typical capacitor system, the AFM probe is free to move so will demonstrate the
KPFM behaviour described in equation (4.55) in any situation in which an AC bias is applied and the
tip does not make contact with a ground, especially when the insulating medium has a large relative
permittivity. Electrostatic repulsion from induced surface charges will potentially raise the tip from
the surface and allow the full cantilever oscillation to occur. This electrostatic contribution shall be
considered empirically as it arises, thus in the following it shall be neglected and the DC potential will

merely be the applied offset Vpe.

Over a sample of thickness zy > r; the electrostatic force acting on the cantilever may therefore be

determined using equations (4.55) and (4.62) to be
F = Feappc + kA sin (wact) + kAg, cos (2wact) (4.68)
where

Fcap,DC = kAanp,DC

e hy < 20 )] ( , 1, )
N ()| (Vo t+ 5V, 4.6
In [tan (04/2)]2 [Zo + ht 20 + he pd T 5 VAC (4.69)
2me hy ( 20 )]
do= i 7 )| Vepal V. 4.70
In [tan ((x/2)]2 |:20 + ht 20 < ht | pd| AC ( )
TE . %
Az = = +m(ﬂv2. 4.71
? 21n [tan (a/Q)]Q [20 + hy 20 + ht AC ( )
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4.8 Piezoresponse force microscopy

Piezoresponse force microscopy (PFM) probes the piezoelectric behaviour of a sample and is a surface
contact technique so the resolution of mechanical strain is confined to the tip-sample contact area and
thus is highly localised. An electrically conductive tip is dragged along the surface while an AC potential

is applied to the probe or sample stage, with form 14!

1% (t) = V¢ sin (wAct) + Vpe . (4.72)

The sample responds with an AC deflection [14°]
Az (t) = Agsin (wact + ¢s) + Az (4.73)

where A is the sample surface oscillation amplitude and ¢; is the corresponding phase. The values of

A, and ¢, are extracted using a pair of digital lock-in amplifiers.

However, this measurement is subject to the electrostatic contributions defined in Section 4.7, which
means a more accurate expression for the measured response is
1 ‘80

Az (t) = Agsin (wact + ¢s) + % 15

‘ VepaVac sin (wact) + Azg . (4.74)

A high k probe is typically used to suppress the deflection arising from the electrostatic term, but this

cannot negate high potentials which require a more advanced technique as will be seen in Chapter 8.

4.8.1 PFM phase

The PFM phase is a measure of the electric dipole polarisation. The phase is zero when the the dipoles
are parallel with the positive electric field direction and 7 when the dipoles are anti-parallel[143]. The

corresponding functional form is
¢ (E) = g {1 —tanh|a(E — E.)]} (4.75)

which is a modification of the ferroelectric sigmoid expression in equation (2.129) and is again a theo-

retical Heaviside function which is smoothed by physical effects.

The sigmoid-like curve is inverted in samples with negative electrostriction coefficient @33, however the
vast majority of materials have Q33 > 0116, The phase follows the polarisation so also describes a
hysteresis loop in ferroelectrics. The phase is a wholly intrinsic characteristic of the material so the

value is the same however it is measured, in contrast to the amplitude.

In real experiments there will be some experimental offset which means the phase values do not lie

neatly at ¢, = 0 and ¢, = 710l This offset is dependent partially on the wiring in the AFM system
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and especially on the resonance frequency of the cantilever being used 9], and should be carefully
accounted for due to the bounded nature of phase. The lock-in amplifiers return the phase on the
domain —7m < ¢, < 7, so a slight positive phase offset will push the ¢s = 7 values past the 7 domain
limit and wrap it around to be just above ¢, = —, effectively inverting the loop*€!. Figure 4.15 shows

the same example data twice with different phase offsets.

10 Phase offset
(rt rad)

—o— —0.2

—=— 40.2

Phase (m rad)

8 6 -4 2 0 2 4 6 8
Ve (V)

Figure 4.15: Two PFM phase curves for the same set of data points which have differing constant

offsets.

The phase-wrapping effect means the phase shift appears to be reversed for one curve relative to the
other[#]In wider transitions there will be data points during the transition process so any phase-
wrapping will be clear, but in sharper transitions such as the example in Figure 4.15 context must be

used to determine which phase shift is correct.

The absolute value of the phase is not as important as the magnitude and sign of the relative phase,
and the unwrapped curve can just be shifted vertically to sit on the line ¢5 = 0. As a rule of thumb,
if the offset is negative then the curve should not have been inverted because it should have simply
been shifted downwards and thus not passed a domain limit, while if the offset is positive then some
values of the curve will have been pushed past the ¢ = 7 threshold and inverted. This inversion should
be straightforward to correct by simply displaying the data on the range 0 < ¢s < 27 instead of the

recorded —m < ¢s < 7. This does not work in all instances but is a very good starting point.

There are two possible approaches to quantitatively account for this inversion. The easiest is to use a
sample with known sign of Q33 and perform PFM far above and below the switching potential [146]. The
mean phase of each scan can be taken and using the known sign of Q33 it can be determined which
scan should have a phase of zero: the higher potential for Q33 > 0 and the lower potential for Q33 < 0.

The recorded mean phase for this scan is the experimental phase offset 146,

However, (D33 is not known for all materials, especially when they are formed into structures and stacks;

in these cases the AFM experimental phase offset must be calibrated. One way to do this is to positively
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polarise the sample, then determine the phase far from sample resonance for a range of cantilevers and
produce a plot of measured phase against cantilever resonance frequency[#9l. A straight line may be
fit which provides a function by which the phase offset for a specific cantilever may be calculated. This
is specific to each particular AFM system, however an example for what this would look like is provided

in Figure 4.161140]

1.0
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Cantilever resonance frequency f; (kHz)

Figure 4.16: An example calibration plot for phase offset due to measuring equipment, using data for
SiO, and PZT. The PZT results form two bands offset by 7 radians, which correspond to opposite
ferroelectric polarisation directions. The phases have been unwrapped hence the range of the phase-axis

is larger than 27. Figure adapted from Neumayer et al[146],

4.8.2 PFM amplitude

The amplitude of the oscillation is the range over which the substrate deforms during the PFM mea-
surement and the exact value of this is somewhat extrinsic because it depends on the magnitude of the
applied AC potential and on the difference between drive and resonance frequency. The off-resonance

amplitude is half of the total change in deformation, so for a potential dependent deformation Az (V),
1
As = 5182 (Vpe +Vac) = Az (Voo = Vac)l - (4.76)

If Vac is small,

1 Az (Vpe + 2Vac) — Az (V]
As = = |Az (Vpe + 2Vac) — Az (Vpe)| = Vac (Vbe Ac) (Vo) , (4.77)
2 2Vac
and using I'Hopital’s rule
0Az 022/
As =~ —| = — 4.
s~ Vac Vo AC | Ve (4.78)

where z is the substrate thickness. The vertical strain is S3 = 42/z, and the applied field is E3 = Vbc/z,

SO

oS
23 = Ve |dss| - (4.79)

As ~ VAC 8E3

Hence any variation in measured amplitude is proportional to a variation in piezoelectric coefficient ds3.
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However, this only applies to fine samples such as powders or thin films. PFM measurements are
sensitive to a depth of 1.7 um*7! in most materials but cannot resolve any contrast below this depth.
This limit is a consequence of strain dissipation effects, similar to those observed for FeRh grown on
MgO(001) substrates in Section 3.4.1, which arise because the majority of the crystal is not exposed to
the field and thus does not change in size. The strain is therefore calculated over a different thickness

to the field, and equations (4.78) and (4.78) become

082/, 053 | 2} 2
A, ~ — 1% = — 0 = dss| =2 4.
Vac | gv0 T Vac |5 2| 7 Vac |dss| . (4.80)
where the characterisation depth z{, has value
20 for zp < 1.7pm
2y = . (4.81)

1.7pm for zy > 1.7pm

The resulting amplitude curve for an exemplar piezoelectric sample with piezoelectric coefficient ds3 =
2nm V™! and drive amplitude Vac = 0.5V is shown in Figure 4.17. The response has a constant
amplitude of 1 nm for thin films, but decreases rapidly for thicker samples and for 250 pm the amplitude
is just 6.8 pm. This demonstrates that a consequence of the characterisation depth is that thick samples
exhibit substantially smaller amplitudes than fine ones, and thus using PFM to characterise samples
such as PMN-PT substrates will be much more difficult than for the thin films typically characterised

using AFM techniques.
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Figure 4.17: The theoretical dependence of PFM amplitude on sample thickness for an exemplar piezo-
electric sample with piezoelectric coefficient ds3 = 2nmV ™' measured using a drive amplitude of

Vic =0.5V.

Significantly, the existence of this characterisation depth also means that PFM does not specifically
provide a characterisation of the sample surface, which is highly unusual for a scanning probe technique.

This is a consequence of PFM being an active measurement technique, meaning that the sample response
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to external stimulus is being characterised, in contrast to the majority of AFM techniques which passively

measure surface properties without directly stimulating the sample.

4.8.3 Piezoelectric resonance

The resonance frequency of the system may be determined by sweeping the drive frequency and recording
the amplitude of the sample response while Vpo = 0Vl so that electrostatic contributions are
negligible and the amplitude is simply A; = Az. The resulting amplitude curve is a Lorentzian centred
at the resonance frequency f,.[1401. The resonance frequency depends on the local crystal structure
of the sample and so it is useful to determine how the resonance frequency varies across the surface,
because inhomogeneity in this parameter could introduce artefacts into the PFM data when imaging
near resonance !9 This is not solely dependent on the resonance of the sample itself, but also depends
strongly on measurement parameters such as the probe used, and thus will vary significantly between

measurements even when using similar probes on the same sample.

Imaging with the drive frequency fac near resonance has advantages and disadvantages and a decision
must be made regarding which to choose. The resonance provides an enhancement to the measurement
signal amplitude which improves the signal-to-noise ratio!*®! and enhances the contrast of the phase
map. However, the amplitude is now a convolution of sample response and the difference between drive
and resonance frequencies, and the resonance frequency varies across the sample surface meaning the

amplitude may no longer provide meaningful values 4],

4.8.4 High-voltage PFM

High-voltage PFM (HV-PFM) can be performed by using the high-voltage line on the Dimension lcon
system to increase the applied potential and hence electric field strength, especially over thicker samples.
This line increases the potential range from the standard 12V to £220V and should only ever be
applied to the probe rather than to the stage for safety reasons. However, throughout this work it was
observed that performing HV-PFM resulted in significant surface degradation, by seemingly ablating or
depositing material to form craters, peaks, or even raising the entire scan area, with the consequence
that the topography is obscured and piezoelectric contrast is lost to the degraded surface. This was
observed and explained by Chung et al.[1#8 for polymethyl methacrylate (PMMA) and it is believed that
this phenomenon will affect all insulating materials. Spectroscopic sweep-based measurements produce
peaks at individual sites whilst contact based measurements disrupt the entire surface. This limits the
repeatability of HV-PFM scans because the sample will be poorer condition following measurement, and
limits the resolution of spectroscopic measurements because the pixels must be separated by a distance

larger than the degradation radius.

141



CHAPTER 4. FUNDAMENTAL PRINCIPLES OF ATOMIC FORCE MICROSCOPY

In the study on PMMA this was a consequence of the very high field adjacent to the probe acting
on an insulating crystal 8. This field is of the order 10°Vm™" to 10!V m™" so is able to sever the
localised electrons from their orbitals and attract them towards the tip, resulting in extreme Joule heating
occurring and a nanoscale portion of the sample becoming a nanofluid 8. The probe is repulsed by

[148]  Multiple peaks may

forces within the fluid and the fluid rises with it then cools to form the peaks
be formed if the tip-apex is sufficiently large and rough to feature multiple field maxima. The peak
forming process is more significant for softer probes such as PFTUNA than for stiffer probes such as

SCM-PIT-V2 due to the deflection size being governed by the cantilever spring constant.

In the literature nanodots with height up to 8 nm and diameter up to 150 nm were formed on poly-
methylmethacrylate (PMMA) for potentials in the range 10 — 30V [148] Increasing the potential to the
30 — 60V range produced Taylor cones*8], which feature a central cone of height 50 nm and full width
at half maximum 150 nm surrounded by a moat with diameter 2 pm and depth 60 nm. Both of these
features are shown in Figure 4.18a. The time over which the potential is applied is also significant, with
the Taylor cone rising with time until it completely ablates leaving only the moat which now forms a

crater, this is shown in Figure 4.18b.

Figure 4.18: The structures produced by applying high potentials to AFM probes in contact with
insulating crystals. Figures reproduced from Chung et al[148, (a) Six nanodots produced at 10 — 30V
and a Taylor cone with height 50 nm formed by applying 40V for 16s. (b) Three Taylor cones Q, R, S
and one crater T" formed by applying 50V for 6s, 10s, 14, and 22s respectively.

Alternatively, atoms may also be manipulated by temporarily bonding lattice ions to an AFM tip and
then depositing the ion at a new site[19. This is aided significantly by high electric fields being present,
for example when using a high-voltage conductive AFM probe. However, this is less likely to produce
the distinctive features observed for the PMN-PT sample, which more closely replicate the Taylor cones
seen in the study on PMMA48] |t should be noted though that the cause of the surface disruption
of the PMN-PT sample under high fields is only speculated upon in this work, and the precise origin of

this remains an open question.
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4.8.4.1 Signal access module

The high-voltage line is not available on the standard NanoScope Controller and instead must be accessed
using the ANA2 (HV) connection on a signal access module (SAM). Each NanoScope Controller is only
compatible with the same generation SAM unit because the signals in use are altered between controller
generations. Hence the SAM-V was the module used in this work and is shown in Figure 4.19. The
SAM is a large breakout box which connects between the microscope and the controller and features
pairs of BNC connectors for every input and output signal on the system. These allow the signal to be
redirected to an external device or be replaced by the signal from an external device to allow advanced
control and analysis; both connectors may be used simultaneously to perform a real-time modification
of the signal. In this work the SAM will be somewhat underutilised because the only BNC connection

being used is the ANA2 (HV) output.

Figure 4.19: The signal access module for the NanoScope Controller V system with a BNC cable attached

to the ANA2 (HV) connection. The red caps are safety covers for unused high-voltage outputs.

4.9 The nanoscope Python package

Analysis of the files captured by the Bruker NanoScope software is typically performed using the pro-
prietary NanoScope Analysis software. This provides a wide range of processing tools however was
inherently too inflexible for use in the advanced metrological development work in Chapters 5 and 8 of
this thesis. Instead, the official nanoscope Python package['® was used to import the captured data
values into Python where multiple files were able to be compiled into a single data set and numeric

analysis such as functional fits could be performed.

The package was only publicly released in April 2021 however a beta version of the package was provided
by Bruker in November 2018 due to the requirements of this work. All AFM data obtained and presented

in this thesis has been extracted using this package and processed and plotted using Python.
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4.10 Sample preparation for AFM measurements

The preparation required before imaging a sample using an AFM is minimal which is why AFM is such
a flexible and useful technique. The predominant requirements are simply that the sample surface be
free from contaminants, and have features smaller than the tip height or the 6 ym range of the z piezo.
There are a wide range of possible types of contaminants from loose debris and particles to grease or oils
on a mishandled sample, and it is important to avoid unnecessary exposure to air outside of cleanroom

environments for samples intended for AFM analysis.

There are two types of solvents categorised by the presence or absence of electric dipoles: polar and
non-polar[*®1]. These may only dissolve contaminants with the same properties so both types should be
used for a comprehensive clean, however the majority of surface contamination is simply loose debris
which may be readily removed with any cleaning liquid. Acetone is typically the initial solvent to be used
because it features both polar and non-polar bonds within the molecule*5! thus is an effective cleaning
agent for most contaminants. Plastics are susceptible to non-polar solvents due to being formed from
long chain non-polar polymers!*5l and so samples must be free of residual acetone before being replaced
in a plastic sample box; polar solvents have no such effect. Acetone readily evaporates from surfaces

however may leave behind a residue when it does so.

A second cleaning step is thus performed using isopropanol (IPA) which is a polar solvent that evaporates
cleanly. Nitrogen guns are used to aid with drying samples when available but often the solvent must
be left to evaporate naturally. The cleaning occurs by submerging the sample in the solvent of choice
then placing the beaker inside an ultrasonic cleaner where the vibrations provide a scrubbing effect.
On occasion some well-adhered debris will not be removed with this technique so a cleanroom swab or
wipe may be carefully used with some solvent to physically clean the surface, although this can lead to
damage including scratches so should be avoided where necessary. In addition to the rapid evaporation,
both of these solvents are u