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Abstract

We are interested in the efficient numerical solution of the structured linear systems
that arise when we apply stochastic Galerkin mixed finite element methods (SGM-
FEMs) to systems of partial differential equations (PDEs) with inputs that depend
on a possibly large number of uncertain parameters. In particular, we are interested
in PDEs arising in engineering applications for which SGMFEMs give rise to saddle
point systems, such as linear elasticity and fluid flow problems.

Despite being highly structured, saddle point systems associated with SGMFEMs
are challenging to solve due to their extremely large size. The number of equations is
the product of (i) the number of degrees of freedom associated with the chosen mixed
finite element method on the spatial domain and (ii) the dimension of the polynomial
space associated with the parameter domain. When we refine the finite element mesh
and/or increase the degree of the parametric polynomial approximation to improve
accuracy, the dimension of the associated linear system increases. When working on
standard desktop computers, one cannot use conventional Krylov subspace methods for
very fine SGMFEM discretisations because storing the required matrices and vectors
quickly exhausts available memory. One potential remedy is to recast the discrete
problem as a linear multi-term matrix equation (LMTME) and use reduced basis
methods. Such methods construct low rank factored approximations to the solution
matrix by projecting the problem onto a lower-dimensional space.

Our main aim is to develop a memory efficient solver for the discrete problems that
arise when we apply SGMFEMs to a three-field linear elasticity model with parameter-
dependent Young modulus. The starting point is a reduced basis method known as
Multi-RB that was recently proposed for LMTMEs associated with symmetric and
positive definite problems. After reformulating the matrix equation, the scheme itera-
tively constructs a reduced basis using a strategy inspired by rational Krylov subspace
approximation, then applies Galerkin projection and solves a reduced problem. When
the problem is not positive definite, the best choice of preconditioner and projection
technique to apply is not clear. For large-scale problems with solutions that cannot
be approximated well by very low rank matrices, selecting a computationally feasible
stopping condition is also problematic.

We modify the Multi-RB method to solve LMTMEs associated with symmetric and
indefinite problems. For the linear elasticity problem of main interest, we critically
assess the performance of the method using two distinct preconditioning strategies and
two projection techniques. We also provide new eigenvalue analysis for the precondi-
tioned systems. For smaller problems, we examine the convergence of the method by
tracking the preconditioned and unpreconditioned residuals. Finally, to compare how
the solver behaves on a different LMTME with the same structure, but whose solution
matrix has different rank characteristics, we also consider a two-field groundwater flow
model with parameter-dependent permeability coefficient.

15



Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

16



Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any rele-

vant Thesis restriction declarations deposited in the University Library, The Univer-

sity Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regul-

ations) and in The University’s Policy on Presentation of Theses.

17



Acknowledgements

I thank my supervisor, Catherine Powell, for her guidance and support over the past

four years. This thesis could not have been completed without her corrections and

suggestions. I’ve learnt so much from her. I thank my co-supervisor, David Silvester,

for his introduction to the basics of mixed finite element methods and matrix analysis

during my first year. I also thank Valeria Simoncini for the discussion of the multi-term

reduced basis method.

I thank my parents for their love all the time. I also thank them for allowing me

to do my PhD in the UK. It has been a long time since I last left home. They keep in

touch with me every day so let me not be too homesick and focus on my project.

Finally, I thank all my friends, from back home and from Manchester, for their

company. Research life is challenging and sometimes lonely, especially during the

Covid years. With their help and care, most of my four-year research life has been

colourful.

18



Chapter 1

Introduction

Many important physical processes such as the deformation of elastic materials and

fluid flows can be modelled using partial differential equations (PDEs). Since it is often

too difficult to solve PDEs exactly, the study of numerical approximation schemes is

important. For models consisting of systems of deterministic PDEs with inputs (such

as coefficients, boundary conditions, etc.) that are known, we may approximate their

solutions using standard finite element methods, see [11, 26]. For PDEs with more

than one solution variable, Galerkin mixed finite element approximation is a popular

strategy. Such approximation schemes often lead to discrete problems with saddle

point structure that can be solved using standard Krylov subspace methods, see [26].

In this thesis, we are concerned with PDEs with more than one solution variable

that have uncertain inputs that are modelled as random fields. Such stochastic prob-

lems can be reformulated as so-called parametric PDEs and solved using stochastic

Galerkin mixed finite element methods, see [25, 27, 44, 58]. The resulting discrete

problems have both saddle point and Kronecker product structures and are commonly

of extremely large size. On a standard desktop computer, standard Krylov subspace

methods can no longer be applied because storing the required matrices and vectors

quickly exhausts available memory. This deficiency motivates our need in this thesis

to develop a memory-efficient solver for high-dimensional problems. Using properties

of the Kronecker product, we will exploit the fact that the linear systems of interest

can be reformulated as matrix equations. Our new solver is an extension of a reduced

basis method called Multi-RB that was introduced in [64] for matrix equations associ-

ated with a parameter-dependent PDE problem with one solution variable for which
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stochastic Galerkin approximation yields a symmetric and positive definite system

matrix. The key difference is that the problems we want to investigate have a more

complex structure. The associated matrices are symmetric and indefinite with saddle

point structure.

In this chapter, we introduce two PDE problems with uncertain inputs that can

be formulated as parametric PDEs. In Section 1.1, for the benefit of readers who are

not familiar with parametric PDEs, we first give a brief introduction to the associated

deterministic formulations of these two problems and briefly explain how to apply

Galerkin mixed finite element approximation. Then, in Section 1.2, we introduce

the parameter-dependent formulations and outline the structure of the linear systems

obtained when stochastic Galerkin mixed finite element approximation is applied. We

also explain how to reformulate the discrete problems as matrix equations. In Section

1.3, we review some existing methods in the literature for solving matrix equations

and motivate our chosen solution approach that will be developed later.

1.1 Deterministic saddle point problems

Let D Ă R2 be a spatial domain that is a Lipschitz polygon with boundary BD that

can be decomposed into two parts as

BD “ BDD Y BDN ,

where BDD X BDN “ ∅, BD ‰ ∅ and BDN ‰ ∅. First, we consider a linear elasticity

model, which involves the unknown displacement u : D Ñ R2 of an elastic material,

a body force f : D Ñ R2 and a stress tensor σ : D Ñ R2ˆ2 of the form

σpxq :“ 2µpxqϵpxq ` λpxq∇ ¨ upxqI, (1.1)

which is defined in terms of the strain tensor

ϵpxq “
1

2

´

∇upxq ` p∇upxqq
J
¯

,

which itself depends on u. In (1.1), I P R2ˆ2 is the identity matrix, and µ : D Ñ R

and λ : D Ñ R are the Lamé coefficients arising in strain-stress relationships, see

[48, 73]. These coefficients depend on the Young modulus E : D Ñ R and the Poisson
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ratio ν via the following relations:

µpxq “
Epxq

2p1 ` νq
, λpxq “

Epxqν

p1 ` νqp1 ´ 2νq
.

Note that here, E is spatially varying whereas ν P p0, 0.5q is assumed to be constant.

The standard linear elasticity model with mixed boundary conditions is written as

´∇ ¨ σpxq “ fpxq, x P D, (1.2)

upxq “ gpxq, x P BDD, (1.3)

σpxq ¨ n “ 0, x P BDN , (1.4)

where the vector n is the unit normal vector to the boundary pointing outward and

g : D Ñ R2 is a known function. When the Poisson ratio ν Ñ 1
2
, λ Ñ 8 and the

material becomes less compressible.

If we apply standard finite element methods to approximate u in the linear elas-

ticity problem (1.2)–(1.4), a priori error estimates are not uniformly convergent for all

ν. The approximation error in actual computations does not decrease at the predicted

rate in the nearly incompressible case for most practical levels of discretisation. In this

case, numerical approximations of the displacement u will deteriorate when ν Ñ 1{2.

This phenomenon is called locking, see [3, 86]. The underlying issue is that the coeffi-

cient λ Ñ 8 and u must satisfy the constraint ∇ ¨ u “ 0 in the incompressible limit.

A standard way to avoid locking is to introduce an additional variable p : D Ñ R

ppxq :“ ´λpxq∇ ¨ upxq, (1.5)

which is often called the Herrmann pressure (see [35] for more details). If we substitute

(1.5) into (1.1), the stress tensor σ now becomes

σpxq :“ 2µpxqϵpxq ´ ppxqI. (1.6)

This leads to a two-field linear elasticity problem

´∇ ¨ σpxq “ fpxq, x P D, (1.7)

∇ ¨ upxq ` λ´1
pxqppxq “ 0, x P D, (1.8)

with the same mixed boundary conditions as in (1.3)–(1.4). This mixed formulation

(1.7)–(1.8) is valid for all possible values of the Poisson ratio. When ν Ñ 1{2, this
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mixed formulation becomes the Stokes equations, see [14, 26, 31]. We can apply mixed

approximations that are stable for the Stokes problem to solve this mixed formulation

of the linear elasticity problem. In [43], several a posteriori error estimators for mixed

approximations are proved to be robust in the incompressible limit for the linear

elasticity problem (1.7)–(1.8).

Second, we consider the so-called Darcy model for groundwater flow. This combines

Darcy’s law

upxq “ ´Apxq∇ppxq (1.9)

which relates fluid velocity u : D Ñ R2 to the pressure p : D Ñ R and permeability

coefficient A : D Ñ R, and a mass conservation law

∇ ¨ upxq “ fpxq,

where f : D Ñ R describes any sources/sinks. When the fluid is incompressible

and there are no sources/sinks, then fpxq “ 0. Combining these equations gives the

two-field model

A´1
pxqupxq ` ∇ppxq “ 0, x P D, (1.10)

∇ ¨ upxq “ fpxq, x P D, (1.11)

with mixed boundary conditions

ppxq “ gpxq, x P BDD, (1.12)

upxq ¨ n “ 0, x P BDN . (1.13)

See [62, 74] for further discussion.

We now apply Galerkin mixed finite element approximation to approximate the

displacement u and the Herrmann pressure p for the elasticity problem and the velocity

u and the pressure p for the groundwater flow problem. In this case, we choose two

finite element subspaces for u and p in these two problems that satisfy the inf-sup

condition, as described in [10, 14].

The weak formulations of the two-field linear elasticity problem (1.7)–(1.8) with

boundary conditions (1.3)–(1.4) and the two-field groundwater flow problem (1.10)–

(1.13) are saddle point problems. In abstract form, we seek u P V and p P Q such
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that

apu,vq ` bpv, pq “ hpvq, @v P V , (1.14)

bpu, qq ´ cpp, qq “ ℓpqq, @q P Q, (1.15)

where V and Q are appropriate Hilbert spaces on D, a : V ˆV Ñ R, b : QˆV Ñ R

and c : Q ˆ Q Ñ R are bilinear forms and h : V Ñ R and ℓ : Q Ñ R are linear

functionals. To approximate the solution in each case, we must choose compatible

finite-dimensional spaces Vh Ă V , Qh Ă Q and find uh P Vh, ph P Qh by solving

apuh,vhq ` bpvh, phq “ hpvhq, @vh P Vh,

bpuh, qhq ´ cpph, qhq “ ℓpqhq, @qh P Qh.

In both cases, this yields a discrete saddle point system of the form
»

–

A BJ

B ´C

fi

fl

»

–

u

p

fi

fl “

»

–

f1

f2

fi

fl . (1.16)

If Epxq and A´1pxq are strictly positive spatial functions, then the matrix A is sym-

metric and positive definite. The entries of the vectors u and p are the coefficients

of uh and ph when expanded in the chosen bases for Vh and Qh. For the linear elas-

ticity problem (1.7)–(1.8) with boundary conditions (1.3)–(1.4), the vectors u and p

are associated with approximations of the displacement and the Herrmann pressure,

respectively. For the groundwater flow problem (1.10)–(1.13), C “ 0, and the vectors

u and p are associated with approximations of the fluid velocity and the pressure,

respectively.

1.2 Parameter-dependent saddle point problems

In real world applications, the inputs of PDEs, such as coefficients, boundary condi-

tions and source terms, are often uncertain. For example, the Young modulus Epxq

in the linear elasticity problem (1.7)–(1.8) with boundary conditions (1.3)–(1.4) and

the permeability coefficient Apxq in the groundwater flow problem (1.10)–(1.13) are

often uncertain. A common way to deal with uncertain quantities that are spatially

varying is to model them as random fields with prescribed mean and spatial covariance

functions. Such random fields can be expressed as Karhunen-Loève (KL) expansions,
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see [4, 49, 55]. A KL expansion is an infinite series with random coefficients, which can

be truncated after a finite number of terms for use in computations. We will discuss

KL expansions in more detail in Chapter 2.

Consider again the linear elasticity problem (1.7)–(1.8) and suppose we model the

Young modulus Epxq as a random field of the form

Epx, ωq :“ e0pxq `

M
ÿ

r“1

erpxqξrpωq, x P D, ω P Ω, (1.17)

where e0pxq represents the mean, ξr : Ω Ñ Γr, for r “ 1, 2, . . . ,M, are independent

mean zero real-valued random variables, Ω is a sample space associated with a proba-

bility space and Γr Ă R. If we make the change of variable yr “ ξrpωq, we can rewrite

the Young modulus as the parameter-dependent function

Epx,yq :“ e0pxq `

M
ÿ

r“1

erpxqyr, x P D, y P Γ, (1.18)

where y “ py1, y2, . . . , yMq P Γ, each yr is the image of the random variable ξr appearing

in (1.17), and the so-called parameter domain Γ is defined as

Γ :“ Γ1 ˆ ¨ ¨ ¨ ˆ ΓM Ă RM .

The associated parametric two-field linear elasticity problem is then written as

´∇ ¨ σpx,yq “ fpxq, x P D, y P Γ, (1.19)

∇ ¨ upx,yq ` λ´1
px,yqppx,yq “ 0, x P D, y P Γ, (1.20)

with the boundary conditions

upx,yq “ gpxq, x P BDD, y P Γ, (1.21)

σpx,yq ¨ n “ 0, x P BDN , y P Γ. (1.22)

Note that since E is a function of x P D and y P Γ, then so is the displacement u and

the Herrmann pressure p. For each y P Γ, we obtain a different spatial solution.

In Chapter 2, we will approximate the solution of the parametric linear elasticity

problem using a stochastic Galerkin mixed finite element method (SGMFEM). Such

methods are not sampling methods. The idea is to find approximations to each solution

field in tensor product spaces of the form Vh b Sd, where Vh is a finite-dimensional
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space of functions on the spatial domain D (a finite element space) and Sd is a finite-

dimensional space of multivariate polynomials on the parameter domain Γ. As we

shall see in Chapter 2, to implement stochastic Galerkin methods efficiently, we require

that every term in the finite-dimensional weak formulation of the problem is separable.

That is, the terms that depend on x can be separated from the terms that depend on

y. Unfortunately, in the Herrmann model, this is not the case because the coefficient

λ´1px,yq appears in (1.20). We have

λ´1
px,yq “ λ̃´1E´1

px,yq,

where we define the constant

λ̃ :“
ν

p1 ` νqp1 ´ 2νq
. (1.23)

Although Epx,yq is separable, due to (1.18), E´1px,yq is not separable, and so

λ´1px,yq is not separable either.

To remedy this, we introduce another auxiliary variable p̃ “ p{E. This allows us to

eliminate E´1 in the two-field problem (1.19)–(1.20). See [44] for more details. This

leads to the following three-field parametric formulation

´∇ ¨ σpx,yq “ fpxq, x P D, y P Γ, (1.24)

∇ ¨ upx,yq ` λ̃´1p̃px,yq “ 0, x P D, y P Γ, (1.25)

λ̃´1ppx,yq ´ λ̃´1Epx,yqp̃px,yq “ 0, x P D, y P Γ, (1.26)

with the same boundary conditions as in (1.21)–(1.22).

The associated weak formulation can be expressed as: find u P V , p P Q and p̃ P Q

such that

apu,vq ` bpv, pq “ hpvq, @v P V , (1.27)

bpu, qq ´ cpp̃, qq “ 0, @q P Q, (1.28)

´cpp, q̃q ` dpp̃, q̃q “ 0, @q̃ P Q, (1.29)

where V and Q are now appropriate function spaces on D ˆ Γ. If we define two new

bilinear forms a˚p¨, ¨q : W ˆ W , and b˚p¨, ¨q : W ˆ Q as follows:

a˚
pr,wq :“ apu,vq ` dpp̃, q̃q,

b˚
pw, pq :“ bpv, pq ´ cpp, q̃q,
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where W :“ V ˆ Q, r “ pu, p̃q, w “ pv, q̃q and add (1.29) to (1.27), we obtain the

following saddle point problem

a˚
pr,wq ` b˚

pw, pq “ h˚
pwq, @w P W ,

b˚
pr, qq “ 0, @q P Q,

where h˚pwq :“ hpvq. Hence, we see that this has the same structure as the two-field

saddle point problem (1.14)–(1.15).

To apply a stochastic Galerkin mixed finite element approximation, we choose finite

dimensional spaces of the form

Vhd “ Vh b Sd Ă V , Qhd “ Qh b Sd Ă Q,

and seek uhd P Vhd, p̃hd P Qhd, and phd P Qhd such that

apuhd,vhdq ` bpvhd, phdq “ hpvhdq, @vhd P Vhd,

bpuhd, qhdq ´ cpp̃hd, qhdq “ 0, @qhd P Qhd,

´cpphd, q̃hdq ` dpp̃hd, q̃hdq “ 0, @q̃hd P Qhd.

As we will show in Chapter 2, this yields a discrete saddle point system of the same

form as (1.16), where C “ 0, and A and B have the following block structures

A :“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

β
řM

r“0Gr b A
p11q
r β

řM
r“0Gr b A

p21q
r 0

β
řM

r“0Gr b A
p12q
r β

řM
r“0Gr b A

p22q
r 0

0 0 λ̃´1
řM

r“0Gr b Dr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (1.30)

B :“
”

G0 b B1 G0 b B2 ´λ̃´1G0 b C
ı

. (1.31)

Here, b denotes the matrix Kronecker product. For two matrices A P Rmˆn and

B P Rpˆq, the Kronecker product is defined as (see [45, 82])

A b B :“

»

—

—

—

–

a11B ¨ ¨ ¨ a1nB
...

. . .
...

am1B ¨ ¨ ¨ amnB

fi

ffi

ffi

ffi

fl

.
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In (1.30), the constant β is defined as

β :“
1

1 ` ν
, (1.32)

the symmetric matrices Gr for r “ 0, 1, . . . ,M are associated with the chosen para-

metric approximation space Sd, and the matrices A
pijq
r for i, j “ 1, 2, r “ 0, 1, . . . ,M ,

as well as the matrices B1, B2, C in (1.31) and Dr, for 0, 1, . . . ,M, are associated

with the chosen spatial approximation spaces Vh and Qh. Full details will be given in

Chapter 2.

Analogously, we can model the inverse of the permeability coefficient A´1pxq in

the groundwater flow problem in (1.10)–(1.13) as a parameter-dependent function of

the form

A´1
px,yq “ a0pxq `

M
ÿ

r“1

arpxqyr, x P D, y P Γ. (1.33)

Substituting (1.33) into (1.10)–(1.11) yields the parametric groundwater flow problem

A´1
px,yqupx,yq ` ∇ppx,yq “ 0, x P D, y P Γ, (1.34)

∇ ¨ upx,yq “ fpxq, x P D, y P Γ, (1.35)

with the mixed boundary conditions

ppx,yq “ gpxq, x P BDD, y P Γ, (1.36)

upx,yq ¨ n “ 0, x P BDN , y P Γ. (1.37)

The weak formulation of (1.34)–(1.37) is also a saddle point problem. If we apply a

SGMFEM to this problem, we again obtain a linear system of the form (1.16) with

C “ 0. As we will show in Chapter 6, in this case, A and B have the simpler structures

A :“
M
ÿ

r“0

Gr b Ar, B :“ G0 b B.

Again, the symmetric matrices Gr are associated with the chosen parametric approxi-

mation space, and the matrices Ar, for r “ 0, 1, . . . ,M , and B are associated with the

chosen spatial approximation spaces.

The key point is that for both the parameter-dependent three-field linear elastic-

ity problem and the two-field groundwater flow problem, stochastic Galerkin mixed

finite element approximation leads to a saddle point problem of the form (1.16) with
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blocks that have Kronecker product structure. By reordering the degrees of freedom

associated with the solution fields, these linear systems can also be expressed as
˜

M
ÿ

r“0

Gr b Kr

¸

x “ h, (1.38)

where the matrices Kr for r “ 0, 1, . . . ,M are associated with the spatial approxi-

mation for all solution fields. We now introduce a standard property of the matrix

Kronecker product, see [82]. For two matrices A and B and a vector v of appropriate

sizes

pA b Bqv “ vec
`

BV AJ
˘

, (1.39)

where V “ arraypvq, the function vecp¨q stacks the columns of a matrix one on top

of another to form a vector and the function arrayp¨q is the inverse function of vecp¨q.

Using the property (1.39), the linear system (1.38) can also be reformulated as a linear

multi-term matrix equation (LMTME) of the form

M
ÿ

r“0

KrXG
J
r “ H, (1.40)

where X “ arraypxq is the solution matrix and H “ arrayphq. That is, if we stack

the columns of X on top of one another, we obtain the solution vector x of the linear

system (1.38).

In this thesis, we focus on the memory-efficient numerical solution of the LMTMEs

that arise when we apply SGMFEMs to parameter-dependent saddle point problems

such as the ones introduced above. First, we briefly review some existing numerical

methods for solving matrix equations.

1.3 Methods for solving matrix equations

As a starting point, we consider a simpler group of matrix equations with just two

terms called Sylvester equations, which have the following form

KX ` XG “ H. (1.41)

Here, K P Rnˆn, G P Rmˆm and H P Rnˆm are known. The solvability of (1.41) is

discussed in [1]. A comprehensive overview of solution techniques for X P Rnˆm is
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provided in [78]. When both n and m are small, decomposition methods can be used

to find the exact solution. For example, the Bartels–Stewart algorithm [7] was one of

the first effective methods for solving Sylvester equations and the Hessenberg-Schur

method [32] is a modification that reduces computational cost. The main strategy is

to decompose KJ and G by Schur decomposition or Hessenberg decomposition and

split the matrix equation into a group of linear systems which can be solved by back

substitution. When at least one of K and G is large, Smith’s method (see [56, 79, 85]),

the alternating direction implicit (ADI) method (see [8, 23, 24, 61, 85]) and iterative

projection methods (see [38, 39, 41]) can be used instead to obtain approximations to

the solution matrix X.

First, we briefly introduce Smith’s method. For p, q ą 0, we can rewrite (1.41) as

ppIn ` KqXpqIm ` Gq ´ pK ´ qInqXpG ´ pImq “ pp ` qqH. (1.42)

If we assume the real parts of the eigenvalues of K and G are positive, then pIn ` K

and qIm ` G are nonsingular and we can multiply (1.42) by their inverses on both

sides to obtain the following matrix equation

X ´ KXG “ H, (1.43)

where

K :“ ppIn ` Kq
´1

pK ´ qInq,

G :“ pG ´ pImqpqIm ` Gq
´1,

H :“ pp ` qqppIn ` Kq
´1HpqIm ` Gq

´1.

The matrices K and G have spectral radii less than one. Hence, we have Kℓ Ñ 0 and

Gℓ Ñ 0 as ℓ Ñ 8. See [80] for more details about the transformation in (1.43). The

equation (1.43) has a formal solution

X “

8
ÿ

k“1

Kk´1HGk´1,

Based on this, Barnett and Storey (see [6]) suggested the following iteration

X0 “ H, Xk`1 “ H ` KXkG, k “ 0, 1, 2, . . . , (1.44)
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which can be expressed as

Xk “

k
ÿ

l“0

KlHGl.

However, the rate of convergence for the iteration (1.44) is slow. Smith (see [79])

proposed the following iteration to accelerate the convergence

X0 “ H, Xk`1 “ Xk ` K2kXkG2k , k “ 0, 1, 2, . . . , (1.45)

which also can be expressed as

Xk “

2k´1
ÿ

l“0

KlHGl.

The optimal choice of p and q is found by solving the minimax problem

min
p,qą0

max
sPΛpKq, tPΛpGq

ˇ

ˇ

ˇ

ˇ

pt ´ pqps ´ qq

pt ` qqps ` pq

ˇ

ˇ

ˇ

ˇ

, (1.46)

where Λp¨q denotes the spectrum of a matrix.

Next, we outline ADI iteration for (1.41). Starting with X0 “ 0, the iteration is

pK ` pkInqXk´ 1
2

“ H ´ Xk´1pG ´ pkImq,

XkpG ` qkImq “ H ´ pK ´ qkInqXk´ 1
2
, k “ 1, 2, . . . ,

(1.47)

where the parameters pk and qk can be selected at each iteration to speed up conver-

gence. In practice, we select a fixed number J of parameters before the first iteration

and cycle through these after every J iterations. The choice of parameters pk and

qk, for k “ 1, . . . , J , is similar to (1.46). The optimal choice is found by solving the

following minimax problem, see [72, 83]

min
pk,qką0

max
sPΛpKq, tPΛpGq

J
ź

k“1

ˇ

ˇ

ˇ

ˇ

pt ´ pkqps ´ qkq

ps ` pkqpt ` qkq

ˇ

ˇ

ˇ

ˇ

. (1.48)

However, the spectra of K and G are usually not available. Therefore we generally

approximate the problem with ΛpKq and ΛpGq replaced by their estimates. See [50,

72, 84] for more details. In [85], an upper bound for the relative error

ek “
}X ´ Xk}F

}X}F
,

for Smith’s method (1.45) and ADI iteration (1.47) is discussed and the computational

costs per iteration are also analysed for these two methods.
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Finally, we introduce iterative projection methods for the Sylvester equation (1.41).

One can generate approximations of the form Xk “ VkYkW
J
k iteratively, where Yk P

Rnkˆmk needs to be determined and the columns of Vk P Rnˆnk and Wk P Rmˆmk are

chosen to be orthonormal bases for some approximation spaces Vk and Wk, respec-

tively. In [69], standard Krylov subspaces are used and basis vectors are generated by

the Arnoldi algorithm to approximate solutions of the Lyapunov equation, which is

a special case of the Sylvester equation when G “ KJ. Apart from standard Krylov

subspaces, one can also choose global Krylov subspaces (see [41]), rational Krylov sub-

spaces (see [17, 19, 66]), or the extended Krylov subspace (see [12, 77]). Using the

property (1.39) of the Kronecker product, we can determine Yk at each iteration by

minimising some norm of the residual

rk “ M pWk b Vkqyk ´ h,

where yk “ vecpYkq and

M :“ Im b K ` GJ
b In.

For example, we can minimise the energy norm }rk}M when M is symmetric and

positive definite by imposing a Galerkin condition on rk. That is, by making rk

orthogonal to the columns of Wk b Vk. Imposing the Galerkin condition ensures that

the energy norm of the residual decreases monotonically and the convergence of the

Conjugate Gradient (CG) method (see [36, 71]) is based on this property. In addition

to imposing a Galerkin condition, other conditions to make rk orthogonal to different

constraint spaces are discussed in [38, 54, 60, 71]. Imposing the Galerkin condition on

rk gives

pWJ
k b V J

k qMpWk b Vkqyk “ pWJ
k b V J

k qh,

which is equivalent to the matrix equation

`

V J
k KVk

˘

Yk ` Yk
`

WJ
k GWk

˘

“ V J
k HWk. (1.49)

Note that V J
k KVk P Rnkˆnk and WJ

k GWk P Rmkˆmk . If X can be well approximated

by a low-rank matrix, then nk,mk ! minpm,nq and solving the reduced problem (1.49)

will be quicker and more memory-efficient than solving (1.41). In general, the solution
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matrix X can be well approximated by a low-rank matrix if it has rapidly decaying

singular values. Let σ1 ě ¨ ¨ ¨ ě σminpm,nq denote the singular values of the solution

matrix X and let p denote the rank of the right hand side matrix H. An upper bound

for σpr`1{σ1 for 1 ď pr ă n is given in [72, Theorem 2.1.1]. For fixed K and G in

(1.41), the lower the rank of H, the faster the singular values of X will decay and then

applying projection methods to obtain a low rank approximation is appealing.

There is a large variety of projection methods. For example, standard Krylov

subspace methods for solving linear systems are projection methods, see [71]. Recall

that linear systems associated with the multi-term matrix equation (1.40) or the two-

term Sylvester equation (1.41) have Kronecker product structures. In [5, 9, 47, 51, 53],

Krylov subspace methods are combined with low rank approximation to solve such

linear systems. The procedure at each iteration is almost the same as a standard

Krylov subspace method. The basic idea is to truncate the approximation Xk and

other matrices of the same size as the solution matrix X based on the decay of their

singular values at each iteration. That is, one fixes the rank at the start and computes

the singular values of Xk, residuals, search directions, etc. in each iteration. Then

Xk and the corresponding matrices can be stored in low rank format. However, if the

rank fixed at the start is too small, the error between Xk and the actual solution could

be too large.

We now consider linear multi-term matrix equations of the form (1.40). In this

thesis, we consider a one-sided projection method known as Multi-RB [64] for solving

(1.40). Unlike the low rank Krylov subspace methods we mentioned before, the rank for

Xk is not fixed and so it is an adaptive algorithm that will terminate when a stopping

condition is achieved. It constructs a set of orthogonal basis vectors Vk based on

rational Krylov subspaces and let Wk be the mˆm identity matrix and then imposes

a Galerkin condition on the residual. Since the coefficient matrix of the Kronecker

form (1.38) is symmetric and positive definite in [64], the Galerkin condition ensures

that the energy norm of the residual at every iteration is monotonically decreasing.

When the coefficient matrix of (1.38) is not symmetric and positive definite, one can

impose the Petrov-Galerkin condition and the 2-norm of the residual is minimised

at every iteration. In [60], a Petrov-Galerkin condition is proposed to minimise the

2-norm of the residual for the linear system associated with a small scale multi-term
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matrix equation. The convergence of some Krylov subspaces methods for solving linear

systems such as the minimal residual method (MINRES) and the generalised minimal

residual method (GMRES) is based on this property, see [59, 70].

There are also other methods for solving multi-term matrix equations of the form

(1.40). The approach in [46, 52] is based on an alternating energy minimisation frame-

work, which seeks an approximation in the form of a product of two matrices and solves

a pair of energy minimisation problems iteratively. These methods increase the ap-

proximation rank by one per iteration. In [40], a projection method is developed for a

generalised Sylvester equation of the form

KX ` XG `

M
ÿ

r“1

KrXGr “ H.

This method is based on the extended Krylov subspace method for the Sylvester

equation (see [12, 77]) and it increases the approximation rank by two per iteration.

For problems whose true solution rank is not low enough, these methods may require

a large number of iterations to satisfy the desired stopping condition.

1.4 Outline

In Chapter 2, we will discuss in more detail the three-field linear elasticity problem

with parameter-dependent Young modulus, and apply a SGMFEM to the problem. We

then consider the associated symmetric and indefinite linear system with Kronecker

product structure, and use the preconditioned MINRES algorithm to solve it. For

large problems, we show that memory is quickly exhausted, which motivates the need

for more memory-efficient solution approaches. In Chapter 3, we rewrite the linear

system as a linear multi-term matrix equation (LMTME). We investigate the decay

of the singular values of the solution matrix and then consider how to extend the

multi-term reduced basis method (Multi-RB) from [64] to this new class of problems.

We introduce two distinct preconditioning strategies and investigate two projection

techniques. In Chapters 4–5, we perform some numerical experiments using the two

preconditioning strategies on test problems. To compare how the solver behaves on

a different LMTME with the same structure, we also apply the Multi-RB method to

the parameter-dependent groundwater flow problem in Chapter 6. In Chapter 7, we
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draw some conclusions about the performance of the reduced basis solver based on the

numerical results obtained.

Below, we summarise the key contributions of this thesis.

1. Key contributions in Chapter 2:

(a) Proposition 2.20, which shows that the first block of the coefficient ma-

trix associated with the parameter-dependent linear elasticity problem is

symmetric and positive definite.

(b) Lemma 2.22 and Theorem 2.23 provide new theoretical eigenvalue bounds

for preconditioned system matrices with a particular preconditioner M1.

(c) A detailed investigation of the performance of preconditioned MINRES us-

ing two symmetric and positive definite preconditioners.

2. Key contributions in Chapter 3:

(a) We introduce two new preconditioning strategies for the matrix equation

(3.1). A symmetric preconditioning strategy is applied with a symmetric

and positive definite preconditioner. A left preconditioning strategy is also

applied with a symmetric and indefinite preconditioner.

(b) Lemmas 3.1–3.2 provide new theoretical eigenvalue bounds for the left ma-

trices associated with the symmetric preconditioning strategy.

(c) Lemma 3.3 provides new theoretical eigenvalue bounds for the left matrices

associated with the left preconditioning strategy.

(d) We incorporate a Petrov-Galerkin condition into the Multi-RB method.

The original scheme used a Galerkin condition.

3. Key contributions in Chapter 4: exhaustive numerical experiments and conver-

gence study of three different errors for the parameter-dependent linear elasticity

problem using our solver with the chosen symmetric preconditioning strategy.

4. Key contributions in Chapter 5: exhaustive numerical experiments and conver-

gence study of three different errors for the parameter-dependent linear elasticity

problem using our solver with the chosen left preconditioning strategy.
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5. Key contributions in Chapter 6: exhaustive numerical experiments and conver-

gence study of three different errors for the parameter-dependent groundwater

flow problem using our solver with two preconditioning strategies.



Chapter 2

Parameter-dependent Linear

Elasticity Problem

In this chapter, we give more details about the three-field parameter-dependent linear

elasticity problem (1.24)–(1.26) for nearly incompressible materials with uncertain

Young’s modulus that was introduced in Section 1.2. First, we discuss the chosen

model for the uncertain Young modulus. We then introduce a stochastic Galerkin

mixed finite element method and apply it to the parameter-dependent linear elasticity

problem. Finally, we apply a standard Krylov subspace method to the linear systems

associated with two test problems and explain why large-scale problems cannot be

solved. This motivates the need for a more memory-efficient solution approach.

Recall that we want to find the displacement u : D ˆ Γ Ñ R2, the Herrmann

pressure p : D ˆ Γ Ñ R and the auxiliary pressure p̃ : D ˆ Γ Ñ R such that

´∇ ¨ σpx,yq “ fpxq, x P D, y P Γ, (2.1)

∇ ¨ upx,yq ` λ̃´1p̃px,yq “ 0, x P D, y P Γ, (2.2)

λ̃´1ppx,yq ´ λ̃´1Epx,yqp̃px,yq “ 0, x P D, y P Γ, (2.3)

with the homogenous mixed boundary conditions

upx,yq “ 0, x P BDD, y P Γ, (2.4)

σpx,yq ¨ n “ 0, x P BDN , y P Γ. (2.5)

Recall that σ : D Ñ R2ˆ2 is defined in (1.6) for the deterministic problem (1.7)–(1.8).

The stress tensor σ : D ˆ Γ Ñ R2ˆ2 for the parameter-dependent problem (2.1)–(2.5)

36
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is defined by

σpx,yq :“ µpx,yq

´

∇upx,yq ` p∇upx,yqq
J
¯

` ppx,yqI.

In this model, we assume the body force f : D Ñ R2 is deterministic, the Poisson

ratio ν P p0, 1
2
q is a known constant, and hence so is λ̃ which was defined in (1.23).

The solution fields u, p, p̃ and the Young modulus E are all parameter-dependent.

We model E as a linear parameter-dependent function of the form

Epx,yq :“ e0pxq `

M
ÿ

r“1

erpxqyr, x P D, y P Γ, (2.6)

where each yr P Γr is the image of a random variable ξr : Ω Ñ Γr Ă R with known

probability density function ρrpyrq : Γr Ñ R. We will assume these random variables

are independent so that the joint probability density function is given by

ρpyq “

M
ź

r“1

ρrpyrq. (2.7)

Parameter-dependent expressions of the form (2.6) arise when we model spatially vary-

ing uncertain inputs as random fields and use the so-called Karhunen-Loève expansion.

We will give more details about this next.

2.1 Random fields and the Karhunen-Loève expan-

sion

In order to explain the chosen model for E in (2.6), we introduce some technical defi-

nitions relating to real-valued random variables and random fields and then introduce

the Karhunen-Loève expansion. The material in this section mainly follows [55].

Definition 2.1 (σ-algebra). Given a set X, a collection of subsets F is a σ-algebra if

(i) ∅ P F ,

(ii) the complement Ac :“ tx P X;x R Au P X for all A P X,

(iii) the union
Ť

iPNAi P F for Ai P F .

Definition 2.2 (measure). For a set X and a σ-algebra F of X, the pair pX,Fq

is known as a measurable space. A measure µ on pX,Fq is defined as a function

µ : F Ñ R` Y 8 that satisfies
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(i) µp∅q “ 0,

(ii) µ p
Ť

iPNAiq “
ř

iPN µpAiq if Ai P F are disjoint (i.e., Ai X Aj “ ∅ for i ‰ j).

Definition 2.3 (probability space). A probability space pΩ,F ,Pq is composed of a

sample space Ω containing all possible outcomes of a probabilistic event, a σ-algebra

F of Ω, and a probability measure P. The probability measure P is a mapping from

F to r0, 1s and satisfies PpΩq “ 1.

Definition 2.4 (random variable). Given a probability space pΩ,F ,Pq and a measur-

able space pΓ,Gq with Γ Ă RM , X is a Γ-valued random variable if it is a measurable

function from pΩ,Fq to pΓ,Gq.

Definition 2.5 (probability density function). If X is a Γ-valued random variable on

pΩ,F ,Pq with Γ Ă R, then it has an associated probability distribution PX and the

image space is pΓ,BpΓq,PXq where BpΓq denotes the Borel σ-algebra. For any possible

outcome A P BpΓq, the probability that Xpωq P A can be computed by integrating the

probability density function ρ : Γ Ñ r0,8q over A

PXpXpωq P Aq “

ż

A

1dPX “

ż

A

ρpyqdy.

Definition 2.6 (expectation). Let X be a Γ-valued random variable with Γ Ă R from

a probability space pΩ,F ,Pq to pΓ,G,PXq with probability density function ρ : Γ Ñ R.

The expectation of X is defined by,

EpXq :“

ż

Ω

XpωqdPpωq “

ż

Γ

ydPXpyq “

ż

Γ

yρpyqdy.

Definition 2.7 (variance and standard deviation). Let µ be the expectation of a

real-valued random variable X, then the variance of X is defined by

VarpXq :“ E
“

pX ´ µq
2
‰

“ EpX2
q ´ µ2.

The standard deviation of X is defined by,

σ :“
a

VarpXq.

Definition 2.8 (covariance). Given two jointly distributed real-valued random vari-

ables X, Y on a probability space pΩ,F ,Pq, the covariance of X, Y is defined as,

CovpX, Y q :“ E rpX ´ µXqpY ´ µY qs “ EpXY q ´ µXµY

where µX “ EpXq and µY “ EpY q. Note that CovpX,Xq “ VarpXq.
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In the following definitions we assume D Ă R2 but these generalise to Rn with

n ą 2.

Definition 2.9 (random field). Given a probability space pΩ,F ,Pq and a spatial

domain D Ă R2, a random field upx, ωq is a random variable for each x P D. A

random field can also be considered as

(i) a single function u : D ˆ Ω Ñ R,

(ii) a collection of realisations up¨, ωq (spatial functions on D) for each ω P Ω.

Definition 2.10 (L2 spaces). For a domain D, L2pDq is the set of square-integrable

functions on D defined by

L2
pDq :“

"

f : D Ñ R;
ż

D

f 2
pxqdx ă 8

*

. (2.8)

This is a Hilbert space with the inner product,

xf, gyL2pDq :“

ż

D

fpxqgpxqdx,

and the norm,

}f}L2pDq :“ xf, fy
1{2

L2pDq
.

For a probability space pΩ,F ,Pq, L2pΩq is defined by

L2
pΩq :“

"

X : Ω Ñ R;
ż

Ω

|Xpωq|
2dPpωq ă 8

*

.

This is the set of random variables with finite second moment. We also define the

following set of functions (random fields) on D ˆ Ω

L2
pΩ, L2

pDqq :“

"

u : D ˆ Ω Ñ R;
ż

Ω

}upx, ωq}
2
L2pDqdPpωq ă 8

*

.

Definition 2.11 (second-order random field). A random field upx, ωq is second-order

if upx, ¨q P L2pΩq for every x P D. The covariance function C : D ˆ D Ñ R of a

second-order random field is defined by,

Cpx1,x2q :“ Covpupx1, ωq, upx2, ωqq “ E pupx1, ωq ´ µpx1qqE pupx2, ωq ´ µpx2qq ,

where µpxq :“ E pupx, ωqq.
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Definition 2.12 (integral operator). If C P L2pD ˆ Dq is a covariance function, we

can define an associated integral operator L : L2pDq Ñ L2pDq by,

L pfpxqq :“

ż

D

Cpx,x˚
qfpx˚

qdx˚.

Definition 2.13 (eigenpairs of an integral operator). The eigenvalues λi and eigen-

functions ηi P L2pDq of an integral operator L : L2pDq Ñ L2pDq are defined by,

λiηipxq “ L pηipxqq .

Remark 2.14. Eigenvalues and eigenfunctions of integral operators associated with

covariance functions satisfying Definition 2.12 have special properties by the Hilbert-

Schmidt theorem. In particular, the eigenfunctions can be used to form an orthonor-

mal basis for L2pDq and can be used to represent realisations of random fields in

L2pΩ, L2pDqq. This is called a Karhunen-Loève expansion.

Definition 2.15 (Karhunen-Loève expansion). Given a domain D Ă R2 and a proba-

bility space pΩ,F ,Pq, a second-order random field u P L2pΩ, L2pDqq can be expressed

as

upx, ωq “ µpxq `

8
ÿ

i“1

a

λiγipωqηipxq, (2.9)

where µpxq “ Epupx, ωqq, the random variables γi are defined as

γipωq :“
1

?
λi

xupx, ωq ´ µpxq, ηipxqyL2pDq
, (2.10)

and have mean zero, unit variance and are pairwise uncorrelated, and pλi, ηipxqq are the

eigenpairs of the integral operator associated with the covariance function of upx, ωq

with the terms ordered so that λ1 ě λ2 ě ¨ ¨ ¨ ě 0.

When we model the random inputs in a PDE problem, we do not have to strictly

speaking use a KL expansion. We can also construct a random field u P L2pΩ, L2pDqq

with the same structure as a KL expansion with a chosen mean µpxq and covariance

function C P L2pD ˆ Dq as follows

upx, ωq “ µpxq `

8
ÿ

r“1

a

λrηrpxqξrpωq, (2.11)
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where pλr, ηrpxqq are eigenpairs of the covariance function Cpx,x˚q and we can choose

the distribution of the random variables ξr so that u has desired properties. In com-

putations, we can approximate it by the truncated expansion,

uMpx, ωq :“ µpxq `

M
ÿ

r“1

a

λrηrpxqξrpωq. (2.12)

One computable measure of truncation error is

εM :“

ş

D
Varpupx, ωq ´ uMpx, ωqq dx

ş

D
Var pupx, ωqq dx

, (2.13)

or alternatively the percentage

βM :“

ş

D
VarpuMpx, ωqqdx

ş

D
Varpupx, ωqqdx

ˆ 100%. (2.14)

The parameter βM gives the proportion of the total variance retained after truncating

(2.11) after M terms.

Example 2.16. Let D :“ r´1, 1s ˆ r´1, 1s and define a random field upx, ωq as in

(2.11) with µpxq “ 1, independent random variables ξrpωq „ Up´
?
3,

?
3q, and the

separable exponential covariance function

Cpx,x˚
q :“ σ2 exp

ˆ

´
|x1 ´ x˚

1 |

2
´

|x2 ´ x˚
2 |

2

˙

, @x,x˚
P D, (2.15)

where σ represents the standard deviation. We can write the covariance function (2.15)

in the separable form,

Cpx,x˚
q “ σ2C1px1, x

˚
1qC1px2, x

˚
2q,

where C1 is defined as

C1px, x
˚
q :“ exp

ˆ

´
|x ´ x˚|

2

˙

, @x, x˚
P p´1, 1q. (2.16)

The eigenpairs pθi, χipxqq of the integral operator associated with the covariance func-

tion C1 (see [55, Example 7.55]) can be computed analytically. We have

θi :“
1

α2
i ` 1{4

,

where αi is a root of foddpαq :“ 1
2

´ α tan pαq when i is odd, or a root of fevenpαq :“

1
2
tan pαq ` α when i is even. The eigenfunctions χipxq are defined by,

χipxq “

$

’

&

’

%

Ai cospαixq for i odd,

Bi sinpαixq for i even,
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where Ai, Bi are chosen as

Ai “
1

a

1 ` sin p2αiq {2αi

, Bi “
1

a

1 ´ sinp2αiq{2αi

to have }χipxq}L2p´1,1q “ 1. The eigenpairs pλ, ηpxqq of the integral operator associated

with the covariance function in (2.15) can then be expressed as

λ “ σ2θiθj, ηpxq “ χipx1qχjpx2q, i, j P N.

We can label these eigenvalues as λr, r P N after ordering them from largest to smallest

and the corresponding eigenfunctions as ηrpxq.

If we truncate upx, ωq after M terms, we have

βM “

řM
r“1 λr
4σ2

, εM “ 1 ´ βM .

In Table 2.1 we record the smallest value ofM required to achieve εM ď ϵ or βM ě ϑ for

varying ϵ and ϑ. A large number of terms are required to capture a sufficient amount

of variance. For example, we need at least 270 terms to capture 99% of the variance.

This is due to the slow decay of the eigenvalues associated with the covariance function

in (2.15). In Figure 2.1, we plot one realisation of uMpx, ωq for σ “ 0.085 computed

with M “ 5, 13, 33, 270 which corresponds to retaining 80%, 90%, 95% and 99% of the

variance, respectively. In Figure 2.2, we plot four different realisations of uMpx, ωq

with the covariance (2.15) when we fix M “ 13.

ϵ 0.2 0.15 0.1 0.05 0.01

ϑ 80% 85% 90% 95% 99%

M 5 7 13 33 270

Table 2.1: The smallest number of terms M needed to ensure εM ď ϵ or βM ě ϑ.

(a) M “ 5 (b) M “ 13 (c) M “ 33 (d) M “ 270

Figure 2.1: One realisation of uMpx, ωq with the covariance (2.15) when σ “ 0.085.
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Figure 2.2: Four realisations of uMpx, ωq with the covariance (2.15) when σ “ 0.085

and M “ 13.

Next, we introduce a synthetic expansion of the form (2.11), which is studied in [22].

The terms in this expansion are carefully chosen so that the realisations of uMpx,yq

are always positive for any choice of M . Here, the functions ηrpxq are chosen to be

cosine modes.

Example 2.17. Let D “ r0, 1s ˆ r0, 1s and consider a random field upx, ωq defined

as in (2.11) with µpxq “ 1 and independent random variables ξrpωq „ Up´1, 1q. We

choose
?
λr “ κr´m, where κ “ 0.574 and m “ 2 for slow decay or κ “ 0.832 and

m “ 4 for fast decay, and

ηrpxq :“ cosp2πϱ1prqx1q cosp2πϱ2prqx2q,

with

ϱ1prq :“ r ´ hprqphprq ` 1q{2, ϱ2prq :“ hprq ´ ϱ1prq,

and

hprq :“ t´1{2 `
a

1{4 ` 2ru.

As shown in [68], we have

ż

D

VarpuMpx, ωqqdx “
κ2

12

M
ÿ

r“1

r´2m,

and similarly,

ż

D

Varpupx, ωqqdx “
κ2

12

8
ÿ

r“1

r´2m,

where
ř8

r“1 r
´2m is a convergent series. The proportion βM defined in (2.14) is

βM “

řM
r“1 r

´2m

ř8

r“1 r
´2m

.



44CHAPTER 2. PARAMETER-DEPENDENT LINEAR ELASTICITY PROBLEM

In Table 2.2, we record the proportion βM and the relative error εM for both the slow

decay case and the fast decay case with M “ 1, . . . , 5. For both cases, we need a very

small number of terms to retain 99% of the variance. To achieve βM ě 99%, we need

to keep at least 3 terms for the slow decay case and we need at least 1 term for the fast

decay case. Note that there are many other ways to measure truncation error. For

the fast decay case in Table 2.2, βM is rounded up to 100% for M “ 3, 4, 5. In Figure

2.3, we plot the variance of uMpx, ωq with M “ 3 for both cases. We note that the

maximum value of the variance of the truncated field in the fast decay case is greater

than that in the slow decay case.

M
slow decay fast decay

βM εM βM εM

1 92.39% 7.61e-2 99.59% 4.06e-3

2 98.17% 1.83e-2 99.98% 1.70e-4

3 99.31% 6.91e-3 100.00% 1.86e-5

4 99.67% 3.30e-3 100.00% 3.42e-6

5 99.82% 1.82e-3 100.00% 8.68e-7

Table 2.2: The proportion βM and the relative error εM for M “ 1, . . . , 5.

(a) slow decay (b) fast decay

Figure 2.3: Variance of uMpx, ωq when M “ 3.
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(a) M “ 1 (b) M “ 2 (c) M “ 3 (d) M “ 4

Figure 2.4: One realisation of uMpx, ωq for the slow decay case.

In Figures 2.4–2.5, we plot one realisation of uMpx, ωq with M “ 1, 2, 3, 4. Com-

pared with Example 2.16, we observe that the truncated field converges more quickly

as M increases. The KL expansion in Test problem 1 converges more slowly due to

the slow decay of the eigenvalues.

(a) M “ 1 (b) M “ 2 (c) M “ 3 (d) M “ 4

Figure 2.5: One realisation of uMpx, ωq for the fast decay case.

In Figures 2.6–2.7, we plot four different realisations of uMpx, ωq with M “ 5 fixed

for the slow decay case and the fast decay case.

Figure 2.6: Four realisations of uMpx, ωq for the slow decay case when M “ 5.

Figure 2.7: Four realisations of uMpx, ωq for the fast decay case when M “ 5.
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2.2 Stochastic Galerkin approximation

In this section, we apply a stochastic Galerkin mixed finite element method (SGM-

FEM) to the parameter-dependent linear elasticity problem (2.1)–(2.5) and explain

how the associated discrete problem can be written as a linear system.

2.2.1 Weak formulation

To set up the weak formulation of (2.1)–(2.5) we first define appropriate function

spaces. First, we define the Hilbert space H1
0pDq as

H1
0pDq :“

!

v P
`

L2
pDq

˘2
;∇v P

`

L2
pDq

˘2ˆ2
,v “ 0 on BDD

)

,

where the spaces pL2pDqq
2
and pL2pDqq

2ˆ2
contain square-integrable vector-valued and

matrix-valued functions, respectively. That is,

`

L2
pDq

˘2
:“

"

v : D Ñ R2;

ż

D

vpxq ¨ vpxqdx ă 8

*

,

`

L2
pDq

˘2ˆ2
:“

"

Apxq : D Ñ R2ˆ2;

ż

D

Apxq : Apxqdx ă 8

*

.

The norm } ¨ }1,D on H1
pDq2 is defined by

}v}1,D :“

ˆ
ż

D

vpxq ¨ vpxq ` ∇vpxq : ∇vpxqdx

˙1{2

.

Here, the operator : is the sum of components product. For two matrices A :“ raijs,

B :“ rbijs in Rmˆn, A : B is defined by

A : B “

m
ÿ

i“1

n
ÿ

j“1

aijbij. (2.17)

For the displacement u, we choose the vector-valued solution space

V :“ L2
ρ

`

Γ,H1
0pDq

˘

,

where

L2
ρ

`

Γ,H1
0pDq

˘

:“
!

u : D ˆ Γ Ñ R2; }u}
2
L2
ρpΓ,H1

0pDqq
ă 8 and u “ 0 on BDD

)

,

and the norm } ¨ }L2
ρpΓ,H1

0pDqq is defined as

}u}L2
ρpΓ,H1

0pDqq :“

ˆ
ż

Γ

ρpyq}upx,yq}
2
1,Ddy

˙1{2

.
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For the Hermann pressure p, and the auxiliary pressure p̃, we choose the space

Q :“ L2
ρ

`

Γ, L2
pDq

˘

,

where

L2
ρ

`

Γ, L2
pDq

˘

:“

"

p : D ˆ Γ Ñ R;
ż

Γ

ρpyq}ppx,yq}
2
L2pDqdy ă 8

*

,

and L2pDq is the set of square-integrable functions on the spatial domain defined in

(2.8).

The weak formulation of the parameter-dependent linear elasticity problem (2.1)–

(2.5) can now be written as: find u P V , p P Q, and p̃ P Q such that

apu,vq ` bpv, pq “ hpvq, @v P V , (2.18)

bpu, qq ´ cpp̃, qq “ 0, @q P Q, (2.19)

´cpp, q̃q ` dpp̃, q̃q “ 0, @q̃ P Q, (2.20)

where ap¨, ¨q : V ˆ V Ñ R, bp¨, ¨q : V ˆ Q Ñ R, cp¨, ¨q : Q ˆ Q Ñ R, and dp¨, ¨q :

Q ˆ Q Ñ R are bilinear forms defined by

apu,vq :“ β

ż

Γ

ρpyq

ż

D

Epx,yqϵpupx,yqq : ϵpvpx,yqqdxdy,

bpv, pq :“ ´

ż

Γ

ρpyq

ż

D

ppx,yq∇ ¨ vpx,yqdxdy,

cpp̃, qq :“ λ̃´1

ż

Γ

ρpyq

ż

D

p̃px,yqqpx,yqdxdy,

dpp̃, q̃q :“ λ̃´1

ż

Γ

ρpyq

ż

D

Epx,yqp̃px,yqq̃px,yqdxdy.

Recall that the constants β and λ̃ are defined in (1.32) and (1.23), and depend only

on the Poisson ratio ν. When ν Ñ 1
2
, we have λ̃´1 Ñ 0. The function h : V Ñ R on

the right hand side in (2.18) is defined as

hpvq :“

ż

Γ

ρpyq

ż

D

fpxqvpx,yqdxdy. (2.21)

To ensure the well-posedness of (2.18)–(2.20), we must make the following assump-

tion concerning the Young modulus Epx,yq in (2.6).

Assumption 2.18 (Young’s modulus). The Young modulus is bounded away from

zero, and there exist two constants Emin, Emax P R` such that

0 ă Emin ď Epx,yq ď Emax ă 8, a.e. in D ˆ Γ. (2.22)
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If Assumption 2.18 holds, it can be shown (see [44] for the proof) that there exists

a unique solution pu, p, p̃q to the weak formulation (2.18)–(2.20). To ensure that As-

sumption 2.18 holds, the parameters yr in (2.6) cannot take values in an unbounded set.

We will choose the random variables ξr to be independent and uniformly distributed

with mean zero. Note that the variance of ξr „ Up´a, aq is

Varpξrq “
a2

3
.

In Definition 2.15, the random variables in a KL expansion have mean zero and unit

variance. If we model the Young modulus E as a random field with the same structure

as a truncated KL expansion, we can choose ξr „ Up´1, 1q, for r “ 1, 2, . . . ,M , and

erpxq “
?
3
?
λrηrpxq where pλr, ηrpxqq are eigenpairs, because

?
3ξr „ Up´

?
3,

?
3q

has unit variance. We then have yr P Γr “ r´1, 1s. For this choice, the density

function of ξr is ρrpyrq “ 1{2 and the joint density function is ρpyq “ p1{2qM . The

first term e0pxq in (2.6) is chosen to be the mean of Epx,yq. To ensure the lower

bound in (2.6) holds when y P r´1, 1sM , we make a further assumption.

Assumption 2.19. For e0 appearing in (2.6), there exist two constants emin
0 , emax

0 P R`

such that

0 ă emin
0 ď e0pxq ď emax

0 ă 8, a.e. in D.

We model the Young modulus E following Examples 2.16–2.17. In Table 2.3, we

record numerical values of Emin and Emax when M “ 7 for Example 2.16 and M “ 5

for Example 2.17.

Example 2.16 2.17

case σ “ 0.085 σ “ 0.17 slow decay fast decay

Emin 0.6757 0.3514 0.1994 0.1011

Emax 1.3243 1.6486 1.8006 1.8989

Table 2.3: Numerical values of the minimum and maximum of the Young modulus.

2.2.2 Finite-dimensional problem

The solution to (2.18)–(2.20) can now be approximated by solving a discrete problem

associated with finite-dimensional subspaces of V and Q.
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First, we define a finite-dimensional subspace Sd of L2
ρpΓq for the parametric ap-

proximation. Specifically, we choose Sd to be the set of multivariate polynomials on Γ

of total degree less than or equal to d and construct an orthonormal basis as follows.

(i) Pick d P N0 and define Λd to be the set of multi-indices of length M that sum

to d or less. That is,

Λd :“ tα P NM
0 ; }α}1 ď du.

(ii) For each multi-index α P Λd, define the multivariate basis polynomial

ψαpyq :“
M
ź

r“1

Lαrpyrq,

where αr represents the r-th entry of α and Lαr : r´1, 1s Ñ R is a univariate

Legendre polynomial of degree αr. Specifically, we select the set of Legendre

polynomials that are generated by

Lnpyrq :“

?
2n ` 1

2nn!

dn

dynr
py2r ´ 1q

n, n “ 0, 1, . . . .

The resulting Legendre polynomials

L0pyrq “ 1, L1pyrq “
?
3yr, L2pyrq “

?
5

2
p3y2r ´ 1q, . . .

are othonormal with respect to the inner product x¨, ¨yρr defined by

xLipyrq, Ljpyrqyρr :“

ż 1

´1

ρrLipyrqLjpyrqdyr

where ρr “ 1{2. That is, we select polynomials that are orthonormal with respect

to the probability measure associated with the distribution Up´1, 1q.

(iii) Given the set of multivariate polynomials associated with the chosen multi-index

set Λd, we can order them and then label them as ψipyq, i “ 1, . . . , ny, where

ny “
pM ` dq!

M !d!
. (2.23)

Note that when α “ 0, we have ψαpyq “ 1 by definition. We will assume α “ 0

is the first multi-index, so ψ1pyq “ 1.
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With the above construction, we have

Sd :“ spantψ1pyq, ψ2pyq, . . . , ψnypyqu Ă L2
ρpΓq,

and since we assume the joint density ρpyq is separable, the multivariate basis functions

ψi, i “ 1, . . . , ny, are orthonormal with respect to the inner product x¨, ¨yρ defined by

xψipyq, ψjpyqyρ “

ż

Γ

ρpyqψipyqψjpyqdy.

For the spatial approximation, we choose Q2–Q1 finite element approximation.

That is, for the displacement, we choose Vh Ă H1
0pDq to be the set of vector-valued

functions whose components are continuous piecewise biquadratic functions defined

with respect to a uniform mesh of square elements on D and, for the pressures, we

choose Qh Ă L2pDq to be the set of continuous piecewise bilinear functions defined

with respect to the same mesh. Other possible inf-sup stable approximation pairs are

Q2–P´1 (continuous biquadratic approximation for the displacement and discontinuous

linear approximation for the pressure) and Q2–P0 (continuous biquadratic approxima-

tion for the displacement and discontinuous constant approximation for the pressure)

finite element approximations. In [44], Q2–P´1 approximation is used for the spatial

approximation of the parameter-dependent linear elasticity problem (2.1)–(2.5). In

our numerical experiments, for simplicity, we will choose D to be a square so that it

can be exactly partitioned into a uniform mesh of square elements of edge length h.

We denote the grid level and partition the domain into 2l´1 ˆ 2l´1 elements, so that

h “ c{2l´1 where c denotes the edge length of the square domain. However, this is not

necessary and more general quadrilateral or triangular elements can also be used.

The vector-valued basis functions for Vh have the form

ϕipxq “

»

–

ϕipxq

0

fi

fl , i “ 1, . . . , nu,

ϕipxq “

»

–

0

ϕi´nupxq

fi

fl , i “ nu ` 1, . . . , 2nu,

where tϕi : D Ñ Ru
nu
i“1 is a set of scalar-valued continuous piecewise biquadratic

basis functions defined with respect to the chosen mesh. Using the vector-valued basis

functions ϕipxq, i “ 1, . . . , 2nu, we have

Vh :“ spantϕ1pxq,ϕ2pxq, . . . ,ϕ2nupxqu Ă H1
0pDq.
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These basis functions ϕipxq are associated with interior nodes only. We denote the

scalar-valued continuous piecewise bilinear basis functions for Qh as tφi : D Ñ Ru
np

i“1

so that

Qh :“ spantφ1pxq, φ2pxq, . . . , φnppxqu Ă L2
pDq.

The chosen Q2´Q1 approximation is inf-sup stable, that is, there exists a constant

γ ą 0 (the inf-sup constant) independent of the mesh parameter h such that

sup
v‰0,vPVh

ş

D
q∇ ¨ vdx

}∇v}
pL2pDqq

2ˆ2

ě γ}q}L2pDq, @q P Qh. (2.24)

See [2, 13, 14, 26] for more details.

Using the above spaces, we now define a subspace for L2
ρ pΓ,H1

0pDqq

Vhd :“ Vh b Sd “ spantϕipxqψjpyq, i “ 1, . . . , 2nu, j “ 1, . . . , nyu, (2.25)

and a subspace for L2
ρ pΓ, L2pDqq

Qhd :“ Qh b Sd “ spantφipxqψjpyq, i “ 1, . . . , np, j “ 1, . . . , nyu. (2.26)

The finite-dimensional weak formulation then becomes: find uhd P Vhd, phd P Qhd and

p̃hd P Qhd satisfying

apuhd,vq ` bpv, phdq “ hpvq, @v P Vhd, (2.27)

bpuhd, qq ´ cpp̃hd, qq “ 0, @q P Qhd, (2.28)

´cpphd, q̃q ` dpp̃hd, q̃q “ 0, @q̃ P Qhd. (2.29)

If the Young modulus E satisfies Assumption 2.18, the finite-dimensional weak formu-

lation (2.27)–(2.29) admits a unique solution. See [44] for the proof.

The solution to (2.27)–(2.29) can be expanded in the chosen bases as

uhdpx,yq “

ny
ÿ

i“1

2nu
ÿ

j“1

uijψipyqϕjpxq, (2.30)

phdpx,yq “

ny
ÿ

i“1

np
ÿ

k“1

pikψipyqφkpxq, (2.31)

p̃hdpx,yq “

ny
ÿ

i“1

np
ÿ

k“1

p̃ikψipyqφkpxq. (2.32)

To derive the associated linear system of equations, we substitute (2.30)–(2.32) into

(2.27)–(2.29) and then make specific choices of the test functions pv, q, q̃q. Since (2.27)
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holds for all v P Vhd, we choose v “ ψlpyqϕmpxq, where we first vary m “ 1, . . . , nu

for fixed l “ 1, . . . , ny and then we vary m “ nu ` 1, . . . , 2nu for fixed l “ 1, . . . , ny.

This gives 2nuny equations

ny
ÿ

i“1

2nu
ÿ

j“1

βuij

ż

Γ

ρψiψl

ż

D

Eϵpϕjq : ϵpϕmqdxdy ´

ny
ÿ

i“1

np
ÿ

k“1

pik

ż

Γ

ρψiψl

ż

D

φk∇ ¨ ϕmdxdy

“

ż

Γ

ρψl

ż

D

fϕmdxdy.

(2.33)

If we substitute (2.6) into (2.33) and separate the x and y integrals, we have

ny
ÿ

i“1

2nu
ÿ

j“1

βuij

ż

Γ

ρψiψldy

ż

D

e0ϵpϕjq : ϵpϕmqdx

`

ny
ÿ

i“1

2nu
ÿ

j“1

M
ÿ

r“1

βuij

ż

Γ

ρψiψlyrdy

ż

D

erϵpϕjq : ϵpϕmqdx

´

ny
ÿ

i“1

np
ÿ

k“1

pik

ż

Γ

ρψiψldy

ż

D

φk∇ ¨ ϕmdx “

ż

Γ

ρψldy

ż

D

fϕmdx.

Similarly in (2.28), we choose q “ ψlpyqφspxq, where we vary s “ 1, . . . , np for fixed

l “ 1, . . . , ny, which gives nynp equations

´

ny
ÿ

i“1

2nu
ÿ

j“1

uij

ż

Γ

ρψiψl

ż

D

φs∇ ¨ ϕjdxdy ´

ny
ÿ

i“1

np
ÿ

k“1

λ̃´1p̃ik

ż

Γ

ρψiψl

ż

D

φkφsdxdy “ 0,

(2.34)

and in (2.29) choose q̃ “ ψlpyqφspxq in the same order, which gives nynp equations

´

ny
ÿ

i“1

np
ÿ

k“1

λ̃´1pik

ż

Γ

ρψiψl

ż

D

φkφsdxdy `

ny
ÿ

i“1

np
ÿ

k“1

λ̃´1p̃ik

ż

Γ

ρψiψl

ż

D

Eφkφsdxdy “ 0.

(2.35)

Substituting (2.6) into (2.35) gives

´

ny
ÿ

i“1

np
ÿ

k“1

λ̃´1pik

ż

Γ

ρψiψldy

ż

D

φkφsdx `

ny
ÿ

i“1

np
ÿ

k“1

λ̃´1p̃ik

ż

Γ

ρψiψldy

ż

D

e0φkφsdx

`

ny
ÿ

i“1

np
ÿ

k“1

M
ÿ

r“1

λ̃´1p̃ik

ż

Γ

ρψiψldy

ż

D

erφkφsdx “ 0.

If we swap the order of the equations (2.34) and (2.35), and store the coefficients
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in the expansions (2.30)–(2.32) in a vector in the following order

x :“

»

—

—

—

—

—

—

–

u1

u2

rp

p

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rnxny ,

where u1,u2 P Rnuny and rp,p P Rnpny are defined by

u1 :“

»

—

—

—

—

—

—

–

u1,1

u1,2

...

u1,ny

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, u2 :“

»

—

—

—

—

—

—

–

u2,1

u2,2

...

u2,ny

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, rp :“

»

—

—

—

—

—

—

–

rp1

rp2

...

rpny

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, p :“

»

—

—

—

—

—

—

–

p1

p2

...

pny

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

with the ordering

u1,i :“ pui1, ui2, . . . , uinuq
J

P Rnu , i “ 1, 2, . . . , ny,

u2,i :“ pui,nu`1, ui,nu`2, . . . , ui,2nuq
J

P Rnu , i “ 1, 2, . . . , ny,

rpi :“ pp̃i1, p̃i2, . . . , p̃inpq
J

P Rnp , i “ 1, 2, . . . , ny,

pi :“ ppi1, . . . , pinpq
J

P Rnp , i “ 1, 2, . . . , ny,

then the discrete problem can be written as a saddle point system of the form
»

–

A BJ

B 0

fi

fl

»

–

v

p

fi

fl “

»

–

b

0

fi

fl , (2.36)

where

v :“

»

—

—

—

–

u1

u2

rp

fi

ffi

ffi

ffi

fl

.

The matrix A has the block structure

A “

»

–

A 0

0 D

fi

fl P Rp2nu`npqnyˆp2nu`npqny , (2.37)

where A P R2nunyˆ2nuny and D P Rnpnyˆnpny have the Kronecker product structure

A :“

»

—

—

—

–

β
řM

r“0Gr b A
p11q
r β

řM
r“0Gr b A

p21q
r

β
řM

r“0Gr b A
p12q
r β

řM
r“0Gr b A

p22q
r

fi

ffi

ffi

ffi

fl

,

D :“ λ̃´1
M
ÿ

r“0

Gr b Dr.
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The matrix B has the structure

B “

”

G0 b B1 G0 b B2 ´λ̃´1G0 b C
ı

P Rnpnyˆp2nu`npqny . (2.38)

The matrices Gr P Rnyˆny , for r “ 0, 1, . . . ,M , are associated with the parametric

polynomial approximation. The entries of G0 are

G0pi, lq “ xψi, ψlyρ, i, l “ 1, . . . , ny. (2.39)

Since tψiu is chosen to be an orthonormal basis, all of the diagonal entries of G0 are

1 and the rest are zero. That is, G0 is the ny ˆ ny identity matrix. For r “ 1, . . . ,M ,

the entries of Gr are

Grpi, lq “ xyrψi, ψlyρ, i, l “ 1, . . . , ny. (2.40)

Clearly, each Gr is symmetric and it can be shown (see [63] and [28]) that each has at

most two nonzero entries per row. That is, they are highly sparse.

The matrices A, B1, B2, C, and Dr, for r “ 0, 1, . . . ,M, are associated with the

spatial approximation. If we define x :“ px1, x2qJ, the entries of A
p11q
r , A

p21q
r , A

p12q
r and

A
p22q
r , for r “ 0, 1, . . . ,M , are defined as

Ap11q
r pj,mq :“

ż

D

erpxq

ˆ

Bϕj

Bx1

Bϕm

Bx1
`

1

2

Bϕj

Bx2

Bϕm

Bx2

˙

dx, j,m “ 1, . . . , nu,

Ap21q
r pj,mq :“

1

2

ż

D

erpxq
Bϕj

Bx2

Bϕm

Bx1
dx, j,m “ 1, . . . , nu,

Ap12q
r pj,mq :“

1

2

ż

D

erpxq
Bϕj

Bx1

Bϕm

Bx2
dx, j,m “ 1, . . . , nu,

Ap22q
r pj,mq :“

ż

D

erpxq

ˆ

1

2

Bϕj

Bx1

Bϕm

Bx1
`

Bϕj

Bx2

Bϕm

Bx2

˙

dx, j,m “ 1, . . . , nu.

The entries of B1 and B2 are

B1pk,mq :“ ´

ż

D

φk
Bϕm

Bx1
dx, k “ 1, . . . , np,m “ 1, . . . , nu,

B2pk,mq :“ ´

ż

D

φk
Bϕm

Bx2
dx, k “ 1, . . . , np,m “ 1, . . . , nu.

The entries of C are

Cpk, sq “

ż

D

φkpxqφspxqdx, k, s “ 1, . . . , np. (2.41)

The entries of Dr, r “ 0, 1, . . . ,M, are

Drpk, sq “

ż

D

erpxqφkpxqφspxqdx, k, s “ 1, . . . , np. (2.42)
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Note that C and Dr, r “ 0, 1, . . . ,M are symmetric matrices. C is a standard finite

element mass matrix and the Dr are weighted mass matrices. Since they are finite

element matrices, A
p11q
r , A

p21q
r , A

p12q
r , A

p22q
r , B1, B2, C and Dr are all sparse.

Proposition 2.20. If Assumption 2.18 holds, the matrix A defined in (2.37) is sym-

metric and positive definite.

Proof. Since the matrices Gr, A
p11q
r , A

p22q
r , and Dr for r “ 0, 1, . . . ,M , are symmetric,

and A
p12q
r “

´

A
p21q
r

¯J

, the matrix A is clearly symmetric. For a vector w P R2nunyzt0u

with entries wij for i “ 1, 2, . . . , ny, j “ 1, 2, . . . , 2nu, there is a corresponding function

whd P Vhd defined by

whdpx,yq “

ny
ÿ

i“1

2nu
ÿ

j“1

wijψipyqϕjpxq.

If Assumption 2.18 holds, Epx,yq ě Emin ą 0 and we have

wJAw “ apw,wq “ β

ż

Γ

ρpyq

ż

D

Epx,yqϵpwhdpx,yqq : ϵpwhdpx,yqqdxdy

ě βEmin}ϵpwhdpx,yqq}
2
LρpΓ,pL2pDqq2ˆ2q ą 0.

Similarly, for a vector q P Rnpnyzt0u with entries qij for i “ 1, 2, . . . , ny, j “ 1, 2, . . . , np,

there is a function qhd P Qhd defined by

qhdpx,yq “

ny
ÿ

i“1

np
ÿ

j“1

qijψipyqφjpxq,

and we have

qJDq “ λ̃´1

ż

Γ

ρpyq

ż

D

Epx,yqqhdpx,yqqhdpx,yqdxdy

ě λ̃´1Emin}qhd}
2
LρpΓ,L2pDqq ą 0.

The matrices A and D are positive definite, and hence so is A.

The following result from [67] can be used to establish eigenvalue bounds for the

coefficient matrix of (2.36). Note that B is of full row rank if the inf-sup condition in

(2.24) is satisfied and Vhd and Qhd are constructed as in (2.25)–(2.26).

Theorem 2.21. Let 0 ă µmin, µmax be the minimum and maximum eigenvalues of

the symmetric and positive definite matrix A, and let σmin, σmax be the minimum and
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maximum singular values of the matrix B with full row rank. The eigenvalues of the

coefficient matrix of (2.36) lie in the union of the intervals

„

1

2

ˆ

µmin ´

b

µ2
min ` 4σ2

max

˙

,
1

2

ˆ

µmax ´

b

µ2
max ` 4σ2

min

˙ȷ

Y

„

µmin,
1

2

´

µmax `
a

µ2
max ` 4σ2

max

¯

ȷ

.

The nonzero part of the right hand side of the linear system (2.36) is associated

with the body force fpxq, where fpxq :“ pf1pxq, f2pxqqJ. The vector b P Rp2nu`npqny

can be written as

b :“

»

—

—

—

–

b1

b2

0

fi

ffi

ffi

ffi

fl

,

where b1 “ g0 b f1 and b2 “ g0 b f2 where

f1pmq “

ż

D

f1pxqϕmpxqdx, m “ 1, . . . , nu,

f2pmq “

ż

D

f2pxqϕmpxqdx, m “ 1, . . . , nu.

If we assume that ψ1 “ 1, then the entries of g0 are

g0plq “ x1, ψlyρ “

$

’

&

’

%

1, l “ 1,

0, l “ 2, . . . , ny,

(2.43)

which is the first column of the ny ˆ ny identity matrix.

As mentioned in Section 1.1, the saddle point system (2.36) can also be rewritten

as
˜

M
ÿ

r“0

Gr b Kr

¸

x “ h, (2.44)

where the matrices Kr, for r “ 0, 1, . . . ,M are associated with the spatial approxima-

tion. In this formulation, K0 P Rnxˆnx where nx :“ 2pnu ` npq, is defined as

K0 :“

»

—

—

—

–

βA0 0 BJ

0 λ̃´1D0 ´λ̃´1C

B ´λ̃´1C 0

fi

ffi

ffi

ffi

fl

, (2.45)



2.3. PRECONDITIONED MINRES 57

and for r “ 1, . . . ,M , the matrices Kr P Rnxˆnx are defined as

Kr :“

»

—

—

—

–

βAr 0 0

0 λ̃´1Dr 0

0 0 0

fi

ffi

ffi

ffi

fl

, (2.46)

where the matrices Ar, for r “ 0, 1, . . . ,M , and B are defined by

Ar :“

»

–

A
p11q
r A

p21q
r

A
p12q
r A

p22q
r

fi

fl , B :“
”

B1 B2

ı

.

The vector x in (2.44) is defined as

x :“

»

—

—

—

—

—

—

–

x1

x2

...

xny

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, xi :“

»

—

—

—

—

—

—

–

u1,i

u2,i

rpi

pi

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rnx .

In addition, the vector h is defined as

h :“ g0 b f ,

where f is defined as

f :“

»

—

—

—

—

—

—

–

f1

f2

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2.47)

For simplicity, we denote the coefficient matrix of (2.44) as M. Then, the linear

system can simply be written as

Mx “ h. (2.48)

Since M is symmetric and indefinite, we can approximate the solution to this linear

system using the minimal residual method (MINRES, see [59]). We discuss this next.

2.3 Preconditioned MINRES

MINRES is a commonly used Krylov subspace method for solving Hermitian linear

systems. Krylov subspace methods are a family of iterative methods that generate
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approximations xk in affine subspaces of the form x0 ` Kk, where x0 is the chosen

initial guess and Kk is a so-called Krylov subspace. See [34, 71] for more details.

For the linear system (2.48) with an initial guess x0, the associated residual is

defined by

r0 :“ h ´ Mx0.

The Krylov subspace KkpM, r0q of order k associated with the matrix M and the

residual r0 is defined as

KkpM, r0q :“ span
␣

r0,Mr0, . . . ,Mk´1r0
(

.

At the kth iteration, a Krylov subspace method generates an approximation xk in the

space x0 ` KkpM, r0q. The associated residual

rk :“ h ´ Mxk,

belongs to the space Rk :“ r0 `MKkpM, r0q. MINRES constructs an approximation

xk in such a way that the 2-norm of the residual rk is minimised over the space Rk.

Pseudocode for MINRES can be found in many standard texts on iterative methods,

for example in [71]. The usual stopping criterion chosen for MINRES is

}rk}2

}r0}2
ă ϵ, (2.49)

where ϵ is a tolerance. It is well known (see [26, 34]) that a theoretical upper bound

for the relative residual error at the k-th step is given by

}rk}2

}r0}2
ď min

pkPΠk,pkp0q“1
max

j
|pkpλjq|,

where Πk is the set of polynomials of degree less than or equal to k and λj is an

eigenvalue of M. If the eigenvalues of M are spread out, MINRES will require a large

number of iterations to terminate. To fix this, we can use preconditioned MINRES.

Preconditioned MINRES requires a symmetric and positive definite preconditioner

P to preserve the symmetry of the coefficient matrix. Suppose a symmetric and

positive definite preconditioner P is available. Then, we can write its Cholesky fac-

torization as

P “ LLJ, (2.50)
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where L P Rnxnyˆnxny for our problem. If we apply L´1 to the left on both sides of

(2.48) and replace the solution vector x with y “ LJx, then we obtain the symmetri-

cally preconditioned linear system

L´1ML´Jy “ L´1h. (2.51)

The residual of the symmetrically preconditioned linear system at the kth iteration is

rpk :“ L´1
ph ´ Mxkq “ L´1rk,

where rk is the kth residual of the unpreconditioned linear system (2.48). Given a

tolerance ϵ, the usual stopping criterion chosen for preconditioned MINRES is

}rk}P´1

}r0}P´1

ă ϵ. (2.52)

The theoretical upper bound for the preconditioned relative residual error at the k-th

step is given by

}rk}P´1

}r0}P´1

ď min
pkPΠk,pkp0q“1

max
j

|pkpλjq|,

where Πk is the set of polynomials of degree less than or equal to k as before and λj

now represents an eigenvalue of P´1M. A good preconditioner P should make the

eigenvalues of P´1M clustered so that the number of required iterations is reduced.

2.3.1 Preconditioning

We will discuss two symmetric and positive definite preconditioners for the linear

system (2.48) for use with MINRES. A good preconditioner P generally satisfies two

conditions:

(i) the action of the inverse of P on a vector is cheap to compute compared to that

of M;

(ii) the eigenvalues of P´1M are clustered.

For stochastic Galerkin finite element systems associated with scalar elliptic PDEs

´∇ ¨ pa∇uq “ f, (2.53)
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with parameter-dependent diffusion coefficient a, the coefficient matrices are symmet-

ric and positive definite. In that case, one can choose the block-diagonal preconditioner

P “ Iny bK0 since K0 is also symmetric and positive definite. This approach has been

studied in [30, 63]. For the parameter-dependent linear elasticity problem considered

here, K0 is symmetric but indefinite, and so Iny b K0 is also indefinite. We consider

two symmetric and positive definite approximations to Iny b K0 as preconditioners.

(i) The matrix K0 defined in (2.45) has a saddle point structure, and a general

approximation to it can be written as

KS :“

»

—

—

—

–

βA0 0 0

0 λ̃´1D0 0

0 0 S0

fi

ffi

ffi

ffi

fl

, (2.54)

where

S0 :“ β´1BA´1
0 BJ

` λ̃´1CD´1
0 C (2.55)

is the Schur complement ofK0. This leads to the first preconditioner P1 :“ I b KS.

(ii) To make the action of the inverse of P on a vector cheaper to compute, we

can find an approximation to KS. In [44], a block diagonal matrix is used to

approximate A0, and an approximation of the Schur complement is used instead

of the dense matrix S0. The approximation to A0 is chosen to be

A0,approx :“

»

–

2
3

´

A
p11q

0 ` A
p22q

0

¯

0

0 2
3

´

A
p11q

0 ` A
p22q

0

¯

fi

fl ,

and the approximation to the Schur complement S0 is chosen as

S0,approx :“
´

β´1
` λ̃´1

¯

C. (2.56)

When the expectation e0 of the Young modulus is a constant, we can instead

choose

S0,approx :“
´

β´1
` λ̃´1

¯

e´1
0 C. (2.57)

The approximation to KS can be written as

KS,approx :“

»

—

—

—

–

βA0,approx 0 0

0 λ̃´1D0 0

0 0 S0,approx

fi

ffi

ffi

ffi

fl

, (2.58)

and the second preconditioner we choose is P2 :“ I b KS,approx.
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Next, we will discuss eigenvalue bounds for the preconditioned matrices P´1
1 M

and P´1
2 M. Since M can be obtained by permuting the rows and columns of the

coefficient matrix in (2.36), they are similar and have the same eigenvalues (see [37]).

Let Mp denote the coefficient matrix

Mp :“

»

–

A BJ

B 0

fi

fl ,

where A and B are defined in (2.37) and (2.38). The preconditioner P1 is similar to

the following matrix

Q1 :“

»

–

A0 0

0 S0

fi

fl ,

where A0 is defined as

A0 :“

»

–

A0 0

0 D0

fi

fl , (2.59)

with A0 and D0 defined by

A0 :“

»

—

—

—

–

βIny b A
p11q

0 βIny b A
p21q

0

βIny b A
p12q

0 βIny b A
p22q

0

fi

ffi

ffi

ffi

fl

, D0 :“ λ̃´1Iny b D0

and S0 is defined as

S0 :“ BpA´1
0 BJ

p “ Iny b S0,

where S0 is defined in (2.55). If we factorize Q1 “ LQ1L
J
Q1

with

LQ1 :“

»

–

LA0 0

0 LS0

fi

fl

where LA0L
J
A0

“ A0, LS0L
J
S0

“ S0, and precondition the saddle point matrix Mp

symmetrically, we obtain the following symmetric matrix with a saddle point structure

MQ1 :“

»

–

L´1
A0
AL´J

A0
L´1
A0
BJL´J

S0

L´1
S0
BL´J

A0
0

fi

fl . (2.60)

Eigenvalue bounds for MQ1 can be obtained using Theorem 2.21 again. The p1, 1q

block L´1
A0
AL´J

A0
is symmetric and positive definite and its eigenvalues are the same as

those of A´1
0 A. The eigenvalue bounds are given in the following lemma.



62CHAPTER 2. PARAMETER-DEPENDENT LINEAR ELASTICITY PROBLEM

Lemma 2.22. Let A and A0 be defined in (2.37) and (2.59). If Assumption 2.18

holds, the eigenvalues of A´1
0 A lie in the following interval

„

Emin

emax
0

,
Emax

emin
0

ȷ

, (2.61)

where, recall, Emin, Emax are defined in Assumption 2.18 and emin
0 , emax

0 are defined in

Assumption 2.19.

Proof. The matrix A´1
0 A is block diagonal and is defined by

A´1
0 A “

»

–

A´1
0 A 0

0 D´1
0 D

fi

fl .

The eigenvalues of A´1
0 A are the union of eigenvalues of the first diagonal block and

the second diagonal block. For a vector w P R2nuny , there is a corresponding function

w P Vhd. We can obtain eigenvalue bounds for A´1
0 A by investigating the bounds for

the Rayleigh quotient

wJAw
wJA0w

.

Since A is symmetric and positive definite, we have

wJAw “ apw,wq “ β

ż

Γ

ρpyq

ż

D

Epx,yqϵpwq : ϵpwqdxdy

ď
Emax

emin
0

ż

Γ

ρpyq

ż

D

e0pxqϵpwq : ϵpwqdxdy

“
Emax

emin
0

wJA0w.

Similarly,

wJAw ě
Emin

emax
0

wJA0w.

Therefore, the eigenvalues of A´1
0 A lie in the interval (2.61). Analogously, we can

obtain eigenvalue bounds for D´1
0 D by investigating bounds for the Rayleigh quotient

qJDq
qJD0q

,

where q P Rnpny . It is straightforward to prove that the eigenvalue of D´1
0 D lie in

the same interval as A´1
0 A. Hence, the eigenvalues of A´1

0 A also lie in the interval

(2.61).
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The above result tells us that the minimum and maximum eigenvalues µ̃min, µ̃max

of L´1
A0
AL´J

A0
satisfy

µ̃min ě
Emin

emax
0

, µ̃max ď
Emax

emin
0

.

Multiplying the p2, 1q block and the p1, 2q block of MQ1 gives

L´1
S0
BL´J

A0
L´1
A0
BJL´J

S0
“ L´1

S0
S0L

´J
S0

“ I.

Therefore, all singular values of L´1
S0
BL´J

A0
are 1. Eigenvalue bounds for MQ1 are given

in the following theorem.

Theorem 2.23. Let µ̃min, µ̃max be the minimum and maximum eigenvalues of L´1
A0
AL´J

A0
,

where A is defined in (2.37) and LA0L
J
A0

“ A0 with A0 defined in (2.59). Then the

eigenvalues of MQ1 defined in (2.60) lie in the union of the following intervals

„

1

2

ˆ

µ̃min ´

b

µ̃2
min ` 4

˙

,
1

2

´

µ̃max ´
a

µ̃2
max ` 4

¯

ȷ

Y

„

µ̃min,
1

2

´

µ̃max `
a

µ̃2
max ` 4

¯

ȷ

.

(2.62)

Since M and P1 are similar to Mp and Q1, respectively, P´1
1 M is similar to MQ1 .

The eigenvalues of P´1
1 M also lie in the intervals (2.62). We note that the theoretical

eigenvalue bounds are independent of the finite element mesh size h, the polynomial

degree d and crucially, when working in the nearly incompressible case, the Poisson

ratio ν. However, they do depend on the maximum and minimum values of E and its

mean.

Eigenvalue bounds for P´1
2 M are established in [44]. The preconditioner P2 is

similar to the following matrix

Q2 :“

»

–

A0,approx 0

0 S0,approx

fi

fl ,

where A0,approx is defined as

A0,approx :“

»

—

—

—

–

βIny b 2
3

´

A
p11q

0 ` A
p22q

0

¯

0 0

0 βIny b 2
3

´

A
p11q

0 ` A
p22q

0

¯

0

0 0 D0

fi

ffi

ffi

ffi

fl

, (2.63)
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and S0,approx is defined as

S0,approx :“ BA´1
0,approxBJ

“ I b S0,approx,

where S0,approx is defined in (2.56) when e0pxq is a spatial function, or in (2.57) when

e0pxq is a constant. The eigenvalues of A´1
0,approxA lie in the following interval

„

CK
Emin

emax
0

,
Emax

emin
0

ȷ

,

where 0 ă CK ă 1 is the Korn constant, see [16]. The minimum and maximum

eigenvalues µ̂min, µ̂max of A´1
0,approxA therefore satisfy

µ̂min ě CK
Emin

emax
0

, µ̂max ď
Emax

emin
0

.

The matrix P´1
2 M is similar to

MQ2 :“ L´1
Q2
MpL

´J
Q2

(2.64)

where LQ2L
J
Q2

“ Q2. Eigenvalue bounds for MQ2 are derived in [44], which are given

in the following theorem.

Theorem 2.24. Let µ̂min, µ̂max be the minimum and maximum eigenvalues of the ma-

trix L´1
A0,approx

AL´J
A0,approx

, where A is defined in (2.37) and LA0,approxL
J
A0,approx

“ A0,approx

with A0,approx defined in (2.63). Then the eigenvalues of MQ2 defined in (2.64) lie in

the union of the following intervals
„

1

2

ˆ

µ̂min ´

b

µ̂2
min ` 4Θ2

˙

,
1

2

´

µ̂max ´
a

µ̂2
max ` 4θ2

¯

ȷ

Y

„

µ̂min,
1

2

´

µ̂max `
a

µ̂max ` 4Θ2
¯

ȷ

,

(2.65)

where

θ2 :“
γ2

emax
0

, Θ2 :“
2

emin
0

,

and γ is the inf-sup constant defined in (2.24). Alternatively, if e0pxq is a constant

and S0,approx is defined in (2.57), then we obtain a slightly improved bound with

θ2 “ γ2, Θ2
“ 2.

Again, we can see that the theoretical eigenvalue bounds for P´1
2 M are independent

of the finite element mesh size h, the polynomial degree d and the Poisson ratio ν but

depend on the maximum and minimum values of E and its mean.
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2.3.2 Numerical experiments

In this section, we introduce two test problems and look at the eigenvalues of P´1
1 M

and P´1
2 M for the two test problems. We then apply preconditioned MINRES to the

linear systems obtained when we discretise them with the stochastic Galerkin mixed

finite element method discussed in Section 2.2.

Test problem 1. First, we choose the spatial domain to be D :“ r´1, 1s2 with

Neumann boundary BDN :“ t1u ˆ p´1, 1q and Dirichlet boundary BDD “ BDzBDN

and we choose the body force

fpxq “

»

–

10´2

10´2

fi

fl .

Following Example 2.16, we choose the parameter-dependent Young modulus to be

Epx,yq :“ e0pxq `

M
ÿ

r“1

erpxqyr, x P D, y P Γ, (2.66)

where Γ “ r´1, 1sM , e0 “ 1 and

erpxq “
?
3
a

λrηrpxq, r “ 1, 2, . . . ,M, (2.67)

where pλr, ηrpxqq are the eigenpairs associated with the separable exponential covari-

ance function (2.15).

Test problem 2. In this problem, we choose the spatial domain D “ r0, 1s2 with

Neumann boundary BDN “ t1u ˆ p0, 1q and Dirichlet boundary BDD “ BDzBDN .

Again, we define the body force as

fpxq “

»

–

10´2

10´2

fi

fl .

The Young modulus is defined as in (2.66), but following Example 2.17, we now choose

e0pxq “ 1, erpxq “ γr cosp2πϱ1prqx1q cosp2πϱ2prqx2q,

where γr “ 0.832r´4 for fast decay, or γr “ 0.547r´2 for slow decay and ϱ1prq and

ϱ2prq are defined in Example 2.17.
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Figure 2.8: Expectations and variances of components of the displacement u and

Herrmann pressure p when l “ 6, ν “ 0.4999, M “ 13, d “ 4 and σ “ 0.17 for Test

problem 1.

Figure 2.9: Expectations and variances of components of the displacement u and

Herrmann pressure p when l “ 6, ν “ 0.4999, M “ 13 and d “ 4 for the fast decay

case in Test problem 2.
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In Figures 2.8–2.9, we plot the expectation and variance of the solution obtained

using preconditioned MINRES for both test problems with fixed Poisson ratio ν “

0.4999, M “ 13, finite element grid level l “ 6 and polynomial degree d “ 4. The

stopping condition is when the preconditioned relative residual in (2.52) is less than

10´6. Note that these problems have spatial singularities due to the choice of boundary

condition so a fine spatial mesh is needed.

Next, we will apply preconditioned MINRES to problems of small and moderate

size with the two preconditioners P1 and P2. All numerical experiments are performed

in MATLAB R2022a on a laptop with a 2.4 GHz 8-Core Intel Core i9 processor with 64

GB of RAM. The MATLAB code we used for the parameter-dependent linear elasticity

problem is a combination of the code for deterministic linear elasticity problem and the

code for stochastic diffusion problem in S-IFISS toolbox [75]. As discussed in Section

2.3.1, the theoretical eigenvalue bounds for the preconditioned coefficient matrix with

these two preconditioners are independent of the mesh size h, the total polynomial

degree d and the Poisson ratio ν but depend on the maximum and minimum values of

E and its mean. This means that the convergence of preconditioned MINRES should

only depend on the maximum and minimum values of E and its mean. For Test

problem 1, we need to choose a small value of the standard deviation σ to ensure that

Assumption 2.18 holds and the variance of Epx,yq increases slowly if we increaseM . In

theory, the convergence of MINRES will be affected by keeping more parameters yr and

increasing σ in Test problem 1 since these values affect Emin and Emax. We now perform

some numerical experiments to verify the above. For all numerical experiments, we

terminate MINRES when the preconditioned relative residual is less than 10´6 and we

choose the initial guess x0 “ 0. The timings we record are in seconds. Note that the

iteration counts are not comparable for P1 and P2, since their stopping conditions are

different.

Preconditioned MINRES with varying grid level: The iteration counts and

timings using preconditioned MINRES with varying mesh level l, fixed Poisson ratio

ν “ 0.4999 and total polynomial degree d “ 4 are recorded for the two test problems

in Tables 2.4–2.6. For Test problem 1, we choose M “ 7 since it keeps 85% of the

total variance of E. For the two cases of Test problem 2, we choose M “ 5 since it

keeps nearly 100% of the total variance of E. We can see the iteration counts are
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independent of mesh size using the preconditioner P1 and nearly independent of mesh

size using the preconditioner P2.

l P1 P2

5 27 (2.21e1) 109 (1.28e1)

6 27 (3.48e2) 116 (7.75e1)

7 27 (5.27e3) 119 (8.24e2)

Table 2.4: Iteration counts and timings (in brackets) using preconditioned MINRES

for Test problem 1 when σ “ 0.17, ν “ 0.4999, M “ 7 and d “ 4.

l P1 P2

5 40 (1.22e1) 134 (5.42e0)

6 43 (2.04e2) 145 (3.67e1)

7 43 (3.17e3) 155 (4.06e2)

Table 2.5: Iteration counts and timings (in brackets) using preconditioned MINRES

for the slow decay case in Test problem 2 when ν “ 0.4999, M “ 5 and d “ 4.

l P1 P2

5 59 (1.81e1) 184 (8.13e0)

6 64 (3.02e2) 205 (5.50e1)

7 65 (4.82e3) 213 (5.65e2)

Table 2.6: Iteration counts and timings (in brackets) using preconditioned MINRES

for the fast decay case in Test problem 2 when ν “ 0.4999, M “ 5 and d “ 4.

Preconditioned MINRES with varying Poisson ratio: In Tables 2.7–2.9, we

record numerical results for the two test problems with varying Poisson ratio ν. We

can see the iteration counts remain bounded as ν Ñ 0.5 for both preconditioners.
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ν P1 P2

0.4 27 (3.53e2) 109 (6.22e1)

0.49 27 (3.49e2) 114 (7.78e1)

0.499 27 (3.51e2) 116 (9.11e1)

0.4999 27 (3.49e2) 116 (9.03e1)

Table 2.7: Iteration counts and timings (in brackets) using preconditioned MINRES

for Test problem 1 with varying ν when σ “ 0.17, l “ 6, M “ 7 and d “ 4.

ν P1 P2

0.4 43 (2.05e2) 107 (2.74e1)

0.49 43 (2.06e2) 138 (3.52e1)

0.499 43 (2.14e2) 144 (3.60e1)

0.4999 43 (2.09e2) 145 (3.62e1)

Table 2.8: Iteration counts and timings (in brackets) using preconditioned MINRES

for the slow decay case in Test problem 2 with varying ν when l “ 6, M “ 5 and

d “ 4.

ν P1 P2

0.4 68 (3.20e2) 153 (4.05e1)

0.49 65 (3.06e2) 194 (4.90e1)

0.499 65 (3.07e2) 205 (5.17e1)

0.4999 64 (3.02e2) 205 (5.14e1)

Table 2.9: Iteration counts and timings (in brackets) using preconditioned MINRES

for the fast decay case in Test problem 2 with varying ν when l “ 6, M “ 5 and

d “ 4.

Preconditioned MINRES with varying polynomial degree: In Tables 2.10–

2.12, we record results for the two test problems with varying total polynomial degree

d. The iteration counts barely depend on the polynomial degree d for both precondi-

tioners.
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d P1 P2

3 24 (1.13e2) 111 (2.80e1)

4 27 (3.43e2) 116 (8.22e1)

5 29 (8.80e2) 120 (1.97e2)

6 30 (1.99e3) 122 (4.19e2)

Table 2.10: Iteration counts and timings (in brackets) using preconditioned MINRES

for Test problem 1 with varying d when σ “ 0.17, l “ 6, ν “ 0.4999 and M “ 7.

d P1 P2

3 39 (8.17e1) 134 (1.90e1)

4 43 (2.01e2) 145 (4.55e1)

5 45 (4.20e2) 153 (8.39e1)

6 46 (8.13e2) 158 (1.50e2)

Table 2.11: Iteration counts and timings (in brackets) using preconditioned MINRES

for the slow decay case in Test problem 2 with varying d when l “ 6, ν “ 0.4999

and M “ 5.

d P1 P2

3 58 (1.20e2) 184 (2.36e1)

4 64 (3.10e2) 205 (6.09e1)

5 68 (6.55e2) 221 (1.24e2)

6 73 (1.28e3) 232 (2.20e2)

Table 2.12: Iteration counts and timings (in brackets) using preconditioned MINRES

for the fast decay case in Test problem 2 with varying d when l “ 6, ν “ 0.4999 and

M “ 5.

Preconditioned MINRES with varying number of parameters: In Tables

2.13–2.15, we record the iteration counts and timings for the two test problems with

varying M . For both preconditioners, the iteration counts are nearly independent of

M .
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M P1 P2

5 26 (1.26e2) 112 (2.81e1)

7 27 (3.44e2) 116 (8.04e1)

13 28 (2.59e3) 117 (6.38e2)

Table 2.13: Iteration counts and timings (in brackets) using preconditioned MINRES

for Test problem 1 with varying M when σ “ 0.17, l “ 6, ν “ 0.4999 and d “ 4.

M P1 P2

1 36 (6.95e0) 126 (1.89e0)

3 42 (5.57e1) 142 (1.03e1)

5 43 (2.05e2) 145 (3.64e1)

Table 2.14: Iteration counts and timings (in brackets) using preconditioned MINRES

for the slow decay case in Test problem 2 with varying M when l “ 6, ν “ 0.4999

and d “ 4.

M P1 P2

1 62 (1.18e1) 195 (2.86e0)

3 64 (8.35e1) 205 (1.47e1)

5 64 (3.14e2) 205 (5.35e1)

Table 2.15: Iteration counts and timings (in brackets) using preconditioned MINRES

for the fast decay case in Test problem 2 with varying M when l “ 6, ν “ 0.4999

and d “ 4.

Preconditioned MINRES with varying standard deviation for Test prob-

lem 1: For Test problem 1, we record the numerical results obtained with varying

standard deviation σ in Table 2.16. As expected, the iteration counts increase as σ

increases.
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σ P1 P2

0.085 19 (2.44e2) 95 (6.68e1)

0.170 27 (3.56e2) 116 (8.05e1)

0.255 37 (4.72e2) 147 (1.06e2)

Table 2.16: Iteration counts and timings (in brackets) in seconds using preconditioned

MINRES for Test problem 1 with varying σ when l “ 6, ν “ 0.4999, M “ 7 and

d “ 4.

Preconditioned MINRES for large problems: Finally, we implement pre-

conditioned MINRES on some large problems using the chosen preconditioners. We

consider Test problem 1 when l “ 8, 9, M “ 15, d “ 3, 4, ν “ 0.4 and σ “ 0.085. The

sizes of these high-dimensional problems are recorded in Table 2.17.

l nx M d ny nx ¨ ny

8 163842 15
3 816 1.34e8

4 3876 6.35e8

9 655362 15
3 816 5.35e8

4 3876 2.54e9

Table 2.17: Sizes of some large problems.

We apply preconditioned MINRES with the preconditioners P1 and P2 to these

large problems. The numerical results are recorded in Table 2.18. When we use

preconditioner P1 to solve these problems, the machine that we used for the numerical

experiments runs out of memory. This is mainly because there are dense blocks of

size np ˆ np in the preconditioner P1. If we use the preconditioner P2, we can solve

linear systems with up to 5.35 ˆ 108 equations but the machine runs out of memory

if the number of equations is greater than 6 ˆ 108. Since preconditioned MINRES

requires assembling vectors of length nx¨ny, it cannot be used to solve high-dimensional

problems when there is insufficient memory to store such vectors. In this case, a more

memory-efficient algorithm is required to overcome this issue.
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l M d P1 P2

8 15
3 out of memory 70 (9.46e3)

4 out of memory out of memory

9 15
3 out of memory 73(7.45e4)

4 out of memory out of memory

Table 2.18: Iteration counts and timings (in brackets) using preconditioned MINRES

for Test problem 1 when σ “ 0.085, ν “ 0.4; the stopping tolerance is 10´6.

2.3.3 Conclusions

The results obtained in Section 2.3.2 demonstrate that preconditioned MINRES can be

used to solve the linear system (2.44) when the problem size is not too large. However,

when fine finite element meshes are required and the number of input parameters is

large, nxny is large. The dimensions shown in Table 2.17 are not uncommon. We

considered two preconditioners: P1, which contains dense blocks of size np ˆnp on the

diagonal, and P2, which is a sparse approximation of P1.

When we apply preconditioned MINRES with the two preconditioners P1 and P2

to both test problems, we observe that iteration counts are nearly independent of the

Poisson ratio ν, the number of terms M , the mesh size h, and the polynomial degree

d, but do depend on the standard deviation σ in Test problem 1. The iteration counts

are also higher for the fast decay case than the slow decay case in Test problem 2

because E has a higher variance in the fast decay case. Timings are independent of

the Poisson ratio ν, but depend on the problem size and standard deviation in Test

problem 1.

If we use preconditioned MINRES to solve high-dimensional problems, the machine

that we used runs out of memory because it requires the storage of long vectors of

length nx ¨ ny. To overcome this issue, we will introduce a reduced basis solver in the

next chapter.



Chapter 3

A Reduced Basis Method

In [64], a reduced basis method called Multi-RB was developed for a multi-term matrix

equation of the form (1.40) associated with the scalar elliptic PDE in (2.53) with

parameter-dependent diffusion coefficient. We will now attempt to extend the method

to more complex problems with saddle point structure. First, we consider the linear

system (2.44) that arises when we apply a stochastic Galerkin mixed finite element

method to (2.1)–(2.5). The solution vector x P Rnxny can be reshaped into a matrix

of the following form

X :“

»

—

—

—

—

—

—

–

U1

U2

rP

P

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rnxˆny ,

where the matrices U1, U2, rP and P are defined by

U1 :“
“

u1,1,u1,2, . . . ,u1,ny

‰

P Rnuˆny ,

U2 :“
“

u2,1,u2,2, . . . ,u2,ny

‰

P Rnuˆny ,

rP :“
“

rp1, rp2, . . . , rpny

‰

P Rnpˆny ,

P :“
“

p1,p2, . . . ,pny

‰

P Rnpˆny .

If we stack the columns of the solution matrix X on top of one another, we ob-

tain the solution vector x P Rnxny of the linear system (2.44). The number of rows

nx “ 2pnu ` npq depends on the chosen finite element mesh size and the number of

columns ny depends on the number M of parameters in the expression for Epx,yq as

74
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well as the total polynomial degree d chosen for the parametric approximation space

Sd. Using the property of the matrix Kronecker product introduced in (1.39), the

linear system (2.44) can be reformulated as the multi-term matrix equation

M
ÿ

r“0

KrXGr “ H. (3.1)

If the singular values of the solution matrix X decay rapidly enough, we expect to be

able to approximate it well by a low-rank matrix.

In Section 3.1, we explain why a matrix with rapidly decaying singular values can

be well approximated by a low rank matrix and investigate how the singular values of

X behave for our parameter-dependent linear elasticity problem. In Section 3.2, the

multi-term reduced basis method from [64] is extended so that it can be applied to the

matrix equations associated with the parameter-dependent linear elasticity problem.

The resulting algorithm is provided at the end of this chapter.

3.1 Low rank analysis

The Frobenius norm of the solution matrix X is defined as

}X}F “
?
X : X “

a

tracepXJXq

where : is the component product defined in (2.17). The Frobenius norm of X is

equivalent to the 2 norm of x, where x :“ vecpXq. Let m denote the actual rank of

X and suppose our aim is to approximate X by another matrix rX P Rnxˆny of lower

rank than m. Specifically, suppose we try to find a matrix rXp of rank p, with p ă m,

which solves the following problem

min
rXpPRnxˆny

}X ´ rXp}
2
F

subject to rankp rXpq “ p.

(3.2)

The solution to this minimisation problem can be found by decomposing X using the

singular value decomposition (SVD)

X “ UΣV J, Σ :“ diagpσ1, σ2, . . . , σm, 0, . . . , 0q P Rnxˆny ,
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where U P Rnxˆnx , V P Rnyˆny are unitary matrices and σ1 ě σ2 ě . . . ě σm ą 0

are the nonzero singular values of X. Alternatively, the SVD of the matrix X can be

expressed as

X “

m
ÿ

i“1

σiuiv
J
i , (3.3)

where ui P Rnx , vi P Rny denote the ith columns of U , V , respectively. The best

approximation rXp of rank p that solves the problem (3.2) is

rXp “

p
ÿ

i“1

σiuiv
J
i . (3.4)

See [21] for more details. We then have

}X ´ rXp}
2
F “

m
ÿ

i“p`1

σ2
i ,

and define the relative error εp as

εp :“
}X ´ rXp}F

}X}F
“

d

řm
i“p`1 σ

2
i

řm
i“1 σ

2
i

.

Recall that if we solve the linear system (2.44) using preconditioned MINRES, we

have to store the approximation xk of length nx ¨ ny and some other vectors of the

same length at the kth iteration. For a small tolerance tol, if there exists a matrix

rXp of rank p ! m solving (3.2) with εp ă tol, it will be possible to approximate X

by a low-rank matrix. The storage cost of the approximation rXp of rank p in (3.4) is

Opppnx ` nyqq, which is clearly less than the cost of storing vectors of length nx ¨ ny,

or equivalently, matrices of size nx ˆny if p is much smaller than nx and ny. However,

the singular values and singular vectors of the exact solution are usually not available

and so finding the approximation rXp solving (3.2) is impossible in practice.

In Tables 3.1–3.4, we record the smallest value of p needed to achieve εp ă 10´6 for

numerical solutionsX obtained using preconditioned MINRES with the preconditioner

P2 defined in Section 2.3.1 and stopping tolerance 10´6 for Test problems 1–2 defined

in Section 2.3.2. The value of p is computed using numerical singular values of X.

The actual rank is computed using the function rank in MATLAB with the default

tolerance.

For Test problem 1, we record the smallest value of p required for two different finite

element meshes in Tables 3.1–3.2. The value of p is independent of the dimension nx
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associated with the spatial discretisation and is lower for ν “ 0.4999 than for ν “ 0.4,

but grows as the number of terms M of the KL expansion of E and the standard

deviation σ increase. For small σ, the rank p required is insensitive to the polynomial

degree d, but for large σ, there is some sensitivity to d. We observe that the actual

rank of X is close to the value of ny, so the solution matrix is nearly of full column

rank. The value of p required for the chosen tolerance is much less than the actual rank

when ny is not too small. This indicates that for large ny it is possible to approximate

the solution matrix to (3.1) associated with Test problem 1 by a low rank matrix.

M d ny

ν “ 0.4 ν “ 0.4999

σ “ 0.085 σ “ 0.17 σ “ 0.085 σ “ 0.17

7

3 120 82 (120) 107 (120) 69 (120) 93 (120)

4 330 84 (330) 140 (330) 73 (330) 122 (330)

5 792 85 (792) 150 (792) 73 (792) 132 (792)

13
3 560 195 (560) 271 (560) 170 (560) 231 (560)

4 2380 200 (2176) 323 (2359) 176 (2201) 283 (2366)

Table 3.1: The smallest p needed to achieve εp ă 10´6 for Test problem 1 with

nx “ 2562. The actual rank of X is given in brackets.

M d ny

ν “ 0.4 ν “ 0.4999

σ “ 0.085 σ “ 0.17 σ “ 0.085 σ “ 0.17

7

3 120 80 (120) 106 (120) 68 (120) 92 (120)

4 330 83 (330) 137 (330) 71 (330) 120 (330)

5 792 83 (792) 146 (792) 72 (792) 129 (792)

13
3 560 190 (560) 268 (560) 166 (560) 229 (560)

4 2380 194 (2333) 319 (2380) 171 (2342) 282 (2380)

Table 3.2: The smallest p needed to achieve εp ă 10´6 for Test problem 1 with

nx “ 10242. The actual rank of X is given in brackets.

The smallest values of p needed to achieve εp ă 10´6 for Test problem 2 using two

different finite element meshes are recorded in Tables 3.3–3.4. Again, the value of p

required is independent of nx and decreases when the Poisson ratio ν changes from 0.4
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to 0.4999, but grows as the number of terms M and the polynomial degree d increase.

For the slow decay case, the actual rank is close to the value of ny and so the solution

matrix is nearly of full rank. We also observe that the value of p is much less than the

actual rank when ny is not too small. This means it is possible to approximate X by

a low rank matrix when ny is large for the slow decay case. For the fast decay case,

the actual rank is observed to be much less than ny when M and d (and hence ny)

are large enough and the value of p is much less than the actual rank for all values of

ny. This means it should be possible to approximate X by a low rank matrix for all

choices of ny for the fast decay case.

M d ny

ν “ 0.4 ν “ 0.4999

slow decay fast decay slow decay fast decay

7

3 120 94 (120) 40 (120) 82 (120) 37 (120)

4 330 138 (330) 56 (313) 106 (330) 48 (302)

5 792 164 (791) 67 (548) 118 (787) 56 (504)

13
3 560 205 (560) 57 (498) 142 (560) 48 (452)

4 2380 257 (2076) 75 (840) 165 (1858) 59 (732)

Table 3.3: The smallest p needed to achieve εp ă 10´6 for Test problem 2 with

nx “ 2562. The actual rank of X is given in brackets.

M d ny

ν “ 0.4 ν “ 0.4999

slow decay fast decay slow decay fast decay

7

3 120 92 (120) 39 (120) 81 (120) 36 (120)

4 330 136 (330) 55 (318) 105 (330) 47 (311)

5 792 160 (792) 66 (585) 118 (792) 55 (563)

13
3 560 199 (560) 56 (518) 139 (560) 47 (481)

4 2380 251 (2273) 73 (960) 165 (2184) 58 (859)

Table 3.4: The smallest p needed to achieve εp ă 10´6 for Test problem 2 with

nx “ 10242. The actual rank of X is given in brackets.

For both test problems with mesh level l “ 6, (giving nx “ 10242), M “ 13, and

d “ 4, (giving ny “ 2380), we plot the normalised singular values σi{σ1 of X and the
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relative error εp of the best rank p approximation in Figures 3.1–3.2.
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Figure 3.1: The normalised singular values of X (left) and relative error εp (right) of

the best rank p approximation for Test problem 1.
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Figure 3.2: The normalised singular values of X (left) and relative error εp (right) of

the best rank p approximation for Test problem 2.

In Figure 3.1a, we can see that the normalised singular values are greater than

machine epsilon when σ “ 0.17 and a small number of normalised singular values are

less than machine epsilon when σ “ 0.085. The matrix X is nearly of full rank for

Test problem 1. For a fixed value of the normalised singular value σi{σ1, the value of

i is smaller if the standard deviation is smaller. In Figure 3.1b, we can see for a fixed

value of εp, the value of p required is smaller if the standard deviation is smaller. In

Figure 3.2a, we can see the decay rate of the normalised singular values depends on
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the decay of the coefficients γr of erpxq for Test problem 2. The normalised singular

values of the solution matrix decay faster for the fast decay case than for the slow

decay case. More than half of the normalised singular values for the fast decay case

are below machine epsilon. In this case, X is not of full rank. In Figure 3.2b, we can

see the decay of εp is much faster in the fast decay case than in the slow decay case.

If it is possible to approximate the solution matrix X by a low rank matrix, our

aim is then to find an approximation with the following factored form

Xk “ VkYk, (3.5)

where Vk P Rnxˆnk , Yk P Rnkˆnx and we aim to have nk ! nx. To reduce the storage

cost, we will work with the factors Vk and Yk and avoid explicitly assembling the large

matrix Xk. When we solve the linear system (1.38) using preconditioned MINRES,

it requires storage of the approximation xk, residuals and search directions of length

nxny at each iteration. The storage cost of xk and vectors of the same length is

Opnxnyq. If we store xk in a factored form as in (3.5), the storage cost then becomes

Opnkpnx ` nyqq. The storage cost is clearly reduced if nk ! nx and nk ! ny.

3.2 Multi-term reduced basis method

As we discussed in Section 2.3.2, applying standard Krylov subspace methods (e.g.

preconditioned MINRES) to the linear system (2.44) is infeasible when there is insuf-

ficient memory to store vectors of length nx ¨ny. The machine we used to perform the

numerical experiments ran out of memory for some high-dimensional problems. This

deficiency motivates our need to develop a more memory-efficient solver.

We now extend the multi-term reduced basis method (Multi-RB) from [64] to

the matrix equation (3.1) associated with the parameter-dependent linear elasticity

problem in (2.1)–(2.5). The Multi-RB method was initially developed for simpler

multi-term matrix equations associated with stochastic Galerkin finite element ap-

proximations of the scalar elliptic PDE in (2.53) with parameter-dependent diffusion

coefficient. For such problems, the matrix equation has the same structure as (3.1).

However, there is only one solution field and the coefficient matrix of the corresponding

linear system is symmetric and positive definite. Consider a matrix equation (3.1) and
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suppose Kr P Rnˆn, and Gr P Rmˆm. The method in [64] was designed for problems

with n ą m and has two phases:

1. The preprocessing phase involves preconditioning and choosing shifts for the left

matrices Kr so that the spectra of the modified left matrices all lie in a small

(ideally) positive interval independent of the spatial discretisation parameter h.

2. The iterative solution phase consists of an iterative orthogonal projection method

applied to the modified matrix equation. We aim to find an approximation of the

form Xk “ VkYk. At every iteration, we construct basis vectors and store them

in the columns of a matrix Vk P Rnˆnk , and then we apply a Galerkin condition

to the residual and solve a reduced problem for Yk. Note that the matrix Xk is

never explicitly formed.

The linear system associated with stochastic Galerkin approximation of the parameter-

dependent linear elasticity problem is indefinite. If we apply a symmetric precondition-

ing strategy with a positive definite preconditioner, the preconditioned linear system is

still indefinite and applying a Galerkin condition does not guarantee the convergence.

We now outline how the Multi-RB method can be modified to tackle the matrix equa-

tion (3.1) for the parameter-dependent linear elasticity problem.

3.2.1 Pre-processing phase

The pre-processing phase includes preconditioning and choosing shifts for all the left

preconditioned matrices. First, we introduce two preconditioning strategies: a sym-

metric preconditioning strategy and a left preconditioning strategy.

Symmetric preconditioning: The symmetric preconditioning strategy can be

applied with symmetric and positive definite preconditioners. For example, the pre-

conditioner KS defined in (2.54) or KS,approx in (2.58). Suppose we choose KS as the

preconditioner. Recall KS is a block diagonal matrix with the structure

KS :“

»

—

—

—

–

βA0 0 0

0 λ̃´1D0 0

0 0 S0

fi

ffi

ffi

ffi

fl

.
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Since each diagonal block of KS is symmetric and positive definite, we may factorise

them exploiting Cholesky factorisation

A0 “ LA0L
J
A0
, D0 “ LD0L

J
D0
, S0 “ LS0L

J
S0
,

so that KS can also be factorised as LKS
LJ
KS

, where

LKS
:“

»

—

—

—

–

β1{2LA0 0 0

0 λ̃´1{2LD0 0

0 0 LS0

fi

ffi

ffi

ffi

fl

P Rnxˆnx .

The symmetrically-preconditioned matrix equation can be obtained by multiplying

(3.1) by L´1
KS

on the left. If we replace X with pX :“ LJ
KS
X then the preconditioned

matrix equation becomes

pK0
pX `

M
ÿ

r“1

pKr
pXGr “ pH, (3.6)

where the left matrices pKr, for r “ 0, 1, . . . ,M , and pH are defined by

pKr :“ L´1
KS
KrL

´J
KS
, pH :“ L´1

KS
H “ L´1

KS
fgJ

0 .

Note that since g0 has only one nonzero entry, pH has only one nonzero column.

The first preconditioned left matrix pK0 in (3.6) is similar to K´1
S K0, and both have

three distinct eigenvalues (see [57]), which are contained in the following set

S0 :“

"

1 ´
?
5

2
, 1,

1 `
?
5

2

*

, (3.7)

and independent of the finite element mesh size h. Hence, pK0 is indefinite. For

r “ 1, 2, . . . ,M , eigenvalue bounds for pKr are given in the following lemma,

Lemma 3.1. When Assumption 2.19 is satisfied, the eigenvalues of pKr, for r “

1, 2, . . . ,M , lie in the interval

Sr :“ r´τr, τrs , (3.8)

where τr Ñ 0 as r Ñ 8, and we define

τr :“
}erpxq}8

emin
0

, (3.9)

where erpxq is defined for two test problems in Section 2.3.2.
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Proof. For r “ 1, 2, . . . ,M , the matrices pKr and K
´1
S Kr are similar and they have the

same eigenvalues. The matrix K´1
S Kr is a block diagonal matrix

K´1
S Kr “

»

—

—

—

–

A´1
0 Ar 0 0

0 D´1
0 Dr 0

0 0 0

fi

ffi

ffi

ffi

fl

, (3.10)

where Ar and Dr are symmetric but indefinite. For a vector v P R2nu , there is

a corresponding function v P Vh. We can obtain eigenvalue bounds for A´1
0 Ar by

investigating bounds for the Rayleigh quotients

vJArv

vJA0v
.

If Assumption 2.19 holds, the matrix A0 is symmetric and positive definite. Since Ar,

for r “ 1, 2, . . . ,M , are indefinite, we have

ˇ

ˇvJArv
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż

D

erpxqϵ pvpxqq : ϵ pvpxqq dx

ˇ

ˇ

ˇ

ˇ

ď

ż

D

|erpxq| ϵ pvpxqq : ϵ pvpxqq dx

ď
}erpxq}8

emin
0

ż

D

e0pxqϵpvpxqq : ϵpvpxqqdx

“
}erpxq}8

emin
0

vJA0v.

Therefore, the eigenvalues of A´1
0 Ar lie in the interval

Sr “

„

´
}erpxq}8

emin
0

,
}erpxq}8

emin
0

ȷ

.

Similarly, it is straightforward to prove that the eigenvalues of D´1
0 Dr lie in the same

interval as A´1
0 Ar. There is also a zero block with zero eigenvalues. Hence, the

eigenvalues of K´1
S Kr also lie in Sr.

If erpxq is strictly positive on the spatial domain D when r ‰ 0, the eigenvalue

bounds for pKr are given in the following lemma.

Lemma 3.2. When erpxq is a strictly positive function, the eigenvalues of pKr lie in

the union of two sets

Sr :“ t0u Y

„

emin
r

emax
0

, τr

ȷ

, (3.11)

where emin
r is defined as

emin
r :“ inf

xPD
erpxq.
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Proof. The matrices pKr and K´1
S Kr are similar and they have the same eigenvalues.

The matrix K´1
S Kr is defined as in (3.10). If erpxq is strictly positive, then all of A0,

D0, Ar and Dr are symmetric and positive definite. For a vector v P R2nu , there is a

corresponding function v P Vh. Again, we can obtain eigenvalue bounds for A´1
0 Ar by

investigating bounds for the Rayleigh quotients

vJArv

vJA0v
.

Since A0 and Ar are symmetric and positive definite, we have

vJArv “

ż

D

erpxqϵ pvpxqq : ϵ pvpxqq dx

ď
}erpxq}8

emin
0

ż

D

e0pxqϵ pvpxqq : ϵ pvpxqq dx

“
}erpxq}8

emin
0

vJA0v,

and

vJArv “

ż

D

erpxqϵ pvpxqq : ϵ pvpxqq dx

ě
emin
r

emax
0

ż

D

e0pxqϵ pvpxqq : ϵ pvpxqq dx

“
emin
r

emax
0

vJA0v.

Therefore, the eigenvalues of A´1
0 Ar lie in the interval

„

emin
r

emax
0

,
}erpxq}8

emin
0

ȷ

. (3.12)

Similarly, we can prove that the eigenvalues of D´1
0 Dr also lie in the interval (3.12).

The last diagonal block in K´1
S Kr is a zero matrix with zero eigenvalues. Hence, the

eigenvalues of pKr lie in the set in (3.11).

In particular, for the separable exponential covariance in Test problem 1, e1pxq is

strictly positive. Therefore, the eigenvalues of pK1 for Test problem 1 lie in (3.11).

The basis vectors in the iterative solution phase are selected based on the left

matrices in (3.6). First, we need to make sure all the left matrices are non-singular.

To achieve this, we choose M ` 1 shifts αr, one for each pKr in (3.6), to make pKr `αrI

positive definite. Ideally, we would like all the spectra for each r to lie in an interval



3.2. MULTI-TERM REDUCED BASIS METHOD 85

bounded away from zero. Adding and subtracting terms in (3.6) and rearranging gives

pX

˜

´α0I ´

M
ÿ

r“1

αrGr

¸

`

M
ÿ

r“0

´

pKr ` αrI
¯

pXGr “ pH. (3.13)

Note that the new matrix equation (3.13) has M ` 2 terms. The first left matrix

is the identity matrix and the solutions of (3.13) and (3.6) are identical. Now, with

appropriate shifts all the left matrices of the modified matrix equation are symmetric

and positive definite. The second left matrix pK0`α0I has three distinct real eigenvalues

which lie in the following set

T0 :“

"

1 ´
?
5

2
` α0, 1 ` α0,

1 `
?
5

2
` α0

*

.

For r “ 1, 2, . . . ,M , the eigenvalues of the left matrices pKr ` αrI are real and lie in

the interval Tr :“ rαr ´ τr, αr ` τrs, or else lie in

Tr :“ tαru Y

„

emin
r

emax
0

` αr, τr ` αr

ȷ

(3.14)

if erpxq is strictly positive on D. We will discuss strategies for choosing the shifts αr

in Chapter 4.

Left Preconditioning: Left preconditioning can be used when the chosen pre-

conditioner is a symmetric and indefinite saddle point matrix. Such a strategy was

implemented for a matrix equation with a similar structure in the PhD thesis [58].

Choosing the non-singular matrix K0 as the preconditioner and applying K´1
0 to (3.1)

on the left gives

X `

M
ÿ

r“1

rKrXGr “ rH, (3.15)

where rKr and rH are defined by

rKr :“ K´1
0 Kr, rH :“ K´1

0 H “ K´1
0 fgJ

0 .

Again, note that rH has one nonzero column because g0 has one nonzero entry. The

modified matrix equation (3.15) has the advantage that the first left matrix is the iden-

tity matrix, but the other left matrices rKr are now non-symmetric. Preconditioners

with a saddle-point structure such as K0 have been studied in [42].

Recall that the matrices K0 and Kr are defined in (2.45)–(2.46). If we define

Nr “

»

–

βAr 0

0 λ̃´1Dr

fi

fl P Rp2nu`npqˆp2nu`npq, r “ 0, 1, . . . ,M,
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and

W “

”

B ´λ̃´1C
ı

P Rnpˆp2nu`npq,

then, K0 and Kr for r “ 1, 2, . . . ,M can also be written as 2-by-2 block matrices of

the form

K0 “

»

–

N0 WJ

W 0

fi

fl , Kr “

»

–

Nr 0

0 0

fi

fl .

Note that N0 is symmetric and positive definite when e0pxq is positive, which we

always assume, and W has full row rank if the inf-sup condition (2.24) is satisfied.

Eigenvalue bounds for the left preconditioned matrices rKr in (3.15) are given in

the following lemma. This result uses analysis from [42].

Lemma 3.3. When Assumption 2.18 is astisfied, the eigenvalues for rKr, for r “

1, 2, . . . ,M , are real and lie in the interval Sr in (3.8). If erpxq is strictly positive, then

the eigenvalues for rKr lie in the set defined in (3.11).

Proof. Any eigenvalue κ P C and corresponding eigenvector paJ,bJqJ P Cnx of rKr, for

r “ 1, . . . ,M , satisfy

»

–

Nr 0

0 0

fi

fl

»

–

a

b

fi

fl “ κ

»

–

N0 WJ

W 0

fi

fl

»

–

a

b

fi

fl (3.16)

where a P C2nu`np , and b P Cnp . The matrix WJ can be decomposed as

WJ
“

”

Y Z
ı

»

–

R

0

fi

fl ,

where

”

Y Z
ı

P Rp2nu`npqˆp2nu`npq

is an unitary matrix, Y P Rp2nu`npqˆnp , Z P Rp2nu`npqˆ2nu is a basis for the null space

of WJ and R P Rnpˆnp is an upper triangular matrix. The vector a can be expressed

as

a “ Y ay ` Zaz,
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where ay P Cnp , and az P C2nu . We can then rewrite the eigenvector
`

aJ,bJ
˘J

as

»

–

Z Y 0

0 0 Inp

fi

fl

»

—

—

—

–

az

ay

b

fi

ffi

ffi

ffi

fl

, (3.17)

where the matrix on the left is a unitary matrix of size nx ˆnx where nx “ 2pnu `npq.

If we premultiply (3.16) by its transpose

»

—

—

—

–

ZJ 0

Y J 0

0 Inp

fi

ffi

ffi

ffi

fl

,

and substitute (3.17) into (3.16), then we obtain the following eigenvalue problem

»

—

—

—

–

ZJNrZ ZJNrY 0

Y JNrZ Y JNrY 0

0 0 0

fi

ffi

ffi

ffi

fl

»

—

—

—

–

az

ay

b

fi

ffi

ffi

ffi

fl

“ κ

»

—

—

—

–

ZJN0Z ZJN0Y 0

Y JN0Z Y JN0Y R

0 RJ 0

fi

ffi

ffi

ffi

fl

»

—

—

—

–

az

ay

b

fi

ffi

ffi

ffi

fl

. (3.18)

Reordering the rows and columns of both matrices in (3.18) simultaneously gives two

block lower triangular matrices

K˚
r :“

»

—

—

—

–

0 0 0

ZJNrY ZJNrZ 0

Y JNrY Y JNrZ 0

fi

ffi

ffi

ffi

fl

, K˚
0 :“

»

—

—

—

–

RJ 0 0

ZJN0Y ZJN0Z 0

Y JN0Y Y JN0Z R

fi

ffi

ffi

ffi

fl

,

for r “ 1, 2, . . . ,M . The matrix rKr is similar to the lower block triangular matrix

K˚
0

´1K˚
r

K˚
0

´1K˚
r :“

»

—

—

—

–

0 0 0

Ω pZJN0Zq´1pZJNrZq 0

Φ Θ 0

fi

ffi

ffi

ffi

fl

, (3.19)

where Ω P R2nuˆnp , Φ P Rnpˆnp , and Θ P Rnpˆ2nu are irrelevant for investigating the

eigenvalues of K˚
0

´1K˚
r . Therefore, the matrix K˚

0
´1K˚

r has,

(i) zero eigenvalue with multiplicity 2np,

(ii) 2nu eigenvalues defined by the eigenvalue problem pZJNrZqw “ κpZJN0Zqw.
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Since N0 is symmetric and positive definite, Nr is symmetric, and Z is of full column

rank, we can easily prove that ZJN0Z is symmetric and positive definite, and ZJNrZ

is symmetric. In this case, the eigenvalues of pZJN0Zq´1pZJNrZq are real. We can

obtain eigenvalue bounds for pZJN0Zq´1pZJNrZq by investigating bounds for the

Rayleigh quotient

dJNrd

dJN0d
,

for any non-zero d P NullpW q. This indicates that the eigenvalues of pZJN0Zq´1pZJNrZq

lie in a subset of the set that contains eigenvalues of N´1
0 Nr, which is a block-diagonal

matrix

N´1
0 Nr “

»

–

A´1
0 Ar 0

0 D´1
0 Dr

fi

fl .

Since we know that the eigenvalues of A´1
0 Ar and D´1

0 Dr lie in the interval (3.8),

the eigenvalues of N´1
0 Nr must also lie in the same interval (3.8). Therefore, the

eigenvalues of pZJN0Zq´1pZJNrZq also lie in the interval (3.8). The eigenvalues of

rKr are identical to those of K˚
0

´1K˚
r , and so the eigenvalues of rKr are real and lie in

(3.8). If erpxq is strictly positive, then the eigenvalues of rKr lie in the set defined in

(3.11).

Note that the eigenvalues of rKr lie in the same interval as pKr for the symmetric

preconditioning strategy, for r “ 1, 2, . . . ,M . The first left matrix pK0 in the sym-

metrically preconditioned matrix equation (3.6) has three distinct nonzero eigenvalues

but the first matrix in the left preconditioned matrix equation (3.15) is the nx ˆ nx

identity matrix whose eigenvalues are all one.

Similarly to (3.13), after applying left-preconditioning to obtain (3.15) we now

chooseM shifts αr to ensure that the eigenvalues of the matrices rKr `αrI are positive

for each r “ 1, 2, . . . ,M . This gives

X

˜

I ´

M
ÿ

r“1

αrGr

¸

`

M
ÿ

r“1

´

rKr ` αrI
¯

XGr “ rH. (3.20)

Note, however, that this is an M ` 1 term matrix equation like the original one in

(3.1) whereas (3.13) is an M ` 2 term matrix equation. The eigenvalues of rKr ` αrI

lie in the interval Tr “ rαr ´ τr, αr ` τrs, or else lie in Tr defined in (3.14) if erpxq is

strictly positive. We will discuss strategies for choosing the shifts αr in Chapter 5.
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3.2.2 Iterative solution phase

After preconditioning and adding shifts, we obtain a matrix equation of the form

UQ0 `

J
ÿ

r“1

PrUQr “ T, (3.21)

where J “ M ` 1, U :“ LJ
KS
X and T :“ L´1

KS
H for the matrix equation (3.13)

associated with the symmetric preconditioning strategy, and J “ M , U :“ X and

T :“ K´1
0 H for the matrix equation (3.20) associated with the left preconditioning

strategy. Note that T has one nonzero column and Qr for r “ 0, 1, . . . , J are symmetric

in both cases. The iterative solution phase involves constructing basis vectors for the

columns of the approximation Uk, applying a projection and solving a reduced problem.

Our aim is to solve (3.21) iteratively. At the kth iteration, we define an approxi-

mation of the form

Uk “ VkYk, (3.22)

where Vk P Rnxˆnk is orthogonal, Yk P Rnkˆny and we aim to have nk ! nx. Recall

that nx “ 2pnu ` npq is the dimension of the spatial approximation associated with

the three solution fields. If we define Uk as in (3.22), each column of Uk belongs to the

space spanned by the columns of Vk. The matrix Yk is determined using a projection

technique.

The strategy for constructing basis vectors is inspired by the rational Krylov sub-

space method for the two-term matrix equation

XG0 ` K1XG1 “ H, (3.23)

where K1 P Rnˆn and G0, G1 P Rmˆm are some general matrices. We assume G0, G1

are nonsingular and apply G´1
0 on the left of (3.23)

X ` K1XG1G
´1
0 “ HG´1

0 , (3.24)

and then write the eigenvalue decomposition for G1G
´1
0

G1G
´1
0 “ QΛQ´1.

We then apply Q on the right of (3.24) and obtain

rX ` K1
rXΛ “ rH, (3.25)
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where rX :“ XQ and rH :“ HG´1
0 Q. The exact solution rX to the matrix equation

(3.25) can then be obtained by solving a set of linear systems

ˆ

K1 `
1

λi
I

˙

x̃i “
1

λi
f̃i, i “ 1, . . . ,m,

where rxi is the i-th column of the exact solution rX, f̃i is the i-th column of rF and

λi for i “ 1, . . . ,m are eigenvalues of G1G
´1
0 . We can approximate the solutions to

these linear systems using rational Galerkin methods, which is applying the Galerkin

projection onto rational Krylov subspaces, see [18, 20]. For the ith linear system, we

choose the rational Krylov subspace for approximating x̃i

KkpK1q :“

#

pK1 ` s1Iq
´1 v0, pK1 ` s2Iq

´1
pK1 ` s1Iq

´1 v0, . . . ,
k
ź

j“1

pK1 ` sjIq
´1 v0

+

where v0 are chosen to be normalised λ´1
i
rfi and s1, . . . , sk is to be chosen. Suppose

the columns of Vk are a set of orthonormal basis vectors which span the rational

Krylov subspace KkpK1q. When we impose a Galerkin condition to determine the

approximation for x̃i, the choice of s1, . . . , sk can be made by solving the Zolotarev

minimax problem

min
s1,...,sk

max
λPspecpK1q

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

j“1

λ ´ sj
λ ` sj

ˇ

ˇ

ˇ

ˇ

ˇ

,

where specpK1q is the spectrum of K1.

For (3.21), we initialise V0 “ v0, where v0 is usually chosen to be the first column

of T . At the kth iteration, we add at most J new basis vectors to Vk´1 to construct

Vk. First, we compute J vectors of length nx and store them in a matrix Wk P RnxˆJ

as follows

Wk :“
“

pP1 ` sk,1Iq
´1vk´1, . . . , pPJ ` sk,JIq

´1vk´1

‰

, (3.26)

where vk´1 is the pk ´ 1qst column of Vk´1 and sk,r for r “ 1, . . . , J are parameters to

be chosen. Note that constructing Wk requires the solution of J shifted finite element

systems with coefficient matrices of size nxˆnx. We discuss two strategies for selecting

the parameters sk,r:

(i) Multi-parameter strategy - before the first iteration, we choose n distinct pa-

rameters s1,r, s2,r, . . . , sn,r for each matrix Pr and cycle through these sets after
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every n iterations. These parameters could be obtained by solving the Zolotarev

minimax problem, (see [72])

min
s1,r,s2,r,...,sn,r

max
λPrλmin

r ,λmax
r s

ˇ

ˇ

ˇ

ˇ

ˇ

n
ź

j“1

λ ´ sj,r
λ ` sj,r

ˇ

ˇ

ˇ

ˇ

ˇ

,

where λmin
r and λmax

r are the minimum and maximum eigenvalues of Pr. Recall

that we derived bounds for the eigenvalues of Pr in Section 3.2.1.

(ii) Parameter-free strategy - choose one fixed parameter s1,r as the midpoint of the

interval containing the eigenvalues of Pr, that is

s1,r “
λmin
r ` λmax

r

2
.

This choice was suggested in [64].

Next, we orthonormalize the J candidate basis vectors in Wk with respect to the

space spanned by the columns of Vk´1

xWk “ Wk ´ Vk´1V
J
k´1Wk,

and truncate xWk by keeping a fixed proportion (ϑ%) of the most significant directions

using a singular value decomposition. That is, we decompose xWk as follows

xWk “

J
ÿ

i“1

σiuiv
J
i ,

where σ1 ě σ2 ě . . . ě σJ ě 0 are the singular values of xWk, and ui P Rnx and vi P RJ

are singular vectors. We update Vk by adding u1,u2, . . . ,umk
to Vk´1, where mk is the

smallest number that satisfies
řmk

i“1 σi
řJ

i“1 σi
ě ϑ%. (3.27)

Typically, we choose ϑ “ 99. Finally, we obtain the basis vectors at the kth iteration

Vk “ rVk´1,u1,u2, . . . ,umk
s .

Next, we introduce two projection techniques to determine a good choice of Yk

at each iteration. At the kth iteration, the residual of the modified matrix equation

(3.21) is

Rk :“ UkQ0 `

J
ÿ

r“1

PrUkQr ´ T. (3.28)
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If we substitute the factored representation (3.22) into (3.28), we obtain

Rk :“ VkYkQ0 `

J
ÿ

r“1

PrVkYkQr ´ T. (3.29)

The first projection technique we consider is a Galerkin condition on the residual

Rk, that is

V J
k Rk “ 0,

which gives the reduced problem

YkQ0 `

J
ÿ

r“1

pV J
k PrVkqYkQr “ V J

k T. (3.30)

Notice that the size of the left matrices V J
k PrVk is now nk ˆ nk, which is reduced

compared with the original left matrices Pr. However, V
JPrVk is dense. The reduced

basis problem (3.30) can also be rewritten as a linear system with Kronecker product

structure
˜

Q0 b I `

J
ÿ

r“1

Qr b pV J
k PrVkq

¸

yk “ vec
`

V J
k H

˘

, (3.31)

where yk :“ vecpYkq. The size of the coefficient matrix in (3.31) is nknyˆnkny, and yk P

Rnkny . For the symmetric preconditioning strategy, the coefficient matrix is symmetric

and so MINRES can be applied to solve (3.31). For the left preconditioning strategy,

the coefficient matrix is non-symmetric and we can use Quasi-MINRES (QMR) to

solve (3.31), see [29, 33].

In [64], the Galerkin condition is applied for the matrix equation considered there

and in that case convergence is guaranteed because the associated linear system has a

symmetric and positive definite coefficient matrix M. Enforcing the Galerkin condi-

tion ensures that the M-norm of the residual is minimised at each iteration. However,

the coefficient matrix of the linear system for our problem is indefinite, and so does not

induce a matrix norm. Applying a Galerkin condition does not guarantee convergence.

Since the computational cost of applying a Galerkin condition is lower than that of

a Petrov-Galerkin condition, we still consider applying the Galerkin condition for our

problem.

The second projection technique we consider is a Petrov-Galerkin condition on the

residual Rk. This was discussed in [60] and applied to much smaller matrix equations
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than the ones considered here. To describe this, we first write the matrix equation

(3.21) as the linear system

Fu “ t,

where u “ vecpUq, t “ vecpT q and F P Rnxnyˆnxny is defined as

F “

J
ÿ

r“0

Qr b Pr,

with P0 :“ Inx and Qr symmetric for all r. We then define an operator Fp¨q associated

with F as follows:

FpW q :“ WQ0 `

J
ÿ

r“1

PrWQr, W P Rnxˆny .

We then have FpW q “ array pFwq where w “ vecpW q. The transpose of the operator

FJp¨q is defined associated with FJ, which is

FJ
pW q :“ WQ0 `

J
ÿ

r“1

PJ
r WQr, W P Rnxˆny .

The Petrov-Galerkin condition is

V J
k FJ

pRkq “ 0,

which can be expanded as follows

J
ÿ

i“0

J
ÿ

r“0

pV J
k P

J
i PrVkqYkQrQi “

J
ÿ

i“0

V J
k P

J
i TQi, (3.32)

where P0 :“ Inx . This can be rewritten as the linear system

J
ÿ

i“0

J
ÿ

r“0

pQrQiq b
`

V J
k P

J
i PrVk

˘

yk “

J
ÿ

i“0

`

Qi b V J
k P

J
i

˘

vecpT q. (3.33)

Since the coefficient matrix on the left hand side of (3.33) can be expressed as

`

Iny b Vk
˘J
FJF

`

Iny b Vk
˘

,

it is symmetric and positive definite and so we can use the conjugate gradient method

to solve (3.32) for yk. Applying a Petrov-Galerkin condition at each iteration minimises

the Frobenius norm of Rk. The problem size is also reduced compared to the matrix

equation (3.21) but the computational cost increases compared to solving the one
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associated with the Galerkin condition. There are J ` 1 terms in the reduced problem

(3.30) when we apply the Galerkin condition, the computational cost and the storage

cost depend on the value of J . For the Petrov-Galerkin condition, there are pJ ` 1q2

terms in the reduced problem (3.32) and the computational cost and the storage cost

depend on the value of J2. We will apply this projection technique to the matrix

equation (3.21) associated with the symmetric preconditioning strategy in Chapter 4

for some small problems.

3.2.3 Stopping criteria

Usually, we want to control the iterative error in a norm that is compatible with the

norm of the discretisation error. For example, see [76]. The natural stopping condition

for iterative projection methods is when

}Rk}F

}R0}F
ă ϵ

where ϵ is a user-chosen tolerance and Rk is the kth preconditioned relative residual

defined in (3.28). However, storing the dense and large matrix Rk P Rnxˆny is memory-

consuming. In some situations, a low-rank representation of Rk can be considered, see

[15, 47]. The residual at the kth iteration can also be written as

Rk “ RkLRk
J
R,

where RkL P RnxˆpJnk`nk`1q and RkR P RnyˆpJnk`nk`1q are defined by

RkL :“
”

Vk, P1Vk, . . . , PJVk,´rf
ı

,

RkR :“
“

Q0Y
J
k , Q1Y

J
k , . . . , QJY

J
k ,g0

‰

.

Here, rf :“ L´1
KS

f for the symmetric preconditioning strategy or rf :“ K´1
0 f for the

left preconditioning strategy and rfgJ
0 “ T . If Jnk is small, we can compute the QR

decomposition of RkL and RkR

RkL “ Qk1Rk1, RkR “ Qk2Rk2,

where Qk1 P RnxˆpJnk`nk`1q and Qk2 P RnyˆpJnk`nk`1q are orthogonal and Rk1 P

RpJnk`nk`1qˆpJnk`nk`1q and Rk2 P RpJnk`nk`1qˆpJnk`nk`1q are upper triangular matrices.
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The Frobenius norm of the residual can then be written as

}Rk}F “

b

trace
`

Rk
JRk

˘

“

b

trace
`

Qk2Rk2Rk
J
1Qk

J
1Qk1Rk1Rk

J
2Qk

J
2

˘

“

b

trace
`

Rk2Rk
J
1Rk1Rk

J
2

˘

.

Since Jnk is small, we then only need to compute a small matrix of size pJnk ` nk `

1q ˆ pJnk ` nk ` 1q to obtain the Frobenius norm of Rk. However, this method will

be expensive and memory-consuming if Jnk is not small, which is usually the case in

our problems.

A cheaper but less stringent stopping criterion that can be used when Jnk is large

is the successive relative difference

∆k :“
}Uk ´ Uk´1}

}Uk}F
“

}Yk ´ rYk´1; 0s}F

}Yk}F
. (3.34)

For a chosen tolerance ϵ, the iteration is terminated when ∆k ă ϵ. Since we never want

to compute and store any vectors or matrices of size nx ˆ ny, this stopping criterion

avoids the need to compute and store residuals of size nx ˆny. This stopping criterion

is also used in [64].

3.2.4 Multi-RB algorithm

We now present the Multi-term reduced basis method for the matrix equation (3.21)

obtained after the pre-processing phase, in Algorithm 1.

In Algorithm 1, we need to store the matrices V J
k PrVk for r “ 1, . . . , J if using the

Galerkin condition or V J
k P

J
i PrVk for i “ 1, . . . , J and r “ 1, . . . , J if using the Petrov-

Galerkin condition. We use standard Krylov subspace methods to solve the reduced

problems. The initial guess chosen for the reduced problem at the kth iteration is

rYk´1, 0s.
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Algorithm 1 Multi-term reduced basis method (Multi-RB)

1: Input: the matrices Pr for r “ 1, 2, . . . , J , Qr for r “ 0, 1, . . . , J , vectors rf and g0,

parameters si,r with i “ 1, . . . , n and r “ 1, 2, . . . , J , a tolerance ϵ and a percentage

ϑ% for truncating the basis vectors.

2: Set v0 “ rf{}rf}, V1 “ v0, ∆K “ 1, i “ 1 and k “ 1

3: while ∆k ě ϵ do

4: Wk :“ rpP1 ` si,1Iq´1vk´1, . . . , pPJ ` si,JIq´1vk´1s

5: xWk “ Wk ´ Vk´1V
J
k´1Wk

6: Decompose xWk using SVD xWk “
řJ

i“1 σiuiv
J
i and keep ϑ% of the most signifi-

cant directions to expand Vk “ rVk´1,u1,u2, . . . ,umk
s

7: Solve (3.30) using Galerkin condition or (3.32) using Petrov-Galerkin condition

approximately for Yk

8: Compute ∆k in (3.34)

9: vk “ Vkek`1 which is the pk ` 1qst column of Vk

10: k “ k ` 1

11: i “ i ` 1

12: if i ą n then

13: i “ 1

14: end if

15: end while

16: Output: solution factors Vk and Yk.

In line 4, we need the matrices Pr to build the basis vectors and set up the reduced

problems. Note that we do not need to explicitly form these matrices. For example, we

pass pPr :“ Kr`αrKS and LKS
to the solver when using the symmetric preconditioning

strategy and then Pr “ L´1
KS

pPrL
´J
KS

. Let pUk :“ ru1,u2, . . . ,umk
s contain the new basis

vectors at the k-th iteration, where u1,u2, . . . ,umk
are constructed on line 6. The

matrix V J
k PrVk can then be built by the following procedure

V J
k PrVk “

»

–

V J
k´1

pUJ
k

fi

flL´1
KS

pPrL
´J
KS

”

Vk´1
pUk

ı

“

»

–

V J
k´1L

´1
KS

pPrL
´J
KS
Vk´1 V J

k´1L
´1
KS

pPrL
´J
KS

pUk

pUJ
k L

´1
KS

pPrL
´J
KS
Vk´1

pUJ
k L

´1
KS

pPrL
´J
KS

pUk

fi

fl ,
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where the p1, 1q block is from the pk´ 1qst iteration, and we only need to assemble the

p1, 2q block and the p2, 2q block and the p2, 1q block is the transpose of p1, 2q block.

To build Wk, we need to solve the systems

pPr ` si,rIq z “ vk´1.

We do this by solving the following systems:

´

pPr ` si,rKS

¯

ẑ “ LKS
vk´1,

and then obtain z by

z “ LJ
KS

ẑ.

In the next two chapters, we will apply Multi-RB to the parameter-dependent

linear elasticity problem using the two suggested preconditioning strategies.



Chapter 4

Multi-RB with Symmetric

Preconditioning

In this chapter, we apply Multi-RB to the multi-term matrix equations (3.21) asso-

ciated with the symmetric preconditioning strategy discussed in Section 3.2.1 with

the preconditioner KS defined in (2.54) for the two test problems defined in Section

2.3.2. Recall that the shifted symmetrically preconditioned matrix equation is given

by (3.13). The left matrices Pr in (3.21) with the symmetric preconditioning strategy

are defined as

Pr “ pKr´1 ` αr´1I, r “ 1, 2, . . . ,M ` 1,

where the shifts αr for r “ 0, 1, . . . ,M need to be chosen based on eigenvalue bounds

of

pKr :“ L´1
KS
KrL

´J
KS
, r “ 0, 1, . . . ,M,

to ensure that the matrices Pr for r “ 1, 2, . . . ,M ` 1 are non-singular. Theoretical

eigenvalue bounds for pKr were given in Lemma 3.1.

4.1 Eigenvalues and choice of shifts

In order to select shifts for pKr for r “ 0, 1, . . . ,M , we now investigate the eigenvalues

of all these matrices for Test problems 1–2. As discussed in Section 3.2.1, the first

preconditioned left matrix pK0 has three distinct eigenvalues in the set S0 defined in

98
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(3.7). The eigenvalues of pKr, for r “ 1, 2, . . . ,M , lie in the interval Sr defined in (3.8)

when erpxq has both positive and negative values or in (3.11) when erpxq is strictly

positive. Since e0pxq “ 1 for the two chosen test problems, we have

Sr “ r´}erpxq}8, }erpxq}8s ,

when erpxq has both positive and negative values. However, the function e1pxq in

Test problem 1 is strictly positive on the spatial domain D and so in that case the

eigenvalues of pK1 lie in

S1 “ t0u Y
“

emin
1 , }e1pxq}8

‰

.

The bounds for the eigenvalues of the left matrices are independent of the finite element

mesh size h, the Poisson ratio ν and the polynomial degree d.

Next, we compute the theoretical eigenvalue bounds for pKr for r “ 1, . . . ,M using

numerically computed values of }erpxq}8 on a spatial mesh on D with grid level 6.

For Test problem 1 with σ “ 0.085 and σ “ 0.17, the computed theoretical eigenvalue

bounds for pKr for r “ 1, 2, . . . , 7 are recorded in Table 4.1. We see that the interval

Sr contracts to zero as r Ñ 8. This is because the eigenvalues λr associated with the

separable exponential covariance function (2.15) decay.

r σ “ 0.085 σ “ 0.17

1 t0u Y r0.0789, 0.1251s t0u Y r0.1578, 0.2502s

2 r´0.0668, 0.0668s r´0.1337, 0.1337s

3 r´0.0668, 0.0668s r´0.1337, 0.1337s

4 r´0.0399, 0.0399s r´0.0797, 0.0797s

5 r´0.0399, 0.0399s r´0.0797, 0.0797s

6 r´0.0357, 0.0357s r´0.0714, 0.0714s

7 r´0.0277, 0.0277s r´0.0555, 0.0555s

Table 4.1: Computed theoretical eigenvalue bounds for pKr, for r “ 1, 2, . . . , 7, in Test

problem 1.

For Test problem 2, the computed theoretical eigenvalue bounds for pKr for r “

1, 2, . . . , 5 are recorded in Table 4.2. Again, the intervals Sr contract to zero as r Ñ 8

and in the fast decay case much more rapidly than in the slow decay case.
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r slow decay fast decay

1 r´0.5470, 0.5470s r´0.8320, 0.8320s

2 r´0.1368, 0.1368s r´0.0520, 0.0520s

3 r´0.0608, 0.0608s r´0.0103, 0.0103s

4 r´0.0342, 0.0342s r´0.0032, 0.0032s

5 r´0.0219, 0.0219s r´0.0013, 0.0013s

Table 4.2: Computed theoretical eigenvalue bounds for pKr, for r “ 1, 2, . . . , 5, in Test

problem 2.
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Figure 4.1: Numerical eigenvalues of pKr for r “ 1, 2, . . . , 7 in Test problem 1,

computed on a spatial mesh with grid level 5.
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Figure 4.2: Numerical eigenvalues of pKr for r “ 1, 2, . . . , 5 in Test problem 2,

computed on a spatial mesh with grid level 5.
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We now compute the eigenvalues of pKr numerically for these two test problems on

a coarse spatial mesh with grid level 5 using eigs in MATLAB. For Test problem 1

with σ “ 0.085, 0.17, the numerical eigenvalues of pKr, for r “ 1, 2, . . . , 7, are shown in

Figure 4.1. For Test problem 2, the numerical eigenvalues of pKr, for r “ 1, 2, . . . , 5, are

shown in Figure 4.2. For both test problems, we compared the numerically computed

external eigenvalues with the computed theoretical eigenvalue bounds in Tables 4.1–4.2

and found good agreement. Next, we choose the shifts αr for pKr, for r “ 0, 1, . . . ,M ,

for the two test problems based on the theoretical eigenvalue bounds.

For pK0, we choose α0 “
?
5{2 so that the smallest eigenvalue of P1 “ pK0 ` α0I is

1{2. Then P1 has three distinct real eigenvalues which lie in the following set

"

1

2
,
2 `

?
5

2
,
1 ` 2

?
5

2

*

.

For r “ 1, 2, . . . ,M , we choose

αr “ 1 ´
λmin
r ` λmax

r

2
,

where λmin
r and λmax

r represent the minimum and maximum of the eigenvalue bounds

of pKr. In this case, the eigenvalues of Pr “ pKr´1 ` αr´1I for r “ 2, . . . ,M ` 1

are centred around 1. For Test problem 1, we choose α1 “ }e1pxq}8{2 and αr “ 1

for r “ 2, 3, . . . ,M . The computed theoretical eigenvalue bounds for Pr, for r “

2, . . . ,M`1, are recorded in Table 4.3 using numerically computed values of }erpxq}8,

for r “ 1, 2, . . . ,M , on a spatial mesh on D with grid level 6.

r σ “ 0.085 σ “ 0.17

2 t0.9374u Y r1.0163, 1.0626s t0.8749u Y r1.0327, 1.1251s

3 r0.9332, 1.0668s r0.8663, 1.1337s

4 r0.9332, 1.0668s r0.8663, 1.1337s

5 r0.9601, 1.0399s r0.9203, 1.0797s

6 r0.9601, 1.0399s r0.9203, 1.0797s

7 r0.9643, 1.0357s r0.9286, 1.0714s

8 r0.9723, 1.0277s r0.9445, 1.0555s

Table 4.3: Computed theoretical eigenvalue bounds for Pr “ pKr´1 ` αr´1I, for r “

2, . . . , 7, 8, in Test problem 1.
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For Test problem 2, we choose αr “ 1 for r “ 1, 2, . . . ,M . The computed theoret-

ical eigenvalue bounds for Pr, for r “ 2, . . . ,M ` 1, are recorded in Table 4.4.

r slow decay fast decay

2 r0.4530, 1.5470s r0.1680, 1.8320s

3 r0.8632, 1.1368s r0.9480, 1.0520s

4 r0.9392, 1.0608s r0.9897, 1.0103s

5 r0.9658, 1.0342s r0.9968, 1.0032s

6 r0.9781, 1.0219s r0.9987, 1.0013s

Table 4.4: Computed theoretical eigenvalue bounds for Pr “ pKr´1 ` αr´1I, for r “

2, . . . , 5, 6, in Test problem 2.

4.2 Numerical experiments

In this section, we apply Multi-RB to the symmetrically preconditioned matrix equa-

tion (3.21) for Test problems 1–2.

We choose ϵouter “ 10´6 to be the stopping tolerance for the outer iteration. That

is, Multi-RB will be terminated when ∆k ă ϵouter where ∆k is the successive relative

difference defined in (3.34). Unless otherwise stated, we use the parameter-free strat-

egy and use the backslash operator in MATLAB to construct the basis vectors to form

the columns of Wk in Algorithm 1 and keep 99% of the basis vectors at each itera-

tion. Recall that a reduced problem also needs to be solved at each iteration. If the

Galerkin condition is imposed, the reduced problem is (3.30) and the Kronecker form

is defined in (3.31). If the Petrov-Galerkin condition is applied, the reduced problem

is (3.32) and the Kronecker form is (3.33). The solutions to these reduced problems

are approximated using MINRES and we call this the inner iteration. We set Y0 “ 0

and choose Yk “ rYk´1; 0s as the initial guess when we apply MINRES to the reduced

problem at the k-th outer iteration. Let δ
psq

k be 2-norm of the relative residual at the

s-th iteration of the reduced problem. The inner iteration is terminated when the

following stopping condition is satisfied

δ
psq

k ă ϵinner∆k´1, (4.1)
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where ϵinner is a chosen tolerance. Here, we choose ϵinner “ 10´3.

For all numerical experiments, we record the number of outer iterations k, the

dimension nk of the approximation space generated, the estimated rank of the final

approximation Xk, the average inner iteration count i and the timing in seconds. We

also record the final unpreconditioned relative residual Resk

Resk :“
}LKS

Rk}F

}LKS
R0}F

,

where Rk is the k-th residual of the preconditioned matrix equation (3.13) with the

preconditioner KS and LKS
Rk is the k-th residual of the unpreconditioned matrix

equation (3.1), as well as the final preconditioned relative residual Pres1,k

Pres1,k :“
}Rk}F

}R0}F
.

The preconditioned relative residual Pres1,k for the symmetrically preconditioned ma-

trix equation (3.13) is comparable to the preconditioned relative residual (2.52) of

the symmetrically preconditioned linear system (2.51) with the preconditioner P “

P1 when we apply preconditioned MINRES. Unless otherwise stated, we apply the

Galerkin condition to the residual Rk to obtain the reduced problem.

Experiment 1 (varying M and d) First, we fix the grid level to be 6 (giving

nx “ 10242) and let ν “ 0.4999 and apply Multi-RB to Test problems 1–2 with vary-

ing M and d. For these problems, we record the iteration counts and the timings (in

brackets) in the last column when we apply preconditioned MINRES to the Kronecker

form (2.44) with the preconditioner P1 “ Iny b KS and we terminate MINRES itera-

tions when the preconditioned relative residual defined in (2.52) is less than Pres1,k.

In Tables 4.5–4.6, we can see that the iteration counts k and the dimension nk are in-

dependent of the polynomial degree d but depend on the number of parametersM and

standard deviation σ when we apply Multi-RB to the symmetrically preconditioned

matrix equation for Test problem 1. The dimension nk is smaller than ny when M

and d are not too small, but much larger than the estimated rank of the final approx-

imation Xk. The final unpreconditioned relative residual Resk is roughly one order of

magnitude higher than the successive relative difference ∆k. The final preconditioned

relative residual Pres1,k has a good agreement with the successive relative difference

∆k. Recall the stopping condition is based on ∆k. Compared with MINRES, we can
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see that Multi-RB was quicker for problems with d “ 5 to achieve the same accuracy

in terms of the preconditioned relative residual.

M d ny k nk rank i time (s) Resk Pres1,k MINRES

5

3 56 63 290 56 9 1.10e2 3.92e-5 6.73e-6 15 (3.52e1)

4 126 63 290 93 9 1.10e2 3.92e-5 6.73e-6 16 (8.13e1)

5 252 63 290 93 9 8.21e1 3.92e-5 6.73e-6 17 (1.81e2)

7

3 120 79 408 119 9 1.33e2 2.74e-5 5.95e-6 16 (7.79e1)

4 330 79 408 166 9 1.36e2 2.74e-5 5.95e-6 17 (2.26e2)

5 792 79 408 168 9 1.40e2 2.74e-5 5.95e-6 18 (5.70e2)

13

3 560 154 1078 402 9 5.77e2 4.95e-5 3.36e-6 17 (3.77e2)

4 2380 154 1078 476 9 8.04e2 4.95e-5 3.36e-6 18 (1.68e3)

5 8568 154 1078 482 9 1.52e3 4.95e-5 3.36e-6 18 (6.08e3)

Table 4.5: Numerical results for Test problem 1 with fixed grid level 6, ν “ 0.4999

and σ “ 0.085 using the symmetric preconditioning strategy; Multi-RB solver vs

preconditioned MINRES.

M d ny k nk rank i time (s) Resk Pres1,k MINRES

5

3 56 92 441 56 12 1.26e2 2.19e-5 4.24e-6 21 (4.72e1)

4 126 92 441 124 12 1.28e2 2.29e-5 4.38e-6 24 (1.20e2)

5 252 92 441 168 12 1.31e2 2.31e-5 4.41e-6 24 (2.40e2)

7

3 120 100 571 120 11 1.82e2 3.27e-5 1.10e-5 21 (9.74e1)

4 330 100 571 268 12 1.89e2 3.36e-5 1.12e-5 23 (2.90e2)

5 792 100 571 310 12 2.45e2 3.37e-5 1.12e-5 24 (7.52e2)

13

3 560 185 1437 510 11 1.14e3 1.90e-5 4.93e-6 23 (5.05e2)

4 2380 185 1437 802 12 1.58e3 1.94e-5 5.07e-6 25 (2.33e3)

5 8568 185 1437 888 12 3.03e3 1.95e-5 5.10e-6 27 (8.92e3)

Table 4.6: Numerical results for Test problem 1 with fixed grid level 6, ν “ 0.4999

and σ “ 0.17 using the symmetric preconditioning strategy; Multi-RB solver vs stan-

dard MINRES.
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M d ny k nk rank i time (s) Resk Pres1,k MINRES

5

3 56 248 1234 56 18 4.96e2 1.24e-4 7.13e-6 34 (7.35e1)

4 126 248 1234 121 21 5.32e2 1.48e-4 8.55e-6 36 (1.72e2)

5 252 262 1314 186 25 6.52e2 1.14e-4 6.46e-6 39 (3.74e2)

7

3 120 247 1444 120 19 7.44e2 9.88e-5 1.07e-5 33 (1.52e2)

4 330 247 1444 245 23 9.20e2 9.88e-5 1.07e-5 36 (4.52e2)

5 792 247 1444 318 27 1.24e3 1.04e-4 1.09e-5 37 (1.14e3)

13

3 560 255 1852 383 30 3.54e3 8.59e-5 7.33e-6 34 (7.34e2)

4 2380 258 1874 534 39 1.03e4 9.07e-5 7.51e-6 37 (3.38e3)

5 8568 258 1874 602 48 3.60e4 9.35e-5 7.64e-6 39 (1.30e4)

Table 4.7: Numerical results for the slow decay case in Test problem 2 with fixed

grid level 6 and ν “ 0.4999 using the symmetric preconditioning strategy; Multi-RB

solver vs standard MINRES.

M d ny k nk rank i time (s) Resk Pres1,k MINRES

5

3 56 357 1542 50 66 2.09e3 2.15e-4 1.11e-5 49 (1.05e2)

4 126 337 1635 80 86 2.75e3 2.77e-4 1.48e-5 52 (2.50e2)

5 252 600 2735 114 143 1.95e4 1.25e-4 6.00e-6 61 (9.41e2)

7

3 120 300 1366 76 49 1.57e3 1.77e-4 9.47e-6 49 (2.88e2)

4 330 333 1552 115 59 2.56e3 1.80e-4 8.99e-6 55 (8.88e2)

5 792 333 1552 141 76 3.45e3 2.45e-4 1.24e-5 58 (1.73e3)

13

3 560 242 1138 118 52 1.80e3 3.27e-4 2.12e-5 46 (9.78e2)

4 2380 280 1351 159 64 4.96e3 2.80e-4 1.57e-5 52 (4.80e3)

5 8568 320 1617 191 74 2.14e4 2.27e-4 1.24e-5 58 (2.19e4)

Table 4.8: Numerical results for the fast decay case in Test problem 2 with fixed grid

level 6 and ν “ 0.4999 using the symmetric preconditioning strategy; Multi-RB solver

vs standard MINRES. Bold numbers indicate unexpectedly large iteration counts.

In Tables 4.7–4.8, we see that the number of outer iterations k is nearly independent

ofM for the slow decay case of Test problem 2 and it decreases asM grows for the fast

decay case of Test problem 2. Note that the relative difference ∆k is not guaranteed to
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decrease at each iteration. The final unpreconditioned relative residual Resk is roughly

two orders of magnitude high than the final successive relative difference ∆k. The final

preconditioned relative residual Pres1,k has a good agreement with the successive

relative difference ∆k in most cases. The number of outer iterations becomes large for

the fast decay case of Test problem 2 with M “ 5 and d “ 5 and so does the inner

iteration count.

Experiment 2 (varying grid level l) We now apply Multi-RB to Test problem

1 with σ “ 0.17 and the slow decay case of Test problem 2 on finite element meshes

with varying grid level l “ 4, 5, 6, 7. We fix ν “ 0.4999, M “ 7 and d “ 4 (giving

ny “ 330) and record the numerical results in Tables 4.9–4.10. We observe that the

number of outer iterations k and the dimension nk are nearly independent of grid level

l or equivalently, mesh size h.

l nx k nk rank i time (s) Resk Pres1,k

4 642 90 580 266 13 2.43e1 3.66e-6 8.80e-7

5 2562 100 612 272 14 4.96e1 2.33e-5 1.06e-5

6 10242 100 571 268 12 1.89e2 3.36e-5 1.12e-5

7 40962 108 587 258 13 3.59e3 1.60e-5 3.60e-6

Table 4.9: Numerical results for Test problem 1 with varying grid level l when

ν “ 0.4999, σ “ 0.17, M “ 7 and d “ 4 using the symmetric preconditioning strategy.

l nx k nk rank i time (s) Resk Pres1,k

4 642 99 642 214 19 3.59e1 3.53e-8 5.18e-9

5 2562 240 1513 250 32 9.50e2 6.69e-5 6.94e-6

6 10242 247 1444 245 23 9.20e2 9.88e-5 1.07e-5

7 40962 218 1172 242 17 7.52e3 1.39e-4 1.64e-5

Table 4.10: Numerical results for the slow decay case of Test problem 2 with varying

grid level l when ν “ 0.4999, M “ 7 and d “ 4 using the symmetric preconditioning

strategy.

Experiment 3 (varying Poisson ratio) We record the numerical results ob-

tained from applying Multi-RB to Test problem 1 with σ “ 0.17 and the slow decay
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case of Test problem 2 with varying Poisson ratio ν in Tables 4.11–4.12. We fix the

grid level l “ 6, M “ 7 and total polynomial degree d “ 4. For both problems, the

number of outer iterations k and the dimension nk decrease as the Poisson ratio ν

approaches 0.5. The solver is robust in the incompressible limit. The final unprecon-

ditioned relative residual Resk is of one order of magnitude higher than the relative

difference for Test problem 1 when σ “ 0.17 and two orders of magnitude higher than

the relative difference for the slow decay case in Test problem 2.

ν k nk rank i time (s) Resk Pres1,k

0.4 115 674 304 11 2.41e2 3.18e-5 9.02e-6

0.49 112 658 286 12 2.24e2 1.97e-5 5.09e-6

0.499 100 583 276 12 1.98e2 3.26e-5 9.75e-6

0.4999 100 571 268 12 1.89e2 3.36e-5 1.12e-5

Table 4.11: Numerical results for Test problem 1 with varying Poisson ratio ν when

l “ 6, σ “ 0.17, M “ 7 and d “ 4 using the symmetric preconditioning strategy.

ν k nk rank i time (s) Resk Pres1,k

0.4 305 1881 304 31 1.93e3 1.37e-4 9.53e-6

0.49 313 1897 294 54 4.24e3 1.12e-4 8.18e-6

0.499 262 1546 266 20 1.30e3 1.03e-4 1.06e-5

0.4999 247 1444 245 23 9.20e2 9.88e-5 1.07e-5

Table 4.12: Numerical results for the slow decay case of Test problem 2 with varying

Poisson ratio ν when l “ 6, M “ 7 and d “ 4 using the symmetric preconditioning

strategy.

Experiment 4 (keeping fewer basis vectors) In some of the above experi-

ments, we observed that the dimension nk is much greater than the estimated rank of

the final approximation. This suggests that the selected basis vectors are not optimal.

Next, we try to remedy this by keeping fewer basis vectors at each iteration. In Tables

4.13–4.15, we record the numerical results for Test problem 1 when σ “ 0.17 and two

cases of Test problem 2 with fixed l “ 6, ν “ 0.4999, M “ 7 and d “ 4. We can see

that the dimension nk is somewhat reduced for Test problem 1 when σ “ 0.17 and for
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the slow decay case of Test problem 2 when we reduce ϑ from 99 to 96 but increases

for the fast decay case of Test problem 2. However, the average inner iteration count

becomes larger and it becomes less accurate in terms of Resk when we reduce ϑ from

99 to 96 for the fast decay case of Test problem 2.

ϑ k nk rank i time (s) Resk Pres1,k

96 90 419 254 12 1.75e2 4.41e-5 1.05e-5

97 89 431 255 12 1.71e2 7.02e-5 1.25e-5

98 97 506 257 12 1.95e2 2.79e-5 5.92e-6

99 100 571 268 12 1.89e2 3.36e-5 1.12e-5

Table 4.13: Numerical results for Test problem 1 with varying ϑ when l “ 6, σ “

0.17, ν “ 0.4999 M “ 7 and d “ 4 using the symmetric preconditioning strategy.

ϑ k nk rank i time (s) Resk Pres1,k

96 210 1027 236 44 7.62e2 9.20e-5 5.78e-6

97 220 1118 239 31 7.00e2 9.42e-5 6.09e-6

98 237 1271 243 20 6.71e2 1.44e-4 1.65e-5

99 247 1444 245 23 9.20e2 9.88e-5 1.07e-5

Table 4.14: Numerical results for the slow decay case of Test problem 2 with varying

ϑ when l “ 6, ν “ 0.4999, M “ 7 and d “ 4 using the symmetric preconditioning

strategy.

ϑ k nk rank i time (s) Resk Pres1,k

96 502 1947 121 146 1.20e4 1.17e-3 5.55e-5

97 494 2019 120 194 1.57e4 1.80e-4 8.23e-6

98 374 1594 115 138 6.18e3 2.08e-4 1.01e-5

99 333 1552 115 59 2.56e3 1.80e-4 8.99e-6

Table 4.15: Numerical results for the fast decay case of Test problem 2 with varying

ϑ when l “ 6, ν “ 0.4999, M “ 7 and d “ 4 using the symmetric preconditioning

strategy.

Experiment 5 (the multi-parameter strategy) The choice of basis vectors

is also affected by the choice of parameters si,r in (3.26) with i “ 1, . . . , n and r “
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1, 2, . . . ,M ` 1. In Tables 4.16–4.18, we fix the Poisson ratio ν “ 0.4999, polynomial

degree d “ 4 and use the multi-parameter strategy described in Section 3.2.2 to choose

5 distinct parameters s1,r, s2,r, . . . , s5,r for every matrix Pr.

M ny k nk rank i time (s) Resk Pres1,k

5 126 76 358 124 12 1.02e2 4.55e-5 1.25e-5

7 330 96 534 267 14 1.78e2 3.38e-5 1.40e-5

13 2380 183 1377 801 37 2.31e3 2.32e-5 5.16e-6

Table 4.16: Numerical results for Test problem 1 with varying M when l “ 6,

σ “ 0.17, ν “ 0.4999 and d “ 4 using the multi-parameter strategy and the symmetric

preconditioning strategy.

M ny k nk rank i time (s) Resk Pres1,k

5 126 243 1161 121 18 4.74e2 1.11e-4 6.72e-6

7 330 269 1488 246 14 8.60e2 1.06e-4 1.15e-5

13 2380 231 1555 525 17 2.49e3 1.21e-4 1.73e-5

Table 4.17: Numerical results for the slow decay case of Test problem 2 with varying

M when l “ 6, ν “ 0.4999 and d “ 4 using the multi-parameter strategy and the

symmetric preconditioning strategy.

M ny k nk rank i time (s) Resk Pres1,k

5 126 871 3537 85 199 7.03e4 1.05e-4 4.46e-6

7 330 541 2225 120 125 1.63e4 1.86e-4 8.78e-6

13 2380 406 1694 165 44 1.03e4 3.51e-4 1.78e-5

Table 4.18: Numerical results for the fast decay case of Test problem 2 with varying

M when l “ 6, ν “ 0.4999 and d “ 4 using the multi-parameter strategy and the sym-

metric preconditioning strategy. Bold numbers indicate unexpectedly large iteration

counts.

For Test problem 1 with σ “ 0.17 and the slow decay case of Test problem 2, the

iteration counts k and dimension nk are reduced compared with the numerical results
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in Tables 4.6–4.7 when we use the parameter-free strategy. However, the iteration

counts k and dimension nk are increased compared with the numerical results in Table

4.8 for the fast decay case of Test problem 2.

Experiment 6 (inner MINRES iterations) In some of the above experi-

ments, it was observed that at some outer iterations, the inner MINRES solver re-

quired a large number of inner iterations to meet the selected stopping condition.

This resulted in the overall timings being extremely slow e.g., when M “ 5 and d “ 5

in Table 4.8 as well as when M “ 5 and M “ 7 in Table 4.18. In Figure 4.3, we plot

the number of inner iterations required at each iteration for the latter experiment.

Recall that when we apply a Galerkin condition to Rk with the symmetric precondi-

tioning strategy, the well-posedness of the reduced problem (3.30) is not guaranteed.

We checked the flag of MINRES in MATLAB at each iteration and found no issues.

However, by examining the eigenvalues of the coefficient matrix associated with the

reduced problem we did find problems with ill-conditioning at some iterations. For

example, the smallest absolute value of the eigenvalues is 2.6ˆ 10´3 and the largest is

8.4ˆ108 at the 25-th iteration when we solve Test problem 1 with σ “ 0.17, ν “ 0.4999,

M “ 6 and d “ 4 using the multi-parameter strategy.
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Figure 4.3: Inner iteration counts for the fast decay case of Test problem 2 when

l “ 6, ν “ 0.4999 and d “ 4 using multi-parameter strategy.

Experiment 7 (choice of projection strategy) We show the convergence

history of the relative difference ∆k, the preconditioned relative residual Pres1,k and

unpreconditioned relative residual Resk for some small problems with spatial grid level
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5 (giving nx “ 2562), M “ 7 and total polynomial degree d “ 4 (giving ny “ 330)

using two types of projection strategy in Figures 4.4–4.7. Here, we set ϵouter “ 10´8.
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Figure 4.4: Convergence history for Test problem 1 when we apply the Galerkin

condition with ν “ 0.4999, l “ 5, M “ 7 and d “ 4.
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Figure 4.5: Convergence history for Test problem 2 when we apply the Galerkin

condition with ν “ 0.4999, l “ 5, M “ 7 and d “ 4.

First, we apply the Galerkin condition to Rk and show the convergence history in

Figures 4.4–4.5. Since the coefficient matrix of the associated preconditioned linear

system is indefinite, applying the Galerkin condition to Rk does not minimise the

residual. From the convergence history, we can see that the preconditioned relative

residual and unpreconditioned relative residual are not monotonically decreasing. For

both test problems, we can see that the successive relative difference ∆k is the smallest
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among these three distinct errors. For Test problem 1, the unpreconditioned relative

residual Resk is nearly two orders of magnitude higher than the successive relative

difference ∆k. For Test problem 2, Resk is roughly two orders of magnitude higher

than ∆k. For both test problems, the preconditioned relative residual Pres1,k has a

good agreement with the successive relative difference ∆k. The relative residuals Resk

and Pres1,k for Test problem 2 are more erratic than Test problem 1.
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Figure 4.6: Convergence history for Test problem 1 when we apply the Petrov-

Galerkin condition with ν “ 0.4999, l “ 5, M “ 7 and d “ 4.
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Figure 4.7: Convergence history for Test problem 2 when we apply the Petrov-

Galerkin condition with ν “ 0.4999, l “ 5, M “ 7 and d “ 4.

Next, we apply the Petrov-Galerkin condition to Rk at every outer iteration. In

Figures 4.6–4.7, we show the convergence history of Pres1,k, Resk and ∆k at every
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iteration for the same problem showed in Figures 4.4–4.5. Again, we use the parameter-

free strategy and use the backslash operator in MATLAB to construct the basis vectors

and keep the 99% most significant directions. That is the singular vectors associated

with the 99% largest singular values. We can see that the preconditioned relative resid-

ual Pres1,k is now monotonically decreasing and so is the unpreconditioned relative

residual Resk. The relative difference ∆k also becomes smoother than when applying

the Galerkin condition. For both test problems, the unpreconditioned relative residual

Resk is about two orders of magnitude higher than the successive relative difference

∆k.

M ny k nk rank i time (s) Resk Pres1,k

5 126 77 370 123 10 1.32e2 8.57e-5 6.97e-6

7 330 93 528 264 10 2.64e2 1.15e-4 9.25e-6

13 2380 185 1437 839 10 1.02e4 4.84e-5 3.38e-6

Table 4.19: Numerical results for Test problem 1 with varying M when l “ 6,

ν “ 0.4999, σ “ 0.17 and d “ 4 when we apply the Petrov-Galerkin condition.

M ny k nk rank i time (s) Resk Pres1,k

5 126 248 1234 126 12 7.39e2 1.57e-4 7.15e-6

7 330 239 1394 245 12 1.47e3 1.54e-4 7.97e-6

13 2380 212 1524 519 12 1.57e4 1.94e-4 1.19e-5

Table 4.20: Numerical results for the slow decay case of Test problem 2 with varying

M when l “ 6, ν “ 0.4999 and d “ 4 when we apply the Petrov-Galerkin condition.

M ny k nk rank i time (s) Resk Pres1,k

5 126 357 1542 79 21 1.42e3 2.78e-4 1.36e-5

7 330 341 1589 115 21 3.13e3 1.47e-4 6.92e-6

13 2380 272 1304 157 20 2.68e4 3.22e-4 1.50e-5

Table 4.21: Numerical results for the fast decay case of Test problem 2 with varying

M when l “ 6, ν “ 0.4999 and d “ 4 when we apply the Petrov-Galerkin condition.
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In Tables 4.19–4.21, we record the numerical results obtained when we apply the

Petrov-Galerkin condition to test problems with grid level l “ 6, ν “ 0.4999 and

d “ 4. Compared with the results in Tables 4.6–4.8, the number of outer iterations k

and the dimension nk are barely changed but the timings for problems with large M

have increased significantly. We can see the average inner MINRES iteration counts i

are stable now when we varyM and lower than the results obtained when we apply the

Galerkin condition. Since the reduced problems are well-conditioned when we apply

the Petrov-Galerkin condition, a large number of iterations is not needed for the inner

MINRES solver.

Problem ny k nk rank i time (s) Resk Pres1,k

P1 252 369 1603 107 22 2.06e3 3.11e-4 1.60e-5

P2 126 361 1337 78 20 1.27e3 7.08e-4 3.76e-5

P3 330 382 1492 114 20 3.63e3 5.12e-4 2.52e-5

Table 4.22: Numerical results for problems P1, P2 and P3 when we apply the Petrov-

Galerkin condition.
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Figure 4.8: MINRES inner iteration counts for P2 and P3 when we apply the Petrov-

Galerkin condition.

Recall that the inner iteration counts are problematic for problems when M “ 5

and d “ 5 in Table 4.8 as well as M “ 5 and M “ 7 in Table 4.18. Let us denote

these problems by P1, P2 and P3, respectively. We now apply the Petrov-Galerkin
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condition to these problems and record the numerical results in Table 4.22. Compared

with the results obtained when we applied the Galerkin condition, we can see that the

number of outer iterations k, the dimension nk, the average number of inner iteration

i and the timings are significantly reduced. Compared with the former numerical

results, the accuracy in terms of the unpreconditioned relative residual Resk stays

within the same order of magnitude.

For P2 and P3, we plot the number of inner iterations required at every outer

iteration when we apply the Petrov-Galerkin condition in Figure 4.8. The maximum

inner iteration count required is less than 35, which is much less than when we applied

the Galerkin condition.

Experiment 8 (large problems) In all the above experiments, nx ¨ ny was

relatively small in order to allow a comparison with MINRES on the original problem,

and to permit the computation of residuals. However, recall that our main motivation

for developing the reduced basis method is to solve large scale problems. We were

unable to solve some large problems using preconditioned MINRES due to memory

limitations (see Table 2.18 in Chapter 2). We applied Multi-RB with our symmetric

preconditioning strategy to these problems but the machine we use still runs out

of memory. This is because the chosen block-diagonal preconditioner KS has a dense

block of size npˆnp, which exhausts available memory when fine finite element meshes

are used.
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Figure 4.9: The relative difference ∆k against the dimension nk for Test problem 1

when σ “ 0.085, ν “ 0.4999, l “ 6, M “ 5 and d “ 3.

We also experimented with a different symmetric preconditioner, namely the sparser
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preconditioner KS,approx in (2.58). However, in experiments using the Galerkin con-

dition, we observed that the relative difference ∆k decreased more slowly and almost

stagnated. For example, in Figure 4.9, we plot the relative difference ∆k obtained for

Test problem 1 when σ “ 0.085, ν “ 0.4999, l “ 6, M “ 5 and d “ 3.

4.3 Conclusions

When we apply Multi-RB with our chosen symmetric preconditioning strategy to large

problems that cannot be solved using preconditioned MINRES, we still encounter

problems with memory. This is because the dense block of the chosen preconditioner

KS requires a high storage for large problems on a fine mesh.

For small problems, we found that the number of iterations k and the dimension nk

required to meet the chosen stopping tolerance are independent of the total polynomial

degree d, finite element grid level l and the Poisson ratio ν, but depend on the number

M of parameters and standard deviation. The unpreconditioned relative residual Resk

is one to two orders of magnitude higher than the preconditioned relative residual

Pres1,k and the preconditioned relative residual Pres1,k has a good agreement with

the successive relative difference ∆k in most cases.

In all numerical experiments under the default settings described at the beginning

of Section 4.2, the dimension nk is much greater than the estimated rank ofXk for both

test problems, which suggests that selected basis vectors are not optimal. However,

keeping fewer basis vectors at each iteration or using the multi-parameter strategy to

choose si,r did not remedy this.

When we use the Galerkin condition to build the reduced problem, the convergence

of the successive relative difference ∆k, the preconditioned relative residual Pres1,k

and the unpreconditioned relative residual Resk are not stable. That is, these errors

increase drastically at some iterations. In addition, the reduced problems are not well-

conditioned at some iterations and so a large number of inner iterations are required.

To fix this, we applied the Petrov-Galerkin condition to build the reduced problem.

The convergence history becomes smoother than imposing the Galerkin condition,

but the computational cost is expensive because the number of terms in the reduced

problem (3.32) is much larger, and the convergence rate is not improved obviously
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for most cases. However, for some problematic cases when we apply the Galerkin

condition, applying the Petrov-Galerkin condition can make the inner iteration counts

stable and so the convergence can be obviously improved.



Chapter 5

Multi-RB with Left

Preconditioning

In this chapter, we apply Multi-RB to the matrix equation (3.21) associated with the

left preconditioning strategy discussed in Section 3.2.1 with the saddle point precon-

ditioner K0. The shifted left preconditioned matrix equation is defined in (3.20) and

in that case the left matrices Pr in (3.21) are defined as

Pr “ rKr ` αrI, r “ 1, 2, . . . ,M,

where the shifts αr for r “ 1, . . . ,M need to be chosen based on the eigenvalues of

rKr :“ K´1
0 Kr, r “ 1, . . . ,M,

to ensure that Pr for r “ 1, . . . ,M are non-singular. The theoretical eigenvalue bounds

for rKr are given in Lemma 3.3 and they are the same as the theoretical eigenvalue

bounds for pKr given in Lemma 3.1 or Lemma 3.2 when erpxq is strictly positive.

However, the first symmetrically preconditioned left matrix pK0 in the matrix equation

(3.6) has three distinct nonzero eigenvalues whereas the first left preconditioned left

matrix in the matrix equation (3.15) is the nx ˆ nx identity matrix with eigenvalues

all equal to one.

5.1 Eigenvalues and choice of shifts

The shifts αr are chosen based on the eigenvalues of rKr, for r “ 1, . . . ,M . We

know that the theoretical bounds for the eigenvalues for rKr are the same as those

118
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for pKr for r “ 1, . . . ,M . Therefore, if we use the same numerically computed values

of }erpxq}8 as we used to compute the theoretical eigenvalue bounds for pKr, the

theoretical eigenvalue bounds are the same as in Tables 4.1–4.2.

r σ “ 0.085 σ “ 0.17

1 t0u Y r0.0812, 0.1251s t0u Y r0.1624, 0.2501s

2 r´0.0667, 0.0667s r´0.1334, 0.1334s

3 r´0.0667, 0.0667s r´0.1334, 0.1334s

4 r´0.0397, 0.0397s r´0.0794, 0.0795s

5 r´0.0397, 0.0397s r´0.0794, 0.0795s

6 r´0.0355, 0.0355s r´0.0711, 0.0711s

7 r´0.0276, 0.0275s r´0.0553, 0.0550s

Table 5.1: Numerical eigenvalue bounds for rKr, for r “ 1, . . . , 7, in Test problem 1.

r slow decay fast decay

1 r´0.5456, 0.5430s r´0.8299, 0.8260s

2 r´0.1364, 0.1364s r´0.0519, 0.0519s

3 r´0.0602, 0.0602s r´0.0102, 0.0102s

4 r´0.0339, 0.0339s r´0.0032, 0.0032s

5 r´0.0217, 0.0217s r´0.0013, 0.0013s

Table 5.2: Numerical eigenvalue bounds for rKr, for r “ 1, . . . , 5, in Test problem 2.

Next, we compute the eigenvalues of rKr numerically for the two chosen test prob-

lems on a coarse spatial mesh with grid level 5 using eigs in MATLAB and record

the eigenvalue bounds in Tables 5.1–5.2. Compared with the computed theoretical

eigenvalue bounds in Tables 4.1–4.2, we can see that the theoretical eigenvalue bounds

are very sharp. The numerical eigenvalues of rKr for these two test problems are also

plotted in Figures 5.1–5.2.

Since the theoretical eigenvalue bounds for rKr are sharp, we can choose the shifts

αr based on the computed theoretical eigenvalue bounds. Similar to the choice of αr

for pKr in Section 4.1, we choose α1 “ }e1pxq}8{2 and αr “ 1, for r “ 2, . . . ,M , in
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Test problem 1 and choose αr “ 1, for r “ 1, . . . ,M , in Test problem 2. In this case,

the eigenvalues of Pr “ rKr ` αrI for each r “ 1, 2, . . . ,M are centred around 1.
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Figure 5.1: Numerical eigenvalues of rKr for r “ 1, 2, . . . , 7 in Test problem 1 com-

puted on a spatial mesh with l “ 5.
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Figure 5.2: Numerical eigenvalues of rKr for r “ 1, 2, . . . , 5 in Test problem 2 com-

puted on a spatial mesh with grid l “ 5.

5.2 Numerical experiments

In this section, we apply Multi-RB to the left preconditioned matrix equation (3.21)

for Test problems 1–2. We choose ϵouter “ 10´6 and the stopping condition for Multi-

RB is chosen to be ∆k ă ϵouter. Unless otherwise stated, we use the parameter-free
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strategy and use the backslash solver in MATLAB to solve the systems required to

construct the basis vectors to form the columns ofWk in Algorithm 1 and keep the 99%

most significant directions. That is, we keep the singular vectors associated with the

99% largest singular values. We impose the Galerkin condition at each iteration and

solve the reduced problem (3.30). We use QMR (see [29, 71]) to solve the Kronecker

form (3.31) of the reduced problem iteratively and we call this the inner iteration. We

set Y0 “ 0 and choose Yk “ rYk´1; 0s as the initial guess when we apply QMR to the

reduced problem at the kth iteration. Let δ
psq

k be the 2-norm of relative residual of

2-norm at the s-th iteration of the reduced problem. The stopping condition we use

for the inner iteration is (4.1) and we choose ϵinner “ 10´3.

For all numerical experiments in this chapter, we record the number of outer iter-

ation k, the dimension nk of the approximation space generated, the estimated rank

of the final approximation Xk, the average inner iteration count i and the timing in

seconds. We also record the final unpreconditioned relative residual Resk

Resk :“
}K0Rk}F

}K0Rk}F
,

where Rk is the k-th residual of the preconditioned matrix equation (3.20) with the

preconditioner K0 and K0Rk is the k-th residual of the unpreconditioned matrix equa-

tion (3.1), as well as the final preconditioned relative residual Pres2,k

Pres2,k :“
}Rk}F

}R0}F
.

Note that computing unpreconditioned residuals allows a direct comparison with the

results obtained in Chapter 4. Next, we carry out some numerical experiments to

examine the performance of Multi-RB with the left preconditioning strategy.

Experiment 1 (varying M and d) First, we fix the grid level to be 6 (nx “

10242) and let ν “ 0.4999 and apply Multi-RB to Test problems 1–2 with varying M

and d.

In Tables 5.3–5.4, we record the numerical results for Test problem 1. The number

of iterations k and the dimension nk are nearly independent of the number M of

parameters and the total polynomial degree d but depend on the standard deviation σ.

The estimated rank of Xk is closer to nk when M and d grow. The unpreconditioned

relative residual Resk is one to two orders of magnitude higher than the successive
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relative difference ∆k. The preconditioned relative residual Pres2,k and the successive

relative difference ∆k have a good agreement.

M d ny k nk rank i time (s) Resk Pres2,k

5

3 56 19 96 56 7 1.77e1 1.57e-5 1.13e-6

4 126 19 96 79 7 1.76e1 1.79e-5 1.33e-6

5 252 19 96 80 7 1.78e1 1.80e-5 1.34e-6

7

3 120 20 141 110 7 2.83e2 2.64e-5 1.52e-6

4 330 20 141 129 7 2.83e1 2.64e-5 1.52e-6

5 792 20 141 130 8 2.98e1 2.77e-5 1.60e-6

13

3 560 25 320 292 7 8.67e1 7.97e-5 1.58e-6

4 2380 26 332 325 8 1.15e2 7.93e-5 1.46e-6

5 8568 26 332 326 8 1.75e2 7.96e-5 1.47e-6

Table 5.3: Numerical results for Test problem 1 with fixed grid level 6, ν “ 0.4999

and σ “ 0.085 using Multi-RB with the left preconditioning strategy.

M d ny k nk rank i time (s) Resk Pres2,k

5

3 56 38 191 56 10 3.57e1 5.62e-5 2.05e-6

4 126 40 201 120 10 3.86e1 6.48e-5 2.08e-6

5 252 41 206 155 11 4.00e1 6.97e-5 2.18e-6

7

3 120 33 232 120 10 4.74e1 7.11e-5 2.01e-6

4 330 35 246 213 11 5.28e1 8.72e-5 2.10e-6

5 792 38 267 243 11 6.28e1 8.77e-5 1.75e-6

13

3 560 37 475 413 10 1.51e2 4.90e-4 1.85e-6

4 2380 42 539 325 11 2.42e2 6.50e-4 1.56e-6

5 8568 43 552 552 12 5.35e2 7.49e-4 1.72e-6

Table 5.4: Numerical results for Test problem 1 with fixed grid level 6, ν “ 0.4999

and σ “ 0.17 using Multi-RB with the left preconditioning strategy.

In Tables 5.5–5.6, we record the numerical results for Test problem 2. This time,

the number of iterations k decreases as we increase the number M of parameters and

increases as we increase the total polynomial degree d. The dimension nk grows as
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d grows in both cases and it is much larger than the estimated rank of Xk especially

in the fast decay case. The unpreconditioned relative residual Resk is observed to be

two to four orders of magnitude higher than the successive relative difference ∆k. The

preconditioned relative residual Pres2,k is at most one order of magnitude higher than

the successive relative difference ∆k.

M d ny k nk rank i time (s) Resk Pres2,k

5

3 56 92 460 56 15 8.75e1 1.27e-3 5.77e-6

4 126 108 540 120 17 1.11e2 3.08e-3 7.95e-6

5 252 114 570 186 17 1.34e2 4.91e-3 9.91e-6

7

3 120 54 376 120 15 1.15e2 2.76e-4 2.45e-6

4 330 60 418 223 16 9.84e1 7.10e-4 4.13e-6

5 792 75 523 286 18 1.55e2 1.27e-3 3.48e-6

13

3 560 39 465 314 15 1.44e2 4.46e-4 2.14e-6

4 2380 47 565 408 17 3.21e2 1.02e-3 2.22e-6

5 8568 49 590 454 17 8.52e2 1.88e-3 2.93e-6

Table 5.5: Numerical results for the slow decay case in Test problem 2 with fixed

grid level 6 and ν “ 0.4999 using Multi-RB with the left preconditioning strategy.

M d ny k nk rank i time (s) Resk Pres2,k

5

3 56 209 834 56 24 2.12e2 1.15e-2 1.11e-5

4 126 255 1025 79 27 3.39e2 1.86e-2 1.83e-5

5 252 361 1470 111 30 8.60e2 1.48e-2 1.03e-5

7

3 120 135 652 75 23 1.93e2 8.71e-3 9.67e-6

4 330 212 1059 112 27 5.27e2 1.11e-2 7.45e-6

5 792 265 1339 146 30 1.54e3 1.09e-2 7.05e-6

13

3 560 104 661 314 23 3.70e2 4.61e-3 5.38e-6

4 2380 136 903 155 26 1.62e3 9.22e-3 7.31e-6

5 8568 207 1458 197 30 1.79e4 9.19e-3 5.37e-6

Table 5.6: Numerical results for the fast decay case in Test problem 2 with fixed

grid level 6 and ν “ 0.4999 using Multi-RB with the left preconditioning strategy.
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For both test problems, the average inner iteration count i is nearly independent of

M and d and we did not observe any large counts as observed in Figure 4.3 when we

applied Multi-RB with the symmetric preconditioning strategy. However, the accuracy

in terms of the unpreconditioned relative residual is worse than when we used the

symmetric preconditioning strategy. We compared plots of expectations and variances

of the final approximation obtained using Multi-RB with the plots obtained using

preconditioned MINRES for Test problem 2 and observed that they are consistent.

Experiment 2 (varying grid level l) Next, we apply Multi-RB to Test problem

1 with σ “ 0.17 and the slow decay case of Test problem 2 with fixed ν “ 0.4999,

M “ 7 and d “ 4 on finite element meshes with varying grid level l “ 4, 5, 6, 7. The

numerical results are recorded in Tables 5.7–5.8. We can see that the number of outer

iterations k and the dimension nk are nearly independent of the grid level l.

l nx k nk rank i time (s) Resk Pres2,k

4 642 31 218 191 10 3.26e0 1.21e-4 1.51e-6

5 2562 38 267 219 11 4.96e1 1.67e-4 1.74e-6

6 10242 35 246 213 11 5.28e1 8.72e-5 2.10e-6

7 40962 35 246 211 11 3.00e2 8.12e-5 1.97e-6

Table 5.7: Numerical results for Test problem 1 with varying grid level l when

ν “ 0.4999, σ “ 0.17, M “ 7 and d “ 4 using the left preconditioning strategy.

l nx k nk rank i time (s) Resk Pres2,k

4 642 42 289 160 15 6.98e0 1.84e-4 9.69e-7

5 2562 64 447 224 16 2.79e1 7.98e-4 2.53e-6

6 10242 60 418 223 16 9.84e1 7.10e-4 4.13e-6

7 40962 60 418 220 16 4.89e2 3.25e-4 3.42e-6

Table 5.8: Numerical results for the slow decay case in Test problem 2 with varying

grid level l when ν “ 0.4999, M “ 7 and d “ 4 using the left preconditioning strategy.

Experiment 3 (varying Poisson ratio ν) We record the numerical results ob-

tained from applying Multi-RB with the left preconditioning strategy to Test problem

1 with σ “ 0.17 and the slow decay case of Test problem 2 with fixed l “ 6, M “ 7,
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d “ 4 and varying Poisson ratio ν in Tables 5.9–5.10. We can see that the number

of iterations k and the dimension nk decrease as ν approaches 0.5, which means the

solver is robust in the incompressible limit.

ν k nk rank i time (s) Resk Pres2,k

0.4 39 274 241 10 5.53e1 7.69e-5 1.71e-6

0.49 36 253 225 10 5.74e1 8.84e-5 2.40e-6

0.499 35 246 215 10 5.20e1 8.79e-5 2.17e-6

0.4999 35 246 213 11 5.28e1 8.72e-5 2.10e-6

Table 5.9: Numerical results for Test problem 1 with varying Poisson ratio ν when

l “ 6, σ “ 0.17, M “ 7 and d “ 4 using the left preconditioning strategy.

ν k nk rank i time (s) Resk Pres2,k

0.4 85 592 273 15 1.51e2 5.51e-4 3.01e-6

0.49 77 538 255 16 1.30e2 4.66e-4 3.32e-6

0.499 74 516 236 17 1.29e2 4.16e-4 2.72e-6

0.4999 60 418 223 16 9.84e1 7.10e-4 4.13e-6

Table 5.10: Numerical results for the slow decay case in Test problem 2 with varying

Poisson ratio ν when l “ 6, M “ 7 and d “ 4 using the left preconditioning strategy.

ϑ k nk rank i time (s) Resk Pres2,k

95 71 422 224 16 1.17e2 5.91e-4 5.10e-6

96 66 404 221 16 1.03e2 4.60e-4 3.59e-6

97 67 432 222 16 1.03e2 4.65e-4 2.95e-6

98 69 464 225 17 1.12e2 7.62e-4 2.75e-6

99 60 418 223 16 9.86e1 7.10e-4 4.13e-6

Table 5.11: Numerical results for the slow decay case of Test problem 2 with varying

ϑ when l “ 6, ν “ 0.4999, M “ 7 and d “ 4 using the left preconditioning strategy.

Experiment 4 (keeping fewer basis vectors) We observed that the dimension

nk is much larger than the estimated rank of the final approximation for Test problem
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2, which suggests the selected basis vectors are not optimal. We now try to remedy

this by keeping fewer basis vectors at each iteration. In Tables 5.11–5.12, we record

the numerical results for Test problem 2 with fixed l “ 6, ν “ 0.4999, M “ 7 and

d “ 4. We can see that the dimension nk barely changes for the slow decay case but

clearly decreases for the fast decay case if we keep fewer basis vectors at each iteration.

The accuracy in terms of Resk and Pres2,k also barely changes.

ϑ k nk rank i time (s) Resk Pres2,k

95 265 760 107 25 4.79e2 1.22e-2 1.28e-5

96 170 510 103 23 2.42e2 2.13e-2 6.03e-5

97 256 892 109 25 5.43e2 2.00e-2 1.79e-5

98 238 941 110 25 5.61e2 1.83e-2 1.70e-5

99 212 1059 112 27 5.27e2 1.11e-2 7.45e-6

Table 5.12: Numerical results for the fast decay case of Test problem 2 with varying

ϑ when l “ 6, ν “ 0.4999, M “ 7 and d “ 4 using the left preconditioning strategy.

Experiment 5 (the multi-parameter strategy) The choice of basis vectors is

also affected by the choice of parameters si,r with i “ 1, . . . , n and r “ 1, 2, . . . ,M .

We record the numerical results obtained using Multi-RB with the multi-parameter

strategy when n “ 5 for Test problem 1–2 with varying M and fixed l “ 6, d “ 4 and

M ny k nk rank i time (s) Resk Pres2,k

5 126 19 96 78 7 1.86e1 1.81e-5 1.36e-6

7 330 20 141 129 7 3.04e1 2.77e-5 1.62e-6

13 2380 26 332 325 8 1.18e2 8.03e-5 1.46e-6

Table 5.13: Numerical results for Test problem 1 with varying M when l “ 6,

σ “ 0.085, ν “ 0.4999 and d “ 4 using the multi-parameter strategy and the left

preconditioning strategy.

ν “ 0.4999. For Test problem 1, the number of iterations k and the dimension nk

barely change compared with the results in Tables 5.3–5.4 when using the parameter-

free strategy. For some cases in the slow decay case of Test problem 2, the number of

iterations k and the dimension nk slightly decreased compared with the results in Table
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5.5. For the fast decay case of Test problem 2, the number of iterations k increases

but the dimension nk decreases when M “ 7, 13 compared with the results in Table

5.6 and it is still much larger than the estimated rank of Xk.

M ny k nk rank i time (s) Resk Pres2,k

5 126 40 201 120 10 3.93e1 6.64e-5 2.03e-6

7 330 35 246 213 10 5.60e1 8.37e-5 2.10e-6

13 2380 42 538 538 11 2.39e2 6.98e-4 1.60e-6

Table 5.14: Numerical results for Test problem 1 with varying M when l “ 6,

σ “ 0.17, ν “ 0.4999 and d “ 4 using the multi-parameter strategy and the left

preconditioning strategy.

M ny k nk rank i time (s) Resk Pres2,k

5 126 108 540 120 17 1.16e2 2.57e-3 6.29e-6

7 330 60 416 223 16 1.03e2 6.73e-4 3.98e-6

13 2380 45 540 403 16 3.05e2 7.92e-4 2.49e-6

Table 5.15: Numerical results for the slow decay case of Test problem 2 with varying

M when l “ 6, ν “ 0.4999 and d “ 4 using the multi-parameter strategy and the left

preconditioning strategy.

M ny k nk rank i time (s) Resk Pres2,k

5 126 321 1098 79 27 4.52e2 1.86e-2 1.18e-5

7 330 232 900 109 26 5.35e2 1.32e-2 1.06e-5

13 2380 182 869 154 25 2.12e3 1.14e-2 8.24e-6

Table 5.16: Numerical results for the fast decay case of Test problem 2 with varying

M when l “ 6, ν “ 0.4999 and d “ 4 using the multi-parameter strategy and the left

preconditioning strategy.

Experiment 6 (convergence history) We show the convergence history of the

preconditioned relative residual Pres2,k, the unpreconditioned relative residual Resk

and the successive relative difference ∆k against the dimension nk in Figures 5.3–5.4.
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Here, the stopping tolerance is chosen to be ϵouter “ 10´8. For Test problem 1, the un-

preconditioned relative residual Resk is roughly three orders of magnitude higher than

the successive relative difference ∆k and the preconditioned relative residual Pres2,k

has a good agreement with the relative difference ∆k. However, we see the unprecon-

ditioned relative residual is effectively stagnating in Figure 5.3a. For Test problem 2,

the unpreconditioned relative residual Resk is three to four orders of magnitude higher

than the successive relative difference ∆k and Pres2,k also has a good agreement with
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Figure 5.3: Convergence history for Test problem 1 with ν “ 0.4999, l “ 5, M “ 7

and d “ 4 using the left preconditioning strategy.
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Figure 5.4: Convergence history for Test problem 2 with ν “ 0.4999, l “ 5, M “ 7

and d “ 4 using the left preconditioning strategy.
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∆k. Compared with the convergence history for the same problems in Figures 4.4–

4.5 using the symmetric preconditioning strategy and the Galerkin condition, the

convergence history is much more stable. However, the difference between Resk and

∆k becomes much larger. We observed that solution plots for these problems are

consistent with plots obtained using preconditioned MINRES. As we mentioned in the

beginning of Section 3.2.3, the iterative error is usually controlled in a norm that is

compatible with the norm of the discretisation error. Since the preconditioned relative

residual has a good agreement with the relative difference, our stopping condition will

be a good choice if one can prove the norm associated with the preconditioner K0 is

compatible with the norm of the discretisation error.

Experiment 7 (large problems) Recall that we were unable to solve large

problems using preconditioned MINRES or Multi-RB with the symmetric precon-

ditioning strategy due to memory constraints. We applied Multi-RB with the left

preconditioning strategy to problems with l “ 9 (giving nx “ 655362), M “ 15 and

d “ 4 (giving ny “ 3876). We set ϵouter “ 10´8 and ν “ 0.4999. The total problem

size is 2, 540, 183, 112 ˆ 2, 540, 183, 112. The numerical results are recorded in Table

5.17. We do not run out of memory when using Multi-RB with the left preconditioning

strategy. However, we cannot compute relative residuals and analyse the accuracy.

Test problem case k nk rank i time (s)

1
σ “ 0.085 65 926 876 9 4.34e4

σ “ 0.17 97 1392 1364 13 6.75e4

2
slow decay 96 1339 1027 19 6.90e4

fast decay 320 2879 368 31 2.44e5

Table 5.17: Numerical results obtained using Multi-RB with the left preconditioning

strategy for test problems with l “ 9, M “ 15, d “ 4 and ν “ 0.4999.

5.3 Conclusions

Using Multi-RB with the left preconditioning strategy we are able to solve larger

problems that cannot be solved using either preconditioned MINRES or Multi-RB

with the chosen symmetric preconditioning strategy.
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When we apply Multi-RB with the left preconditioning strategy to Test problem

1, the number of outer iterations k and the dimension nk are independent of the finite

element grid level l, the total polynomial degree d and the Poisson ratio ν but depend

on the number M of parameters and the standard deviation σ for Test problem 1.

The estimated rank of the final approximation Xk is also close to the dimension nk as

M and d increase. When we apply Multi-RB with the left preconditioning strategy to

Test problem 2, the number of iterations k and the dimension nk are still independent

of l and ν. The number of iterations k decreases as we increase M and increases as we

increase d. The dimension nk of the constructed approximation space is larger than

the estimated rank of Xk. However, keeping fewer basis vectors at each iteration or

using the multi-parameter strategy did not remedy this.

Based on the convergence history of smaller problems, we observe that the unpre-

conditioned relative residual Resk is approximately three to four orders of magnitude

higher than the successive relative difference and the preconditioned relative residual

Pres2,k has a good agreement with the successive relative difference ∆k. In all ex-

periments, we imposed the Galerkin condition on the residual to obtain the reduced

problems. When we compare the convergence history in Figures 5.3–5.4 with that in

Figures 4.4–4.5 when we apply Multi-RB using the symmetric preconditioning strat-

egy and imposing the Galerkin condition, we can see the convergence history is much

smoother but the difference between Resk and ∆k becomes larger. Unlike the sym-

metric preconditioning strategy, we did not observe any large inner iteration counts

when solving reduced problems.



Chapter 6

Parameter-dependent groundwater

flow problem

In this chapter, we apply the reduced basis method introduced in Chapter 3 to the

multi-term matrix equation associated with another parameter-dependent PDE prob-

lem. Our aim is to investigate if Multi-RB can be generalised to solve other indefinite

problems with the same structure as the parameter-dependent linear elasticity prob-

lem. In Section 1.2, we briefly introduced the parameter-dependent groundwater flow

problem with uncertain permeability coefficient

A´1
px,yqupx,yq ` ∇ppx,yq “ 0, x P D, y P Γ, (6.1)

∇ ¨ upx,yq “ fpxq, x P D, y P Γ, (6.2)

with the mixed boundary conditions

ppx,yq “ gpxq, x P BDD, y P Γ, (6.3)

upx,yq ¨ n “ 0, x P BDN , y P Γ. (6.4)

In this problem, the permeability coefficient A´1px,yq is modelled as a parameter-

dependent function of the form

A´1
px,yq “ a0pxq `

M
ÿ

r“1

arpxqyr, x P D, y P Γ. (6.5)

We want to solve for the fluid velocity u : DˆΓ Ñ R2 and the pressure p : DˆΓ Ñ R.

We now define appropriate function spaces for the velocity u and the pressure p.

131
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For the velocity u, we choose the vector-valued solution space

V :“ L2
ρ pΓ,H0,NpDqq ,

where

H0,N :“
!

v P
`

L2
pDq

˘2
;∇ ¨ v P L2

pDq,v ¨ n “ 0 on BDN

)

.

For the pressure p, we choose the scalar-valued solution space

Q :“ L2
ρ

`

Γ, L2
pDq

˘

.

The weak formulation can be written as: find u P V and p P Q such that

apu,vq ` bpv, pq “ ℓpvq, @v P V , (6.6)

bpu, qq “ mpqq, q P Q, (6.7)

where ap¨, ¨q : V ˆ V Ñ R and bp¨, ¨q : V ˆ Q Ñ R are defined as

apu,vq :“

ż

Γ

ρpyq

ż

D

A´1
px,yqupx,yq ¨ vpx,yqdxdy,

bpv, qq :“ ´

ż

Γ

ρpyq

ż

D

qpx,yq p∇ ¨ vpx,yqq dxdy,

and the functions ℓ : V Ñ R and m : Q Ñ R are defined as

ℓpvq :“ ´

ż

Γ

ρpyq

ż

BDD

gpxqvpx,yq ¨ ndsdy,

mpqq :“ ´

ż

Γ

ρpyq

ż

D

fpxqqpx,yqdxdy.

To ensure the well-posedness of the weak formulation, analogous to Assumption 2.18

for Epx,yq, we also make the following assumption for A´1px,yq:

Assumption 6.1. We assume that there exist two constants Amin, Amax P R` such

that

0 ă Amin ď Apx,yq ď Amax ă 8, a.e. in D ˆ Γ.

We choose each parameter yr to be the image of a uniform random variable ξr „

Up´1, 1q with the constant density function ρpyrq “ 1{2 and assume that the random

variables ξr, for r “ 1, 2 . . . ,M are independent. We then have yr P Γr “ r´1, 1s and

y P Γ “ r´1, 1sM .
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Next, we apply a stochastic Galerkin mixed finite element scheme to the weak

formulation (6.6)–(6.7). We choose D to be a square domain and partition it into a

uniform mesh of square elements of edge length h. Let l be the grid level, then the

number of elements is 2l ˆ 2l. For the parametric approximation, we choose Sd to be

the set of multivariate polynomials on Γ of total degree less than or equal to d as we did

for the parameter-dependent linear elasticity problem. For the spatial approximation,

we choose the approximation space Vh for the velocity u to be the set of lowest order

Raviart-Thomas finite element functions (see [65])

Vh :“ span tϕ1pxq,ϕ2pxq, . . . ,ϕnupxqu

and the approximation space for the pressure p to be the set of piecewise constant

functions on some spatial mesh on D

Qh :“ span
␣

φ1pxq, φ2pxq, . . . , φnppxq
(

.

See [27] for more details.

After applying the stochastic Galerkin mixed finite element method, we obtain

a linear system with the Kronecker product structure (1.38). The coefficient matrix

of the linear system is symmetric and indefinite. The matrices Gr P Rnyˆny , r “

0, 1, . . . ,M , are sparse and symmetric and are defined the same as in (2.39)–(2.40).

The finite element matrices Kr P Rnxˆnx , where nx “ nu ` np, have a simpler 2 ˆ 2

block structure and are defined as

K0 :“

»

–

A0 BJ

B 0

fi

fl , Kr :“

»

–

Ar 0

0 0

fi

fl ,

where Ar P Rnuˆnu , r “ 0, 1, . . . ,M are weighted mass matrices associated with the

coefficients arpxq in (6.5) and B P Rnpˆnu is of full row rank. The entries of Ar, for

r “ 0, 1, . . . ,M , are defined as

Arpi, jq :“

ż

D

arpxqϕipxq ¨ ϕjpxqdx, i, j “ 1, . . . , nu.

The matrix A0 is defined in terms of a0pxq which needs to be a positive function and

so A0 needs to be symmetric and positive definite. The entries of B P Rnpˆnu are

defined as

Bpi, jq :“ ´

ż

D

φipxq∇ ¨ ϕjpxqdx, i “ 1, . . . , np, j “ 1, . . . , nu.
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The right hand side h P Rnynx has the structure

h :“ g0 b

»

–

b

f

fi

fl ,

where g0 is the first column of G0 and the entries of g and f are defined as

bpiq :“ ´

ż

BDD

gpxqϕpxq ¨ nds, i “ 1, . . . , nu,

fpjq :“ ´

ż

D

fpxqφjpxqdx, j “ 1, . . . , np.

We can also reformulate the Kronecker system as a multi-term matrix equation of the

form in (1.40). Since G0 is the ny ˆ ny identity matrix and Gr for r “ 1, . . . ,M are

symmetric, we can write the matrix equation as

K0X `

M
ÿ

r“1

KrXGr “ H, (6.8)

where X “ arraytxu and H “ arraythu.

We now introduce two test problems for which are taken from [58].

Test problem 3. We choose the spatial domain D :“ r´1, 1s ˆ r´1, 1s and define the

coefficient function A´1px,yq is defined as in (6.5) with

a0pxq “ 1, arpxq “
?
3
a

λrηrpxq, r “ 1, 2, . . . ,M,

where pλr, ηrpxqq are the eigenpairs associated with the separable exponential covari-

ance function (2.15). We fix the standard deviation σ “ 0.1 and consider two cases of

the boundary conditions and source function fpxq. In case 1, we choose fpxq “ 0 with

p “ 1 on t´1u ˆ r´1, 1s, p “ 0 on t1u ˆ r´1, 1s and homogeneous Neumann conditions

for the velocity on p´1, 1q ˆ t´1, 1u. In case 2, we choose fpxq “ 1 and p “ 0 on the

entire BD.

Test problem 4. We choose the spatial domainD “ r0, 1sˆr0, 1s and define A´1px,yq

as in (6.5) with

a0pxq “ 1, arpxq “ γr cosp2πϱ1prqx1q cosp2πϱ2prqx2q,

where γ “ 0.832r´4 and ϱ1prq, ϱ2prq are defined as in Example 2.17, which is the fast

decay case in Test problem 2. Again, we consider two cases of boundary conditions
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and source functions fpxq. In case 1, we choose fpxq “ 0 with p “ 1 on t0uˆr0, 1s, p “

0 on t1uˆr0, 1s and homogeneous Neumann conditions for the velocity on p0, 1qˆt0, 1u.

In case 2, we choose fpxq “ 1 and p “ 0 on the entire BD.

(a) Expectations

(b) Variances

Figure 6.1: Expectations and variances of components of the pressure p and the ve-

locity u when l “ 6, M “ 7 and d “ 4 for case 1 in Test problem 3.

In Figure 6.1, we plot approximations of expectations and variances of the pressure

p and the velocity u using preconditioned MINRES with stopping tolerance 10´8. The

preconditioner we use is a block-diagonal matrix of the form

P “ Iny b KS,approx, (6.9)
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with

KS,approx :“

»

–

A0,diag 0

0 S0,approx

fi

fl ,

where A0,diag is a diagonal of the matrix A0 and S0,approx :“ BA´1
0,diagB

J. The theoret-

ical eigenvalue bounds of the preconditioned linear system are analysed in [27].

For the two cases in Test problems 3–4, the right hand side h of the linear system

or H of the matrix equation are different. In [81], different pole choices are discussed

when Lyapunov equations are solved using the rational Krylov projection method and

the pole choices are strongly influenced by the right hand side of the matrix equation.

Here, we want to investigate if the performance of Multi-RB are influenced by the

right hand side of our multi-term matrix equation.

For the spatial degrees of freedom, the number nu associated with the velocity u is

the number of finite element edges whose normal components need to be determined

and the number np associated with the pressure p is the number of finite elements. The

number nu depends on the boundary conditions. For example, the normal components

of the finite element edges on the Neumann boundary in case 1 are zero due to the

homogeneous Neumann boundary condition and so the number nu is less than in case

2.

6.1 Symmetric preconditioning

In this section, we apply symmetric preconditioning with a positive definite precon-

ditioner to the matrix equation (6.8) for the parameter-dependent groundwater flow

problem. The approach is similar to the one outlined in Section 3.2.1 for the parameter-

dependent linear elasticity problem but with a different preconditioner. After precon-

ditioning, we choose shifts and then we apply Multi-RB to the shifted matrix equation.

6.1.1 Pre-processing phase

We consider a Schur complement based block-diagonal preconditioner, which is defined

as

KS :“

»

–

A0 0

0 S0

fi

fl , (6.10)
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where S0 is the exact Schur complement of K0

S0 :“ BA´1
0 BJ. (6.11)

Note that KS,approx in (6.9) is a sparse approximation of KS. We now use the above

preconditioner KS and apply the preconditioning strategy stated in Section 3.2.1 to

the matrix equation (6.8). First, we factorise KS “ LKS
LJ
KS

exploiting Cholesky

factorisation. We then apply L´1
KS

on the left of both sides of the matrix equation (6.8)

and replace X with pX “ LJ
KS
X to obtain

pK0
pX `

M
ÿ

r“1

pKr
pXGr “ pH, (6.12)

where the matrices pKr, pH are defined by

pKr :“ L´1
KS
KrL

´J
KS
, pH :“ L´1

KS
H.

Similar to (3.13), we choose M ` 1 shifts αr for r “ 0, 1, . . . ,M and rewrite (6.12) as

pX

˜

´α0I ´

M
ÿ

r“1

αrGr

¸

`

M
ÿ

r“0

´

pKr ` αrI
¯

pXGr “ pH. (6.13)

The shifts are chosen so that each pKr ` αrI has positive eigenvalues.

r Test problem 3 Test problem 4

0 t´0.6180, 1, 1.6180u t´0.6180, 1, 1.6180u

1 t0u Y r0.0957, 0.1471s r´0.8280, 0.8280s

2 r´0.0786, 0.0786s r´0.0517, 0.0517s

3 r´0.0786, 0.0786s r´0.0101, 0.0101s

4 r´0.0468, 0.0466s r´0.0032, 0.0032s

5 r´0.0468, 0.0466s r´0.0013, 0.0013s

6 r´0.0419, 0.0419s r´0.0006, 0.0006s

7 r´0.0326, 0.0326s r´0.0003, 0.0003s

Table 6.1: Numerical eigenvalue bounds for pKr in Test problems 3–4.

We now investigate the eigenvalues of pKr in (6.12) and choose shifts αr based on

them. We record the extremal eigenvalues of pKr, for pKr, for r “ 0, 1, . . . , 7, for Test
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problem 3–4 in Table 6.1. These values are computed for problems on a mesh with

grid level 5 using the eigs function in MATLAB. For both test problems, the first

preconditioned matrix pK0 has three distinct eigenvalues. For Test problem 3, the

eigenvalues of pK1 are non-negative and the minimum and maximum eigenvalues of pKr,

for r “ 2, . . . , 7, are symmetric about zero. For Test problem 4, the minimum and

maximum eigenvalues of pKr, for r “ 1, 2, . . . , 7 are also symmetric about zero. We

choose α0 “ 0.5´λmin
0 for pK0 and αr “ 1´ pλmin

r `λmax
r q{2 for pKr, for r “ 1, 2, . . . ,M ,

where λmin
r and λmax

r represent the minimum and maximum eigenvalues of pKr. For both

problems, we choose α0 “ 1.6180. For Test problem 3, we choose α1 “ 0.0735 and

αr “ 1 for r “ 2, . . . ,M . For Test problem 4, we choose αr “ 1 for r “ 1, 2, . . . ,M .

Next, we apply Multi-RB to the shifted matrix equation (6.13) for Test problems

3–4.

6.1.2 Iterative solution phase

Recall that the details of the iterative solution phase were presented in Section 3.2.2

and the Multi-RB method was outlined in Algorithm 1. Unless otherwise stated, we

make the following choice for all numerical experiments. The stopping condition for

Multi-RB (the outer iteration) is ∆k ă ϵouter and we choose ϵouter “ 10´6. We use the

parameter-free strategy and use the backslash operator in MATLAB to construct the

basis vectors and keep the 99% most significant directions. That is the singular vectors

associated with the 99% largest singular values. We can impose either the Galerkin

condition and solve the reduced problem (3.30) with the Kronecker form in (3.31), or

impose the Petrov-Galerkin condition and solve the reduced problem (1.49) with the

Kronecker form in (3.33). We use MINRES to solve these reduced problems and this

is called the inner iteration. We set Y0 “ 0 and choose Yk “ rYk´1; 0s as the initial

guess when we apply MINRES to the reduced problem at the k-th outer iteration. Let

δ
psq

k be the 2-norm of the relative residual at the s-th iteration of the reduced problem.

The inner iteration is terminated when

δ
psq

k ă ϵinner∆k´1, (6.14)

and we choose ϵinner “ 10´3.

Let Rk denote the k-th residual of the preconditioned matrix equation (6.12) so
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that LKS
Rk is the k-th residual of the unpreconditioned matrix equation (6.8). We

define Resk as the Frobenius norm of k-th unpreconditioned relative residual

Resk :“
}LKS

Rk}F

}LKS
R0}F

,

and Pres3,k as the Frobenius norm of k-th preconditioned relative residual

Pres3,k :“
}Rk}F

}R0}F
.

For all numerical experiments, we record the final iteration count k, the dimension nk

of the approximation space generated, the estimated rank of the final approximation

Xk, the average inner iteration count i, the timing in seconds, as well as Pres3,k and

Resk.

Experiment 1 (varying M and d) First, we fix the grid level to be 6 and apply

Multi-RB with the symmetric preconditioning strategy to Test problems 3–4 with

varying M and d.

M d ny k nk rank i time (s) Resk Pres3,k

5

3 56 32 120 46 8 6.66e2 4.69e-6 4.81e-6

4 126 32 120 54 8 6.48e2 4.70e-6 4.82e-6

5 252 32 120 55 9 6.58e2 4.70e-6 4.82e-6

7

3 120 44 191 87 8 1.16e3 2.50e-6 1.86e-6

4 330 44 191 98 9 1.18e3 2.51e-6 1.87e-6

5 792 44 191 99 9 1.16e3 2.51e-6 1.87e-6

13

3 560 21 104 98 8 9.19e2 1.74e-4 1.08e-4

4 2380 26 130 112 9 1.14e3 8.34e-5 6.44e-5

5 8568 26 130 112 9 1.16e3 8.34e-5 6.44e-5

Table 6.2: Numerical results for case 1 in Test problem 3 with fixed grid level 6

(giving nx “ 12288) using Multi-RB with the symmetric preconditioning strategy.

In Tables 6.2–6.3, we record the numerical results for the two cases in Test prob-

lem 3. For both cases, we can see the number of outer iterations k and the dimension

nk are independent of the polynomial degree d but depend on the number M of pa-

rameters. The dimension nk is smaller than ny when M and d are not too small.
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As M and d increase, the dimension nk approaches the estimated rank of the final

approximation Xk. It requires more iterations k and dimensions nk in case 2 than in

case 1 to achieve the stopping condition.

M d ny k nk rank i time (s) Resk Pres3,k

5

3 56 52 209 55 9 1.09e3 5.07e-5 5.66e-6

4 126 52 209 91 9 1.13e3 5.09e-5 5.68e-6

5 252 52 209 97 9 1.08e3 5.09e-5 5.68e-6

7

3 120 53 235 117 9 1.40e3 1.62e-4 1.25e-5

4 330 53 235 161 9 1.40e3 1.62e-4 1.25e-5

5 792 53 235 161 9 1.40e3 1.62e-4 1.25e-5

13

3 560 85 494 332 9 3.72e3 2.25e-4 1.64e-5

4 2380 85 494 384 10 3.79e3 2.26e-4 1.65e-5

5 8568 85 494 389 10 3.97e3 2.26e-4 1.65e-5

Table 6.3: Numerical results for case 2 in Test problem 3 with fixed grid level 6

(giving nx “ 12416) using Multi-RB with the symmetric preconditioning strategy.

M d ny k nk rank i time (s) Resk Pres3,k

5

3 56 79 250 36 46 1.65e3 2.95e-5 1.53e-5

4 126 87 281 48 60 1.79e3 4.63e-5 2.47e-5

5 252 110 367 56 63 2.27e3 5.52e-5 2.92e-5

7

3 120 67 224 39 41 1.74e3 1.50e-5 5.41e-6

4 330 79 265 49 61 2.13e3 1.89e-5 8.03e-6

5 792 84 282 55 44 2.20e3 2.47e-5 1.06e-5

13

3 560 85 328 48 45 3.73e3 3.42e-6 1.07e-6

4 2380 86 329 59 57 3.99e3 6.79e-6 2.25e-6

5 8568 86 329 65 46 4.47e3 9.98e-6 3.45e-6

Table 6.4: Numerical results for case 1 in Test problem 4 with fixed grid level 6

(giving nx “ 12288) using Multi-RB with the symmetric preconditioning strategy.
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M d ny k nk rank i time (s) Resk Pres3,k

5

3 56 63 209 43 24 1.27e3 1.46e-4 9.81e-6

4 126 78 261 58 29 1.60e3 1.08e-4 5.18e-6

5 252 84 281 71 32 1.73e3 1.02e-4 5.49e-6

7

3 120 70 250 55 25 1.95e3 4.92e-5 2.76e-6

4 330 70 250 69 28 1.84e3 8.19e-5 4.53e-6

5 792 70 250 78 30 1.83e3 1.11e-4 6.15e-6

13

3 560 57 212 71 22 2.49e3 9.76e-5 5.31e-6

4 2380 57 212 83 24 2.51e3 1.67e-4 8.96e-6

5 8568 57 212 93 26 2.62e3 2.30e-4 1.24e-5

Table 6.5: Numerical results for case 2 in Test problem 4 with fixed grid level 6

(giving nx “ 12416) using Multi-RB with the symmetric preconditioning strategy.

In Tables 6.4–6.5, we record the numerical results for the two cases in Test prob-

lem 4. For case 1, we choose ϵinner “ 10´4 because Multi-RB is stagnated at the 2nd

outer iteration when we choose ϵinner “ 10´3. This happens because the inner stopping

tolerance is too large for the reduced problem so that we finally obtain Y2 “ rY1; 0s at

the 2nd outer iteration. Again, for both cases, we can see the number of outer itera-

tions k and the dimension nk are independent of the polynomial degree d but slightly

depend on the number M of parameters. The dimension nk is smaller than ny when

M and d are not too small but unlike for Test problem 3, it is always much greater

than the estimated rank of Xk. It requires more outer iterations k and dimension nk

in case 1 than in case 2.

For all cases, Resk is greater than Pres3,k and Pres3,k has a good agreement with

the successive relative difference ∆k. For both Test problems, we see that Resk is

roughly one order of magnitude higher than ∆k in case 1 and Resk is roughly two

orders of magnitude higher than ∆k in case 2.

Experiment 2 (varying grid level) We apply Multi-RB to the two cases in

Test problems 3–4 on finite element meshes with varying grid level l “ 5, 6, 7. We fix

M “ 7 and d “ 4 (giving ny “ 330) and record the numerical results in Tables 6.6–6.9.
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l nx k nk rank i time (s) Resk Pres3,k

5 3072 44 193 105 9 4.53e1 6.34e-6 2.83e-6

6 12288 44 191 98 9 1.18e3 2.51e-6 1.87e-6

7 49152 13 53 46 7 1.08e4 1.06e-4 6.64e-5

Table 6.6: Numerical results for case 1 in Test problem 3 with varying grid level l

when M “ 7 and d “ 4 using the symmetric preconditioning strategy.

l nx k nk rank i time (s) Resk Pres3,k

5 3136 52 231 161 9 5.25e1 1.47e-4 1.47e-5

6 12416 53 235 161 9 1.18e3 2.51e-6 1.87e-6

7 49408 53 236 160 12 4.42e4 1.83e-4 1.17e-5

Table 6.7: Numerical results for case 2 in Test problem 3 with varying grid level l

when M “ 7 and d “ 4 using the symmetric preconditioning strategy.

l nx k nk rank i time (s) Resk Pres3,k

5 3072 84 287 53 31 1.03e2 3.29e-5 9.90e-6

6 12288 79 265 49 61 2.13e3 1.89e-5 8.03e-6

7 49152 67 217 46 49 5.62e4 1.25e-5 5.76e-6

Table 6.8: Numerical results for case 1 in Test problem 4 with varying grid level l

when M “ 7 and d “ 4 using the symmetric preconditioning strategy.

l nx k nk rank i time (s) Resk Pres3,k

5 3136 57 205 68 23 6.42e1 1.51e-4 1.19e-5

6 12416 70 250 69 28 1.84e3 8.19e-5 4.53e-6

7 49408 67 234 69 41 5.58e4 1.28e-4 5.36e-6

Table 6.9: Numerical results for case 2 in Test problem 4 with varying grid level l

when M “ 7 and d “ 4 using the symmetric preconditioning strategy.

In most cases, we observe that the number of outer iterations k and the dimension

nk are nearly independent of grid level l. However, the number of outer iterations k
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and dimension nk for case 1 in Test problem 3 when l “ 7 is clearly less than those

when l “ 5, 6. We observed the plots of expectations and variances of approximations

obtained for all problems in Table 6.6 using MATLAB. The plots for l “ 5, 6 are

consistent with Figure 6.1 but the plot for l “ 7 is not consistent. In Figure 6.2, we

plot the convergence history of ∆k for these three problems. We see that there is a

big drop at the last iteration for l “ 7. For l “ 5, 6, it happens at the same iteration

but ∆k does not reach 10´6 at that iteration. To fix this issue, we solve the problem

with grid level l “ 7 with a smaller tolerance ϵouter “ 10´7 and checked plots for the

final approximation again. The plots are consistent with Figure 6.1.
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Figure 6.2: Convergence history of ∆k for case 1 in Test problem 3 withM “ 7 and

d “ 4.

Experiment 3 (choice of projection strategy) We plot the convergence his-

tory of the relative difference ∆k, the preconditioned relative residual Pres3,k and

unpreconditioned relative residual Resk for some small problems with spatial grid

level 5, M “ 7 and d “ 4 using two types of projection strategy in Figures 6.3–6.6. In

this experiment, we set ϵouter “ 10´8.

First, we apply the Galerkin condition to Rk and the convergence history is shown

in Figures 6.3–6.4. We see that the preconditioned relative residual Pres3,k and un-

preconditioned relative residual Resk are not monotonically decreasing. The relative

residuals Resk and Pres3,k for Test problem 4 are more erratic than Test problem 3.

The successive relative difference ∆k is the smallest and its history is the most er-

ratic. The unpreconditioned relative residual Resk is roughly one order of magnitude

higher than the successive relative difference ∆k in case 1 and one to two orders of

magnitude higher than ∆k in case 2. The preconditioned relative residual Pres3,k has
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a good agreement with the successive relative difference ∆k. For case 1 in both test

problems, the unpreconditioned relative residual Resk is closer to the preconditioned

relative residual Pres3,k than for case 2. Recall that the right hand sides of the ma-

trix equations for these two cases are different. This indicates that the accuracy is

influenced by the right hand side of the matrix equation.
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Figure 6.3: Convergence history for Test problem 3 when we apply the Galerkin

condition with l “ 5, M “ 7 and d “ 4.

0 200 400 600 800

n
k

10
-10

10
-5

10
0

Res
k

Pres
3,k

k

(a) case 1

0 100 200 300 400 500

n
k

10
-10

10
-5

10
0

Res
k

Pres
3,k

k

(b) case 2

Figure 6.4: Convergence history for Test problem 4 when we apply the Galerkin

condition with l “ 5, M “ 7 and d “ 4.

Next, we apply the Petrov-Galerkin condition to Rk and plot the convergence

history in Figures 6.5–6.6.
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Figure 6.5: Convergence history for Test problem 3 when we apply the Petrov-

Galerkin condition with l “ 5, M “ 7 and d “ 4.
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Figure 6.6: Convergence history for Test problem 4 when we apply the Petrov-

Galerkin condition with l “ 5, M “ 7 and d “ 4.

The preconditioned relative residual Pres3,k is now monotonically decreasing. The

relative difference ∆k also becomes less erratic than when we apply the Galerkin con-

dition. For all cases, Pres3,k has a good agreement with ∆k. The unpreconditioned

relative residual Resk is still roughly one order of magnitude higher than the successive

relative difference ∆k in case 1 and one to two orders of magnitude higher than ∆k

in case 2 for both test problems. In other words, Resk is closer to Pres3,k and ∆k in

case 1 than in case 2 for both test problems, which also happens when we apply the

Galerkin condition. This indicates that the accuracy is still influenced by the right
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hand side vector.

M ny k nk rank i time (s) Resk Pres3,k

5 126 32 120 55 8 6.56e2 5.21e-6 3.47e-6

7 330 44 191 88 8 1.15e3 2.08e-6 1.31e-6

13 2380 21 104 102 7 9.47e2 1.44e-4 9.10e-5

Table 6.10: Numerical results for case 1 in Test problem 3 with varying M when

l “ 6 and d “ 4 when we apply the Petrov-Galerkin condition.

M ny k nk rank i time (s) Resk Pres3,k

5 126 52 209 88 9 1.09e3 4.18e-5 3.97e-6

7 330 53 235 148 9 1.40e3 1.06e-4 8.77e-6

13 2380 85 494 373 9 4.52e3 1.41e-4 1.14e-5

Table 6.11: Numerical results for case 2 in Test problem 3 with varying M when

l “ 6 and d “ 4 when we apply the Petrov-Galerkin condition.

In Tables 6.10–6.13, we record the numerical results obtained when we apply the

Petrov-Galerkin condition for Test problems 3–4 with fixed d “ 4. Compared with

the numerical results in Tables 6.2–6.5 when we apply the Galerkin condition, we see

the number of outer iterations k and the dimension nk is barely changed for Test

problem 3 but somewhat decrease for case 1 in Test problem 4. The timings and

the accuracy in terms of Resk and Pres3,k are also barely changed.

M ny k nk rank i time (s) Resk Pres3,k

5 126 74 237 46 26 1.58e3 4.46e-5 2.35e-5

7 330 48 153 51 25 1.25e3 9.51e-5 4.78e-5

13 2380 57 195 61 26 2.92e3 6.16e-5 2.93e-5

Table 6.12: Numerical results for case 1 in Test problem 4 with varying M when

l “ 6 and d “ 4 when we apply the Petrov-Galerkin condition.
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M ny k nk rank i time (s) Resk Pres3,k

5 126 63 209 57 21 1.33e3 1.67e-4 1.20e-5

7 330 67 239 69 21 1.76e3 6.03e-5 3.99e-6

13 2380 57 212 82 19 3.03e3 1.12e-4 6.90e-6

Table 6.13: Numerical results for case 2 in Test problem 4 with varying M when

l “ 6 and d “ 4 when we apply the Petrov-Galerkin condition.

Experiment 4 (large problems) We also applied Multi-RB to some larger

problems with l “ 9, M “ 15 and d “ 4, which gives the total problem size about

3.05e9 ˆ 3.05e9. As for the linear elasticity problem in Section 4.2, the machine we

use runs out of memory again. This is due to the storage cost for the dense block S0

in KS when a fine finite element mesh is used.

6.2 Left preconditioning

In this section, we use K0 as the preconditioner and apply the left preconditioning

strategy to the matrix equation (6.8). In [58], Multi-RB with the same precondi-

tioning strategy are also applied to the matrix equation associated with the problem

(6.1)–(6.2). In this section, we use the same strategy and we will investigate the un-

preconditioned relative residual and the convergence history of three different errors

for some small problems. After preconditioning, we choose shifts and apply Multi-RB

to the modified equation.

6.2.1 Pre-processing phase

We choose K0 as the preconditioner and apply K´1
0 on both sides of the matrix equa-

tion (6.8)

X `

M
ÿ

r“1

rKrXGr “ rH, (6.15)

where rKr and rH are defined by

rKr :“ K´1
0 Kr, rH :“ K´1

0 H.
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Similar to (3.20), we choose M shifts αr to ensure that the eigenvalues of the matrices

rKr ` αrI are positive for each r “ 1, 2, . . . ,M . This gives

X

˜

I ´

M
ÿ

r“1

αrGr

¸

`

M
ÿ

r“1

´

rKr ` αrI
¯

XGr “ rH. (6.16)

We now investigate eigenvalues of for rKr in (6.15) and choose shifts αr based on

them. In Table 6.14, we record the extremal eigenvalues for Test problems 3–4.

These eigenvalues are computed for problems on a mesh with grid level 5 using the

eigs function in MATLAB. Compared with the extremal eigenvalues of pKr in Table

6.1, we see that they are the same for r “ 1, 2, . . . ,M . However, there is an extra

term pK0 with three distinct eigenvalues in the symmetrically preconditioned matrix

equation (6.12). Here, we choose αr “ 1´ pλmin
r ` λmax

r q{2 for rKr, for r “ 1, 2, . . . ,M .

For Test problem 3, we choose α1 “ 0.0735 and αr “ 1 for r “ 2, . . . ,M . For Test

problem 4, we choose αr “ 1 for r “ 1, 2, . . . ,M .

r Test problem 3 Test problem 4

1 t0u Y r0.0970, 0.1471s r´0.8280, 0.8280s

2 r´0.0785, 0.0785s r´0.0517, 0.0517s

3 r´0.0784, 0.0784s r´0.0101, 0.0101s

4 r´0.0468, 0.0466s r´0.0032, 0.0032s

5 r´0.0466, 0.0466s r´0.0013, 0.0013s

6 r´0.0418, 0.0418s r´0.0006, 0.0006s

7 r´0.0326, 0.0326s r´0.0003, 0.0003s

Table 6.14: Numerical eigenvalue bounds for rKr in Test problems 3–4.

Next, we apply Multi-RB to the shifted matrix equation (6.16) for Test problems

3–4.

6.2.2 Iterative solution phase

We now apply Multi-RB to (6.16). For all numerical experiments we use the same

settings as described in Section 5.2. We terminate the outer iteration when ∆k ă

ϵouter where ϵouter “ 10´6. We use the parameter-free strategy and use the backslash

operator in MATLAB to construct the basis vectors and keep the 99% most significant
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directions. That is the singular vectors associated with the 99% largest singular values.

We impose the Galerkin condition at each iteration and use QMR to solve the reduced

problem (3.30). We set Y0 “ 0 and choose Yk “ rYk´1; 0s as the initial guess when we

apply QMR to the reduced problem at the k-th outer iteration. Let δ
psq

k be the 2-norm

of relative residual at the s-th inner iteration of the reduced problem. The stopping

condition we use for the inner iteration is (4.1) and we choose ϵinner “ 10´3.

We record the number of outer iterations k, the dimension nk of the approximation

space generated, the estimated rank of the final approximation Xk, the average inner

iteration count i and the timing in seconds. We also record the final unpreconditioned

relative residual Resk

Resk :“
}K0Rk}F

}K0Rk}F
,

where Rk is the k-th residual of the preconditioned matrix equation (6.15) with the

preconditioner K0 and K0Rk is the k-th residual of the unpreconditioned matrix equa-

tion (6.8), as well as the final preconditioned relative residual Pres4,k

Pres4,k :“
}Rk}F

}R0}F
.

Experiment 1 (varying M and d) First, we fix the grid level to be 6 and apply

Multi-RB to the matrix equation (6.16) for Test problems 3–4.

In Tables 6.15–6.16, we record numerical results for Test problem 3. For both

cases, the number of outer iterations k and the dimension nk are independent of

the polynomial degree d but slightly depend on the number M of parameters. The

dimension nk is smaller than ny when M and d are not too small and is close to the

estimated rank of the final approximation Xk. The values of k and nk are very similar

for the two cases.

In Tables 6.17–6.18, we record numerical results for Test problem 4. The number

of outer iterations k and the dimension nk are still independent of the polynomial

degree d but depend on the number M of parameters. The dimension nk is smaller

than ny when M and d are not too small but it is always greater than the estimated

rank of Xk. The values of k and nk are still similar for the two cases.
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M d ny k nk rank i time (s) Resk Pres4,k

5

3 56 7 35 34 5 3.92e0 8.34e-6 2.01e-6

4 126 9 45 40 6 5.08e0 5.51e-6 1.43e-6

5 252 9 45 40 6 5.14e0 5.51e-6 1.43e-6

7

3 120 9 63 59 6 7.99e0 2.35e-6 5.99e-7

4 330 9 63 59 6 8.19e0 2.39e-6 6.14e-7

5 792 9 63 59 6 8.77e0 2.40e-6 6.15e-7

13

3 560 14 163 145 7 3.36e1 1.06e-6 2.82e-7

4 2380 14 163 147 7 6.00e1 1.10e-6 2.91e-7

5 8568 14 163 147 7 1.44e2 1.10e-6 2.92e-7

Table 6.15: Numerical results for case 1 in Test problem 3 with fixed grid level 6

(giving nx “ 12288) using Multi-RB with the left preconditioning strategy.

M d ny k nk rank i time (s) Resk Pres4,k

5

3 56 9 46 40 5 5.05e0 1.80e-4 1.33e-6

4 126 9 46 44 6 5.10e0 1.84e-4 1.35e-6

5 252 9 46 44 6 5.30e0 1.84e-4 1.35e-6

7

3 120 9 64 64 6 7.81e0 2.36e-4 1.60e-6

4 330 9 64 64 6 7.95e0 2.41e-4 1.63e-6

5 792 9 64 64 6 8.93e0 2.41e-4 1.63e-6

13

3 560 14 172 172 6 3.52e1 7.23e-5 4.87e-7

4 2380 14 172 172 7 6.36e1 7.53e-5 5.08e-7

5 8568 14 172 172 7 1.64e2 7.55e-5 5.09e-7

Table 6.16: Numerical results for case 2 in Test problem 3 with fixed grid level 6

(giving nx “ 12416) using Multi-RB with the left preconditioning strategy.

For both test problems, the preconditioned relative residual Pres4,k has a good

agreement with ∆k. The unpreconditioned relative residual Resk has a good agreement

with the successive relative difference ∆k in case 1 and the unpreconditioned relative

residual Resk is roughly two orders of magnitude higher than the successive relative

difference ∆k in case 2. The unpreconditioned relative residual Resk in case 1 is closer
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to ∆k than in case 2, which also happens when we use the symmetric preconditioning

strategy. However, the values of k and nk are more similar for case 1 and case 2 than

in the symmetric symmetric preconditioning case.

M d ny k nk rank i time (s) Resk Pres4,k

5

3 56 19 66 30 15 8.82e0 4.76e-5 1.04e-5

4 126 38 157 41 20 2.47e1 9.21e-6 2.13e-6

5 252 43 181 47 21 3.73e1 7.05e-6 1.60e-6

7

3 120 15 67 33 15 9.66e0 1.61e-5 3.54e-6

4 330 22 104 42 18 1.90e1 3.99e-6 8.86e-7

5 792 22 104 47 18 2.50e1 6.18e-6 1.38e-6

13

3 560 20 138 43 16 3.82e1 1.10e-6 2.44e-7

4 2380 20 138 48 17 8.45e1 2.53e-6 5.62e-7

5 8568 20 138 51 18 2.67e2 3.99e-6 8.90e-7

Table 6.17: Numerical results for case 1 in Test problem 4 with fixed grid level 6

(giving nx “ 12288) using Multi-RB with the left preconditioning strategy.

M d ny k nk rank i time (s) Resk Pres4,k

5

3 56 30 122 34 16 1.58e1 1.89e-4 1.18e-6

4 126 32 128 45 18 1.91e1 2.23e-4 1.40e-6

5 252 32 128 52 19 2.27e1 2.70e-4 1.69e-6

7

3 120 21 93 41 15 1.38e1 2.40e-4 1.56e-6

4 330 21 93 50 16 1.61e1 3.80e-4 2.47e-6

5 792 30 146 56 19 4.71e1 1.18e-4 7.17e-7

13

3 560 21 117 52 15 3.40e1 1.27e-4 8.04e-7

4 2380 23 137 62 17 8.92e1 1.07e-4 6.60e-7

5 8568 23 137 66 18 2.91e2 1.56e-4 9.66e-7

Table 6.18: Numerical results for case 2 in Test problem 4 with fixed grid level 6

(giving nx “ 12416) using Multi-RB with the left preconditioning strategy.

Experiment 2 (varying grid level) We now apply Multi-RB to Test problems

3–4 on finite element meshes with varying grid level l “ 5, 6, 7. The numerical results
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for fixed M “ 7 and d “ 4 are recorded in Tables 6.19–6.22. We see that the number

of outer iterations k and the dimension nk are nearly independent of grid level l.

l nx k nk rank i time (s) Resk Pres4,k

5 3072 9 63 60 6 2.00e0 2.98e-6 9.81e-7

6 12288 9 63 59 6 8.19e0 2.39e-6 6.14e-7

7 49152 9 63 56 6 3.78e1 1.83e-6 3.84e-7

Table 6.19: Numerical results for case 1 in Test problem 3 with varying grid level l

when M “ 7 and d “ 4 using the left preconditioning strategy.

l nx k nk rank i time (s) Resk Pres4,k

5 3136 13 92 89 7 3.30e0 4.20e-5 1.12e-6

6 12416 9 64 64 6 7.95e0 2.41e-4 1.63e-6

7 49408 9 64 64 6 3.84e1 5.48e-4 9.59e-7

Table 6.20: Numerical results for case 2 in Test problem 3 with varying grid level l

when M “ 7 and d “ 4 using the left preconditioning strategy.

l nx k nk rank i time (s) Resk Pres4,k

5 3072 19 85 44 16 4.82e0 6.67e-6 2.05e-6

6 12288 22 104 42 18 1.90e1 3.99e-6 8.86e-7

7 49152 19 83 37 17 6.57e1 7.65e-6 1.21e-6

Table 6.21: Numerical results for case 1 in Test problem 4 with varying grid level l

when M “ 7 and d “ 4 using the left preconditioning strategy.

l nx k nk rank i time (s) Resk Pres4,k

5 3072 29 134 52 17 1.12e1 7.32e-5 1.56e-6

6 12288 21 93 50 16 1.61e1 3.80e-4 2.47e-6

7 49152 22 103 48 17 7.83e1 6.46e-4 1.10e-6

Table 6.22: Numerical results for case 2 in Test problem 4 with varying grid level l

when M “ 7 and d “ 4 using the left preconditioning strategy.
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Experiment 3 (convergence history) We plot the convergence history of the

preconditioned relative residual Pres4,k, the unpreconditioned relative residual Resk

and the successive relative difference ∆k against the dimension nk in Figures 6.7–6.8.
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Figure 6.7: Convergence history for Test problem 3 with l “ 5, M “ 7 and d “ 4

using the left preconditioning strategy.
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Figure 6.8: Convergence history for Test problem 4 with l “ 5, M “ 7 and d “ 4

using the left preconditioning strategy.

The stopping tolerance in all cases is ϵouter “ 10´8. For case 1 in both test problems,

the unpreconditioned relative residual Resk is roughly one order of magnitude higher

than the successive relative difference ∆k. For case 2 in both test problems, the

unpreconditioned relative residual Resk is roughly two orders of magnitude higher than

the successive relative difference ∆k. As we observed for the symmetric preconditioning
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strategy, Resk is closer to ∆k in case 1 than in case 2 for both test problems. The

accuracy is influenced by the right hand side. Compared with the convergence history

for the same problems in Figures 6.3–6.4 using the symmetric preconditioning strategy

and the Galerkin condition, the convergence history is much more stable.

The convergence of the successive relative difference ∆k is investigated with stop-

ping condition ϵouter “ 10´6 for Test problems 3–4 with different values of M in

[58]. We also checked the convergence history of ∆k for those problems and the plots

are consistent with those in [58].

Experiment 4 (large problems) We now apply Multi-RB with the left pre-

conditioning strategy to some large problems with l “ 9, M “ 15 and d “ 4. The

total problem size is 3, 048, 210, 432 ˆ 3, 048, 210, 432 in case 1 or 3, 052, 179, 456 ˆ

3, 052, 179, 456 in case 2. The stopping tolerance is chosen to be ϵouter “ 10´8. We

record the numerical results in Table 6.23. We do not run out of memory when using

Multi-RB with the left preconditioning strategy.

Test problem case nx k nk rank i time (s)

3
1 786432 26 341 339 9 8.77e3

2 787456 27 374 374 8 9.29e3

4
1 786432 29 251 82 22 7.97e3

2 787456 27 229 104 20 7.32e3

Table 6.23: Numerical results obtained using Multi-RB with the left preconditioning

strategy for Test problems 3–4 with l “ 9, M “ 15 and d “ 4.

6.3 Conclusions

In this chapter, we apply Multi-RB with two preconditioning strategies to the matrix

equation associated with (6.1)–(6.4). From numerical results we obtained, there are

some similarities and differences with observations for the parameter-dependent linear

elasticity problem.

The similarities are:

1. For large problems that cause memory issues when we use MINRES, we are

now able to solve them using Multi-RB with the left preconditioning strategy.
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However, it was not feasible to use the suggested symmetric preconditioning

strategy because the chosen preconditioner has a dense block whose storage

costs become problematic when the finite element grid level is large.

2. For both preconditioning strategies, the number of outer iterations k and the

dimension nk required to meet the stopping condition are nearly independent of

the finite element grid level l and the polynomial degree d but depend on the

number M of parameters. When M and d are not small, the dimension nk is

less than ny and much less than nx.

3. When we apply Multi-RB using the symmetric preconditioning strategy with the

Galerkin condition, we observe that the unpreconditioned relative residual Resk,

the preconditioned relative residual and the relative difference ∆k are erratic.

If we impose the Petrov-Galerkin condition, the preconditioned relative residual

decreases monotonically and so does Resk. When we use the left preconditioning

strategy with the Galerkin condition, the errors all decrease monotonically. In

particular, the relative difference ∆k (which controls the stopping condition) is

more stable than when using symmetric preconditioning strategy.

The differences are:

1. When we use the left preconditioning strategy for the parameter-dependent lin-

ear elasticity problem, the difference between unpreconditioned relative residual

Resk and the relative difference ∆k is much greater than when using the symmet-

ric preconditioning strategy. However, for the parameter-dependent groundwater

flow problem, the difference between Resk and ∆k for the two preconditioning

strategies are nearly the same.

2. For the parameter-dependent linear elasticity problem, the dimension nk required

to meet the stopping condition is much greater than the estimated rank of Xk

when using the symmetric preconditioning strategy. The dimension nk is close to

the estimated rank ofXk for Test problem 1 but larger than the estimated rank

ofXk forTest problem 2 when using the left preconditioning strategy. For both

preconditioning strategies when solving the parameter-dependent groundwater

flow problem, the dimension nk approaches the estimated rank ofXk whenM and
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d are not small for Test problem 3 but is always larger than the estimated rank

of Xk for Test problem 4. For Test problems 3–4, the difference between

Resk and ∆k in case 1 is smaller than that in case 2. This suggests that the

accuracy may be influenced by the right-hand side vector.



Chapter 7

Conclusions

In this thesis, we extended the Multi-RB algorithm that was proposed in [64] for linear

multi-term matrix equations (LMTMEs) associated with symmetric and positive def-

inite problems to LMTMEs associated with symmetric and indefinite problems. The

matrix equations we investigated are associated with the saddle point structured linear

systems that arise when we apply stochastic Galerkin mixed finite element methods

(SGMFEMs) to PDEs with inputs that depend on uncertain parameters. These prob-

lems are challenging to solve due to their extremely large size. Indeed, we are unable to

solve them on standard desktop computers using standard Krylov subspace methods

due to memory constraints.

We applied SGMFEMs to two parameter-dependent PDE problems, namely a

parameter-dependent linear elasticity problem and a parameter-dependent ground-

water flow problem. Before applying the Multi-RB algorithm, we preconditioned the

associated matrix equations using two preconditioning strategies, a symmetric pre-

conditioning strategy and a left preconditioning strategy. After preconditioning, we

introduced shifts to ensure that the eigenvalues of all the left matrices appearing in the

modified matrix equation are positive. The approximation space we chose for Multi-

RB is based on the shifted left matrices and the construction is inspired by rational

Krylov subspace methods for a two-term matrix equation. We were able to solve some

extremely large LMTMEs using Multi-RB with our chosen left preconditioning strat-

egy. However, we still encountered memory issues when using our chosen symmetric

preconditioning strategy.

157
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When applying symmetric preconditioning, we investigated two projection tech-

niques based on Galerkin and Petrov-Galerkin constraints. When we imposed the

Galerkin condition, the convergence history was observed to be very unstable and

the inner iteration counts were very large at some iterations. However, imposing the

Petrov-Galerkin condition resolved these issues because the resulting reduced problems

are well-conditioned and the Frobenius norm of the preconditioned relative residual

at every iteration is minimised. When we used the left preconditioning strategy, we

imposed the Galerkin condition and the convergence history of the errors was observed

to be much smoother than when using the symmetric preconditioning strategy. We

concluded that Multi-RB with left preconditioning seems more successful than with

the symmetric preconditioning strategy.

To conclude, we highlight some directions for future work. First, we would like to

explore different strategies for choosing the parameters si,r when constructing basis

vectors for Multi-RB in Line 4 of Algorithm 1. A better choice might improve the

convergence of the method. Second, based on observations for our groundwater flow

test problems, it may be worthwhile investigating how the right-hand side of the ma-

trix equation influences the accuracy and performance of Multi-RB. This could first be

investigated numerically by considering more test problems with different source func-

tions and boundary conditions. A sensible strategy would be to start with a simpler

parameter-dependent PDE with only one solution variable such as the scalar ellip-

tic PDE (2.53) before considering problems with saddle point structure such as the

parameter-dependent linear elasticity problem and the parameter-dependent ground-

water flow problem. Finally, it would be interesting to determine whether it is possible

to apply the Multi-RB method to LMTMEs that arise when we apply SGMFEMs to

more complicated PDEs/systems of PDEs arising in engineering applications, such as

fluid flow problems, nonlinear elasticity problems, and problems with multiple sources

of uncertainty.
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