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Chapter 1

Introduction

1.1 What is Gravitational Lensing?

Rays of light, much like everyday objects, are influenced by gravity. Like a bullet travel-
ling at high speed, their trajectories will ever so slightly curve as they are drawn towards
the gravitational body, known as the lens. This effect is subtle; for a light ray, whose jour-
ney through the universe passes just above the Earth’s atmosphere, its angle of deflection
would be only one half of a milli-arcsecond, or one ten-millionth of a degree. This effect
scales proportionally with the mass of the lens ML and inversely with the distance of
closest approach b given by

α =
4GML

bc2 , (1.1)

resulting in deflection angles which, although still small, are thousands of times greater
for stellar mass objects such as our sun. In the most extreme cases, the lens is an entire
galaxy with a mass of hundreds of billions of stars, or a galaxy cluster, with masses up-
ward of a hundred trillion stars. In these galactic scale theatres, the deflection of light can
be sufficiently large that we can observe its effect through our telescopes; many famous
Hubble Space Telescope images showcase visually the consequences of this phenomenon.
The deflection of light lends itself well to the name of this phenomenon: gravitational
lensing.

The historical legacy of gravitational lensing is also significant. Albert Einstein’s gen-
eral theory of relativity was used in the total solar eclipse of 29th May 1919 by British
astronomer Sir Arthur Eddington to predict the deflection of the position of background
stars near the sun during totality (Earman & Glymour, 1980). His prediction suggested a
deflection angle twice as large as predicted by the accepted theory of gravity at the time,
Newtonian gravity (Sauer, 2008). The general relativistic value of 1.75 arcseconds was
shown to be accurate from Eddington’s observations, propelling Einstein to international
levels of fame and, along with the precession of Mercury’s perihelion, became one of the
first successful tests of the theory.

The field of gravitational lensing developed over the following century and has since
become an excellent tool for studying the universe. Today, the field is divided into three
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main subcategories: strong lensing, weak lensing and microlensing. Strong lensing ap-
pears in a regime where the lens is of sufficient mass that resolved background objects
are visibly distorted. The distortion generated by the lens’ gravitational potential can
be used to reverse engineer the mass distribution of the lens object, which is typically a
galaxy (Trick et al., 2016; Nightingale et al., 2019). The earliest detection of a strong lens-
ing system was of the "double quasar" B0957+561 A and B (Walsh, Carswell & Weymann,
1979), originally detected as part of the Jodrell Bank 966 MHz radio survey. Follow up
optical observations showed the dual nature of the quasar, with each component sepa-
rated by 6 arcseconds with identical redshifts of z = 1.41, as well as very similar spectral
characteristics. Walsh, Carswell & Weymann (1979) proposed that the observations could
best be explained by a distant quasar being lensed by the gravity of a foreground galaxy.
Further observations confirmed this to be the case; see Walsh (1989) for a historical re-
view. Strong lensing is particularly useful in the detection of dark matter (Limousin et al.,
2008), as the retrieved mass distribution will often suggest more mass than is provided
by the detectable luminous matter locked up in stars, gas and dust.

Weak lensing operates in a similar regime of resolvable galaxies as the background
objects (sources) but does not require a strong visual distortion. Instead, it relies on mea-
suring the apparent ellipticity of source galaxies in a local region around the lensing and
comparing the average ellipticity of these galaxies to what would be expected from a
purely random distribution of galactic rotations (Mellier, 1999). The effect of gravita-
tional lensing in the weak regime is to stretch the image of source galaxies along an axis
perpendicular to the direction of the mass distribution, resulting in a statistically sig-
nificant excess of ellipticity which can be used to retrieve the profile of the lens mass
distribution.

The third manifestation of gravitational lensing is in the form of microlensing. Often,
the source objects of gravitational lensing are not galaxies, but stars in the Milky Way.
Although the alignment of stars in the sky from Earth’s vantage point close enough to
produce a measurable lensing effect is extremely uncommon, due to the vast number of
stars in our Galaxy (on the order of one hundred billion), stars in the sky can act as sources
for other stellar lenses. If the angular separation of the two objects is small enough such
that the light rays from the source will undergo significant deflection passing near the
lens star, the image of the source will become noticeably distorted, resulting in a magni-
fication of its apparent brightness (Paczynski, 1986). While stars other than our Sun are
not typically resolvable as disks in the sky, we can still observe this gravitational lensing
effect by monitoring the brightness of the source star over time, recording its flux as the
source and lens approach and move past each other. It is in this regime, where the source
is not resolvable and where the strength of the lensing effect varies over time, that we
observe a gravitational microlensing event (Chang & Refsdal, 1979).
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1.2 Exoplanet detection

The uses of gravitational microlensing are several-fold. In some cases, the lens system
includes a star and a gravitationally bound exoplanet, in which case there is the possibil-
ity that the light-curve of the source star will show binary lensing effects which infer the
presence of the exoplanet. To date, 130 exoplanets have been confirmed via microlens-
ing1. Microlensing is particularly useful in the field of exoplanet science due to its ability
to detect exoplanets orbiting beyond the snow-line of their host stars (Hwang et al., 2022),
where we expect to find many low mass planets (Mordasini, 2018). The snow-line repre-
sents the distance from a star beyond which volatiles such as water and ammonia ices can
form, which are predicted by planetary formation theories to aid in the initial accumula-
tion of planetary cores. Shown in figure 1.1, one can see the planetary mass vs semi-major
axis parameter space of discovered exoplanets, where the efficacy of microlensing for de-
tecting low mass planets beyond the snowline is highlighted.

The main competing methods of exoplanet detection are the transit method and radial
velocity method, with a notable contribution form direct imaging. The transit method is
responsible for the majority of exoplanet discoveries and relies on the alignment of an
exoplanet’ orbital plane with the observer’s line of sight, such that the planet transits the
surface of its host star at some point during its orbit, blocking out a portion of that star’s
light. For a planet of radius Rp in an orbit around a star of radius Rs with semi-major
axis a, ellipticity ε, argument of periapsis ω (relative to the observer’s line of sight) and
orbital inclination i, the minimum impact parameter rmin of the planet to the star for an
observer is given by (Wright & Gaudi, 2013)

rmin =
a(1− ε2)

1 + ε cos(ω)
cos(i). (1.2)

Assuming that cos(i) is uniformly distributed, the probability p of a transit for a particu-
lar set of orbital parameters is

p = (Rp + Rs)
1 + ε cos(ω)

a(1− ε2)
, (1.3)

which favours large planets in tight orbits, faithfully represented by the population of
transit exoplanets in figure 1.1. Dedicated space-based surveys by the Kepler Space Tele-
scope (Koch et al., 2004) and the Transiting Exoplanet Survey Satellite (TESS) (Ricker
et al., 2014) have found thousands of exoplanets, with a bias towards large planetary
radii and small semi-major axes. Although highly successful missions, the sensitivity of
our most advanced instruments to planetary transits, including the recently operational
James Webb Space Telescope (JWST) (Sabelhaus & Decker, 2004), makes detecting Earth-
mass exoplanets beyond the snow line prohibitive (Beichman et al., 2014; Kaltenegger &
Traub, 2009).

The radial velocity method has also contributed significantly to the database of con-
firmed exoplanets. When a bound exoplanet has sufficient mass to cause its host star

1A list of confirmed exoplanets is available at https://exoplanetarchive.ipac.caltech.edu/

https://exoplanetarchive.ipac.caltech.edu/
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to orbit the planet-star barycenter at sufficient orbital velocity, observers on the Earth
can detect a shift in the host’s spectrum due to the Doppler effect when the star moves
in the radial direction, towards or away from the observer (Wright, 2018). In the limit
that the planet mass Mp is much less than the mass of the host start Ms, the observed
semi-amplitude K of the host’s radial velocity is given by (Wright & Howard, 2009)

K = Mp sin(i)

√
G

a(1− ε2)Ms
, (1.4)

where P is the orbital period of the exoplanet. Compared to the transit method, the radial
velocity method is less sensitive to orbital semi-major axis, but relies on a large mass ratio
between the planet and its host to produce a measureable effect. This is once again borne
out in figure 1.1, where we can see a large contribution to the exoplanet catalogue from
the radial velocity method for the large mass regime beyond the snow-line, or indeed
for planets in tighter orbits on the lower mass scale, where the host star is also of lower
mass. Instruments such as the High Accuracy Radial-velocity Planetary Search (HARPS)
project (Astudillo-Defru et al., 2017) can achieve precision measurements of K < 1ms−1,
although falls short of the K ∼ 10cms−1 precision required to detect and Earth analogue
(Wright & Gaudi, 2013).

Direct imaging of exoplanets involves spatially resolving the light contribution from
the exoplanet from that of its host star. Two sources of light contribute to the observed
flux of an exoplanet, namely emissions directly from the planet as a result of internal
temperature or heat absorbed from the host and reflected star light from its host off of
the planet’s surface or atmosphere. The Spectro-Polarimetic High contrast imager for Ex-
oplanets REsearch (SPHERE) (Beuzit et al., 2019) instrument installed on the Very Large
Telescope in Chile takes advantage of adaptive optics (van Kooten et al., 2020) to com-
pensate for atmospheric turbulence, active optics (Hugot et al., 2012) and a coronagraph
to block out host star light. Similarly, the Gemini Planet Imager (GPI) (Macintosh et al.,
2006) on the Gemini South Telescope also employs adaptive optics to improve imaging
quality and detect Jupiter mass exoplanets in ∼ 10% of systems observed (McBride et al.,
2011). In spite of the impressive suite of technology used by direct imaging surveys,
exoplanets discovered by this method are restricted to the super Jupiter mass regime, al-
though they are invariably discovered beyond the snow line where the contrast between
star light and planet light is the lowest.

1.3 Microlensing Surveys

Microlensing can also be used as a probe of galactic structure (Zhao & Mao, 1996); in
particular, the frequency and average timescale of events along various lines of sight in
the sky can be used to inform models of stellar mass distribution and kinematics across
the Galaxy. As the detectability of a microlensing event increases with the mass of the
lens, we can attempt to reverse engineer the mass density of the Galaxy by analysing
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FIGURE 1.1: The planetary mass vs semi-major axis distribution of known exoplanets is
shown on a logarithmic scale. Planets are indicated by markers determined by their detection
type, with microlensing planets shown as red pentagons. The planets of the Solar system are
shown graphically on top of exoplanet detections. The precise location of the snow line will
depend on the mass of the host star; for microlensing, the average host mass is ∼ 0.4M�,
found by taking the mean mass of exoplanet hosts from microlensing entries in the exoplanet
archive. This puts the snow line at approximately 0.5AU, based on a typical stellar mass-
temperature relation (Eker et al., 2015).
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the results of microlensing surveys, taking care to correct for the detection efficiency for
events of particular timescales and with sources of a particular observed brightness.

Among the most prolific of such microlensing surveys is the Optical Gravitational
Lensing Experiment (OGLE), which has contributed much to microlensing science and
our understanding of Galactic structure, beginning with OGLE-I from 1992 to 1995 (Udal-
ski et al., 1992). A key result from the initial OGLE survey was reported by Udalski et al.
(1994a), who found that the probability of microlensing for an individual source star, also
known as the microlensing optical depth, was higher at ∼ 3× 10−6 than the purely the-
oretical estimates of ∼ 10−6 that had been made at the time (Paczynski, 1991). These
initial results also confirmed the dominance of the Galactic bar as the main contribu-
tor to microlensing, with the Galactic disk providing approximately 5% of source stars.
Over the years since, the OGLE mission has received multiple hardware upgrades and
completed its second campaign, OGLE-II (Udalski et al., 1997) from 1997 to 2000, which
also provided microlensing observations of the Megallanic clouds which were consistent
with theoretical predictions (Wyrzykowski et al., 2010). The third campaign, OGLE-III
(Udalski, 2003) began in 2001 and concluded in 2009 with results by Wyrzykowski et al.
(2015) comparing the mean microlensing event timescale to that predicted by a simula-
tion based on a Galactic model (Kerins et al., 2009) which exposed some discrepancies
with the simulation and provided insight into the orientation and structure of the Galac-
tic bar. The currently ongoing and final phase of the mission, OGLE-IV (Udalski et al.,
2015), continues to provide important microlensing results and discoveries which will be
discussed in chapter 2 in depth. The survey is also supported by the OGLE Early Warn-
ing System (EWS) which was first implemented in 1994 as a means of detecting ongoing
microlensing events before reaching their peak magnification (Udalski et al., 1994b). For
microlensing surveys, this ability provides a unique opportunity to coordinate observa-
tions across multiple telescopes in an effort to improve the sampling of the lightcurve
(Jeong et al., 2015), as opposed to discovering the event months or years after the source
flux has returned to its non-magnified baseline level.

Another key microlensing mission is the Microlensing Observations in Astrophysics
(MOA) survey, which is comprised of two campaigns, namely the original MOA survey
active for ten years from 1995 until 2005 and the ongoing MOA-II survey which began
shortly after the end of the first campaign (Abe et al., 2008). MOA has yielded results
consistent with OGLE (Sumi et al., 2003) from observations of the Galactic bar and has
also performed observations of the Magellanic clouds (Muraki et al., 1999). Notably, work
by Awiphan et al. (2016) compared results from the MOA-II survey (Sumi et al., 2013) to
a simulation based on a more recent version of the Galactic model employed by Kerins
et al. (2009) and found a deficit of ∼ 50% in the event rate produced by the simulation in
comparison to the empirical results from MOA-II.

The Korea Microlensing Telescope Network (KMTNet) is a more recent survey which
began observations in 2015 with a primary science goal of detecting exoplanets in the
vicinity of the Galactic bar(Kim et al., 2016). The network consists of three observato-
ries: the South African Astronomical Observatory (SAAO), the Australian Siding Spring
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Observatory (SSO) and the Cerro-Tololo Inter-American Observatory (CTIO) in Chile.
Like the OGLE survey, KMTNet uses an early warning system to assist with observa-
tions (Kim et al., 2018a). This is particularly important, as obtaining a well sampled light
curve is crucial when searching for exoplanets due to the smaller timescales of exoplanet
signatures on the magnification variation (Gould & Loeb, 1992).

As with strong gravitational lensing, microlensing campaigns also offer an oppor-
tunity to investigate a possible source of dark matter. Massive Compact Halo Objects
(MACHOs) represent a hypothetical population of dense objects with low or negligible
luminosity, such as stellar remnants such as white dwarfs, or low mass stars such as
red dwarfs, in orbit around the Milky Way’s halo (Alcock et al., 1992). These objects, if
they existed in large enough number to meaningfully contribute to dark matter, represent
ideal candidates for lens objects for microlensing observations. Surveys investigating this
phenomenon used source stars in the Magellanic clouds to detect these elusive objects,
such as the initial phase of the first MOA campaign, as well as via the dedicated MACHO
(Alcock et al., 2000) and EROS (Moniez, 2009) campaigns. Such missions have found
optical depths on the order of 10−7, a factor ten times lower than observed towards the
Galactic bar, but if produced by a MACHO population, represents a MACHO population
mass of ∼ 1011M�. Such a large population of MACHOs is inconsistent with observa-
tions from the Hubble Space Telescope, which would detect the faint contributions of red
and white dwarfs (Banerjee et al., 2003).

In addition to these dedicated microlensing campaigns, there have been multiple
follow-up surveys which aid in exoplanet discovery by capitalising on event alert sys-
tems. The Microlensing Follow-Up Network (MicroFUN) (Yoo et al., 2004) is such a sur-
vey which principally focuses on high magnification events due to the sensitivity of such
events to exoplanets, as explained in section 1.7. Similarly, the Probing Lensing Anoma-
lies NETwork (PLANET) survey was a follow up survey which debuted with a pilot
program in 1995 providing high cadence photometry to 11 MACHO and OGLE events,
including a binary event MACHO-95-BLG-12 (Albrow et al., 1998). Working in concert
with PLANET is the RoboNet-II robotic survey (Tsapras et al., 2009) which automatically
searches microlensing alert systems for candidate events and prioritises events (Allan
et al., 2006) for monitoring. Each of these follow up surveys provide additional sampling
for microlensing events, allowing for more precise results.

1.4 The PSPL Model

When modelling the magnification of a background object, we must consider the nature
of the lens, the source and the observer: is the lens a single object such as a star, or is it a
system of lenses, such as a binary star or a star with a bound planet (Mao & Paczynski,
1991; Dominik, 1999)? Is the angular size of the source comparable to its closest approach
to the lens, such that different parts of its surface receive an appreciably different magni-
fication (Witt & Mao, 1994)? Is the relative velocity of the observer constant with respect
to the lens-source system, or is the motion of the Earth around the Sun significant over
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FIGURE 1.2: The microlensing schematic: an observer (on the right), views a source object
at a distance DS (on the left) undergoing a microlensing event by a lens object at a distance
DL (in the middle). The black line originating from the source is a light ray, which passes
at a distance b from the lens, before being pulled towards the lens by its gravity and hence
deflected by an angle α, sending it on a trajectory that intercepts the observer’s location. The
image of the source which the observer sees is the location in the source plane projected back
along the light ray incident on the observer, shown on the top left. Note that the image of
the source is not only displaced - it is also distorted in shape, which is not illustrated in this
figure.

the course of the event (Alcock et al., 1995)? While each of these possibilities have been
observed in nature, the simplest model of microlensing, known as the Paczyński model
(Paczynski, 1986), which assumes a single point-like source, a single point-like lens, earn-
ing it an alternative name, the PSPL model (which is more often used and hence how it
shall be referred to in this work), is by far the most used when modelling real events. As
real events involve measuring the flux of the source star over time, any model, including
the PSPL model must provide some calculation of magnification as a function of time t,
typically denoted by A(t).

Before deriving what A(t) is in the PSPL model and indeed to provide a foundation
to gravitational microlensing, we must first derive an important quantity - the angular
Einstein radius θE. This is a quantity which depends on the mass M of the lens, the
distance DL to the lens and the distance DS to the source through

θE =

√
4GM

c2
DS − DL

DSDL
. (1.5)

It represents the radius of a circle on the sky, centred on the lens and characterises the
strength of the lensing effect, with larger Einstein radii not only increasing the magnifi-
cation of the source at some fixed angular separation from the lens, but also increasing
the likelihood of the event taking place due to the larger area in the sky over which a
microlensing event can take place while also being detected by our telescopes. With this
in mind, we can now consider the angular position of the source’s image after being dis-
torted by the gravitational lens. The layout of the source-lens-observer system is shown
in figure 1.2, where we can see illustrated the deflection angle α from equation 1.1. Under
the small angle approximation, we can relate the angular location of the source θS to the
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angular location of the image θ using

θDS = θSDS + α(DS − DL). (1.6)

This can be transformed further, using equations 1.5 and 1.1 to acquire

θDS = θSDS +
θ2

EDS

θ
, (1.7)

θ2 − θSθ − θ2
E = 0, (1.8)

which can then be solved using the quadratic formula to get

θ =
1
2

(
θS ±

√
θ2

S + 4θ2
E

)
. (1.9)

Equation 1.9 gives us two important details. Firstly, as it allows us to perform a coordi-
nate transform, we can use it to calculate the ratio of the final image area to the original,
un-distorted image area (and hence provide A(θS)) and secondly, we can see that there
are two solutions, θ± to this equation, courtesy of the positive and negative square roots.
These two solutions are both important, as they imply that the distorted image of the
source actually has two copies, one outside the Einstein radius (positive root) and one
inside the Einstein radius, on the opposite side of the lens to the source (negative root).
If we want to find the final magnification of the lensing effect, we will need to sum the
contributions of both images. Before doing so, it is important to consider the quantities
that are measurable from the microlensing lightcurve. Unfortunately, without further in-
formation (which will be discussed in subsequent sections), neither the lens mass nor the
lens distance is known and consequently θE is also unknown. As such, equation 1.9 can
be normalised to θE to give u± = θ

θE
and u = θS

θE
, yielding

u± =
1
2

(
u±

√
u2 + 4

)
. (1.10)

We should now consider how the areas of the lensed and un-lensed images of the source
compare to acquire the magnification. Note that the surface brightness of the star is
conserved in the image and as such, the magnification only depends on the area of the
image relative to the un-lensed source. In figure 1.3, we can see the scenario illustrated for
the positive solution (the image external to the Einstein radius) in polar coordinates, with
φ as the angular coordinate. The size of the infinitesimal unit area, which shall represent
our un-lensed source in polar coordinates is given by

dσ = ududφ, (1.11)

and the area of the image by

dσ± = u±du±dφ, (1.12)
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FIGURE 1.3: The shape of an infinitesimal unit area in polar coordinates at a distance u from
the lens is shown, where in this case u < 1, as it is interior to the Einstein radius, shown
a circle of radius θE centred on the lens. The equivalent area for the positive solution to
equation 1.10 is shown further out from the lens, outside the Einstein radius at a distance
u+. It has a radial side length of du+ and an azimuthal side length of u+dφ, as opposed to
the original pre-lensing area which has a radial side length du and azimuthal side length of
udφ, which is smaller than its lensed counterpart. The negative solution is not shown here;
it would be 180◦ out of phase with the positive solution, but would lie inside the Einstein
radius.

with the magnification given simply by the sum of the ratio of the areas of both solutions,
(keeping in mind that we want the positive area of the negative solution, requiring a
minus sign to compensate)

A(u) =
u+

u
du+

du
− u−

u
du−
du

. (1.13)

Calculating the derivative of equation 1.10 gives us what we need,

du±
du

=
1
2

(
1± u√

u2 + 4

)
, (1.14)

A(u) =
1

4u

(
2u +

√
u2 + 4 +

u2
√

u2 + 4

)
− 1

4u

(
2u−

√
u2 + 4− u2

√
u2 + 4

)
, (1.15)

A(u) =
u2 + 2

u
√

u2 + 4
. (1.16)

The final step is to parameterise the normalised angular separation as a function of
time. We must introduce three important parameters that are necessary to describe any
microlensing light-curve. Firstly, the minimum normalised impact parameter u0 quanti-
fies the closest angular approach of the source to the lens, normalised to θE and controls
the magnification. Secondly, the time of closest approach t0, usually expressed in Julian
days or modified Julian Date (MJD) represents the time of maximum magnification. Fi-
nally, the Einstein radius crossing time tE represents the time taken for the source to travel
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FIGURE 1.4: On the left is the PSPL magnification map, centred at (X, Y) = (0, 0) on the
lens. The magnification climbs rapidly close to the lens, with A(u) ≈ 1

u for small u. Four
examples of source trajectories are shown, differentiable by their impact parameters of u0 =
0.1, 0.25, 0.5, 1.0. On the right, the corresponding lightcurves are shown.

an angular distance of θE on the sky relative to the lens and can be expressed in terms of
the lens-source relative proper motion µrel as

tE =
θE

µrel
. (1.17)

The impact parameter u can thus be expressed, using Pythagoras’ theorem, in terms of
these three quantities through

u(t) =

√
u2

0 +
( t− t0

tE

)2
. (1.18)

The shape of the PSPL lightcurve is obtained by substituting in the expression for u from
equation 1.18 into A(u) from equation 1.16 with examples shown in figure 1.4. While the
PSPL model is a popular one, without the presence of first order effects in the lightcurve,
we cannot extract important quantities such as the lens mass, DL or µrel individually.
Now, we must turn our attention to some departures from the PSPL model which can
help us extract extra information from the lensing system.

1.5 Finite Source Effects

When examining equation 1.16, one notices the singularity at u = 0, where the magnifi-
cation is formally infinite. Indeed for small impact parameters, the magnification is given
approximately by

A(u) ≈ 1
u

, u� 1. (1.19)

This happens because when a point source lies perfectly behind a point lens with respect
to the observer, the source is distorted into a ring which traces the angular Einstein ra-
dius. As an analogy to understand how the microlensing magnification behaves as the
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FIGURE 1.5: A simulated view of a red giant star, with a source radius one fifth of the Ein-
stein radius, is shown undergoing gravitational microlensing. The many copies of the star
are distributed horizontally to show the effect of the lensing at different locations along its
journey. The white circles represent the actual, un-lensed location of the source. The orange
+ sign represents the location of the lens, with its Einstein radius indicated by the orange cir-
cle. The white arrow pointing to the right is the actual trajectory of the source relative to the
lens and passes within one quarter of an Einstein radius of the lens (i.e. u0 = 0.25). There are
two green arrows; the one passing above and exterior to the Einstein radius corresponds to
the lensed trajectory of the positive solution of equation 1.10, while the highly curved green
arrow, completely contained within the Einstein radius, corresponds to the negative solution.
A gray grid is shown beneath to illustrate the warping of the Cartesian coordinates around
the lens.
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impact parameter approaches zero, consider a scenario whereby an alien civilization uses
a powerful circular radio transmitter, aimed at observers on the Earth, such that it lies di-
rectly behind a stellar mass lens from our vantage point, similar to the situation analysed
by Maccone (2009). Although such a transmitter may have an incredibly small angular
size, its finite nature will inevitably prevent an infinite magnification in the case of perfect
alignment. If the transmitter has a physical radius RS, it will have an angular size given
by

θ∗ =
RS

DS
, (1.20)

which in the context of microlensing, can be normalised to the angular Einstein radius as
the parameter ρ,

ρ =
θ∗
θE

. (1.21)

When directly behind the lens, the primary and secondary images of the transmitter join
together to produce a ring of a thickness dependent on ρ in normalised angular space.
From equation 1.10, we can find the outer and inner radius of this ring by using the value
of ρ for the positive and negative solutions, respectively. The finite source magnification
for u = 0, assuming a uniform surface brightness, is then given by the ratio of the area a′

of this "Einstein ring" to the original area a0 of the source

a′ = πρ
√

ρ2 + 4, (1.22)

a0 = πρ2 (1.23)

AFS(u = 0) =

√
1 +

4
ρ2 . (1.24)

If we assume the aforementioned aliens have advanced technology and have constructed
a vast transmitter 1,000km in diameter at a distance of 8kpc and are using a lens of 0.5M�
at a distance of 4kpc, we would expect an angular Einstein radius of θE ∼ 0.7mas, an
angular source radius of θ∗ ∼ 4.2× 10−7mas and a magnification of 3.4× 106.

In general, when ρ ≈ u or ρ > u, we will notice that the magnification deviates
significantly from what equation 1.16 predicts. In figure 1.5, we can see an example of
the finite source effect in action, with ρ = 0.2. The magnification A(u) must now be
integrated over the profile of the source, which ultimately avoids the singularity at u = 0
for the PSPL model. Unfortunately, there is no analytical form for A(u) in the finite source
scenario AFS(u), but we can make some progress by expressing the problem in integral
form,

AFS(u) =
1
S0

∫ ρ

0

∫ 2π

0
S(u′, θ)A(U(u, u′, θ))u′du′dθ, (1.25)
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S0 =
∫ ρ

0

∫ 2π

0
S(u′, θ)u′du′dθ, (1.26)

U(u, u′, θ) =

√(
u + u′ cos θ

)2
+
(
u′ sin θ

)2, (1.27)

where S0 is the source intensity profile S(u′, θ) integrated over the circular source given
by equation 1.26 and U(u, u′, θ) is the impact parameter of a particular part of the source,
parameterised in polar coordinates by u′ and θ, with the center of the source at a distance
u away in normalised space as described in equation 1.27.

For the source intensity profile, two common options are used: the uniform disk,
with S(u′, θ) = 1, which is a good approximation if the finite source effect is weak, with
the second option being a linear limb darkening profile, characterised by a linear limb-
darkening coefficient β via

S(u′) = 1− β

(
1−

√
1−

(
u′

ρ

)2
)

. (1.28)

Limb-darkening effects arise from the optical depth of stellar atmospheres, with the
observer seeing deeper into the star where the atmosphere is hotter and hence brighter
near the centre of the star’s profile, while only penetrating to shallower depths near the
edge of the star’s profile, where temperatures are cooler, yielding a lower surface bright-
ness. Equation 1.28 is often necessary to employ when fitting models to light-curves with
strong finite source effects, as it can alter the estimation of ρ. Strong limb-darkening
effects concentrate the source intensity near the center of the source, resulting in an un-
derestimation of ρ with the uniform disk assumption.

An array of numerical methods has been developed to evaluate AFS(u), with the
method described in Lee et al. (2009) being used in this work. Assuming a value of ρ

can be accurately determined from the light-curve photometry, we can use information
about the source star to acquire θE. Stellar effective temperature Teff and radius can be
calculated from stellar colour, such as the Johnson-Cousins B-V (Sekiguchi & Fukugita,
2000; Boyajian et al., 2012), correcting for interstellar extinction, which allows an estima-
tion of stellar luminosity through LS = 4πR2

SσSBT4
eff. Coupling this with a measurement

of apparent magnitude mS, we can acquire the distance to the source DS using the dis-
tance modulus commonly used in astronomy,

mS −MS = 5 log(DS)− 5, (1.29)

MS = M� − 2.5 log
( LS

L�

)
, (1.30)

DS = 10
1
5 (mS−MS+5), (1.31)
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where M� and L� are the solar absolute magnitude and luminosity respectively. Now
that we have a measurement of DS, equation 1.21 can now be reversed to acquire the
Einstein radius, the first of two ingredients required to extract a mass measurement from
equation 1.5. In order to fully break the microlensing degeneracy, we need to acquire the
next parameter, DL the distance to the lens, which can be determined from either the lens
flux which is typically too small to observe2 or the microlensing parallax effect. With an
accurate estimation of DL, the lens mass can then be fully resolved.

1.6 Microlensing Parallax

Although the distances to microlensing lenses and sources is typically on the order of
kiloparsecs, the physical Einstein radius at the distance of the lens is typically compara-
ble to an astronomical unit. This has an important implication in two distinct scenarios:
firstly, if the timescale of the event is comparable to a year, then the Earth’s motion around
the Sun could result in a breakdown of the rectilinear assumption of the lens-source tra-
jectory discussed in section 1.4. Secondly, if one were to observe the same microlensing
event at two different locations in the Solar system, there could also be a noticeable offset
in t0, the time of peak magnification, as well as u0, the normalised closest approach of
the source to the lens. The magnitude of each of these effects depends on the distance
to the lens DL, although the offset in t0 is primarily affected by the Earth-Sun separation
projected onto the line of sight to the event. As such, measurements of these parameter
offsets can lift the microlensing degeneracy and yield a mass measurement of the lens.

1.6.1 Earth motion parallax

The former case is known, aptly, as Earth-motion parallax and is the most common form
of microlensing parallax observed in the literature, such as several cases of possible stel-
lar remnant lenses in Wyrzykowski et al. (2016), from the OGLE-III survey. It involves
introducing a normalised projection of the Earth’s location relative to the Sun, to the rec-
tilinear motion of the lens as assumed in equation 1.18. To begin with, we define the
microlensing parallax πE as

πE =
a⊕
θE

DS − DL

DSDL
=

a⊕
r̃E

, (1.32)

where a⊕ is the semi-major axis of the Earth (Gould, 2000). As well as πE, we need to
define some more terms to allow the geometric projection of the Earth’s orbit into the
lens-source reference frame. Firstly, the source star’s latitude relative to the plane of the
Solar system is parameterised in ecliptic coordinates as γ. For the longitude, we shall
use the angle subtended by the Earth’s current location and its location at t = t0 from

2Measurements of the lens flux have been made which have been used to further constrain the value of
DL, such as in Koshimoto et al. (2017), where an exoplanet of mass 35+17

−9 M⊕ was reported.
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FIGURE 1.6: Shown is the setup for Earth motion parallax. On the left is shown the solar-
system view, where we can see the Earth in its orbit around the Sun, shown at the center. The
source lies at an ecliptic latitude β, with a direction vector r̂. At a time t = t0, the projection
of r̂ onto the ecliptic subtends an angle φ with the Earth. For any other time, the Earth has
moved around its orbit by an angle Ω(t− t0). The normal of the ecliptic plane is denoted by
ĵ. The vector µ̂ is parallel to the lens-source relative proper motion µrel, while the vector û is
parallel to the lens-source separation at closest approach, projected onto r̂. On the right, we
see the full observer-lens-source system. The value r̃E represents the physical Einstein radius
rE projected back onto the observer plane.

the Sun. This is given by Ω(t− t0)3, where Ω is the angular velocity of the Earth’s orbit
around the Sun, Ω = 2π

1year , with an angle φ also added to account for the angular offset
of the Sun-source axis projected onto the ecliptic, as shown in figure 1.6.

The kinematics of the lens-source system is parameterised by two orthogonal vectors,
namely the normalised relative proper motion µ̂ and the normalised minimum impact
parameter û. With this in mind, we can express the impact parameter of the source to the
lens relative to the Earth as

~u⊕ = ûu0 + µ̂
t− t0

tE
+ πE

(
û cos

(
Ω(t− t0) + φ

)
+ Λµ̂ sin

(
Ω(t− t0) + φ

))
, (1.33)

where Λ is the parity, given by Λ = ĵ · (µ̂× û) and ĵ is the vector normal to the ecliptic
plane and takes a value ± sin(γ), where the sign depends on the lens-source trajectory.
The final step to acquiring the Earth motion parallax model is to calculate the length of
~u⊕,

u⊕2 = u�2 + 2πE

(
u0 cos

(
Ω(t− t0) + φ

)
+

t− t0

tE
Λ sin

(
Ω(t− t0) + φ

))
(1.25)

+πE
2
(

cos2 (Ω(t− t0) + φ
)
(1−Λ2) + Λ2

)
,

3This assumes a constant angular velocity of the Earth around the Sun in a circular orbit. In reality, the
Earth’s orbit is elliptical with an eccentricity of ε = 0.0167, introducing a small correction of 2ε sin(Ω(t− t0)).
Depending on the sensitivity of the survey and the alignment of the lens and source, this correction can
improve a parallax fit when the Earth-Sun axis is aligned with the projection of r̂ onto the ecliptic, although
this correction is not propagated to the actual Earth-Sun separation, where it is negligible (Buchalter &
Kamionkowski, 1997).
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FIGURE 1.7: Artists impression of several configurations for a space-based parallax scenario.
In each diagram, we can see the Sun and Earth indicated with yellow and blue spheres,
respectively, as well as the Earth’s orbit shown as a thin white line. On the left is shown
the case where a parallax measurement could come from a baseline between an Earth based
observatory, shown on the top of the Earth and a space-based observatory, shown trailing
the Earth in its orbit. The middle diagram shows a similar scenario, but with the space-based
observatory orbiting the Earth-Sun L2 Lagrange point in a halo orbit (Howell, 1984), shown
as a smaller orbit perpendicular to the Sun-Earth axis. A third possibility is shown on the
right, with two space-based observatories orbiting L2.

where u� is the impact parameter from the Sun’s reference frame, which is identical to
equation 1.18. Analysing equation 1.25 we can see that the only unknown parameter is
the microlensing parallax πE, while most other parameters can be calculated once the
location of the source is known, which is independent of the microlensing event param-
eters. The PSPL parameters are usually known sufficiently well by casual observation of
the light-curve to allow a good first approximation to the fitting process.

1.6.2 Space-based parallax

The other mechanism for producing microlensing parallax is via space-based parallax,
which relies on a projected baseline between different observatories large enough to
produce a measurable difference in t0 and u0 between each measured lightcurve. Typi-
cally, this has been done by comparing lightcurves from a space-based observatory and
a ground-based observatory, such as presented in Yee et al. (2015), which discovered a
0.23± 0.07M� mass lens in the Galactic disk using photometry from the Spitzer Space
Telescope and OGLE-IV survey, from the event OGLE-2014-BLG-0939.

To parameterise the space-based parallax, πE is broken down into perpendicular com-
ponents πE,E and πE,N respectively, where the E and N subscripts refer to the components
of πE projected onto the Northern and Eastern vectors in the Equatorial coordinate sys-
tem (Han et al., 2016). Casting the parallax vector into a coordinate system independent
of the lensing parameters and kinematics allows us to consider the parallax contribution
from both Earth motion and the baseline between two space-based observatories, or be-
tween a space-based and ground-based observatory. Three possible scenarios are shown
in figure 1.7, some of which will be explored further in chapter 3.



1.7. Binary Lensing 33

1.7 Binary Lensing

So far, we have discussed the PSPL model and a few deviations involving the nature of
the source, via finite source effects and the introduction of non-rectilinear trajectories re-
sulting from the parallax effect. In none of these first order phenomena has the nature
of the lens changed. In reality, this is sufficient to describe most lenses, but breaks down
in a few scenarios; many stars in the Milky Way exist in binary systems (El-Badry et al.,
2021) and most stars likely host bound exoplanets (Cassan et al., 2012). In some cases
this is insufficient to introduce deviations from a point-lens model, such as where the
angular separation of the two lenses is too large, allowing for a PSPL model to be used
for a single component, or conversely, if the angular separation is too small compared to
the impact parameter of the source at closest approach, causing the lens to behave like
a single massive object. In some cases however, neither scenario applies and we must
employ a binary lensing model, which introduces an astigmatism to the normally circu-
larly symmetric gravitational potential of a single lens. This astigmatism manifests in
the form of microlensing caustics, which represent the family of locations in the source
plane where a point source would formally be magnified infinitely. In the PSPL case, the
caustic is a single point directly behind the lens, leading to the singularity discussed in
section 1.5. For multiple lens systems, the caustic takes on a more complicated structure.
Not all complexity is the same however; trinary or multiple lenses are computationally
expensive to model and have many different topologies, while a binary lens is symmetri-
cal about the binary axis and comes in three different topologies, the close, resonant and
wide structures (Tsapras, 2018).

The particular topology of the binary lens depends on only two parameters, the mass
ratio q of the secondary to the primary lens and the separation s of the primary to the
secondary lens, normalised to θE computed from the total system mass. In the case where
q is small, such as for a stellar primary lens with a planetary secondary lens, the close
topology will appear for s < 1, while the wide topology will be produced for s > 1.
For heavier secondary lenses, a window in the s parameter space opens up around s =

1 allowing for the resonant topology to exist. Specifically, the boundaries between the
close-resonant sc and resonant-wide sw topologies are given by (Cassan, 2008)

s8
c =

(1 + q)2

27q
(
1− s4

c
)3, (1.34)

s2
w =

(
1 + q

1
3
)3

1 + q
. (1.35)

The 2-dimensional magnification maps for examples of each topology, along with the
topology boundary lines defined in equations 1.34 and 1.35, are showcased in figure 1.8.
We can see from that diagram how the caustics manifest as sudden and discontinuous
increases in magnification, bounding regions of high magnification relative to their exte-
rior. The significance of these regions lies in the number of images of the source produced
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FIGURE 1.8: Shown are examples of the magnification maps of the close, resonant and wide
binary topologies, from left to right, in the s, q parameter space. The blue lines represent the
boundaries between the topologies, defined in equations 1.34 and 1.35. The location of the
lenses for each case are indicated with white crosses.
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when the source passes over them; when the source crosses a caustic into a higher magni-
fication region, a new pair of images is created. Similarly, as the source leaves the higher
magnification region, a pair of images merge together and disappear, dropping the mag-
nification back down. This is illustrated in a resonant topology example in figure 1.9,
where a merged pair of new images is created at the caustic entry, which subsequently
split into distinct images when the source is fully inside the caustic, followed by two im-
ages merging back together as the source begins to leave the caustic which then disappear
once more as the source fully exits.

The effect of binary lensing on a lightcurve can be significant. In the case where the
secondary lens is a bound planet, with q < 10−2 or less, the caustics can enable a detection
through multiple means. The most obvious is the crossing of the caustic, which results in
a sudden increase in the observed flux of the source, which is intuitive when interpreting
the microlensing lightcurve as a 1-dimensional slice of the 2-dimensional magnification
map. This can often be difficult to achieve, however, as the size of the secondary (or
in this case planetary) caustic is proportional to

√
q. When q is of order 10−6 → 10−5,

the likelihood of the source passing over the planetary caustic becomes small. In that
instance, we can instead rely on magnification arms; these are regions of higher magnifica-
tion extending from a cusp of a secondary caustic to a corresponding cusp on the primary
caustic and exist for both the close and wide topologies (figure 1.8 shows good examples
of magnification arms for both topologies). While magnification arms do not produce as
large a signal as caustics themselves, the source is more likely to pass over them due to
their size. A final boon to detectability comes from the cusps, which project regions of
higher magnification outward from the caustic, much like magnification arms, although
their size is comparable to the caustic structures they belong to.

A use case of binary microlensing will be explored in chapter 4, where a binary model
will be used to describe a real lightcurve produced by an array of telescopes, including
Kepler, for an event detected in 2016. A more in-depth mathematical analysis of caustics
and the evaluation of multi-lens magnification maps will likewise be explored in chapter
5.

1.8 Astrometric Microlensing

While most microlensing observations rely on photometric variations as the lens passes
by the source, one can extract additional information about a microlensing event by
monitoring the astrometric shift of the centroid of the source image pixels relative to
its proper-motion trajectory. Microlensing surveys have already had the ability to detect
source positions to micro-arcsecond precision (Dominik & Sahu, 1998), with upcoming
space observatories showing even more promise in this regard (Nucita et al., 2017), mak-
ing astrometric microlensing a useful tool in the large survey era of microlensing over the
coming decade.

In the frame of reference of the lens, the position vector of the source is given by
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FIGURE 1.9: Shown above is an example of the magnification map (shown on a logarithmic
scale) of a resonant binary caustic topology. The primary lens is shown as a blue circle cen-
tred on (0, 0), with the secondary lens shown as a smaller blue circle to the right at (1.1, 0).
Overlayed on top of the magnification map are the trajectories of the lensed source images
(curved trajectories) and trajectory of the real unlensed source (straight line trajectory). On
top of the source and image trajectories are shown the outlines of the source at successive
intervals in time, labelled 1 → 10. The caustic entry is indicated with the cyan circle, the
exit with a golden circle and the interior passage with a green circle, with all other times
wholly exterior to the caustic in white. Note the number of images in each case: exterior to
the caustic, only three images of the source exist; the entry and exit produces four images
and the caustic interior produces five images. To aid in understanding this complicated vi-
sualisation, note that the straight line trajectory across the centre with the perfectly circular
sources would not be observed during the lensing - this is simply a visual aid to show where
the source actually is behind the lens during the event.
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u(t) =
(

t− t0

tE

)
î + u0 ĵ, (1.36)

where î is the unit vector parallel to the relative proper-motion vector µrel and ĵ is the unit
vector perpendicular to the trajectory. During a PSPL lensing event, the mean position of
the source’s image u′(t) is given by the magnification weighted sum of its primary and
secondary image locations, u+ and u− respectively, via

u′(t) =
A+(t)u+(t) + A−(t)u−(t)

A(t)
, (1.37)

u±(t) =

(
1±

√
1 +

4
u(t)2

)
u(t)

2
, (1.38)

A±(t) =
1
2

(
u2 + 2± u

√
u2 + 4

u
√

u2 + 4

)
, (1.39)

where equations 1.38 and 1.39 follow from the derivation for the PSPL magnification in
equations 1.10 and 1.18. The centroid offset from the non-magnified source is then simply

∆(t) = u′(t)− u(t), (1.40)

∆x =
t− t0

tE
√

u(t)2 + 2
, (1.41)

∆y =
u0√

u(t)2 + 2
. (1.42)

Using this PSPL assumption, the centroid offset will, over the duration of the event, trace
out an ellipse with a semi-major axis a and semi-minor axis b given by

a =
1

2
√

u02 + 2
, (1.43)

b =
u0

2(u02 + 2)
, (1.44)

which assuming both a and b can be accurately measured, allows for a determination of
the minimum impact parameter,

u0 =
b

2a2 . (1.45)

Introducing first order effects such as a finite source model has a noticeable impact on
the offset track’s shape, causing it to deviate from an ellipse and instead form a clover-
like shape as the impact parameter shrinks; this represents another independent method
of measuring finite source effects from a microlensing event. In the case where the lens
system is a binary, the sudden appearance and disappearance of source images as the
source passes over a caustic can cause the centroid offset to jump to a new location in ∆
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FIGURE 1.10: The source centroid offsets for a PSPL model (left), FSPL model (middle) and
binary lens model (right) are shown on the top row. On the bottom row is shown the trajec-
tory of the source for three different impact parameters: u0 = 0.1, u0 = 0.5 and u0 = 1.0. The
grid-lines on the bottom row are shown in their lensed form to illustrate the position scale of
the lens potential. For the finite source model, the circular disk of the source, with a radius
of ρ = 0.65, is indicated over several test locations across the source’s trajectory. For the bi-
nary model, the parameters s = 1.0, q = 1.0 and α = 0◦ were used for simplicity, with the
resonant caustic shown in red in the bottom right diagram. The effect of introducing finite
source effects and lens binarity on the centroid offset tracks is significant, with "clover" struc-
ture appearing for the finite source scenario and sudden jumps as the source passes over the
resonant caustic for the binary lens scenario. Both the PSPL and binary lens scenarios use 10
sample locations and the finite source 4 locations, equally space along the source’s trajectory
in the bottom row, with their equivalent locations indicated on the top row.

space. The passage of the source near cusps also has a noticeable although continuous
effect on the offset trajectory. In figure 1.10, an example of the centroid offset under PSPL,
FSPL and binary lensing conditions for various minimum impact parameters is shown.

1.9 Outline

The scientific work comprising this thesis will begin with chapter 2, where we shall
describe a new simulation tool MaBµlS-2, which will then be used to compare the Be-
sançon Galactic model with empirical data from the OGLE-IV survey. A rigorous defini-
tion of the microlensing optical depth, mean Einstein radius crossing time and event rate
will be discussed and a sky map of each of those parameters produced and compared
with real data. A modified version of the MaBµlS-2 simulation code will then be used
once again in chapter 3 to make predictions of free-floating planet (FFP) event rates to
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inform a possible future mission which would involve the upcoming Euclid and Roman
space telescopes, taking full advantage of finite source and parallax effects to acquire
direct mass measurements of Earth and Jupiter mass FFPs. Chapter 4 will begin with
a further usage of MaBµlS-2, comparing a distribution of effective event timescales to
observations by the K2C9 Kepler Space Telescope microlensing campaign, before con-
tinuing with a full analysis of a binary microlensing event discovered in K2C9 which
will yield a new exoplanet discovery. In the final chapter, we shall explore in depth the
mathematics of binary and multi-lens caustics and use it to explore the detectability of
Earth by alien civilisations via microlensing. We will finish the final chapter by examin-
ing methods of speeding up these advanced multi-lens calculations and bench-marking
them with current methods. Let us now begin with the first chapter to lay the ground
work for the MaBµlS-2 simulation code.
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Chapter 2

MaBµlS-2

This chapter is based on the paper MaBµlS-2: high-precision microlensing modelling for the
large-scale survey era (Specht et al., 2020).

Due to the resources invested, effort should be taken to maximise the science return
for a microlensing survey. Precisely where a telescope, either ground-based or space-
based, should be directed, will depend on the structure of the Galaxy; areas of the sky
with maximal lens and source objects will naturally yield a higher microlensing event
detection rate and as such, it is of great import that we are equipped with an accurate
Galactic model of stellar properties, such as their mass distribution, initial mass functions
(IMFs) and kinematics. From such a Galactic model, we can then simulate the regions of
the sky, from Earth’s vantage point, which yield the greatest number of microlensing
events for a given survey telescope’s specification and survey science goals.

Such telescopes include the upcoming Vera Rubin Observatory in Chile (Sajadian &
Poleski, 2019) as well as the Nancy Grace Roman and Euclid space telescopes (Bachelet
& Penny, 2019), which show promise for delivering significantly more microlensing data
than has been collected thus far. The total number of microlensing events detected since
the inception of the method is of the order 104 and with the advent of these next genera-
tion telescopes, this number could reach 105 for optimised surveys.

The reverse is also true; past microlensing surveys such as MOA-II (Sumi et al., 2013)
and OGLE-IV (Mróz et al., 2019) have helped inform and confirm Galactic models which
forward our understanding of the cosmos. MaBµlS-2 is the successor to the Manchester-
Besançon Microlensing Simulator (MaBµlS), developed by Awiphan et al. (2016), which
employed the Besançon Galactic model to simulate the microlensing optical depth, rate-
weighted average event timescale, event rate per source star and event rate per square
degree per year in a 20◦ × 20◦ region centred on the Galactic bar and aligned on Galactic
coordinates l and b. The original work identified evidence of a deficit of stars in the
Galactic bar, which was found by Sumi & Penny (2016) to be caused primarily by an
underestimation of stellar counts in the MOA-II analysis.

MaBµlS-2 uses the same Galactic model but makes several improvements over the
original version. Of note is the event selection criterion, which now implements event
signal-to-noise considerations, as well as a formal treatment of finite source effects. The
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generation of the microlensing parameter maps was also streamlined and parallelised,
employing the resources of a multi-node computer cluster (HYDRUS) to reduce compu-
tation time from months to hours or days. Both versions of MaBµlS have used online
tools to present simulation results by allowing a selection of parameter ranges in source
magnitude and event timescale to include in the parameter map. MaBµlS-2 improves
on the accuracy of the map generation from the simulation results and allows the user
to screen events for their lens-source relative proper motion as an additional selection
parameter.

2.1 The Besançon Galactic Model

The calculation of accurate microlensing parameters is impossible to achieve analytically
and requires a detailed treatment of Galactic structure and interstellar extinction. The Be-
sançon Galactic Model (BGM) generates a synthetic population of stars drawn from four
Galactic components, namely a thin disk, thick disk, bar and halo. Initially developed
by Robin et al. (2003) and first employed in the calculation of microlensing parameter
maps by Kerins et al. (2009), the BGM has been continually updated as new data from
stellar surveys are collected. The version used in MaBµlS-2 is BGM1307, also developed
by Annie Robin, which is the same version employed by legacy MaBµlS thus allowing
for a more faithful analysis of the improvement in simulation accuracy between the two
versions of MaBµlS.

The choice of version was also justified by the close matching of the stellar proper-
motion distribution in Galactic coordinates, µl and µb, to empirical data from the Hubble
Space Telescope (HST) presented in Clarkson et al. (2008). This comparison was made
by generating stars with BGM1307 along two lines of sight, (l, b) = (1.1◦,−2.7◦) and
(l, b) = (1.35◦,−2.7◦) with a combined solid angle of 1.44 degrees2. As the BGM can
generate apparent magnitude data in user specified wavelength bands, the Sloan r and i
filters were used to simulate the HST F814W and F606W bands. The Johnson Cousins H-
band magnitude was also generated, which was used to restrict the source population to
stars satisfying H < 25. The synthetic stars were drawn from the thin disk and Galactic
bar populations and a subset of these were chosen to be disk proxy and bar proxy stars to
model the population sample from the HST kinematics analysis. Figure 2.1 shows how
this selection process was performed and follows similar criteria to Penny et al. (2019),
who performed the analysis on BGM1106; stars with 17 ≤ r ≤ 20 were considered for
proxy stars, while the criterion r− i ≤ 0.8 was used to select the 35 disk proxies from this
subset and r− i > 0.8 for the 120 bar proxies.

As shown in figure 2.2, there is good agreement between the predictions of BGM1307
and empirical data, as shown by the 1σ contours of the proper motion distributions for
both proxy groups. The proper motions of stars in the HST analysis were calculated
relative to the centroid of the bar’s distribution, hence the inclusion of an offset in the
axes of the plot. For the bar’s kinematics, the distribution widths were found to be
(σl , σb) = (3.12, 2.20) mas year−1, compared to (3.0, 2.8) mas year−1from HST data. The
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FIGURE 2.1: The colour-magnitude diagram for all source stars generated by BGM1307 for
the HST comparison is shown above in the Sloan r filter and r− i colour. Black dots are source
stars that did not make the proxy selection cut. The bifurcation of the distribution begins at
r = 20. The blue rectangular region shows the selection area for disk proxy stars, while the
red area shows the equivalent for bar proxy stars. The blue and red outlined circles show the
locations of the 35 disk proxies and 120 bar proxies, respectively, selected with these criteria.

disk proxy population’s centroid was located at (µl , µb) = (2.58,−0.61) mas year−1, com-
pared to (3.24,−0.81) mas year−1from HST data, with a width of (σl , σb) = (2.23, 1.28)
mas year−1, compared to (2.2, 1.3) mas year−1from HST data. This is a marked improve-
ment over version 1106, which showed a large over-prediction in the bar’s distribution
width in galactic longitude, as well as a noticeable negative centroid offset in Galactic
latitude for the disk population’s kinematics relative to HST measurements.

A comparison was also made with Gaia data (Arenou et al., 2017). Some disagreement
between BGM1307 and Gaia data was found in the form of an over prediction of star
counts by the model, although this is due primarily to incompleteness of Gaia catalogues
for faint stars. This over prediction, however, also extended to bright stars in the bulge
region, predominantly at low Galactic latitudes around |b| < 2◦.

We shall now turn our attention to the individual components comprising the Galaxy
in BGM1307. Each component is described by a stellar mass distribution φ, a stellar initial
mass function (IMF) ζ(M) and a 3D velocity dispersion σUVW . Each is capable of produc-
ing stars that can act as either lens or source objects for the purposes of microlensing,
although some components are more significant in this regard than others.
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FIGURE 2.2: The proper motion distributions in Galactic coordinates are shown for both disk
(left) and bar (right) populations. Small blue and red dots represent synthetic source stars
drawn respectively from the generated thin disk and Galactic bar populations which did
not satisfy the proxy star selection criteria. The circles represent the same proxy stars from
figure 2.1. Solid black lines represent the 1σ contours of the proxy star distributions, while
the dashed lines represent the 1σ contours from the HST data in Clarkson et al. (2008). The
widths of the BGM and HST bar distributions are (3.12, 2.20) and (3.0, 2.8) mas year−1. The
widths of the corresponding disk distributions are (2.23, 1.28) and (2.2, 1.3) mas year−1and
centroid locations (2.58,−0.61) and (3.24,−0.81) mas year−1, respectively.
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2.1.1 The Thin Disk

One of the most important Galactic components by contribution to the microlensing rate
is the thin disk (Robin et al., 2012). It has a relatively young population of stars, including
the Sun, which is assumed to have a peculiar velocity relative to the local standard of rest
(LSR) of v� = (11, 12, 7) km s−1 as determined by Schönrich et al. (2010). The LSR is
assumed to have a rotational velocity of 240 km s−1 which is extracted from the Galactic
rotation curve presented in Caldwell & Ostriker (1981). The mass density distribution
of stellar material in the thin disk is characterised by two ellipsoids with axis ratios ε:
a main body with a scale radius Rd = 2170 pc, truncated at 14 kpc and a central hole
with scale radius Rh = 1330 pc in cylindrical polar coordinates. These two structures are
modelled by exponentials of the form

φ(r, z) = φ0

{
exp

(
− 1

2

√
1 + 4a2

R2
d

)
− exp

(
− 1

2

√
1 + 4a2

R2
h

)}
, (2.1)

a2 = r2 +
( z

ε

)2
. (2.2)

The disk is further subdivided into seven age groups, each with their own velocity
dispersions, luminosity functions and stellar effective temperature distributions. The
velocity dispersions reflect the secular evolution of Galactic kinematics following work
from Gomez et al. (1997), with an average of σUVW = (30, 20, 13) km s−1 and up to a
maximum of (43, 28, 18) km s−1. The star formation rate (SFR) and IMF is assumed to be
constant across the disk, with an IMF given by

ζ(M) ∝





M−1.6, 0.079M� ≤ M < 1M�

M−3, M ≥ 1M�
. (2.3)

2.1.2 The Thick Disk

The thick disk component is populated by older stars, generated by the model as a single
burst around 10 Gya. While it extends to higher Galactic latitudes than the thin disk,
it is also less dense overall and plays a lesser role in microlensing at lower latitudes,
but becomes a significant contributor around |b| > 9◦. The shape of the stellar mass
distribution is given by the product of a radial exponential with scale radius hR = 2355.4
pc and a broken quadratic/exponential function with scale height hz = 533.4 pc and
break distance ξ = 658 pc in the vertical direction (Robin et al., 2014). It is normalised to
the density of the solar neighbourhood φ0 and centred at the solar coordinates (r�, z�)
through

φ(r, z) = φ0exp

(
r� − r

hR

)




1−
(

z2

ξ(2hZ+ξ)

)
, z ≤ ξ

2hz
2hz+ξ exp

(
ξ−|z−z�|

hz

)
, z > ξ

. (2.4)
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The luminosity function of the thick disk was extracted from Bergbusch & Vanden-
berg (1992) using an isochrone of 10 Gyr. Its IMF was modelled by a power law beginning
at 0.154M� via

ζ(M) ∝ M−1.5. (2.5)

Like the thin disk, the thick disk is described by a rotational velocity, in this case taken
to be 176 km s−1, with a velocity dispersion of σUVW = (67, 51, 42) km s−1.

2.1.3 The Bar

The Galactic bar is arguably the most important component with respect to microlensing,
due to its high mass density. It can provide both plentiful source and lens objects from
which microlensing events can be generated and is predominant at Galactic latitudes
|b| < 5◦. Its age is taken to be 8 Gyr and as such, is dominated by older, red stars by
comparison to the thin disk. Its density distribution takes the form of a triaxial ellipsoid,
with axis lengths x0 = 1.46 kpc, y0 = 0.49 kpc and z0 = 0.3 kpc, with its x coordinate axis
rotated by 12.89◦ relative to the Sun-Galactic centre axis, as determined by Robin et al.
(2012). To further control its shape, the parameters C‖ = 0.5 and C⊥ = 3.007 are used
to influence the ’disky’ or ’boxy’ nature of the ellipsoid, respectively. The distribution is
given in galactocentric Cartesian coordinates by the product of a hyperbolic function and
a Gaussian cutoff in the x-y plane, with a cutoff radius of RC = 3.43 kpc via

φ(x, y, z) = φ0sech2(− Rs(x, y, z)
)

fc

(√
x2 + y2

)
, (2.6)

Rs(x, y, z)C‖ =

([
x
x0

]C⊥

+

[
y
y0

]C⊥) C‖
C⊥

+

(
z
z0

)C‖

, (2.7)

fc(Rxy) =





1, Rxy ≤ RC

exp

(
−
(

Rxy−RC
0.5 kpc

)2
)

, Rxy > RC
. (2.8)

The IMF of the bar is given by a broken power law and begins at 0.15M� as

ζ(M) ∝





M−1.5, 0.15M� ≤ M < 0.7M�

M−2.35, M ≥ 0.7M�
. (2.9)

Its kinematics were derived from an N-body simulation (Gardner et al., 2014), with a
velocity dispersion of σUVW = (150, 115, 100) km s−1, the largest of all the components.

2.1.4 The Halo

Due to its low average density, the halo component does not contribute a significant
quantity of potential lens stars around the Galactic bulge and only becomes significant at
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high latitudes. Furthermore, as stars in the halo are generated with an age of 14 Gyr, most
have magnitudes greater than 18 and hence do not typically qualify for microlensing
sources. This extreme age also leads to low metallicities of [Fe/H] = −1.78, as described
in Robin et al. (2014). The density distribution for the halo takes the form of an ellipsoid
with axis ratio ε = 0.768, with a power law profile given by

φ(r, z) = φ0

(
r2 +

(
z
ε

)2
)−1.695

. (2.10)

Its IMF begins at stellar masses above 0.085M� and is described by a single power
law,

ζ(M) ∝ M−1.5, M > 0.085M�. (2.11)

The kinematics of the halo, much like the bulge and unlike the thin and thick disks,
does not feature a rotational velocity. As such, the halo has the second highest velocity
dispersion of σUVW = (131, 106, 85) km s−1.

2.1.5 Adding Low Mass Objects

Due to the lower mass limits of Galactic bar, thick disk and halo components, synthetic
catalogues generated by BGM1307 do not include the lowest mass M dwarfs, nor do any
components include brown dwarfs which are not modelled by BGM1307. In spite of this,
both types of objects can still act as lenses and indeed the lowest mass red dwarfs vastly
outnumber the most massive and brightest stars due to the slopes of the IMFs. As such,
it was important to include these objects in the MaBµlS-2 simulation. For the bar, thick
disk and halo components, their IMFs were extended down to the hydrogen burning
limit of 0.079M� and the resulting integrals over the extended regions were compared
with the corresponding integrals over the original IMFs to determine the amount of new
stars required to generate. As these stars are not expected to be sources for microlensing
purposes, they were assigned magnitudes of 99. Their kinematics and locations were
inherited, at random, from another star in their respective components.

As for brown dwarfs, no firmly established mass function exists. To implement these
objects, a mass function power law slope was fitted to OGLE-IV timescale data (Mróz
et al., 2019) using a χ2 minimisation of 258 sample locations in the OGLE-IV field. Calcu-
lations were made in power law slope intervals of 0.1 between -0.9 and 1.0. This approach
was taken in the previous version of MaBµlS by Awiphan et al. (2016) using MOA-II data,
which retrieved an IMF slope of−0.4, while the MaBµlS-2 minimisation retrieved a value
of 0.1, as shown in figure 2.3. The discrepancy was attributed to the mismatch between
the low timescale regime of the 〈tE〉distribution derived from MOA-II data in Sumi et al.
(2013) and OGLE-IV data in Mróz et al. (2019), illustrated in figure 2.4. This difference
manifested as a significant excess in OGLE timescale relative to MOA, averaging to 3.6
days, over the intersection of the MOA-II and OGLE-IV fields, but with a notable deficit
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Data τ0 a
MaBµlS-2 all sources 1.78± 0.04 0.35± 0.01
OGLE-IV all sources 1.48± 0.05 0.35± 0.02
MOA-II RCG sources 1.38± 0.21 0.40± 0.17

MOA-II all sources 1.98± 0.14 0.44± 0.07

TABLE 2.1: The exponential profile fits for optical depth maps in the |l| < 5◦, b < 0◦ region
using the normalisation τ0 and scale size a from equation 2.12.
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FIGURE 2.3: The reduced χ2 minimisation for brown dwarf mass function slope for legacy
MaBµlSwith MOA-II data and the new MaBµlS-2 with OGLE-IV data is shown. MaBµlS-2
shows superior performance across the parameter space beyond -0.6 and achieves a lower
reduced χ2 at minimum of 1.5 compared to the legacy’s -0.4.

in the 2◦ < l < 4◦ region. To investigate this discrepancy further, an exponential optical
depth profile with normalisation τ0 and scale size a of the form

τ(b) = τ0ea(3−|b|) (2.12)

was fitted to the b < 0◦, |l| < 5◦ region of the optical depth maps of the MaBµlS-2 sim-
ulation, OGLE-IV data, MOA-II RCG sources and MOA-II all sources. The results show
a stronger agreement in scale size between MaBµlS-2 and the MOA-II RCG profile com-
pared to the MOA-II all sources exponential, suggesting that blending could play a role in
the reported timescale discrepancy. This analysis also showed a marked improvement in
the minimum reduced χ2 value between the new MaBµlS-2 of 1.5 and the legacy version
of 2.2, reflecting improvements in the simulation accuracy.

2.1.6 Synthetic Catalogue Generation

Each of the four Galactic components in the model contribute to the generation of stars
in the output of the BGM code, which comes in the form of synthetic catalogues of stars.
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FIGURE 2.4: On the top is shown the MOA-II timescale map, with the b < 0◦ portion of the
OGLE-IV timescale map shown in the middle and the difference between the two (OGLE-IV
- MOA-II) is shown on the bottom. Contours at 5-day intervals are shown on the difference
map, where it is evident that OGLE-IV exceeds the MOA-II timescale in most regions except
for 2◦ < l < 4◦.
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Magnitude Bracket Magnitude Range
1 0 ≤ K < 15
2 15 ≤ K < 20
3 20 ≤ K < 24
4 24 ≤ K < 99

TABLE 2.2: The magnitude brackets used for each of the four catalogues generated for each
line of sight in the MaBµlS-2 simulation. Only stars in brackets 1 → 3 were considered as
lens and source stars, while objects in bracket 4, which encompasses the post-BGM generated
low mass red and brown dwarfs, were considered only as lenses.

BGM1307 uses a 3-dimensional interstellar extinction map, calibrated using 2MASS sur-
vey data (Marshall et al., 2006) and has a resolution of 0.25◦. Hence, over the 20◦ × 20◦

field simulated by MaBµlS-2, a total of 80× 80 = 6400 catalogues were generated, one
for each line of sight covering 0.0625◦

2
. Due to the immense scale of the Galaxy and the

billions of stars it contains, it is necessary to strictly control the quantity of stellar data the
model generates. As an input to the BGM synthesis code, one can pass a list of locations
in the sky and a corresponding square solid angle Ωcat over which to generate stars in or-
der to reduce star counts in crowded regions, or boost them in sparse regions. Naturally,
the maximum size of Ωcat was limited to 0.0625◦

2
to prevent sampling regions of space

already simulated in adjacent lines of sight.
Furthermore, simply restraining all stars along a line of sight to a single solid angle

privileges the lowest mass stars which dominate in star count due to their IMF values.
To compensate for this and hence sufficiently sample brighter stars which dominate the
microlensing source population, each line of sight was subdivided into four magnitude
brackets, defined by the stars K-band magnitude, shown in table 2.2. The solid angles for
each were adjusted to produce roughly 10,000 stars per bracket. This ultimately yielded
40,000 stars per line of sight and a quarter of a billion stars in total.

2.2 Microlensing Parameters

Now that the nature of the input to the MaBµlS-2 simulation has been established, let
us now consider the output. There are four different microlensing parameter maps that
MaBµlS-2 can generate, each of which will be discussed in the following sections. These
maps can be used to make predictions about the microlensing event rate to inform up-
coming microlensing surveys, or they can be compared to empirical data in order to
verify the accuracy of the Besançon model. In this work, we assume a maximum nor-
malised impact parameter ut = 1 as a threshold for selecting microlensing events, which
is typical for ground-based surveys, although in principle, this can be easily extended to
ut = 3 or higher for space-based surveys with superior signal-to-noise constraints.
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2.2.1 The Microlensing Optical Depth

The microlensing optical depth τ is analogous to the optical depth in other areas of as-
tronomy. It quantifies, for a particular source star, what fraction of the local sky will gen-
erate a microlensing event, from our vantage point. Analogously, the optical depth can
also be viewed as the probability that a source star is undergoing a microlensing event
at any particular time. Typical values for optical depth when dealing with stellar mass
lenses are on the order 10−7 → 10−5, as evident in figure 2.5. Assuming a continuous
mass distribution φ(Dl) between the observer and the source, the microlensing optical
depth is given by

τ =
4πG
Dsc2

∫ Ds

0
φ(Dl)Dl(Ds − Dl)dDl. (2.13)

From equation 2.13, we can see that the optical depth is a probe of the mass distri-
bution of lens objects along the line of sight to the particular source. In reality, we do
not deal with a continuous mass distribution due to the complexity of Galactic structure
and must instead iterate over the synthetic stars generated by BGM1307. We must also
average over all Ns possible source stars for the survey we are interested in modelling.
We must also define a sensitivity region, which is a circular region in the sky for a par-
ticular valid lens-source pair, inside of which the source would be magnified sufficiently
to produce a microlensing event in the survey. The radius of this region is umaxθE, where
umax is a normalised impact parameter which depends on the source magnitude and the
normalised source radius ρ and represents the furthest multiple of θE the source can pass
to the lens while still generating a detectable microlensing event. The value of umax is
also capped to be at most the survey’s maximum threshold ut. Ensuring that only lenses
satisfying Dl < Ds, the discreet calculation for optical depth is given by

τ = π
∑Ns

s
1

Ωs
∑Nl

l u2
maxθ2

E
1

Ωl

∑Ns
s 〈w2〉 1

Ωs

, (2.14)

where the solid angles Ωs and Ωl are the solid angles of the catalogues from which the
source and lens object are drawn from, respectively, and 〈w2〉 is the weight for a particular
source object, which lies between [0, 1] and quantifies the contribution of each source to
the optical depth. This value will be 1 for fully resolved sources but will dip below 1 for
sources which are only visible during magnification. Such sources are detected primarily
via the method of difference image analysis (DIA, Alard (2000)) and are known as DIA
sources. The pth moment of the weight parameter for a particular source is

〈wp〉 =
∑Nl

l wpµrelD2
l θE

1
Ωl

∑Nl
l µrelD2

l θE
1

Ωl

, (2.15)

where the value wp = min(umax, 1) is the weight of a single lens-source pair. For opti-
cal depth, the second moment is used to account for the quadratic factor of umaxin the
numerator of equation 2.14.
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FIGURE 2.5: The microlensing optical depth in the Johnson Cousins I-band filter is shown
over the entire MaBµlS-2 simulated field. The signal-to-noise threshold at peak magnification
is required to be at least 50, with a telescope limiting magnitude of mlim = 21. The brightest
regions coincide with the influence of the Galactic bar, while the dark region around |b| < 1◦

is the result of interstellar extinction from Galactic dust.

2.2.2 The Average Einstein Radius Crossing Time

Another important microlensing parameter is the rate weighted average Einstein radius
crossing time, 〈tE〉, also known as the event timescale. While the optical depth acts as a
probe of the Galactic mass distribution, the average timescale can act as a proxy for the
typical lens mass along a particular line of sight, as well as a more direct probe of µrel. It
follows similar logic to the calculation of optical depth with some key differences,

〈tE〉 =
∑Ns

s
1

Ωs
∑Nl

l wD2
l θ2

E
1

Ωl

∑Ns
s 〈w〉 1

Ωs
∑Nl

l µrelD2
l θE

1
Ωl

. (2.16)

Note that umax does not enter into the numerator of equation 2.16, as we are not in-
terested in the time taken for a source to cross the radius of the microlensing sensitivity
region, but a single Einstein radius instead.

A parameter which varies inversely with 〈tE〉 is the rate weighted relative proper
motion, 〈µrel〉. This parameter only depends on the lens mass by its weighting from θE,
via

〈µrel〉 =
∑Ns

s
1

Ωs
∑Nl

l wµ2
relD

2
l θE

1
Ωl

∑Ns
s 〈w〉 1

Ωs
∑Nl

l µrelD2
l θE

1
Ωl

, (2.17)

and acts as a useful measure of Galactic kinematics. In cases where the user of the
MaBµlS-2 simulation may be interested in events where the lens and source objects sepa-
rate measurably over time, a high value of 〈µrel〉 can be enforced to yield an event rate for
such scenarios. Typical values for 〈tE〉 can range from hours for planetary mass lenses up
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FIGURE 2.6: The average microlensing timescale is shown across the MaBµlS-2 field, using
the same configuration and selection criteria as figure 2.5. Much like the optical depth, the
Galactic bar and Galactic dust play key roles in shaping its structure, but in the case of the
timescale, the roles are reversed, with the high µrel from sources and lenses in the bar re-
ducing the timescale and the dust bar restricting source objects to the disk with low µrel and
increasing the timescale.

to years for the most massive lenses with small µrel, with stellar mass lenses producing
events lasting several weeks, as shown in figure 2.6.

2.2.3 The Microlensing Event Rate

The final two parameters considered in the MaBµlS-2 simulation are the event rate per
source star per year, Γ∗ and event rate per square degree per year, Γ◦, with typical values
shown in figure 2.7. The value of Γ∗ is important for informing surveys interested in
monitoring particular kinds of stars, while Γ◦ provides a more holistic view on event rates
over areas of the sky. The calculation of event rate does not involve any new summations
over lenses and sources and is instead a function of τ and 〈tE〉 through

Γ∗ =
2
π

τ

〈umaxtE〉
, (2.18)

Γ◦ =
2
π

τN∗
〈umaxtE〉

, (2.19)

where the parameter 〈umaxtE〉 is the average of the timescale multiplied by umax and the
value N∗ represents the rate weighted number of sources, indexed with s, considered in
the calculation of τ and 〈tE〉,

N∗ =
Ns

∑
s=1
〈w〉. (2.20)
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FIGURE 2.7: On the left is shown the microlensing event rate per source star per year, again
using the same configuration and selection criteria as figure 2.5, with values on the order of
10−5. Its structure is much the same as the optical depth, with a higher contrast due to the
presence of 〈tE〉 in its denominator. On the right is shown the event rate per square degree
per year which depends on the total source star count and is much more sensitive to Galactic
dust, peaking in the hundreds of events per year near Baade’s window before falling off
dramatically outside.

Note that the value of 〈umaxtE〉 is equivalent to 〈tE〉 in the case where ut = 1 as is the case
for the MaBµlS-2 simulation.

2.3 Improvements on Legacy MaBµlS

2.3.1 Error Estimation

Major improvements in the estimation of the error on each of the microlensing parame-
ters were made in the MaBµlS-2 simulation code. In the legacy version, all valid source
stars were distributed into two bins and the differences between their optical depth and
timescale values were taken to be approximations for the standard deviation on those
values and a reasonable estimate of the values’ errors. While computationally straight-
forward, this method of error estimation ignores the variance caused by lens parameters.
To account for this, a new method was developed which, for each source s, distributed
lenses into ten bins and calculated the standard deviation σXs on parameter X, which was
either τ or 〈tE〉. Once evaluated, the source contributions, Xs ± σXs with weights 〈w〉s,
were distributed into a further ten bins, denoted by i, to produce Xi ± σXi with weights
〈w〉i. The final error on parameter X is given by

σX =

√√√√∑i(X2
i + σ2

Xi
)〈w〉i

∑i〈w〉i
−
(

∑i Xi〈w〉i
∑i〈w〉i

)2

. (2.21)

The rates Γ∗ and Γ◦ which depend on τ and 〈tE〉from equations 2.18 and 2.19, have errors
given by
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σΓ = Γ

√(
στ

τ

)2

+

(
σ〈tE〉
〈tE〉

)2

. (2.22)

Typical estimates of the error on τ and 〈tE〉 are on the order of 5% near the bulge, but
increase in the dust bar beyond 10%, contingent on the parameter ranges chosen for eval-
uation, which will increase the error estimate as fewer lens-source pairs are accepted.
Figure 2.8 shows, for each parameter map in the Johnson-Cousins I-band filter, its corre-
sponding error map as a percentage.

2.3.2 Finite Source Effects

For microlensing events in the large angular source size or low mass lens regime, the
value of ρ becomes significant enough that the PSPL model is insufficient to calculate the
value of umax, as high magnifications are no longer achievable, even for u = 0. Con-
versely, in some finite source cases, higher magnifications can be achieved at larger im-
pact parameters due to the closer proximity of some parts of the source to the lens. These
discrepancies with the PSPL model were not formally represented in the legacy MaBµlS,
where events with ρ > 1 were discarded and all other cases treated as point sources.
In order to represent this regime in MaBµlS-2, a more formal treatment of finite source
effects was introduced.

In the PSPL case, equation 1.16 can be reversed to obtain an expression for umaxas a
function of Amin,

umax =

√√√√√2

(
Amin√

A2
min − 1

− 1

)
. (2.23)

In order to introduce umax as a function of ρ, a numerical finite source calculation must
be performed. A fast method developed by Lee et al. (2009) integrates the PSPL magni-
fication over a circular source with a linear limb darkening profile for a specified impact
parameter u. Although efficient for a finite source calculation, the amount of lens-source
pairs with significant source radii in the MaBµlS-2 simulation is on the order of 106 or
greater, dependent on the filter wavelength, making a real-time computation impracti-
cal. To deal with this, a 100× 100 grid of umax values was generated before running the
MaBµlS-2 simulation, which then performed a simple linear interpolation over this grid
when necessary.

Simply generating umax as a function of Amin and ρ leaves a grid that is mostly empty.
This is because finite source effects fundamentally limit the magnification achievable by
a source. In the point source regime, the magnification tends to infinity as the impact pa-
rameter tends to zero; in the finite source regime however, the circular disk of the source
is transformed into an Einstein ring at u = 0 with a cutoff magnification Acut given by
the finite source magnification for u = 0 from equation 1.24, assuming a uniform surface
brightness. Magnifications greater than this are not possible and would rule out lens-
source pairs that must surpass this to satisfy event selection criterion. In order to utilise



2.3. Improvements on Legacy MaBµlS 55

−10

−5

0

5

10

G
a
la

c
ti

c
L

a
ti

tu
d

e

0.0e+00

1.0e-06

2.0e-06

3.0e-06

4.0e-06

O
p

ti
c
a
l

D
e
p

th

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

τ
e
rr

o
r

e
st

im
a
te

−10

−5

0

5

10

G
a
la

c
ti

c
L

a
ti

tu
d

e

20.00

30.00

40.00

50.00

60.00

A
v
e
ra

g
e

ti
m

e
sc

a
le

(d
a
y
s)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

〈t
E
〉e

rr
o
r

e
st

im
a
te

−10

−5

0

5

10

G
a
la

c
ti

c
L

a
ti

tu
d

e

0.0e+00

1.0e-05

2.0e-05

3.0e-05

Γ
(E

v
e
n
ts

y
e
a
r−

1
st

a
r−

1
)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Γ
e
rr

o
r

e
st

im
a
te

10 5 0 −5 −10

Galactic Longitude

−10

−5

0

5

10

G
a
la

c
ti

c
L

a
ti

tu
d

e

0

200

400

600

Γ
(E

v
e
n
ts

y
e
a
r−

1
d

e
g
−

2
)

10 5 0 −5 −10

Galactic Longitude

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Γ
e
rr

o
r

e
st

im
a
te

FIGURE 2.8: From top to bottom are shown the optical depth τ, average event timescale 〈tE〉,
event rate per source star Γ∗ and event rate per square degree Γ◦ on the left and their asso-
ciated error maps on the right, all using a signal-to-noise at peak magnification requirement
of S/N ≥ 50 and a survey limiting magnitude of mlim = 21. The filter chosen for parameter
evaluation is the Johnson-Cousins I-band filter.
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the grid space most efficiently, a proxy parameter for magnification α, was devised which
not only scales the cutoff magnitude to the top of the grid, but also uses a logarithmic
transformation to reduce the gradient of the distribution to be more even across the grid.
It takes the form

α =
ln(Amin − Abase + 1)
ln(Acut − Abase + 1)

, (2.24)

where Abase is the magnification at the bottom of the grid, which was chosen to be A(u =

3) = 1.017 to allow for higher values of ut in the case of space-based surveys. The result
of applying the α transformation is shown in figure 2.9, from which it is evident that while
finite source effects limit the maximum magnification achievable, they can also boost the
value of umax leading up to Acut, which is the result of certain parts of the source being
sufficiently close to the lens as to dominate over the more distant parts of the lens.

For ρ ≥ 1, the surface brightness profile of the source star can be important. A liner
limb darkening model was used, with S(u′) as described in equation 1.28 in section 1.5.
The value of β from equation 1.28 depends both on the filter wavelength and stellar sur-
face temperature Teff. To this end, limb darkening data from Claret & Bloemen (2011)
was fitted for each of the Johnson-Cousins UBVRIJHK filters as a function of Teff using
an Akima interpolant (Akima, 1970). The interpolant was then sampled in real time for
each source and used to modify the umax result for each lens-source pair. Unfortunately,
as there is no analytical equivalent of equation 1.24 with a linear limb darkening surface
brightness profile, an approximation of the effect was used by calculating an effective
source radius ρeff via

ρeff = βρ + (1− β)ρmax, (2.25)

ρmax = 1.30234×
(
e

ρ
2 − 1

)
. (2.26)

The value of ρeff was then used to sample the umax grid.

2.3.3 Event Selection Criterion

For the original MaBµlS, possible lens-source pairs were selected as valid microlens-
ing events if the source magnitude ms was brighter than the survey’s limiting magni-
tude mlim, defined as the magnitude which for a combination of exposure time texp and
zero-point magnitude mzp yielded a photometric precision of 4%. In MaBµlS-2, a more
advanced method employed by Ban et al. (2016) was implemented which uses a fixed
signal-to-noise (at peak magnification) event selection criterion accounting for flux con-
tributions from unresolved stars under the point spread function (PSF) of the source star
as well as a wavelength dependent uniform sky background, which more faithfully mod-
els the event selection criteria of real microlensing surveys. The PSF full width at half
maximum was assumed to be seeing-limited at a value of θFWHM = 1 arcsec, giving a
PSF solid angle of ΩPSF = 0.785 arcsec2. A Poisson model of photon noise was used to
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FIGURE 2.9: The distribution of umax as a function of Amin and ρ is shown on the left, with
the analytical form of Acut(ρ) shown in blue. Above this line, umax is zero, illustrating the
need for more efficient usage of space. To the right is the same distribution, scaled using the
α transformation from equation 2.24. Any points with α > 1 yield umax = 0. The integer
contours of the umax distribution are also shown to illustrate the small gradient produced by
the logarithmic transformation.

describe these contributions. The total source photons Nsrc collected by the telescope at
peak magnification is given by

Nsrc = texpA(t0)10−0.4(ms−mzp), (2.27)

where A(t0) is the minimum magnification threshold Amin from section 2.3.2. Nsrc is the
most computationally expensive of the components, as it must be computed for each
source. The contribution from the uniform sky background Nsky is parameterised by the
sky brightness µsky in magnitudes per arcsec2, which depends on the wavelength used,
as shown in table 2.3. It is the least computationally expensive component, computed
only once per wavelength band. As we are only concerned about the background light
collected under the source’s PSF, we arrive at

Nsky = texpΩpsf10−0.4(µsky−mzp). (2.28)

The final component NBG comes from the background contribution of all other unre-
solved stars under the source’s PSF, which may be unable to produce microlensing events
outside of the DIA regime, but which still contribute to the photon noise for the source
star in question. This is acquired by using all sources other than the source s′ of the
microlensing event for a line of sight to calculate an average background light, given by

NBG = texpΩpsf

Ns

∑
s=1,s 6=s′

10−0.4(ms−mzp) 1
Ωs

, (2.29)

where Ωs is the source catalogue size, which accounts for the four magnitude brackets
from table 2.2. Like Nsrc, NBG is a function of each source per line of sight. These three
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Johnson-Cousins Filter µsky (mag arcsec−2)
U 22.28
B 22.64
V 21.61
R 20.87
I 19.71
J 16.50
H 14.40
K 13.00

TABLE 2.3: Tabulated above are the sky backgrounds for each filter used in equation 2.28.

components contribute to the signal-to-noise S/N,

S/N =
Nsrc√

Nsrc + Nsky + NBG
. (2.30)

Using equations 2.27 and 2.30, an expression for Amin as a function of the chosen signal-
to-noise threshold is obtained,

Amin =
(S/N)2100.4(ms−mzp)

2texp

(
1 +

√
1 +

4(NBG + Nsky)

(S/N)2

)
. (2.31)

The MaBµlS-2 simulation supports signal-to-noise thresholds of 25, 50 and 100 to account
for varying levels of strictness between surveys.

2.4 Online Tool Functionality

The results of the MaBµlS-2 simulation are available as an online tool1. The user may
generate maps of optical depth, average timescale and event rate in any of the Johnson-
Cousins UBVRIJHK filters, over any region interior to |l|, |b| < 10◦ and select for events
between source magnitude limits, event timescale bounds and lens-source relative proper
motion bounds. The MaBµlS-2 simulation generates, as output, data files containing the
numerator and denominator of equations 2.14 and 2.16 as well as the associated error
and weighted source counts for each of the 6,400 lines of sight. The output files are
distinguished by their upper limits on ms, tE and µrel, allowing for integrals over these
parameter ranges to be calculated by calculating the difference between the output of a
data file with a larger upper limit from a file with a lower upper limit.

These upper limits represent the 3-dimensional bin edges of the parameter space, of
which there are ten bins in ms, ten in tE and five in µrel, giving a total of 500 data files
for both 〈tE〉 and τ per Johnson-Cousins filter and signal-to-noise threshold. The bin
edges in ms are uniformly distributed between 12 and 23 magnitudes. For the timescale
bin edges, it was important to account for the linear weight dependence of a single lens-
source pair to τ on that pair’s timescale. As such, the 10th percentiles of the product of

1http://www.mabuls.net/

http://www.mabuls.net/
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FIGURE 2.10: Shown is the interface for the MaBµlS-2 online tool. The discreet parameters,
signal-to-noise and Johnson-Cousins filter are available in drop-down menus, while the con-
tinuous variables, ms, tE and µrel are available as entry fields. The selection of map type is
visible at the bottom.

the I-band tE distribution with timescale were calculated, up to 1000 days and used as
the bin edges. For µrel, the 20th percentiles of the I-band µrel distribution were calculated,
up to 20 mas year−1 and used as the bin edges.

To produce the final product, interpolation must be performed as the user may specify
magnitude, timescale and proper motion cuts along a continuous parameter space. In
general, a bound will lie within a 3-dimensional bin, meaning both the upper and lower
bounds must be interpolated within their respective bins. This leads to a sexilinear (6-
dimensional) interpolation between 26 = 64 integrals, three for the lower and three for
the upper bound. Simplifications are made when the user specifies a cut that lies on a bin
edge in any dimension. The result is a computationally efficient map generation method.

2.5 Comparison with OGLE-IV survey results

A test of the MaBµlS-2 simulation was performed by comparing results to that of the
OGLE-IV survey, detailed in Mróz et al. (2019), which used a homogeneous sample of
8,000 microlensing events to construct maps of τ, 〈tE〉 and Γ. This is in contrast to the
original MOA-II results from Sumi et al. (2013), which attempted a similar analysis with
a sample of 474 events. This increase in sample size of a factor 17 highlights the sig-
nificance of this opportunity to test the Besançon model and MaBµlS simulation code.
Figure 2.11 shows each of the parameter maps for τ, 〈tE〉, Γ∗ and Γ◦ over the I-band
range 14 < I < 21 and for tE < 300 days. For a successful comparison between the
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MaBµlS-2 simulation and the OGLE-IV survey, a umax interpolation grid more faithful to
the event selection criteria of the survey was necessary. The criterion used in the study
required a time integrated signal-to-noise value S/N3σ summed over all fluxes greater
than 3σ above a flat baseline to be greater than 32, defined as

S/N3σ = ∑
i

Fi − Fbase

σi
δi ≥ 32, (2.32)

δi =





1, Fi−Fbase
σi

> 3

0, else
. (2.33)

A time integrated signal-to-noise requires knowledge of the cadence of the survey and
the event timescale for the lens-source pair. As such, a 3-dimensional umax interpolation
grid was constructed, parameterised by the normalised source radius ρ, source magni-
tude ms and the ratio of the cadence to the event timescale x, ignoring limb-darkening for
simplicity. To estimate the value of S/N3σ, each grid point needed to first calculate the
time range over which the instantaneous signal-to-noise from equation 2.30 (evaluated at
an arbitrary time as opposed to t = t0 from equation 2.27) was greater than three. After
this had been acquired numerically using a root-finding algorithm, a second root finding
was performed, uniformly sampling the lightcurve at 11 locations (one at t = t0 and five
for each of the lightcurve’s tails) and scaling the result to match the normalised cadence x.
This was a computationally expensive operation, but once compiled, umax could be easily
sampled from this grid at run-time when generating the parameter maps. The results are
shown in figure 2.12, which deviate from the equivalent maps using a signal-to-noise at
peak magnification event selection, as in figure 2.8.

The residual between OGLE-IV and MaBµlS-2 was calculated to show the discrep-
ancy between the data and the model. To highlight the statistical significance of the
residual, it was normalised to the joint error, as shown in figure 2.13. To estimate the
error on the residual at a particular (l, b), the standard deviation of all points within a
donut shaped region was used, with an inner and outer radius rinner and router = 3rinner

respectively. The inner radius prevents correlating the error calculation with the residual
value itself and the outer radius prevents sampling the parameter map in locations not
representative of the residual value. For the residual in τ, Γ∗ and Γ◦, a value of rinner = 15′

was used, while the lower resolution 〈tE〉map used a value of rinner = 30′.
An accurate model would have a 1-dimensional distribution of normalised residuals

that closely matches a unit Gaussian with a mean of zero, which is achieved by τ, 〈tE〉 and
Γ∗, with a notable under-prediction in Γ◦. A Gaussian width greater than unity, as evi-
dent in the first three parameter maps respectively, is a consequence of spatial variation
across the map, such as from the over-prediction in Γ∗ in the bulge and under-prediction
elsewhere. This is in comparison to the legacy MaBµlS, shown in figure 2.14, optimised
on MOA-II data, which models τ well, but shows an under-prediction in 〈tE〉 and over-
predictions in Γ∗ and Γ◦ as well as much stronger spatial variations. The discrepancy in
〈tE〉, which propagates to the event rates, most prominent at positive latitudes, is likely a
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result of the steeper brown dwarf mass function slope, which favours smaller timescales.
The largest tension between the MaBµlS-2 simulation and empirical data lies in the Γ◦

distribution, with a mean offset of 0.93 units, almost a full standard deviation. This devi-
ation is most obvious outside the bulge, while the discrepancy reverses inside the bulge,
showing a small over-prediction. Multiple factors could contribute to this tension; firstly,
a source weighting insufficiently faithful to the conditions present in the OGLE-IV sur-
vey would directly impact Γ◦, which is proportional to the source weights, leaving other
parameters less affected due to the presence of the source weights in the normalisation
terms. Another origin of this tension could come from inaccuracies in the stellar IMFs,
which dictate the average lens mass. The optical depth is independent of lens mass for a
fixed φ(DL), while the timescale obeys tE ∝

√
M; this is in contrast to source luminosity,

which has a dependency upward of L ∝ M4, which would propagate to the calculation
of N∗ from equation 2.20.

2.6 MaBµlS-2 in Summary

The MaBµlS-2 simulation is a robust tool for probing Galactic structure and informing
future microlensing surveys. It has improved significantly on its predecessor, MaBµlSby
improving the event selection criteria, streamlining the simulation code through mul-
tiprocessing, implementing a rigorous error estimation and allowing for user selected
parameter map cuts in the µrel parameter space. These additions and improvements al-
lowed for a much more successful comparison to empirical data from OGLE-IV than the
equivalent, much smaller sample MOA-II analysis from the original MaBµlS. Care was
also taken to model the brown dwarf population to improve the low timescale tail of the
tE distribution, with a superior χ2

red = 1.5 minimisation, yielding a mass function slope
of 0.1, in contrast to the original, which achieved a χ2

red = 2.2 and slope of -0.4, a dis-
crepancy which was attributed to the differing survey characteristics and event selection
between MOA-II and OGLE-IV.

With a successful prediction of the τ, 〈tE〉 and Γ∗ maps when put to the test against
empirical data, the MaBµlS-2 simulation has reinforced the precision of the Besançon Galac-
tic model, falling short only in the Γ◦ map, where an under-prediction in event rate is
evident outside of the Galactic bulge.

There are multiple avenues for extending this tool, such as allowing for cuts by lens
brightness, which would further aid in breaking the microlensing degeneracy discussed
in section 1.5 and 1.6. Although this tool uses finite source effects in evaluating the signal-
to-noise event selection criterion, it does not mandate the detection of finite source effects;
as such, the tool could be extended to allow the user to choose such a setting, which could
further narrow the sample of viable microlensing events. Finally, using a general time
integrated signal-to-noise criterion (such as employed specifically to compare with the
OGLE-IV survey results in this work), while computationally slower due to the higher
dimensionality of the umax grid, would provide a more accurate estimation of event de-
tectability, biasing more strongly in favour of longer timescale events.
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The success of MaBµlS-2 has prompted further usage as an application in informing
upcoming microlensing missions by the Euclid and Roman space telescopes, including
modifications to incorporate the aforementioned finite source effect detection, work to
which we shall now discuss in the next chapter.
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FIGURE 2.11: The OGLE-IV 8,000 event survey microlensing maps are shown in the left
column with associated error maps on the right. Black regions indicate locations with no
data.
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FIGURE 2.12: The I-band MaBµlS-2 parameter maps using equation 2.32 as the event selec-
tion criterion. The timescale map shows sharp contours where the cadence of the OGLE-IV
survey changes. Sudden drops in timescale indicate that the cadence is high enough to re-
solve smaller timescale events. Source magnitudes were constricted between 14 < I < 21
and timescales were kept tE < 300 days to represent the cuts made in the survey.
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FIGURE 2.13: On the left is shown the residual between the OGLE-IV 8,000 event maps
and the MaBµlS-2 equivalent, normalised to the error. Green regions suggests an under-
prediction by the model, red suggests a good match and blue suggests an over-prediction by
the model. Over-predictions tend to appear near the bulge, while under-predictions appear
outside. The histograms to the right show the 1-dimensional distribution of residuals, with
the means and standard deviations listed for the fitted Gaussians.
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FIGURE 2.14: Same as figure 2.13, but comparing the legacy MaBµlS to OGLE-IV data. In this
case there are much more powerful over-predictions near the bulge as well as some regions
outside. This is attributed to the under-prediction in timescale rather than optical depth
which shows good agreement with a slight over-prediction in the bulge.
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Chapter 3

Detecting FFPs From Space

In this chapter, we will discuss the work done specifically on FFP detection rates in the
work Euclid-Roman joint microlensing survey: Early mass measurement, free floating planets,
and exomoons (Bachelet et al., 2022), of which the writer is a coauthor.

The tantalising possibility of large scale microlensing surveys by the upcoming EU-
CLID (Laureijs et al., 2010; Racca et al., 2016) and Nancy Grace Roman (formerly WFIRST
and henceforth referred to as ROMAN, Goullioud et al. (2012)) space telescopes offers
a unique opportunity to discover many new cold exoplanets, both bound to their host
stars and unbound as free floating planets (FFPs). Assuming both telescopes will be or-
biting the Sun-Earth L2 Lagrange point, these microlensing surveys could be combined
to provide a space-based parallax measurement by monitoring an overlapping region of
the sky. In cases where a measurement of finite source effects can be made, this would
lead to a direct mass measurement of the lens object, allowing for a systematic attempt to
characterise the FFP mass distribution and normalisation and place bounds on the FFP
occurrence rate throughout the Galaxy.

Due to the significance of such a joint survey and given the immense resources in-
vested in both telescopes, it is of utmost importance that the science return of such a
survey is maximised. To this end, the MaBµlS-2 simulation code was adapted to pro-
duce event rate maps of the Galactic centre, particularly near Baade’s Window, to predict
the number of FFPs such a survey could detect with both a parallax signature and finite
source measurement present in their lightcurves.

3.1 Space Telescopes

The NASA ROMAN Telescope’s science goals include a study of dark energy, general in-
frared astrophysics and a dedicated exoplanet hunt using the microlensing method. The
exoplanet survey will make use of ROMAN’s Wide Field Instrument (WFI) and 2.4m mir-
ror, specifically in the W146 infrared filter, covering a broad spectrum of 0.927→ 2.00µm,
which is used in this work. The full width at half maximum of the filter’s point spread
function (PSF) is θPSF ∼ 0.12”, with a corresponding solid angle of ΩPSF = 0.0456”2. The
exposure time for each image will be texp = 46.8s with a survey cadence of 15 min. The
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TABLE 3.1: The parameters Ωpsf, mzp, texp and µsky used in MaBµlS-2 from equations 2.27,
2.28 and 2.20 for the ROMAN W146, EUCLID VIS and NISP-H filters are tabulated below.

Filter Ωpsf mzp texp (sec) µsky
Cadence

(min)
Season
(days)

Pixel Size
(arcsec)

W146 0.0456 27.62 46.8 21.5 15 2× 72 0.11
VIS 0.0254 25.58 270 21.5 60 2× 30 0.10

NISP-H 0.159 24.92 54 21.4 60 2× 30 0.30

sky brightness in W146 is µsky = 21.5, with a zero-point magnitude (the magnitude at
which one expects to receive a single count per second) of mzp = 27.62 (Penny et al.,
2019). The active field of view of the WFI is 0.28deg2 and has a pixel size of 0.11” (Spergel
et al., 2015). The exoplanet campaign will consist of a pair of 72 day observing season
annually. As of writing, ROMAN has a launch date in 2025.

Much like ROMAN, ESA’s EUCLID Space Telescope aims to study dark energy, par-
ticularly with a focus on understanding the accelerating expansion of the universe via
measurements of weak gravitational lensing and galaxy clustering. EUCLID’s primary
science goals do not include a dedicated microlensing campaign, although such a cam-
paign is being considered as an additional science program a few years after its launch in
2022, allowing it, ideally, to overlap with ROMAN’s microlensing exoplanet survey. EU-
CLID is equipped with a 1.2m mirror and two main instruments: the Visible Imager (VIS)
(Cropper et al., 2016) and the Near-Infrared Spectrometer and Photometer (NISP) (Euclid
Collaboration et al., 2022). The VIS filter covers wavelengths 0.55 → 0.90µm across the
optical spectrum, while the NISP instrument may select between either Y, J or H filters;
this work focuses on the NISP-H filter. The VIS instrument has the longest exposure time
out of the filters investigated in this analysis, at texp = 270s and also has the smallest
pixel and PSF size at 0.10” and 0.09” respectively, in comparison to the NISP-H filter at
0.30” and 0.22”, with an exposure time of texp = 54s. Of the two filters, VIS has the higher
zero point magnitude with mzp = 25.58 compared to NISP-H at 24.92, although due to
its shorter wavelength, VIS struggles to penetrate Galactic dust while NISP-H largely ig-
nores it. The EUCLID cadence is one hour, with observing seasons like ROMAN coming
in two per annum, although with a smaller time window of 30 days per season (Penny
et al., 2013). Details of both the EUCLID and ROMAN filters involved in this analysis are
shown in table 3.1.

3.2 Free Floating Planets

The existence of gravitationally unbound exoplanet candidates has been known for more
than two decades and was first reported in Oasa et al. (1999), which found objects with
masses M < 0.012M�. Three further candidates were reported in Zapatero Osorio et al.
(2000), with predicted masses in the range 5 < M < 15MJup. Although planetary in mass,
the discoveries of these FFPs has been primarily driven by infrared imaging, relying on
emissions due to the internal heat of the planet, suggesting a strong selection bias in
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FIGURE 3.1: The Nancy Grace Roman Space Telescope (left, credit: NASA) and EUCLID Space
Telescope (right, credit: ESA) are pictured.

favour of young FFPs at the largest planetary mass scales where direct imaging of thermal
radiation is feasible. This method is in contrast to the direct imaging method discussed
in section 1.2, which is used for bound exoplanets which also reflect light and receive
heat from their host stars. In reality, the mass distribution of the Galactic FFP popula-
tion is not well constrained, with planetary formation models predicting a significantly
higher abundance of Earth mass FFPs, between 0.3→ 1M⊕ (Ma et al., 2016; Barclay et al.,
2017). Two popular theories of the origin of FFPs are the core-collapse model (Padoan &
Nordlund, 2002; Hennebelle & Chabrier, 2008) involving a scaled down version of the
stellar formation and the dynamical scattering model (Veras & Raymond, 2012), involv-
ing gravitational scattering from close encounters of planets in a bound system, or by the
intrusion of other stars from a dense birth cluster, resulting in the ejection of one of the
planets into interstellar space. Recent work by Miret-Roig et al. (2022) suggests that the
core-collapse model is insufficient by a factor seven to explain the abundance of FFPs ob-
served through direct imaging and that dynamical scattering, among other possibilities,
may be contributing to the Galactic FFP population.

Detecting FFPs instead via their gravitational microlensing signature allows for the
detection of FFPs with significantly lower masses, likely down to Earth mass, as well as
FFPs at further distances, potentially kiloparsecs away from the Solar System. Although
no dedicated FFP microlensing survey has been yet conducted with the capacity to di-
rectly measure FFP masses, several surveys have been conducted that characterise the
event timescale distribution of detected microlensing events and exhibit a low timescale
excess which could be attributed to an FFP population, although this is contentious. The
first such investigation was conducted by Sumi et al. (2011), which analysed 474 high
quality events from the MOA-II microlensing survey. The resulting timescale distribu-
tion was consistent with either a power-law or log-normal FFP mass distribution, with a
best fit of 1.8+1.7

−0.8 MJup mass FFPs per main sequence star. This hypothesis was later con-
tested by Mróz et al. (2017), which used a sample of 2617 microlensing events from the
OGLE-IV survey and found no statistically significant timescale excess consistent with a
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Jupiter mass FFP population with occurrence rates proposed by the Sumi study, with a
best fit of 0.05 Jupiter mass FFPs per main sequence star. It did however find tentative
evidence of an Earth mass FFP population, consistent with a normalisation of 10 FFPs
per main sequence star. Throughout this work, we shall investigate the expected mass-
measured event rates of the Sumi and Mróz models consisting of Dirac delta FFP mass
distributions centred on Jupiter and Earth masses, with normalisations of 2 and 10 FFPs
respectively, under a joint microlensing survey between EUCLID and ROMAN.

3.3 Modifying MaBµlS-2

In chapter 2, we described how the BGM population synthesis model can be used to make
predictions about the microlensing event rate, among other parameters. While this sim-
ulation improved much on past work, for example by considering finite source effects in
an estimation of the requisite signal-to-noise, it falls short of being adequate for assisting
in the search for FFPs by microlensing. As we are primarily interested in characterising
the FFP mass distribution shape and normalisation, we will need to be able to measure
the lens mass. The equation 1.5 for θE is insufficient to acquire ML without relying on
first order effects, namely the finite source and microlensing parallax phenomena. Us-
ing equations 1.21 and 1.32, we can express the lens mass in terms of parameters we can
measure or fit to a lightcurve,

ML =
θ∗

κπEρ
. (3.1)

Another crucial factor to consider when maximising the science return from a mi-
crolensing survey is the field location. Baade’s window, due to the relatively small amount
of obscuring dust, is a popular location for microlensing searches and as such, was the
central location for the bespoke MaBµlS simulation, with 11 × 17 = 187 lines of sight
spanning −1.5 < l < 2.5◦ and −2.5 < b < 0◦. This choice has been reinforced by the re-
sults of Specht et al. (2020) and Awiphan et al. (2016), which show the highest event rates
in this region, albeit without finite-source and parallax detection constraints. Given the
40,000 stars per line of sight specification from chapter 2, this provides approximately
150 billion simulated lens source pairs for consideration within this region of the sky,
allowing for a high precision analysis of FFP event rate.

While each of these source stars have magnitudes calculated in the Johnson-Cousins
UBVRIJHK filters, neither the ROMAN W146 nor EUCLID VIS magnitudes are available
options for the output of BG1307. The approximation of VIS was simply taken to be
the Johnson-Cousins R band due to its similarity, whereas calculating the ROMAN tele-
scope’s W146 magnitude was more involved due to its large bandwidth. To do this, an
approximation was made by using a combination of the Johnson-Cousins H and J bands
by considering the integrated transmission curves of H, J and W146, shown in figure 3.2.
These were combined in flux units and converted back into the W146 magnitude mw146

via
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FIGURE 3.2: The W146 filter, showing its transmission curve (blue) superimposed with the
Johnson-Cousins H (dashed red line) and J (dotted red line). The data used to compile RO-
MAN’s W146 transmission curve is made available by NASA online at https://roman.gsfc.
nasa.gov/science/Roman_Reference_Information.html

mw146 = −2.5log10(10−0.4mJ + 10−0.4mH ) + δm, (3.2)

where δm = −0.647 represents the magnitude difference induced by the differing inte-
grals of the transmission curves.

3.3.1 Signal-to-noise criteria

Much like the standard MaBµlS-2, a general signal-to-noise event selection criterion is
required to screen out lens-source pairs that cannot be detected by the survey optics. For
this analysis, a time integrated signal-to-noise criterion was employed, mandating that a
microlensing event produce at least a ∆χ2 > 125 between a constant baseline flux model
and a FSPL (finite source, point lens) model. In addition to this, to screen out events with
large ρ which may pass this criteria without producing a significant peak, it was also
required that 6 points reach a signal-to-noise of greater than 3σ from the baseline flux.

A precompiled 3-dimensional umax grid incorporating these criteria was produced,
with sampling parameters ms, ρ and tcad

tE
, using a resolution of 20 points on each axis. The

axis ranges are shown in table 3.2.

https://roman.gsfc.nasa.gov/science/Roman_Reference_Information.html
https://roman.gsfc.nasa.gov/science/Roman_Reference_Information.html
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Parameter Minimum Maximum Grid spacing
ρ 0 5 Linear

ms 16 25 Linear
tcad/tE 10−2 1 Logarithmic

TABLE 3.2: The signal-to-noise umax grid parameters are listed with their axis ranges and
grid spacing distribution. Each axis was sampled with a resolution of 20 points.
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FIGURE 3.3: Shown are the distributions of ρ assuming Earth mass (blue line) and Jupiter
mass (orange line) FFPs, weighted using the rate-weight parameter wp from equation 2.15.
The offset in ρ of the peaks of each distribution is, as expected, equal to

√
MJ/M⊕ as the

Einstein radius is proportional to
√

ML. Of note is the second mode of the Jupiter distribution
centred around ρ = 0.5, which represents the population of lens-source pairs both in the
Galactic bar, where the relatively small distance between them reduces θE. As it is difficult
for large finite source radii to meet the minimum magnification requirements demanded
by the signal-to-noise selection criterion, the Earth equivalent of the bar-bar population is
suppressed.
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Parameter Minimum Maximum Grid spacing
ρ 10−5 5 Logarithmic

ms 16 25 Linear
tcad/tE 10−2 1 Logarithmic

NBG 100 106 Logarithmic

TABLE 3.3: The parameter ranges for the finite source detection umax grid. The event
timescale was normalised to the cadence of the particular telescope (either EUCLID or RO-
MAN), allowing for a determination of the number of number of data-points within tmax
either side of t0. Each axis had a resolution of 10 grid points.

3.3.2 The finite source measurement

Although MaBµlS-2 uses finite source effects when calculating the required signal-to-
noise of an event to meet selection criteria, it does not mandate that finite source ef-
fects be detected. To accommodate this new requirement and hence only allow for mi-
crolensing events that could realistically yield a direct θE measurement, a ∆χ2 of greater
than 100 between a PSPL model and finite source model was mandated. Implementing
this as a feature of the MaBµlS-2 simulation involved constructing a new 4-dimensional
umax grid, with sampling parameters ρ, tE and NBG (the background photon count from
equation 2.29) logarithmically distributed and ms linearly distributed, with a resolution
of 10 points on each axis. Parameter ranges are tabulated in table 3.3. The grid was then
built by iterating over the 3D parameter space and numerically solving for umax to pro-
duce a ∆χ2 = 100 between the PSPL and finite source lightcurves. As both microlensing
models tend to a magnification of 1 for large impact parameters, the χ2 was only evalu-
ated over a time range of

tmax = 2tE ×max(1, ρ). (3.3)

As the cadence tcad of the telescopes did not in general divide evenly into the event
timescale, 11 lightcurve samples were taken on the right side of the lightcurves from
t = t0 → t = tmax, doubling the resulting χ2 for each point to include the contribution
from the symmetrical left sides (excluding the central point at t = 0) and then scaling the
result by a factor f = tmax

10×tcad
.

3.3.3 Introducing a parallax measurement

The other critical component required to obtain a lens mass measurement is the mi-
crolensing parallax. To this end, a 5σ detection of πE was mandated, using the Fisher
information matrix method employed by Bachelet et al. (2018) and Mogavero & Beaulieu
(2016). This method allows for an analytical estimate of a covariance matrix of the mi-
crolensing parameters used in the parallax model, by evaluating the elements of the
Fisher information matrix M, summed over k data-points. Each element of the Fisher
matrix involves the derivatives of the observed source flux F, given by
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F = FsA(t) + Fb, (3.4)

where Fs is the non-blended baseline source flux and Fb is the blending flux. Derivatives
of F are with respect to the microlensing parameters θx for a parallax model, where x
denotes the index of a matrix row or column, through

Mi,j =
N

∑
k=1

∂Fk

∂θi

∂Fk

∂θj

1
σ2

k
, (3.5)

with the parameter σ2
k representing the error on the flux for data-point k. The covariance

matrix, containing the estimated errors of each parameter assuming they are Gaussian
distributed, is then acquired by inverting M. It is from this covariance matrix that we can
then acquire an estimate for the error on the microlensing parallax, as

σ2
πE

=
σ2

πE,E
+ σ2

πE,N

2
−

√
(σ2

πE,E
− σ2

πE,N
)2 + 4cov(σπE,E , σπE,N)

2

2
(3.6)

Enforcing the 5σ detection of πE is then simply achieved by requiring πE
σπE

> 5. Al-
though a useful metric of parallax detectability, this constraint must be implemented over
hundreds of billions of lens-source pairs, which is not a computationally tractable opera-
tion to perform during the production of the modified MaBµlS-2 event rate maps of the
region of interest. To account for this, another umax grid was produced, this time using
six input parameters: the EUCLID (either the VIS or NISP filters) and ROMAN source
magnitudes mE and mW146, the event timescale tE, the normalised source radius ρ, the
magnitude of the microlensing parallax and the angle φ between the projected baseline
and the µ̂rel vector. A numerical root finding algorithm was then performed to compile
this six-dimensional umax grid before running the simulation, much like the signal-to-
noise and finite source detection umax grids. The parameter ranges and grid spacings
are listed in table 3.4. To produce the simulated lightcurves from both telescopes for this
calculation, the magnification using a finite source model in the case of ρ > 0 or PSPL
model in the case of ρ = 0 was evaluated using the cadences of each telescope listed in
table 3.1.

3.4 Results

To illustrate the effect of introducing more event selection criteria on the total FFP event
rate, the modified MaBµlS-2 simulation was performed with four configurations: using
only the signal-to-noise (S/N) selection criteria, the S/N and finite source detection cri-
teria, the S/N and parallax signature detection criteria and the final simulation using the
S/N, finite source and parallax signature detection criteria, with only the latter configu-
ration allowing for a direct mass measurement of the lens as discussed in sections 1.5 and
1.6.
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Parameter Minimum Maximum Grid spacing No. Grid Points
mE 16 25 Linear 10

mW146 16 25 Linear 10
ρ 0 5 Linear 5
tE 0.02 6 Linear 10
πE 10−4 1 Logarithmic 10
φ 0 2π Linear 5

TABLE 3.4: The parameter ranges for the parallax detection umax grid are shown, as well as
the number of grid points used. Due to the high number of dimensions, the grid resolution
was reduced to 5 grid points on axes which produced only gradual and smooth changes
in umax, resulting in a more accurate umaxvalue when linearly interpolated. For other axes,
the resolution was kept at 10 points in the case that the variation in umaxwas less accurately
evaluated using linear interpolation at run-time.

After the modified MaBµlS-2 simulation had been run, event rate maps for each line
of sight in the region of interest were produced. Although at that stage the most sig-
nificant computational work had been completed, the task still remained to optimise for
the ideal field placement locations for EUCLID and ROMAN. Due to the complexity of
optimising both telescope’s field locations simultaneously, we used the ROMAN field lo-
cations acquired by Penny et al. (2019) for ROMAN’s proposed Cycle-7 science mission.
This configuration uses seven contiguous fields, each with curved borders to account for
the instrument’s curved focal plane, oriented in the Galactic coordinate system to max-
imise the 1M⊕ FFP detection rate, as shown in figure 3.5. The field centroid locations
found are listed in table 3.5 and used in this work.

Optimising the EUCLID field locations was then necessary to maximise the FFP de-
tection rate within the intersection of both the EUCLID and ROMAN fields. The shape of
an individual EUCLID field was taken to be rectangular, with a width of 0.38◦ and height
of 0.36◦. As we do not know a-priori the EUCLID field orientations, to demonstrate that
a joint EUCLID-ROMAN microlensing survey would still be able to generate significant
science even with misaligned fields it was decided that EUCLID fields would be oriented
in the Ecliptic coordinate system, inducing a 60◦ rotation relative to the ROMAN fields. To
produce a large enough overlap between the fields of the two telescopes, it was decided
to use four contiguous EUCLID field placements.

The optimisation process was performed in four stages, one for each of the field loca-
tions; to begin with, each of the four fields were distributed approximately evenly across
the area already covered by the ROMAN fields, although not contiguously. A function
was then used which, given four input locations, produced four output locations which
obeyed contiguity, a process illustrated in figure 3.4. This function worked by keeping
the first location stationary, and then sequentially placing the other fields such that they
were moved the minimum distance possible to touch the previously placed fields. To
optimise the field locations, the derivative-less Nelder Mead method was used, taking
the l and b coordinates of each field as optimisation parameters, making for a total of
8 parameters. For each iteration of the optimisation, the contiguity function was used
before the event rate map was sampled at a resolution of 0.02◦ with bicubic interpolation
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FIGURE 3.4: Illustration of the contiguity enforcing algorithm. Fields are initially placed
at guess locations, outlined with red dashed edges. A single field is chosen as a primary
field, retaining its initial position. Other fields are then shifted along an axis the shortest
distance possible to their final positions outlined with a solid black line, such that they touch
any previously adjusted fields and form a contiguous region. The black arrows indicate the
position deltas added to each field in order to enforce this contiguity.

l (deg) 0.60 0.19 1.01 1.01 1.41 -0.22 1.41
b (deg) -1.64 -1.64 -1.64 -0.85 -0.85 -1.64 -1.64

TABLE 3.5: Centroid locations of the ROMAN Cycle-7 fields in Galactic (l, b) coordinates,
evaluated in the work done by Penny et al. (2019).

across the area of the intersection of the EUCLID and ROMAN fields. The high resolution
was necessary to correctly resolve the intersection shape, as any sample falling outside of
this intersection did not contribute to the total evaluated rate for that configuration.

As the contiguity enforcing function produces different results depending on the in-
put order of the four test field locations, the optimisation was performed 4! = 24 times,
once for every arrangement of starting locations. The best performing configuration was
then selected out of each of these 24 results. As the MaBµlS-2 simulation produced the
highest rates in the EUCLID NISP (H) filter, the Earth mass FFP rate map constrained by
all three event selection criteria in the NISP filter was selected as the fiducial event rate
map used for EUCLID field optimisation, with results shown in table 3.6.

l (deg) 0.79 1.14 1.57 -0.03
b (deg) -1.56 -0.89 -1.64 -1.60

TABLE 3.6: Centroid locations of the EUCLID fields in Galactic (l, b) coordinates selected after
optimisation.
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FIGURE 3.5: Various FFP event rate maps produced by MaBµlS-2 are shown, with the event
rate displayed on a logarithmic scale. The ROMAN fields are drawn with blue lines, while
the EUCLID fields are drawn in green. On the left column, rate maps using only the signal-
to-noise event selection criterion are shown, while the right column displays rate maps using
all event selection criteria allowing for a direct mass measurement. The top two rows show
rate maps using EUCLID’s VIS filter and ROMAN’s W146, while the bottom two rows use
EUCLID’s NISP (H) filter. Earth mass FFP maps following the Mróz model are shown on
rows one and three, with the Jupiter mass Sumi model displayed on rows two and four.
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FIGURE 3.6: The cumulative event rate fraction distributions are shown, with each distribu-
tion corresponding to the rate map of the same row and column from figure 3.5. On the x-axis
is the maximum H-band magnitude of source stars, with the minimum expected lens-source
proper motion 〈µrel〉min on the y-axis. For reference, the 50, 75 and 90 percentile boundaries
are shown.
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Model
Filter

Combination
S/N

S/N +
Parallax

S/N +
Finite Source

Mass
Measurement

Jupiter mass
Sumi (2011)

W146 + VIS 490 450 18 18
W146 + NISP (H) 490 450 19 19

Earth mass
Mróz (2019)

W146 + VIS 130 110 28 28
W146 + NISP (H) 130 110 31 31

TABLE 3.7: The annual FFP detection rates are shown tabulated for each model, combination
of filters and combination of simulated event selection criteria. Numbers represent the total
detections over the two 30 day observing seasons of the EUCLID telescope, coinciding with
the two 72 day observing seasons of ROMAN, per annum. The finite source detection bottle-
neck is obvious as most events should produce a 5σ parallax signature, but do not allow for
a mass measurement. The difficulty of detecting finite source effects among more massive
lenses is also highlighted in this table, given the contrast in rates between the signal-to-noise
(S/N) only and mass measurement columns for Jupiter and Earth mass FFPs.

The FFP event rates with the ROMAN and optimised EUCLID fields are shown in fig-
ure 3.5, with results for each scenario tabulated in table 3.7. From the rate maps, it is clear
that the Sumi model, with two Jupiter mass FFPs per main sequence star produces a sig-
nificantly higher event rate compared to the Mróz model (ten Earth mass FFPs per main
sequence star) when considering only the signal-to-noise criteria, by a factor ∼ 4. This is
in line with expectations from the PSPL model, which predicts a factor

√
MJ/M⊕ ≈ 18 in

favour of the Jupiter mass FFP model, assuming the same FFP occurrence. This discrep-
ancy diminishes and somewhat reverses when introducing the finite source detection
criteria, with the Mróz model performing better by a factor 1.5 compared to the Sumi
model (although worse by a factor three when accounting for occurrence rates). This
is primarily due to the fact that the detection of finite source effects depends on u0

ρ ap-
proaching unity or less, rather than any dependence on the size of θE, which compensates
for the discrepancy in optical depth at the different FFP mass scales. Although marginal,
the EUCLID NISP filter produced a higher event rate compared to the VIS filter. This is
due to the higher wavelength of the NISP H filter allowing for more visibility through
Galactic dust, which compensates for NISP’s lower exposure time.

Another analysis performed was to consider how the cumulative event rate changes
as a function of maximum H-band magnitude and minimum expected relative proper
motion 〈µrel〉min. From figure 3.6, we can see that the structure of the cumulative rate
is invariant to FFP mass in the case that only the signal-to-noise selection is used, with
stars brighter than mH = 23.8 at typical µrel contributing 50% of the total event rate.
This is in contrast to the mass measurement yielding event rates, which show an offset
of δmH = 1 between the Sumi and Mróz, with the Sumi model producing 50% of events
around mH = 21.2 for typical µrel and the Mróz model mh = 22.2. This discrepancy is
due primarily to the finite source detection criterion, as a large ρ induces a greater δχ2

between a PSPL and FSPL model for the same u0, thus requiring a brighter source to meet
the criterion.

Of note is the effect of the parallax criterion and its minimal effect on the mass-
measurable event rate, given that the finite source detection represents a much greater
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bottleneck. This implies that even without a finite source measurement, ∼ 90% of FFP
events will still yield a 5σ πE measurement, the distribution of which can be used to help
constrain the FFP mass function and normalisation.

We can compare these results with the work of Ban (2020), which calculated event
rates for the EUCLID and ROMAN space telescopes, as well as the Vera Rubin Observa-
tory on Earth, along a single line of sight at (l, b) = (1,−1.75). In that work, two event
selection criteria were employed: a signal-to-noise at event peak of S/N > 50 and a par-
allax detection of greater than 5σ, determined by the maximum differential amplitude
between the lightcurves from the two telescopes and the corresponding error. Although
finite source effects were taken into account when calculating the peak signal-to-noise
value, no finite source measurement was required when evaluating the final event rate.
As such, we can compare the results from this work which also ignore finite source ef-
fects, and considering occurrence rates of only a single FFP per main sequence star. We
find good agreement among Earth mass FFPs, with a rate of 5.2 events per annum for this
work, and 4.9 for Ban’s work. This is in stark contrast however, when comparing Jupiter
mass FFPs with this work predicting a rate of 104 events per annum, compared to only
31 events for Ban’s work. This difference is explained primarily by the differing signal-
to-noise criteria, as this work considers a time integrated signal-to-noise, which prefers
longer time scale events such as those produced by heavier, Jupiter mass FFPs. The dif-
ferences in the parallax detectability criterion are similar, with this work considering the
full series of photometry, while Ban’s work considers only the greatest difference in ob-
served flux between lightcurves, although this discrepancy ultimately played a smaller
role in the final reported event rates between the two studies.

A further comparison can be made with the detection rates reported in Johnson et al.
(2020), which models the FFP event rate for ROMAN across a range of masses between
0.1M⊕ < M < 103M⊕. Although Johnson did not study parallax, the detection of finite
source effects was considered. Of note is the cumulative event rate for each FFP mass
model as a function of ρ

u0
, which suggests that for the fraction of Earth mass FFP events in

this work with measureable finite source effects (approximately 20%), our event selection
criteria allows for ρ

u0
∼ 0.3. This is also consistent with the Jupiter event rate, with only

4% exhibiting finite source effects in this work and ∼ 5% for a 300M⊕ FFP in Johnson’s
study. Another point of comparison is the predicted event rate using only signal-to-noise
event selection criteria. Johnson reports, for six 72 day ROMAN observing seasons at
an FFP occurrence of one per main sequence star, a cumulative event rate of 88.3 Earth
mass FFPs. Correcting for FFP occurrence and observation time, this work predicts 93.6
Earth mass FFPs, a 6% increase. For Jupiter mass FFPs, this work predicts 1764 events,
while Johnson predicts 2200, a 20% decrease. This difference is driven primarily due
to the difference in event selection criteria, with Johnson using a more strict threshold
of ∆χ2 > 300 and the Galactic model employed to produce the FFP lenses. The former
factor tends to favour the rates in this work, while the effect of the latter is harder to
discern due to the complexity of the Besançon model, but is likely responsible for the
larger Jupiter mass detection rate.
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With potentially dozens of FFP mass measurements per annum of a joint EUCLID-
ROMAN mission, it is clear that the next generation of microlensing surveys offer a unique
opportunity to characterise the FFP mass distribution, or in the case of a smaller occur-
rence rate than proposed by the Sumi or Mróz models, provide bounds on the mass
distribution to a precision greater than can be achieved through direct imaging. As such,
this proposed mission has the potential to discover the existence of a new component to
our Galaxy, which will provide a deeper insight into the formation of planets around the
cosmos.

In spite of this promise, one key question remains on the feasibility of such a mission:
how realistic is a dedicated, purely space-based microlensing survey? We shall now con-
sider the results of a previous such example by an unlikely protagonist, the Kepler Space
Telescope (KEPLER), famous for its hoard of exoplanets detected via the transit method.
The fact that a space-based observatory not optimised for microlensing science, running
on faulty reaction wheels, has been used for a dedicated microlensing mission is surpris-
ing and its results shall be discussed in chapter 4.
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Chapter 4

Exoplanets From Kepler K2
Campaign 9

From the 22nd April until the 2nd July 2016, during the KEPLER K2 science mission, the
telescope performed a two part microlensing survey of the Galactic Bar (Henderson
et al., 2016), the 9th campaign of the K2 mission (K2C9). This particular survey cov-
ered a 3.9deg2 region, with its superstamp shown in figure 4.1, the results of which were
analysed by McDonald et al. (2021) in the work Kepler K2 Campaign 9 - I. Candidate short-
duration events from the first space-based survey for planetary microlensing, of which the writer
is a coauthor. The primary aim of this study was to search for FFP candidates, with the
initial work done by Ian McDonald involving passing the 3,752,652 lightcurves found
by K2C9 through a rigorous filtering pipeline to remove transient events caused by phe-
nomena such as cosmic rays and asteroids, as well as removing lightcurves with a low
signal-to-noise. From the initial sample of lightcurves extracted from the survey, 8,808
short timescale microlensing events satisfying u0 < 5 and 0.06 < tE < 10 days were
found (assuming a PSPL model). After a thorough filtering process, five events were
found which had not been previously detected in other microlensing surveys, with nine
events having already been discovered by OGLE and a further 13 having been discovered
previously by KMTNet. One of the five novel events exhibited a binary caustic crossing
anomaly, indicating a potential bound object rather than an FFP, which we shall discuss
shortly. Another event, also discovered by KMTNet, exhibited a lightcurve better de-
scribed by a cataclysmic variable. This left a total of 25 short timescale FFP candidate
events detected by K2C9.

One factor complicating the analysis of K2C9 photometry, is a problem inherent to
any survey done during KEPLER’s K2 mission. This is the increased residual angular mo-
mentum of KEPLER caused by the failure of half of its reaction control wheels. Under K2
conditions, the telescope maintains its roll orientation using differential photon pressure
from the Sun on its solar panels; however due to the continued degradation of its reaction
wheels, maintaining a constant pointing direction remains difficult and the consequences
of this are borne on the quality of the collected photometry, manifesting as periodic flux
variations on top of the variation induced by the microlensing event’s magnification.
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FIGURE 4.1: Shown is the K2C9 superstamp inside which the survey’s events were found,
superimposed over a 2MASS image of the Galactic center aligned in equatorial coordinates,
extracted using the Aladin tool (Bonnarel et al., 2000). The boundary of the superstamp is
outlined in blue, with the exterior darkened for contrast. The location of K2-2016-BLG-0005,
a planetary binary event found solely by KEPLER, is marked with a red cross for reference.
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A second difficulty of analysing candidate microlensing events using KEPLER is the
angular size of the detector pixels, which for KEPLER is 3.98”, compared to OGLE’s Las
Campanas Observatory with 0.26” per pixel or the KMTNet observatories at 0.4” per
pixel, a salient contrast highlighting KEPLER’s lack of optimisation for microlensing sur-
veys. A consequence of these comparatively large pixel sizes is the introduction of sig-
nificant levels of blending from other source stars under the target pixel. This means it is
often not possible to fit a standard PSPL model to extract tE in an attempt to characterise
timescale distribution of the event sample as a proxy for the FFP mass distribution. A de-
generacy between u0 and tE appears and events are typically only detected when u0 � 1
in order for the event peak to appear above the photon noise generated by the blending
flux. To characterise such events, we must instead use a degenerate model, using the
parameters

teff = u0tE, (4.1)

F′ =
F0

u0
, (4.2)

where teff is the effective timescale, F0 the un-magnified base flux and F′ the effective base
flux. The observed flux, in the limit of u0 → 0 is thus given by

F(t) =
F′√

1 + (t−t0)2

t2
eff

. (4.3)

Using this degenerate PSPL model, the teff, t0 and F′ were fit by the writer to 21 of the 26
FFP candidate lightcurves from K2C9. For the events found by both KMTNet and OGLE,
the lightcurves and corresponding degenerate models are shown in figures 4.2 and 4.3
respectively, with best fit model parameters for all 25 candidates recorded in table 4.1,
with the remaining lightcurve likely caused by a cataclysmic variable and hence excluded
from this analysis.

The significance of these results becomes more apparent when modelling the distri-
bution of teff using MaBµlS-2 and the Besançon Galactic model. Much like modelling a
comparison with the OGLE-IV survey in chapter 2 and the FFP analysis using the EUCLID

and ROMAN survey characteristics in chapter 3, another bespoke simulation was used to
model the expected teff distribution of K2C9. Using values from Koch et al. (2004) which
predict a photometric precision of 14ppm after a 6.5 hour exposure of a 12th magnitude
star, this yields a flux count of 2.1 × 105e−s−1 (Van Cleve & Caldwell, 2016) and zero-
point magnitude of mzp ∼ 25.3. Using an exposure time of texp = 1620s (Penny et al.,
2017), a signal-to-noise at event peak of S/N > 50 was mandated. A more involved time
integrated signal-to-noise criterion was decided against, primarily due to the fact that in-
accuracies between the simulation and empirical data are driven by the lack of detection
efficiency calculations, which are more complex and go beyond the scope of this work,
hence the more simplified event selection adopted by Specht et al. (2020) for use by the
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FIGURE 4.2: The K2C9 photometry for the 12 FFP candidate events which were also found
by KMTNet are shown in blue with associated errorbars, along with the degenerate model
from equation 4.3 overlayed in a solid red line. The particular KMTNet event name is shown
at the bottom of each plot.
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FIGURE 4.3: Same as figure 4.2, but for the nine events found by OGLE. The effect of KE-
PLER’s deteriorating pointing stability is evident in photometry for OGLE-2016-BLG-0914,
where the recorded flux fluctuates wildly as the source star passes over the varying response
profile of a pixel.
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Event Name teff (days) t0 (BJD - 2450000) F′ (counts)

K2C9-2016-BLG-0001 0.0535+0.0037
−0.0034 7511.4562+0.0040

−0.0041 119.5+4.8
−4.7

-0002 0.0168+0.0009
−0.0008 7544.5050+0.0009

−0.0009 313.5+10.0
−9.6

-0003 0.0616+0.0083
−0.0072 7522.9878+0.0059

−0.0061 75.0+5.5
−5.2

-0004 0.0360+0.0042
−0.0037 7558.0645+0.0036

−0.0035 109.3+7.3
−7.0

OGLE-2016-BLG-0559 0.8778+0.0055
−0.0051 7507.5719+0.0050

−0.0051 406.1+1.5
−1.5

-0770 0.8439+0.0066
−0.0065 7510.6247+0.0065

−0.0064 326.5+1.5
−1.5

-0795 0.3542+0.0010
−0.0010 7512.6433+0.0010

−0.0010 1700.9+2.9
−2.9

-0863 0.4088+0.0064
−0.0063 7519.6990+0.0065

−0.0065 197.3+1.8
−1.8

-0878 0.3025+0.0033
−0.0032 7525.4461+0.0032

−0.0033 363.6+2.3
−2.3

-0885 0.5693+0.0034
−0.0035 7525.7154+0.0030

−0.0030 641.8+2.2
−2.2

-0914 0.7657+0.0061
−0.0061 7541.9867+0.0060

−0.0060 373.1+1.8
−1.8

-1231 0.2555+0.0056
−0.0055 7569.6563+0.0061

−0.0061 220.0+2.9
−2.9

-1245 0.4140+0.0177
−0.0165 7568.1393+0.0166

−0.0170 86.5+2.2
−2.1

KMT-2016-BLG-0007 0.1451+0.0002
−0.0002 7511.9962+0.0002

−0.0002 3259.4+3.4
−3.4

-0025 1.0980+0.0067
−0.0068 7561.7135+0.0069

−0.0067 316.7+1.2
−1.1

-0092 1.8584+0.0209
−0.0215 7542.9063+0.0203

−0.0215 138.1+0.9
−0.9

-0095 1.5041+0.0096
−0.0096 7517.0269+0.0091

−0.0092 266.1+1.0
−1.0

-0117 0.6150+0.0038
−0.0037 7506.5315+0.0036

−0.0038 459.8+1.6
−1.6

-0128 0.3085+0.0022
−0.0021 7566.6109+0.0022

−0.0022 568.5+2.4
−2.4

-0133 0.3346+0.0035
−0.0035 7562.6527+0.0039

−0.0039 366.6+2.4
−2.3

-0138 0.6113+0.0016
−0.0016 7505.6835+0.0017

−0.0017 1335.2+2.0
−2.1

-0150 0.7195+0.0011
−0.0011 7557.4914+0.0012

−0.0012 2346.0+2.2
−2.2

-0162 0.2155+0.0007
−0.0007 7504.1241+0.0006

−0.0006 1884.7+3.6
−3.5

-2554 0.5190+0.0115
−0.0109 7539.5950+0.0121

−0.0120 139.3+1.0
−1.0

-2583 0.1986+0.0043
−0.0043 7507.2694+0.0048

−0.0048 213.8+2.8
−2.7

TABLE 4.1: The best fit parameters for the K2C9 FFP candidate events found by the pipeline
described in McDonald et al. (2021), using the flux model from equation 4.3. Events are
sequestered by survey, with K2C9 events at the top, OGLE in the middle and KMT at the
bottom.



88 Chapter 4. Exoplanets From Kepler K2 Campaign 9

general tool.
The K2C9 campaign was simulated over a region approximating the survey’s super-

stamp near the Galactic bar for three different models: a purely stellar and Brown dwarf
mass population and the Mróz and Sumi FFP population models examined in chapter
3. For each model, two scenarios were investigated, namely a short timescale simulation
using the constraint 0.06 < tE < 10 days and another with unbound tE. In all scenarios,
the threshold maximum impact parameter ut was set to one. To simulate a teff value,
a u0 value was uniformly sampled in the range 0 → 1 for each valid lens-source pair.
The output of these simulations came in the form of a relative event rate as a function of
teff, with the peak event rate for the unbound models normalised to unity. The results of
these simulations are shown in figure 4.4, overlayed with the fitted teff of the novel K2C9,
KMTNet and OGLE-IV short timescale events.

As expected, all short timescale simulations terminate at 10 days, with a maximum
rate of teff ' 10× 〈u0〉 = 5 days, consistent with a mean u0 = 0.5 due to uniform sam-
pling, while the teff distribution of unconstrained models continues further to the right
of the figure. The FFP models are shown superimposed on top of the regular stellar mass
models to illustrate their contributions to the total event rate. Although without a proper
measurement of tE and by extension ML, it is not possible to characterise the mass distri-
bution of K2C9 short timescale events, they are nonetheless consistent with the relative
predicted rates of the Mróz model for the novel K2C9 events and the Jupiter mass Sumi
model for jointly detected OGLE- and KMTNet-K2C9 events. To extend this work, a more
rigorous analysis taking into account the detection efficiency of FFPs that closely models
the pipeline employed by McDonald et al. (2021) will be required to more thoroughly vet
the 22 events.

4.1 K2-2016-BLG-0005

Now that we have examined the work done to search for FFP candidates using KEPLER,
we shall now return to the remaining event discovered in the K2C9 data which showed
evidence of lens binarity: K2-2016-BLG-0005, which was studied in a follow up paper, Ke-
pler K2 Campaign 9: II. First space-based discovery of an exoplanet using microlensing (Specht
et al., 2022). This event showed a well sampled caustic crossing anomaly on top of an
underlying PSPL curve during the first subcampaign of K2C9, the analysis of which in-
volved a complicated fitting process. Its location is indicated in figure 4.1 with a red cross,
at RA = 17h59m31.16s, Dec = −27◦36′26.90”.

The 30 minute observing cadence of K2C9 resulted in a total of 1,150 data points
sampled over the duration of the K2-2016-BLG-0005 event, shown in figure 4.5. The
caustic crossing event begins around t = BJD − 2450000 = 7515 days and ends shortly
after t = 7519 days, with the caustic entry reaching a lower peak magnification than the
exit; a subtle but salient fact when fitting a binary model, due to the magnification map
structure of the differing caustic topologies. Over this time period, KEPLER gathered 180
data points.
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FIGURE 4.4: The relative event rates of various models are shown, assuming K2 survey
optics and ut = 1. The solid lines show the event rates for events with 0.06 < tE < 10days,
while the dotted lines show the equivalent for the full distributions. At the bottom of the
figure, four vertical lines representing all candidate FFP events from K2C9 not previously
discovered by other surveys mark their effective timescales, while the dotted vertical lines
represent the 22 teff of events found previously by OGLE and KMTNet.
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FIGURE 4.5: The K2C9 photometry gathered for the K2-2016-BLG-0005 event, with associ-
ated errorbars, is shown on top of the best fit binary model (black solid line). Time is recorded
in terms of Barycentric Julian Date (BJD), which represents a small correction on the Julian
date by accounting for the Earth’s motion about the Earth-Sun barycentre. On the bottom
are shown the residuals of the data relative to the model. The K2 flux scale is shown on
the right, which has a complicated non-linear, non-logarithmic scaling which terminates at a
magnitude of m = 19.3.

Although the high cadence of K2C9 aids in the characterisation of the binary model
and the evaluation of ρ, which is essential for obtaining a lens mass measurement, a
parallax signature is still required. To this end, photometry from five ground-based sur-
veys of K2-2016-BLG-0005 was obtained, allowing for a space-based measurement of the
microlensing parallax πE. The surveys contributing to the ground-based photometry
were OGLE (Udalski et al., 2015), KMTNet (Kim et al., 2016), MOA (Bond et al., 2001),
CFHT (the Canada-France-Hawaii Telescope, Zang et al. (2018)) and UKIRT (the United
Kingdom Infrared Telescope, Shvartzvald et al. (2017)). The superposition of all ground-
based datasets is shown in figure 4.6, where it is clear that the binary model is different
due to the space-based parallax effect. The caustic crossing is shorter, with a duration of
∼ 2 days and a notable cusp approach around t = 7512.5 days lasting a day. The cusp
approach is well sampled by KMTNet, while the caustic crossing itself is more sparse.
Both features of the anomaly span a different time range from the KEPLER dataset, over
7511 days < t < 7518 days. As all ground-based photometry was extracted using a
difference image analysis (Alard, 2000), the photometric error was underestimated. This
was corrected for by using techniques discussed in Skowron et al. (2016) for the OGLE-IV
dataset and Yee et al. (2012) for all other datasets.

Data from OGLE was collected during the OGLE-IV survey in the Johnson-Cousins I
band filter and spanned 7425 < t < 7692, with a total of 1642 data points and median un-
certainty of 0.116 magnitudes. OGLE’s Las Campanas Observatory has a 1.3m diameter
mirror and a field of view of 1.4deg2. Over the anomaly timespan for the ground model,



4.1. K2-2016-BLG-0005 91

Time - 2450000

17.8

18.0

18.2

18.4

18.6

18.8

19.0

19.2

19.4

M
ag

n
it

u
d

e

OGLE I band

CFHT g band

CFHT i band

CFHT r band

MOA R band

KMT BLG03 (Aus.)

KMT BLG03 (Chile)

KMT BLG03 (S.A.)

KMT BLG43 (Aus.)

KMT BLG43 (Chile)

KMT BLG43 (S.A.)

UKIRT

7510 7512 7514 7516 7518 7520 7522
Time (BJD - 2450000)

−0.5

0.0

0.5R
es

id
u

al
s

FIGURE 4.6: Same as figure 4.5, but for the ground photometry. In black is shown the ground-
based binary model, which is markedly different due to the large baseline between KEPLER
and the Earth. This difference allows for a more precise measurement of the microlensing
parallax, given the short timescale features of the binary caustic crossing. Note the shorter
width of the caustic crossing, as well as the secondary peak to the left around t = 7512.5
days, which represents a caustic cusp approach of the source; another important marker
when constraining the binary model with parallax.

OGLE produced 45 datapoints.
The CFHT telescope was used in tandem with KEPLER from the onset of the K2C9

survey to provide supplementary data that could assist in a space-based parallax mea-
surement. Photometry came from three different filters, namely the CFHT g, r and i
bands. The telescope, situated atop Mauna Kea in Hawaii, has a 3.58m diameter mirror,
a field of view of 0.94deg2 and resolution of 0.187” per pixel. CFHT gathered 183 data
points across each of the three filters used, with 29 epochs within the binary anomaly
timespan.

The contribution from the KMTNet microlensing survey came from three separate
telescopes in the Southern hemisphere, one each in Australia, Chile and South Africa
(Kim et al., 2018b). In addition to each observatory, data for K2-2016-BLG-0005 was dis-
tributed over two KMT fields, KMT-BLG-03 and KMT-BLG-43. This gave a total of six
contributions from KMTNet to the ground-based lightcurve, totalling 4,634 datapoints
with 369 epochs within the anomaly timespan. Each telescope in the KMT Network has
a 1.6m diameter mirror, a field of view of 4deg2 and angular resolution of 0.4” per pixel.
Observations are made in the Johnson-Cousins I band filter.

For the MOA contribution, 3703 data points were collected, with 84 epochs inside the
anomaly timespan. The Mt. John Observatory uses a 1.8m telescope, covering a 2.2deg2

field of view at a resolution of 0.58” per pixel. The filter used is the MOAR band.
The final photometry contribution to the ground-based data comes from UKIRT. Like

CFHT, the UKIRT telescope is located on Mauna Kea, and features the largest mirror used
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FIGURE 4.7: The K2-2016-BLG-0005 event is shown in its entirety, including the larger PSPL
trend from the primary lens, with all photometry contributions from both ground-based ob-
servatories and KEPLER. The best fit ground-based model is shown as a solid black line, with
the satellite model in a dashed black line. It is evident on this scale how powerful a caustic
crossing can be in its contribution to a microlensing event, given the large magnification of
the anomaly relative the peak of the underlying PSPL curve.

for data collection of K2-2016-BLG-0005 at 3.8m. It also has the smallest field of view, at
0.19deg2 and a resolution of 0.4” per pixel. A total of 139 measurements were taken over
the duration of the event in the near-infrared Johnson-Cousins H band, with 11 epochs
inside the anomaly timeframe. The super position of all photometry used in this analysis
is shown across

4.2 The binary parameterisation

Given the small width of the caustic crossing, on the order of a few days, compared to
the timescale tE of the underlying PSPL event, the fitting process was performed using an
alternative "planetary" parameterisation of the binary model, akin to the "Caustic Region
of INfluence" (CROIN) parameterisation used by Penny (2014), which recasts the famil-
iar s, q and α into a new set of parameters, namely the minimum impact parameter to
the planetary caustic normalised to the planetary Einstein radius u0,pl, the time of clos-
est approach of the source to the centre of the planetary caustic, t0,pl and the planetary
Einstein radius crossing time tE,pl. This casting of the binary parameterisation in terms of
proximity to the planetary caustic results in a faster fitting process when the secondary
(planetary) lens is small compared to the primary (host star), giving finer control over tra-
jectory of the source. This also allows for a much more straight forward choice of initial
binary parameters, with the value of t0,pl chosen to be centred, by visual inspection, on
the caustic crossing anomaly in the lightcurve, tE,pl chosen to be the width of the caustic
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TABLE 4.2: Details on the ground-based telescopes used in the analysis of K2-2016-BLG-0005.
The median error in magnitudes is also included.

Telescope/Field
Diameter

(m)
Camera

FOV (deg2)
Pixel scale

(arcsec/pix)
Filter

No. epochs
(7511-7518)

Median
Error

CFHT Maunakea 3.58 0.94 0.187 g 9 0.274
i 10 0.113
r 10 0.162

KMT Aus./BLG03 1.6 4.0 0.40 I 78 0.210
KMT Aus./BLG43 I 81 0.174
KMT Chile/BLG03 1.6 4.0 0.40 I 40 0.216
KMT Chile/BLG43 I 40 0.196
KMT S.Africa/BLG03 1.6 4.0 0.40 I 72 0.195
KMT S.Africa/BLG43 I 58 0.178
MOA Mt. John 1.8 2.2 0.58 MOAR 84 0.528
OGLE Las Campanas 1.3 1.4 0.26 I 45 0.116
UKIRT Maunakea 3.8 0.19 0.40 H 11 0.247

anomaly and u0,pl simply set to zero to force the binary model to pass directly over the
planetary caustic.

Although this parameterisation is useful for the fitting process, it was still necessary
to convert back to the standard s, q and α formalism (as defined in section 1.7) at runtime
due to incompatibilities with the code used and also for presenting results due to the fa-
miliarity of the scientific community with the standard formalism. The conversion is also
dependent on the topology used (either close or wide), as the wide topology only features
a single planetary caustic co-linear with the binary axis, while the close model features
two off-axis caustics, with both caustics requiring a different, more complex conversion.
Regardless of the topology chosen, some parameters are used throughout:

γ =
tE,pl

tE
, (4.4)

υ = u0 + γu0,pl, (4.5)

τ =
t0,pl − t0

tE
, (4.6)

u′ =
√

υ2 + τ2, (4.7)

q = γ2 (4.8)

For the wide model, the conversions for s and α are given by

s =
1
2

(
u′ +

√
u′2 + 4

)
, (4.9)

α = 360◦ − 180◦

π
× arcsin

(
υ

u′

)
. (4.10)

The first close solution, where the trajectory of the source takes it over the lower planetary
caustic, requires more parameters to be defined,
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δ = u′2 + 2 + 4(4γ2 + 1)(u′2 − 1), (4.11)

β = arctan
(

τ

u0

)
, (4.12)

s =

√
−u′2 + 2

√
δ

2(u′2 − 1)
, (4.13)

η =
2γ

s
√

1 + s2
, (4.14)

θ = arctan
(

sη

1− s2

)
, (4.15)

α = 90◦ +
180◦

π
× (θ + β). (4.16)

The final conversion was required for the second close topology model, where the source
trajectory takes it across the upper planetary caustic, but also approaches the lower plan-
etary caustic from the right, albeit typically too far to produce a notable cusp approach.
A few more parameters were defined for this final conversion, which also involved up-
dating the parameter u0 to a new value given by u0,new, via

ν =
16q

τ2 + (u0,pl − u0)2 , (4.17)

s =

√√
4ν + 1− 1

2
, (4.18)

α = 90◦ − 180◦

π
× arctan

(
u0,pl − u0

τ

)
, (4.19)

u0,new =

(
s +

1
s
− η

tan(π − αrad)

)
sin(π − αrad)− u0,pl, (4.20)

where αrad = 180◦
π × α is simply the source trajectory angle relative to the binary axis,

converted from degrees into radians. Throughout this chapter, parameters from both
binary parameterisations will be used depending on the context.

4.3 The fitting process

Numerous tools were used to fit the binary microlensing model to the event’s photome-
try. The process of iteratively refining the model was performed by MulensModel, a tool
used to simulate and fit data to microlensing events (Poleski & Yee, 2019). MulensModel
itself uses the VBBinaryLensing (VBBL) code to evaluate the magnification of a binary
lens with finite source effects (Bozza et al., 2018); a contour integration method relying
on Green’s theorem (Bozza, 2010) to evaluate the boundaries of the multiple images of the
source produced by binary lensing. The calculation of the source boundaries relies on an
efficient root finding algorithm by Skowron & Gould (2012). From the boundaries of each
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image, VBBL provides an accurate estimation of the magnification, which in this context
is the ratio of the cumulative area of each image to that of a standard circular source.
VBBL can also evaluate magnifications with a limb-darkening model, which was used
in this analysis, although this significantly increased computation time and informed the
precise fitting strategy as discussed in this section.

Acquiring the best fit binary microlensing model involved multiple stages. Each stage
involving the MulensModel fitting process is characterised by a set of starting parameters
with associated Gaussian distribution widths, along with the total number of iterations
and random walkers used. For stages designed to acquire good initial guesses for later
refinement, a setup with more random walkers with fewer iterations was used. The prod-
uct of total iteration count and random walker count was contingent on the complexity
of the model being fitted for at that particular stage, in order to produce results in an
acceptable timeframe.

As the binary anomaly (the caustic crossing and cusp approach) only concerns a small
part of the overall lightcurve, the first stage involved fitting a PSPL model to the ground-
based data only, by omitting datapoints between 7511 days < t < 7518 days. This pro-
vided the initial starting values for u0, t0 and tE. This first stage used a total of 20 walkers
and 10,000 steps, yielding first estimates of t0 = 2457487.61± 0.03 days, u0 = 0.58± 0.01
and tE = 85.6± 1.0 days.

For stage two, the fitting process was quadfurcated to test four candidate binary mod-
els, each representing a possible degenerate solution to the observed data. Two of these
models were of the wide caustic topology, with one assuming the regular setup of bi-
nary parameters and the other representing the ecliptic degenerate solution, outlined
by Poindexter et al. (2005). This degeneracy is the result of the event lying close to the
ecliptic plane at β = −4.16◦, such that the parallax effect from Earth’s acceleration lies
predominantly in the East/West direction, resulting in a symmetry between solutions
with relative proper motions reversed in the North/South directions. As such, this eclip-
tic degenerate wide model was seeded with the same starting parameters except for the
transformations u0 → −u0, α→ −α and πE,N → −πE,N.

For the close models, the predominant degeneracy was between the passage of the
source over the two different secondary (planetary) caustics. Although fits of the close
model produced solutions which obeyed s < 1, the mass ratio q often produced resonant
solutions when the source was initially made to pass near the upper planetary caustic,
as shown in figure 4.8, which shows the best fit caustic models for the standard wide
solution and two close solutions.

The binary models provided the planetary parameters t0,pl, tE,pl and u0,pl for each of
the four degenerate solutions, using starting values of BJD = 2457516 days, 2 days and
0 respectively, using the justification outlined in section 4.2. Finite source effects were
also introduced at this stage, but via the parameter t∗ = tEρ, the source radius crossing
time. Much like the planetary parameterisation, using t∗ allows for a faster convergence
to a best fit value as it helps to characterise the width of the caustic crossing peaks in the
data. An initial guess of t∗ = 0.01 days was used, assuming a typical value of ρ = 10−4.
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FIGURE 4.8: The magnification maps for the best fit standard wide solution (left column)
and two close solutions (middle and right columns) are shown on a log-scale to compress
the dynamic range for illustrative purposes. For the upper planetary caustic close solution,
although the binary parameter s remained below unity, the mass ratio q rose high enough
such that the planetary and primary caustics joined into a resonant topology (the conditions
required for this were shown in figure 1.8). The caustics are shown above the magnification
map in solid blue lines, with the ground model trajectory indicated with a solid green line
and satellite trajectory indicated with a dashed green line. Arrow heads on the trajectories
are included to illustrate the direction of motion of the source relative to the lens system. The

primary lens is indicated with a cyan star at a location X = − Mpl
Mpl+M∗ , while the secondary/

planetary lens is indicated to the right with a cyan circle with the center of mass at X = 0. The
bottom row shows a zoomed-in window of the top row, focusing on the caustic crossings.

This stage used the same number of walkers as the first stage of 20, but fewer steps of
4,000 due to the longer time required to numerically compute the finite source binary
magnification compared to the simple analytical PSPL magnification.

The third stage is a brief detour from the optimisation of the microlensing model. To
progress with the fitting process, the K2C9 photometry was required to fit a joint ground-
satellite parallax model. To do this, the obstacles highlighted previously about the diffi-
culties of extracting microlensing events from a K2 survey needed to be overcome. The
modified causal pixel model (MCPM) (Poleski et al., 2019) specifically for dealing with
these hurdles, was employed. It divides the flux measured by KEPLER into two com-
ponents, namely a flux contribution from the source star and a flux contribution from
instrumental phenomena. For the first contribution, MCPM used the wide ground-based
model as an initial approximation to the time-dependent variation of the source flux.
Both the microlensing model and data are jointly fit using MulensModel to evaluate the
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binary magnification and EMCEE (Foreman-Mackey et al., 2013), to perform the fit. The
second contribution to the observed flux is induced by the varying pointing direction of
KEPLER, which is determined by examining pixels nearby the target at the same epoch,
using the causal pixel model method described in Wang et al. (2016). The extracted result
represents the photometry of the magnified source signal in differential K2 flux counts,
with associated errors, which could then be used in the next stage.

The introduction of parallax to the microlensing model adds two new parameters:
πE,E and πE,N, the parallax components in the Eastern and Northern directions, respec-
tively, both initially set to zero as a starting condition for the fourth stage. This brought
the total number of fitted microlensing parameters to nine, excluding the scaling and
blending flux parameters for each dataset. This large number of parameters required a
larger number of walkers at 100, required to explore the larger parameter space. In con-
junction with the greater computational complexity of evaluating a finite source binary
parallax model, the total number of steps was reduced to 500 due to the computation
time required. This lower number of steps and higher number of random walkers al-
lowed for a greater exploration of candidate global best fits, but with fewer steps, a less
precise result with large non-Gaussian errors, mandating another fitting stage.

This fifth and final stage introduced limb darkening to the model, with the linear limb
darkening parameters evaluated for each filter used in the analysis using data from Sing
(2010). Although the limb darkening parameters were kept constant throughout the fit-
ting stage, this once more had a significant impact on computation speed. Nevertheless,
the number of walkers was reduced to 20 and the number of stages increased to 5,000 to
produce the most accurate candidate solutions for each of the four models tested, taking
approximately two days to complete for each model.

The fitted parameters for each tested model are shown in table 4.3, which shows the
best performing solution is produced by the regular wide caustic model, using a metric
of χ2. Although the relative difference in χ2 between the models is small, the main driver
this difference is the caustic crossing anomaly which lasts only ∼ 1/30th the span of the
ground-based data, and ∼ 1/6th the span of the full K2C9 photometry. The 2D distri-
butions for the best 50% performing samples of the close, resonant and wide solutions
in the binary lensing q, s parameter space are shown in figure 4.9. The ellipsoidal shape
of the wide structure and the close proximity of the best fit to the ellipse’s centroid help
to confirm the validity of the wide model solution in contrast to the close and resonant
solutions. Similarly, the 1D and 2D projections for each of the wide model parameters of
the best 50% performing samples produced throughout the fit are shown in a corner plot
separated across figures 4.10, 4.11 and 4.12. The Gaussian nature of these distributions
demonstrates the success of the wide model at finding a local minimum in the parameter
space, as well as showing correlations between the different parameters.
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FIGURE 4.9: The distributions of the top 50% best performing samples extracted from the
fitting process and plotted in an s, q parameter space are shown for the close, resonant and
wide solutions. The blue line represents the close/resonant boundary, while the orange line
represents the resonant/wide boundary, following from equations 1.34 and 1.35 from chap-
ter 1. For each topology solution, a zoomed inset is shown with that topology’s best solution
indicated with a blue cross. The best performing model, the wide topology, exhibits a mostly
symmetrical ellipse structure with the best solution aligning closely with that ellipse’s cen-
troid. The second best performing model, the close topology, features a more irregular shape
with more pronounced noise present throughout the structure and a best solution offset from
the structure’s centroid. The worst performing solution, the resonant topology, exhibits a
highly irregular structure with its main cluster of samples noticably offset from its best per-
forming model.

Model t0 (days) tE (days) t∗ (days) u0 t0,pl (days) tE,pl (days) u0,pl πE,E πE,N χ2

Wide 7486.6+0.9
−0.9 76.4+2.2

−2.1 0.143+0.003
−0.003 0.620+0.008

−0.008 7515.41+0.02
−0.02 3.24+0.03

−0.03 −0.532+0.006
−0.006 −0.045+0.002

−0.002 −0.1103+0.003
−0.003 9839

Wide-Ecliptic 7488.0+0.8
−0.9 73.7+2.2

−1.9 0.143+0.003
−0.004 −0.639+0.008

−0.008 7515.45+0.02
−0.02 3.23+0.03

−0.03 0.525+0.006
−0.006 −0.076+0.003

−0.003 0.090+0.002
−0.002 9860

Close 7485.3+0.9
−0.6 76.1+2.8

−2.4 0.120+0.004
−0.004 0.62+0.02

−0.02 7514.2+0.1
−0.2 15.0+0.6

−0.6 0.09+0.06
−0.07 0.015+0.005

−0.004 0.100+0.003
−0.003 10532

Resonant 7474.4+1.2
−1.1 111.4+4.7

−2.6 0.128+0.006
−0.010 0.89+0.02

−0.03 7522.3+3.4
−4.0 32.7+1.0

−1.3 −0.027+0.002
−0.001 −0.035+0.002

−0.002 0.060+0.001
−0.002 11147

TABLE 4.3: The fitted PSPL, binary, finite source and parallax model parameters are tabulated
above for the best fit solutions of each of the four tested models. The χ2 for each is shown in
the final column.
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FIGURE 4.10: The corner plot displaying the distributions of the best 50% performing solu-
tions from stage five for the standard wide caustic model, for the parameters t0, u0,tE, t∗ and
t0,pl is shown. The median value of each parameter is shown above the 1D histograms along
the diagonal, as well as the associated errors. We can see that the distribution of each pa-
rameter is approximately Gaussian, suggesting a healthy fit. The correlations between some
parameters are also visible, such as between tE and t0, as the fitting algorithm attempts to
constrain the location of the caustic crossing. Distributions of the remaining parameters are
shown in figures 4.11 and 4.12. These corner plots were generated using code developed by
Foreman-Mackey (2016).
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FIGURE 4.11: Shown above is the continuation of figure 4.10, for the parameters u0,pl, tE,pl,
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−0
.5
55

−0
.5
40

−0
.5
25

u
0
,p

l

3.
15

3.
20

3.
25

3.
30

t E
,p

l

−0
.1
20−0
.1
15−0
.1
10−0
.1
05−0
.1
00

π
E
,N

−0
.0
52

−0
.0
48

−0
.0
44

−0
.0
40

π
E
,E

−3
.0
−1
.5 0.

0
1.
5

3.
0

∆t0

17
.6

18
.4

19
.2

20
.0

20
.8

f s
,s

a
t

0.
60

0

0.
61

5

0.
63

0

0.
64

5

u0

72 76 80 84

tE

0.
12

8

0.
13

6

0.
14

4

0.
15

2

t∗

0.
32

0.
36

0.
40

0.
44

0.
48

∆t0,pl

FIGURE 4.12: Shown are the final 2D joint distributions of parameters from figures 4.10
and 4.11. Here, the strongest correlations between parameter pairs are shown, those being
(u0, u0,pl) and (tE, πE,N).



4.4. Analysis of the source 101

4.4 Analysis of the source

Having established the best microlensing model solution that fits the data, there remains
one important analysis before the planet and host mass can be extracted. The angular
diameter of the source θ∗ is required in concert with ρ to allow for the mass measurement,
which was evaluated in the CFHT g-i and r-i colours and calibrated to the PanSTARRS-
1 g, r and i filters (Magnier et al., 2020; Zang et al., 2018). This calibration produced
magnitudes of g∗ = 24.026 ± 0.013, r∗ = 22.332 ± 0.015 and i∗ = 21.360 ± 0.015. As
these values were not dereddened to account for the effects of interstellar extinction, a
correction was applied using the methodology outlined in Yoo et al. (2004) to acquire the
dereddened magnitudes of g∗,0 = 19.61± 0.05, r∗,0 = 19.15± 0.05 and i∗,0 = 18.97± 0.04.
This involved calculating the central colour-magnitude of red clump stars (Girardi, 2016)
within 60” of K2-2016-BLG-0005 as a standard candle to estimate the reddening effect,
which was evaluated as g− i = 3.03± 0.04, r − i = 1.03± 0.04 and i = 17.190± 0.007
and is shown in figure 4.13.

Using the dereddened source colours of g-i and r-i and the i-band magnitude, a re-
lation between colour and stellar surface-brightness outlined in Boyajian et al. (2012,
2013, 2014) was used to acquire the angular source radius θ∗. This was found to be
θ∗,g = 2.12±, 0.07µas in the g-band and θ∗,r = 1.79± 0.07µas in the r-band. These two
estimates of θ∗, although consistent within 3σ, provided sufficient tension that it was de-
cided to perform a further analysis on the CFHT-g and -r photometry to judge which
dataset provides a more accurate estimate. As a metric of this analysis, the sensitivity of
the scale flux fs of both datasets to individual data points was calculated, implying that
a higher sensitivity to single data points reduces the reliability of the filter’s dataset at
estimating θ∗. To calculate this, the microlensing parameters of the best fit wide model
found from section 4.3 were kept constant, while fitting fs and the baseline flux fb to a
dataset, omitting each datapoint for a different fit. The standard deviation of the scaling
fluxes for each band was then calculated, yielding σg = 0.07 for g-band and σr = 0.023 for
r-band, suggesting that the CFHT-g band photometry provides a more accurate estimate
of θ∗ and was henceforth chosen as the filter for evaluating the fiducial lens properties.

4.5 Analysis of the lens

Now that a source angular diameter had been established, the Einstein radius θE was
then calculated using the relationship

θE =
θ∗
ρ

= θ∗
tE

t∗
, (4.21)

giving a value of θE = 0.57± 0.03 mas. The value of ρ, acquired using t∗/tE, was found to
be 0.00187± 0.00007, which is a typical value for microlensing events. This fully resolves
the microlensing degeneracy between ML, θEand πE allowing for a direct lens mass mea-
surement, lens distance measurement, lens-source relative proper-motion measurement,
and by evaluating the binary parameters s and s using equations 4.8 and 4.9, we can also
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Lens
Mass (M�)

Planet
Mass (Mjup)

DL (kpc) µrel (mas year−1)
Projected

Separation (AU)
Semi-major
Axis (AU)

Period
(years)

s q

0.584± 0.031 1.10± 0.08 5.20± 0.23 2.71± 0.07 4.18± 0.27 4.4+1.9
−0.4 13+9

−2 1.414± 0.007 0.0018± 0.0001

TABLE 4.4: The properties of the lens are tabulated above, including the binary parameters s
and q. These are evaluated using the source properties of the CFHT-g band and the standard
wide binary solution.

obtain the planetary mass Mpl and physical projected separation a⊥ of the lens compo-
nents, given by

Mpl = qML, (4.22)

a⊥ = sθEDL. (4.23)

Although not directly obtainable from the microlensing model and source proper-
ties, the planet’s semi-major axis a and by extension orbital period P can be estimated
assuming a model for the normalised host-planet separation s. To this end, a Monte-
Carlo simulation was performed by a co-author of the paper, using the already obtained
microlensing model and lens parameters, along with a power law distribution of ln(s)
given by

dN
dln(s)

∝ sx, (4.24)

where the normalised separation was restricted to the range 0.1 < s < 10. The orbital
inclination and phase were sampled using a uniform distribution, assuming circular or-
bits. The power x was taken to be 0.49± 0.48 following Suzuki et al. (2016). This large
uncertainty drives the main contribution to the error on a and P, which were found to be
a = 4.4+1.9

−0.4AU and 13+9
−2 years. The final parameters of the lens are shown in table 4.4.

4.6 Conclusion

The significance of K2-2016-BLG-0005Lb is highlighted by the circumstances under which
it was discovered, namely by a space-based observatory, the Kepler Space Telescope,
which was not optimised for microlensing. The successful use of ground-based photom-
etry to provide a parallax measurement was crucial in characterising properties of the
lens system such as mass and distance. This discovery verifies the usefulness of future
space-based microlensing surveys, such as those by EUCLID and ROMAN, as outlined
in chapter 3, which promise to return a significant amount of science from their multi-
billion dollar investments, as well as highlighting the importance of joint surveys to assist
in resolving the microlensing parallax.

The properties of the host star, with a mass of 0.58± 0.03M� and relative proper mo-
tion of µrel = 2.7± 0.1 mas year−1 suggests a K-dwarf star in the Galactic disk lensing
a background source star in the Galactic bar. The planet discovered in this work also



4.6. Conclusion 103

1 2 3 4 5
gPS1 − iPS1

15

16

17

18

19

20

21

22

i P
S

1

FIGURE 4.13: The colour-magnitude diagram of stars within 60” of K2-2016-BLG-0005, in-
dicated with black dots, calibrated to the PanSTARRS-1 (PS1) system, is shown. The central
position of red clump stars is indicated with a red circle, with the source star as a green circle.
The cyan circle represents the baseline colour and magnitude of the object coinciding with
the location of K2-2016-BLG-0005. The blue circle represents the residual blending light.
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FIGURE 4.14: An updated version of figure 1.1 with K2-2016-BLG-0005Lb indicated by a red
cross. The similarity of K2-2016-BLG-0005Lb to Jupiter is clear from this vantage point.

shows a marked similarity to Jupiter, from our own Solar system, albeit with a mass
∼ 10% greater and a semi-major axis consistent with that of Jupiter’s, although with
large uncertainties due to uncertainties in the prior distribution of the binary separation
parameter. Its location in the planetary mass and semi-major axis parameter space, rela-
tive to previously discovered and confirmed exoplanets is shown in figure 4.14. This once
more proves the applicability of microlensing as an astute method of detecting exoplan-
ets beyond the snow line and once again bodes well for future dedicated microlensing
surveys by EUCLID and ROMAN. The mass of K2-2016-BLG-0005Lb is also significant in
this context, as planetary formation models predict that such planets are unlikely to be
found around low mass stars (Kennedy & Kenyon, 2008).

Although this event was well described by a binary lensing model, with the advent
of future dedicated microlensing surveys, it is inevitable that higher order lens systems,
such as trinary lenses with either a binary star host orbited by a bound planet, or the even
more tantalising possibility of a host star, orbited by an exoplanet, itself with a gravita-
tionally bound exomoon, will be detected. The introduction of additional lens objects
breaks the axial symmetry of the caustic structure about the primary/secondary axis and
significantly increases the number of possible topologies beyond the close, resonant and
wide variants. This added complexity significantly increases the computation required
to fit to the photometry of such an event and as such, requires innovative methods to
make this a practical venture, which shall now be discussed.
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Chapter 5

Complex Caustics

As discussed in chapter 4, we can use MulensModel to efficiently evaluate a finite-source
binary magnification with parallax considerations for good measure. Extending this to
trinary lens systems on the other hand is more difficult, not simply because of the larger
parameter space and hence degeneracies (Daněk & Heyrovský, 2019), but also due to
the time complexity of solving numerically for the magnification of trinary or higher
order lens systems. To understand the scale of the problem, we must first establish the
mathematical relationship between locations in the source plane φ and their equivalent
image locations in the lens plane θ. This is given by the lens equation for N point lenses
(e.g. Daněk & Heyrovský (2015)),

φ = θ− θ2
E

N

∑
n=1

µn(θ− θn)

|θ− θn|2
, (5.1)

µn =
Mn

∑N
k Mk

. (5.2)

Here, each vector has two components representing the angular coordinates of points
in either the source or lens plane from the vantage point of an observer on Earth. The
coordinates θn represent the locations of the lens components, while the parameter µn

represents the reduced mass of a lens component. Note that θE is calculated using the
total mass of the lens system in the case of multiple lenses,

θE =

√
4G
c2

DS − DL

DSDL

N

∑
n

Mn. (5.3)

If we wish to find the locations θi in the lens plane representing the multiple possible
images of a single location in the source plane, we must subsequently find the roots of
equation 5.1. In 2D vector notation, this is highly impractical and as such, a conversion
into complex numbers is often performed when dealing with a multitude of lenses, as
outlined by Witt (1990). This conversion works by using the natural orthogonality of the
real and imaginary axes to represent a two dimensional vector (normalised to θE),
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θ = θx x̂ + θyŷ→ z = x + iy, (5.4)

φ = φx x̂ + φyŷ→ w = p + iq, (5.5)

thus leading to a more malleable complex version of equation 5.1,

w = z−
N

∑
n

µn

z̄− z̄n
. (5.6)

Solving equation 5.6, although more mathematically feasible, is nonetheless a daunting
task for multiple lenses. Consider the form of the complex conjugate z̄ of a lens location:

z̄ = w̄ +
N

∑
n

µn

z− zn
, (5.7)

which can then be substituted back into equation 5.6 to acquire a lens equation purely in
terms of the complex lens location z,

w = z−
N

∑
n

µn

w̄ +
(

∑N
k

µk
z−zk

)
− z̄n

, (5.8)

which is a polynomial of order N2 + 1, with a maximum of 5(N − 1) valid images in the
lens plane, satisfying the original lens equation 5.6 and a minimum of N + 1. For a binary
lens system, this involves solving a 5th order polynomial. For a trinary or quaternary lens
system, this swells to a 10th or 17th order polynomial, respectively. Given that trinary lens
systems have been observed in the past, such as in Gaudi et al. (2008), it is not unrealistic
that with the advent of the large survey era of microlensing, we may observe such exotic
lens systems as a binary star host orbited by multiple Jupiter mass circumbinary plane-
tary lenses, such as found by Murat Esmer et al. (2022) using the transit method with the
Kepler Space Telescope. The possibility of finding such higher order lenses highlights the
importance of streamlining the fitting process for microlensing photometry.

Given that each root must be found and determined, an algorithm which resolves
every root of the polynomial must be used. A general method of achieving this is to
find the eigenvalues of the polynomial’s companion matrix, which at best has a time
complexity ofO(N3) (Banks et al., 2019). This means that in general, the time complexity
of solving for the image locations in the lens plane is O(N5), making a binary lens fit ∼
7.6 times faster than an equivalent trinary lens fit and∼ 32 times faster than a quaternary
lens fit.

A solution to this is to simulate the trajectory of light rays as they pass in reverse from
the observer, through the lens plane and into the source plane. By casting enough such
rays, a density map can be produced in the source plane with an amplitude proportional
to the lens system’s magnification map and an accuracy that increases with ray cast den-
sity from the lens plane. As evaluating the raycasting location in the source plane only
involves solving the lens equation to obtain w, the time complexity of the algorithm is
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O(MN), where the parameter M is the number of raycasts, a marked improvement over
direct evaluation, although at the cost of up to millions of raycasts. An example of a situa-
tion where raycasting is useful in resolving the microlensing magnification is the lensing
of quasars by clusters of stars in their host Galaxies, as suggested by Garsden & Lewis
(2010), who used a supercomputer to produce 2D magnification maps of lens systems
containing hundreds, thousands and millions of stars with billions of raycasts. We shall
now discuss a hypothetical application much closer to home, mere thousands of parsecs
away, involving alien civilisations.

5.1 The Earth Microlensing Zone

The prospect of alien civilisations cohabitating our Milky Way Galaxy has been explored
at length over the 20th and 21st centuries, in both science fiction and research. Precisely
how many we should expect to find is a similarly often discussed topic, popularised
by Frank Drake in 1961 via his famous Drake equation (Drake, 1961), which aims to put
bounds on this number by multiplying a series of successive terms, each restricting the
number of planets hosting alien civilisations through some natural mechanism,

N = R∗ × fp × ne × fl × fi × fc × L, (5.9)

with R∗ being the average star formation rate in the Milky Way, fp the fraction of stars
hosting bound planets (a value likely greater than 0.5, as suggested by Cassan et al.
(2012); Youdin (2011)), ne the total number of planets per stellar system which could po-
tentially support life (which may be as high as 50% for Earth mass planets in their host’s
habitable zone as shown in Bryson et al. (2021)), fl the fraction of those habitable worlds
which eventually go on to support life, fi the fraction of those life bearing worlds which
support life that evolves to become intelligent and develop a civilisation, fc the fraction of
those civilisations which emit technosignatures (Wright et al., 2022) which humanity can
detect and finally L, the duration over which such civilisations are capable of producing
such observable technosignatures.

The search for extraterrestrial intelligence (SETI, Cocconi & Morrison (1959)) repre-
sents the ongoing efforts by humanity to detect the presence of such alien civilisations.
Given the huge amount of data collected over decades by SETI related endeavors, the
question of determining the optimal locations for searches is often brought up. One way
of guiding such a decision is to employ game theory to determine regions of the Galaxy
where alien civilisations would be more likely to find the Earth, determine its habitabil-
ity and hence be more likely to send a signal our way. Examples of such an analysis
include work by Kerins (2021), who considered the regions of the Galaxy where an alien
telescope would be able to observe a transit of the Sun by the Earth, known as the Earth
transit zone (ETZ, Filippova et al. (1991); Heller & Pudritz (2016)). Similarly, one can
consider the Earth microlensing zone (EMZ), where our Sun is most likely to behave as a
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∆ξc

∆ηc

φc

Towards Earth

FIGURE 5.1: The dimensions of the central (primary) caustic are shown. The width ∆ξc and
height ∆ηc of the caustic structure are also shown, from equations 5.11 and 5.12 respectively.
The primary lens is located at the coordinates’ origin, with the cusp angle φc from equation
5.13 shown for the upper off-axis cusp. The true area of the central caustic is shown shaded
in a deep green, while the area Ac of the triangle approximant is shown in a lighter shade of
green. The direction of Earth relative to the Solar primary lens is shown (off to the right of
this diagram).

lens for a microlensing event and hence allow for a possible detection of the Earth given
correct alignment.

Combining the two concepts of higher order lensing systems and SETI, this chapter
will focus on a part of the work done in the paper Earth through the looking glass: how fre-
quently are we detected by other civilisations through photometric microlensing? (Suphapoltha-
worn et al., 2022), of which the writer is a coauthor. In this study, a catalogue of 1.3 billion
stars produced by the Gaia space observatory (Gaia Collaboration et al., 2018) was used
by the other authors of the paper to extract candidate microlensing sources and host stars
for alien observers. Specifically, a brightness cut of G < 20 is applied, brighter than which
the stellar proper motion is known to an accuracy greater than 1.2mas year−1. The dis-
tances to each star are determined from Gaia’s parallax data via Bailer-Jones et al. (2018).
Using this data, the microlensing optical depth due to an Earth-Sun caustic region τ⊕ was
evaluated to determine the probability over a given time period for alien civilisations to
detect the Earth in a microlensing event.

To evaluate τ⊕, we need an approximate expression for the area of the Earth-Sun bi-
nary caustics, which can be thought of as a sum over the central (primary) caustic region
and the planetary (secondary) caustic region. As seen in chapter 4, the planetary caustic
region consists of a single diamond shaped caustic for the wide topology, while for the
close topology the planetary caustics split into two triangular regions, symmetrical about
the binary axis. For both topologies the area Ac of the central caustic, as shown in Chung
et al. (2005), is given by
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Ac =
1
2

∆ξc∆ηc, (5.10)

∆ξc =
4qs2

(s2 − 1)2 , (5.11)

∆ηc = ∆ξc
(s2 − 1)| sin3(φc)|

(s2 − 2s cos(φc) + 1)2 , (5.12)

cos(φc) =
3
4s

(
(s2 + 1)−

√
s4 − 14

9
s2 + 1

)
, (5.13)

where the parameter φc represents the polar angle of the off-axis cusps relative to the
binary axis. Each of these parameters are shown in figure 5.1, for the example of an
Earth-Sun binary system. The equivalent area Ap for the planetary caustic(s) is derived
in Han (2006) and is given by

Ap =
1
2

∆ξp∆ηp, (5.14)

∆ξp =





4
s

√
q

s2−1 , s > 1

2
√

q cos(φp)
(

κ2
0(s

2+1)−s2

κ0s2

)
, s < 1

, (5.15)

∆ηp =
4
s

√
q

s2 + 1
×





1, s > 1

1−
√

1− s4, s < 1
, (5.16)

κ0 = s

√√√√cos(2φp) +
√

s4 − sin2(2φp)

s4 − 1
, (5.17)

φp =
1
2

(
π ± arcsin

(√
3

2
s2
))

, (5.18)

where φp is the equivalent polar angle for the planetary cusps closest to the binary axis.
The multiple solutions represent the two cusps of the caustic structure that lie off the axis
perpendicular to the binary axis, as shown in figure 5.2. To calculate the optical depth,
we must then average the normalised separation parameter s over Earth’s orbital phase
ψ, via

s =
1AU
DL

√
sin2(ψ) + cos2(ψ) sin2(β), (5.19)

τ =
1

2Ωs

Ns

∑
n=1

θ2
E

∫ 2π

0
Ac,n(s) + Ap,n(s)dψ, (5.20)

where β is the ecliptic latitude of the nth source star from equation 5.20. Note that the
caustic areas are only approximate and diverge significantly as s→ 1 where the resonant
topology appears, leading to an overestimation of the total area. To account for that, an
effective separation parameter seff is used, defined as
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FIGURE 5.2: The dimensions of the planetary caustics are shown, for both the close (left) and
wide (right) topologies. The widths are indicated by the parameter ∆ξp defined in equation
5.15 and the heights indicated by ∆ηp defined in equation 5.16. For the close caustics, the
cusp angles φp,+ and φp,− from equation 5.18 are shown for the upper caustic structure,
while the lower caustic structure is annotated with the dimensions. Note that ∆ηp is shared
across the two caustics and hence is halved for each component. Like in figure 5.1, the area
Ap is indicated in a light shade of blue for the close topology and red for the wide topology
and is the area used in this work to approximate the true caustic areas shown in a darker
shade of blue and red. For the wide topology, the shape used to approximate the caustic is
a diamond which connects all four cusps. This is in contrast to the close topology, where
the bases of the two triangle approximants are tangential to the caustic curves, meaning that
only the corners furthest from the binary axis correspond with cusps on the caustic structures
(note the vertical offset between the triangle approximant and two of the caustic cusps). The
direction of the Solar (primary) lens relative to the caustics is shown for the different topology
scenarios.



5.1. The Earth Microlensing Zone 111

seff =





0.99, 0.99 ≤ s < 1

1.01, 1.0 ≤ s < 1.01

s, otherwise

. (5.21)

This correction alleviates some of the inaccuracy, but there remain larger concerns which
motivate the use of higher order lensing models to describe caustics. While this correc-
tion alleviates some of the inaccuracy involved in approximating a caustic structure with
a set of triangles and quadrilaterals, it does not address the effect of introducing other
planets in our Solar System into the lensing potential, particularly Jupiter and Saturn
which are hundreds of times more massive than the Earth and hence an analysis must
be conducted to verify whether a simple binary approximation of an Earth-Sun system
is sufficient to model a microlensing event observed from any of the candidate stars in
the Gaia catalogue used in this study. To this end, a raycasting algorithm was devel-
oped which models the Solar System with all of its planets except Mercury in an attempt
to study the effect of the other planets on the shape of Earth’s caustic signature in the
full Solar System caustic network which represents the contribution to this work by the
writer.

5.1.1 The Raycasting Algorithm

In its simplest form, a raycasting algorithm comprises of an emission plane from which
one casts rays and a receiver plane which the cast rays are incident on. In between these
two planes, some transform may be applied which influences the travel direction of the
rays as they travel from the emission to receiver planes, which in the case of microlens-
ing is given by equation 5.6. As the angular size of the caustic structures produced by
the planets of the Solar System are small compared to θE, a simple setup using a single
emission plane which entirely contains the components of the lens system and a single
receiver plane large enough to cover the full extent of the Solar System’s caustic network
would result in the overwhelming majority of the ray casts to miss any caustic struc-
tures and simply trace out a predominantly PSPL magnification map. As we are mostly
interested in the shape of the Earth’s planetary caustics, this is an extremely inefficient
approach.

To deal with this, we can use the small mass ratios of the lens components to our
advantage by assuming as a starting condition, that the locations of the caustic structures
and critical boundaries can be approximated by their binary planet-Sun equivalents. This
is important, as we can then begin to optimise the locations and sizes of the emission and
receiver planes for the Earth’s planetary caustics. To begin with, a realistic Earth-Sun
separation parameter of s = 0.3 for the EMZ observers was used, with the planets of the
Solar System aligned in two distinct test configurations; one with the North ecliptic pole
aligned with the observer’s viewing axis and another more realistic, edge on scenario
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using planetary locations calculated at the epoch MJD = 595071. Having established the
locations of each of the lens components in a 2-dimensional space normalised to θE, the
locations and sizes of the emission planes were then established.

In a binary lens system, the location of the planetary caustics along the binary axis is
given by

x = s− 1
s

, (5.22)

which puts the caustics between the primary and planetary lens in the wide scenario and
on the other side of the primary lens to the planetary lens in the close scenario. In the
close scenario, the two planetary caustics are offset from the binary axis by

ηp = ±2
s

√
q

1 + s2 , (5.23)

from Han (2006). Using equations 5.22 and 5.23, the initial guess for the caustic locations
is determined and a ten step Newton-Raphson iteration is used to refine the locations
of the caustics using the eight-fold lens equation, which becomes the central location of
the receiver planes. The location of the emission planes should likewise cover the extent
of the critical boundaries, which are the caustic structures projected back onto the lens
plane. For the wide topology, this location is simply the location of the lens, again with
some numerical adjustments to account for perturbations arising from other lenses in the
system. For the close topology, there are two critical boundaries, corresponding to the
two planetary caustics. They have the same distance along the binary axis as the lens
itself, but like the close planetary caustics, have an offset transverse to the binary axis
given by

∆Xp = ±s
√

q. (5.24)

Although the caustic structures themselves depend solely on the location of the critical
boundaries, to construct an accurate magnification map and hence more accurately de-
termine the effect of introducing a large number of lenses, a further contribution to the
magnification at the location of the receiver plane must be added from the primary lens
background, which in the case of the Sun is approximately a PSPL magnification map.
To acquire this location, the image location transformation from equation 1.10 is used
and similarly improved for accuracy using a Newton-Raphson iteration such that the
transformed emission plane entirely covers the corresponding receiver plane.

This setup results in two emission planes per caustic structure, one for the caustics
themselves and another for the background magnification. For a wide configuration, this
results in a single receiver plane per lens, while the close topology requires a receiver
plane for each of the two planetary caustics and hence four emission planes per lens.
The sizes of the planes was also determined to allow enough coverage of the caustic and
the magnification produced by any cusps. For the emission planes covering the critical

1Planetary coordinates relative to the Sun were acquired using an online tool available at http://
cosinekitty.com/solar_system.html

http://cosinekitty.com/solar_system.html
http://cosinekitty.com/solar_system.html
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FIGURE 5.3: Shown on the left are the raycasting emission and receiver planes for a wide
(s = 1.5, q = 0.005) binary lens, with lens locations indicated by black crosses. The filled
red plane shows the extent of the receiver plane, while the blue and green planes are the
critical boundary and PSPL background emission planes, respectively. The distorted shapes
of the un-lensed emission planes are shown with their respective colours overlapping the
receiver plane, with outlines only. The critical boundary encompassing the primary lens is
indicated with a solid green line, while the critical boundary encompassing the planetary
lens is shown as a solid blue line. The caustics are drawn as solid red lines. On the right
is a similar setup, but using a close topology (s = 0.7, q = 0.07), where the extra emission
and receiver planes are needed. In this case, the un-lensed shapes of the critical boundary
emission planes (dashed blue lines) are highly distorted, with edges passing through each
other due to the nature of the lens transform between the critical boundaries.

boundaries as well as the corresponding receiver plane, the width was simply taken to be
four times the caustic width ∆ξp, while the width dBG of the PSPL background emission
plane was given by

dBG = 4
√

q×





1, wide

s3, close
. (5.25)

An example of the locations of the emission and receiver planes using a pure binary lens
configuration is shown in figure 5.3 for both the wide and close topology.

Some final improvements were made to the magnification map around the planetary
caustics to clean up the result. As can be seen in figure 5.3, the un-lensed shapes of the
emission planes do not cover the entirety of the receiver plane and as such, only the por-
tion of the receiver plane with full coverage from both emission planes is useful. To this
end, the magnification map was cropped using a rectangular shape to remove any in-
complete portions. The result was then placed over a much lower resolution background
to show the continuation of the magnification map outside of the crop.

5.1.2 Results

The two configurations of the Solar System are shown in figures 5.4 and 5.5. The reso-
lutions of both the emission and receiver planes was 500× 500 pixels, with 20 raycasts
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FIGURE 5.4: The Solar System caustic network is shown for the aligned configuration of the
Solar System. The upper Earth planetary caustic is shown in the left panel for the eight-fold
lens on the right side (as part of the magnification map) and the Sun-Earth binary equivalent
on the left (traced out in cyan). On the right is shown a fully zoomed out caustic network,
with only a small signature visible to indicate the wide caustics produced by Jupiter. The
locations of the planets are shown in magenta, with the location of Earth’s planetary caustics
indicated in cyan.

per pixel. As the sizes of the two emission planes were different, a scaling factor of
(dBG/4∆η)2 was introduced to the contribution of the primary background emission ray-
casts to correct for the differences in ray density at the receiver plane. To quantify the
effect on the shape of Earth’s planetary caustics by introducing the other lens compo-
nents studied in this analysis, a metric δ was devised which compared the difference in
the areas of the caustic structures between the binary scenario Abinary and the full 8-fold
lens configuration A8−fold, via

δ =
Abinary − A8−fold

A8−fold
, (5.26)

which was found to be δ = −3.1× 10−4 for the aligned configuration and δ = −6.5×
10−5 for the spiral configuration, suggesting that for lens systems comprised of a heavy
primary and multiple smaller secondaries, the shapes of the caustic structures do not
change significantly and as such, a binary model would be justified in similar scenarios.
On a different note however, as evident in the figures, the offset of the two caustics in the
left panels is significant when compared to the width of the caustics. Using a character-
istic width given by the average of the side lengths between the three cusps, the offset
between the binary and eight-fold Earth planetary caustics was found to be 10.1 and 24.4
times the caustic width for the spiral and aligned configurations respectively. Although
significant when compared to the size of the caustics, this offset is unlikely to affect a
mass measurement as the size of the offset normalised to the Einstein radius is insignifi-
cant and would at worst be misinterpreted as a difference in the projected position of the
Earth relative to the Sun and would furthermore be a minor contributor to the sources of
error on the final mass measurement.
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FIGURE 5.5: Same as figure 5.4 but for a spiral configuration of the Solar System, where the
viewing axis is aligned with the normal to the plane of the Solar System.

5.1.3 Detection Probability and Event Rate

Returning to the work done by the other authors who contributed to this study, we find
that the microlensing optical depth and event rates from crossings of Earth’s binary caus-
tics is extremely low by comparison to the lensing towards the Galactic bar as discussed
in chapter 2. We find that by summing over the microlensing event rate over the entire
sky, a total of 14.7 Earth detections per year would be expected, assuming every Gaia star
brighter than G = 20 hosts an observing civilisation. Even around the region of high-
est optical depth in Orion-Cygnus arm at Galactic coordinates (l, b) = (69.0◦,−5.1◦), we
find microlensing parameters of τ = 3.28× 10−10 and Γ = 0.0024 events year−1deg−2, a
factor 10,000 times lower than typical values for lensing by stars towards the Galactic bar.
When combining this small event rate with the expected occurrence rate of technological
civilisations predicted by equation 5.9 (even assuming an upper bound on all currently
unknown terms), the number of actual detections of the Earth drops even lower. This
suggests that assuming a similar level of technology to ourselves, the Earth is unlikely
to be detected via photometric microlensing. With further advances in multi-lens system
fitting, one could extend this analysis to model the astrometric microlensing effect of our
Solar system as discussed in section 1.8, which would result in a larger optical depth, but
remains beyond the scope of this work.

5.2 GPU Powered Microlensing

As raycasting is a massively parallel operation, there are natural ways to improve and
streamline the compilation of magnification maps. An obvious way to achieve this is to
employ the parallel computing power of a graphics processing unit (GPU - also known
as a graphics card). To demonstrate the utility of using a GPU to perform microlensing
calculations, a compute shader was written using a single emission and receiver plane
which compiled a magnification map of resolution 2048× 2048 pixels with six raycasts
per pixel. A five-fold lens, representing a hypothetical system of a binary red dwarf host
system orbited by two gravitationally bound objects, the heavier of which is a low mass
brown dwarf and the other a high mass gas giant with a 1.85MJup mass planetary binary
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Host primary Host secondary Brown dwarf High mass planet Low mass planet
q 0.6217 0.2931 0.0444 0.0355 0.0053
X 1.819 -0.254 0.942 -0.283 -0.179
Y -0.537 0.000 0.697 -1.291 -0.141

TABLE 5.1: The lens system configuration (normalised mass and positions) are shown for
each component.

companion is simulated. Although highly unlikely to be found in a realistic survey, this
lensing system features a complex caustic network which unlike the Earth’s EMZ con-
figuration, cannot rely on binary lensing approximations. The parameters used for the
lensing system are shown in table 5.1.

Although the magnification map was produced at a high resolution, this comes at
a cost of increasing levels of noise due to the lower number of raycasts per pixel at six
compared to 20 from the EMZ analysis. The consequences of this are borne out in figure
5.6, where the noise produced by the lower raycast count is evident in the figure insets.
This has the consequences of reducing the quality of a fit, given that it has to rely on an
inaccurate magnification. One way to overcome this is to employ a de-noising algorithm
which attempts to reduce the noise without compromising the sharpness of the magni-
fication map near the edges of the caustic structure. One such algorithm was developed
specifically to operate within the paradigm of microlensing magnification maps.

After constructing the mangification map using raycasting, each pixel was iterated
over and a denoise operation was performed. Firstly, a check was performed to deter-
mine whether the pixel was near the edge of a caustic structure. The spatial derivative
∂X,Y of magnification was calculated for both the horizontal and vertical directions as

∂X =
M(Y, X + δX)−M(Y, X− δX)

2δX
, (5.27)

∂Y =
M(Y + δY, X)−M(Y− δY, X)

2δY
, (5.28)

∂X,Y =
√

∂2
X + ∂2

Y, (5.29)

where δX and δY is the size of a pixel in normalised space. The requirement that fur-
ther de-noising is only applied if ∂X,Y < 0.7 was then applied. For those pixels that
satisfy this requirement, the mean magnification within a square shaped annulus of side
length n ∈ [3, 5, 7, 9] centred of the target pixel was calculated. The de-noised pixel value
was then taken to be the mean over each of these annulus magnifications Mi satisfying
M > 1.2×min(Mi). This allowed for a smoothing operation to drastically reduce the
noise in the magnification map, while also avoiding blurring over the edges of the caus-
tic which should be preserved and not de-noised. The results of this algorithm are shown
for comparison in figure 5.7. Although successful in reducing the noise to near zero, this
comes at a cost of edge effects near the caustic boundary; while it is not blurred by the
kernel, the magnification leading up to it exhibits a terracing phenomenon on the spatial



5.2. GPU Powered Microlensing 117

FIGURE 5.6: A noisy magnification map of the lenses described in table 5.1 is shown, with
critical boundaries drawn as a green line and lens locations indicated by green plus symbols.
Insets are shown to the left and right to highlight the significance of the noise.

scale of a pixel, due to the outer annuli being suppressed as one approaches the edge of
the caustic structure.

Another benefit of using the GPU to construct magnification maps is that it is rela-
tively straight forward to draw critical boundaries as well. As the critical boundaries of
a lensing system represent the locations where the sign of the determinant J of the lens
transform’s Jacobian changes from positive to negative (or vice versa), the value of J can
be evaluated at each corner of the pixel and their signs multiplied together. If the result
of this multiplication is negative, then the pixel definitely exists over a critical boundary.
This can be extended by evaluating more samples of J along a border or indeed in a grid
pattern centred on a pixel if the drawing thickness of the critical boundary should be
greater than a single pixel.

The performance gains from employing a GPU are significant, with a 2048 × 2048
resolution magnification map at six raycasts per pixel taking approximately 0.1 seconds
using a Nvidia GTX 1080 GPU, compared to 800 seconds using a single core of an Intel
Xeon W-2104 CPU processor building the same magnification map. Although in practice,
multi-threading could be used to bring down the total compute time to ∼ 100 seconds
using the CPU, the performance gain from employing the GPU remains three orders of
magnitude faster. This highlights the importance of using GPU accelerated programming
in microlensing calculations, specifically for tasks that can be massively parallelised. This
is also a comparatively cheap option, as the GPU used is six years old at the time of
writing and is less expensive than high end commercially available CPUs. Of note is
the the fact that the operation bottleneck when computing the magnification map is not
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FIGURE 5.7: Shown is the result of applying the de-noising algorithm to the magnification
map in figure 5.6. Here, the noise is visibly lessened, but edge effects are present near caustic
structure boundaries.

the evaluation of the lens transform, but rather the read and write operations required
to update the map’s pixels, suggesting that the complexity of the lensing system can be
significantly increased before producing a noticeable performance degradation.

5.3 Conclusion

This chapter has served to demonstrate the performance benefits of using raycasting to
evaluate the microlensing magnification for complex lens systems, with a striking benefit
of employing a GPU running a compute shader. This work has confirmed the binary-lens
assumption made while evaluating the microlensing optical depth due to the Earth-Sun
caustic structure as observed by alien civilisations in the EMZ as valid, suggesting only
very small changes on the order of 10−4 of the area of eight-fold lens and binary lens
Earth planetary caustics. Although successfully employed in this context, there remain
many further steps to overcome before using raycasting as a means of fitting higher order
lensing models to observed photometry.

One clear optimisation that could be made is to restrict emission planes to only cover
regions which will be received over the desired source trajectory. Currently, the entire
magnification map is built, along with a higher resolution zoom of a caustic structure(s),
but typically we are only interested in a small strip of the magnification map representing
the source’s trajectory and only wide enough to accommodate finite source effects. As
such, future work could significantly cut down on the total read and write operations
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performed by the GPU, or simply reducing the number of raycasts performed on a multi-
threaded CPU, by estimating appropriate areas to place emission planes which minimise
the unused portions of the magnification map.

A second avenue of improvement would be in handling the noise currently inherent
in any raycasted magnification map. This could be handled simply by increasing the
number of samples from six to a higher number, being careful to avoid race conditions
inherent in parallel programming, although this brute force approach comes at the cost
of increasing read and write operations on the GPU. For sufficiently large numbers of
samples, one could attempt to evaluate the magnification contribution to each unique
pixel affected by a single batch of raycasts, although this runs into issues caused by the
limited functional programming capabilities of shader languages like GLSL. An alterna-
tive would be to develop a much more rigorous de-noising algorithm, being careful not
to compromise the accuracy of the magnification result. For instances where finite source
effects are strong due to a large value of ρ, the noise becomes less significant as it is av-
eraged out during the convolution of the finite source kernel, although this once again
comes at a cost of an increase in the number of pixel reads to sample the magnification
map after compilation to estimate the finite source magnification.
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Chapter 6

Conclusion

The work presented in this thesis is an exploration of techniques invaluable to the large
survey era of gravitational microlensing. Beginning with the work done in Specht et al.
(2020), a microlensing tool was developed to predict, with unprecedented accuracy, the
rate of microlensing events for telescopes of varying specifications spanning a large swathe
of the sky around the Galactic centre. The MaBµlS-2 microlensing simulator described in
chapter 2 introduced a formal treatment of finite source effects, background light and
improved error estimation, with each factor proving useful in follow-up work. The ac-
curacy of MaBµlS-2 was demonstrated by comparing the empirical OGLE-IV event rate
from Mróz et al. (2019) to that predicted by the simulator, showing a high degree of agree-
ment that improves upon previous work by Awiphan et al. (2016).

In Bachelet et al. (2022), the run-time estimation of the finite source magnification
assisted in the analysis of free-floating planet event rates by a possible joint mission be-
tween the EUCLID and ROMAN space telescopes, as discussed in chapter 3, potentially
revealing hundreds of Earth mass FFPs with direct mass measurements over the course
of such a mission. Such event rates were accompanied by an assurance of scientific return
regardless of the rotational alignment of the two observatories’ fields, reinforcing the ro-
bustness of such a mission proposal. The results from such a mission would further
contribute to our understanding of Galactic structure and planetary formation theory in
a way unobtainable by other detection methods, such as via the direct imaging of FFP
thermal emissions, which have driven the majority of FFP detections thus far and can
only access the highest mass portion of the parameter space.

A further bespoke use of the MaBµlS-2 simulation was shown in chapter 4 came in
the form of validating results from KEPLER’s K2C9 microlensing campaign in McDonald
et al. (2021), which aimed to extract possible FFP candidates from an advanced event fil-
tering pipeline, finding five novel candidate events. While the analysis of FFPs could not
break the three-fold microlensing degeneracy between lens mass, angular Einstein radius
and lens distance and hence obtain mass measurements for these candidates, results from
MaBµlS-2 were nonetheless able to show that the new events are consistent with an Earth
mass population of FFPs.

One of the novel events from K2C9 was decidedly not a free-floating planet event,
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but rather a microlensing light curve with a clear binary caustic crossing signature. This
event was analysed in Specht et al. (2022) using an advanced model fitting code, operat-
ing on the well sampled caustic crossing photometry provided by KEPLER and yielded
both a highly accurate finite source measurement and a microlensing parallax measure-
ment, allowing for an extraction of the lens mass and planetary companion after char-
acterisation of the source properties. This result is highly significant, as it demonstrates
that even a space-based observatory designed for a completely different mechanism of
exoplanet detection (the transit method in the case of Kepler) is still more than capable
of discovering exoplanets via microlensing and with supplementary ground-based data
for a space-based parallax measurement, further demonstrates the validity of joint mi-
crolensing missions with large baselines. This discovery is a clear proof of concept for
a future mission by the EUCLID and ROMAN space-based telescopes which will be opti-
mised for microlensing science.

Although the science return from future microlensing missions will yield many plan-
etary events, the prospect of complex lens systems with three or more lenses must be con-
sidered, whether from a host-planet-moon system or an exoplanet gravitationally bound
to a binary star. Using a raycasting algorithm outlined in chapter 5, the Solar System
was simulated in Suphapolthaworn et al. (2022) using an eight lens system to confirm
whether such higher order lens effects would be evident to alien civilisations in the Earth
Microlensing Zone. It was determined that for an aligned Solar System, a binary approx-
imation would be valid for a mainly straightforward rate calculation. In other scenarios
with larger mass ratios, the binary approximation may break down contingent on the
alignment of the lens components and the trajectory of the source. To this end, the ray-
casting algorithm was adapted to use a graphics processing unit which can produce high
resolution magnification maps in fractions of a second, paving the way for more com-
putationally efficient fitting algorithms using three or more lenses in the microlensing
model.

All of the work presented in this thesis represents a step forward in microlensing
simulation, designed to equip researchers with a next generation suite of tools for op-
timising microlensing surveys and analysing high fidelity data from observatories such
as EUCLID and ROMAN. This represents an exciting prospect for the future of exoplanet
science, as the microlensing method promises to yield thousands of planet discoveries,
on parity with techniques such as the transit and radial velocity methods, while probing
a mostly unexplored region of the exoplanet parameter space: the snow line and beyond.
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