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Thesis Abstract 

B cells do not just produce antibodies, they are critical antigen-presenting cells and produce a 

battery of cytokines. Their role in disease pathogenesis, however, is relatively less studied. A 

pathogenic outcome can arise from individual or overlapping mechanisms. In the case of B cells, 

this could arise through uncontrolled production of inflammatory cytokines (like IL-6 and TNFα), 

prolonged antigen presentation leading to excessive T cell responses, production of 

autoantibodies and disruption of tissue architecture, function, and physical properties.  In this 

thesis, I examine B cells in chronic obstructive pulmonary disease (COPD) in the presence or 

absence of cigarette smoking and also B cell subsets in COVID-19 (introduced to allow continued 

laboratory work through the pandemic shutdown).  

The research described in this thesis takes our knowledge of B cell subsets in the lung and blood 

to an unprecedented depth. Previously unidentified discoveries included the new identification of 

Tim1+ B cells in COPD, enhanced double-negative memory B cells in COPD and infection that 

likely explain increased susceptibility to autoimmunity, the influence of smoking on B cell subsets 

and a predominance of IL-10-producing B cells in convalescent COVID – amongst others. Using 

Hyperion imaging, we also describe ectopic B cell follicles adjacent to bronchioles that may 

perturb lung function. Overall, the data in this thesis indicates that B cells are likely to be involved 

in disease pathogenesis, and therapeutic manipulation should be considered as a treatment 

option. 
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Overall Thesis Structure 

The overall aim of this project was to investigate the characteristics of B cell phenotype and 

function in the lungs of patients with Chronic Obstructive Pulmonary Disease (COPD). This aim 

was completed but interrupted by the COVID-19 pandemic. Over one year of laboratory, time was 

lost on the original project due to the pandemic. 

This thesis was written in journal format because 1) the introduction was partially published as a 

review article in Immunology Reviews in January 2022. The first results Chapter is currently being 

written for publication (Chapter 3), and the second results chapter (Chapter 4) details longitudinal 

alterations in B and T cell functions in acute and convalescent COVID-19 patients and is published 

in Med (N Y) 2021. 

Chapter 5 finishes with an overall discussion linking our findings from COPD and COVID-19 

studies. 

Due to the interruption caused by the pandemic, writing the work in a traditional format was not 

appropriate. 
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Chapter 1: 

General Introduction 

1.0 Statement 

Part of this introduction has been published as a review in Immunological Reviews. Halima Ali 

Shuwa and Madhvi M wrote this review, analyzed previous literature, and prepared the figures 

and tables with critical and intellectual input from Tracy H. This manuscript occupies pages 56 – 

73 of this thesis (10.1111/imr.12941) 

1.1 Introduction 

This thesis explores the different B cell subsets in the lungs of patients with acute and chronic 

lung inflammation, specifically in chronic obstructive pulmonary disease (COPD) and SARS-CoV-

2 infection. B cells are an abundant cell type in chronic inflammatory lung disease, yet their role 

in disease pathogenesis is controversial. As an integral part of the adaptive humoral immune 

system, B cells produce antibodies that protect the body from a wide range of microbial (antigenic) 

agents. Abnormalities in B cell development and function lead to autoimmunity, tumours, immune 

deficiencies, and allergic reactions. B cells can exist as one of several subsets, but this detail in 

lung disease is not precisely known. Furthermore, B cells may adapt to different tissue 

microenvironments like that described for macrophages. 

 

1.2 B cell development 

B cells originate from the hematopoietic stem cells (HSC) in the bone marrow (BM) 1. The initial 

signal for B cell development in the BM starts when VCAM-1 (Vascular Cell Adhesion Molecule-

1) on the stromal cells binds to VLA-4 (Very Late Antigen-4) on HSCs, this initiates heavy chain 

gene rearrangement in early pro-B cells 2. The second signal is from stem cell factor (SCF) 

expressed on stromal cells, that binds and activates the receptor tyrosine kinase, c-kit, on the 

surface of early pro-B cells; this causes the expression of interleukin-7 (IL-7) by stromal cells 

leading to heavy chain V(D)J gene recombination 3–5,6(p7).  IL-7 binds to its receptor on pro-B cells, 

driving their further maturation 4. At this stage, the genes for the heavy-chain immunoglobulin are 

transcribed and translated. There is downregulation of VLA-4 and c-kit, causing the release of 

https://doi.org/10.1111/imr.12941
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pro-B cells from the stromal cell in the late pro-B cell stage 7,8. The translated heavy chains 

organise and are expressed on the surface of the B cell along with a protein complex called the 

surrogate light chain; this is known as the pre-B cell receptor (pre-BCR). At this point, light chain 

VJ gene rearrangement occurs 7,8. Light and heavy chains are expressed on the B cell surface as 

immunoglobulin-M (IgM), which also serves as the B cell receptor (BCR). The cell is referred to 

as an immature B cell 9. Immature B cells migrate to secondary lymphoid organs (SLO), 

upregulating IgD and IgM and is referred to as a naïve B cell. The naïve B cell remains in this 

state until it meets its antigen and becomes a mature B cell. Figure 1.1 summarises the stages 

of B cell development. 

 

 

Figure 1.1: Schematic outline of B cell development  

 

1.2.1 B cell activation 

Immature B cells exit the BM and travel to the SLO via the circulation. The SLO is the primary site 

of B cell activation and has specific anatomical locations for B and T cells. B cells reside in 

germinal centres (GC) within follicles, whereas T cells are predominantly present in the para-

cortex 10. B cell signaling requires clustering or cross-linking of BCR upon antigen recognition. 

This clustering of the BCR is required to activate accessory proteins like Igα and Igβ. The antigen-

binding signal is then conveyed to the nucleus. This clustering of BCR depends on the type of 

antigen a B cell encounters. An antigen with multiple repeating epitopes (like polysaccharides, 

glycolipids, nucleic acids) can directly cross-link the BCR and activate B cells to produce 

antibodies without T cell help. Such antigens are called T-independent antigens, and B cell 
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activation without T cell help is called T-independent B cell activation 11–15. However, the largest 

groups of antigens are protein in nature and do not contain multiple repeating epitopes, making 

the cross-linking of the BCR difficult. So, when a B cell encounters protein antigens, T cell help is 

required to trigger B cell activation. Antigens that trigger B cell activation with the help of T helper 

cells are known as T-dependent antigens, and B cell activation, which requires T cell help, is 

known as T-dependent B cell activation 11. 

1.2.1.1 T cell Independent Activation 

T-independent antigens are multivalent and have multiple, repetitive, and identical epitopes 15. B 

cells recognize and bind to this antigen via BCR clustering, which is the first signal required for 

the T-independent activation of B cells. The second signal can be derived from other molecules 

present on the antigen. For example, B cells also have toll-like receptors (TLR) that recognize 

various microbial surface molecules. The recognition and binding of antigens by TLRs generate 

a second signal for T-independent B cell activation (Figure 1.2). B cells activated via this route 

mainly differentiate into plasma cells that secrete IgM antibodies and not memory B cells because 

memory cell production requires T cell help 11–13,15,16. 

 

 

Figure 1.2: T-independent activation of B cell 
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1.2.1.2 T cell Dependent Activation 

As discussed earlier, protein antigens cannot crosslink multiple BCRs, because these antigens 

lack repetitive and identical epitopes. Thus, when B cells encounter protein antigens, they require 

T cell help to get activated 11. T-dependent B cell activation is a three-signal process; the first 

signal is generated by antigen recognition and binding by the B cell. Besides antigen recognition, 

B cells can also function as antigen-presenting cells; they internalize antigens, process them into 

peptides and present them on their surface via major histocompatibility complex class II (MHC II) 

peptide complexes. T cells recognizing the same antigen can also be activated by dendritic cells 

and macrophages that have ingested the antigen and presented it in the same way 17. 

Activated  B cells express a variety of cytokines and co-stimulatory receptors, of which CD40 is 

essential 18–21. When B cells and  T helper cells come in proximity, T helper cells recognize and 

bind to peptide antigens presented on  MHC-II complexes on the surface of B cells. CD40 on B 

cells interacts with CD40-ligand (CD40L) on T helper cells, providing a critical second signal for 

B cell activation 18,19(p40),20(p40). 

Cytokine released by T helper cells provides the third signal for T-dependent B cell activation. 

The interaction of B and T cells induces the expression of new cytokine receptors on the surface 

of the B cell. T cells release cytokines such as IL-4 that bind the cytokine receptors present on B 

cells. As a result, B cells start to proliferate and differentiate into antibody-secreting plasma cells 

and memory B cells (Figure 1.3) 22,23. 
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Figure 1. 3: T-dependent activation of B cell 

 

1.3 B cell subsets 

Much of the knowledge on B cell subsets have arisen from mouse models 24–26. However, with 

the study of tonsils,  peripheral blood, non-malignant lymph nodes, and spleen cells, our 

understanding of human B cell subsets has increased in recent years 27–44. In mice, three 

subgroups of B cells arise during fetal life: B-1, B-2 and marginal zone (MZ) B cells (some reports 

combine B2 with MZ B cells). B-1 cells differ considerably from B-2 and are formed during early 

development in the fetus. They have peculiar tissue distribution and phenotypic and functional 

characteristics 45. B-1 cells are divided into two subpopulations, B-1a and B-1b that differ in their 

development, phenotype and function. B-2 cells, on the other hand, are produced during late fetal 

development and in adults 45–47 and act mainly in adaptive immune responses 48. MZ B cells are 

those found predominantly in the marginal zones of B cell follicles in the white pulp of the spleen 

and share some features with both B-1 and B-2 cells 49–53. 
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1.3.1 B-1 cells 

B-1 cells are predominantly located in the pleural and peritoneal cavities 54,55. A small percentage 

of B-1 cells are found in the spleen but rarely in the circulation, bone marrow (BM) and lymph 

nodes (LNs) 54,56. B-1 cells are typically not found in the germinal centre (GC) of B cell follicles 48, 

but they can move from pleural and peritoneal spaces into the secondary lymphoid organs (SLOs) 

upon infection with influenza virus or after intravenous injection of lipopolysaccharide (LPS) where 

they differentiate into plasma cells (PCs) 57. B-1 cells produce the majority of Igs found at mucosal 

sites of both respiratory and gastrointestinal tracts 48,58; they predominantly secrete IgM and 

preferentially class switch to IgA upon stimulation 59,60. 

In contrast to other B cell subsets, which are produced throughout life in the bone marrow, the 

generation of  B-1 cells occurs early in life from progenitors present in the fetal bone marrow 61. 

In humans, B-1 cells are the main producers of natural antibodies (Nabs), a type of antibodies 

that are produced naturally and have been demonstrated to be important in early protection 

against infectious substances 62. 

1.3.1.1 B-1 cells in mice 

Initially, B-1 cells in mice were recognised by the production of self-reactive IgM molecules and 

the expression of CD5 marker on their surface 46,62–64. Later, sub-populations of B-1 cells that do 

not express CD5, but with similar phenotypic characteristics were isolated 65, hence, B-1a and B-

1b cells. Different markers are now used to differentiate between B-1 subsets, these include: 

CD5+CD11b+(Mac-1)CD45RAlow(B220)IgMhiIgDlowCD23−CD43+ for B-1a cells; 

CD5−CD45RAlowIgMhiIgDlowCD23−CD43+ for B-1b cells; and 

CD5−CD11b−CD45RAhiIgMlowIgDhiCD23+CD43− for B-2 cells 66–68. So B-1a cells are the major 

CD5+ expressing B cells in mice 68. 

1.3.1.2 B-1 cells in humans 

B-1 cells in humans, like their murine counterparts, also express CD5 molecules 69. However, 

unlike in mice, CD5 expression is inducible by stimulating the B cell receptor (BCR) and CD40 70. 

Aside from B-1 cells, other cells in humans are also CD5+; these include the pre-naïve, naïve 

transitional, immature and memory B cells 71–73. Human B-1 cells are found in abundance in early 

ontogeny 71,74; they produce a large number of NAbs that are reactive to various antigens, 

including self-antigens 75,76. In humans,  CD5 expression is assumed to occur naturally in B-1 cells 

but can be induced in B-2 cells 77,78. 
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1.3.2 B-2 cells 

B-2 cells complete their development in the spleen to become MZ or follicular (FO) B cells. The 

spleen is the largest SLO in the body; it is divided into the erythrocyte-rich zone (red pulp) and 

the lymphocyte-rich zone (white pulp). The white pulp comprises B cell, FO and T cell zones and 

is the home for the FO B cells79. This lymphocyte-rich area of the white pulp scans the filtered 

blood from the red pulp for antigens 80. FO B cells form the GCs of the spleen; their activation 

depends on T cells (TD), and they act as professional antigen-presenting cells (APCs) to T helper 

cells present in the follicles 81. The MZ is a special area of the spleen that allows the passing of 

filtered blood from the red to the white pulp; it scans the filtered blood for the presence of antigens 

and is the home of MZ B cells. MZ B cells react with antigens directly from filtered blood that 

passes through the MZ, and their activation is usually independent of T cells 82. 

1.3.2.1 Follicular B Cells  

B cells leave the BM as immature B cells, undergo transitional stages before reaching maturity 

and becoming FO or MZ B cells in the spleen 83–85,86. Transitional B cells have a short lifespan of 

about 1-5 days. In the T1 stage, B cell receptors (BCR) with a strong reaction to self-antigens are 

deleted by apoptosis 87. In contrast, in the T2 stage, BCRs with an intermediate/low response to 

self-antigens are positively selected for survival 88,89. 

 

FO B cells reside in the splenic follicles, LNs, and ectopic and tertiary lymphoid follicles (LFs). FO 

B cells are activated by T-dependent activation and develop into either PCs or memory B cells 90. 

FO B cells that can actively react to antigens develop into PCs with a short lifespan. In contrast, 

FO B cells with a weak response to antigens mature into GC B cells that live longer and undergo 

somatic hypermutation (SHM) and affinity maturation 90,91. These choices are controlled by the 

transcription repressor protein BCL-6 92. 

GCs are biological sites within SLOs predominantly made up of FO B cells, follicular dendritic 

cells (FDCs), follicular helper T cells (TFH), and others. FDCs continuously present antigens to 

the FO B cells and maintain them in an activated state; this enhances their affinity to the presented 

antigens (a process called affinity maturation). TFH acts as a co-stimulatory cell that activates FO 

B cells via the CD40-CD40 ligand (CD40L) interaction and the release of interleukin-21 93,94. 

Mutations of single nucleotides within the gene sequence of the antigen-binding site of Igs also 

occur in the GC, this mutation is called somatic hypermutation (SHM). It allows Igs to become 

extremely specific to the encountered antigen 90,91. 
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1.3.2.2 Marginal Zone (MZ) B Cells 

Immature B cells enter the spleen during development and transition to MZ or FO B cells. The MZ 

of the spleen is the site of blood filtration, so cells within it are continuously exposed to blood-

borne antigens. The MZ primarily comprises the MZ B cells, DCs, macrophages, and reticular 

fibroblasts. MZ B cells are activated in a TI manner through stimulation of toll-like receptor (TLR) 

molecules and help from the B cell-activating factor of TNF family (BAFF) and Notch 2/δ1 

signalling 95. MZ B cells, like B-1 cells, produce poly-reactive antibodies that are usually IgM and 

react to a variety of antigens, including a few self-antigens, and can also present antigens on 

CD1d molecules 96,97. 

Aside from MZ and FO areas of the spleen, B cells are found in the sinuses of lymph nodes (LNs), 

the epithelial dome of Payers patches, and the epithelium of the tonsils. Like the spleen, these 

sites also have unlimited access to antigens and contain macrophages and DCs 98–101. In humans, 

MZ B cells are identified by IgMhiIgDlowCD1c+CD21hiCD23− CD27+ markers 98,102–105. Figure 1.4 

highlight the main features and surface phenotypes of B cell subsets in human. 
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Figure 1.4: Different B cell subsets and their primary features 

 

1.4 B cell compartmentalisation, growth, and survival 

Many cellular and molecular mechanisms are involved in B cell movement and homing to the 

SLOs. These mechanisms usually consist of chemo-attractants that attract B cells to migrate into 

the SLOs, and proteins (like pyk-2) that nourish and sustain the cells within the lymphoid organs 

106,107,108. Adhesion molecules like lymphocyte function-associated antigen-1 (LFA-1) and α4β1 

integrins are expressed on B cell surfaces and bind to the intercellular adhesion molecule-1 

(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), respectively. ICAM-1 and VCAM-1 

ligands are expressed on the surfaces of endothelial and hematopoietic cells within the MZ and 

assist in guiding B cells into the MZ 109. On the other hand, FO B cells express the chemokines 

CXCL13 and CCR7 that bind with their cognate ligands, CXCR5 and CCL19/21, respectively. The 

FO stromal cells and FDCs express CXCR5, while CCL19/21 is expressed within the T cell zone. 
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These chemokines ensure the migration and retention of FO B cells in the FO and GCs of 

lymphoid organs 110. Proteins like BAFF (also known as Blys or TNFSF13) are expressed on 

surfaces of macrophages, stromal and dendritic cells and bind with BAFF-receptors (BAFF-R) 

expressed on the surface of B cells. The interaction between BAFF and BAFF-R helps B cell 

survival in the spleen 111,112. 

1.5 Classification of B cells in humans 

Upon antigen encounter, B cells proliferate and differentiate into PCs or memory B cells 

depending on the amount and type of antigens they encounter, their interaction with T cells, and 

their BCR signalling strength. T cell-independent responses produce PCs that secrete short-lived 

IgM with weak antigen binding. While B cells that are activated through T cell-dependent 

stimulation differentiate into either memory B cells, B cells that enter GC reaction or become long-

lived PCs that secrete antibodies with strong antigen-binding ability 12,113–115. In the GCs, B cells 

undergo a GC reaction where FDCs, with the help of T helper cells, continuously present antigens 

to the B cells, a process called affinity maturation. Here, the antigen binding ability of the surface 

Igs is sharpened and becomes exceptionally specific to a particular antigen. In addition to affinity 

maturation, genes of the antigen-binding region of Igs are constantly mutated through SHM to 

improve the framework of the antigen-binding site 113–115. Some B cells in the GC experience class 

switch recombination, where the initial Cμ and Cδ genes (IgM and IgD genes, respectively) of the 

Ig constant region are replaced with either Cγ1-4, Cα or Cε (IgG1-4, IgA or IgE, respectively) 113. 

Table 1.1 summarises the major B cell subsets, the markers used to identify them, and their main 

properties. 

 

Table 1.1: Summary of different B cell subsets, their phenotypic markers and property 

B cell population Primary markers Additional 

markers 

Properties 

Transitional T1/T2 

 

 

CD19+ IgD+ CD24hi 

CD27- CD38hi  

 

IgM++ CD10hi/+ 

 

 

Development 

precursor 

 

T3 CD19+ IgD+ CD24hi 

CD27- CD38+ 

CD21+ 

IgM+ CD10+/- Activated naïve 
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Naive Resting 

 

 

CD19+ IgD+ CD24+ 

CD27- CD38+ 

CD21+ 

IgM+ Mature antigen 

inexperienced B cells 

Activated CD19+ IgD+ CD24- 

CD27- CD38-  CD21- 

IgM+ CD23-  Precursor of short-

lived plasmablasts    

Memory Unswitched 

 

 

 

CD19+ IgD+ CD24+ 

CD27+ CD38+/low 

CD21+ 

IgM++ CD1c+ Natural memory 

Switched CD19+ IgD- CD24- 

CD27+ CD38- CD21- 

IgG/IgA+ Effector memory, 

plasmablasts/plasma 

cell precursor 

Double 

negative 

(DN) 

DN1 

 

 

 

CD19+ IgD- CD24+ 

CD27- CD38+ 

CD21+ 

 

 

IgM/IgG/IgA+ 

CXCR5+ FcRL4-

FcRL5- 

 

Memory precursor 

 

 

 

DN2 CD19+ IgD- CD24- 

CD27- CD38- CD21- 

IgM/IgG/IgA+ 

CXCR5- FcRL4+ 

FcRL5+ CD11c+ 

Tbet+ 

Extrafollicular 

antibody-secreting 

cell precursor 

Antibody 

secreting 

cells  

Plasmablasts 

 

 

CD19+/- IgD- CD24- 

CD27hi CD38hi 

 

CD20- CD138- 

Ki67+ 

 

Antibody  secretion 

 

 

Plasma cells CD19+/- IgD- CD24- 

CD27hi CD38hi 

CD20- CD138+ 

BLIMP-1+  

Antibody  secretion 
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1.5.1 Transitional B cells 

Following exit from bone marrow, new Immature B cells differentiate through several transitional 

maturation stages before becoming functional naïve FO B cells 116. These B cells are termed 

transitional B cells. Similar to their mouse counterparts, three major transitional B cells have been 

identified in human circulation; T1, T2 and T3 33,43,117. Transitional B cells are usually characterised 

by their varying levels of expression of IgM, CD24, CD9, CD38, and CD10 33,43. They are the 

primary link between immature B cells in the BM and the peripheral mature B cells. Transitional 

B cells, specifically those CD24hiCD38hi, are phenotypically and functionally related to regulatory 

B cells (Bregs) 118. They can produce IL-10 and regulate the proliferation and differentiation of 

CD4+ T cells to T helper (Th) effector cells 119. 

1.5.2 Naïve B cells 

Naïve B cells in humans are characterised by their high IgD expression and positive staining of 

IgM. Naïve B cells can be separated from transitional B cells by their down-regulation of CD24 

and CD38 and lack of CD27 expression 116. Other markers used to characterise naïve B cells 

include the expression of CD21 and CD23 and the absence of activations markers, CD25, CD80, 

CD86, and CD95 116,120.  

1.5.3 Memory B cells 

Memory B cells are formed when a naïve immature B cell encounters an antigen in the spleen or 

other lymphoid organs. Upon antigen encounter, the naïve B cell differentiates into either a PC 

(that starts releasing a large number of antibodies immediately) or a memory B cell (that circulates 

in the body and becomes reactivated in a second encounter with the same antigen). The 

molecular mechanisms surrounding the development of memory B cells are not well understood. 

Some proteins, like interleukin-24 (IL-24) and NF- κB (a transcription protein that induces the 

activation of CD40 and BCR), encourage the formation of B cells in SLOs 121. In humans, almost 

all memory B cells are generated after the GC reaction; they have mutated Ig (as a result of SHM), 

are usually class-switched, and are defined by CD19+CD27+CD38-/low expression 122,123. 

1.5.3.1 Functional and phenotypic features of Memory B cells 

Memory B cells (MBCs) are antigen-experienced cells that are primed to generate fast and 

effective antibody responses upon secondary exposure 124–126. In humans, circulating MBCs are 
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mainly classified based on the surface expression of CD38, CD21, IgD and CD27 but not 

exclusively. Most MBCs express a BCR with a relatively high antigenic affinity 100. They secrete 

mutated and class-switched Igs depending on the type and quantity of the antigen that activates 

them 127,128 and can survive for months, decades or even a lifetime 101. MBCs spend most of their 

lives in a lag phase until a secondary antigen encounter, where they immediately become 

reactivated and differentiate into PCs (and begin to release antibodies) or re-enter the germinal 

centre (to undergo another round of affinity maturation to further adapt to the invading antigens) 

129,130131. MBCs usually occupy high-density antigen areas like the MZ and Peyers patches, they 

undergo frequent clonal expansion, with high expression of co-stimulatory molecules (like SLAM, 

TNF, TLR7/9, CD27, CD80, CD86, and IL-21 receptor), a higher expression of anti-apoptotic 

molecules (like BCL-2) and signal transducers, but they have reduced or low expression of 

transcription factors (like KLF4, KLF9, and PLZF) 132–134. 

1.5.3.2 Memory B-cell Subsets in human 

Human MBC subsets were initially thought to be predominantly composed of IgG+ class-switched 

MBCs,  ~ 25% of peripheral blood (PB) B cells135. However, the discovery of  IgM+ B cells that 

are somatically mutated pointed to the existence of non–class-switched or unswitched MBCs 

38,136–138.  MBC subsets are commonly identified based on the expression of IgD and CD27 138,139. 

IgD+ subsets of MBCs include the IgM+ (CD27+IgDlowIgM++) and IgM- (IgD-only) MBCs 138. While 

CD27+IgD- MBCs, include both IgM-only (pre-switched) and IgG, IgA, or IgE-expressing 

(switched) MBCs 137–141. Since CD27 is expressed on class-switched MBCs, it is generally used 

as MBC marker 135. However, recent studies identified other MBC populations with low to negative 

expression of CD27 and switched Ig heavy chain, leading to the discovery of the CD27-IgD- 

atypical double-negative (DN) MBC populations 142. 

1.5.3.2.1 IgD-only memory B cells 

These rare MBCs are seen in less than 10 % of individuals and account for about 0.1-0.5 % of 

total B cells in the body 135. IgD-only B cells are hypothesised to be generated in response to 

super-antigens and in some upper respiratory tract infections (like Moraxella catarrhalis) 143.  

Among the MBC subsets, IgD+IgM− MBCs have the highest Ig gene mutation 144,145. 



37 
 

1.5.3.2.2 IgM-only and IgM+IgD+ memory B cells 

Two subsets of IgM MBCs are present in humans: IgM+IgDlow/ − and IgM+IgD+ MBCs. Both have 

mutated Ig genes, both are CD27+ cells, and account for approximately 5 % and 15 % of total B 

cells (respectively) in both SLOs and the circulation 127,128,146. IgM+IgD+CD27+ MBCs are 

developed in a pre-GC reaction due to mutation through BCR diversification. In contrast, 

IgM+IgD−CD27+ MBCs are developed during a GC reaction after SHM 147,148. IgM antibodies have 

a low affinity to antigens because they are produced before SMH; they, however, form pentameric 

IgM molecules with ten antigen binding sites to compensate for the low affinity of the IgM 

monomers 149. This pentameric IgM molecule can simultaneously bind multivalent antigens like 

the bacterial capsular polysaccharides 149–152.  

1.5.3.2.3 IgG memory B cells 

About 15-20 % of circulating B cells in adults are IgG+ MBCs, mostly of IgG1, IgG2, or IgG3 and 

rarely IgG4 subtype 153. Most IgG+ MBCs are CD27+, have undergone SHM and have mutated Ig 

gene 153,154.  However, about 20-25 % of Ig+ MBCs do not express CD27 (IgG+CD27−), have no 

or few mutated Igs, and are primarily of the IgG3+ subtype. These IgG+CD27− subpopulations are 

mostly seen in the elderly and less frequently in young adults 155,156.  Most IgG MBCs differentiate 

into PCs on a secondary antigenic challenge; only a few re-enter a GC reaction 90,157,158. The 

primary function of IgG MBCs is prompt differentiation into IgG-secreting PCs. The secreted IgG 

antibodies can be found in the blood and extracellular fluid with higher affinity, where they 

neutralise viruses, bacteria and toxins, and opsonise them for phagocytosis, and subsequently 

activate the complement system 159–161.  

1.5.3.2.4 IgA memory B cells 

Most IgA MBCs are found in the intestinal and other mucosal-associated lymphoid tissues 

(MALT), where they function as the first line of defence, with only about  10 % in circulation 135,162. 

Most IgA produced at mucosal sites is secreted into the lumen in a dimeric form joined together 

by a secretory component 163. Dimeric IgA agglutinates antigens in a process known as immune 

exclusion 163. IgA MBCs are usually CD27+ cells with somatically mutated Ig genes, although a 

few of these cells are IgA+CD27−. These IgA+CD27− memory cells have reduced Ig gene mutation 

and secrete poly-reactive Ig that reacts with numerous bacterial antigens 164. Secreted IgA 

antibodies are either monomeric or dimeric 165. The monomeric IgA antibodies enter the blood or 
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extracellular fluid, while the dimeric IgA antibodies enter the lamina propria of various epithelia at 

mucosal sites to establish healthy microbiota and protect against infection 166. 

1.5.3.2.5 IgE memory B cells 

Despite their role in asthma and allergic reactions, IgE MBC subsets are understudied in humans, 

and IgE subsets have not been identified to date. Some studies in mice have shown a few IgE 

MBCs that descend from class switching of IgG1+ GC B cells. However, these IgE+ B cells are 

promptly transformed into PCs upon switching to IgE+ memory B cells 167. IgE MBCs play a vital 

role in IgE-mediated allergic reactions because of their ability to promptly differentiate into IgE-

secreting plasma cells that secrete allergen-specific IgE antibodies, which sensitize mast cells 

and basophil to release pro-inflammatory mediators resulting in type 1 hypersensitivity reaction 

168. IgE MBCs are also involved in protection against parasitic helminth infections and toxins 169.  

1.5.3.2.6 Atypical Memory B cells (Double Negative, DN) 

Aside from the commonly known subsets of MBCs discussed above, several other subsets are 

reported. These unusual B cells are usually tissue-resident and are commonly observed in 

response to chronic infections like Human Immunodeficiency Virus (HIV) 170, Hepatitis C virus 171, 

malaria 172, influenza 173,174, tetanus vaccination 175 and autoimmune diseases 32,176. They are 

termed double-negative (DN) memory B cells because they lack the expression of both the 

conventional naïve (IgD) and memory (CD27) B cell markers. The tissue-resident CD21lowCD27− 

MBCs are generated by T-dependent responses, are class-switched, have mutated Ig genes, and 

express the Fc receptor-like protein 4 (FCRL4; a type of inhibitory receptor) molecule on their 

surface 177. These cells are generated upon stimulation by T cell cytokines (T dependent). 

Conversely, peripheral blood CD21lowCD27− memory B cells are usually seen in response to 

autoimmunity, ageing, and some unusual infectious conditions, and they are FCRL5+ 178,179.  

DN B cell phenotypes differ depending on local factors but generally are CD19hi; CD38+/-; 

CD11c++; T-bet++; CD11c+T-bet+; FcRL4+; FcRL5+; CD24+/-; CD23-. DN cells are predominantly 

IgG+ or IgA+, with a small fraction of IgM+ cells 29,116,142. Two types of DN cells were identified in 

Systemic Lupus Erythematosus (SLE); DN1 cells comprise the majority of the DN populations in 

health and are CD21+CXCR5+CD11c-, and DN2 are predominantly observed in SLE and are 

CD21-CXCR5+CD11c++ 180. 

The main functions of DN cells are still unclear. However, DN MBCs were initially considered part 

of exhausted or anergic B cells that arise from chronic antigenic stimulation because of their 
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association with chronic infection. However, recent studies of patients with systemic lupus 

erythematosus suggested DN cells as short-lived activated cells that subsequently differentiate 

into plasma cells 180. DN cells are also thought to be responsible for secreting auto-antibodies that 

target membrane proteins on uninfected erythrocytes leading to anaemia 181. 

1.5.4 Human Antibody Secreting Cells (ASCs) 

1.5.4.1 Plasmablasts 

In humans, plasmablasts are proliferative blood short-lived antigen-secreting cells (ASCs) 

generated in response to acute infection or vaccination that transiently produce serum antibodies 

182.  IgG-secreting plasmablasts can also be generated from MBCs in response to a secondary 

systemic immune response 183. Human plasmablasts are characterised as CD19low/+, CD27hi, 

CD38hi, CD24-, CD20-/low, and CD138- 116,184–187. The origin of human plasmablasts is unclear, with 

many suggesting that they are precursors of long-lived plasma cells. However, studies show that 

most ASCs undergo apoptosis once the infection is cleared. Only a small proportion differentiate 

into long-lived plasma cells 188. Plasmablasts are also attracted by CXCL12 and express CCR10 

and β7 integrin (an adhesion molecule), suggesting that they come from mucosal immune 

responses and can return to the mucosal tissue 189.  

1.5.4.2 Plasma Cells 

Plasma cells are terminally differentiated B cells that actively secrete the antibodies needed for 

humoral immunity. These cells occupy the red pulp of the spleen and the medullary cords of the 

LNs that are rich in blood supply and are said to be found around the sinusoidal endothelial cells 

of the BM; they travel in the blood circulation to the BM in the form of plasmablasts. PCs have the 

distinct characteristic of a small and condensed nucleus with extensive cytoplasm that contains 

an enlarged Golgi body and numerous rough endoplasmic reticulum 190. PCs generated outside 

GCs are short-lived and secrete high amounts of unmutated Igs (usually IgM and IgG) 191. They 

occupy the border between the B and T cell zones in the spleen's red pulp and medullary cords 

and LNs, respectively 191. PCs formed in GC reactions are long-lived, secrete Igs with high antigen 

affinity and are found predominantly in the GCs or BM 191. Antibody-secreting PCs are 

characterised by high levels of CD38 and CD27 with downregulation of CD19 and CD20 

expression 116,192. PCs are more mature cells that are usually distinguished from plasmablasts by 

CD138 expression. They also express transcriptional factors, including Blimp-1, IRF4, and XBP1, 

that are important for ASC differentiation 192,193,194(p4),195,196,197(p1),198. 
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PCs' primary function is producing antibodies following vaccination or infections, thus fostering 

immune development. So PCs are solely responsible for maintaining the immunity in both animals 

and humans through antibody secretion. Aside from antibody secretion, PCs also affect other 

pathologic and non-pathologic processes; they function as critical regulators of immune 

responses via cytokine secretion like IL-21 193,199,200. 

Initial studies of B cells focused on their role in antibody secretion. However, they are known to 

play other critical roles in many processes (reviewed in Figure 1.5). 

 

 

Figure 1.5: Examples of multifunctional characteristics of how B cells regulate immune 

homeostasis aside from antibody production. 
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1.5.5 Regulatory B cells 

Traditionally, B cells are known to participate in adaptive immunity via humoral immunity (by active 

and continuous antibody secretion), antigen processing and presentation, and secretion of 

cytokines.201–203 Recently, however, some populations of B cells were revealed to have regulatory 

features; these cells are regulatory B cells or Bregs in short. In animal models, Bregs reduce 

inflammation 201–203, promote tolerance in transplantation 204–206 and improve experimental 

autoimmune diseases 207–211. Several subsets of Bregs were reported, and most of them act by 

secreting IL-10. Regulatory B cells are discussed in detail below as part of an article published on 

regulatory B cells in respiratory health and diseases. 

1.6 Human respiratory system 

This thesis is predominantly focused on inflammatory conditions of the lung. The respiratory 

system's primary function is facilitating gaseous exchange from the environment into the 

bloodstream 212. The human respiratory system is functionally divided into two regions; a 

conducting, or the upper respiratory tract, comprising the external thoracic organs (nose, pharynx 

and larynx). And the respiratory, or the lower respiratory tract, that include all the organs within 

the thorax – trachea, bronchi, bronchioles, and alveoli (Figure 1.6) 213.  
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Figure 1. 6: Human respiratory system 

 

During inhalation, the diaphragm contracts to pull downward and the chest muscles contract to 

pull open the chest, which helps suck in air. Then, during an exhale - the muscles relax, allowing 

the lungs to spring back to their normal size, pushing that air out. During breathing, air flows 

through the nostrils and enters the nasal cavity, which is lined by cells that release mucus; the 

mucus contains enzymes and peptides that help trap and kill bacteria. The air goes from the nasal 

cavity into the pharynx or throat. The region connecting the two is called the nasopharynx, and 

the part connecting the pharynx to the oral cavity is called the oropharynx. Then there is the 

laryngopharynx, the part of the pharynx that extends into the larynx or voice box 212,214. 

The air continues down through the larynx into the trachea or the windpipe, which splits into two 

mainstem bronchi that enter the lungs. The trachea and the bronchi are wide and primarily 

composed of cartilages and smooth muscles. The bronchi or large airway is divided into smaller 
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bronchi or bronchioles, lined mainly by ciliated columnar cells and goblet cells that secrete mucus 

215–217. The secreted mucus and the ciliated cells help trap particles and bacteria from the air and 

propel them towards the pharynx, a process called the mucus escalator, providing mechanical 

protection. The bronchioles conduct air through smaller bronchioles called conducting 

bronchioles. These bronchioles are also lined by ciliated columnar epithelial cells and mucus-

secreting goblet cells, as well as club cells that secrete glycosaminoglycans (a critical material 

that protects the bronchiolar epithelium) and are capable of transforming into ciliated columnar 

cells (club cells) that helps to regenerate and replace damaged ciliated columnar epithelial cells 

when needed 215–218. 

The last part of the conducting bronchioles is the terminal bronchioles. After that, the air reaches 

the respiratory bronchioles, which have tiny outpouchings called alveoli. There are about 500 

million alveoli within the lungs 219,220. The respiratory bronchioles end at alveoli. At this point, the 

airway is called an alveolar duct rather than the respiratory bronchioles. This is the final 

destination of the inhaled air. 

The alveolar wall has an entirely different structure from the bronchioles. There are no cilia or 

smooth muscle; instead, the wall is lined by thin epithelial cells called pneumocytes 216,217,221. Most 

of the regular pneumocytes are called type I pneumocytes, but some are called type II 

pneumocytes 221,222. The pneumocytes secrete a substance called surfactant, which helps 

decrease the surface tension within the alveoli and keeps them open 221–223. Like the club cells, 

the type II pneumocytes can also transform into type I pneumocytes to regenerate and replace 

damaged cells 224,225. Finally, alveolar macrophages help clear any tiny particle that makes it deep 

into the lung by physically moving them up to the conducting bronchioles, where they can be 

exported out to the pharynx via the mucus escalator 222. 

The air, now in the alveolus, is surrounded mainly by a single layer of type I pneumocytes. 

Endothelial cells are in close proximity to the pneumocytes and in many areas, the basement 

membrane of pneumocytes and endothelial cells are fused to facilitate gaseous exchange. At this 

point, carbon dioxide diffuses from the deoxygenated blood and into the alveoli, which gets 

breathed out 216,226. With each breath, oxygen enters the alveoli and freely diffuses into the blood. 

1.6.1 Immune responses in the Lung 

The air we breathe is accompanied by potentially harmful microbes and particles that can damage 

delicate lung tissue. In health, the lungs are enriched with immune cells that repulse these foreign 

substances and repair injury. Prolonged or inappropriate immune responses in the lung may result 

in diseases such as asthma and COPD.  
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Innate immune cells are few in number in health but some are present as sentinels to survey lung 

health. Dendritic cells (DCs) are typically embedded throughout the bronchial wall to sample 

antigens in the airway lumen 227. Also present are sporadic mast cells packed with granules rich 

in histamine and other mediators 228. Various subtypes of innate lymphoid cells (ILCs) are also 

evident, mostly associated with the epithelial barrier 227–229. The dominant macrophage population 

in health are alveolar macrophages that are tuned by the local microenvironment (particularly the 

epithelium) to be more resistant to activation 228,229. When inhaled antigens contact the epithelium, 

they trigger the release of two cytokines, IL-25 and thymic stromal lymphopoietin (TSLP), which 

stimulate nearby DCs and ILCs. The DCs leave the epithelium for the lymph nodes, where they 

activate T cells and initiate an adaptive immune response 230,231. Antigens can also pass through 

the epithelium, especially in conjunction with damaging particles such as those found in tobacco 

smoke or diesel fumes. Some of these antigens can reach the mast cells (in the case of asthmatic 

individuals) housed in the smooth muscle tissue. The activated T cells in the lymph nodes enter 

the interstitial spaces of the lung, where they secrete chemical signals that recruit other immune 

cells 232,233. Cells like eosinophils (in the case of allergic reaction) squeeze through the epithelium 

into the lumen and release IL-5, IL-13 and platelet-activating factors 234,235. These act on goblet 

cells causing them to secrete more mucus in a process known as goblet hyperplasia. Prolonged 

exposure over time may lead to fibrosis and permanent lung injury 168,231,234,235. 

1.6.2 B cells and the respiratory system 

Immunologic reactions were initially thought to occur in SLOs only. However, recent evidence 

suggests that immune reactions can occur outside these organs in lymphoid-like tissues called 

ectopic or tertiary lymphoid structures. Ectopic lymphoid tissues (ELTs) are loosely organized, 

poorly defined aggregations of lymphoid cells that develop in response to chronic infection, 

chronic inflammation, or autoimmunity 236,237. Morphologically, ELTs are similar to SLOs, with 

separated B and T cell zones and specialized immune DCs, TFH cells, high endothelial venules 

(HEVs) and stromal cells that develop at the site of local pathology. Like the SLOs, ELT requires 

the expression of CXCL12 and CXCL13 and signalling from lymphotoxin for its development 237. 

ELTs develop in a variety of tissue that includes the gut, lungs, and upper respiratory tract 237. 

B cells are not ordinarily resident in the lung. However, the small fraction of B cells in healthy 

airways secrete antibodies that act locally and at mucosal surfaces. These antibodies are 

predominantly IgA and IgM and are polymeric. Polymeric antibody is transported across the 

epithelium via the poly IG receptor to facilitate antigen expulsion from the lung and to agglutinate 

antigens in the lumen 238–241. Like the gut, B cells activated in airway lymphoid tissues (like nasal-
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associated lymphoid tissue; NALT) differentiate into IgA-secreting PCs that predominantly act in 

the airway lumen 242. Due to the lack of data on airway B cells, mechanisms guiding B cell homing 

and class switching in the airway in poorly understood. Some studies suggest CCR10-CCL28 and 

α4β7-VCAM-1 interaction play an integral role in B cell homing in the airway 242. 

1.7 COPD 

COPD is an inflammatory lung disease estimated to be the third leading cause of morbidity and 

mortality worldwide 243. COPD is ranked the fourth cause of disability, affecting about 10 % of 

persons older than 45 years 244. COPD is a chronic lung inflammatory disease characterized by 

persistent and progressive airflow limitation that is poorly reversible. The limitation of airflow is 

due to uncontrolled inflammatory responses to toxic gases or particles in the airways and lung 

that leads to emphysematous destruction of the lungs 243. Cigarette smoke (CS) is the primary 

cause of COPD in developed countries,  followed by genetic factors and other environmental 

factors like burning biomass fuels (usually in developing countries) (Figure 1.7) 243,245. Despite 

several studies on the pathophysiology of COPD, it is still not understood why only a small 

percentage of long-term smokers develop COPD while others do not, and why the disease still 

persists even after smoking cessation 246. COPD pathogenesis is hypothesized to be a cascade 

of innate immune responses together with epithelial cells, neutrophils and macrophages, and 

adaptive immune responses 246,247. B cells, CD8, and CD4 T cells have been demonstrated in the 

small airways and lung tissue of patients with more severe disease. Their structural configuration 

as tertiary lymphoid tissue indicates that antigen-specific stimuli elicit an immune reaction, 

potentially enhancing the ongoing inflammation. 



46 
 

 

Figure 1.7: Small airway in healthy versus COPD lung 

Alveolar wall attachments contain elastic fibres that open the bronchioles (small airways) in the 

healthy lung. However, in COPD, chronic inflammation and fibrosis causes thickening of the 

peripheral wall of the bronchioles. This leads to disruption of alveolar attachment and narrowing 

of small airways as a result of emphysema and occlusion of lumina by mucus and inflammatory 

exudate. 

 

1.7.1 Emphysema in COPD 

Emphysema means “inflate or swell”, and in patients with lung emphysema, the alveoli sacs are 

damaged or destroyed, leading to permanent alveoli enlargement and loss of elasticity resulting 

in difficulty in exhaling air from the lungs 248. With COPD, the airways become obstructed, and the 

lungs do not empty properly, leaving trapped air inside the lungs. For this reason, the maximum 

amount of air people with COPD can breathe out in a single breath, known as FVC, or forced vital 

capacity, is lower. This reduction is particularly noticeable in the first second of air breathed out, 

called FEV1 (forced expiratory volume in one second), which typically is reduced even more than 

the FVC. A useful metric, therefore, is the FEV1 to FVC ratio, which, since the FEV1 goes down 

even more than FVC, causes the FEV1 to FVC ratio to go down as well. So emphysema is a form 
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of COPD based on the structural changes in the lungs, specifically, the destruction of the alveoli 

248–251. Inflammatory reactions attract various immune cells, which release inflammatory mediators 

like leukotriene B4, IL-8, and TNF-α, as well as proteases like elastases and collagenases. These 

proteases break down critical structural proteins in the connective tissue layer like collagen and 

elastin (a protein that gives the tissue elasticity), leading to the problem seen in emphysema 

247,252,253.  

1.7.2 COPD pathophysiology 

Various pathologic processes occur during COPD formation; this includes chronic bronchitis 

(over-secretion of mucus), emphysematous destruction of the small airways, reduced airway 

recoil, and air trapping in the lung that leads to lung hyperinflation 254. Aside from lung 

inflammation, two other processes are involved in COPD pathogenesis; oxidative stress 

(imbalance between oxidants and antioxidants) and protease and antiprotease imbalance 255–258. 

 

The GOLD (Global Initiative on Obstructive Lung Disease) definition is usually used to define the 

chronic airflow blockage in different stages of COPD 243. The GOLD definition uses a threshold of 

0.1 for the post-bronchodilator ratio of forced expiratory volume in 1 second (FEV1) to forced vital 

capacity (also known as the Tiffeneau index) 243, this ratio decreases with age 259. Four stages of 

COPD exist depending on the severity of the airflow obstruction: stage 1 (mild, FEV1  ≥ 80 % of 

lung function predicted), stage 2 (moderate, FEV1 50 – 80 % of predicted), stage 3 (severe, FEV1 

30 – 50 % of predicted), and stage 4 (very severe, FEV1 < 30 % of predicted) 243. 

1.7.3 Exacerbations 

COPD exacerbations result from inflammatory events commonly triggered by bacterial 

pneumonia, respiratory viruses, air pollution and non-adherence to medication 260. Exacerbation 

in COPD is characterized by short periods (typically less than 48 h) of increased cough, dyspnea, 

and sputum production that become purulent and aggravate COPD leading to transient symptoms 

that significantly increase morbidity and mortality 260–262. Exacerbations range from mild to severe; 

the mild and moderate forms can be treated with medications, while the severe forms usually 

require hospitalization for treatment 263,264. 
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1.7.4 Inflammatory responses in the lower airway of COPD patients 

COPD lung is associated with the heightened presence of immune cells, where products of 

immune responses cause deterioration of the cells in the lower airway 265–268. Many studies have 

shown presence of infiltrating immune cells in COPD compared to control lung. However, levels 

and functions of the infiltrating immune cells vary with disease type and severity, where 

neutrophils and B cells are seen to be the predominant cells in the most severe form of the disease 

(usually in stages 3 and 4) 266–269. In CS-induced COPD, immune cells frequently accumulate in 

the lung submucosa in response to irritants from CS 270,271. Ectopic lymphoid tissues are then 

formed by the infiltrating cells. This supports uncontrolled inflammatory reactions in the small 

airways that subsequently destroy cells of the small airways and causes smooth muscle 

hypertrophy and fibrosis 269,272. 

As previously discussed, COPD is associated with a constant influx of inflammatory cells into the 

pulmonary tissue due to the persistent inflammatory response. Innate immunity in the lung is often 

suppressed following chronic exposure to cigarette smoke and other harmful environmental 

factors, this occurs in addition to endogenous processes like ageing and other pathological 

changes in COPD. Suppressed innate immunity increases the chances of respiratory infections 

that cause secondary inflammation and consequently promote the destruction of lung tissue and 

subsequent decline in lung function. The COPD current smoker’s airway is associated with an 

imbalance between CD4+ and CD8+ T cells, where CD8+ T cells are the predominant T cells 

246,273. The increase in CD8+ T cells is observed throughout the tracheobronchial tree, suggesting 

persistent inflammation in smokers with COPD 246,273. In the COPD lung, CD8+ T cells target cells 

with MHC-I leading to their cytolysis (by proteolytic enzymes released by the CD8+ T cells) and 

apoptotic destruction 274. Cytokines like IL-17, that are secreted by CD8+ and CD4+ T cells, play 

a major role in cigarette-smoke-induced emphysema development in COPD 275,276. IL-17 induces 

IL-8 (neutrophil chemoattractant) that attracts neutrophils and, subsequently, macrophages. The 

activated neutrophils and macrophages then release proteolytic enzymes like neutrophil elastase 

and matrix metalloproteinases (MMPs), for example, MMP8, MMP9, and MMP12 274. Figure 1.8 

highlights the key innate and adaptive immune responses in COPD pathogenesis. 
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Figure 1.8: Mechanisms of Innate and adaptive immune cell response in COPD 

Toxins in Cigarette smoke activate neutrophils, macrophages, NK cells and epithelial cells in the 

innate immune response. Dendritic cells at the site of the inflammation initiate the adaptive 

immune response by activating B cells, T helper cells and cytotoxic T cells, leading to chronic 

inflammation and lymphoid follicle development with the help of follicular dendritic cells and high 

endothelial venules. 

 

1.7.5 B cell in COPD immunopathology 

The role of B cells in COPD pathogenesis is not well known. Studies of the small airways of COPD 

patients show an increase in B cell concentration and ELTs in the adventitia of the small airways 

compared with controls. The number of ELTs and B cells increases with COPD severity but are 

absent in the small airways of non-smokers 269,272. The ELT usually consists of an aggregate of B 
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cells (IgM+IgD–CD27+ cells) 277, FDCs, helper T cells, and cytotoxic T cells 269,272,278. The 

concentration of B cell-activating factor, BAFF, also increases in advanced forms of COPD and 

in patients with emphysema 279. Several emphysema phenotypes have been linked with B cell-

rich lymphoid follicles that contribute to clonal proliferation in the emphysematous lung 278,280. 

Also, studies in transcriptomics show upregulated B cell signaling in patients with severe 

emphysema281. 

1.7.5.1 Recruitment and activation of B cells in COPD lungs 

Several factors are involved in the recruitment and activation of B cells during the chronic 

inflammatory reaction in COPD lungs. For instance, lymphotoxin-α-β heterotrimer (LTα1β2) that 

is expressed on activated B cells interacts with lymphotoxin-β (LT-β) on the lung stromal cells.282 

This interaction induces the expression of lymphocytes and DCs chemo-attractants (CCL19 and 

CCL21; CXCL12 and CXCL13 and adhesion molecules) by the stromal cells and subsequent 

recruitment of the immune cells into the lungs.283 

1.7.6 Autoimmunity in COPD 

Considerable evidence suggests possible autoimmune activities in COPD patients. This evidence 

includes; genetic and environmental predisposition 284,285, presence of autoantibodies286, 

persistent inflammatory reactions even after smoke cessation, and continuous recruitment of 

activated APCs into COPD lungs that secrete pro-inflammatory cytokines 287. Production of 

autoantibodies in COPD is associated with an increase in lung levels of self-antigens that are 

generated in response to an increase in oxidative stress levels. There is a strong link between 

COPD severity and levels of these autoantibodies 288. The development of emphysema in COPD 

is associated with proteolytic destruction of extracellular proteins, which also leads to the 

production of fragments of extracellular matrix (matrikines) that recruit inflammatory cells 289,290. 

Destruction of cellular components of COPD lungs increases emphysema development and 

generates neoepitopes that can be targeted as self-antigens by autoantibodies 283. Different 

factors of COPD development (e.g., environment and genetic factors, infectious agents), coupled 

with genetic differences and different pathologies occurring in COPD lungs and other organs, 

make it challenging to understand the autoimmune contribution of B cells to COPD development 

291. Similarly, the number and functions of different B cells and their different subsets (e.g., Bregs) 

in the COPD lung are yet to be assessed, which prompted this research. 
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1.8 SARS-CoV-2 virus 

The emergence of the COVID-19 pandemic meant that this thesis was adjusted to allow 

laboratory access.  Despite this divergence, many parallels, as well as many differences, emerged 

when comparing COPD and COVID-19. 

First reported in Wuhan, China, in December 2019, the coronavirus disease 2019 (COVID-19) 

pandemic has affected more than half a billion people globally and caused more than six million 

fatalities. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent 

of COVID-19, where the virus binds the cells expressing angiotensin-converting enzyme 2 

(ACE2), which is abundant on surfaces of pulmonary type II alveolar cells 292–294. There were a 

total of six human coronaviruses (hCoVs) before the novel SARS-CoV-2; this includes the four 

seasonal strains that mainly caused upper respiratory illnesses or common cold (hCoV-NL63, -

OC43, -229E, and HKU1), and the more current MERS-CoV5 and SARS-CoV4 that are 

transfected from animals (zoonosis) that emerged in 2003, and 2012 respectively 295.  

SARS-CoV-2 belongs to the coronaviridae family and contains a variety of viral species that infect 

humans and animals 296–298. Coronavirus infections cause about 20-30 % of the common cold in 

humans, and is usually a mild respiratory infection that does not require hospital assistance 299. 

However, MERS-CoV and SARS-CoV have higher fatality despite having low transmissibility, with 

SARS-CoV-2 having the highest transmissibility 300. 

Coronaviruses are single-stranded RNA viruses, about 30 Kbp long with a diameter of 80-120 nm 

and spheroidal shape. Their envelope contains the membrane-M-, envelope-E-, and spike-S- 

proteins, and the RNA is covered with a virion that contains the nucleocapsid-N 301. The S protein 

contains the receptor-binding domain (RBD) housing the antigenic epitope that induces immune 

responses and binds its ligand (ACE2) on the host cell membrane, making it the most widely 

studied protein of the coronavirus 302. 

The pathology of COVID-19 involves numerous clinical features varying from asymptomatic 

infections to mild, moderate, and severe infections that usually requires hospitalization and 

mechanical ventilation and possible death. However, most mild and asymptomatic cases of 

COVID-19 (approximately 80%) are not documented 303. There are several risk factors associated 

with severe COVID-19 disease and death; these include age, gender, cardiovascular diseases, 

diabetes, and treatments or diseases that affect the immune system 304–308. Pathology in acute 

respiratory infections can be mediated either by SARS-CoV-2 directly, by cytokine storm from 

overaggressive immune response, or both 309–311. Although the role and characteristics of immune 
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reactions in COVID-19 are known, how that affects the clinical outcome of patients is still not 

clearly understood. 

The primary contact route of SARS-CoV-2 is via inhaling exhaled microdroplets from infected 

individuals or by direct contact with viral particles in contaminated objects. The virus then targets 

the bronchial epithelial cells and pneumocytes of the alveolar epithelium that have an abundant 

expression of ACE2. Infection with SARS-CoV inhibits ACE2 expression and causes basal 

membrane detachment and autophagy, resulting in the binding of angiotensin II to the angiotensin 

II receptor type 1 (AT1a) receptor that subsequently results in acute lung damage 

312,313,314(p9),315,316. 

1.8.1 Role of B and T cells in COVID-19 

Outcomes of SARS-CoV-2 infection are diverse and range from asymptomatic infections to 

severe pneumonia, acute respiratory distress (ARDS), multiple organ failure and death. The 

immunity to SARS-CoV-2 depends on disease severity and virus inoculum. B cells play a crucial 

part in the humoral immunity against COVID-19 infection, although their contribution is not fully 

understood. Early immune response by B cells is seen during the first few days of SARS-CoV 

infection, where antibodies against both S and N proteins can be detected 317,318. The N protein is 

highly immunogenic, lacks glycosylation sites, and is smaller than the S protein, resulting in early 

production of N-specific antibodies within a few days post-infections 319. IgM, IgG, and IgA 

antibodies against SARS-CoV have been detected at both onsets of acute infection and at 

different time points of the disease. Levels of IgM antibodies usually drop three months post-

infection, whereas IgG antibodies were detected after an extended period.320,321. 

B and T cells are essential in the clearance of viral infection, and their induction against SARS-

CoV-2 is vital for long-term protection (Figure 1.9). Viral infection elicits virus-specific B and T cell 

responses, and cytokines and chemokines released by APCs determine the effector function of 

T cell subsets. Concurrently, the production of neutralizing antibodies by plasma cells determines 

the protective function of the humoral immunity against infection 322. In SARS-CoV-2 infection, 

IgM first appears three days post-infection, followed by high-affinity IgG, then long-term memory 

against the virus 323. However, PCs continue to release antibodies that have serological memory. 

The generated memory B cells will then rapidly differentiate into PCs and produce high-affinity 

antibodies in response to secondary infection, ensuring long-term immunity 324. Long-term 

immunity against viral infection is ensured by viral-specific memory B and T cells 325. SARS-CoV-

2-specific memory B cells are seen within a month of infection, with levels of switched MBCs 
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associated with reduced duration of symptoms in patients with COVID-19 326. This shows the 

presence of memory response even prior to the MBC formation in some COVID-19 patients, 

probably as a result of previous coronavirus infection, since coronaviruses are likely to generate 

cross-reactive B and T cell immunity 327. 

Viral-specific CD4+ T cells are required to elicit potent B cell responses against the spike protein 

of SARS-CoV-2 virus 328–330. They are essential in the formation and sustenance of GCs that lead 

to B cell differentiation, isotype class switch and immunoglobulin maturation via T-dependent 

activation. Depletion of CD4+ T cells is associated with defective GC formation in COVID-19 

patients 331, leading to poor viral immunity and longer persistent infection in patients 332.  

Furthermore, the hallmark of severe COVID-19 is typically associated with reduced CD4+ and 

CD8+ T cells or lymphopenia, T cell exhaustion with reduced proliferative ability, and increased 

pro-inflammatory cytokines 333. 

  

Figure 1.9: Immune response in SARS-CoV-2 infection 

Infection with SARS-CoV-2 activates innate immunity and dendritic cells, causing the activation 

of viral-specific B and T cell responses.  
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In recognition of the discoveries made in this thesis, we wrote a review article on regulatory B 

cells, which is included here. 
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1.9.0 Summary 

B cells are critical mediators of humoral immune responses in the airways through antibody 

production, antigen presentation and cytokine secretion. In addition, a subset of B cells, known 

as regulatory B cells (Bregs), exhibit immunosuppressive functions via diverse regulatory 

mechanisms. Bregs modulate immune responses via the secretion of IL-10, IL-35 and tumour 

growth factor-β (TGF-β), and by direct cell contact. The balance between effector and regulatory 

B cell functions is critical in the maintenance of immune homeostasis. The importance of Bregs 

in airway immune responses is emphasized by the different respiratory disorders associated with 

abnormalities in Breg numbers and function. In this review, we summarize the role of 

immunosuppressive Bregs in airway inflammatory diseases and highlight the importance of this 

subset in the maintenance of respiratory health. We propose that improved understanding of 

signals in the lung microenvironment that drive Breg differentiation can provide novel therapeutic 

avenues for improved management of respiratory diseases. 
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1.9.1 Introduction 

B cells are an essential part of humoral immune responses in the airways through antibody 

production, antigen presentation, and cytokine secretion 334. Although these functions are pivotal 

in the clearance of invading pathogens and the development of long-term immunity, unrestrained 

inflammation can cause irreversible damage to tissues 334. To prevent this, we require 

mechanisms of suppression that prevent exaggerated immune responses and maintain tissue 

homeostasis. 

In addition to well-established effector functions, a subset of immunosuppressive B cells, known 

as regulatory B cells or Bregs, contribute to preventing uncontrolled inflammation 335. Bregs, as 

negative regulators of the immune system, suppress inflammatory responses via the production 

of IL-10 and other anti-inflammatory mediators, as well as via direct cell contact. Depending on 

the disease context, Bregs can be either pathogenic or beneficial; whereas an expansion of Bregs 

is advantageous in autoimmunity and other chronic inflammatory conditions, increased Breg 

frequencies can cause detrimental immune suppression in infectious diseases and cancers 336. 

The signals required for the induction of Bregs include a combination of toll-like receptor (TLRs) 

ligands, CD40-ligand (CD40-L), antigens activating the B cell receptor (BCR), co-stimulatory 

molecules (CD80, CD86) and inflammatory cytokines 335,337. Majority of these stimuli are found in 

the lung microenvironment 334,338, supporting an expansion of Bregs in the airways. Moreover, 

numerical and functional abnormalities in Bregs have been associated with various immune-

related lung pathologies 339–342, highlighting the importance of this B cell subset in mounting an 

appropriate immune response in the airways. For these reasons, there is an increased interest in 

understanding the role of Bregs in respiratory health and disease settings. This review 

summarizes the role of immunosuppressive Bregs in airway inflammatory diseases, including lung 

cancer, respiratory infections, allergy, pulmonary fibrosis, and autoimmune pulmonary 

manifestations, thus emphasizing the importance of this subset in the maintenance of respiratory 

health.  

1.9.2 Overview of Breg induction, phenotype, and function 

Over the past decade, studies in experimental animal models and patients with autoimmune 

diseases have identified multiple Breg subsets exhibiting diverse mechanisms of immune 

suppression 336. Evidence suggests that the environmental milieu play a pivotal role in the 

induction of Bregs. In addition to TLR, BCR and CD40 signalling, as well as CD80 and CD86 
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activation, inflammatory cytokines have been shown to play an important role in expanding 

immunosuppressive Bregs 337. For example, exposure to inflammatory cytokines IL-1β and IL-6 

have been shown to induce Breg differentiation in a mouse model of arthritis 343. Moreover, mice 

with B cell-specific deletion of IL-1R1 or IL-6R displayed reduced Bregs and exacerbated arthritis. 

Interestingly, the production of IL-10 and IL-6 are modulated by gut bacteria, highlighting an 

indirect role for microbiota in Breg induction 343. Other inflammatory cytokines, such as type-I 

interferons (IFN-I), IL-21 and B cell-activating factor (BAFF) have also been shown to play a role 

in Breg differentiation 344–347. Although anti-inflammatory cytokine IL-35 has been shown to 

expand IL-10- and IL-35-producing Bregs 348, evidence suggests that IL-35 is itself induced in 

response to inflammatory stimuli 349. Of note, activation of STAT3 is important for induction of IL-

10 expression by B cells, as inhibition of STAT3 has been shown to abrogate IL-10+ B cells 350. 

Taken together, the expansion of suppressive Bregs in response to inflammatory signals appears 

to be a mechanism that has evolved to prevent excessive inflammation and tissue damage. 

In addition to inflammatory stimuli, recent studies have identified aryl hydrocarbon receptor (AhR) 

as an important transcription factor involved in Breg differentiation 351,352. Ahr has been shown to 

regulate the transcription of IL-10 by B cells while actively repressing the transcription of pro-

inflammatory mediators 351. In a mouse model of arthritis, the lack of Ahr expression on B cells 

has been demonstrated to increase Th1/Th17 responses, decrease regulatory T cells (Tregs) and 

lead to exacerbated arthritis as a result of impaired IL-10-producing Breg differentiation 351. 

Interestingly, Blimp1, a transcription factor critical for plasma cell differentiation 193, has also been 

shown to play a role in IL-10+ Breg function;  as  Bregs lacking Blimp-1 expression fail to efficiently 

suppress naïve CD4+ T cell proliferation 353. Furthermore, recent evidence suggests that Bregs 

have the ability to differentiate into IL-10-producing plasmablasts and plasma cells in vitro and in 

vivo 354,355. Although antibody-producing plasmablasts/ plasma cells are largely associated with 

pro-inflammatory responses 356, a subset of IL-10+ regulatory plasmablasts have been shown to 

suppress immune responses while producing antibody 357,358. These findings suggest that B cells 

at any stage of development can exhibit a regulatory phenotype. 

Several Breg subsets with overlapping markers and functions have been identified in mice and 

humans 336. In animal models, Bregs suppress allergic airway inflammation 359, promote tolerance 

in transplantation 360,361, and improve experimental autoimmune diseases 362,363,354. Among the 

different subsets, IL-10-producing B cell subpopulations that constitute ~10% of circulating human 

B cells are the most studied in different disease settings 336,364. These subsets include CD1dhiCD5+ 

B10 Bregs 365, CD5+CD21+CD23− marginal zone (MZ)  Bregs 16,366, CD1dhiCD21hiCD23hiCD24hi 
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T2-MZP Bregs 362,367 and CD138+CD44hi plasmablasts 354. In addition, T cell immunoglobulin and 

mucin-domain-containing protein (Tim-1) has been identified as a marker for IL-10-producing B 

cells in mice and is expressed by multiple Breg subsets 368,369. Importantly, B cell-specific Tim-1 

deletion results in spontaneous multi-organ tissue inflammation, supporting a role for this Breg 

subset in maintaining self-tolerance and restraining tissue inflammation 352,369. Other Breg 

populations include MZ-like and MZ-progenitor B cells that express programmed cell death-ligand 

1 (PD-L1) molecule in mice 370. Immune suppression by PD-L1hi Bregs is independent of IL-10 

and mediated by the PD-1/PD-L1 pathway that can regulate follicular T helper (Tfh)  cell 

responses 370.  

Due to the limited access to human lymphoid tissues, majority of human Bregs identified thus far 

are in the peripheral blood. The characterized human Breg subsets include CD24hiCD38hi 

transitional B cells 364, CD24hiCD27+ human B10 cells 371, CD25hiCD71hiCD73lo regulatory B1 

(Br1) cells 372, CD27intCD38hi plasmablasts 354, CD38+CD1d+IgM+CD147+granzymeB (GzmB)+ B 

cells 373 and CD39+CD73+B cells 374,375. Similar to mouse models, Tim-1+ B cells that co-express 

IL-10 have also been reported in humans 376. The different Breg subsets, their mechanisms of 

suppression and role in different disease settings have been described in detail elsewhere 

336,337,377, and summarized here in Table 2. 

Table 1.2: Phenotype and function of Breg subsets 

Subset Phenotypic markers Mechanism of 

action 

Functions Reference 

B10 cells CD1dhiCD5+ (mouse) 

CD1d+CD24hiCD27+ 

(human) 

IL-10 Inhibits Th17 cells, 

effector CD4+ T cells, 

macrophages and 

DCs, expands Tregs 

and Tr1 cells 

351,371,378–380 

Tim-1 B cells Tim-1+ (mouse and 

human) 

IL-10, TGF-β Expands Tregs and 

reduces Th1 cells, 

increases allograft 

tolerance 

352,368,369,376 

T2-MZP B 

cells 

CD1dhiCD21hiCD23hiCD2

4hi (mouse) 

IL-10 Promotes Treg 

differentiation, inhibits 

Th1/ Th2 cells, 

362,367,380 
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suppresses effector 

CD4+ and CD8+ T cells 

MZ B cells CD5+CD21+CD23-

CD1d+CD24hiIgMhiIgDlo 

(mouse) 

IL-10 Suppresses effector 

CD4+ and CD8+ T cells, 

promotes Treg 

differentiation 

16,367 

Plasma cells CD138hiCD1d+ 

IgM+B220+TACI+ CXCR4+ 

Tim1+/- (mouse) 

IL-10, IL-35 Inhibits NK cells, Th 

cells, macrophages, 

and neutrophils, 

promotes antigen 

presentation 

348,355 

Plasmablasts CD138+CD44hi (mouse) 

CD27hiCD38hi (human) 

IL-10 Suppresses DCs ability 

to expand effector T 

cells 

354,357,358 

Br1 cells CD25hiCD71hiCD73lo 

(Human) 

IL-10, IgG4, 

PD-L1 

Secretes anti-

inflammatory IgG4, 

reduces differentiation 

of Th cells  

372 

Transitional/ 

Immature B 

cells 

CD24hiCD38hi (human) IL-10, PD-L1, 

CD86 

Suppresses Th1/ Th17, 

TNFα+ monocytes, virus 

specific CD8+ T cells, 

expands Tregs and 

iNKT cells.  

364,380,385 

GzmB+ B cells CD5+CD27+CD138+ 

(human) 

Granzyme-B Induces CD4+ T cell 

apoptosis, inhibit 

proliferation of CD4+ T 

cell 

373 

iBregs - TGF-β, IDO Differentiates T cells 

into IL-10- and TGF-β- 

producing Tregs 

386 
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PD-L1high B 

cells 

PD-L1hiBlimp1lo 

CD138loB220hi (mouse) 

PD-L1 Inhibits Tfh expansion, 

suppress T cell 

differentiation 

370 

CD39+CD73+ 

B cells 

CD39+CD73hi/lo (mouse 

and human) 

5′-AMP, ADO Inhibits proliferation of 

CD4+ and CD8+ T cells 

374,375 

MZ, marginal zone; T2-MZP, transitional-2 marginal zone precursor; PD-L1, programmed cell 

death-ligand 1; DC, dendritic cell; Br1, B regulatory 1 (Br1) cells; NK, natural killer cell; GzmB, 

Granzyme B; iNKT, inducible natural killer T cell; Tim-1, T cell immunoglobulin and mucin-domain 

containing protein 1; Tregs, regulatory T cells; 5′-AMP, adenosine 5′-monophasphate; ADO, 

adenosine; IDO, indoleamine 2,3 dioxygenase. 

 

Inhibitory mechanisms of Bregs are best described by their secretion of the anti-inflammatory 

cytokine, IL-10 335. Breg-derived IL-10 can convert CD4+T cells into Tregs and type-I regulatory T 

(Tr1) cells 379, inhibit Th1/ Th17 differentiation 364,380, suppress TNF-α production by monocytes 

371 and maintain the number and function of immunosuppressive invariant natural killer (iNKT) 

cells 385,387. IL-10-producing Bregs also suppress the production of IFN-α, an anti-viral cytokine 

that is secreted by plasmacytoid dendritic cells (pDCs) 344, thereby implicating a role for Bregs in 

preventing hyperinflammation and tissue damage caused by unresolved infections. Bregs also 

act through the secretion of other anti-inflammatory cytokines like tumour growth factor-β (TGF-

β) and IL-35. Breg-derived IL-35 induces Treg expansion and inhibits Th1 and Th17 differentiation 

348,355, whereas TGF-β induces CD8+T cell anergy and apoptosis of effector CD4+ T cells 388,389. 

Furthermore, a subset of induced Bregs (iBregs, induced by CTLA-4+T cells) expand Tregs in a 

TGF-β and indoleamine 2,3 dioxygenase (IDO)-dependent manner 386). Another subset of Bregs, 

known as Br1 cells, secrete IL-10 and allergen-specific IgG4 antibodies that regulate tolerance to 

allergic reactions and suppress allergen-specific T cell proliferation 372. Additionally, a population 

of CD39+CD73+ B cells suppress inflammatory reactions by inhibiting the proliferation of CD4+ 

and CD8+ T cells, via the production of adenosine 5′-monophosphate (5′-AMP) 374,375. Other 

mechanisms of Breg immune suppression include co-stimulatory interaction with T cells, iNKT 

cells and DCs that involve CD80, CD86, CD1d CTLA-4, PD-L1 and MHC class II 337. PD-L1hi 

Bregs inhibit the expansion of Tfh cells in spleen/ lymph nodes and suppress effector T cell 

differentiation by modulating downstream signaling pathways 370. Figure 1.10 summarizes the 

mechanisms of suppression by Bregs. 
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Figure 1.10: Spectrum of mechanisms of immune suppression by Bregs 

Human Bregs suppress Th1 and Th17 responses and inhibit cytotoxic activity by CD8+ T cells. 

They also induce the differentiation of CD4+T cells into FoxP3+ Tregs and IL-10+ T regulatory-1 

(Tr1) cells. In addition to modulating T cell responses, they suppress TNFα production by 

monocytes, IFN-γ production by plasmacytoid dendritic cells (pDCs) and IL-12-producing DCs. 

Breg-mediated suppression of the immune response is achieved predominantly via the production 

of IL-10, and to an extent by TGF-β and IL-35 production. Further, immune suppression by Bregs 

can be mediated via co-stimulatory interactions with T cells, invariant natural killer T (iNKT) cells 

and DCs. Bregs support iNKT cell homeostasis by presenting lipid antigens via CD1d to the 

invariant T cell receptor (iTCR). 
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1.9.3 B cells in the respiratory system 

The respiratory tract is structurally designed with immune structures to protect the body against 

a wide range of potentially harmful external air-borne antigens 334,390. B cells are normally not 

found in the lungs of healthy humans; their presence in the lung is almost exclusively associated 

with lung injury, usually infection or chronic inflammation 334. B cells are typically located within 

tertiary or ectopic lymphoid tissues (ELTs) in the lung, like the inducible bronchus-associated 

lymphoid tissue (iBALT) 334,338. Unlike well-organized secondary lymphoid organs, ELTs are 

loosely organized, poorly defined aggregates of lymphoid cells that develop rapidly in response 

to infection, chronic inflammation, or autoimmunity 391. ELTs have separate B and T cell-rich 

zones, Tfh cells, a network of follicular dendritic cells (FDCs), stromal mesenchymal cells, and 

high endothelial venules, and can vary depending on the type of pathogen or inflammatory 

condition that triggered their formation 338,391,392. Importantly, they display localized expression of 

CXCL12 and CXCL13 (a strong homing signal for CXCR5+ B cells 393), that promote naïve B cell 

recruitment to the ELTs 394; recruited B cells then produce lymphotoxin-β that further sustain the 

ELT 395,396. Tfh cells also express CXCR5, that responds strongly to CXCL13 and allows them to 

stay in close contact with B cells within the ELT 397–399. Thus, ELTs contain functional germinal 

centers (GCs) for local B cell differentiation, expansion, somatic hypermutation and antibody 

production 391,400. It is noteworthy that resident memory B cells (BRM) are a common feature of 

antigen-experienced lungs, and have been shown to play an important role in acquired anti-viral 

and anti-bacterial lung immunity 401,402. Like the gut, B cells in the airways secrete antibodies that 

act both locally and at mucosal surfaces 334,338. These antibodies are predominantly IgA and IgM 

that bind to glandular epithelial and mucosal surfaces and help in expelling antigens out of the 

body 334,403–405. Similar to B cells activated in Peyer’s patches, B cells that are activated in airway 

lymphoid tissues also differentiate into IgA-secreting PCs that predominantly act in the airway 

406,407. Current understanding of B cell homing and class-switching in the airway remains limited, 

with CCR10-CCL28 and α4β7-VCAM-1 interactions suggested to play an integral role in B cell 

homing in the airway 408–411, and CXCR3 found to uniquely identify BRMs 412.  

Studies of airway inflammatory diseases have recently demonstrated the involvement of B cells 

in disease pathology 334. B cells act as both pro- and anti-inflammatory agents via secretion of 

antibodies and cytokines, as well as by antigen presentation to Th cells. Airway inflammatory 

diseases such as hypersensitivity, chronic obstructive pulmonary disease (COPD), asthma, 

sarcoidosis, idiopathic fibrosing alveolitis, lung transplant rejection, and autoimmune diseases 

have been strongly linked with dysfunctional B cells and their products 334,338. For instance, B cells 
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promote overall inflammation, Th2 responses and eosinophilia in allergic diseases typically via 

the production of IgE 413. Increased progenitor B cell subsets (pre- and pro-B cells) in the lung are 

capable of proliferating, resisting apoptosis and expressing chemotaxis markers (CCR10 and 

CXCR4) in allergic airways reactions 414. In asthmatic lungs, an increased accumulation of tissue 

resident memory B cells, IgG1-secreting cells and BAFF  levels have been associated with severe 

disease 415,416. Furthermore, COPD patients display elevated levels of autoantibodies 

(predominantly IgG1) as well as increased numbers of B cells and ELTs in the adventitia of small 

airways of patients compared to controls, that associate with disease severity 417,418. 

Concentration of BAFF is also observed to increase in the advanced forms COPD and patients 

with emphysema 419. Several phenotypes of emphysema have been linked with B cell-rich 

lymphoid follicles that contribute to clonal proliferation in the emphysematous lung 420,421 and 

associate with increased B cell signaling 419.  Similarly, lymphoid tissues with increased B cell 

aggregates are commonly seen in lung biopsies of patients with idiopathic pulmonary fibrosis 

(IPF), however, the precise role of B cells in this disease is not well demonstrated 422,423. 

Abnormalities in both circulating and tissue resident B cell subsets have been implicated in the 

pathophysiology of autoimmune diseases that include systemic lupus erythematosus (SLE), 

rheumatoid arthritis (RA), systemic sclerosis (SSc), and Sjögren’s syndrome. These abnormalities 

include defects in B cell activation, cytokine production, induction of other immune cells, increased 

autoantibody production, and lymphoid organogenesis 424–427. ELTs are thought to be the site for 

generating autoreactive B cells and are frequently found in the airways of patients with RA and 

Sjögren’s syndrome 334. Furthermore, interstitial lung disease (ILD) is a common feature of RA, 

SSc and Sjögren syndrome, where lung biopsies from patients show increased B cell infiltration, 

B cell hyperactivation and formation of B cell-rich BALT with elevated CXCL13 and CCL21 

expression (not observed in healthy individuals) 428–430. Activated B cells produce IL-6 and TGFβ 

that can further contribute to lung fibrosis in SSc patients 431. In other diseases such as chronic 

lung transplant rejection, B cells have been shown to be key drivers of rejection via antibody 

production 432,433, where secreted IgGs activate macrophages and NKT cells through the FcγR 

432. Although not conclusively established in sarcoidosis,  altered antibody responses are 

suspected to be one of the major drivers of disease pathogenesis, as observed by the increased 

IgG and IgA-secreting B cells in lung biopsies from patients compared to controls 434,435.  

Importantly, abnormalities in immunosuppressive Breg numbers and function have also been 

linked to various lung pathologies, highlighting the importance of Bregs in modulating airway 

inflammation and maintaining tissue homeostasis 339–341,436. While Bregs are well recognized as 
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important modulators of the airway inflammatory responses, specific signals in the lung 

microenvironment that induce Bregs currently remain unknown. Inflammatory signals that play an 

important role in Breg induction are upregulated in the lung microenvironment in infections and 

chronic inflammatory conditions, suggesting their potential involvement in Breg induction 437–441. 

1.9.4 Role in disease 

1.9.4.1 Lung cancer 

Lung cancer is currently the leading cause of cancer deaths worldwide, with a complex 

pathophysiology that is not well understood 442. Bregs play an important role in suppressing anti-

tumour responses and driving tumour progression by attenuating cytotoxic CD8+ T cells and NK 

cells while promoting functions of Tregs, myeloid-derived suppressor cells (MDSCs) and tumour-

associated macrophages (TAMs) 441. Tumor-infiltrating Bregs have been shown to mediate 

immunosuppression by secreting anti-inflammatory cytokines IL-10 and TGF-β, and by 

upregulating expression of regulatory ligands CTLA4 and PD-L1 443–445. Several phenotypically 

distinct Breg subsets have been identified in tumour settings, including CD24hiCD27+ memory, 

CD24hiCD38hi transitional, and CD138+IgA+ or CD147+IgM+ plasma cell phenotypes 446. A growing 

body of evidence suggests that tumour-infiltrating B cells are not intrinsically suppressive and that 

the induction of Bregs is likely upon exposure to the lung microenvironment. The expansion of IL-

10+ tumor-evoked Bregs has been associated with inflammatory signals derived either directly 

from the tumour or indirectly from tumour-infiltrating cells in the surrounding microenvironmental 

milieu 446. 

Studies from mouse models have provided substantial evidence supporting a role for Bregs in 

tumour immunity. Tumour-evoked Bregs have been shown to expand FoxP3+ Tregs, induce the 

regulatory activity of myeloid-derived dendritic cells (MDSCs), and inhibit the tumoricidal activity 

of NK cells and effector T cells in a TGF-β-dependent manner 446–449. These Bregs were found to 

express high levels of CD40, CD80 and CD86, suggesting the involvement of additional 

mechanisms of cell-contact-mediated suppression. More recently, tumor-infiltrating PD-

L1hiCD80hiCD86hiCD69hi B cells have been shown to suppress Th17 cell differentiation via the 

PD-1/PD-L1 pathway, in a model of lung cancer 445. Interestingly, in mouse models of lung 

metastasis, STAT3-expressing Bregs have also been reported to promote tumour-angiogenesis 

via the induction of vascular endothelial growth factor (VEGF); a feature strongly associated with 

B cells in human tumours 450. 
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Albeit limited, a new wave of evidence has also implicated a role for human Bregs in lung cancer 

progression. Increased frequencies of peripheral IL-10-producing CD27+CD24hi Bregs and 

tumour-infiltrating IL-10+CD19 B cells have been reported in patients with lung cancers, compared 

to healthy controls 339. Together with data from murine models, these data implicate a role for 

Bregs in the suppression of anti-tumour immune responses. However, it is still unclear whether 

Bregs directly or indirectly influence the progression of lung cancer. Improved understanding of 

Breg induction and function in lung tumours could lead to the development of Breg-targeted 

therapies to enhance anti-tumour immunity. 

1.9.4.3 Allergic airway inflammation 

Asthma is chronic inflammation of the airway characterized by heightened reactivity and 

sensitivity of the airway to a variety of inhaled stimuli 465. Bregs play a protective role against 

hyperresponsive airway inflammation, where IL-10-producing B cells significantly suppress 

inflammatory reactions 466. Functional impairments in Bregs have been associated with enhanced 

asthma-like inflammation and airway hyperresponsiveness. In mouse models of disease, 

adoptive transfer of CD9+ Bregs suppress all asthma-related features by inhibiting effector T cells 

in an IL-10-dependent manner 467. In addition, IL-10-producing CD5+CD21hiCD1dhi Bregs can 

reverse allergic airway inflammation by actively recruiting immunosuppressive Tregs to the lungs 

468. Interestingly, infection with Schistosoma mansoni worms has been shown to protect against 

ovalbumin-induced allergic airway inflammation by inducing IL-10-producing T2-MZP Bregs 469. 

In contrast to hypersensitivity, pathology in chronic obstructive pulmonary disorder (COPD) is a 

result of proteolytic destruction of the extracellular lung matrix by the immune response 470. The 

main symptoms of COPD include chronic coughing, sputum production, and breathing difficulties. 

COPD patients have elevated frequencies of B cells and ELTs in their lungs 338, however, the role 

of Bregs in disease pathogenesis remains unknown. Unpublished studies from our lab identify an 

expansion of Tim-1+ and IL-10+ Bregs in the lung of COPD patients, supporting a plausible for 

Bregs in modulating inflammation in disease.  

Idiopathic pulmonary fibrosis (IPF) is a rare form of chronic and progressive fibrosing lung disease 

that is characterized by an increase in collagen deposition in the lung parenchyma; it is a type of 

interstitial lung disease (ILD) 471. In IPF, inhaled environmental pollutants (organic and inorganic 

dust) and toxins from cigarette smoke (CS) are implicative factors in the disease aetiology, since 

byproducts of these factors are frequently identified in the lungs of patients with this disease 471. 

Lymphoid structures are commonly seen in lung biopsies of patients with IPF; however, the role 
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of B cells in disease pathogenesis remains ill-defined 422. Recent evidence suggests there is a  

significant decrease in CD24hiCD27+Bregs in IPF patients, mirrored by an increase in Tfh cells 

and levels of BAFF in the lungs and in circulation 472. This suggests that a lack of Breg-mediated 

immunosuppression and expansion of effector B cells (Beffs) likely contribute to disease 

pathogenesis.  

1.9.4.4 Autoimmunity 

Autoimmune diseases, including SLE, RA, SSc, and Sjogren’s syndrome can often result in 

pulmonary manifestations 473. Multiple studies have identified increased infiltration of B cells in 

lung tissues of patients, indicating a plausible role for B cells in disease pathogenesis 334. Although 

the involvement of Bregs in lung pathology remains largely uninvestigated, numerical and 

functional defects in circulating Bregs have been reported in patients with SLE, SSc, RA and 

Sjogren’s syndrome, and found to associated with disease severity 342,364,380,474. Whether the 

defects in Bregs are a cause or consequence of chronic inflammation remains to be addressed.  

In systemic autoimmune diseases, such as SLE and SSc, reduced frequencies of circulating 

CD24hiCD27+ and CD24hiCD38hi Bregs have been reported in patients compared to controls 

342,364. Numerical defects are accompanied by compromised Breg functions with a significant 

decrease in IL-10 expression. Importantly, B cells infiltrates have been identified in the lung of 

SSc patients with ILD and in mouse models of pulmonary lupus 429,475. Increased infiltration of 

CD20+ B cells and plasma cells have also been reported in lung biopsies of RA patients with 

interstitial pneumonia, compared to normal lungs 476. While the phenotype of lung-infiltrating B 

cells remains unknown, reduced frequencies of circulating IL-10+ Breg subsets have been 

reported in RA patients compared to controls and found to correlate with disease severity 380,477. 

These defects are associated with an expansion of pro-inflammatory effector B and T cells leading 

to exacerbated disease symptoms. 

Due to the multiple abnormalities in the B cell compartment, patients with SLE, SSc and RA with 

pulmonary manifestations are often treated with rituximab (anti-CD20) or B cell depletion therapy. 

Rituximab has shown success in the treatment of early and refractory pulmonary haemorrhage in 

patients with SLE 478,479, as well as in improving lung function in patients with RA and SSc with 

ILD 480,481. Long-term remission after B cell repopulation in rituximab-treated patients has been 

associated with a higher immature-to-memory B cell ratio, suggesting that repopulation of 

immunosuppressive CD24hiCD38hi Bregs might be associated with improved clinical outcomes 

33,482. This is further supported by studies reporting an expansion of CD24hiCD38hi Bregs with 
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restored STAT3 activation and IL-10 production in patients responding to rituximab therapy 344. 

Further, the expansion of repopulated Bregs corresponded with normalization of pDC activation 

and iNKT cell function 344,387. However, it is important to note that not all patients respond to 

rituximab 483, and to date, there is no strategy to predict which patients will respond to rituximab. 

One possible explanation is that an incomplete depletion of ‘pathogenic’ B cells infiltrating the 

lung or/ and other tissue sites contributes to the lack of clinical response. A second possibility is 

that repopulating B cells in non-responding patients are being skewed towards pro-inflammatory 

Beffs and not suppressive Bregs by environmental milieu. Another scenario is that rituximab 

depletes beneficial tissue-resident Bregs that suppress inflammation, and therefore exacerbates 

disease. Overall, the underlying mechanisms that determine clinical response to rituximab remain 

to be ascertained. 

1.9.5 Challenges and outstanding questions 

The role of Bregs as negative regulators of the immune response is now well established. More 

recently, it has become evident that Bregs play a role in the pathophysiology of respiratory 

diseases such as lung cancer, asthma, autoimmunity and IPF. While alterations in Breg numbers 

and function have been identified as contributors to disease pathology, the precise role of Bregs 

in disease pathogenesis remains to be ascertained. There are several aspects of Breg phenotype 

and function that must be addressed in order to exploit their therapeutic potential. 

1.9.5.1 Signals inducing Breg differentiation in the lung 

The environmental milieu is known to play an important role in the induction of Bregs, however 

specific signals in the lung microenvironment that induce Bregs remain ill-defined. In addition to 

TLR, BCR and CD40 signalling, exposure to inflammatory cytokines IFN-α, IFN-β, IL-1β, IL-6, IL-

21 and BAFF has been shown to enhance Breg differentiation 335,337. These signals are 

upregulated in the lung microenvironment in infections and chronic inflammatory conditions 438,484, 

suggesting their involvement in Breg induction in the airways. For instance, studies from mouse 

models of lung cancer suggest that Breg differentiation occurs in response to the lung tumour 

microenvironment 446.  

The lung can experience hypoxia in pathological but sometimes also physiological situations, with 

associated alveolar hypoxia 485. Moreover, cigarette smoke (CS) and CS extract activate hypoxia-

inducible factor 1 (HIF-1α) in lung-epithelial cells under non-hypoxic conditions 486. In addition to 

activating innate immune responses in the lung 487, systemic hypoxia and HIF-1α could play a role 
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in the expansion of Bregs in the lungs. Hypoxia is considered a critical factor for the induction of 

IL-10 by B cells and the expansion of CD1dhiCD5+ Bregs 488. Importantly, mice with B cell-specific 

deletion of HIF-1α display reduced IL-10-producing B cells, and as a consequence exacerbated 

collagen-induced arthritis and experimental autoimmune encephalomyelitis. Thus, HIF-1α 

expression by B cells could play a protective role in tissue injury, and further studies are needed 

to determine whether or not the net effects of HIF-1 α in the context of inflammatory disease is 

beneficial. 

As detailed above, AhR is a key transcription factor involved in Breg differentiation 351,352. AhR 

and its ligands exhibit important immunomodulatory properties and can modulate the respiratory 

immune response 489. On the one hand, AhR ligands have been shown to suppress allergic airway 

inflammation and prove beneficial in models of asthma 490. On the other hand, the pathogenesis 

of COPD has been attributed to various cell populations expressing AhR. AhR has been shown 

to be a master regulator of inflammatory responses in innate immune cells and T cells, critical in 

driving COPD pathology 491. The precise role of AhR in modulating respiratory disease appears 

to be disease and context-dependent. Further research is required to understand the multifaceted 

role of AhR in inflammatory lung diseases. Other signals that modulate Breg differentiation include 

commensal bacteria 343. The importance of microbiota in the expansion of Bregs was confirmed 

by the treatment of mice with antibiotics; antibiotic-treated mice displayed reduced Bregs in 

comparison to untreated mice. Improved understanding of signals driving Breg differentiation in 

the lung could provide new therapeutic strategies.  

1.9.4.2 Infections  

In addition to their effector functions, B cells also produce IL-10 that limits excessive inflammation 

and suppresses potential pro-inflammatory cytokine over-production, known as a “cytokine 

storm”. B cell-derived IL-10 acts as an immunoregulator, inhibiting pro-inflammatory responses 

and preventing tissue damage resulting from exacerbated innate and adaptive immune responses 

451. Here, we focus on the role of Bregs in the immune response during respiratory infections. The 

role of Bregs in other infection settings have been described in detail elsewhere 451.  

Respiratory viruses, such as H1N1 influenza and SARS-CoV-2 coronavirus, are a common cause 

of severe pneumonia and acute respiratory distress syndrome (ARDS) 452,453. The virus-triggered 

immune response is capable of resolving an infection in a majority of individuals; however, a 

subset of patients generate a dysfunctional immune response resulting in severe immune-

mediated lung pathology and systemic hyper-inflammation. Recent evidence suggests that the 



69 
 

uncontrolled inflammation is partly due to abnormalities in immunosuppressive Bregs. Critically ill 

COVID-19 patients display a significant decrease in peripheral CD24hiCD38hi transitional B cells 

(precursors to human Bregs 364) mirrored by an expansion of extrafollicular B cells, compared to 

patients with mild disease 454. Further, B cells from acute COVID-19 patients display a reduction 

in IL-10 production mirrored by an expansion of IL-6, in response to TLR activation, in comparison 

to healthy B cells 455. This suggests an imbalance in circulating B cells from COVID-19 patients 

towards a more pro-inflammatory phenotype. The reduced IL-10+ Bregs are likely a result of 

impaired type-I interferon (IFN-I) responses previously reported in critically unwell COVID-19 

patients 456; anti-viral IFN-I is a key signal for IL-10+ Breg differentiation 344. Remarkably, IL-10+ 

Breg frequencies are normalised in COVID-19 patients upon recovery 455. In contrast, respiratory 

syncytial virus (RSV) causing lower respiratory tract infections in infants is associated with an 

increased infiltration of pulmonary neonatal Bregs (nBregs) that secrete IL-10 in response to RSV 

and dampen Th1 function. The frequencies of RSV-infected nBregs have been shown to correlate 

with increased viral load and predict severity of acute bronchiolitis disease, suggesting that 

nBregs are detrimental to host response in early-life   . While the expansion of Bregs in neonates 

inhibits generation of an effective immune response to the virus, the lack of Bregs and resulting 

exacerbated inflammation appears to contribute to severe disease and ARDS in older adults. This 

is supported by multiple studies reporting an age-related numerical and functional decline in 

transitional Bregs that might contribute towards ‘inflammaging’ or the chronic inflammation 

observed with ageing 367,458. Reduced frequency of transitional B cells as well as impaired STAT3 

phosphorylation and IL-10 production in response to TLR/ CD40 activation has been reported in 

healthy older donors (>60 years old) compared to healthy younger donors (20-40 years old). Of 

note, no age-associated changes in CD80 and CD86 were observed, suggesting that contact-

dependent suppressive capacity of Bregs might remain intact with age 458. 

Parasitic infections of the lung may affect the respiratory system by causing pulmonary alveolar 

haemorrhage, bronchiolitis, and pneumonitis 459. Bregs suppress damaging inflammation in 

parasitic airway infection via the production of IL-10 and TGF-β, thus playing an essential 

immunosuppressive role in various helminth infections, including Ascaris, Toxocara, Onchocerca 

and Trichuris 460. In addition, IL-10-producing CD1dhi Bregs were shown to induce 

immunomodulation by influencing FoxP3+ Tregs in S. mansoni and H. polygyrus infections 461,462. 

In contrast, studies in other infection settings have implicated a role for Breg expansion in 

hindering pathogen clearance. For instance, in bacterial infections such as tuberculosis (TB), 

caused by Mycobacterium tuberculosis, CD19+CD1d+CD5+ Bregs suppress IL-22 secretion (vital 

in combating TB infection) and selectively inhibit Th17 responses 340,383. Furthermore, response 
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to TB treatment has been associated with a decrease in CD19+CD1d+CD5+ Bregs and an increase 

in IL-22 production, thereby emphasizing the detrimental effects of Bregs in this infection 383. 

Another unique subset of lung-resident IL-10-producing CD19+B220- B cells has been shown to 

exacerbate Streptococcus pneumoniae infection 463. Similarly, in fungal infections such as 

pneumocystis pneumonia (PCP), an increase in IL-10-producing Bregs has been associated with 

the inhibition of Th1/ Th17 responses and effective pathogen clearance 464. Overall, it appears 

that immunosuppressive functions of Bregs can be either detrimental or beneficial depending on 

the disease context.  

1.9.5.2 Plasticity and stability of Bregs in the lung 

Another critical question is whether Bregs remain stable over time. Although abnormalities in Breg 

numbers and function have been associated with various respiratory diseases, the stability of lung 

infiltrating Bregs remains unknown. Bregs have been identified at various stages of B cell 

development, and thus far, no lineage-specific transcription factor has been identified 336. It 

remains unknown whether Bregs can differentiate into Beffs upon exposure to chronic 

inflammatory conditions. Although pro-inflammatory cytokines induce Breg differentiation, the 

level of exposure is crucial in determining B cell fate. Whereas low-moderate concentrations of 

IFN-α simultaneously induce Breg and plasmablast differentiation, high concentrations have been 

shown to preferentially skew B cell differentiation towards Beffs and fail to expand Bregs 344. In 

patients with SLE, increased IFNα signalling is associated with an expansion of autoantibody-

secreting plasmablasts and a loss of Bregs, linked to alterations in STAT1/ STAT3 

phosphorylation downstream of the IFN-α/β receptor. As a result, chronic exposure of B cells to 

increased levels of pro-inflammatory signals, such as in autoimmune diseases, could impair Breg 

function and enhance Beff differentiation. Although IL-10-secreting plasmablasts exhibiting 

immunosuppression have been identified in models of autoimmune diseases 354, an independent 

study has shown that Bregs transiently secrete IL-10 and terminally differentiate into antibody-

secreting cells 492. This is further supported by studies reporting a role for plasma cell-specific 

transcription factor Blimp1 in the generation and function of IL-10-producing Bregs 353. Further 

investigations on Breg plasticity and stability are necessary to understand the possibility of 

generating a prolonged Breg phenotype. 
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1.9.6 Therapies targeting Bregs 

Current therapies for various respiratory diseases focus on disease management rather than offer 

a cure and become toxic and ineffective over a period of time. Highly targeted immunotherapies 

offer several advantages over conventional steroid and immunosuppressants and have proven 

highly effective in the treatment of pulmonary diseases 493,494. The use of rituximab for the 

treatment of pulmonary manifestations in autoimmune diseases has shown some success 478–481. 

While targeting aberrant B cells is beneficial, the lack of clinical response in some patients could 

be associated with the depletion of immunosuppressive Bregs. Therapies targeting specific 

subsets of Bregs could be advantageous in different disease settings. For instance, increased 

infiltration of PD-L1hiBregs in lung tumours has provided the rationale for PD-L1 and PD-1 

blockade 495. Remarkably, studies show that targeting the PD-1/PD-L1 pathway can improve the 

survival of patients with advanced lung cancer 496. Several strategies to isolate, expand or deplete 

Bregs to treat various immune-related pathologies have been discussed elsewhere 337. Taken 

together, these reports suggest that a better understanding of lung infiltrating Bregs could provide 

novel therapeutic targets for improved management of various respiratory diseases. 

1.9.7 Conclusions  

A balance in effector and regulatory responses is necessary to maintain proper immune 

surveillance in the lungs, while at the same time preventing chronic inflammation, fibrosis, and 

autoimmunity. The various airway inflammatory diseases resulting from abnormalities in Breg 

function emphasize the importance of immunosuppressive Bregs in maintaining immune 

homeostasis. Notably, the identification of multiple phenotypically distinct Breg subsets at different 

stages of B cell development suggest that any B cell can become regulatory upon exposure to 

specific environmental stimuli and exhibit suppressive capacity. Further research into the biology 

of lung infiltrating Bregs and the signals that drive Breg differentiation could provide novel 

therapeutic avenues for improved management of respiratory diseases. 
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1.10 Aims: 

The aim of this thesis is to: 

1. Characterise the B cell phenotypes in the blood and lung of COPD patients. 

2. Demonstrate B cell function in COPD patients. 

3. Characterise spatial B cell distribution in COPD lung. 

4. Investigate the differential gene expression in B cells from COPD lungs. 

5. Investigate the longitudinal effects of B and T cells in acute and convalescent COVID-19 

patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2. 

Materials and Methods 
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2.1 Samples 

2.1.1 Lung samples 

Healthy margins of lung tissue (> 6 cm from cancer) were identified by a histopathologist and 

dissected under the ethical approval of the Manchester Allergy, Respiratory and Thoracic Surgery 

(ManARTS) Biobank at the University Hospital of South Manchester. This was collected, together 

with matched peripheral blood samples. National Research Ethics Service Committee granted 

ethical approval; Northwest – Haydock (ref; 15/NW/0409). Written consent was obtained from all 

the patients that participated in this study. 

2.1.1.2 Sample selection. 

All participants were lung cancer patients undergoing cardiothoracic surgery for lung resections. 

Participants with a forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC) of ≥ 

0.80 with no other underlying respiratory disease were categorized as ‘healthy’. Participants with 

COPD were defined by physician diagnosis and exhibited an FEV1/FVC < 0.80 At the time of 

collection, the patients’ clinical details provided included age, sex, smoking history, COPD status, 

FEV1, FEV1% predicted, FVC, and FEV1/FVC ratio, with occasional medication history and co-

morbidities. We, however, don’t have the information about the type of cancer and location of the 

resected tumor. Details of patients' demography are outlined in Table 2.1. 

Table 2.1: COPD and non-COPD Patients' demographics 

Demography COPD Control 

Age   

51 - 60 0 4 

61 - 70 5 2 

71 - 80 3 10 

81 - 90 4 3 

Smoking history   

Current smokers 6 6 

Ex-smokers 5 6 

Never-smokers 1 7 

FEV1 (% predicted)   

≥ 80 5 13 
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50 – 79 6 6  

30 – 49 1 0 

< 30 0 0 

Gender   

Male 8 8 

Female 4 11 

Total  12 19 

 

2.1.2 Cell isolation 

2.1.2.1 Lung single-cell suspension 

Dissected lung tissue was finely chopped and digested with Hanks buffer (Sigma – H9269) 

supplemented with 150 μg/ml Liberase TL (Sigma 05401020001) and 50 μg/ml DNAse (Sigma 

D5025) at 37°C for 40 minutes on a shaker. The reaction was stopped with RPMI 1640 containing 

10% fetal calf serum (FCS), L-Glutamine, non-essential amino acids, HEPES,100 U/ml of 

penicillin, 100 µg/ml streptomycin, and 0.5 mM EDTA (complete media). This is followed by 

straining with a 70 μm cell strainer (BD labware, New Jersey, USA). The resulting single-cell 

suspension was centrifuged for 5 minutes at 500 g, then washed in complete media. The cells 

were resuspended complete media, layered over Ficoll (Sigma GE17-1440-03) and centrifuged 

at 500 g for 30 minutes with zero breaks. Mononuclear cells were collected at the interface, 

washed, resuspended in complete media, and counted. Isolated cells were resuspended in 10 % 

Dimethyl sulfoxide (DMSO)  90 % FCS (freezing media), transferred into cryovials (≤ 107 cells/vial) 

and stored overnight at - 80°C then at -150°C for longer period. A piece of the tissue is fixed for 

histology analysis prior to digestion. All samples were processed not more than 24 hrs from lung 

resection 

2.1.2.2 Peripheral Blood Mononuclear Cell (PBMC) Isolation 

EDTA peripheral blood sample was diluted 1:1 in PBS and carefully layered on Ficoll, and 

centrifuged at 500 g for 30 minutes with zero breaks. PBMCs were collected from the interface, 

washed and resuspended in PBS, and then counted using trypan blue and a haemocytometer. 

The isolated cells were then stored at -150°C as described above. 
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2.2 Cell suspension analysis 

2.2.1 Cell thawing 

Frozen cells were thawed (one vial at a time) by warming the vial in a 37°C water bath for 30 

seconds. 200 µl of pre-warmed complete media was added slowly to the cryovial and was gently 

mixed; the cryovial content was then transferred into a pre-warmed media drop by drop with an 

intermittent shake. The thawed cells were centrifuged at 500 g for 5 minutes, washed twice in 

complete media, and counted. 

2.2.2 Cell culture 

Thawed mononuclear cells from blood and lung tissue were washed and resuspended in 

complete media. 5 × 105 cells were stimulated with either; (i) 1 μM CpG-B DNA (Cambridge 

Bioscience: Hycult HC4039) alone, (ii) 1 μg/ml CD40L (R&D Systems: 6245-CL-050) alone, (iii) 

combination of i and ii for 48 hours followed by 2μL/ml of stimulation cocktail (eBioScience: 00-

4970-93) in the presence of 10 μg/ml Brefeldin A (BFA) in the last four hours (B cells). For 

unstimulated controls, cells were incubated with culture buffer alone for 48 hours, followed by 

incubation with the stimulation cocktail and BFA in the last four hours. Following stimulation, cells 

were washed and stained for flow cytometric analysis. 

2.2.3 Flow Cytometry 

Cells (freshly thawed or cultured) were stained with live/dead stain (Zombie UVTM Fixable Kit: 

Biolegend) for 10 minutes at 4°C in the dark. Cells were washed once in FACS buffer (2% FCS 

in 1x PBS) and incubated in FcR block (Miltenyl Biotech) for 10 mins, followed by centrifugation 

at 500 g for 5 mins. Cells were stained in primary antibody cocktails (Table 2.2) at 4°C for 20 

minutes in the dark. Cells were washed twice in FACS buffer, followed by fixing in fixation and 

permeabilisation buffer (concentrate: diluent, 1:3) (eBioscienceTM) for 20 mins at 4°C, followed by 

a wash in FACS buffer. 

For intracellular staining, cells were washed once in permeabilisation buffer (concentrate:dH2O, 

1:9) (InvitrogenTM) then stained in secondary antibody cocktail (Table 2.2) in permeabilisation 

buffer for 30 at mins 4°C in the dark. The cells were washed in perm buffer, then in FACS buffer 

and finally resuspended in FACS buffer. The cells were acquired on a BD FACS Symphony™ 

flow cytometer (BD Bioscience). The data were analysed using FlowJo version 10.9 (Treestar, 
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Oregon). Appropriate isotypes were used for all markers as controls, and gating was established 

using Floresecnce minus one (FMO) control. 

 

Table 2.2: Outline of antibodies used for flow cytometry analysis 

Antibody 

Target Fluorochrome Concentration Clone Company 

Extracellular 

Abs     

Live/Dead Zombie UV 1:500 
 

BioLegend 

CD45 BUV395 1:50 HI30 BD Bioscience 

CD3 BV605 1:50 SK7 BioLegend 

CD19 BUV737 1:50 HIB19 BD Bioscience 

CD24 APC-e-Floor 1:50 eBioSN3 eBioscience 

CD38 PerCP-Cy5.5 1:50 HIT2 BioLegend 

CD27 BV711 1:50 M-T271 BioLegend 

IgD BV785 1:50 IA6-2 BioLegend 

IgM FITC 1:50 MHM-88 BioLegend 

IgA APC 1:50 REA1014  Miltenyi Biotec 

Tim1 PE 1:50 1D12 BioLegend 

CXCR3 BV510 1:50 G025H7 BioLegend 

Hif-α PE 1:50 546-16 BioLegend 

Pax5 BV421 1:50 1H9 BD Bioscience 

CD86 APC 1:50 BU63 BioLegend 

CD11c BB515 1:50 B-ly6 BD Bioscience 

Intracellular 

Abs     

IL-10 APC 1:25 

JES3-

19F1 BD Bioscience 

Bcl-6 APC 1:50 7D1 BioLegend 

Tbet BV421 1:50 4B10 BioLegend 

Ki67 PE 1:50 ki-67 BioLegend 

Blimp1 AF 488 1:25 646702 R&D Systems 

IgG BV421 1:50 M1310G05 BioLegend 
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TNF-α PE-Cy7 1:50 MAb11 BD Bioscience 

IL-6 PE 1:100 MQ2-13A5 BioLegend 

 

2.2.4 B cell sorting 

Thawed cells were incubated in FcR block in FACS buffer for 10 mins at 4°C  in the dark, followed 

by centrifugation at 500 g for 5 mins. Cells were stained with CD19, CD3, and CD45 antibodies 

(Table 2.2) for 20 mins at 4°C in the dark then washed in FACS buffer. B cells were sorted as live 

CD45+CD-CD19low/+ at 4°C on BD Influx cell sorter (BD Bioscience). The sorted cells were 

washed in FACS buffer and submitted to genomic technology core facilities (University of 

Manchester) for sing-cell RNA sequencing analysis. 

2.2.5 Mass Cytometry (CyTOF Helios) 

Antibodies pre-conjugated to metal tags from Fluidigm or purchased protein-free elsewhere and 

conjugated in-house using the Fluidigm MaxPar labelling kits following the manufacturer’s 

instructions. Cells were washed in MaxPar PBS and incubated in 200 µm Rhodium intercalator 

(1:500 dilution) (Fluidigm) for 15 min at room temperature for cellular viability. Cells were washed 

in MaxPar PBS, then in Cell-staining buffer (CSB, Fluidigm), followed by incubation in FcR block 

(Miltenyi) diluted 1:100 in MaxPar PBS for 15 minutes at room temperature. Cells were stained in 

primary antibody cocktail (Table 2.3) in CSB for 30 min at room temperature, then washed twice 

in CSB. Cells were fixed for 15 minutes in 1X Fix I buffer (Fluidgm) at room temperature. 

For intracellular staining, cells were permeabilised by washing in Perm-S-buffer (Fluidigm), 

followed by staining in intracellular Abs in Perm-S-buffer for 30 min at room temperature, then 2x 

washing in Perm-S-buffer. Cells were then resuspended overnight in cell-ID Iridium intercalator 

(Fluidigm) diluted 1:2000 in fixation and permeabilisation buffer (Fluidigm), followed by washing 

in MaxPar PBS. Data were acquired on the CyTOF Helios mass cytometer, and files were 

exported in flow cytometry files (FCS) format for analysis. Data normalisation was done in CyTOF 

software (Fluidigm), and data analysis was done with R scripts and FlowJo software. 

Table 2.3: List of antibodies and their metal conjugates for CyTOF analysis 

Antibody 

Target Metal Tag Concentration Clone Company 
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Extracellular 

Abs     

CD45 89Y 1:100 HI30 Fluidigm 

CD19 113In 1:20 HIB19 BioLegend 

CD3 115In 1:50 UCHT1 BioLegend 

CD10 141Pr 1:33 HI10a BioLegend 

CD5 143Nd 1:100 UCHT2 Fluidigm 

CD20 147Sm 1:100 2H7 Fluidigm 

CD21 196Pt 1:30 #544408 R&D Systems 

CD24 142Nd 1:50 ML5 BioLegend 

CD27 195Pt 1:50 323 BioLegend 

CD22 159Tb 1:100 HIB22 Fluidigm 

CD33 169Tm 1:100 WM53 Fluidigm 

CD36 152Sm 1:100 5271 Fluidigm 

CD38 194Pt 1:100 HIT2 BioLegend 

CD40 151Eu 1:40 5C3 BioLegend 

CD43 155Gd 1:33 #290111 R&D Systems 

CD44 166Er 1:100 BJ18 Fluidigm 

CD62L 153Eu 1:100 DREG56 Fluidigm 

CD69 162Dy 1:100 FN50 Fluidigm 

CD80 (B7-1) 161Dy 1:100 2D10.4 Fluidigm 

CD86 164Dy 1:40 IT2.2 BioLegend 

CD138 170Er 1:40 DL-101 BioLegend 

CD11c 174Yb 1:50 3.9 BioLegend 

CD1c 172Yb 1:20 REA694 Miltenyi Biotec 

CD1d 176Yb 1:40 51.1 BioLegend 

B220 144Nd 1:50 RA36B2 BioLegend 

HLA-DR 198Pt 1:50 L243 BioLegend 

IgD 146Nd 1:100 IA62 Fluidigm 

IgM 149Sm 1:40 MHM-88 BioLegend 

IgG 145Nd 1:30 #97924 R&D Systems 

IgA 148Nd 1:100 Polyclonal Fluidigm 

NOTCH-1 165Ho 1:33 #527425 R&D Systems 

Tim-1 167Er 1:33 #219211 R&D Systems 
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TLR-4/CD284 173Yb 1:40  #610015 R&D Systems 

CXCR4 156Gd 1:100 12G5 Fluidigm 

CXCR5 171Yb 1:100 RF8B2 Fluidigm 

CXCR6 160Gd 1:100 K041E5 Fluidigm 

CCR4/CD194 175Lu 1:100 L291H4 Fluidigm 

BAFF-R 

(CD268) 
158Gd 

1:33 
#2403C R&D Systems 

CXCR3 154Sm 1:40  #49801 R&D Systems 

Intracellular 

Abs 
 

 
  

IL-10 150Nd 1:50 JES3-9D7 BioLegend 

Bcl-2 168Er 1:40 E17 Abcam 

Bcl-6 163Dy 1:100 K11291 Fluidigm 

2.3 Histology 

2.3.1 Tissue processing 

All tissue processing was done in the histology facility (University of Manchester). Lung tissue 

was placed in 10% formaldehyde overnight then stored in 70% ethanol. Tissue was removed from 

70% ethanol, placed in a histology cassette, and then placed in a Shandon Citadel 2000 

automated tissue processor (Thermo Scientific). The automated process consisted of passing 

samples through different stages, including dehydration in ascending ethanol concentrations, 

clearing in Xylene, and embedding in molten paraffin wax. 

Processed tissue was then manually embedded in paraffin wax blocks using a Shandon 

Histocentre2 (Thermo Scientific). The tissue blocks were sectioned with Microm HM 330 (Thermo 

Scientific) microtome at 5 µm thickness and placed on superfrostTM adhesion slides. 

2.3.2 Haematoxylin and Eosin (H&E) staining 

Paraffin sections were dewaxed in xylene solutions, rehydrated in descending ethanol 

concentrations (100%, 95%, 80%, and 75%), then washed with distilled water. Sections were 

subsequently H&E stained using the Shandon Linistain GLX (Thermo Scientific). 
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2.3.2.1 H and E image analysis 

Stained H&E slides were imaged using the Pannoramic 250 Flash III (3DHistech) in the 

Bioimaging facility (University of Manchester). Images were further analysed using CaseViewer 

(3DHistech) to identify the region of interest for Hyperion analysis. 

2.3.3 Imaging Mass Cytometry (CyTOF Hyperion) 

Freshly cut sections were deparaffinised in Xylene and rehydrated in descending ethanol 

concentrations (100%, 95%, 80%, 70%) and finally washed in Milli-Q water. The tissue slides 

were then incubated in 1X pre-heated antigen retrieval buffer (Abcam, 100X Tris Buffer, pH = 

10.0) for 30 min at boiling temperature. Then left in the antigen retrieval solution for another 30 

min at room temperature to cool down. The slides were dried, and a hydrophobic barrier was 

drawn around the tissue on the slide with a PAP pen. The tissue was then blocked with 3% bovine 

serum albumin (BSA) in MaxPar PBS for 45 min at room temperature, followed by three washes 

in MaxPar PBS and staining with metal-conjugated antibody cocktail (Table 2.4) in MaxPar PBS 

overnight at 4°C. The slides were then washed in 0.2% TritonTM X-100 (Thermo Scientific) in 

MaxPar PBS at room temperature for 8 min, followed by 3X washing with MaxPar PBS and 

staining with cell ID intercalator Iridium (concentration: MaxPar PBS, 1:400), (Fluidigm) for 30min 

at room temperature. The slides were finally washed with Milli-Q water and air-dried overnight. 

Data were acquired on a Hyperion imaging system coupled to a Helios mass cytometer 

(Fluidigm). 

2.3.3.1 Hyperion Imaging analysis 

Regions of interests (ROIs) were imaged using the H&E-referenced image of the same section. 

Images created by the Hyperion system were exported as MathCad (MCD) files. These were 

initially analysed in MCD viewer software (v1.0.560.6) and exported as OME-TIFF 16-bit file 

format. Cellular segmentation masks were generated using CellProfiler (4.2.1) data analysis 

pipeline as recommended by Fluidigm. The extracted OME-TIFF ROIs data from MCD and the 

generated segmented masks were imported into HistoCAT and finally exported as CSV files for 

statistical analysis in GraphPad Prism version 9. 
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Table 2.4: List of antibodies and their metal conjugates for Imaging Mass Cytometry 

analysis 

Antibody 

Target Metal Tag Concentration Clone Company 

aSMA  (1A4) 141Pr 1:300 1A4 Fluidigm 

Vimentin 143Nd 1:200 D21H3 Fluidigm 

E-Cadherin 158Gd 1:200 24E10 Fluidigm 

Collagen I 169Tm 1:400 Polyclonal Fluidigm 

Histone H3 171Yb 1:200 D1H2 Fluidigm 

Pan-Keratin 148Nd 1:150 C11 Fluidigm 

FoxP3 155Gd 1:100 236A/E7 Fluidigm 

CD4 156Gd 1:150 EPR6855 Fluidigm 

CD68 159Tb 1:100 KP1 Fluidigm 

CD20 161Dy 1:100 H1 Fluidigm 

CD8a 162Dy 1:100 C8/144B Fluidigm 

CD3 170Er 1:100 

Polyclonal, C-

Terminal Fluidigm 

CD45RO 173Yb 1:200 UCHL1 Fluidigm 

CD14 144Nd 1:100 EPR3653 Fluidigm 

CD11b 149Sm 1:100 EPR1344 Fluidigm 

CD31 151Eu 1:100 EPR3094 Fluidigm 

CD11c 154Sm 1:100 Polyclonal Fluidigm 

CD21 153Eu 1:50 # 544408 R&D Systems 

FoxJ1 176Yb 1:50 # 407003 R&D Systems 

IgD 150Nd 1:50 IgD26 Miltenyi Biotec 

IgA 164Dy 1:50 EPR5367-76 Abcam 

IgM 165Ho 1:50 MHM-88 BioLegend 

Cytokeratin-5 175Lu 1:100 EP1601Y Abcam 

Cell ID 

Intercalatorr Ir 1:400   Fluidigm 
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2.5 single-cell RNA-sequencing 

The genome technology core facility (GTCF: University of Manchester) did all sample analyses, 

and the Bioinformatics core facility (University of Manchester) performed all the data analysis. 

2.5.1 Single-cell isolation and library construction 

Gene expression libraries were prepared from single cells using the Chromium Controller and 

Single Cell 3ʹ Reagent Kits v3.1 (10x Genomics, Inc. Pleasanton, USA) according to the 

manufacturer’s protocol (CG000315 Rev B). Briefly, nanoliter-scale Gel Beads-in-emulsion 

(GEMs) were generated by combining barcoded Gel Beads, a master mix containing cells, and 

partitioning oil onto a Chromium chip. Cells were delivered at a limiting dilution, such that the 

majority (90-99%) of generated GEMs contain no cell, while the remainder largely contain a single 

cell. The Gel Beads were then dissolved, primers released, and any co-partitioned cells lysed.  

Primers containing an Illumina TruSeq Read 1 sequencing primer, a 16-nucleotide 10x Barcode, 

a 10-nucleotide unique molecular identifier (UMI) and a 30-nucleotide poly(dT) sequence were 

then mixed with the cell lysate and a master mix containing reverse transcription (RT) reagents. 

Incubation of the GEMs then yielded barcoded cDNA from poly-adenylated mRNA. 

Following incubation, GEMs were broken and pooled fractions recovered. First-strand cDNA was 

then purified from the post GEM-RT reaction mixture using silane magnetic beads and amplified 

via PCR to generate sufficient mass for library construction. 

Enzymatic fragmentation and size selection were then used to optimise the cDNA amplicon 

size. Illumina P5 & P7 sequences, a sample index, and TruSeq Read 2 sequence were added via 

end repair, A-tailing, adaptor ligation, and PCR to yield final Illumina-compatible sequencing 

libraries. 

2.5.2 Sequencing 

The resulting sequencing libraries comprised standard Illumina paired-end constructs flanked with 

P5 and P7 sequences. The 16 bp 10x Barcode and 10 bp UMI were encoded in Read 1, while 

Read 2 was used to sequence the cDNA fragment. Sample index sequences were incorporated 

as the i7 index read. Paired-end sequencing (26:98) was performed on the Illumina NextSeq500 

platform using NextSeq 500/550 High Output v2.5 (150 Cycles) reagents. The .bcl sequence data 

were processed for QC purposes using bcl2fastq software (v. 2.20.0.422) and the resulting .fastq 
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files assessed using FastQC (v. 0.11.3), FastqScreen (v. 0.9.2) and FastqStrand (v. 0.0.5) prior 

to pre-processing with the CellRanger pipeline. 

2.5.3 Raw data processing  

Raw sequencing data were processed using the 10x Genomics Cell Ranger pipeline (v6.0.0). The 

Illumina Binary Base Call (BCL) files were demultiplexed using the command `cellranger mkfastq` 

to produce FASTQ files. The FASTQ files were then processed using the command `cellranger 

count` with a pre-built Cell Ranger human reference package (GRCh38-2020-A) to generate the 

gene-cell barcode matrix. The key metrics generated by the Cell Ranger pipeline about the 

barcoding and sequencing process are provided in Table 2.5. 

 

Table 2.5: Gene expression metrics for 10x Genomics scRNA-seq of the six lung tissue 

samples 

A detailed description of the metrics can be found on the 10x Genomics website at: 

https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/output/gex-metrics 

Metric 6209HN 6270CE 6435HE 6435HN 6756CC 6808CC 

Disease category Control COPD Control Control COPD COPD 

Estimated Number 

of Cells 
4,810 6,069 6,391 3,437 4,043 5,384 

Fraction Reads in 

Cells 
78.60% 94.50% 96.00% 83.70% 74.30% 89.50% 

Mean Reads per 

Cell 
20,293 32,471 33,691 31,283 25,497 19,608 

Median Genes per 

Cell 
1,100 2,238 2,979 1,386 1,236 1,179 

Total Genes 

Detected 
22,982 23,293 23,307 22,868 22,034 23,568 

Median UMI Counts 

per Cell 
2,836 8,577 12,988 3,708 3,269 3,334 

Number of Reads 
97,610,6

84 

197,066,

854 

215,320,

178 

107,518,

846 

103,083,

854 

105,570,3

65 

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/gex-metrics
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/gex-metrics
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Number of Short 

Reads Skipped 
0 

4,765,99

8 

5,034,12

8 
0 0 0 

Valid Barcodes 97.40% 98.00% 98.20% 97.60% 97.40% 97.90% 

Valid UMIs 99.90% 99.90% 99.90% 99.90% 99.90% 99.90% 

Sequencing 

Saturation 
37.40% 51.00% 42.30% 52.20% 43.40% 36.40% 

Q30 Bases in 

Barcode 
97.80% 97.80% 97.80% 97.80% 97.80% 97.80% 

Q30 Bases in RNA 

Read 
92.80% 93.20% 92.90% 93.00% 93.00% 92.50% 

Q30 Bases in UMI 97.10% 97.20% 97.20% 97.10% 97.10% 97.10% 

Reads Mapped to 

Genome 
96.90% 97.50% 97.50% 96.90% 96.90% 95.40% 

Reads Mapped 

Confidently to 

Genome 

93.20% 94.20% 95.50% 93.30% 93.10% 92.20% 

Reads Mapped 

Confidently to 

Intergenic Regions 

5.60% 3.90% 3.10% 5.50% 4.80% 5.50% 

Reads Mapped 

Confidently to 

Intronic Regions 

35.80% 21.10% 18.50% 33.30% 34.20% 28.00% 

Reads Mapped 

Confidently to 

Exonic Regions 

51.80% 69.30% 73.90% 54.50% 54.10% 58.80% 

Reads Mapped 

Confidently to 

Transcriptome 

48.90% 67.30% 72.00% 51.80% 51.30% 56.50% 

Reads Mapped 

Antisense to Gene 
1.50% 0.70% 0.60% 1.40% 1.40% 1.00% 
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2.5.4 Cell filtering and cell type annotation 

Expression matrices were processed in R environment (v4.1) using various R packages. Briefly, 

the matrix data (HDF5) of each sample was imported as SingleCellExperiment object using the 

`read10xCounts` function in the DropletUtils R package (v1.12.1). The `addPerCellQC` and 

`addPerFeatureQC` functions from the scuttle R package (v1.2.0) were used to compute and add 

per-cell and per-gene quality control metrics to the SingleCellExperiment object. We used a 

combination of median absolute deviation (MAD), as implemented by the `isOutlier` function in 

the scuttle R package and exact thresholds to evaluate the per-cell QC metrics, including UMI 

count, the UMI count, number of detected genes, proportion of mitochondrial reads and 

complexity of RNA species, to identify and subsequently remove poor quality cells before further 

processing.  

To compute deconvolution size factors, we first used the `quickCluster` function to group cells 

into clusters of similar expression, then used the ̀ computeSumFactors` function to normalise cell-

specific biases to compute size factors for each cell. Both functions are available from the scran 

R package (v1.20.1). The `calculateCPM` function from the scuttle R package was used to 

calculate counts-per-million (CPM) values from the count data, which make use of the size factors 

calculated previously. The log2-transformed normalised values were stored in the logcounts slot 

of the SingleCellExperiment object. 

The SingleR R package (v1.6.1) was used to annotate cells against curated reference expression 

datasets (namely DatabaseImmuneCellExpressionData, MonacoImmuneData, and 

NovershternHematopoieticData) from the celldex R package (v1.2.0). 

2.5.5 Data integration 

The log-normalised expression values of the six samples were re-calculated using the 

`multiBatchNorm` function from the batchelor R package (v1.8.0) to adjust for the systematic 

differences in coverage between them. Per-gene variance of the log-expression profiles was 

modelled using the `modelGeneVarByPoisson` function and top 5000 highly variable genes 

(HVGs) were identified using the `getTopHVGs` function, both from the scran R package. The 

mutual nearest neighbors (MNN) approach implemented by the `fastMNN` function from the 

batchelor R package was used to integrate the scRNA-seq data. At the same time, multi-sample 

principal components analysis was performed internally. The proportion of variance lost with each 

batch at each merge step was examined to detect if the correct process is removing genuine 

biological heterogeneity. 
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2.5.6 Data visualisation and cell clustering 

The first 50 dimensions from the MNN corrected low-dimensional coordinates for each cell were 

used as input to produce the t-stochastic neighbour embedding (t-SNE) projection and uniform 

manifold approximation and projection (UMAP) using the `runTSNE` and `runUMAP` functions 

from the scater R package (v1.20.0) respectively. 

Next, we performed graph-based clustering of cells using the Walktrap algorithm from the igraph 

R package (v1.2.6) to identify “communities” of cells. Specifically, we used the `clusterRows` 

function from the bluster R package (v1.2.1) to streamline the clustering procedure and obtained 

19 clusters.  

From the larger dataset, clusters containing B cells (clusters 2 and 5) were subsetted from the 

main SingleCellExperiment object, projected into t-SNE and UMAP and re-clustered into six 

clusters. 

2.5.7 Marker and differential expression analysis 

Cluster-specific markers were identified using the `FindMarkers` function from the scran R 

package, which performs pairwise t-tests between clusters. To perform differential expression 

(DE) analysis, we created “pseudo-bulk” expression profiles from scRNA-seq data by summing 

raw counts from cells with the same combination of cluster label, sex, and disease state, resulting 

in 23 profiles in total. Pseudo-bulk profiles with less than 10 cells were removed from the DE 

analysis. Pseudo-bulk profiles were analysed for differential gene expression using the quasi-

likelihood pipeline from edgeR (v3.34.0). Genes with a false discovery rate (FDR) below 10% 

were considered differentially expressed. 

Results returned by edgeR, including Gene ID, log2 fold change, P-value, and FDR, were 

imported into the Ingenuity Pathway Analysis (IPA) software (QIAGEN Inc.). Pathway and network 

analysis was conducted with the IPA Winter Release 2021. 

2.6 Statistical analysis 

GraphPad Prism (version 9) was used for all statistical analyses. Normality tests were performed 

on all datasets. COPD and control groups were compared using an unpaired Mann-Whitney test. 

One-way ANOVA with Holm-Sidak post hoc testing (normal distribution) or Kruskal-Wallis’s test 

with Dunn’s post hoc testing (failing normality testing) was for multiple comparisons. Data are 
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presented as the mean ± SED. P-values < 0.05 were considered significant (*P < 0.05, **P < 0.01, 

***P < 0.001). 
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3.1 Abstract 

Background: Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease 

characterised by uncontrolled inflammatory responses that lead to emphysematous destruction 

of the lungs, which ultimately results in airflow limitation and decline in pulmonary function with 

limited reversibility. Recent studies show increased numbers of B cells in the COPD lung that are 

associated with disease severity. B cells are critical mediators of humoral immune responses in 

the airways through antibody production, antigen presentation and cytokine secretion. Despite 

their increased accumulation and persistence in the COPD lung, their role in disease 

pathogenesis remains understudied. In these studies, we characterize B cell subsets and their 

spatial distribution in the lung of COPD patients and non-COPD controls. 

Results: Here, we identify dramatic alterations in B cell profiles in the lung, but not blood, of 

COPD patients, compared to controls. We report increased frequencies of airway-associated B 

cells in the COPD lung, found to be in close proximity to bronchioles and blood vessels, as well 

as other immune cells such as T cells and macrophages. In addition to increased frequencies of 

plasma cells and plasmablasts, we observe an expansion of double negative and class-switched 

memory B cells. Importantly, we also report a significant increase in B cells expressing Tim1 and 

IL-10, associated with a regulatory phenotype, in the COPD lung. Further, B cell abnormalities in 

the COPD lung were identified to be associated with RELA and p38 MAPK pathways involved in 

the activation of the signal transductions that regulate B cell activation maturation and survival, 

as well as the HIF-1α pathway that affects IL-10 signalling in plasma cells.  

Conclusion:  The data presented here suggest an increased density of organised B cell follicles 

and an expansion of IL-10-producing regulatory B cells in the COPD lung. Whether B cells are 

directly or indirectly involved in disease pathogenesis remains unclear. However, excess B cells 

would likely affect gaseous exchange and lung elasticity. Therefore future investigations will be 

required to determine the therapeutic potential of targeting B cell subsets in COPD.  

Keywords 

B cells, Breg, COPD, Lung, cigarette smoke  
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3.2 Introduction 

B cells are critical mediators of humoral immune responses in the airways through antibody 

production, antigen presentation and cytokine secretion 334. In addition to effector responses, a 

subset of B cells, known as regulatory B cells (Bregs), exhibit immunosuppressive functions and 

prevent uncontrolled inflammation 335. The balance between effector and regulatory B cell 

functions is critical in maintaining immune homeostasis. Bregs modulate immune responses 

primarily, although not exclusively, via the production of IL-10 497. Tim-1 is a phosphatidylserine 

receptor on B cells that is required for appropriate IL-10 production by binding to apoptotic cells 

337. Tim1+ B cells are enriched for IL-10 and found to exhibit immune suppression in mice and 

humans 337. Dysregulated IL-10+Tim1+ B cells have been associated with several inflammatory 

disorders in humans 498. 

COPD is an inflammatory lung disease caused predominantly by cigarette smoke, with a poorly 

reversible disease progression even after smoking cessation 271. COPD is characterized by 

emphysema (alveoli destruction) and chronic bronchitis (airway inflammation and mucus 

hypersecretion) 268. B cells are sparse in healthy lungs and exist as individual scattered cells or 

within single B cell follicles present at the major bifurcations of the conducting airways 499,500. 

Depending on the inflammatory stimulus, however, B cells can form loose B cell clusters near the 

airways or organise into inducible bronchus-associated lymphoid tissue (iBALT). Cigarette smoke 

drives B cell recruitment and lymphoid neogenesis, particularly in severe stages of COPD 418 via 

IL-17-induced RANK-ligand 501 and the chemokines CXCL12 and CXCL13 502,503. Prolonged 

retention of B cells is likely to depend on several factors, including the production of the B cell 

activating factor (BAFF) that promotes survival 504 and, in mice, the production of oxysterols 505. 

Compared to other immune components within the inflammatory context of COPD, the role of B 

cells in disease pathogenesis has received relatively less attention. Increased autoantibodies are 

observed in the lung and blood of COPD patients 506,507. IgG is the most abundant form of Ig, and 

its levels were also dysregulated in COPD 508. While IgA is the principal Ig found in the airway and 

accounts for 80% of mucosal plasma cells in healthy subjects 508,509. The primary function of IgA 

is the removal of antigens at mucosal sites and requires transport across the respiratory 

epithelium by the poly Ig receptor, and such transport is defective in COPD 510–512. 

  

An in-depth study of human lung B cells is complicated by the difficulty in sampling relevant tissue 

compartments. Biopsies recover a small representation of the lung and do not reach the terminal 

branches, which means the small airways are under-represented in experiments. The use of 
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marginal tissue from lung resections for cancer creates a mixed opinion of their relevance to the 

healthy lung. However, with sufficient histopathology expertise to choose regions distant from the 

cancer mass and the use of multi-omic RNA and protein analyses, the appropriateness of lung 

resections to unravel B cell biology is increasing 513.  Furthermore, patients undergoing lung 

resection for cancer have a range of underlying pathologies, including COPD or asthma 514, 

enabling dissection of B cell phenotype in a different setting. The importance of studying B cells 

in COPD pathogenesis is underscored by the discovery of a disease endotype with emphysema, 

but not decreased airflow that is dominated by B cells 419,515. This study investigated B cell 

phenotype and function in COPD patients. 

3.3 Results 

B cells in the lung show a distinct profile from circulating B cells 

Most human studies in COPD have focussed on peripheral B cell responses 338 due to limited 

access to human tissue samples. Here, we initially evaluated how peripheral B cell responses 

differ from lung B cell responses. For an in-depth comparison of B cells in lung and blood, we ran 

deep phenotypic profiling using CyTOF mass cytometry of cell suspensions from matched PBMCs 

and pulmonary mononuclear cells (PMCs) from 3 COPD patients and 4 non-COPD controls. The 

panel included markers of B cell lineage, chemotaxis, and function (Table S3.2). Following 

normalisation, debarcoding, quality control and gating on CD45+CD3+CD19+ B cells (Figure 

S3.1), multidimensionality reduction of samples identified 12 unique B cell subsets in the blood 

and lung (Figure 3.1a). Next, we performed a separate hierarchical clustering on all the B cell 

subsets from lung and blood based on 37 measured parameters (excluding CD3, CD45 and 

CD19). We observed that B cell subsets from the lung clustered separately from their blood 

counterparts (Figure 3.1a). B cells from the lung displayed reduced expression of CD20 and 

increased expression of CD27, CD38, CD11c, Tim-1, IL-10, IgA and CD10, indicating an increase 

in antigen-experienced PC, switched-memory and atypical B cell populations. In contrast, 

circulating B cells expressed more CD20, IgD, CD62L and CD5, indicating the presence of more 

naïve B cells with increased tissue trafficking (Figure 3.1b and S3.2). These data demonstrate 

distinct B cell responses in the lung and blood, thus highlighting the importance of studying lung-

resident B cells in chronic respiratory diseases. 
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Figure 3.1: B cells from matched lung and blood samples show distinct profiles 

a) Mass cytometry data showing (left) tSNE plots of B cells from lung and matched blood overlaid 

with Phenograph subclusters and (right) heatmap showing all expressed markers, dendrogram 

constructed by hierarchical clustering and clusters identified using K-means. b) tSNE plots from 

mass cytometry data showing the expressions of selected B cell markers from the lung and 

matched blood overlaid with Phenograph subclusters. PC: Plasma cells, B1 PCs: B1 plasma cells, 

SM: Switched memory, USM: Unswitched memory, T: Transitional, N: Naïve, DN: Double 

negative, MZB: Marginal zone B cells. 
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Lung-infiltrating B cells in COPD patients show an expansion of Tim1+IL-10+B cells and 

double negative memory B cells compared to controls 

Given the differences in B cells in the lung and blood, we next investigated their phenotypic 

differences in COPD patients and controls by multidimensionality reduction. B cell subsets from 

COPD lung were clustered separately from those in control (Figure 3.2a). We observed an 

increase in the percentage of B cells in COPD compared to control. The majority of the B cell 

subsets are plasma cells with notably reduced expression of CD20 and increased expressions of 

CD27, CD38, CD11c, IgG, IgA, Tim1, and IL-10 (Figure 3.2b, c and S3.4). In contrast, we 

observed modest differences between circulating B cells from COPD patients and controls, with 

mostly a uniform distribution of all measured parameters (Figure S3.3). 
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Figure 3.2: Lung resident B cells subsets from COPD and controls clusters separately and 

have distinct marker expression 

a) Mass cytometry data showing (left) tSNE plots of B cells from COPD and control lung, overlaid 

with Phenograph subcluster and (right) heatmap showing all expressed markers with dendrogram 

constructed by hierarchical clustering and clusters identified using K-means. b) Expressions of 

selected markers on tSNE of B cell plots from COPD lung and control lungs, overlaid with 

Phenograph subclusters. c) Histogram plots showing statistics of CD20, CD24, CD27, CD38, 

CD11c, Tim-1, IL-10, IgA and IgG percentages in COPD versus control. PC: Plasma cells, B1 

PCs: B1 plasma cells, SM: Switched memory, USM: Unswitched memory, N: Naïve, DN: Double 

negative, MZB: Marginal zone B cells, GC: Germinal center. 
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We further phenotyped B cells from PMCs and matched PBMCs by flow cytometry analysis to 

quantify B cells in COPD and control. In agreement with previous studies, we also observed 

increased percentages of CD45+CD3-CD19+ B cells and CD38hiBlimp1+ plasma cells in both 

COPD lung and blood compared to controls, with current smokers displaying the highest increase 

(Figure 3.3a and S3.5). Although there was a significant increase in IgG+B cells, no differences 

in IgA+ and IgM+ B cells were observed in COPD versus control's lung and blood (Figure 3.3a). 

When characterising B cells based on the expression of IgD and CD27, we noted a significant 

expansion of CD27-IgD- double-negative (DN) memory B cells and CD27+IgD- switched memory 

B cells in COPD lung compared to controls mirrored by a decrease in CD27-IgD+ naïve B cells in 

the blood (Figure 3.3b). No differences in un-switched memory were observed. Importantly, we 

observed increased Tim1+ (indicative of regulatory B cells 368), Ki67+ (indicative of proliferation 

516), CXCR3+ (chemokine receptor 517(p3)), CD86+ (activation 518) B cells expression, and 

CD11c+Tbet+ double-positive B cells (indicative of ongoing inflammation 142) in the COPD lung 

compared to the control lung (Figure 3.3c). 

Next, we stimulated matched PBMCs and PMCs from COPD and control patients with either CpG-

B (a TLR9 agonist 519), CD40L or the combination of both for 48 hours and measured cytokine 

expression by flow cytometry. We observed a significant expansion of IL-10+ B cells from the 

lungs but not the blood of COPD current smokers in all stimulating conditions (Figure 3.3d and 

S3.5). However, no significant differences in the frequencies of TNF-+ and IL-6+ B cells were 

observed in the lung and blood from COPD patients and controls (Figure 3.3d and S3.5). 

Interestingly, albeit with limited numbers, we observed a significant increase in percentages of 

total B cells, plasma cells, IgG+, Cd11c+, Tim-1+ and IL-10+ B cells in severe (FEV1 < 50 % of 

lung function predicted) compared to mild (FEV ≥ 50 % predicted) COPD (Figure 3.3e). 
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Figure 3. 3: B cell subsets in COPD and controls. Flow cytometry data showing 

a) Percentages of CD45+CD3-CD19+ B cells, CD38++Blimp1+ B cells (plasma cells), IgG+, IgA+, 

and IgM+ B cells. b) Percentages of CD27-IgD+ as Naïve, CD27+IgD+ as un-switched memory 

(USM), CD27+IgD- as switched memory (SM), and CD27-IgD- as double-negative (DN) B cells in 

COPD (n = 12) versus control (n = 19) lung, and matched COPD (n = 4) versus control (n = 6) 
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blood. c) Percentages of Ki67+, CXCR3+, CD86+, CD11c+Tbet+ and Tim-1+ B cells. d) Percentages 

of IL-10+, TNF-α+, and IL-6+ B cells. e) Percentages of B cells, plasma cells, IgG+, CD11c+, Tim-

1+ and IL-10+ B cells in mild versus severe COPD lungs. 

Single-cell RNA sequencing of B cells from COPD lung identifies novel pathways of B cell 

abnormality 

To identify differentially expressed genes by B cells in COPD compared to controls, we used 10x 

Genomics Chromium droplet single-cell RNA sequencing (scRNA-seq) of sorted B cells from 

three COPD and two control lung samples. Of note, all samples included were from ex-smokers 

to exclude the direct impact of CS exposure on B cells. Following quality control (Methods), we 

profiled gene expression data from 2808 B cells for clustering analysis. Our analysis revealed six 

B cell populations that were visualised as uniform manifold approximation and projection (UMAP) 

embeddings (Figure 3.4a). Population nomenclature was designed by specific gene expression, 

identifying plasma cells, plasmablasts, memory, double-negative, naive, and activated B cell 

populations (Figure 3.4a, c); COPD donors have more double-negative and memory B cells and 

less naïve B cells than control (Figure 3.4b and S3.6a, b).  

Furthermore, within these subpopulations, we identified differentially expressed genes (DEGs) in 

total B cells (Figure 3.4d, e) and in the individual B cell populations from COPD and control lungs 

(Figure 3.5 a,c,d,f and Figure S3.7 a-d). As expected, we saw increased IL-10 gene expression 

in B cells from COPD patients compared to controls. (Figure 3.4d, e). When we compared the 

DE genes from COPD and controls of individual B cell subsets, we observed that the increase in 

IL-10 gene expression seen in B cells from COPD lungs is restricted to only the PCs and activated 

B cell populations (S3.6c). Additionally, we also found several other genes differentially expressed 

by B cells in COPD patients compared to controls. Upregulated genes include MMP19 (a member 

of matrix metalloproteases), APOE (Apolipoprotein gene), and SCGB1A1 (Secretoglobin family 

1a member 1). MMPs are key mediators of lung fibrosis by regulating the extracellular matrix 

(ECM) and are, therefore, crucial in the development of COPD. MMP19 has a strong regulatory 

effect on the synthesis of extracellular matrix (ECM) components and plays a critical protective 

role in the progression of fibrotic lung diseases 520,521.  Thus, upregulated MMP19 expression by 

B cells in COPD might be critical in regulating lung inflammation. APOE is an essential component 

in the pathogenesis of lung disease because of their ability to promote adaptive immunity and 

host defense by enhancing antigen presentation 522, and to suppress inflammation, tissue 

remodeling and oxidative stress 523–525. As a result, increased APOE expression by B cells 
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suggests increased lipid antigen presentation and iNKT cell modulation. SCGB1A1 is a pulmonary 

surfactant protein with anti-inflammatory and immunoregulatory effects in lung diseases 526. 

SCGB1A1 expression by B cells suggests increased anti-inflammatory effects in COPD lungs. 

Downregulated genes include ICOSLG (ICOS ligand) 527, CCL4 and CCL 22, among others. 

ICOS- ICOSL binding is crucial for T cell response, and CLL4 and 22 are essential chemokines 

for follicular helper T cell recruitment 528,529. Hence, their reduced expression might suggest 

impaired T-cell response in COPD patients. 

To better understand the relationship between the DE genes, we performed an Ingenuity Pathway 

Analysis (IPA) of genes from total B cells that were differentially expressed between COPD and 

control, and observed the regulatory effects of the upstream regulators. We found RELA and p38 

MAPK as the two main pathways predicted to be upregulated in B cells from COPD patients 

compared to controls. RELA (p65) is one of the downstream transcriptional activators of the 

classical NF-κB pathway that is critical for developing and surviving B cells and antigen-

dependent B cell activation 530–532. p38 MAPK (p38 mitogen-activated protein kinase) is a stress-

activated pathway with functions that include control of cell proliferation, inflammation and arrest 

of cell cycle 533,534. Activation of these pathways suggests increased B cell responsiveness to 

chronic inflammation typical of COPD. 
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Figure 3. 4: scRNA-seq of B cells from COPD and control lungs identified six major B cell 

subsets 

a) UMAP plot showing B cell subsets identified from scRNA-seq. b) Pie charts showing the 

percentage of B cell subsets in COPD (n = 3) and control (n= 2). c) Dot plots of selected gene 

expressed by B cells from the scRNA-seq analysis. d) Dot plots of B cells' top 50 differentially 

expressed (DE) genes from COPD and control. e) Volcano plot showing significant DE genes 

from total B cells. f) Ingenuity Pathway Analysis (IPA) of the Regulatory Effects Analysis-based 

network associated with DE genes from B cells in COPD and control lung. 
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Additionally, IPA analysis of the DE genes from individual B cell subsets predicted the regulatory 

effects of several upstream regulators. Analysis of plasma cells revealed predicted activation of 

the HIF-1α pathway that indirectly influences IL-10 activation in COPD via increased IL-15 

activation (Figure 3.5b), suggesting hypoxia-related IL-10 activation in COPD lungs, as well as 

directly as shown in recent studies 535(p1). TP53 (a tumour suppressor gene), RELA and SMARCA4 

(a component of Brahma-related gene-1; BRG1 that regulates the expression of cell cycle genes 

in B cells)536 were all predicted to be activated in the DN B cell population (Figure 3.5e). At the 

same time, IFNG was predicted to be activated in the naïve B cell populations (Figure S3.7e). 

TP53, RELA and SMARCA4 genes are responsible for cellular activation, proliferation, survival 

and repair 530,536,537. Hence their activation is suggestive of increased signals for B cell activation, 

proliferation, maintenance and survival in COPD lungs. However, we did not find any regulatory 

effects in memory and activated B cells by IPA due to a lack of significant correlation between the 

DE genes. 
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Figure 3. 5: Differential gene expression of B cells from COPD and healthy lungs 

a) Volcano plot showing DE genes from plasma cells. b) Ingenuity Pathway Analysis (IPA) of the 

Regulatory Effects Analysis-based network associated DE genes from plasma cells. c) Dot plot 
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showing the top 50 DE genes from plasma cells. d) Volcano plot showing DE genes from Double 

Negative B cells. e) Ingenuity Pathway Analysis (IPA) of the Regulatory Effects Analysis-based 

network associated DE genes from Double Negative B cells. f) Dot plot showing the top 50 DE 

genes from Double negative B cells. g) Volcano plot showing DE genes from activated B cells. h) 

Dot plot showing the top 50 DE genes from activated B cells. 

Histology of COPD lung show localized B cell aggregates in close contact with T cells and 

macrophages 

Several studies have reported an increase in B cell aggregates in the lung tissue of COPD patients 

compared to controls 338. We also observed increased B cell aggregates in COPD patients versus 

controls (Figure 3.6a). This was done using imaging mass cytometry (IMC) to zoom down on the 

tissue and characterise lung structure and B cell localisation in COPD lungs. FFPE tissues from 

COPD and control lungs were stained with a 35-marker panel of metal-conjugated antibodies 

(Table S3.3); this was then ablated on a Hyperion instrument. Lung structure was visualised by 

cytokeratin-V (basal epithelium), CD31 (blood vessels), collagen-I (connective tissue), histone 

(DNA) and CD20 (B cells) in COPD and control lung (Figure 3.6a). We observed a dramatic 

expansion of B cell aggregates in the COPD lung compared to the control lung; these aggregates 

were found near bronchioles and blood vessels (Figure 3.6a). Of note, we found more B cell 

aggregates in the lungs of current smokers compared to non-smokers (Figure S3.8). We also 

observed an increase in CD4/CD8 T cells, the basal epithelium and macrophages in the COPD 

lung compared to the control lung (Figure 3.6a, b, d and S3.8a and b). Importantly, we observed 

B cells in COPD patients to be in close proximity with other immune cells, including macrophages 

(CD68), CD4/CD8 T cells and follicular dendritic cells (FDCs, CD21) in COPD patients but not 

controls; suggesting the formation of ELTs (Figure 3.6b and S3.9a). Interestingly, we observed 

an increase of FoxP3+CD4+ T cells within the B cell aggregates in COPD lungs compared to the 

control lungs (Figure 3.6c), suggesting an increase in the recruitment of regulatory T cells within 

the ELTs in COPD lungs as previously reported 538,539. 
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Figure 3. 6: Histological differences in COPD and control lung using imaging mass 

cytometry 
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a) Representative IMC-derived images of COPD and control lung showing (left) connective tissue 

(Collagen-I: Cyan), basal epithelium (Cytokeratin-V: White), vascular endothelial cells (CD31: 

Yellow), DNA material (Histone: Blue) and B cells (CD20: Red), (right) matched H and E images 

of COPD and control lung. 200µm. b) IMC-derived images of COPD and control lung showing B 

cells (CD20: Red), cytotoxic T cells (CD8: Green), helper T cells (CD4: Blue), and macrophages 

(CD68: Yellow). (right). 200µm. c) IMC-derived images showing B cells (CD20: Red), helper T 

cells (CD4: Blue), and FoxP3 (Green) in COPD and control lungs. d) Plots showing statistics of 

cells in COPD (n = 4) and control (n = 4) lungs. 

3.4 Discussion 

In this study, we sought to perform an in-depth analysis of B cells in the lungs of patients with 

COPD to improve our understanding of B cells' immunobiology and their potential role in COPD 

pathogenesis. Imaging mass cytometry (Hyperion) allowed B cells to be analysed at an 

unprecedented depth. We have demonstrated ELT presence in COPD lungs by observing B cell 

aggregates with a mixture of T cells, macrophages and FDCs. Smoking is directly associated with 

forming such lymphoid follicles in the lung. Even though these follicles are positioned near the 

bronchioles and blood vessels (as previously reported) 540,541, their presence in the lower airways 

may take up a significant space where airspace should be. We demonstrated that cigarette 

smoking directly affects deteriorating lung function, where current smokers' lungs, irrespective of 

disease condition, have increased B cell aggregates with a corresponding increase in B cell 

numbers and impaired B cells phenotype and function compared to non-smokers. 

We showed that B cells in the COPD lung interact with T cells (CD4+ and CD8+) and 

macrophages. Within the T cells, we saw a specific expansion of CD4+FoxP3+ regulatory T 

(Tregs) cells within the B cell aggregate in COPD but not control lungs. CD4+FoxP3+ Tregs were 

previously characterized in lung LFs, BAL fluid, dispersed lung cells and peripheral blood 539,542,543. 

Where they reported increased CD4+FoxP3+ Tregs within the inflammatory LFs from COPD 

patients compared to smokers and non-smokers with normal lung function. Therefore, altered 

numbers of Treg cells might be associated with changes in immune regulations. CD4+FoxP3+ 

Tregs’ presence within the B cell aggregates might help maintain local immunity. 

We also report the differences between lung-resident B cells to the circulating B cells irrespective 

of the disease condition. We showed that lung-resident B cells are matured and activated with 

increased proliferation and chemotaxis, with the predominant PC, DN and switched memory 

subsets in COPD patients. In contrast, the circulating B cells are primarily naïve and less 
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activated, highlighting the critical role of tissue in studying chronic lung diseases. Additionally, our 

data highlighted the phenotypic differences in B cells from COPD lung compared to controls. 

The accumulation of B cells is well described in COPD lungs 338,504,515. Our findings build on these 

data and describe the phenotypic and functional characteristics of B cells in the COPD lung. We 

observed increased percentages of SM and DN B cell populations in COPD lungs. Similar to our 

findings, increased DN B cells and their classical markers of identification, CD11c and Tbet, have 

been reported in other disease settings, including autoimmune diseases like SLE and RA, chronic 

infections like hepatitis C and malaria infections, older people and several immunodeficiencies 

40,172,544–548. They are thought to be associated with pro-inflammatory cytokine production and 

essentially pro-inflammatory function 40,172,544–548. There is accumulating evidence supporting the 

link between COPD and auto-immunity 338,549. Thus, seeing an increase in DN and class-switched 

memory B cells might support the autoimmunity effect of B cells in COPD. 

We also showed increased IgG+ with a corresponding decrease in IgA+ B cells in the lungs of 

COPD current smokers. Increased IgG in COPD, especially in current smokers but not in control 

current smokers, may suggest that the adaptive immune responses to cigarette smoking differ in 

COPD compared to control lungs. Furthermore, these IgG could be autoantibodies forming 

immune complexes that can activate complement components, leading to lung inflammation and 

subsequent lung injury in COPD. Brandsma et al. reported similar findings, showing increased 

IgG+ and decreased IgA+ B cells in COPD smokers' lung 550. 

Our data also shows for the first time an expansion of Tim1+ and IL-10+ B cells in the COPD lung 

compared to the control lung. Tim-1 is a critical marker for the expansion and suppressive function 

of Bregs by inducing IL-10 secretion 381,551,552. Hence, their presence in COPD lung suggests 

increased anti-inflammatory effects of B cells in COPD. Furthermore, studies have shown that IL-

10+ Bregs are not terminally differentiated B cells 336,553. They have the potential to further 

differentiate into APCs or antibody-producing plasmablasts 336,553, hence can switch off the IL-10 

production to allow for other functions. 

The scRNA-seq analysis of B cells identified novel pathways upregulated or differentially 

expressed in B cells from COPD lungs. We showed increased IL-10 expression in plasma cells 

and activated B cells from COPD compared to control lungs, which is consistent with our flow and 

mass cytometry data. The activation of the HIF-1α pathway observed in B cells from COPD might 

promote IL-10+ B cell differentiation since HIF-1α is a transcriptional factor that is a key element 

in controlling immune cell metabolism and cellular response to low oxygen and has been shown 
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to be critical in the induction of IL-10-secreting Bregs 488,554. The increase in the activation of RELA 

and p38 MAPK pathways in B cells from COPD lung shown in this study might suggest a 

continuous activation and maturation of B cells within the COPD lung microenvironment. 

Interestingly, we also showed upregulation of MMP19, APOE, and SCGB1A1 genes (among 

others) by B cells in COPD patients. Increased MMP19 was previously shown to play a protective 

role in IPF and asthma 520,521,555. In asthma, MMP19 acts on Th2 inflammation homeostasis by 

preventing the accumulation of tenancin-C (a matricellular protein component of ECM). This 

subsequently prevents airway eosinophilia and hyperreactivity 521. While in IPF, upregulation of 

MMP19 protects the development of fibrosis by regulating the synthesis of ECM components in 

lung fibroblasts 520,555. Although MMP19 is typically expressed in lung fibroblasts, myoepithelial 

cells, basal keratinocytes, and vascular smooth muscle 556–561, its upregulation in B cells from 

COPD lung might suggest their direct involvement in lung repair in COPD. Additionally, the 

upregulation of APOE and SCGB1A1 genes in B cells might suggest increased antigen 

presentation and anti-inflammatory effects of B cells in COPD.  

In summary, we visualised and phenotype B cells from lung tissue and blood of COPD patients 

by spatial analysis and provided an insight into the role of B cells in COPD pathophysiology. 

Further investigations using patient samples and mouse models of the disease are required to 

fully understand the role of B cells in COPD pathogenesis and their therapeutic potential.  

3.5 Methodology 

Tissue samples 

Healthy margins of lung tissue (> 6 cm from cancer) were identified by a histopathologist and 

dissected under the ethical approval of the Manchester Allergy, Respiratory and Thoracic Surgery 

(ManARTS) Biobank at the University Hospital of South Manchester together with matched 

peripheral blood samples. National Research Ethics Service Committee granted ethical approval; 

North West – Haydock (ref; 15/NW/0409). Written consent was obtained from all the patients that 

participated in the study. Participants with a forced expiratory volume in 1 second/forced vital 

capacity (FEV1/FVC) of ≥ 0.70 with no other underlying respiratory disease were categorised as 

‘healthy’. Participants with COPD were defined by physician diagnosis and exhibited an 

FEV1/FVC < 0.70. Details of patients' demography are outlined in Table S3.1. Lung tissue was 

digested, and mononuclear cells from lung tissue and peripheral blood were isolated as previously 

described 562,563. A portion of the tissue is fixed for histology analysis. 
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Mass Cytometry 

All antibodies (Abs) used for mass cytometry analysis are detailed in Table S3.3 Antibodies 

conjugated to metal tags from Fluidigm or purchased protein-free elsewhere and conjugated in-

house using the Fluidigm MaxPar labelling kits following manufacturer’s instructions. Cells were 

washed with PBS and stained in 200µm Rhodium intercalator (1:500 dilution) for 15 minutes at 

room temperature for cellular viability. Cells were washed in PBS, then in Cell-staining buffer 

(CSB) followed by incubation in FcR block (Miltenyi) diluted 1:100 for 15 minutes at room 

temperature. Cells were stained in primary Abs cocktail in CSB on 30 minutes at room 

temperature, washed twice in CSB and fixed for 15 minutes in 1X Fix I buffer (Fluidgm). For 

intracellular staining, cells were permeabilised by a wash in Perm-S-buffer (Fluidigm), followed 

by staining in intracellular Abs in Perm-S-buffer for a further 30 min on ice, then washed twice in 

Perm-S-buffer. Cells were then resuspended overnight in cell-ID Iridium intercalator (Fluidigm) 

diluted 1:2000 in Fix and perm buffer followed by washing in PBS. Data were acquired using 

CyTOF Helios mass cytometer, and files were exported in flow cytometry files (FCS) format for 

analysis. 

FCS were first normalised using CyTOF Software (Fluidigm); pre-and post- normalisation plots 

are shown in Supplementary Fig. 1. FCS files were gated in FlowJo as shown in Supplementary 

Fig 1. For dimensionality reduction, the CD19+ cells were exported and analysed using cytofkit2 

R script (available online at https://github.com/JinmiaoChenLab/cytofkit2). 

Imaging mass cytometry (Hyperion) 

Formalin-fixed paraffin-embedded (FFPE) lung tissues were freshly cut into sections of 5µm 

thickness and were mounted on superfrostTM adhesion slides (Fisher Scientific: 10149870). 

Tissue slides were deparaffinised in Xylene and rehydrated in descending ethanol concentrations 

(100%, 95%, 80%, 70%) and finally washed in Milli-Q water. The tissue slides were then incubated 

in 1X pre-heated antigen retrieval buffer (Abcam, 100X Tris Buffer, pH = 10.0: ab93682) for 30 

min at boiling temperature. Then left in the antigen retrieval solution for another 30 min at room 

temperature to cool down. The slides were then dried, and a hydrophobic barrier was drawn 

around the tissue on the slide by a PAP pen. The tissue was then blocked with 3% bovine serum 

albumin (BSA) in PBS for 45 min at room temperature followed by three washes in PBS and 

staining with metal-conjugated Abs cocktail (Table S3.2) in PBS overnight at 4°C. The slides were 

then washed in 0.2% TritonTM X-100 (Thermo Scientific: 85111) in PBS at room temperature for 

8 min, followed by 3X washing with PBS and staining with cell ID intercalator Iridium (1:400, 

https://github.com/JinmiaoChenLab/cytofkit2
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Fluidigm) for 30min at room temperature. The slides are finally washed with Milli-Q water and air-

dried overnight. Data were acquired on a Hyperion imaging system coupled to a Helios mass 

cytometer (Fluidigm). 

Hyperion Imaging analysis 

Separate matched samples were first stained with Haematoxylin and eosin and imaged with a 

bright field microscope to identify the regions of interest (ROIs) used to reference the IMC signal 

acquisition. Images created by the Hyperion system were exported as MathCad (MCD) files. They 

were initially analysed in MCD viewer software (v1.0.560.6) and exported as OME-TIFF 16-bit file 

format. Cellular segmentation masks were generated using CellProfiler (4.2.1) data analysis 

pipeline as recommended by Fluidigm. The extracted OME-TIFF ROIs data from MCD and the 

generated segmented masks were imported into HistoCAT and finally exported as CSV files for 

statistical analysis in GraphPad Prism. 

Cell culture 

Frozen mononuclear cells from blood and lung tissue were thawed, washed and resuspended in 

RPMI containing 10% FBS, L-Glutamine, non-essential amino acids, HEPES, and penicillin plus 

streptomycin. 5 × 105 cells were stimulated with either; (i) 1 μM CpG-B DNA (Cambridge 

Bioscience: Hycult HC4039) alone, (ii) 1 μg/ml CD40L (R&D Sysytems: 6245-CL-050) alone, (iii) 

combination of i and ii for 48 hours followed by 2μL/ml of stimulation cocktail (eBioScience: 00-

4970-93) in the presence of 10 μg/ml Brefeldin A (BFA) in the last four hours (B cells). For 

unstimulated controls, cells were incubated with culture buffer alone for 48 hours followed by 

incuabtion with the stimulation cocktail and BFA in the last four hours. Following stimulation, cells 

were washed and stained for flow cytometric analysis. 

Flow cytometry analysis and cell sorting 

Mononuclear cells from lung and blood (thawed/stimulated) were stained in viability dyes, then 

with fluorophore-conjugated antibodies (see Table S3.4) and acquired on FACS Symphony cell 

analyser (Becon Dickinson) and analysed using FlowJo (TreeStar: v10.8.1) as previously 

described564. For sc-RNA sequencing and qPCR analysis, cells were stained with DAPI, CD19, 

CD3, and CD45. CD19low/+CD45+CD3- were sorted as B cells on BD Influx cells sorter (BD 

Biosciences). 
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Single-cell isolation and library construction 

Gene expression libraries were prepared from B cells single-cell suspension using the Chromium 

Controller and Single Cell 3ʹ Reagent Kits v3.1 (10x Genomics, Inc. Pleasanton, USA) according 

to the manufacturer’s protocol (CG000315 Rev B). Briefly, nanoliter-scale Gel Beads-in-emulsion 

(GEMs) were generated by combining barcoded Gel Beads, a master mix containing cells, and 

partitioning oil onto a Chromium chip. Cells were delivered at a limiting dilution, such that the 

majority (90-99%) of generated GEMs contain no cell, while the remainder largely contain a single 

cell. The Gel Beads were then dissolved, primers released, and any co-partitioned cells lysed.  

Primers containing an Illumina TruSeq Read 1 sequencing primer, a 16-nucleotide 10x Barcode, 

a 10-nucleotide unique molecular identifier (UMI) and a 30-nucleotide poly(dT) sequence were 

then mixed with the cell lysate and a master mix containing reverse transcription (RT) reagents. 

Incubation of the GEMs then yielded barcoded cDNA from poly-adenylated mRNA. 

Following incubation, GEMs were broken and pooled fractions recovered. First-strand cDNA was 

then purified from the post GEM-RT reaction mixture using silane magnetic beads and amplified 

via PCR to generate sufficient mass for library construction. 

Enzymatic fragmentation and size selection were then used to optimize the cDNA amplicon size. 

Illumina P5 & P7 sequences, a sample index, and TruSeq Read 2 sequence were added via end 

repair, A-tailing, adaptor ligation, and PCR to yield final Illumina-compatible sequencing libraries. 

Sequencing 

The resulting sequencing libraries comprised standard Illumina paired-end constructs flanked with 

P5 and P7 sequences. The 16 bp 10x Barcode and 10 bp UMI were encoded in Read 1, while 

Read 2 was used to sequence the cDNA fragment. Sample index sequences were incorporated 

as the i7 index read. Paired-end sequencing (26:98) was performed on the Illumina NextSeq500 

platform using NextSeq 500/550 High Output v2.5 (150 Cycles) reagents. The .bcl sequence data 

were processed for QC purposes using bcl2fastq software (v. 2.20.0.422) and the resulting .fastq 

files assessed using FastQC (v. 0.11.3), FastqScreen (v. 0.9.2) and FastqStrand (v. 0.0.5) prior 

to pre-processing with the CellRanger pipeline. 
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Raw data processing  

Raw sequencing data were processed using the 10x Genomics Cell Ranger pipeline (v6.0.0). 

The Illumina Binary Base Call (BCL) files were demultiplexed using the command `cellranger 

mkfastq` to produce FASTQ files. The FASTQ files were then processed using the command 

`cellranger count` with pre-built Cell Ranger human reference package (GRCh38-2020-A) to 

generate the gene-cell barcode matrix. 

Cell filtering and cell type annotation 

Expression matrices were processed in R environment (v4.1) using various R packages. Briefly, 

the matrix data (HDF5) of each sample was imported as SingleCellExperiment object using the 

`read10xCounts` function in the DropletUtils R package (v1.12.1). The `addPerCellQC` and 

`addPerFeatureQC` functions from the scuttle R package (v1.2.0) were used to compute and add 

per-cell and per-gene quality control metrics to the SingleCellExperiment object. We used a 

combination of median absolute deviation (MAD), as implemented by the `isOutlier` function in 

the scuttle R package and exact thresholds to evaluate the per-cell QC metrics, including UMI 

count, the UMI count, number of detected genes, proportion of mitochondrial reads and 

complexity of RNA species, to identify and subsequently remove poor quality cells before further 

processing.  

To computes deconvolution size factors, we first used the `quickCluster` function to group cells 

into clusters of similar expression, then use the `computeSumFactors` function to normalise for 

cell-specific biases to compute size factors for each cell. Both functions are available from the 

scran R package (v1.20.1). The `calculateCPM` function from the scuttle R package was used to 

calculate counts-per-million (CPM) values from the count data, which make use of the size factors 

calculated previously. The log2-transformed normalized values were stored in the logcounts slot 

of the SingleCellExperiment object. 

The SingleR R package (v1.6.1) was used to annotate cells against curated reference expression 

datasets (namely DatabaseImmuneCellExpressionData, MonacoImmuneData, and 

NovershternHematopoieticData) from the celldex R package (v1.2.0). 

Data integration 

The log-normalized expression values of the six samples were re-calculated using the 

`multiBatchNorm` function from the batchelor R package (v1.8.0) to adjust for the systematic 

differences in coverage between them. Per-gene variance of the log-expression profiles was 
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modelled using the `modelGeneVarByPoisson` function and top 5000 highly variable genes 

(HVGs) were identified using the `getTopHVGs` function, both from the scran R package. The 

mutual nearest neighbors (MNN) approach implemented by the `fastMNN` function from the 

batchelor R package was used to integrate the scRNA-seq data. At the same time, multi-sample 

principal components analysis was performed internally. The proportion of variance lost with each 

batch at each merge step was examined to detect if the correct process is removing genuine 

biological heterogeneity. 

Data visualization and cell clustering 

The first 50 dimensions from the MNN corrected low-dimensional coordinates for each cell were 

used as input to produce the t-stochastic neighbour embedding (t-SNE) projection and uniform 

manifold approximation and projection (UMAP) using the `runTSNE` and `runUMAP` functions 

from the scater R package (v1.20.0) respectively. 

Next, we performed graph-based clustering of cells using the Walktrap algorithm from the igraph 

R package (v1.2.6) to identify “communities” of cells. Specifically, we used the `clusterRows` 

function from the bluster R package (v1.2.1) to streamline the clustering procedure and obtained 

19 clusters.  

From the larger dataset, clusters containing B cells (clusters 2 and 5) were subsetted from the 

main SingleCellExperiment object, projected into t-SNE and UMAP and re-clustered into six 

clusters. 

Marker and differential expression analysis 

Cluster-specific markers were identified using the `FindMarkers` function from the scran R 

package, which performs pairwise t-tests between clusters. To perform differential expression 

(DE) analysis, we created “pseudo-bulk” expression profiles from scRNA-seq data by summing 

raw counts from cells with the same combination of cluster label, sex, and disease state, resulting 

in 23 profiles in total. Pseudo-bulk profiles with less than 10 cells were removed from the DE 

analysis. Pseudo-bulk profiles were analysed for differential gene expression using the quasi-

likelihood pipeline from edgeR (v3.34.0). Genes with a false discovery rate (FDR) below 10% 

were considered differentially expressed. 

Results returned by edgeR, including Gene ID, log2 fold change, P-value, and FDR, were 

imported into the Ingenuity Pathway Analysis (IPA) software (QIAGEN Inc.). Pathway and network 

analysis was conducted with the IPA Winter Release 2021. 



112 
 

Statistics 

GraphPad Prism (version 9) was used for all statistical analyses. Normality tests were performed 

on all datasets. COPD and control groups were compared using an unpaired Mann-Whitney test. 

One-way ANOVA with Holm-Sidak post hoc testing (normal distribution) or Kruskal-Wallis test 

with Dunn’s post hoc testing (failing normality testing) was for multiple comparisons. Data are 

presented as the mean ± SED. P-values < 0.05 were considered significant (*P < 0.05, **P < 0.01, 

***P < 0.001) 

3.7 Supplementary Information 

Table S3. 1: Patient demographics 

Demography COPD Control 

Age   

51 - 60 0 4 

61 - 70 5 2 

71 - 80 3 10 

81 - 90 4 3 

Smoking history   

Current smokers 6 6 

Ex-smokers 5 6 

Never-smokers 1 7 

FEV1 (% predicted)   

≥ 80 5 13 

50 – 79 6 6 

30 – 49 1 0 

< 30 0 0 

Gender   

Male 8 8 

Female 4 11 

Total  12 19 
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Table S3. 2: Specifications of metal conjugated antibodies for CyTOF Helios targets 

Antibody 

Target Metal Tag Concentration Clone Company 

Extracellular 

Abs     

CD45 89Y 1:100 HI30 Fluidigm 

CD19 113In 1:20 HIB19 BioLegend 

CD3 115In 1:50 UCHT1 BioLegend 

CD10 141Pr 1:33 HI10a BioLegend 

CD5 143Nd 1:100 UCHT2 Fluidigm 

CD20 147Sm 1:100 2H7 Fluidigm 

CD21 196Pt 1:30 #544408 R&D Systems 

CD24 142Nd 1:50 ML5 BioLegend 

CD27 195Pt 1:50 323 BioLegend 

CD22 159Tb 1:100 HIB22 Fluidigm 

CD33 169Tm 1:100 WM53 Fluidigm 

CD36 152Sm 1:100 5271 Fluidigm 

CD38 194Pt 1:100 HIT2 BioLegend 

CD40 151Eu 1:40 5C3 BioLegend 

CD43 155Gd 1:33 #290111 R&D Systems 

CD44 166Er 1:100 BJ18 Fluidigm 

CD62L 153Eu 1:100 DREG56 Fluidigm 

CD69 162Dy 1:100 FN50 Fluidigm 

CD80 (B7-1) 161Dy 1:100 2D10.4 Fluidigm 

CD86 164Dy 1:40 IT2.2 BioLegend 

CD138 170Er 1:40 DL-101 BioLegend 

CD11c 174Yb 1:50 3.9 BioLegend 

CD1c 172Yb 1:20 REA694 Miltenyi Biotec 

CD1d 176Yb 1:40 51.1 BioLegend 

B220 144Nd 1:50 RA36B2 BioLegend 

HLA-DR 198Pt 1:50 L243 BioLegend 

IgD 146Nd 1:100 IA62 Fluidigm 

IgM 149Sm 1:40 MHM-88 BioLegend 
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IgG 145Nd 1:30 #97924 R&D Systems 

IgA 148Nd 1:100 Polyclonal Fluidigm 

NOTCH-1 165Ho 1:33 #527425 R&D Systems 

Tim-1 167Er 1:33 #219211 R&D Systems 

TLR-4/CD284 173Yb 1:40  #610015 R&D Systems 

CXCR4 156Gd 1:100 12G5 Fluidigm 

CXCR5 171Yb 1:100 RF8B2 Fluidigm 

CXCR6 160Gd 1:100 K041E5 Fluidigm 

CCR4/CD194 175Lu 1:100 L291H4 Fluidigm 

BAFF-R 

(CD268) 
158Gd 

1:33 
#2403C R&D Systems 

CXCR3 154Sm 1:40  #49801 R&D Systems 

Intracellular 

Abs 
 

 
  

IL-10 150Nd 1:50 JES3-9D7 BioLegend 

Bcl-2 168Er 1:40 E17 Abcam 

Bcl-6 163Dy 1:100 K11291 Fluidigm 

 

Table S3. 3: Specifications of metal conjugated antibodies for CyTOF Hyperion targets 

Antibody 

Target Metal Tag Concentration Clone Company 

aSMA  (1A4) 141Pr 1:300 1A4 Fluidigm 

Vimentin 143Nd 1:200 D21H3 Fluidigm 

E-Cadherin 158Gd 1:200 24E10 Fluidigm 

Collagen I 169Tm 1:400 Polyclonal Fluidigm 

Histone H3 171Yb 1:200 D1H2 Fluidigm 

Pan-Keratin 148Nd 1:150 C11 Fluidigm 

FoxP3 155Gd 1:100 236A/E7 Fluidigm 

CD4 156Gd 1:150 EPR6855 Fluidigm 

CD68 159Tb 1:100 KP1 Fluidigm 

CD20 161Dy 1:100 H1 Fluidigm 

CD8a 162Dy 1:100 C8/144B Fluidigm 
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CD3 170Er 1:100 

Polyclonal, C-

Terminal Fluidigm 

CD45RO 173Yb 1:200 UCHL1 Fluidigm 

CD14 144Nd 1:100 EPR3653 Fluidigm 

CD11b 149Sm 1:100 EPR1344 Fluidigm 

CD31 151Eu 1:100 EPR3094 Fluidigm 

CD11c 154Sm 1:100 Polyclonal Fluidigm 

CD21 153Eu 1:50 # 544408 R&D Systems 

FoxJ1 176Yb 1:50 # 407003 R&D Systems 

IgD 150Nd 1:50 IgD26 Miltenyi Biotec 

IgA 164Dy 1:50 EPR5367-76 Abcam 

IgM 165Ho 1:50 MHM-88 BioLegend 

Cytokeratin-5 175Lu 1:100 EP1601Y Abcam 

Cell ID 

Intercalatorr Ir 1:400   Fluidigm 

 

 

Table S3. 4: Specifications of fluorochrome-conjugated antibodies for flow cytometry 

targets 

Antibody 

Target Fluorochrome Concentration Clone Company 

Extracellular 

Abs     

Live/Dead Zombie UV 1:500 
 

BioLegend 

CD45 BUV395 1:50 HI30 BD Bioscience 

CD3 BV605 1:50 SK7 BioLegend 

CD19 BUV737 1:50 HIB19 BD Bioscience 

CD24 APC-e-Floor 1:50 eBioSN3 eBioscience 

CD38 PerCP-Cy5.5 1:50 HIT2 BioLegend 

CD27 BV711 1:50 M-T271 BioLegend 

IgD BV785 1:50 IA6-2 BioLegend 

IgM FITC 1:50 MHM-88 BioLegend 
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IgA APC 1:50 REA1014  Miltenyi Biotec 

Tim1 PE 1:50 1D12 BioLegend 

CXCR3 BV510 1:50 G025H7 BioLegend 

Hif-α PE 1:50 546-16 BioLegend 

Pax5 BV421 1:50 1H9 BD Bioscience 

CD86 APC 1:50 BU63 BioLegend 

CD11c BB515 1:50 B-ly6 BD Bioscience 

Intracellular 

Abs     

IL-10 APC 1:25 

JES3-

19F1 BD Bioscience 

Bcl-6 APC 1:50 7D1 BioLegend 

Tbet BV421 1:50 4B10 BioLegend 

Ki67 PE 1:50 ki-67 BioLegend 

Blimp1 AF 488 1:25 646702 R&D Systems 

IgG BV421 1:50 M1310G05 BioLegend 

TNF-α PE-Cy7 1:50 MAb11 BD Bioscience 

IL-6 PE 1:100 MQ2-13A5 BioLegend 

 

Table S3. 5: Gene expression metrics for 10x Genomics scRNA-seq of the six lung tissue 

samples 

A detailed description of the metrics can be found on the 10x Genomics website at: 

https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/output/gex-metrics 

 

Metric 6209HN 6270CE 6435HE 6435HN 6756CC 6808CC 

Disease category Control COPD Control Control COPD COPD 

Estimated Number 

of Cells 
4,810 6,069 6,391 3,437 4,043 5,384 

Fraction Reads in 

Cells 
78.60% 94.50% 96.00% 83.70% 74.30% 89.50% 

Mean Reads per 

Cell 
20,293 32,471 33,691 31,283 25,497 19,608 

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/gex-metrics
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/gex-metrics
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Median Genes per 

Cell 
1,100 2,238 2,979 1,386 1,236 1,179 

Total Genes 

Detected 
22,982 23,293 23,307 22,868 22,034 23,568 

Median UMI Counts 

per Cell 
2,836 8,577 12,988 3,708 3,269 3,334 

Number of Reads 
97,610,6

84 

197,066,

854 

215,320,

178 

107,518,

846 

103,083,

854 

105,570,

365 

Number of Short 

Reads Skipped 
0 

4,765,99

8 

5,034,12

8 
0 0 0 

Valid Barcodes 97.40% 98.00% 98.20% 97.60% 97.40% 97.90% 

Valid UMIs 99.90% 99.90% 99.90% 99.90% 99.90% 99.90% 

Sequencing 

Saturation 
37.40% 51.00% 42.30% 52.20% 43.40% 36.40% 

Q30 Bases in 

Barcode 
97.80% 97.80% 97.80% 97.80% 97.80% 97.80% 

Q30 Bases in RNA 

Read 
92.80% 93.20% 92.90% 93.00% 93.00% 92.50% 

Q30 Bases in UMI 97.10% 97.20% 97.20% 97.10% 97.10% 97.10% 

Reads Mapped to 

Genome 
96.90% 97.50% 97.50% 96.90% 96.90% 95.40% 

Reads Mapped 

Confidently to 

Genome 

93.20% 94.20% 95.50% 93.30% 93.10% 92.20% 

Reads Mapped 

Confidently to 

Intergenic Regions 

5.60% 3.90% 3.10% 5.50% 4.80% 5.50% 

Reads Mapped 

Confidently to 

Intronic Regions 

35.80% 21.10% 18.50% 33.30% 34.20% 28.00% 

Reads Mapped 

Confidently to 

Exonic Regions 

51.80% 69.30% 73.90% 54.50% 54.10% 58.80% 
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Reads Mapped 

Confidently to 

Transcriptome 

48.90% 67.30% 72.00% 51.80% 51.30% 56.50% 

Reads Mapped 

Antisense to Gene 
1.50% 0.70% 0.60% 1.40% 1.40% 1.00% 

 

 

 

Figure S3. 1: Quality control and preliminary gating for mass cytometry data 

Beads normalisation, doublet exclusion and preliminary gating for analysis of b cells isolated from 

tissues. A gate was created around intact cells that ensured that all relvant events in all tissues 
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were captured. CD3 and CD45 channels and selection of CD20+ cells excluded all but B cells 

from our analysis. 

 

Figure S3. 2: mass cytometry (CyTOF) data showing tSNE plots illustrating the expression 

of markers used for the clustering in blood versus lung samples. 
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Figure S3. 3: Circulating B cell subsets from COPD and controls have no major differences 

a) Mass cytometry data showing tSNE plots of B cells from COPD and control blood, overlaid with 

Phenograph subcluster and (b) heatmap showing all expressed markers with dendrogram 

constructed by hierarchical clustering and clusters identified using K-means. c) Expressions of 
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markers on tSNE of B cell plots from COPD and control blood, overlaid with Phenograph 

subclusters. 

 

 

Figure S3. 4: Mass cytometry (CyTOF) data showing tSNE plots illustrating the expression 

of markers used for the clustering in COPD versus control lung samples 
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Figure S3. 5: Representative flow cytometry plots and graphs showing frequencies of 

markers expressed by B cells in COPD versus control lung and blood 
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Figure S3. 6: Data from scRNA-sequencing of B cells in COPD and control lung showing  

a) percentage of cells in each B cell subsets from COPD and control lungs, b) Total number of 

cells in each B cell subsets from COPD and control lung and c) Total number of cells per cluster 

from each donor d) top 50 gene expressed in each B cell subset from COPD and control lung. 
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Figure S3. 7: Differentially expressed genes of B cells from COPD and control lungs 

Volcano plot showing DE genes from memory B cells. b) Dot plot showing the top 50 DE genes 

from memory cells. c) Volcano plot showing DE genes from Naïve B cells. d) Dot plot showing 

the top 50 DE genes from naïve B cells, e) Ingenuity Pathway Analysis (IPA) of the Regulatory 

Effects Analysis-based network associated DE genes from Naïve B cells. 
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Figure S3. 8: Histology of control current smoker’s lung  

Showing a) B cell aggregates as CD20 (red), blood vessels as CD31 (yellow), basal epithelium 

as cytokeratin-V (white) and connective tissues as collagen-I (cyan). b) B cell aggregates as CD20 

(red), macrophages as CD68 (yellow), helper T cells as CD4 (blue) and cytotoxic T cells as CD8a 

(green). 
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Figure S3. 9: Histology of COPD and control lungs   

Showing B cells (CD20; red) and a) Follicular Dendritic Cells (CD21), b) Dendritic cells (CD11b), 

and Monocytes (CD14) in green. 

 

 

 

 

 

 



127 
 

Chapter 4. 

Alterations in T and B cell function persist in convalescent COVID-19 patients 

Halima A. Shuwa#1, Tovah N. Shaw#1,2, Sean B. Knight1,3, Kelly Wemyss1, Flora A. McClure1, 

Laurence Pearmain4,5, Ian Prise1,  Christopher Jagger1, David. J. Morgan1, Saba Khan1, Oliver 

Brand1, Elizabeth R. Mann1,6, Andrew Ustianowski1,5, Nawar Diar Bakerly3, Paul Dark7, 

Christopher E. Brightling8, Seema Brij9, CIRCO‖, Timothy Felton5, Angela Simpson5, John R. 

Grainger1†, Tracy Hussell1†, Joanne E. Konkel,1*†, Madhvi Menon1*†. 

 

# contributed equally 

† joint senior authors 

* joint corresponding authors 

 

Affiliations: 

1Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & 

Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health,  

University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core 

Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK. 

2Institute of Immunology and Infection Research, School of Biological Sciences, University of 

Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK 

3Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Stott Lane, Salford, 

M6 8HD, UK. 

4Wellcome Trust Centre for Cell Matrix Research, The University of Manchester, Manchester, 

M13 9PT, UK. 

5Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and 

Research Centre, Wythenshawe Hospital, UK. 



128 
 

6Maternal and Fetal Health Centre, Division of Developmental Biology, School of Medical 

Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 5th Floor St. 

Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK. 

7Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK.  

8Department of Respiratory Sciences, University of Leicester, Leicester, LE3 9QP, UK. 

9Department of Respiratory Medicine, Manchester Royal Infirmary, Manchester University NHS 

Foundation Trust, UK. 

 

Note: 

‖ CIRCO investigators: 

R. Ahmed, M. Avery, K. Birchall, E. Charsley, A. Chenery, C. Chew, R. Clark, E .Connolly, K. 

Connolly, O. Corner, S. Dawson, L. Durrans, H. Durrington, J. Egan, K. Filbey, C. Fox, H. Francis, 

M. Franklin, S. Glasgow, N. Godfrey, K. J. Gray, S. Grundy, J. Guerin, P. Hackney, C. Hayes, E. 

Hardy, J. Harris, A. John, B. Jolly, V. Kästele, G. Kelly, G. L., S. Lui, L. Lin, A.G. Mathioudakis, F. 

A. McClure, J. Mitchell, C. Moizer, K. Moore, S. Moss, S. Murtuza Baker, R. Oliver, G.Padden, C. 

Parkinson, M. Phuycharoen, A. Saha, B. Salcman, N. A. Scott, S. Sharma, J. Shaw, E. Shepley, 

L. Smith, S. Stephan, R. Stephens, G. Tavernier, R. Tudge, L. Wareing, R. Warren, T. Williams, 

L. Willmore and M. Younas. 

Lead Contact: J. E. Konkel 

Correspondence: joanne.konkel@manchester.ac.uk and madhvi.menon@manchester.ac.uk  

Statement 

Halima A.S investigated and carried out the experiments. Conceptualization, J.E.K. and M.M.; 

methodology, J.E.K., M.M., J.R.G., T.H, T.N.S., K.W., F.A.M., S.B.K., I.P., C.J., D.J.M., S.K., O.B., 

E.R.M., and the CIRCO investigators; formal analysis, I.P. and S.B.K.; resources, S.B.K., L.P., 

A.U., N.D.B., P.D., C.E.B., S.B., T.F., and A.S.; data curation, S.B.K.; writing – original draft, J.E.K. 

and M.M.; writing – review & editing, Halima A.S., T.N.S., J.E.K., M.M., J.R.G., and T.H.; 

visualization, K.W.; supervision, J.E.K. and M.M.; funding acquisition, J.E.K., M.M., J.R.G., and 

T.H. All authors contributed for the manuscript editing and approve its content. This manuscript 

was published in Med journal (https://doi.org/10.1016/j.medj.2021.03.013) and occupies pages 

130 - .166 of this thesis. 

mailto:joanne.konkel@manchester.ac.uk
mailto:madhvi.menon@manchester.ac.uk
https://doi.org/10.1016/j.medj.2021.03.013


129 
 

4.0 Abstract 

Background: Emerging studies indicate that some COVID-19 patients suffer from persistent 

symptoms including breathlessness and chronic fatigue; however the long-term immune 

response in these patients presently remains ill-defined.  

Methods: Here we describe the phenotypic and functional characteristics of B and T cells in 

hospitalised COVID-19 patients during acute disease and at 3-6 months of convalescence.  

Findings: We report that the alterations in B cell subsets observed in acute COVID-19 patients 

were largely recovered in convalescent patients. In contrast, T cells from convalescent patients 

displayed continued alterations with persistence of a cytotoxic programme evident in CD8+ T cells 

as well as elevated production of type-1 cytokines and IL-17. Interestingly, B cells from patients 

with acute COVID-19 displayed an IL-6/IL-10 cytokine imbalance in response to toll-like receptor 

activation, skewed towards a pro-inflammatory phenotype. Whereas the frequency of IL-6+ B cells 

was restored in convalescent patients irrespective of clinical outcome, recovery of IL-10+ B cells 

was associated with resolution of lung pathology.  

Conclusions: Our data detail lymphocyte alterations in previously hospitalized COVID-19 

patients up to 6 months following hospital discharge and identify 3 subgroups of convalescent 

patients based on distinct lymphocyte phenotypes, with one subgroup associated with poorer 

clinical outcome. We propose that alterations in B and T cell function following hospitalisation with 

COVID-19 could impact longer term immunity and contribute to some persistent symptoms 

observed in convalescent COVID-19 patients. 

Funding: Provided by UKRI, Lister Institute of Preventative Medicine, The Wellcome Trust, The 

Kennedy Trust for Rheumatology Research and 3M Global Giving.  
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Graphical Abstract: 

Shuwa et al. examine lymphocyte characteristics in acute and convalescent COVID-19 patients, 

detailing persistent alterations in lymphocyte phenotype up to 6 months following hospital 

discharge. In this report, they identify 3 subgroups of convalescent patients based on distinct 

lymphocyte signatures, with 1 subgroup associated with poorer clinical outcomes. 
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4.1 Introduction 

The coronavirus disease 2019 (COVID-19) pandemic, caused by the emergence of a novel 

coronavirus strain, has resulted, at this time, in more than 106 million infections and 2.3 million 

deaths  worldwide. Infection with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-

2) has a plethora of consequences ranging from mild flu-like symptoms to life-threatening and 

fatal acute respiratory distress syndrome293,565. In all cases, the pathology is underpinned by not 

merely the virus itself but also an aberrant inflammatory host immune response. Research efforts 

detailing immune parameters in patients with acute COVID-19 have significantly improved our 

understanding of the disease, highlighting profound alterations in the innate and adaptive immune 

compartments564,566–569.  Lymphopenia, as well as altered lymphocyte function, have been 

reported to correlate with disease severity293,570, indicating key roles for T and B cells in COVID-

19 pathology.  

Emerging evidence suggests that COVID-19 patients can develop a spectrum of long-lasting 

symptoms that include chronic fatigue, myalgia, brain fog, fibrotic lung disease and pulmonary 

vascular disease571–573. Although the immune response in acute COVID-19 patients has been well 

characterized, long-term consequences of SARS-CoV-2 infection remain poorly understood. 

Since SARS-CoV-2 specific lymphocytes are likely critical for long-term protection against SARS-

CoV-2 following disease resolution, it is pivotal to understand their contribution to acute disease, 

recovery, as well as long-lasting post-COVID-19 symptoms. Insights into these areas are rapidly 

required for the development of functional vaccines; indeed ground-breaking studies are 

demonstrating antigen-specific responses to this virus can persist for several months post-

infection574–577. However, given the vast numbers of previously infected individuals across the 

globe, it is also vital to understand the impact of COVID-19 on the phenotype and functional 

potential of all lymphocytes, not just those reactive to SARS-CoV2. This will allow for better 

understanding of the long-term impacts of being hospitalised with COVID-19 on effective 

immunity. Indeed, long-term follow-up of Ebola patients has outlined immune dysfunction 

persisting for up to 2 years of convalescence578. Following much shorter periods of 

convalescence, individuals hospitalised with influenza infection have been shown to exhibit 

continued elevation in CD8+ T cell activation and proliferation579. Given the prolonged and 

profound immune dysregulation seen during acute SARS-CoV2 infection, there is a compelling 

need to determine whether these alterations translate into longer-term immune alterations and 

subsequent dysfunction in convalescent individuals.   
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Here, we conducted an observational study examining B and T cell populations in COVID-19 

patients during hospitalization and in convalescent patients over 6 months following hospital 

discharge. Specifically, we examined lymphocyte characteristics in PBMCs from blood samples 

taken from COVID-19 patients within 7 days of hospitalization, at hospital discharge and at up to 

6 months post hospital discharge. Samples were collected as part of the Coronavirus Immune 

Response and Clinical Outcomes (CIRCO) study based at four hospitals in Greater 

Manchester564. Examination of these samples allowed us to ascertain changes to lymphocytes 

during acute disease and upon convalescence in COVID-19 patients. We identify key alterations 

in B cell populations in acute COVID-19 patients with severe disease, which indicate imbalances 

within the B cell compartment could contribute to COVID-19 disease severity. Specifically, we 

demonstrate that in severe COVID-19 patients there was a loss of transitional B cells and an 

expansion of double negative memory B cells. Moreover, B cells exhibited altered functionality 

with increased production of IL-6 during acute disease, which was restored in convalescent 

patients. Intriguingly, B cell production of IL-10 was higher in convalescent patients with good 

clinical outcomes compared to patients with poor outcomes. In line with this, we also report 

changes within the CD4+ T cell compartment of acute COVID-19 patients, specifically increases 

in T follicular helper cells (Tfh) that were recovered in convalescent patients. In contrast, we 

outline persistent alterations in the functional potential of CD8+ T cells, with T cells from 

convalescent patients exhibiting elevated expression of a cytotoxic programme and production of 

type-I cytokines. These data describe the alterations to lymphocytes, detailing previously 

undescribed imbalances within the B cell compartment associated with the severity of acute 

disease and alterations in the potential of both B and T cells that persist for at least 6 months of 

convalescence. Further, compiling B and T immune parameters from convalescent patients 

identified 3 patient subgroups, defined by i) increased cytotoxic T cells and T cell type-I cytokine 

production, ii) high proportions of memory, IgA+ and IgG+ B cells and iii) highest expression of 

trafficking molecules and increased proportions of naïve B and T cells. It is noteworthy that the 

convalescent group defined by the highest proportions of cytotoxic CD8+ T cells and type-I 

cytokine production was enriched in patients with a poorer outcome at follow-up, defined by 

abnormal chest X-Ray. Our study provides a deeper understanding of lymphocyte responses over 

the course of COVID-19 and into recovery, highlighting persistent alterations in lymphocyte 

functionality in convalescent COVID-19 patients up to 6 months following hospital discharge.  
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4.2 Results and Discussion  

Clinical characteristics 

Between 29th March and 15th July 2020, we included 80 ‘acute’ patients, recruited during their in-

patient stay for COVID-19, who had clinical and lymphocyte data available. For acute disease 

samples, patients were excluded if they were not recruited within 7 days of admission (16 

patients), or there was a significant co-existent pathology (5 patients).  ‘Convalescent’ patients 

were recruited between 14th July and October 2020 from out-patient clinical follow-up for COVID-

19. Convalescent patients are therefore classified as previously hospitalised COVID-19 patients 

who are clinically stable and have been discharged from any further inpatient care. Convalescent 

patients were sampled between 53-180 days of convalescence. For convalescent patients 

sampled twice during their convalescence they were initially sampled between 67-180 days of 

convalescence and then secondarily sampled between 20-113 days later (with the latest second 

sample being taken at day 201 following discharge).  For convalescent disease samples, one 

patient was excluded due to a significant co-existent pathology during in-patient admission for 

COVID-19; all others were included in the analysis. The median age and overall gender 

proportions were similar between acute and convalescent groups. There was a larger proportion 

of severe patients within the convalescent group, reflecting that patients with more severe disease 

were prioritised for limited ‘face to face’ appointments in participating trusts. The clinical 

characteristics of all patients recruited to the study are summarised in Supplemental Tables 4.1-

2. 

Altered B cell phenotypes in severe COVID-19 patients are restored upon convalescence 

In agreement with previously published studies564,568, we report significantly reduced circulating B 

cell frequencies in severe COVID-19 patients, that were normalized in convalescent patients (Fig. 

4.1A). Further, increased Ki-67 expression (indicative of proliferation) in hospitalized patients was 

not observed in convalescent patients (Fig. 4.1B and Supplemental Fig. 4.1A). When 

characterizing B cell subsets based on expression of CD27 and IgD, we saw an expansion of 

CD27-IgD- double negative (DN) memory B cells in severe COVID-19 patients that was still 

present in convalescent patients (Fig. 4.1C, D). No differences in unswitched memory (USM), 

switched memory (SM), or naïve B cells were observed between the patient groups and controls. 

Further classification of B cell subsets into transitional (CD24hiCD38hi) and mature 

(CD24intCD38int) B cells revealed a significant reduction in transitional B cells in patients with 
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severe COVID-19 that was restored in convalescent patients (Fig. 4.1E, F). A t-distributed 

stochastic neighbour embedding (tSNE) representation of the data highlights proportions of 

subsets in acute and convalescent COVID-19 patients compared to healthy controls (Fig. 4.1G). 

Importantly, CD27hiCD38hi plasmablasts were the only B cell subset expanded in all COVID-19 

patients irrespective of severity, yet proportions were restored in convalescent patients (Fig. 4.1H 

and Supplemental Fig. 4.1B). We found that the frequency of plasmablasts positively correlated 

with the expression of  IgG and IgA, but not with IgM expression by B cells in acute COVID-19 

patients (Fig. 4.1I and Supplemental Fig. 4.1C,D), providing further evidence supporting an 

expansion of class-switched IgA and IgG antibodies in COVID-19 patients580–582. 

Examining B cell phenotypes in individual COVID-19 patients, tracking them longitudinally from 

acute hospitalization into convalescence showed similar alterations in B cell populations. 

Specifically, we observed a reduction in Ki-67+ B cells and plasmablasts at convalescent time-

points compared to acute disease, and a trend toward an increase in transitional B cells 

(Supplemental Fig. 4.1E). Interestingly, tracking individual patients from acute disease into 

convalescence revealed a decrease in DN B cells, despite the global expansion of this subset 

observed in both severe acute and convalescent patients (Supplemental Fig. 4.1F). Combined, 

these data highlight alterations in B cell subsets during severe acute COVID-19 which are largely 

restored upon convalescence. 
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Figure 4. 1: Alterations in B cell subsets during acute COVID-19 are recovered upon 

convalescence 

(A) Cumulative data show ex vivo frequency of CD19+ B cells in healthy individuals (n=38) and 

COVID-19 patients with mild (n=24), moderate (n=26) and severe (n=12) disease and at 
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convalescence (n=83). (B) Cumulative data show Ki-67 expression by B cells in healthy 

individuals (n=28) and COVID-19 patients with mild (n=13), moderate (n=15) and severe (n=9) 

disease and at convalescence (n=75). (C-D) Representative flow cytometry plots and cumulative 

data show frequencies of naïve (CD27-IgD+), unswitched memory (CD27+IgD+), switched 

memory (CD27+IgD-) and double negative (CD27-IgD-) B cells in healthy individuals (n=38-40) 

and COVID-19 with mild (n=22-24), moderate (n=25-26) and severe (n=12-13) disease and at 

convalescence (n=78-80). (E-F) Representative flow cytometry plots and cumulative data show 

ex vivo frequency of CD24hiCD38hi transitional B cells and CD24intCD38int mature B cells in 

healthy individuals (n=37) and COVID-19 patients with mild (n=24), moderate (n=23) and severe 

(n=11) disease and at convalescence (n=80). (G) tSNE projection of flow cytometry panel 

visualizing B cell subsets in PBMCs. Representative images for healthy individuals, severe 

COVID-19 and convalescent patients. Key indicates cell subsets identified on the image. (H) 

Cumulative data show frequency of CD27hiCD38hi plasmablasts in healthy controls (n=38) and 

COVID-19 patients with mild (n=23), moderate (n=23) and severe (n=12) disease and at 

convalescence (n=81). (I) Graph showing correlation between plasmablasts and IgG+ (left), IgA+ 

(middle) or IgM+ (right) B cell frequencies in acute COVID-19 patients. Graphs show individual 

patient data, with the bar representing median values. In all graphs, open triangles represent 

SARS-CoV-2 PCR-negative patients. *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA with 

Kruskal-Wallis test with Dunn’s post-hoc testing for multiple comparisons or or Spearman ranked 

coefficient correlation test. See also Supplemental Fig. 1 and 2. 

 

Convalescent COVID-19 patients retain phenotypically altered CD8+ T cells 

Previous studies have detailed CD8+ and CD4+ T cell activation in COVID-19 patients568,583–585. 

Here, we show that convalescent patients exhibited elevated proportions of T effector memory 

cells positive for CD45RA (TEMRA; CD45RA+CCR7-) (Fig. 4.2A-C). Despite this, T cells from 

convalescent patients did not display elevated expression of the proliferation marker Ki-67 (Fig. 

4.2D; see Supplemental Fig. 4.1G-K for examples of representative FACS staining)568. CD8+ T 

cells from acute COVID-19 patients exhibit robust expression of a cytotoxic programme, with 

increases in perforin, granzyme and CD107a expression in unstimulated cells (Fig. 4.2E-G). 

Induction of this programme was still evident in convalescent patients, whose CD8+ T cells 

exhibited increased expression of both perforin and granzyme (Fig. 4.2E, F). However, the 

proportions of CD107a+ and Ki-67+GranzymeB+ CD8+ T cells in convalescent patients were 
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reduced compared to those with acute COVID-19 suggesting cytotoxic CD8+ T cells in 

convalescent patients were no longer actively proliferating or degranulating (Fig. 4.2G). Showing 

the same pattern, longitudinal tracking of individual patients from their acute time-point into 

convalescence showed unchanged perforin and granzyme B expression in CD8+ T cells (Fig. 

4.2H), but reduced Ki-67+, CD107a+ and Ki-67+GranzymeB+ CD8+ T cells at convalescent 

compared to the acute time-point (Fig. 4.2I). We also noted a persistence of this cytotoxic profile 

in CD8+ T cells in  a small subset of convalescent patients examined beyond 6 months after 

hospital discharge. Obtaining a second convalescent sample from the same patient at a later 

time-point of convalescence, demonstrated persistence of this cytotoxic programme beyond 6 

months (Supplemental Fig. 4.1L).   

In contrast to these phenotypic changes persisting in the CD8+ T cell compartment up to, and 

potentially beyond, 6 months of convalescence, alterations noted in acute disease in CD4+ T cells 

were normalized in convalescent patients. Specifically, although there were no significant 

changes in regulatory T cells (Tregs) across the disease trajectory (Fig. 4.2J), during acute 

disease, there was an expansion in T follicular helper cells (Tfh), defined as CD4+CXCR5+PD-

1+ICOS+ (Fig. 4.2K). While an increase in Tfh has been previously reported in acute COVID-19 

patients324,329,568,586, here we show it was reduced in convalescent COVID-19 patients (Fig. 4.2K). 

This decrease in Tfh in convalescent patients occurred following hospital discharge (Fig. 4.2L) 

and could be identified when following the same patient from acute disease into convalescence 

(Fig. 4.2M). Combined these data demonstrate changes in the functional potential of CD8+ T cells 

up to 6 months following hospital discharge, outlining continued expression of a cytotoxic 

programme. 
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Figure 4. 2: Acute alterations in CD4+ T cells and persistent alterations in CD8+ T cells 

during COVID-19 

(A) Representative FACS plots showing CD45RA and CCR7 staining on CD4+ (gated CD3+CD8-

) and CD8+ (gated CD3+CD4-) T cells. (B,C) Graphs showing frequencies of (B) CD8+ and (C) 

CD4+ T cells which have a naïve (CD45RA+CCR7+) and Temra (CD45RA+CCR7-) phenotype in 
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healthy individuals (n=44) and COVID-19 patients with mild (n=18-19), moderate (n=18) and 

severe (n=8) disease and at up to 6 months of convalescence (n=83). (D) Graphs showing 

frequencies of CD8+ and CD4+ T cells which stain positive for Ki-67 in healthy individuals (n=28-

30), and COVID-19 patients with mild (n=14), moderate (n=11-13) and severe (n=9) disease and 

at convalescence (n=81). (E-G) Graphs showing frequencies of (E) CD8+ Perforin+ cells, (F) CD8+ 

GranzymeB+ cells, and (G) CD8+ CD107a+ cells and CD8+ GranzymeB+ Ki-67+ cells in healthy 

individuals (n=29-37), and COVID-19 patients with mild (n=12-17), moderate (n=12-15) and 

severe (n=7-9) disease and at convalescence (n=81-83). (H, I)  Graphs track frequencies of (H) 

Perforin+ and GranzymeB+, and (I) Ki-67+, CD107a+, and GranzymeB+Ki-67+ CD8+ T cells in the 

same COVID-19 patient at acute (grey circles) and convalescent (maroon circles) time-points 

(n=14). (J) Graph shows frequencies of Tregs within CD4+ T cells of healthy individuals (n=20) 

and COVID-19 patients with mild (n=10), moderate (n=12) and severe (n=8) disease and at 

convalescence (n=82). (K) Graph shows frequencies of Tfh within CD4+ T cells of healthy 

individuals (n=34) and COVID-19 patients with mild (n=12), moderate (n=15) and severe (n=7) 

disease and at convalescence (n=83). (L) Graph shows frequencies of Tfh in acute COVID-19 

patients with mild (n=4), moderate (n=5) and severe (n=3) disease at the first and last time points 

of hospitalization. (M) Graph tracks frequency of Tfh CD4+ T cells in the same COVID-19 patient 

at acute (grey circles) and convalescent (maroon circles) time-points (n=14). Graphs show 

individual patient data, with the bar representing median values. In all graphs, open triangles 

represent SARS-CoV-2 PCR-negative patients. *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA 

with Kruskal-Wallis test with Dunn’s post-hoc testing for multiple comparisons (for B-G and K) or 

Wilcoxon matched-pairs signed rank test (I, M). See also Supplemental Fig. 1 and 2. 

 

Lymphocytes from acute COVID-19 patients exhibit altered trafficking molecule 

expression that is restored upon convalescence 

Lymphopenia is a well-established hallmark of COVID-19 patients293,570; although the drivers of 

peripheral blood lymphocyte loss remain unknown altered trafficking could contribute. Given the 

importance of appropriate co-ordination between immune cells during an effective anti-viral 

response and the implications of altered trafficking molecule expression, we examined the 

expression of chemokine receptors on B and T cells during acute and convalescent COVID-19. 

B cells from acute COVID-19 patients displayed significantly reduced expression of chemokine 

receptors CXCR3, CXCR5 and the gut homing molecule integrin β7, particularly in patients with 



140 
 

more severe disease (Supplemental Fig. 4.2A-D). The expression of CXCR5 and CXCR3 was 

largely normalised in convalescent patients regardless of disease severity at the time of 

hospitalization (Supplemental Fig. 4.2E).  

Similar to B cells, CXCR5 and CXCR3 expression was substantially reduced on both CD4+ and 

CD8+ T cells in acute COVID-19 patients (Supplemental Fig. 4.2F-K), but with β7 exhibiting no 

alterations in acute disease. This reduction in CXCR3 and CXCR5 occurred irrespective of acute 

disease severity (Supplemental Fig. 4.2L, M).  Loss of CXCR3 and CXCR5 expression was 

recovered on T cells from convalescent patients (Supplemental Fig. 4.2F, G and I, J). In 

agreement with previous reports examining the expression of CXCR5568, our data outline reduced 

expression of multiple trafficking molecules on lymphocytes during acute COVID-19, that are 

mostly restored upon convalescence. Reduced CXCR3 and CXCR5 expression could reflect 

reduced homing of B and T cells into lymph nodes and follicles, which have been reported to 

contribute to immune dysfunction in other infections, such as advanced HIV587–589. Altogether, 

here we identify changes in chemokine receptor expression during acute disease that are 

recovered upon convalescence.  

Alterations in lymphocyte cytokine potential in convalescent COVID-19 patients. 

To understand the impact of COVID-19 on the potential of lymphocytes to make distinct cytokines, 

we stimulated PBMCs with phorbol myristrate acetate (PMA) and Ionomycin and examined 

cytokine production by T cells (see Supplemental Fig. 4.3A for example staining). Unlike 

previously published studies probing antigen specificity of T cells in COVID-19 patients576,590, we 

more broadly assessed the potential of all T cells in COVID-19 patients to secrete cytokines. This 

approach allowed us to assess the impact of COVID-19 hospitalisation on any subsequent 

immune response, as opposed to the development of SARS-CoV2-specific memory.  IL-10+ CD4+ 

T cells were expanded in acute COVID-19 patients, but this was not observed in convalescent 

patients (Fig. 4.3A). Normalisation of IL-10 production from CD4+ T cells did not occur during 

hospitalisation, as a decrease in IL-10+CD4+ T cells was not evident upon discharge 

(Supplemental Fig. 4.3B). As previously reported to occur in response to anti-CD3 and anti-

CD28 stimulation591, PMA and Ionomycin stimulation resulted in a greater proportion of IL-17+ 

CD4+ T cells in COVID-19 patients (Fig. 4.3B). Remarkably, enhanced IL-17+CD4+ T cells 

persisted into convalescence. We next queried whether elevated production of IL-17 during 

convalescence was associated with any specific clinical phenotypes. Increased IL-17+CD4+ T 

cells in convalescent patients were seen irrespective of whether patients were stratified by 
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presentation of normal or abnormal chest X-rays (Fig. 4.3B), reporting versus not reporting 

increased fatigue or based upon initial disease severity (Supplemental Fig. 4.3C).  

Despite increased IL-10+ and IL-17+ CD4+ T cells, neither CD4+ or CD8+ T cells from acute COVID-

19 patients exhibited altered proportions of cells staining positive for the canonical Th1 cytokines 

IFN or TNF (Fig. 4.3C, D). Although a previous study has reported that high proportions of 

antigen-specific IFN T cells are associated with reduced disease severity329, our observation is 

in line with other studies demonstrating total peripheral T cell populations exhibit no enhanced 

production of these cytokines despite on-going disease568,592, and irrespective of acute disease 

severity (Supplemental Fig. 4.3D, E). In stark contrast, both CD4+ and CD8+ T cells from 

convalescent COVID-19 patients exhibited enhanced production of type-I cytokines (Fig. 4.3C, 

D). This increase in cytokine production was not evident at hospital discharge (Supplemental 

Fig. 4.3F, G). Increased type-I cytokines occurred when stratifying convalescent patients by 

presentation of normal or abnormal chest X-rays (Fig. 4.3C, D) and those reporting increased 

fatigue. Of note no significant increase in IFN+CD4+ T cells was seen when stratifying patients 

for fatigue (Supplemental Fig. 4.3H). Increased production of these type-I cytokines in 

convalescent patients was associated with COVID-19 disease severity, apart from for IFN+CD4+ 

T cells, as patients who had moderate and severe disease showed significant increases in 

cytokine positive cells relative to controls (Fig. 4.3E, F). As such, the increases seen in total 

convalescent patients could be due to increased proportions of patients that exhibited severe 

disease. However, comparing proportions of cytokine-positive cells in severe patients at acute 

and convalescent time-points still showed an elevation in cytokine producing T cells, apart from 

for TNF+ CD8+ T cells (Supplemental Fig. 4.3I, J). More importantly, longitudinal data tracking 

the same patient across their acute and convalescent disease time-points also showed increased 

production of these type-I cytokines (except for IFN+TNF+ CD4+ T cells) (Fig. 4.3G,H). In a 

small subset of patients we also obtained a second convalescent sample after 6 months from 

hospital discharge. In this small group we noted unchanged proportions of cytokine positive T 

cells, suggesting persistence of elevated cytokine production beyond 6 months (Supplemental 

Fig. 4.3K,L). These data fit with previous studies showing IFN+ and TNF+ SARS-CoV-2 

specific-T cells in convalescent patients576,590,593 but further outline that altered cytokine potential 

is a general feature of all T cells during convalescence from COVID-19. 

Next, in order to assess cytokine production by B cells, we stimulated PBMCs from COVID-19 

patients and healthy individuals with CpGB (a TLR9 agonist) for 48 hours and measured cytokine 

expression by flow cytometry. We observed a significant expansion of IL-6+ B cells in acute 
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COVID-19 patients and a trend toward a decrease in IL-10+ B cells; suggesting an imbalance in 

B cells towards a more pro-inflammatory phenotype (Fig. 4.3I and Supplemental Fig. 4.4A-D). 

The frequency of IL-6+ B cells was restored in convalescent patients, and was not impacted by 

presentation of normal or abnormal chest X-rays (Fig. 4.3I) or fatigue (Supplemental Fig. 4.4D). 

Interestingly, B cell production of IL-10 was higher in convalescent patients with a good clinical 

outcome compared to those with a poor outcome. Increased proportions of IL-10+ B cells in 

convalescent patients with normal chest X-rays compared to those with abnormal chest X-rays 

(Fig. 4.3I) suggests a positive outcome might be associated with the expansion of regulatory B 

cells. No significant differences in the frequency of TNFα+ B cell were observed in acute and 

convalescent COVID-19 patients (Fig. 4.3I and Supplemental Fig. 4.4D). Frequencies of 

cytokine positive B cells in both acute and convalescent patients were not affected by disease 

severity (Supplemental Fig. 4.4E,F). Longitudinal analysis of individual patients from acute 

disease into convalescence showed no change in either IL-6+ or TNFα+ B cells but did 

demonstrate a recovery of IL-10+ B cells upon convalescence (Fig. 4.3J). Of note, only 1 out of 

13 patients whose B cells were followed longitudinally exhibited an abnormal chest X-ray at follow-

up. Combined, these data demonstrate an expansion of IL-6+ B cells during acute disease and 

reduced proportions of IL-10+ B cells in convalescent patients with poor clinical outcome. 
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Figure 4. 3: Changes in cytokine production by lymphocytes during acute and 

convalescent COVID-19 

(A-C) Graphs showing frequencies of CD4+ T cells which stain positive for (A) IL-10, (B) IL-17 

and (C) IFN and TNF following 3 hour stimulation with PMA and ionomycin in healthy individuals 

(n=25-30), acute COVID-19 patients (n=29-33) and convalescent COVID-19 patients with normal 

(n=55-57) or abnormal chest X-ray findings (n=25-26). (D) Graphs showing frequencies of CD8+ 
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T cells which stain positive for IFN and TNF following 3 hour stimulation with PMA and 

ionomycin in healthy individuals (n=28), acute COVID-19 patients (n=24-31) and convalescent 

COVID-19 patients with normal (n=54-57) or abnormal chest X-ray findings (n=21-24). (E,F) 

Graphs show frequencies of (E) CD4+ and (F) CD8+ T cells which stain positive for IFN and TNF 

following 3 hour stimulation with PMA and ionomycin in convalescent COVID-19 patients which 

initially presented with mild (n=13-14), moderate (n=25-28) and severe (n=34-41) disease. (G,H) 

Graphs track frequencies of (G) CD4+ and (H) CD8+ T cells which stain positive for IFN and TNF 

in the same COVID-19 patient at acute (grey circles) and convalescent (maroon circles) time-

points (n=14). (I) Graphs showing frequencies of CD19+ B cells positive for IL-10, IL-6 and TNF 

following 48 hour stimulation with CpGB in healthy individuals (n=22-27), acute COVID-19 

patients (n=22-32) and convalescent COVID-19 patients with normal (n=52-54) or abnormal chest 

X-ray findings (n=24-27). (J) Graphs track frequencies of CD19+ B cells which stain positive IL-

10, IL-6 and TNF in the same COVID-19 patient at acute (grey circles) and convalescent 

(maroon circles) time-points (n=11-14). Graphs show individual patient data, with the bar 

representing median values. In all graphs, open triangles represent SARS-CoV-2 PCR-negative 

patients. *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA with Kruskal-Wallis test with Dunn’s 

post-hoc testing for multiple comparisons, (except for graphs showing CD4+TNF+ and 

CD8+IFN+ T cells in E and F where One-way ANOVA with Holm-Sidak post-hoc test was 

employed), or Wilcoxon matched-pairs signed rank test (G,H and J). See also Supplemental Fig. 

3 and 4. 

 

Identification of COVID-19 convalescent immunotypes based on lymphocyte parameters. 

Collectively, our data establish alterations in the lymphocyte compartment that persist up to 6 

months post hospital discharge in convalescent patients. In order to further probe lymphocyte 

changes within convalescent COVID-19 patients, we clustered patients based on T and B cell 

features. Unsupervised clustering revealed three groups of convalescent patients with distinct 

compositions of T and B cell signatures (Fig. 4.4A). Group 1 was associated with high expression 

of trafficking molecules and increased proportions of naïve B and T cells; Group 2 was 

characterised by high proportions of IgA+ and IgG+ B cells, and memory B cells (both switched 

and unswitched); Group 3 displayed increased cytotoxic T cells, CD8+ TEMRA and type-I 

cytokines by both CD8+ and CD4+ T cells. These data suggest the existence of subgroups of 

convalescent COVID-19 patients based on B and T cell phenotypes. We next queried whether 
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these groups could identify convalescent patients based on clinical outcome. Higher proportions 

of patients in Group 3 presented with an abnormal chest X-Ray and reported breathlessness at 

their convalescent follow-up compared to patients within Groups 1 and 2 (Group 1; Abnormal 

Chest X-Ray; 23.7% and Dyspnoea; 43.2%. Group 2; Abnormal Chest X-Ray; 26.3% and 

Dyspnoea; 44.4%. Group 3; Abnormal Chest X-Ray; 62.5% and Dyspnoea; 62.5%). Examining 

characteristics of the patients within each group (Fig. 4.4B-G), we noted that Group 1 contained 

most patients who had had mild disease, younger patients and a greater proportion of female 

patients, indicating these parameters could be impacting this convalescent phenotype. In 

contrast, we noted very little difference in the demographics or acute disease information between 

patients in Groups 2 and 3. For example both had a similar proportion of patients who had 

exhibited severe COVID-19 (Group 2; 66.6%. Group 3; 50%) and a similar proportion of male 

patients (Group 2; 70.5%. Group 3; 75%). Despite similar patient characteristics, these two patient 

groups present with distinct lymphocyte profiles and different outcomes, with Group 3 exhibiting 

the poorest clinical outcome  (Abnormal Chest X-Ray; Group 2; 26.3%. Group 3; 62.5%). Our 

data provide an important foundation for future work supporting the stratification and identification 

of hospitalised COVID-19 patients at risk of developing long-COVID symptoms. Our study can 

now be expanded to explore additional clinical implications of COVID-19, ascertaining whether 

specific clinical outcomes are associated with distinct convalescent patient subgroups. 

Importantly, these consequences can now be ascertained as platforms such as the post-

hospitalisation COVID-19 study (PHOSP-COVID) in the UK now exist to support such future 

studies. Moreover, these future studies should also explore whether the lymphocyte alterations 

we have defined are specific to COVID-19 convalescence or occur following hospitalization with 

any respiratory virus. 
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Figure 4. 4: Distinct immune profiles emerge in previously hospitalised convalescent 

COVID-19 patients 

(A) Heatmap of indicated immune parameters by row; each column represents an individual 

convalescent COVID-19 patient. The patients were clustered using one minus Pearson 

correlation hierarchical clustering. Significance was determined by Two-way ANOVA followed by 

a Tukey’s multiple comparison test, *next to lymphocyte characteristic indicates significant 

difference between patient groups. Dominant immune characteristics of each group are indicated 

at the bottom of the heat map. Black and White squares indicate patients displaying a normal 

(white) or abnormal (black) chest X-Ray at follow-up. (B-G) Graphs show patient characteristics 

and clinical details of convalescent COVID-19 patients in each of the three immune groups 

identified, specifically; (B) age, (C) BMI, (D) sex, (E) Severity of acute COVID-19, (F) Length, in 

days, of hospitalization for acute COVID-19, (G) Time, in days, from hospital discharge to follow-

up of convalescent patients. Graphs show individual patient data, with the bar representing 

median values. *p<0.05, one-way ANOVA with Kruskal-Wallis test with Dunn’s post-hoc testing 

for multiple comparisons 

 

In sum, here we report changes to T and B cell populations across the COVID-19 disease 

trajectory into convalescence. Our data demonstrate a high degree of activation of a cytotoxic 

programme within CD8+ T cells during acute disease as previously reported330,564,566. We extend 

these data by showing persistence of this programme within circulating CD8+ T cells up to at least 

6 months of convalescence. Whereas previous studies have shown persistence of low 

frequencies of SARS-CoV2-specific CD8+ T cells with a cytotoxic profile593, importantly here we 

show elevation of cytotoxic markers within total circulating CD8+ T cells. Although the specificity 

of T cells in our study remains to be determined, increases in CD8+ T cells with a cytotoxic 

potential would result in an altered T cell landscape that could impact tissue integrity depending 

on their trafficking capabilities and cytokine responsiveness. Moreover, our data raise questions 

about the impact this increase in cytotoxic cells would have on subsequent infection, be that 

bacterial, viral or fungal. The importance of this question is further underscored by the elevated 

potential of total CD8+ and CD4+ T cells to produce both IFN and TNF in convalescent patients, 

outlining persistent alteration in cytokine potential which could be either beneficial or detrimental 

to subsequent immune responses.  
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In contrast, altered B cell subsets in acute disease are recovered upon convalescence. Several 

recent studies have reported detection of virus-specific antibodies for several months post 

recovery from SARS-CoV2 infection594–596. Here we show that circulating plasmablast frequencies 

correlate positively with IgA/IgG and negatively with IgM, further supporting an expansion of class-

switched antibodies in COVID-19 patients. In addition to secreting antibodies, B cells produce 

cytokines and are classified into effector (Beff; IL-6+ and TNFα+) and regulatory B cell (Breg; IL-

10+) subsets based on the cytokines they produce597. Significant decreases in transitional B cells, 

the precursors of human Bregs364, along with IL-10+ B cells, suggests a loss of 

immunosuppressive Bregs and an expansion of Beff cells in severe COVID-19 patients, as also 

observed in chronic inflammatory disorders such as systemic lupus erythematosus (SLE) and 

rheumatoid arthritis (RA)364,497,598. Interestingly, resolution of lung pathology in COVID-19 patients 

was found to be associated with higher proportions of IL-10+ B cells, suggesting that these cells 

could be important in suppressing excess inflammation and are associated with positive long-

term outcomes. 

In summary, we report phenotypic and functional alterations to B and T cells across the trajectory 

of SARS-CoV2 responses from acute disease requiring hospitalisation into convalescence, 

identifying immune alterations that persist in convalescent COVID-19 patients for up to 6 months. 

Our study therefore identifies lymphocyte changes in convalescent COVID-19 patients which 

could have longer term impacts on subsequent anti-pathogen or auto-inflammatory responses.  
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4.5 Star Methods 

Resource Availability 

Lead Contact: Further information and requests for resources and information  should be 

directed to the Lead Contact, Joanne E. Konkel (Joanne.konkel@manchester.ac.uk). 

Materials Availability: This study did not generate new unique reagents.  

Data and Code Availability: All relevant data outputs are within the paper and supplemental 

information.  

Experimental Models and Subject details 

Study design and Participants 

Two cohorts of patients were recruited from Manchester University Foundation Trust (MFT), 

Salford Royal NHS Foundation Trust (SRFT) and Pennine Acute NHS Trust (PAT) under the 

framework of the Manchester Allergy, Respiratory and Thoracic Surgery (ManARTS) Biobank 

(study no M2020-88) for MFT or the Northern Care Alliance Research Collection (NCARC) tissue 

biobank (study no NCA-009) for SRFT and PAT. Ethical approval obtained from the National 

Research Ethics Service (REC reference 15/NW/0409 for ManARTS and 18/WA/0368 for 

mailto:Joanne.konkel@manchester.ac.uk
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NCARC). Informed consent was obtained from each patient, clinical information was extracted 

from written/electronic medical records including demographic data, presenting symptoms, 

comorbidities, radiographic findings, vital signs, and laboratory data. Patients were included if 

they tested positive for SARS-CoV-2 by reverse-transcriptase–polymerase-chain-reaction (RT-

PCR) on nasopharyngeal/oropharyngeal swabs or sputum during their in-patient admission for 

COVID-19. Patients with negative nasopharyngeal RTPCR results were also included if there was 

a high clinical suspicion of COVID-19, the radiological findings supported the diagnosis, and there 

was no other explanation for symptoms. Patients were excluded if an alternative diagnosis was 

reached, where indeterminate imaging findings were combined with negative SARS-CoV-2 

nasopharyngeal (NP) test, or there was another confounding acute illness not directly related to 

COVID-19. The severity of disease was scored each day, based on criteria for escalation of care 

(Supplemental Table 3). Where severity of disease changed during admission, the highest 

disease severity score was selected for classification. Peripheral blood samples were collected 

within 7 days of hospital admission, at discharge and then at 3-9 months post hospital discharge 

when patients returned to out-patient clinics. 

Demographics and clinical information for acute and convalescent patients can be found in 

Supplemental Tables 1-2. 

Healthy controls 

Recruiting healthy individuals from the community for blood sampling during the SARS-CoV-2 

outbreak was not possible, and therefore we sampled frontline workers from NHS Trusts and 

University of Manchester staff with an age range that was similar to our COVID-19 patients (age 

range 35-71; median age=50.9; 52% males). All healthy controls tested negative for anti-Spike1 

receptor binding domain antibodies. 

4.6 Methods Detail  

PBMC isolation 

Fresh blood samples from COVID-19 patients and healthy individuals were collected in EDTA 

tubes. Blood was diluted 1:1 with PBS and layered gently on Ficoll-Paque followed by density 

gradient centrifugation. Cells were thoroughly washed and were either freshly stained for flow 

cytometry or are stored in 10% dimethyl sulfoxide (DMSO) in fetal bovine serum (FBS) at -150°C. 
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Cell culture 

Frozen PBMC were thawed, washed and resuspended in RPMI containing 10% FBS, L-

Glutamine, non-essential amino acids, HEPES, and penicillin plus streptomycin. 2.5×105 cells 

were stimulated with; (i) 2µL/ml of stimulation cocktail (eBioScience) in the presence of 10 µg/ml 

Brefeldin A for three hours (T cells), (ii) 1 µM CpG for 48 hours followed by 2µL/ml of stimulation 

cocktail (eBioScience) in the presence of 10 µg/ml Brefeldin A in the last four hours (B cells). 

Following stimulation cells were washed and stained for flow cytometric analysis.  

Flow cytometry 

PBMCs (fresh/thawed/stimulated) were stained with fluorophore conjugated antibodies (see Key 

Resource Table) and viability dyes. Samples were acquired on an LSRFortessa cell analyser 

(Becon Dickinson) and analysed using FlowJo (TressStar). 

Quantification and statistical Analysis 

Clustering of T and B cell phenotypes 

T cell and B cell data were scaled using unit variance scaling, clustered and graphed using 

correlation distance and average linkage on the heatmap tool on ClustVis599. 

Statistics 

Results are presented as individual data points with medians. Normality tests were performed on 

all datasets. Groups were compared using an unpaired Mann-Whitney test for healthy individuals 

versus COVID-19 patients, one-way ANOVA with Holm-Sidak post-hoc testing (normal 

distribution) or Kruskal-Wallis test with Dunn’s post-hoc testing (failing normality testing) for 

multiple comparisons, or Spearman’s rank correlation coefficient test for correlation of separate 

parameters within the COVID-19 patient group, using Prism 8 software (GraphPad). In all cases, 

a p value of ≤ 0.05 was considered significant. Where no statistical difference is shown there was 

no significant difference. Details of statistical tests and definitions of n can be found in each figure 

legend. 
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Supplemental Information 

Supplemental Methods 

PBMC isolation: Fresh blood samples from COVID-19 patients and healthy individuals were 

collected in EDTA tubes. Blood was diluted 1:1 with PBS and layered gently on Ficoll-Paque 

followed by density gradient centrifugation. Cells were thoroughly washed and were either freshly 

stained for flow cytometry or are stored in 10% dimethyl sulfoxide (DMSO) in fetal bovine serum 

(FBS) at -150°C. 

 

Cell culture and flow cytometry: Frozen PBMC were thawed, washed and resuspended in 

RPMI containing 10% FBS, L-Glutamine, non-essential amino acids, HEPES, and penicillin plus 

streptomycin. 2.5×105 cells were stimulated with; 2µL/ml of stimulation cocktail (eBioScience) in 

the presence of 10 µg/ml Brefeldin A for three hours (T cells), 1 µM CpG for 48 hours followed by 

2µL/ml of stimulation cocktail (eBioScience) in the presence of 10 µg/ml Brefeldin A in the last 

four hours (B cells). PBMCs (fresh/thawed/stimulated) were stained with flow staining antibodies 

(see table I) and viabilities dyes (Zombie dyes; Biolegend) and samples were acquired on an 

LSRFortessa cell analyser (Becon Dickinson) and analysed using FlowJo (TressStar). 

 

Table 4. 1: Details of antibody clones and suppliers 

Marker Clone Company 

CD19 HIB19 BioLegend 

CD27 M-T271 BioLegend 

CD38 HIT2 BioLegend 

IgD IA6-2 BioLegend 

IgG M1310G05 BioLegend 

IgM MHM-88 BioLegend 

CD21 Bu32 BioLegend 

CD11c 3.9 BioLegend 

CD3 SK7 BioLegend 

CD4 SK3 BioLegend 

CD8 SK1 BioLegend 
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CD86 BU63 BioLegend 

CD56 5.1H11 BioLegend 

CD45RA HI100 BioLegend 

IL-6 MQ2-13A5 BioLegend 

IL-10 JES3-19F1 BioLegend 

Ki67 Ki-67 BioLegend 

HLA-DR L243 BioLegend 

IFN-γ 4S.B3 BioLegend 

PD-1 EH12.2H7 BioLegend 

CD69 FN50 BioLegend 

CD62L SK11 BioLegend 

CXCR3 G025H7 BioLegend 

CXCR5 J252D4 BioLegend 

CCR7 G043H7 BioLegend 

ICOS C398.4A BioLegend 

Granzyme-B QA18A28 BioLegend 

CD127 A019D5 BioLegend 

CD25 BC96 BioLegend 

CD107a H4A3 BioLegend 

Perforin dG9 BioLegend 

TCR B1 BioLegend 

IL-17 BL168 BioLegend 

TNF-α MAb11 BD Bioscience 

IgA REA1014 Miltenyi Biotec 

CD24 eBioSN3 eBioscience 

Foxp3 236A/E7 eBioscience 

 

Clustering of T and B cell phenotypes: T cell and B cell data were scaled using unit variance 

scaling, clustered and graphed using correlation distance and average linkage on the heatmap 

tool on ClustVis1. 

Statistics: Results are presented as individual data points with medians. Normality tests were 

performed on all datasets. Groups were compared using an unpaired Mann-Whitney test for 

healthy individuals versus COVID-19 patients, one-way ANOVA with Holm-Sidak post-hoc testing 
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(normal distribution) or Kruskal-Wallis test with Dunn’s post-hoc testing (failing normality testing) 

for multiple comparisons, or Spearman’s rank correlation coefficient test for correlation of 

separate parameters within the COVID-19 patient group, using Prism 8 software (GraphPad). In 

all cases, a p value of ≤ 0.05 was considered significant. Where no statistical difference is shown 

there was no significant difference.  

4.7 Supplemental Figures and Table  

Supplemental Table 4. 1: Clinical characteristics of acute COVID-19 patients 

Data are median (IQR)m , wherem is the number of missing data points, n (%) or n/N (%), where 

N is the total number with available data. PE, pulmonary embolism, AKI, Acute kidney injury. a 

Admission observations. 

Acute Patients 

 
Overall (58) Mild (22) 

Moderate 
(23) Severe (13) 

Age 58.5 (49.5-71) 58 (45-71) 58 (50-66.5) 67 (55-74) 

Gender 
    

     Male 36/58 (62.1%) 13/22 (59.1%) 
13/23 
(56.5%) 10/13 (77%) 

     Female 22/58 (37.9%) 9/22 (40.9%) 
10/23 
(43.5%) 3/13 (23%) 

BMI 
28.5 (25.2-
30.6)14  

27.8 (23.2-
33.1)8  

29 (26.8-
30.3)3  

27.6 (25.4-
30.2)3  

Day of admission 
recruited 2 (2-3) 3 (2-4.75) 2 (2-3) 2 (2-3) 

Medical History 
   

     Diabetes 
13/58 
(22.41%) 6/22 (27.27%) 2/23 (8.7%) 5/13 (38.46%) 

     Ischaemic Heart 
Disease 8/58 (13.79%) 3/22 (13.64%) 2/23 (8.7%) 3/13 (23.08%) 

     Hypertension 
20/58 
(34.48%) 6/22 (27.27%) 

9/23 
(39.13%) 5/13 (38.46%) 

     COPD 
11/58 
(18.97%) 5/22 (22.73%) 

4/23 
(17.39%) 2/13 (15.38%) 
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     Asthma 9/58 (15.52%) 4/22 (18.18%) 
4/23 
(17.39%) 1/13 (7.69%) 

     Malignancy 5/58 (8.6%) 0/22 (0%) 2/23 (8.7%) 3/13 (23%) 

Differential counts on admission (x 
109/L)  

   

     Total white cell count 7.1 (6-10)9  
6.85 (5.55-
8.42)4  7.3 (6.3-10)2  

7.25 (6.55-
10.02)3  

     Lymphocytes 1 (0.82-1.5)9 
1.2 (0.92-
1.77)4 0.9 (0.8-1.5)2 

0.9 (0.82-
0.98)3 

     Neutrophils 5.3 (4.4-8)9 
5.15 (3.8-
7.05)4 5.5 (4.7-7.7)2 

6.25 (4.82-
8.62)3 

     Monocytes 0.4 (0.2-0.6)9 
0.25 (0.2-
0.73)4 0.5 (0.4-0.7)2 

0.35 (0.3-
0.57)3 

Other inpatient investigations 
   

     Positive SARS CoV2 
PCR 49/58 (84%) 18/22 (81%) 20/23 (87%) 11/13 (85%) 

     Highest CRP (mg/L) 144 (83.9-226) 99 (35-176) 
131 (86.5-
195.6) 256 (198-283) 

Chest Imaging     

     Bilateral opacification 49/56 (87.5%) 14/20 (70%) 
22/23 
(95.7%) 13/13 (100%) 

     Unilateral 
opacification 3/56 (5.4%) 2/20 (10%) 1/23 (4.3%) 0/13 (0%) 

     Clear 4/56 (7.1%) 4/20 (20%) 0/23 (0%) 0/13 (0%) 

Outcome 
    

     Length of stay (days) 6 (4-11.3)2  5.5 (3.3-9.2) 6 (4-10)2  10 (6-13) 

     Mortality 9/58 (15.5%) 1/22 (4.5%) 0/23 (0%) 8/13 (61.5%) 

 

Supplemental Table 4.2: Clinical characteristics of convalescent COVID-19 patients 

Data are median (IQR)m , wherem is the number of missing data points, n (%) or n/N (%), where 

N is the total number with available data. PE, pulmonary embolism, AKI, Acute kidney injury. a 

Admission observations. 
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Convalescent Patients 

 
Overall (81) Mild (14) Moderate (26) Severe (41) 

Age (years) 60 (51 - 67) 
51.5 (45.5 - 
60.3) 

59.5 (51.25 - 
71.5) 60 (56 - 66) 

Gender 
    

     Male 49/81 9/14 (64.3%) 13/26 (50%) 27/41 (65.9%) 

     Female 32/81 5/14 (35.7%) 13/26 (50%) 14/41 (34.1%) 

BMI 31 (28.7 - 34.7)29  
34.8 (31.9 - 
38.4)4  

30.9 (28.8 - 
34.6)12  

29.6 (28.5 - 
33.1)13  

Medical History     

     Diabetes 20/81 (24.69%) 4/14 (28.57%) 8/26 (30.77%) 8/41 (19.51%) 

     Ischaemic heart 
disease 16/81 (19.75%) 2/14 (14.29%) 11/26 (42.31%) 3/41 (7.32%) 

     Hypertension 31/81 (38.27%) 3/14 (21.43%) 12/26 (46.15%) 16/41 (39.02%) 

     COPD 13/81 (16.05%) 3/14 (21.43%) 8/26 (30.77%) 2/41 (4.88%) 

     Asthma 28/81 (34.57%) 6/14 (42.86%) 8/26 (30.77%) 14/41 (34.15%) 

     Malignancy 5/81 0/14 3/26 2/41 

ACUTE ADMISSION  

Differential blood counts on acute admission (x109/L) 
 

     Total white cell 
count 

7.3 (5.75 - 
10.1)10  5.95 (4.7 - 7.2)2  

6.65 (5.63 - 
9.55)6  8.7 (6.8 - 11.35)2 

     Lymphocytes 
0.88 (0.69 - 
1.19)10 

1.08 (0.86 - 
1.54)2 

0.98 (0.73 - 
1.42)6 0.8 (0.62 - 0.95)2 

     Neutrophils 6.1 (4.12 - 8.8)10 
4.02 (3.59 - 
5.8)2 

4.81 (4.04 - 
7.68)6 

7.03 (5.34 - 
10.2)2 

     Monocytes 
0.4 (0.26 - 
0.55)10 

0.26 (0.22 - 
0.44)2 0.48 (0.3 - 0.6)6 0.4 (0.3 - 0.52)2 

Other inpatient investigations 
  

     Positive SARS 
CoV2 test 76/81 (93.8%) 14/14 (100%) 24/26 (92.3%) 38/41 (92.7%) 

     Highest CRP 
(mg/L) 135 (70 - 252.5)3  51 (31.3 - 94.8) 113 (68 - 147)1  256 (131 - 330)2  

Chest imaging 
   



157 
 

     Bilateral 
opacification 58/63 (92.1%) 6/8 (75%) 21/23 (91.3%) 31/32 (96.9%) 

     Unilateral 
opacification 4/63 (6.3%) 1/8 (12.5%) 2/23 (8.7%) 1/32 (3.1%) 

     Clear 1/63 (1.6%) 1/8 (12.5%) 0/23 (0%) 0/32 (0%) 

Outcome 
    

     Length of stay 
(days) 11 (6 - 21) 2.5 (1.25 - 5.75) 6.5 (4.25 - 12.5) 20 (13 - 39) 

CONVALESCENCE    

Symptoms and investigations at follow 
up  

   
     Dyspnoea 37/80 (46.25%) 5/14 (35.71%) 16/26 (61.54%) 16/40 (40%) 

     Resolved CXR 53/81 (65.4%) 11/14 (78.6%) 18/26 (69.2%) 24/41 (58.5%) 

     Persistent CXR 
features 28/81 (34.6%) 3/14 (21.4%) 8/26 (30.8%) 17/41 (41.5%) 

 

Supplemental Table 4. 3: Patient categorisation Information 

Criteria for patient stratification. NIV, non-invasive ventilation; CPAP, continuous positive airway 

pressure; ICU, intensive care. 

Severity Score Criteria 

Mild - <3l or 28% supplemental oxygen required to maintain oxygen 

saturations.  

- Managed in a ward based environment.  

Moderate -  Breathless  

-  <10l or <60% supplemental oxygen required to maintain oxygen  

saturations.  

-  Managed in a ward based environment.  

-  Chronic NIV or CPAP (home use) or acute NIV for COPD. 

Severe Any of:  

-  >10l or 60% supplemental oxygen required to maintain oxygen  

saturations.  
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-  Use of acute NIV (not for COPD)  

-  Managed in ICU/invasive ventilation.  

 

 

Supplemental Figure 4. 1: T and B cell subsets in hospitalized COVID-19 patients 
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(A) Representative FACS plots showing Ki-67 staining on CD19+ B cells. (B) Representative 

FACS plots showing the gating strategy for CD27hiCD38hi plasmablasts. (C) Representative 

FACS plots gated on CD19+  B cells staining positive for IgG, IgM or IgA.(D) Graphs showing 

correlation between plasmablasts and IgG+ (left), IgA+ (middle) or IgM+ (right) B cell frequencies 

in convalescent COVID-19 patients (n=78) . (E,F) Graphs track frequencies of (E) Ki67+ B cells, 

plasmablasts, transitional (CD24hiCD38hi) B cells, and (F) CD27-IgD- B cells in the same COVID-

19 patient at acute (grey circles) and convalescent (maroon circles) time-points (n=14). (G) 

Representative FACS plots showing Ki-67 staining on CD4+ and CD8+ T cells. (H,I) 

Representative FACS plots showing CD8+ T cells staining positive for (H) GranzymeB and (I) 

CD107a. (J) Representative FACS plots gated on CD3+CD4+CD127lo/neg T cells staining positive 

for CD25 and foxp3. (K) Representative FACS plots showing gating to identify Tfh cells 

(CD3+CD4+PD- 1+CXCR5+ ICOS+). (L) Graphs track frequencies of CD8+ T cells which are 

perforin+ and granzymeB+  in the same COVID-19 patient at convalescent time-points pre (1) and 

post (2) 6 months since hospital discharge (n=4-6).  
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Supplemental Figure 4. 2: Altered expression of migratory markers in acute but not 

convalescent COVID-19 patients 

(A-C) Representative flow cytometry plots and graphs showing frequencies of B cells expressing 

(A) CXCR5, (B) CXCR3 and (C) 7 in healthy individuals (n=19-21), acute (n=21-34) and 



161 
 

convalescent (n=81) COVID-19 patients. (D) Graphs showing frequencies of B cells expressing 

CXCR3, CXCR5 and 7 in healthy individuals (n=19) and acute COVID-19 patients with mild 

(n=7-11), moderate (n=7-10) and severe (n=5-9) disease. (E) Graphs showing frequencies of B 

cells staining positive for CXCR3, CXCR5 and 7 in healthy individuals (n=19-21) and 

convalescent COVID-19 patients which initially presented with mild (n=13), moderate (n=26) and 

severe (n=41) disease. (F-H) Graphs showing frequencies of CD4+ cells positive for (F) CXCR5, 

(G) CXCR3 and (H) 7 in healthy individuals (n=25-29), acute (n=26-27) and convalescent (n=80-

83) COVID-19 patients. (I-K) Graphs showing frequencies of CD8+ cells positive for (I) CXCR5, 

(J) CXCR3 and (K) 7 in healthy individuals (n=25-29), acute (n=27-28) and convalescent (n=80-

81) COVID-19 patients. (L,M) Graphs showing frequencies of (L) CD4+ and (M) CD8+ T cells 

staining positive for CXCR3 and CXCR5 in healthy individuals (n=25-29) and acute COVID-19 

patients with mild (n=8-10), moderate (n=8) and severe (n=6-8) disease. Graphs show individual 

patient data, with the bar representing median values. In all graphs, open triangles represent 

SARS-CoV-2 PCR-negative patients. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, one-way 

ANOVA with Holm-Sidak post-hoc testing (A-E, K and L (CXCR5)) or Kruskal-Wallis test with 

Dunn’s post-hoc testing (F-J, L(CXCR3), M) for multiple comparisons.  
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Supplemental Figure 4. 3: Long-lasting changes in type-I cytokine production T cells in 

convalescent COVID-19 patients 

(A) Representative FACS plots showing example staining for cytokine+ CD4+ and CD8+ T cells. 

(B) Graph shows frequency of IL-10+CD4+ T cells following 3 hour stimulation with PMA and 

ionomycin in acute COVID-19 patients at the first and last time points of hospitalization. (C) Graph 

show frequencies of IL-17+CD4+ T cells following 3 hour stimulation with PMA and ionomycin in 

healthy individuals (n=22-30), acute COVID-19 patients (n=31) and convalescent COVID-19 

patients stratified by fatigue reporting (not reporting (n=50) and reporting (n=20) enhanced 

fatigue) and mild (n=14), moderate (n=27) and severe (n=36) acute disease severity. (D, E) 

Graphs show frequencies of (D) CD4+ and (E) CD8+ T cells which stain positive for IFN and 

TNF following 3 hour stimulation with PMA and ionomycin in healthy individuals (n=14) and 

acute COVID-19 patients with mild (n=10-11), moderate (n=12) and severe (n=7) disease. (F, G) 

Graphs show frequencies of (F) CD4+ and (G) CD8+ T cells that stain positive for IFN and TNF 

following 3 hour stimulation with PMA and ionomycin in acute COVID-19 patients at the first and 

last time points of hospitalization. (H) Graphs show frequencies of CD4+ and CD8+ T cells which 

stain positive for IFN and TNF following 3 hour stimulation with PMA and ionomycin in healthy 

individuals (n=28-30), acute COVID-19 patients (n=24-33) and convalescent COVID-19 patients 

not reporting (n=44-49) and reporting (n=20-21) enhanced fatigue. (I, J) Graphs show frequencies 

of CD4+ and CD8+ T cells which stain positive for IFN and TNF in all severe COVID-19 patients 

at acute (grey) and convalescent (maroon) time-points. (K, L) Graphs track frequencies of CD4+ 

and CD8+ T cells which stain positive for IFN and TNF following 3 hour stimulation with PMA 

and ionomycin in the same COVID-19 patient at convalescent time-points pre (1) and post (2) 6 

months since hospital discharge (n=4-6). Graphs show individual patient data, with the bar 

representing median values. In all graphs, open triangles represent SARS-CoV-2 PCR-negative 

patients. *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA with Kruskal-Wallis test with Dunn’s 

post-hoc testing for multiple comparisons (except for graphs showing CD4+TNF+ and 

CD8+TNF+ T cells in D and E where One-way ANOVA with Holm-Sidak post-hoc test was 

employed). 
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Supplemental Figure 4.4: Cytokine production by B cells from acute and convalescent 

COVID-19 patients 

(A-C) Representative flow cytometry plots showing gating strategy of CD19+ B cells positive for 

IL-10, IL-6 and TNF following 48 hour stimulation with CpGB. (D) Graphs show frequencies of 

CD19+ B cells staining positive IL-10, IL-6 and TNF  following 48 hour stimulation with CpGC in 

healthy individuals (n=22-27), acute COVID-19 patients (n=22-37) and convalescent COVID-19 

patients not reporting (n=36-38) and reporting (n=15-17) enhanced fatigue. (E) Graphs show 

frequencies CD19+ B cells staining positive for IL-10, IL-6 and TNF in healthy individuals (n=22-

23), and convalescent COVID-19 patients which initially presented with mild (n=12-13), moderate 

(n=25-26) and severe (n=41) disease. (F) Graphs show frequencies CD19+ B cells staining 

positive for IL-10, IL-6 and TNF in healthy individuals (n=11-13), and acute COVID-19 patients 

with mild (n=8-9), moderate (n=6) and severe (n=6) disease. Graphs show individual patient data, 

with the bar representing median values. In all graphs, open triangles represent SARS-CoV-2 

PCR-negative patients. *p<0.05, one-way ANOVA with Kruskal-Wallis test with Dunn’s post-hoc 

testing for multiple comparisons. 
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Chapter 5: 

Final Discussion 

Unlike T cells and members of the innate immune system, the role of B cells in inflammation is 

relatively less appreciated. Once thought of as antibody factories, they also produce cytokines 

such as IL-6 and TNF-α 600, contributing significantly to the pathogenesis of many disease 

conditions. B cells are influenced by their microenvironment, just like T cells and macrophages, 

and so display aberrant phenotypes that are amenable to therapeutic modulation. In this thesis, 

the B cell responses in acute and chronic inflammatory conditions of the lung were studied, where 

very different B cell profiles between the two conditions were observed. This is likely due to the 

slowly progressive nature of chronic inflammation in COPD versus the acute inflammatory events 

of infection. 

Furthermore, COPD is a more silent disease concerning immunity. In contrast, infection provides 

a precise target plus the inflammatory mediators released upon cell damage. COPD and infection 

share some immune commonalities. For example, IFN-γ is found in both disease conditions 601,602. 

However, the kinetics in viral infection is faster and with greater amplitude than in COPD. Thus, 

though the cytokine environment affects local immune cells, so does its kinetics, amplitude and 

duration, which can mean the difference between immune activation versus exhaustion. 

Overall the thesis has contributed new discoveries specific to COPD or infection or common to 

both as follows: 

A) B cell profiles in the blood and lung are distinct 

Most studies of B cells in COPD have focused on circulating B cells, with few examining in situ 

lung histologies. The access to fresh lung tissue and matched blood samples from patients has 

provided an opportunity to compare the phenotypic characteristics of B cells in tissue and 

circulation. We found increased numbers of B cells in the lung (especially in COPD) compared to 

the circulation. Most of the tissue-resident B cells are mature and activated PCs, DN and SM B 

cells with mostly switched Igs that are predominantly IgG in nature. This might be from prolonged 

inflammation due to the constant exposure to antigens from 1) auto-antigens consisting of smoke-

induced neo-antigens consequential to the degradation products of extracellular matrix, 2) 

cigarette smoke components, and 3) microbial 603,604. The circulating B cells, on the other hand, 
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consist primarily of naïve B cells with increased tissue trafficking that will allow for the recruitment 

of more B cells into the lung tissue to handle the ongoing inflammation. 

B) Alterations in B cells in COPD 

In this thesis, we performed a detailed characterisation of B cells in COPD lungs. We found 

expansion of more mature B cells and B cell-rich follicles in the COPD compared to control lungs. 

Accumulating B cells in the COPD lung can promote adaptive immunity, especially during acute 

exacerbation of COPD caused by chronic infections typically observed in COPD patients 605, 

hence could have protective features. 

Increased percentage of B cells and B cell-rich follicles in COPD have been previously reported 

418,421,606. The increase in B cell frequency might be in response to the chronic inflammation within 

the COPD lung following excessive exposure to cigarette smoke. The presence of B cells might 

be important in regulating the ongoing immune responses within the COPD lung 

microenvironment. Interestingly, the B cells in COPD are mostly switched-memory and IgG+ B 

cells. This indicates that most of these cells are antigen-experienced and somatically 

hypermutated, probably due to their constant exposure to microbial, cigarette smoke and neo-

antigens at the site of inflammation in COPD lungs 603,604. 

B cells in COPD also have increased Ki67 and CXCR3 expression, signifying active proliferation 

and chemotaxis that probably help maintain the B cell follicles by recruiting other immune cells 

(like T cells, DCs, macrophages and neutrophils) to the site inflammation 607. Furthermore, we 

show that B cells from COPD lung have increased double-negative memory B cells with increased 

expression of CD11c and Tbet; two of the most used markers in identifying or describing double-

negative memory or atypical B cells. Since atypical B cells are almost always associated with 

autoimmune conditions, chronic infection and ageing, it is tempting to speculate that their 

presence in COPD lungs might contribute to the presence of auto-antibodies usually seen in 

COPD patients, especially those that frequently exacerbate upon infection. However, further 

studies are required to understand their role in COPD fully. Hence targeting these particular B cell 

subsets might be of therapeutic potential. Of note, previous studies have reported higher 

frequencies of DN B cell subsets in various immunodeficiencies and autoimmune conditions like 

systemic lupus erythematosus, rheumatoid arthritis, and chronic infections such as malaria and 

hepatitis C, and in older people 40,172,544–548. 
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Our findings also show a significant expansion of Tim-1+ and IL-10+ B cells in COPD compared 

to control lungs. Tim-1 contributes to Breg induction, expansion, and suppressor function by 

inducing IL-10+ Bregs 552. Therefore, the presence of Tim-1+ and IL-10+ B cells in COPD indicates 

their potential regulatory effect within the lung microenvironment by suppressing the immune 

responses to chronic inflammation. 

C) Alterations in B cells in COVID-19 

The quality of the B cell response following an acute infection like SARS-CoV-2 determines the 

duration and breadth of protective immunity. Interestingly, we saw reduced frequencies of B cells, 

with a corresponding increase in Ki67+ B cells in the circulation of severe acute COVID-19 patients 

that normalised in convalescent patients. A reduction of B cells in the blood may reflect 

recruitment into the lung, which is reduced in inflammatory resolution, hence their return to higher 

levels. Alternatively, or in addition, B cell reduction in severe COVID-19 may be due to viral-

induced immunosuppression or direct cytopathic effects of the virus. 

Like COPD, we also saw increased double-negative memory B cells in severe COVID-19 patients' 

blood that persisted in convalescence. Several studies have reported a similar expansion of 

double-negative B cells in COVID-19 608–612. However, our knowledge regarding the role of these 

cells in COVID-19 disease is still minimal. A similar B cell phenotype is evident following influenza 

vaccination, HIV infection and malaria infection 173,613,614, and it could be suggested that these 

cells are part of the protective immune response. The same B cell phenotype is reported to be 

expanded in several autoimmune diseases like SLE and rheumatoid arthritis. Thus, double-

negative memory B cells might be responsible for an elevated autoimmune response in COVID-

19 patients. We also report a decreased frequency of transitional B cells in severe COVID-19 

patients that are partly restored upon convalescence. Transitional B cells are precursors of Bregs 

and IL-10+ B cells. Their reduction in severe COVID-19 patients may therefore cause a  loss of 

immunosuppressive Bregs and an expansion of effector B cells, similar to previous observations 

in chronic inflammatory diseases like SLE and rheumatoid arthritis 364,497,598. In COPD, however,  

we saw an expansion of IL-10+ B cells, especially in severe COPD, suggesting increased 

immunosuppression by B cells in COPD lungs. 

Severe acute COVID-19 disease is associated with expanded switched memory, IgG+ and IgA+ 

B cells that are restored upon convalescence. Enhanced switch memory B cells correlate with 

decreased unswitched memory and naïve B cells. The increase in switched memory B cells may 
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reflect the generation of robust extrafollicular B cell responses that correlate with increased 

proinflammatory cytokines and antibodies observed in severely ill individuals. Also, the expansion 

of IgG+ and IgA+ B cells in severe COVID-19 patients positively correlates to frequencies of 

plasmablast, suggesting the expansion of class-switched IgG and IgA antibodies in COVID-19 

patients. 

B and T cells have essential roles in the clearance of viral infection. The effector function of T cell 

subsets is determined by chemokines and cytokines secreted from antigen-presenting cells. In 

this thesis, we observed increased proliferation and degranulation (CD107a+ and 

Ki67+GranzymeB+) of cytotoxic CD8+ T cells in acute COVID-19 with a corresponding reduction 

in convalescent patients. CD8+ T cells are vital in controlling infection by directly killing virally 

infected cells and by cytokine production. We also show increased expansion of T follicular helper 

cells (Tfh) in acute COVID-19 patients that are reduced in convalescent patients. Tfh cells are 

critical in promoting the germinal reaction that drives cognate B cell differentiation for antibody 

production. 

D) B cells location and structure of follicles in inflammation  

In this thesis, we have identified B cell follicles positioned next to bronchioles embedded in an 

additional extracellular matrix by Hyperion imaging mass cytometry. The multiplex nature of this 

technique also allowed us to identify communication between B cells and macrophages. It is 

known that B cells accumulate early in COPD disease pathogenesis, either as individual cells or 

as organised follicles and self-maintain by the production of growth factors that drive macrophage 

activation (amongst other cells) 283. B cell follicles take up a significant area of what should be 

airspaces. Though associated with the small airways, their positioning may be dictated by the 

type of blood vessels in that vicinity. Small airways are dominated by fine capillaries whose 

basement membrane is fused to that of the epithelial barrier to allow efficient gaseous exchange 

615. It is likely that B cells (and other immune cells) transmigration is not facilitated in the more 

delicate capillaries where relatively flat endothelium exists, compared to the larger bronchioles. 

Examining this would require examining the integrins and chemokine receptors on the alveoli and 

bronchiole vasculature. 

Such a comparison has not been performed to date. However, it would be advantageous for lung 

function to exclude follicle development in the delicate structures of the terminal airways. What is 

also unknown is the influence of B cell follicles on lung function and its physical properties 334. 
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Lung compliance, peak expiratory flow, and elasticity will likely change if organised lymphoid 

tissue is present. This is difficult to test in patients unless they are on B cell-depleting therapies 

for other indications, such as arthritis or B cell lymphoma. However, no investigations have been 

published examining this, though studies may be forthcoming in the future with the current interest 

in multi-morbidity. B cell knock-out mice would be an option though models of COPD are poor in 

this species. In any system where B cells are absent, consideration should be given to indirect 

influences, for example, by T cells. Clearly, B cell phenotype is important, but positioning is too 

and may be amenable to manipulation. 

E) Effect of smoking on B cell phenotype and function 

In addition to more B cell follicles in COPD versus healthy lungs, we also saw alterations to this 

immune compartment in patients who smoked versus those that did not, irrespective of their 

disease condition. This included an expansion of plasma cells, IgG+, double-negative, Tim-1+ and 

IL-10+ B cells within the COPD current smokers’ lung. Very little information is available on the 

influence of smoking on lung B cells 616. Two studies imply that cigarette smoking increases the 

prevalence of class-switched memory B cells in peripheral blood and memory IgG+ B cells in the 

lung 550,617. Double-negative B cells are also raised in NSCLC and correlate with improved survival 

618. Lung transcriptomes of COPD patients with emphysema show an mRNA signature associated 

with B cell homing and activation and the presence of lymphoid follicles with activated B cells and 

class-switched B cells (IgG+) 419. Generally, studies are in agreement, though comparison with 

non-smokers' lungs is rare. To our knowledge, an upregulation of Tim1 and IL-10 by B cells in 

smokers' lungs has not been described. 

F) Reduction of IL-10-producing B cells in convalescent COVID 

Longitudinal analysis showed that in one group of patients with persistent disease indicative of 

long COVID, IL-10-expressing B cells (Bregs) failed to recover. Conversely, B cell production of 

IL-10 was higher in convalescent patients with good clinical outcomes. The lack of Bregs in the 

persistent disease group is not likely to reflect different disease stages as patients were aligned 

based on their reported onset of symptoms. However, it is not certain that recollection of disease 

onset was accurate in every case. Significant decreases in transitional B cells, the precursors of 

human Bregs 364, were also observed, reflecting their rapid differentiation into APCs. However, 

further studies would be required to address this. It should also be remembered that we only had 

access to peripheral blood. It is possible that a deficit in the blood could reflect increased 
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recruitment to the lung. Also, if IL-10-producing B cells were present in the lung, then they may 

contribute to a deleterious fibrotic response, as has been observed in some postmortem 

specimens 619. Our current hypothesis, however, is that a reduction in IL-10-producing B cells is 

associated with an inflammatory B cell phenotype that feeds the disease process. More studies 

on lung samples themselves are required, though the only source to date seems to be from 

autopsy 620. Transbronchial cryobiopsy has been performed on an isolated patient, though 

concern over the generation of aerosols has restricted its application 621,622. 

G) B cell plasticity and not just inhibitors of inflammation 

B cells are likely to play pleitropic roles in the lung, including immune suppression, secretion of 

pro-inflammatory cytokines like IL-6 and TNF-α, production of antibodies and auto-antibodies and 

antigen presentation.  

Unlike T cells, B cell subsets are less well-defined, and no transcription factors are currently 

associated with different functions. Depending on the microenvironmental stimuli, B cells can 

differentiate into diverse subsets and secrete inflammatory or anti-inflammatory mediators to 

modulate various disease settings. Previous studies have shown that IL-10-producing Bregs are 

not in a terminally differentiated state and that they can further differentiate into antibody-

producing plasmablasts 336,497. This indicates plasticity to some extent, though its extent is 

currently unclear. 

H) Key pathways from scRNA sequencing 

Differentially expressed genes of Plasma cells from COPD lung show activation of the HIF-1α 

pathway influencing IL-10 gene signalling, probably due to hypoxia. HIF-1α is a transcription factor 

that targets genes under hypoxic conditions 623. Oxidative stress and inflammation are essential 

in COPD pathogenesis 624. Studies have reported that HIF-1α significantly promotes inflammation, 

emphysema and airway goblet cell hyperplasia in COPD 535(p1),625,626. The increased activation of 

the RELA pathway in COPD ensures proper formation and maintenance of GCs since RELA is a 

critical component of NF-κB pathway 627. At the same time, activation of the p38 MAPK pathway 

in COPD maintains B cell activation, proliferation and survival in COPD lung. Combined, 

increased activities from these pathways signify active B cell involvement in the pathophysiology 

of COPD. 
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Furthermore, RNA sequencing data suggest that B cell function may be altered in COPD. Though 

requiring further study, down-regulated genes imply reduced T cell help. For example, ICOS 

ligand gene (ICOSLG) is reduced in COPD B cells. ICOS ligand is required to prevent antigen-

activated T cells undergoing activation-induced apoptosis 527,628. And its downregulation might 

suggest impaired B-T cell interaction in COPD that might lead to increased susceptibility to 

infection typically observed in COPD patients. To our knowledge, there is no data showing 

downregulation of ICOS ligands in B cells from COPD lung. However, gene expression analysis 

of PBMCs from COPD patients shows decreased gene expression in ICOS-ICOS ligand signalling 

in T helper cell pathway, suggesting impaired T cell response in COPD 629.  

Recruitment of cells responding to CCL4 and 22 is also reduced. These chemokines recruit 

regulatory T cells and follicular helper T cells 528,529, implying that though B cell follicles are 

increased in COPD, they may lack specific activities due to reduced recruitment of other cells. 

A number of interesting genes were up-regulated in COPD B cells that warrant further study. For 

example, upregulation of MMP19 by B cells in COPD was intriguing. MMP19 (also known as 

gelatinase-B) is up-regulated in activated B cells from MS patients 630, where it disrupts the blood-

brain barrier and degrades myelin basic protein, worsening MS 631,632. To our knowledge, 

upregulation of MM19 in B cells in the lung has not been previously reported. Thus, MMP19 

expression in B cells in COPD lungs might indicate their involvement in lung repair, or they might 

contribute to the worsening of COPD by contributing to autoimmunity. Additional studies are 

needed to better understand B cells’ contribution to COPD pathology. 

I) Challenges and future perspectives 

A complete understanding of disease pathogenesis requires analysis of the affected tissue. 

However, most studies on humans rely on peripheral blood. Some have suggested that examining 

what is missing from the blood is more appropriate for studying lung disease than what is elevated. 

A reduction in a particular blood population may, for example, reflect their migration into the 

damaged lung. We cannot rule out this influence, but in the case of COVID, lymphopenia was 

observed in both blood and lung. Some observed aspects may tally, whereas others may not. We 

were, therefore, lucky to have a reliable method of obtaining lung margins from cancer resections. 

However, this raises another potential confounder – are the healthy margins of the lung in cancer 

really healthy? We did not address this issue in this thesis. However, we could argue that all 

samples were from cancer resection material. Yet, we still observed B cell changes in COPD and 

smoking. 
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Furthermore, another PhD student in the lab has compared cancer regions with uninvolved 

healthy margins and does observe significant differences. A more appropriate source of lung 

tissue would be from transplant material – specifically, healthy lungs not suitable for transplant. 

This tissue is extremely rare though we have begun to receive fibrotic lungs removed from patients 

with idiopathic pulmonary fibrosis. 

In this thesis, we have examined B cells in isolation. However, B cells are often in contact with 

other cells, so any changes in B cells may be due to the interacting cells. It is important to note 

that when analysing cells by flow cytometry, doublets are excluded to prevent erroneous 

assumptions of protein co-expression when in fact, the signal is due to two cells joined together. 

The exclusion of doublets may miss a critical pathogenic event. This came to light during the 

immune analysis of blood from COVID-19 patients, where monocytes interacting with neutrophils 

dominated. Cellular interaction in the bloodstream is likely undesirable as they would occlude 

blood vessels and produce inflammatory molecules that could act systemically. It would be of 

interest to revisit archived data from this thesis to see if B cells are also present in the doublet 

gate by flow cytometry. RNA scope could also be used to probe the transcriptomics of interacting 

cells. Though our emphasis is on B cells, it is worth remembering that receptor-ligand pairs cause 

signaling to both cells. Therefore, it would be of interest in the future to examine the impact of B 

cell cognate interactions on the non-B cell partner. 

In COVID-19 disease, we were fortunate to do a longitudinal study that clearly shows how disease 

trajectory is associated with changes in immune cell profile. This should be performed for COPD, 

though defining onset is trickier for a chronic disease compared to a viral infection. The longevity 

of this disease has precluded this analysis to date. Mouse models would enable onset to be 

determined, but those for COPD are highly criticized as the duration of exposure to tobacco smoke 

is short, and delivery of smoke-induced enzymes, e.g. elastase, is very harsh. Furthermore, 

mouse models of COVID-19 disease require category III facilities currently unavailable at 

Manchester. Overall new discoveries have been made, but future studies should define 

contribution to pathology by examining O2/CO2 exchange and plethysmography to define lung 

function in mice lacking specific subsets of B cells as global B cell deletion may perturb many 

systems in health and disease. 
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