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Abstract 
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary 
immunodeficiency diagnosed in adults. CVID is considered to be a spectrum of different antibody 
deficiency disorders, with only 10-20% of cases attributed to monogenic mutations. Clinical 
features vary between patients. The majority have increased susceptibility to infection; however 
non-infectious complications (autoimmunity, inflammation and malignancy) have the greatest 
influence on morbidity and mortality. The laboratory features of low serum immunoglobulin G, A, 
and/or M, alongside poor vaccine responses contribute to the diagnosis of CVID; however the low 
specificity of these tests renders diagnosis one of exclusion. Diagnostic delay remains a significant 
problem worldwide. Immunophenotyping can be used to subgroup patients based on shared 
clinical features; however predictive biomarkers to identify patients at risk of severe disease have 
yet to be identified. In light of the limitations associated with current laboratory tests for CVID, a 
new diagnostic approach is needed.  

Vibrational spectroscopy is a powerful technique that can be used to characterise the molecular 
composition of a sample. Within a biological sample, important molecules such as lipids, 
carbohydrates, nucleic acids and proteins are held together by chemical bonds; these bonds will 
vibrate following excitation with infrared light. By measuring the vibrational energy of each 
molecule present in a sample͕� Ă� ƵŶŝƋƵĞ� ƐƉĞĐƚƌƵŵ͕� ŬŶŽǁŶ� ĂƐ� ƚŚĞ� ͚ŵŽůĞĐƵůĂƌ� ĨŝŶŐĞƌƉƌŝŶƚ͛� ŝƐ�
generated. Fourier Transform infrared (FTIR) spectroscopy is a mode of vibrational spectroscopy 
gaining wider application in the clinical setting over the past decade. In this method, bond 
vibrations cause a change in the dipole moment of molecules; these vibrations can be quantified 
as spectral peaks. As disease-related changes in biological samples will be reflected in the 
molecular fingerprint, FTIR spectroscopy is a well-placed candidate for the investigation of 
disease. 

The experimental approach in this thesis uses FTIR spectroscopy to characterise the molecular 
fingerprint of blood serum and plasma samples of CVID patients. We examined two biologically 
relevant regions of the spectrum, Fingerprint (1800-900 cm-1) and High (3700-2800 cm-1). We 
determined the Fingerprint region to have superior performance for potential use as a diagnostic 
technique. Following the application of machine-learning algorithms, we successfully classified 
CVID patients from Healthy controls with sensitivities and specificities of 97% and 93%, 
respectively, for serum; and 94% and 95%, respectively, for plasma. Key spectral features capable 
of discriminating CVID patients from Healthy controls were identified for both serum and plasma 
samples; with a greater number of biomarkers associated with the Fingerprint region of the 
spectrum. Wavenumbers in regions indicative of nucleic acids (984 cm-1, 1053 cm-1, 1084 cm-1, 
1115 cm-1, 1528 cm-1, 1639 cm-1), and a collagen-associated biomarker (1034 cm-1) were found to 
have statistically significant (p <0.0005) absorbance intensity differences in the CVID group 
compared to the healthy controls. Future studies to validate these findings are required prior to 
translation into the clinical setting.  

The CVID-specific spectral variances identified in this study may present future candidate 
biomarkers and provide new knowledge into the aetiology of CVID, which remains largely 
undefined. Vibrational spectroscopy demonstrates a promising new approach which may improve 
the diagnosis and management of CVID patients. Earlier diagnosis of patients alongside the 
identification of prognostic markers may prevent development of severe complications, leading to 
better outcomes for patients. 
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Vibrational spectroscopy and multivariate analysis
techniques in the clinical immunology laboratory: a review
of current applications and requirements for diagnostic use

Emma L. Callerya and Anthony W. Rowbottoma,b
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ABSTRACT
Laboratory tests are essential for clinicians to reach an accurate diag-
nosis and informing appropriate treatments. The expansion in the
use of immunotherapies has highlighted the gap between the know-
ledge of molecular pathways and targeted therapies with availability
of laboratory tests. The translation of vibrational spectroscopic tech-
niques such as Fourier-transform infrared (FTIR) spectroscopy and
Raman spectroscopy into clinical practice offer rapid-, noninvasive
and inexpensive methods to obtain information on the molecular
composition of biological samples. Advances in instrumentation,
data analysis and machine learning techniques are key developments
that have permitted the availability of results to clinicians in an
appropriate timescale. Immunological disorders are complex, often
demonstrating interaction across multiple molecular pathways which
results in delayed diagnosis. Vibrational spectroscopy is being
applied in many fields and here we present a review of its potential
use in clinical immunology. This review addresses the potential use
of spectroscopy in clinical immunology. Potential benefits that these
novel techniques offer, including enhanced definition of molecular
process and its use in disease diagnosis, monitoring and treatment
response is discussed. Whilst not covered extensively, an overview of
the method principle, quality control processes, and the require-
ments for multivariate data analysis is included to provide the reader
with sufficient understanding of its application in the clinical setting.

KEYWORDS
Immunology; clinical;
biological; infra-red; Raman;
spectroscopy; molecular;
diagnostics

Introduction

The investigation of pathological disease

Medical diagnoses can be improved by rapid, highly-sensitive and quantitative analysis
of biological samples. The diagnostic investigation of pathological diseases relies on the
detection of disease-driven structural or functional changes that occur in cells, tissues
and organs, or in identification of biomarkers present in biofluids such as blood, urine,
or CSF.[1] Advancements over the last century have led to significant improvements in
the delivery of healthcare and has ultimately resulted in an increasing life expectancy
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across society.[2] However, despite continued scientific research and exponential techno-
logical advances, the diagnosis and treatment of many pathological disorders remain
irremediable. Innovative approaches must therefore be sought to further our under-
standing of complex diseases, to uncover novel diagnostic platforms and to imminently
provide superior, personalized treatment options. As a speciality, pathological investiga-
tions provide a valuable means for disease diagnoses, but perhaps more importantly,
contribute to the understanding of disease-related mechanisms. Once the etiological
processes of a disease have been elucidated it is then possible to transfer this scientific
knowledge into clinical practice; explaining the basis of symptoms, improving diagnostic
testing and discovering new treatment options to improve patient outcomes.[3]

The coming of age for immunology

There has been an unprecedented pace of change within the field of immunology in the
21st century, driven by both scientific research and medical application. During an
explosion of discoveries in the 1900s, the term ‘immunobiology’ was coined and the
foundations for both the innate and adaptive immune system were mapped out.[4]

Following on from this, the success of the Human Genome Sequencing Project provided
new opportunities for immunological research, igniting new ideas and innovative
experimental approaches for the diagnosis and treatment of immune-mediated disorders
that had not previously been possible.[5] As a consequence, the use of tools to manipu-
late the immune system (immunotherapy) now play a ground-breaking therapeutic role
in the fields of malignancy, transplantation and immune dysregulation; with the produc-
tion of monoclonal antibodies[6] and the use of checkpoint blockade and genetically
modified T cells as cancer therapeutics[7] being awarded Nobel prizes in 1984 and 2018
respectively. The discipline of immunology has finally taken center stage and proves as
vital as ever.
The immune system is comprised of a complex network of tissues and cells which is

organized throughout the entire body, joined together by circulating leukocytes and sol-
uble mediators. It is therefore not surprising that immune-mediated conditions can
affect anyone at any age, and span almost every speciality of medicine, including pediat-
rics, infectious disease, rheumatology, allergy, oncology, respiratory, gastroenterology,
nephrology, hematology, dermatology, and neurology. Major disorders of the immune
system include primary and secondary immune deficiencies, which result in an
increased susceptibility to infections, malignancy and autoimmunity; allergy, which
results in an exaggerated, inappropriate immune response to a usually harmless sub-
stance, and autoimmunity, whereby a dysregulated immune response is mounted against
self, causing damage to organs and tissue.[8]

Is the immunology laboratory equipped for the future?

In order to investigate individual components and function of the immune system in
relation to disease, the diagnostic immunology laboratory makes use of a variety of ana-
lytical platforms and methodologies including flow cytometry, immunohistochemistry,
enzyme-linked immunosorbent assay (ELISA) and related techniques, radial
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immunodiffusion, hemolytic assays, nephelometry, turbidimetry, and radioimmunoassay.
However, given the complexity of the immune system, our current test armory is chal-
lenged by only being able to investigate a finite area of the immune system with each
individual test. It is a shortcoming to consider that the majority of diagnostic laborato-
ries around the world will also have the same, rather limited repertoire of techniques
available to them. Future immunology will involve taking a wider, systems biology
approach to the study of the immune response in both physiological and pathological
conditions. Through the large-scale analysis of the immune response on multiple levels
(genome, transcriptome, proteome), a far more comprehensive view will be possible,
uncovering new concepts and development in basic immunology including the intricate
cross-talk of cytokine signaling, the molecular mechanisms underpinning the differenti-
ation and plasticity of immune cells and the role of the regulatory network in prevent-
ing disease.[4,5]

The forward momentum generated from the Human Genome project was under-
pinned by advances in technical platforms of genomics, cell biology, molecular biology
and bioinformatics.[5] Despite the availability and potential of these new tools, the rou-
tine clinical immunology laboratory continues to rely on conventional in vitro techni-
ques for the investigation of disease. In order to keep up with the on-going advances in
immunotherapies and personalized medicine, the diagnostic laboratory must adopt and
translate novel analytical platforms into routine use. As evidenced in the field of genom-
ics where an astonishing amount of data is generated from a single sample, bioinformat-
ics is vital to extract the relevant information for clinical interpretation. As advances in
the field have enabled ‘big data’ analysis to become more accessible and user-friendly,
the time for the routine application of mathematical modeling and machine learning is
here. Importantly within the specialty of immunology, these in silico techniques have
already been applied to describe various aspects of the immune system, thus highlight-
ing the potential clinical utility for use within the diagnostic laboratory.[9–14]

Vibrational spectroscopy, coupled with bioinformatics is a novel analytical platform
that provides a rapid, low-cost molecular approach to pathological investigations. This
makes it an ideal candidate for diagnostic medicine. Translation of vibrational spectros-
copy into the immunology laboratory would provide a vital tool to keep up with the
current pace of change and to transition into the future of molecular diagnostics.

Vibrational spectroscopy

Vibrational spectroscopy is an informative optical technique that is being increasingly
applied in the field of diagnostic medicine. By providing a measure of how light inter-
acts with matter, it enables the elucidation of unique biomolecular features of a given
sample in a nondestructive, label-free manner.[15,16] Vibrational spectroscopy is a well-
suited technique to study complex heterogeneous samples such as blood, due to the fact
that important biomolecules (such as lipids, carbohydrates, nucleic acids and proteins)
have characteristic chemical structures that can be specifically determined by their
unique spectral signature. Given that the composition and structure of biomolecules in
a blood sample will vary depending on the current physiological or pathological state,
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vibrational spectroscopy offers a potential diagnostic tool for the investigation of both
health and disease.
Vibrational spectroscopy is an umbrella term to describe the techniques that have

allowed scientists to observe the changes in the vibrational and rotational modes (transi-
tions) of a given molecule.[1] Following irradiation of a sample with light, molecular
transitions emit or absorb energy; this causes the molecules to move into new vibra-
tional or electronic energy state, detectable by vibrational spectroscopy. Characteristic
absorption spectra can be generated for individual samples due to the fact that each
molecule present within the sample has a unique vibrational frequency (i.e., DNA,
RNA, proteins, lipids, carbohydrates, collagen and glycogen). These spectra can be used
to determine a sample’s molecular identity following the application of computational
analysis techniques (chemometrics).[16–18]

The absorption spectra of a sample will vary according to biochemical changes,
some of which may be due to the presence of disease; vibrational spectroscopy is
therefore a well-placed candidate for the study of pathological processes thus provid-
ing a potential novel diagnostic platform.[19] The most important optical techniques
are infrared (IR) and Raman spectroscopy[19]; both of which are well established
methods for studying sample types such as biofluids, tissues and cell cultures.[1] These
methods are based on the two physical mechanisms involved in the excitation of
molecular vibrations; inelastic scattering of photons (Raman spectroscopy) or the
absorption of light energy (IR spectroscopy).[20] Raman and IR are fundamentally dif-
ferent techniques but can be used in a complementary fashion to increase the specifi-
city of molecular identification.[19] In both Raman and FTIR spectroscopy methods,
the detection and measurement of molecular excitations in the form of vibrational
energy generates a unique pattern of spectral peaks (spectral bands) dependent on the
biochemical composition of the sample, illustrated in Figure 1. Further analysis of
each sample spectrum can be performed on a qualitative and quantitative basis,
through the determination of individual peak positions (wavenumbers) and corre-
sponding signal intensity (peak area), respectively. This enables vibrational spectros-
copy to be used as a highly sensitive and specific analytical technique for the
interrogation of complex sample types, and as a result is now being used extensively
in biomedical research.[15]

The molecular fingerprint

The information generated from Raman and FTIR spectroscopy has been coined the
‘molecular fingerprint’, due to the unique spectral signature obtained from a given
material.[21] As vibrational spectroscopy examines the entirety of a sample, rather than
a single analyte, it provides an overall picture of the biological status at a given time-
point. When applied to biomedical samples, a unique pattern consisting of thousands of
spectral peaks will be produced in a single experiment; this generates an enormous
amount of data relating to the structural and functional properties of the sample.[22,23]

In light of this, comparisons have been made between spectroscopy techniques and the
‘omics’ methodologies such as genomics, metabolomics, proteomics, and
transcriptomics.[1]
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The multitude of potentially diagnostic features generated within the molecular fin-
gerprint of a sample can only be harnessed through the use of intelligent information
technology and appropriate chemometric tools.[1] Thus, technological advances in both
spectroscopic data acquisition and chemometric processing techniques have been major
contributing factors to the recent explosion of research studies in the clinical setting.[15]

Nevertheless, the interpretation of the enormous dataset obtained from vibrational spec-
troscopy of biological materials can be challenging, particularly when attempting to
assign subtle spectral features to discrete molecular compounds.[1] In this regard it is
important to appreciate that the spectral variations observed between samples may not
always be due to pathologically-recognized structural or metabolic modifications. In
these cases, the detection of spectral differences can instead provide an early warning

Figure 1. Generating unique FTIR spectra for biological samples. Following interrogation with IR light,
the changes in light absorbance can be measured and a biological spectral fingerprint generated. The
characteristic spectrum of blood serum (red) and plasma (blue) is illustrated, with six key wavenumber
peaks highlighted alongside their associated biomolecular component assignments.
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signal, highlighting samples that require further laboratory analysis, or alternatively,
identifying novel disease-related spectral biomarkers.[1]

Principles of vibrational spectroscopy

Light energy is transported across space in electromagnetic (EM) waves. The energy is
not continuously distributed but is packaged within individual photons. The energy of
the photon can be expressed by the equation E¼ h v, where h is Planck’s constant
(h¼ 6.626� 10�34 J s) and v is the frequency of the photon. The EM spectrum is made
up of different wavelengths; the frequency (v) of each photon is inversely related to
wavelength (k), as described by the equation v¼ c/k, where c is the speed of light.[24]

In spectroscopy, the wavenumber (ṽ), in cm�1, of a particular bond interaction is usu-
ally referenced as a more manageable figure. Wavenumbers are widely cited throughout
the literature and in reference libraries as a means for analysts and researchers to iden-
tify specific biomolecules.[17,18,25]

The interaction between light (photons) and matter can result in a change in the
energy level of molecules present in the material, from this a number of outcomes are
possible such as reflection, absorption, elastic scattering (Rayleigh), inelastic scattering
(Raman) and fluorescence.[26] Photons that are not directly reflected at the surface of
a sample will pass through it, resulting in events that can potentially change the fre-
quency and energy of the photon. Through the absorption of energy, molecules
become excited and are promoted into a higher electronic energy state; as the mole-
cules return to their original ground state they can release absorbed energy (at a lon-
ger wavelength) as fluorescence.[27] If the incident energy of a photon remains
unchanged, this is known as elastic- or Rayleigh scattering. If, however, the interac-
tions of photons with molecules in the sample result in a transfer of energy (manifest-
ing as the vibrational energy state of the molecule), this is known as inelastic- or
Raman scattering.[19,28]

Figure 2. Stokes and anti-stokes Raman scattering. Following transient excitation of molecular bonds
to the virtual energy state, the change in wavelength between the incident (k e) and resultant (k s)
light is directly related to the amount of energy required to shift a particular molecular bond into a
different vibrational energy level; this forms the basis of vibrational spectroscopy. Figure adapted
from 32.
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Raman spectroscopy

Although most of the light scattered by a molecule results in elastic scattering, approxi-
mately one in a million photons will be inelastically scattered, altering the frequency of
the incident wavelength to provide a quantifiable signal, without causing any damage to
the sample. Following this brief excitation, the molecules return back to their ground
state. The energy change is infinitely short following the scattering of photons therefore
it is referred to as a ‘virtual energy state’ (and is different to the change in electronic
energy state required for samples to fluorescence).[29] Raman scattering, known as the
‘Raman shift’ most often results in a transfer of energy from the photon to the mol-
ecule; the loss of energy from the photon increases its wavelength and is described as
Stokes shift. In contrast to this, Anti-Stokes signals can also be detected which come
from the energy shift as photons take up energy from already excited molecular vibra-
tions (Figure 2).[15,30] As the signal intensity of the scattered light is proportional to the
concentration of a molecule within the sample, the overall Raman spectrum generated
from an unknown sample can provide information on both its molecular constituents
and the concentration of these present in the sample.[31]

In the examination of complex biological samples with Raman spectroscopy, there
will be molecules present that share some of the same chemical bonds within their
structure (for example C-N bonds contained within proteins, or C¼O bonds within
fatty acids). Additionally, there will be molecules present containing different chemical
bonds but sharing the same overall vibrational energy. Regardless of this, the detection
of discrete Raman shifts (peaks) within the spectrum in conjunction with the signal
intensity of each peak can provide a highly specific and unique biochemical read-out of
a sample, capable of discriminating between even subtle differences between healthy
and pathological specimens[32]

Fourier transform infrared spectroscopy

Fourier transform IR spectroscopy (FTIR) is a high resolution mode of IR spectroscopy
that monitors the changes in the vibrational, rotational and stretching modes of individ-
ual molecular bonds following irradiation with polychromatic light. An IR absorption
spectrum is generated by measuring how much incident light energy is absorbed at a
particular wavelength as molecules in the sample to vibrate, absorb energy and move to

Figure 3. The electromagnetic spectrum; highlighting the wavelengths of the infrared spectrum
(12,820 to 10 cm�1) and its subdivisions.
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a higher energy level.[19,33] FTIR spectroscopy follows the Beer-Lambert law, thus IR-
active vibrations can be quantitatively measured when the frequency of absorbed radi-
ation matches the vibrational frequency of the molecule.[19,23] The absorbance frequency
of a particular molecule can be determined due to changes in the dipole moment during
the vibration; this is dependent on the polarity, size and shape of the molecule, and
type of bond (single, double, triple) present.[34] If a molecule is not in a dipole condi-
tion it will not be IR active, thus will not give rise to spectral peaks when excited with
IR light. As a general rule, covalently bonded molecules consisting of unalike atoms are
IR active, thus virtually all organic molecules will give rise to an IR spectrum.[35]

FTIR has a broader range of application than Raman spectroscopy as almost all mole-
cules can become excited to undergo vibrations after absorption of IR light energy.[19,23]

The IR range of electromagnetic spectrum covers the wavelengths of light between
780 nm (12,820 cm�1) to 1mm (10 cm�1) and can further be divided into near-, mid-,
and far-IR regions (Figure 3). Fundamental to biological FTIR spectroscopy is the mid-
IR (MIR) wavelength region (�350–4000 cm�1) which includes the well described
‘fingerprint’ area (1800 to 900 cm�1) of spectral peaks frequently used to characterize
organic matter.[36]

There are three modes of sampling for FTIR spectroscopy; transmission, transflection
and attenuated total reflection (ATR), relating to how the IR light is directed at, and
detected following interaction with the sample. In transmission mode, IR light is passed
directly through the sample and the resultant absorption frequencies are subsequently
detected. In this case, expensive transparent substrates (e.g., calcium fluoride) are
required for the mounting of biological specimens. In transflection modes analysis, the
IR light is transmitted through the sample before being reflected off the substrate to
pass back through the sample again; the absorbed radiation is then detected.
Transflection sampling methods use inexpensive, highly reflective substrates (e.g., low-
emission (Low-E) glass slides) for the loading of samples therefore may offer cost
advantages over transmission analysis. The third method, ATR-FTIR, is considered the
most suitable for the analysis of biological fluids and dried sample films as it is less sub-
jective to unwanted spectral inferences from physical or environmental factors.[37,38] In
ATR-FTIR, IR light is directed through an internal reflection element (IRE) with a high
refractive index (e.g., diamond/germanium). This generates an evanescent wave which
can penetrate a sample in contact with the surface of the IRE. The radiated light waves
are absorbed by the sample and the resultant frequencies can be detected.[19,33] This
method has demonstrated clinical application through the successful quantification of
various serological components in blood[39] therefore would provide the most suitable
sampling platform for translation into the clinical immunology laboratory.

Identifying biomarkers for clinical applications
Each peak in the spectrum relates to the absorption frequency of a particular molecule
as it becomes exited to vibrate. There are several different kinds of molecular vibrations
or oscillations that have been characterized by IR (and Raman) spectroscopy such as
stretching (symmetric and asymmetric); in-plane bending (scissoring and out-of-plane
bending (wagging and twisting). Many of these vibrations have now been associated
with well-defined wavenumbers for the identification of certain functional groups within
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a molecule.[17,40] This has led to the extensive application of FTIR spectroscopy across
the chemical industry (including biochemistry) to accurately identify the composition of
unknown compounds by identifying which molecular bonds are present through their
unique vibrational signatures.
It is key, and fundamental to the interpretation of spectral data, to note that an indi-

vidual absorption peaks observed within the IR spectrum of a heterogeneous sample is
not diagnostic of a single molecule, compound or biomarker within the sample. The
spectrum produced, even for samples containing a single purified compound will often
be made up of numerous absorptions relating to the vibrations from the combination of
chemical components present in the molecule. For instance, organic compounds con-
taining carbon-hydrogen (C-H) single bonds will produce characteristic wavenumber
vibrations depending on the strength and polarity of the bond. Caution must be applied
however when interpreting spectral absorptions relating to organic chemical functional
groups (e.g., alcohol (–OH), alkene (C¼C), amine (-NH2)) particularly those with mul-
tiple bonds, as there can be variability even within individual vibrational modes depend-
ing on the properties of the individual molecule in which they are found.[41] Although
it is analytically correct to consider the individual absorptions present in a molecule
and assign them to particular molecular vibrations, this is not practical for complex
samples containing a multitude of biological molecules. Therefore, in order to apply
spectroscopic analysis to the investigation of biological specimens, it is the overall spec-
trum that must be considered. This is known as the ‘molecular fingerprint’ and serves
as the characteristic identifier for each molecule present in the sample.[41]

Complex absorption spectra are generated from biological specimens due to the vast
number of unique vibrations that can be measured in the sample.[42] The most import-
ant wavenumber regions relating to key biological components (proteins, lipids, nucleic
acids and carbohydrates) are the fingerprint region (1800–900 cm�1) and the high
region (3700–2800 cm�1), illustrated in Figure 1 and Table 1. Signal intensity at a given
wavelength will vary depending on three main factors: (i) the concentration of the mol-
ecule in the sample, (ii) the chemistry of the functional group in the molecule (primary
structure), and (iii) the conformation (secondary structure) of the molecule within the
sample.[19] For the biological investigation of proteins, the amide I band
(1600–1690 cm�1) has received the most attention as its shape, position and intensity

Table 1. Assignment of wavenumbers and vibration modes to the major absorption bands observed
in the IR spectrum of blood plasma, adapted from 66.
Wavenumber [cm�1] Assignment

3300 m(N-H) of proteins (amide A band)
3055–3090 m(¼CH) of lipids and proteins
2950–2960 mas(CH3) of lipids and proteins
2920–2930 mas(CH2) of lipids and proteins
2865–2880 ms(CH3) of lipids and proteins
2840–2860 ms(CH2) of lipids and proteins
1730–1760 m(C¼O) of fatty acids
1660 m(C¼O) of proteins (amide I band)
1550 d(N-H) of proteins (amide II band)
1400 m(COO�) of amino acids
1240 mas(P¼O) of nucleic acids
1170–1120 m(C-O) and m(C-O-C) of carbohydrates

m, stretching vibrations; d, bending vibrations; s, symmetric; as, asymmetric.
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can be used to predict different types of secondary structures.[43] Within this peak, wave-
number assignments for a-helixes (1650 cm�1), b-sheets (1632 cm�1), and random coils
(1658 cm�1) have been determined to elucidate different structural segments within a pro-
tein.[44] An increased confidence in peak assignment has been demonstrated in recent
years as the use of vibrational spectroscopy has expanded and spectral wavenumber
libraries for biological material have been generated for both Raman and FTIR.[18,45]

Based on the evaluation of the literature describing numerous spectroscopy studies,
wavenumber libraries have been constructed to assign distinct chemical bonds and func-
tional groups to the most frequently seen peaks in biological materials. This has pro-
vided researchers with an accurate and reliable database to find the meanings of
different unknown peak intensities, thus strengthening the evidence for the application
of vibrational spectroscopy to both clinical and non-clinical aspects of biochemistry.[18]

Analytical considerations for the interrogation of spectral data

Quality control and pre-processing steps

Prior to the translation of vibrational spectroscopy data into a potential diagnostic tool,
several specialized analytical techniques must be applied. Due to the high complexity of
data from biological samples and the fact that subtle spectral variations are often
undetectable by visual examination, chemometric and machine-based learning algo-
rithms are required to extract the relevant information which could relate to the pres-
ence of disease.[42] Quality control (QC) approaches are employed in the first stages of
data analysis to ensure unsuitable spectral measurements are removed from the data
set. The application and integration of appropriate QC processes are crucial to all ana-
lytical methods used for patient diagnosis, monitoring and prognostic evaluation in the
healthcare setting, underpinned by the UKAS 15189 accreditation requirements.[46]

Similarly to the commercial auto-analysers currently employed within pathology labora-
tories, most commercial Raman- and infrared spectroscopy instruments have QC pack-
ages built in to the spectral acquisition software which provide the first line of QC.
The main issues resulting in poor quality spectrum include excessive sample thickness,
environmental variations (including temperature, humidity, and pressure), instrumenta-
tion errors, and excessive scattering, dispersion or noise detected during the analysis.[47]

To reduce the impact of these known sources of error, steps must be taken to ensure
there is standardization of specimen collection and storage, and that reproducible proc-
esses are followed during sample preparation and spectral acquisition.
Pre-processing steps form a second line of quality control, with several recommended

protocols published in the literature.[16,47,48] Pre-processing is essential to standardize
and correct unwanted signals (background noise) such as sloping baseline effects, fluor-
escence, scattering, variations in sample thickness, environmental and instrumental var-
iations, and to remove contaminants (i.e., fixatives or residual water in dried sample
films).[47,49] These unwanted signals cause oscillations in the spectrum, producing false
absorption bands that do not represent the sample composition. The major pre-process-
ing techniques are cutting, de-noising, baseline correction and normalization. As previ-
ously described, during FTIR spectroscopy of biological samples, absorbance occurs in
the MIR wavelength region (�350–4000 cm�1) inclusive of the well-described
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fingerprint region (1800–900 cm�1). ‘Cutting’ of the FTIR spectra to select the region(s)
of interest is the first stage of pre-processing, reducing the number of data points for
subsequent explorative analysis. As the fingerprint region contains the wavenumber
regions relating to biological components (proteins, lipids, nucleic acids and carbohy-
drates)[16] this region is most commonly selected for initial cutting of biological sample
spectra. Cutting of the ‘high region’ which covers wavenumbers 3700–2800 cm�1 has
gained increasing interest in recent years for examination of biological samples[17]; key
biomolecules in this region include lipids, fatty acids, phospholipids and contribution
from protein side chains, nucleic acids, cholesterol and creatinine.[50–53]

Subsequent to cutting, de-noising methods, such as smoothing, baseline correction and
normalization are routinely applied pre-processing techniques in FTIR biospectroscopy.
Smoothing techniques such as Savitzky-Golay (S-G) smoothing is one of the most com-
mon analytical procedures employed to digital data.[54] An SG filter can be applied to a
dataset in order to increase the precision when detecting relevant signal peaks. To achieve
this, high frequency noise and random error signals must be eliminated without degrad-
ing any genuine signal peaks. The SG digital filter is a moving window based on a chosen
sets of integers such as polynomial degree, number of convolution coefficients and win-
dow size. Caution must be applied when using smoothing methods as they can potentially
distort or smooth out relevant peaks, therefore the S-G algorithm tuning parameters must
be appropriately selected to avoid any amplification of unwanted signals.[47] Various base-
line correction techniques can be applied to FTIR data such as rubber-band correction,
polynomial fitting and differentiation-based methods, often combined with SG smoothing
to improve signal to noise ratio. These techniques will account for several causes of a
skewed baseline including scattering, reflection, temperature fluctuation, sample thickness
and instrumental issues.[49] The application and detail of each of these techniques is
beyond the scope of this review but can be found elsewhere.[16,47,48,55]

Application of machine learning for analysis and interpretation of
spectral data

On completion of spectral pre-processing, chemometrics must be applied in order to
interpret any clinically-relevant variance within the data set. Chemometrics is a

Figure 4. The use of artificial intelligence and machine learning for the analysis of ‘big data’.
Chemometrics is a speciality of machine learning; several mathematical and statistical techniques can
be routinely applied for optimal analysis of complex spectral data. SVM—support vector machine;
PLS-DA—partial least squares discriminant analysis; PCA-LDA—Principle component analysis–linear
discriminant analysis: ANN—artificial neural networks; FFS—forward feature selection.
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speciality within the field of Machine Learning (Figure 4). It applies mathematical
and statistical methods to allow optimal analysis of multivariate data. Interrogation of
spectral data is conducted over two phases; an exploratory analysis, during which the
data set is interrogated for disease-associated patterns or biomarkers that may enable
separation (clustering) of different classes (e.g., disease versus healthy controls), fol-
lowed by diagnostic prediction analysis, whereby key spectral variances are evaluated
using classifier-based mathematical algorithms. Diagnostic classification models must
be built on a ‘training dataset’ using machine-learning algorithms, the success (cor-
rect classification rate) of the chosen model must then be verified on a new ‘test’
dataset to evaluate the diagnostic potential. Prior to translation into the clinical
laboratory a number of refining steps can be conducted; this further training of the
algorithm-based prediction system can be achieved through the blind testing of new
unclassed data.[47]

During exploratory analysis, unsupervised chemometric methods can be used, which
refer to the fact that class information (i.e., disease or non-disease) is omitted to prevent
over-fitting of the data and introduction of bias. Principle component analysis (PCA) is
a widely used unsupervised multivariate analysis technique for interpretation of complex
data. The goal of PCA is to reduce the complexity of a dataset by producing a fewer
number of independent variables (called loadings vectors), while retaining the maximum
levels of variation present in the original data (Figure 5). In order to obtain the loading

Figure 5. The application of PCA on ATR-FTIR spectral data to identify key variances responsible for
class separation. Six hundred spectra (thirty healthy controls, 20 replicate point spectra) recorded on
dried blood spots; either serum (red) or plasma (blue) and cut to the fingerprint region
(1800–900 cm�1). When PCA is applied to the dataset, scores plots can be obtained (top right) illus-
trating two discrete clusters (red and blue) from each sample type. This demonstrates that spectra
from either serum or plasma can be clearly discriminated from one another, particularly when using
Principle Component 1 (PC1) which contains 53.1% of the total variance. Further interpretation of dis-
criminating wavenumbers within the dataset is possible by creating a loadings plot of PC1 (bottom
right); by application of a ‘peak detector’ the wavenumbers associated with the greatest variance
between the two sample types will be identified.
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vectors, commonly referred to as principle components (PCs), the original data is lin-
early transformed and ordered as such that the first PC retains the maximal variance
and each succeeding component retains the next highest variance. Each successive PC is
orthogonal to the others (i.e., forms an angle of 90 with the PCs). This enables the data
to be visualized in a reduced dimensional space and any relationship between classes
can be identified with less difficulty.[56,57] In the analysis of biological spectra, PCA can
reduce the number of features from approximately 900 wavenumbers to 10–20 PCs. In
biological samples, 10–20 PCs will often account for 99% of the total variance.[58] As an
unsupervised multivariate method, PCA has weak discriminatory power, which limits its
use in classification and prediction models. In the diagnostic classification phase, this
can be overcome by combining PCA with more powerful supervised methods such as
linear discriminant analysis (LDA). PCA is therefore applied as a further pre-processing
step for several computational analysis techniques in machine learning and data min-
ing algorithms.
Whilst unsupervised processing can reveal unique spectral features common to par-

ticular groups (or clusters) of samples this is often not sufficient for diagnostic applica-
tion. Supervised data processing techniques are therefore required to build a robust
diagnostic framework using machine-learning algorithms which can be applied to pre-
dict pathological disease.[59] In this case, a prediction model is built based on the
assignment of subtle spectral differences from known classes (disease or non-disease) of
samples within a training data set. The model is then verified using a new ‘test’ data set
to establish the ability of the model to correctly classify unknown samples into disease-
or non-disease groups.[16,60]

LDA is an example of a commonly used supervised chemometric technique. As
opposed to unsupervised methods, supervised techniques include consideration of class
information (i.e., disease or non-disease) during analysis. LDA, similar to PCA, is a lin-
ear transformation technique, both of which look for features in a reduced dimensional
space to explain complex data variance. In contrast to PCA (which generates a loading
vector associated with maximal variance), LDA generates a vector which will maximize
between-class separation whilst minimizing within-class spreading of the data. This ena-
bles high accuracy as a prediction or classification model to be achieved if the data can
be separated in a linear manner. A known limitation associated with LDA is the ten-
dency to over-fit the data (given the fact that classes are considered during the analysis),
particularly if insufficient number of spectra are acquired within the study. To over-
come this, a general rule for application of LDA is to collect a number of spectra at
least 5–10 times larger than the number of features. Application of PCA as a pre-proc-
essing step, thus reduction of the number of variables in the dataset, will also aid in
overcoming this limitation.[48]

A variety of multivariate pattern recognition and classification techniques are avail-
able to facilitate interpretation of complex spectral data, the details of which are beyond
the scope of this article but are covered in detail elsewhere.[47,55,61] Application of these
chemometric tools during the exploratory analysis phase permits the extraction of bio-
chemically-relevant spectral information and the development of classification mod-
els.[47] As described earlier, prior to the translation of these newly-constructed
classification algorithms into clinically useful diagnostic tools, further validation of
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classification performance is required; this is achieved by blind testing the classification
model using spectra from a new ‘test’ population dataset. Once validated, the need for
complex computational analysis is no longer required, permitting the use of biospectro-
scopy to become a ‘plug-and-play’ methodology either within the immunology labora-
tory or at the bedside/clinic consultation as a point-of-care device.

Clinical application of vibrational spectroscopy

Vibrational spectroscopy has been successfully applied across a wide area of clinical
medicine; providing a new approach to detect molecular and structural changes caused
by complex disorders such as Alzheimer’s disease,[62,63] multiple sclerosis,[64] mental
disorders,[65,66] HIV/AIDS,[67] diabetes[68] and carcinogenesis.[36,65,69–71] High diagnostic
accuracy was demonstrated for classification of numerous cancer types and other bio-
logical applications.[15,18,33,48,52,72] Despite several promising proof-of-concept studies
demonstrating impressive sensitivities and specificities for a wide range of pathologies,
the translation of vibrational spectroscopy into the clinical setting has yet to gain
momentum. This is likely due to a lack of clinical studies with the appropriate sample
sizes to reflect the disease prevalence; thus most studies to date may be biased due to
the use of relatively small sample sizes.[73] Furthermore, in order to fully validate this
novel method for the detection of rare disease, further spectroscopy studies must be
conducted alongside the current gold-standard laboratory techniques within large-scale
screening programmes.[19]

Application of vibrational spectroscopy in clinical immunology

As highlighted earlier, immune dysregulation has interconnectivity with almost all spe-
cialities of medicine. There is an unmet need for an improved and holistic approach
toward the investigation of immune-associated disorders, whereby simultaneous analysis
of multiple immune-mediated components is performed in order to provide an earlier
indication of disease. Following on from the completion of the 100,000 Genome Project
and an ever increasing number of genomic sequencing studies, a multitude of immune-
related loci and disease-associated alleles have been identified.[74–80] Unfortunately, for
the majority of immunological disorders, the monogenetic link has not yet been identi-
fied, or quite possibly, does not exist. Research has been unable to explain these disor-
ders using simple Mendelian logic and instead have found increasing numbers of ‘risk’
loci in immune-associated genes, this therefore limits the clinical utility of a genomic
approach in routine diagnostics and an alternative strategy is required.
To do this, a combined use of ‘omics’-like technologies and whole sample profiling

may provide more clues in the search for diagnostic biomarkers and causative etiology.
Through advances in molecular methods it is now understood that additional micro-
environmental factors play a role in the varied clinical phenotypes observed within a
disease entity. For example, in common variable immune deficiency (CVID), the most
common symptomatic immune deficiency in adults, epigenetic alterations, such as DNA
methylation[81] and histone modifications[82]; as well as transcriptional disturbances,
such as single nucleotide polymorphisms (SNPs) impact on CVID susceptibility.[83,84] In
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light of this, novel approaches to complement current molecular findings are warranted,
not only to shed a new light on the pathogenic mechanisms associated with the disease,
but to enable risk stratification and individualization of treatment. Toward this goal, the
interrogation of whole unprocessed samples with vibrational spectroscopy will generate
a new library of ‘big data’ at the molecular level, which can be examined in the context
of complex disorders such as CVID.

Autoimmune disease

Autoimmunity is a term used to describe an immune response which is directed against
‘self’, a process famously coined ‘horror autotoxicus’ by Dr Paul Ehrlich. The etiology of
autoimmune disease has yet to be fully elucidated but is considered to be multi-factor-
ial, involving both genetic and environmental influences to ultimately result in a loss of
tolerance to self-proteins of the body.
Both Raman and FTIR vibrational spectroscopy methods have been applied to the

investigation of rheumatological conditions in several proof-of-concept studies. As early
as 2003, the diagnostic and disease monitoring potential in rheumatoid arthritis (RA)
was demonstrated by Canvin et al. using near infrared spectroscopy on specific joints
alongside PCA-LDA multivariate analysis.[85] Through the identification of spectral fea-
tures that correlated with metacarpophalangeal (MCP) and proximal interphalangeal
(PIP) joint damage, swelling and tenderness, they were able to differentiate between
normal and RA patients with greater than 70% sensitivity and 80% specificity.
Serological analysis followed later, when in 2011 Carvalho et al.[86] used Raman spec-
troscopy of blood sera and PCA-LDA for diagnostic discrimination of RA patients from
controls to achieve even greater sensitivity and specificity, at 88% and 96%, respectively.
Similar serological findings were obtained in 2016 by Lechowicz et al.[87] using FTIR
and a K nearest neighbor (K-NN) mathematical modeling to achieve 85% sensitivity
and 100% specificity in the discrimination of RA patients from controls. These superior
sensitivities, compared to the current serological laboratory tests (rheumatoid factor
(54% sensitivity) and c-reactive protein (58% sensitivity),[86] would therefore position
vibrational spectroscopy as a strong candidate for a new screening test for RA in the
clinical setting. Moreover both groups illustrated the capacity to detect early and late
changes in patients with rheumatoid synovitis; thus if used in clinical practice would
provide a means to identify and treat the right patients at the right time.
In 2019, a further vibrational spectroscopy study in the field of rheumatology was

undertaken by Hackshaw et al.[88] Using FTIR and Raman spectroscopy of dried blood
spots, followed by SIMCAVR multivariate analysis they were able to successfully discrim-
inate between patients with RA, systemic lupus erythematosus (SLE), osteoarthritis and
fibromyalgia with no misclassifications. The unique spectral signatures derived from the
study were capable of separating out the four patient groups due to vibrational varia-
tions in the protein and nucleic acid backbone.[88]

Raman spectroscopy of serum and plasma samples has recently been successfully
applied to anti-neutrophil cytoplasmic antibody (ANCA) vasculitis,[89] a multisystem
autoimmune disease in which inflammation and damage to small blood vessels occurs
during active disease. Left untreated AAV can rapidly progress leading to organ
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damage and death. Morbidity and mortality has improved dramatically following the
use of immunosuppressive therapy to induce remission, however prompt identification
of relapsing disease remains a diagnostic difficulty for clinicians due to a lack of reliable
disease activity biomarkers.[90,91] In their study, Morris et al. illustrated for the first
time, the use of Raman spectroscopy as a candidate biomarker for active disease in
AAV. Using partial least squares discriminant analysis (PLS-DA) they achieve discrimin-
ation between patients with active disease and remission with 70% and 80% sensitivity,
and 93% and 80% specificity, for serum and plasma, respectively.[89] Subsequently, the
group applied ATR-FTIR and PLS-DA to distinguish between active and quiescent dis-
ease, which resulted in superior sensitivity and specificity, achieving 100% and 86%,
respectively.[92] These findings have the potential to aid patient care and improve clin-
ical outcomes through the earlier detection and management of relapsing disease.
ATR-FTIR has also been used to evaluate inflammatory glomerulonephritis (GN) using

urine as an alternative biofluid. Yu et al. used a mouse model of progressive crescentic GN
induced by anti-glomerular basement membrane antibodies to identify key spectral bio-
markers.[93] Specifically, they observed an increased intensity at wavenumber 1545 cm!1

with increased severity of disease, which subsequently decreased with response to cortico-
steroid treatment. This biomarker was also diagnostically applicable to the human cohort
of 24 ANCA vasculitis patients included in the study. These findings have demonstrated
the future potential for urine biospectroscopy to be used as a sensitive, cost-effective, and
noninvasive test for diagnosis and monitoring of renal patients in the clinic.
FTIR and multivariate analysis techniques have been applied to CSF samples in the

diagnosis multiple sclerosis (MS).[64] Immune-mediated destruction of the myelin sheath
surrounding nerve fibers of the central nervous system characterizes the pathogenesis of
MS, however the underlying cause remains unclear, as is the cause of disease progres-
sion from a clinically isolated incident (CIS) to relapsing-remitting MS (RRMS) and, of
increased severity, to progressive MS. Despite availability of diagnostic criteria,[94] the
diagnosis of MS is rendered difficult due to the overlapping clinical and analytical fea-
tures shared with other neurodegenerative diseases. ATR-FTIR spectroscopy of CSF
coupled with multivariate analysis (PCA and hierarchical cluster analysis) has proven a
successful novel technique in MS capable of diagnosing and differentiating CIS and
RRMS patients from control samples. Furthermore, they identified a unique disease-
associated spectral biomarker at wavenumber 795 cm!1, which could provide a labora-
tory tool to accurately diagnose MS. Their findings suggest that vibrational spectroscopy
and multivariate analysis has high potential for use in the early detection of MS, and
that the spectral changes identified may indicate disease-induced changes at an earlier
subclinical time point.[64] This could have great clinical impact on patient outcome, as
previous studies indicate that the risk of developing MS can be reduced by early treat-
ment after the first clinical demyelinating event.[95]

Allergic and hypersensitivity disorders

In the field of clinical hypersensitivity, which includes allergy, asthma and atopic derma-
titis, the application of vibrational spectroscopy has not been widely explored. However
over the last decade both Raman and FTIR spectroscopy methods have started to
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become increasingly recognized as a powerful new approach for the clinical investiga-
tion of allergy patients. Allergy can be defined as an exaggerated immune response
(hypersensitivity) to a foreign substance that is usually harmless in non-allergic individ-
uals. Currently, the diagnosis and management of severe allergic and hypersensitivity
disorders requires referral to specialist services for clinical consultation in order to
obtain a thorough allergy-focused history. In the clinical immunology laboratory, sero-
logical testing is limited to the detection of specific IgE (sIgE) directed against suspected
allergens, and to the measurement of mast cell tryptase, which is released from mast
cells during severe acute allergic reactions (anaphylaxis). There are several limitations
associated with these tests and an unmet need to improve patient care,[96] toward which
vibrational spectroscopy could offer a novel diagnostic platform, either as a laboratory-
based assay or as a point-of-care device.
It should be noted that the detection of sIgE is not diagnostic for allergy, rather it

indicates that a patient has been sensitized to that allergen. There is a need for an
improved approach given the lack of standardization between these assays, and the fact
that clinical sensitivities have not been well established, being particularly poor in the
investigation of drug allergy (e.g., 19.3% for penicillin.[97] Whilst mast cell tryptase
measurement can be useful in the investigation of anaphylaxis, full interpretation
requires serial sample collection (immediately, within four hours and a baseline meas-
urement 24 hours post-reaction. As the majority of patients present to the emergency
department, a complete set of serial samples are rarely received, leaving patients with
potentially severe allergy at risk of being missed and appropriately managed.
Biochemical mediators associated with an allergic phenotype could be detected

through unique spectral variances present in biological samples. This would offer a new
approach for allergy diagnosis in the clinical setting; improving patient care through
eliminating the need for serial sample collection, increasing diagnostic sensitivities for
allergy testing and alleviating NHS financial pressures associated with hospital-based
patient management. As more is uncovered about the biochemical changes associated
with an allergic phenotype (Th2-driven inflammation involving IL-4, IL-5, IL-13) and
the response to immunotherapy (decreased Th2 response alongside increased immune
regulation markers IL-10, TGF-b and T regulatory cells),[98] gaining an overview of the
whole metabolic picture in a single test will be more informative in the assessment of
allergic responses. As the spectral fingerprint is representative of all the biochemical
constituents in a biological sample, vibrational spectroscopy paired with multivariate
analysis provides the means to do this in a robust and economical way. In Asthma
patients, assignment of disease severity category (mild, moderate, severe, very severe) is
vital for risk stratification and provision of optimal treatment. Current assessment is
largely based on clinical parameters however in 2013 Sahu et al. demonstrated promis-
ing results using Raman spectroscopy and PCA-LDA on serum as a novel laboratory
test.[99] Spectral changes observed in the 44 asthma patients of varying disease severities
enabled separation of all asthma patients from a reference group. Of note, an increase
in Raman bands assigned to DNA and glycosaminoglycans were associated with
increased asthma severity. Moreover, good separation of treated versus untreated severe
asthma patients was achieved, indicating that treatment response could be monitored if
used in future clinical practice.
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Improvements in the treatment of asthma and chronic airway disease are also being
influenced by successful research using FTIR spectroscopy.[100] Through the identifica-
tion of unique spectral features within chronic allergic airway models, biochemical
changes induced by anti-asthmatic therapies can be studied in a way that has not been
possible before. The need for novel asthma therapeutics is high given the limitations
associated with current treatments which include bronchial dilators and glucocorticoids.
Whilst a number of promising new treatments have demonstrated clinical benefit using
conventional methods,[101–103] FTIR spectroscopy may provide the tool that will exped-
ite their use in clinical practice, through overcoming the challenge of elucidating the
therapeutic mechanism of action at a detailed molecular level.
Research into the allergenicity of aeroallergens, specifically pollen, has been undertaken

using both Raman and FTIR.[104,105] In 2014, Guedes et al.[105] use Raman spectroscopy
to create a spectral library of 34 pollen species, demonstrating an innovative method to
characterize airborne pollen. In an era in which the prevalence of respiratory allergies
continues to rise worldwide,[106] this approach may provide a future aid to patient man-
agement, particularly during the pollen seasons. Subsequent to this, in 2017, Depciuch et
al.[104] used FTIR spectroscopy to demonstrate that molecular alterations in hazel pollen
due to the influence of air pollutants and urbanization may result in an increased aller-
genicity. These findings provide new evidence to further understand the epidemiology of
allergic disease, and will enable clinicians to tailor future treatment and prevention strat-
egies accordingly.
The in vivo application of Raman and FTIR spectroscopy to the study of skin barrier

function and molecular composition has been demonstrated by several groups.[107–111] In
the context of atopic dermatitis, vibrational spectroscopy may provide a novel, noninva-
sive assessment tool to monitor both the safety and clinical efficacy of new treatments.
This is currently being explored in a clinical trial at Sheffield University (NCT04194814),
in which FTIR spectroscopy is being used as a potential outcome measure for evaluating
the safety of topical treatments in atopic dermatitis.[112] In addition to assessment of treat-
ment response, the group aim to identify novel biomarkers of skin barrier disruption and
atrophy that can be applied to future therapeutic drug trials to assess safety.
In the most recent piece of allergy-focused biospectroscopy research, Korb et al.[113]

used machine learning-empowered FTIR spectroscopy to successfully discriminate
between healthy, allergic and immunotherapy-treated allergy patients using both a
mouse model and human patients. This study, conducted in 2020 demonstrated the
clinical potential of using serum samples and vibrational spectroscopy for the rapid
diagnosis of allergy and therapeutic monitoring of patients treated with allergen-specific
immunotherapy (SIT). Building on the success of the studies to date, further larger-scale
patient studies using FTIR and Raman spectroscopy methods are warranted in order to
fully understand the potential impact this platform could have in the field of allergy
and hypersensitivity disorders.

Immune deficiency

Immune deficiency disorders are a heterogeneous group of disorders often presenting
with an increased susceptibility to infection due to defective immune system
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development and/or function. These disorders can be divided into primary immunodefi-
ciency disorders (PIDs), also known as inborn errors of immunity, and secondary
immunodeficiency disorders, which are acquired as a result of disease or environmental
factors. In the most recent 2019 update to the International Union of Immunological
Societies (IUIS) classification of Inborn Errors of Immunity report, 430 distinct PIDs
were characterized; a significant increase from the 180 previously report in 2009.[114,115]

The increased availability and accessibility of molecular techniques such as next-gener-
ation sequencing has expedited the identification of novel genetic defects associated
with PIDs, and led to greater understanding of immunological mechanisms of disease.
Further contribution to the understanding of molecular and cellular pathways related to
PIDs may soon be provided from novel platforms, such as the use of vibrational
spectroscopy, which can provide detailed molecular information on a wide range
of biofluids.
The laboratory investigation of immunodeficiency disorders consist of an initial

work-up, including complete blood counts, lymphocyte subsets (T-, B-, and NK-cells),
and serological measurement of immunoglobulin levels, vaccine titers and complement.
Functional studies, cytokine assays and molecular tests can be subsequently performed
to aid final diagnosis. Flow cytometry is used to determine the identity of the cells of
the immune system, a method that requires using fluorescently-labelled antibodies that
can potentially alter the behavior of the cells, or may also require chemical fixation,
which destroys the cell so that further functional assays cannot be performed. The
potential use of Raman and FTIR spectroscopy to provide a label-free method for cellu-
lar studies is being currently being explored, as this would enable further use and
manipulation of identified immune cells that has previously been a challenge with
flow cytometry.
In the first and only clinical application of vibrational spectroscopy to PID, Callery et

al.[116] applied ATR-FTIR to the study of patients with Common Variable Immune defi-
ciency (CVID). CVID is a clinically heterogeneous disorder characterized by hypogam-
maglobulinemia and recurrent infections with further complications such as
autoimmunity and malignancy affecting approximately 1 in 5 patients.[117,118] Currently,
there is no diagnostic clinical or laboratory test available for CVID. Using ATR-FTIR
alongside PCA-SVM, the group demonstrated the ability to classify patients with
Common Variable Immune deficiency (CVID) from healthy controls with sensitivities
and specificities of 97% and 93%, respectively for serum, and 94% and 95%, respectively
for plasma. Furthermore, using a combination of chemometric algorithms such as PCA-
LDA, Student’s T Test and Forward feature selection (FFS), several discriminating spec-
tral bands were identified, including wavenumbers in regions indicative of nucleic acids
(984 cm!1, 1053 cm!1, 1084 cm!1, 1115 cm!1, 1528 cm!1, 1639 cm!1), and a collagen-
associated biomarker (1528 cm!1), which may represent new candidate biomarkers in
future diagnostics.
A number of groups have demonstrated the proof-of-concept for the Raman–based

methods to classify immune cells in a label-free manner; however, as expected due to
the similarities in shape, size and biochemical makeup of lymphocyte subsets, there are
several areas of spectral overlap observed when characterizing immune cells. In 2014,
Maguire et al.[119] successfully classified lymphocytes and monocytes from the blood of

APPLIED SPECTROSCOPY REVIEWS 19



a population of volunteers using Raman microspectroscopy and three different chemo-
metric techniques. Their work highlighted the importance of understanding and apply-
ing the most appropriate multivariate analysis and modeling techniques to maximize
robustness and accuracy.
Subsequently, in 2015, Chen et al.[120] published their research which demonstrated, for

the first time, the ability of wavelength modulated Raman spectroscopy to identify unfixed
and unperturbed lymphocyte populations from the peripheral blood of multiple healthy
donors. Wavelength modulated Raman spectroscopy was used to enhance the standard
Raman technique and allowed discrimination of closely related lymphocyte subsets, CD4þ
T cells, CD8þ T cells and CD56þ NK cells which had previously not been achieved. This
pioneering work provides significance for both in vitro and in vivo studies of the immune
system, and as the cells are unaltered, Raman-identified cells could be subsequently ana-
lyzed for functionality, cytokine profiling, or transcriptome signatures.[120]

Hobro et al.[121] used Raman spectroscopy alongside PLS-DA to question how signifi-
cant the spectral variations are between T cells and B cells, as well as characterizing key
wavenumbers associated with different cell lines of B- and T lymphocytes. Whilst dem-
onstrating the possibility of this approach to distinguish between single point-spectra of
B- and T cells, and between individual B- and T cell lines, the misclassification rate was
high at 75 in 1000. This highlights the need for further optimization studies prior to
translation into the diagnostic laboratory.
Lastly, using an alternative multi-modal approach with the use of both Raman spec-

troscopy and digital holographic microscopy (DHM), Reynolds et al.[122] were able to
characterize individual cells of the immune system through acquisition of single-point
spectra. They demonstrated the ability to identify and discriminate between CD4þ T
cells, B cells and monocytes at sensitivities in the range of 87–100% and specificities of
85–100%. Given the more rapid analysis capabilities of DHM but lower specificity than
Raman spectroscopy, they propose using the two label-free techniques together for a
more robust analysis. Translated clinically, DHM could be used as a fast initial screen-
ing test in which cells of interest can be further interrogated by Raman spectroscopy for
a more detailed molecular analysis.
In summary, Raman spectroscopy is not currently in a position to replace flow

cytometry and genetic analysis in the laboratory investigation of immune deficiency dis-
orders. However, given the detailed biomolecular information obtained from spectral
analysis of immune cells, it would provide a complementary methodology and molecu-
lar insight into the complex pathological mechanisms underpinning immunodeficiency
disorders. Future research studies are required to fully unleash the diagnostic potential
of vibrational spectroscopy in the cellular immunology laboratory.

Advantages and challenges of vibrational spectroscopy in biological
investigations

Both IR and Raman spectroscopy have been extensively applied to investigate biological
fluids for the detection of disease.[123] The majority of research has focused on blood
serum and plasma, however saliva,[60] tears,[124] bile fluid,[125] urine[126] and cerebro-
spinal fluid[64] have also been used. FTIR spectroscopy offers many advantages over
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conventional methods for laboratory analysis of pathological specimens. As previously
described, almost all of the molecules present in a biological sample are IR-active, there-
fore can be quantitatively and qualitatively interrogated by IR spectroscopy.[60] Compared
to using enzyme-based assays (such as ELISA) or fluorescently-tagged monoclonal anti-
body methods to probe particular analytes in a sample, IR-spectroscopy techniques can
perform direct measurement on unprocessed samples and require very minimal sample
preparation. Moreover, spectroscopy methods do not require expensive reagents or label-
ing components and permit the analysis of the entire sample constituents rather than a
discrete number of known analytes.[60] Further instrumental advances in IR spectroscopy
have led to the generation of increasingly sensitive, cost-effective, portable devices that are
well-suited for point-of-care (POC) tools. Prototypic POC devices have already been built
and trialed to accurately determine clinical parameters in an intensive care unit.[127]

Limitations facing IR spectroscopy for the quantification of biomolecules in clinical
practice are largely related to a lack of analytical sensitivity and specificity, the latter is
often due to the complexity of biological matrices, and can be improved to an appropri-
ate level with the application of chemometric techniques for multivariate analysis.
Sensitivity issues have been described as intrinsic to the IR technique which are further
compounded by the strong IR absorption of water molecules present in biofluid sam-
ples. In light of this, only ATR-FTIR is deemed acceptable for interrogating unprocessed
fluids such as whole blood; pre-processing steps such as drying the biofluids onto slides
or directly into the ATR crystal are also well-practiced methods to improve quality of
the spectral data.[60] Sample preparation can impact the biochemistry and structural
properties of a sample therefore must be carefully considered prior to initiating vibra-
tional spectroscopy studies. A well-described spectral sampling phenomenon known as
the ‘coffee-ring effect’ can impact the homogeneity of a dried blood film as numerous
biochemical components (proteins, lipids and nucleic acids) migrate toward the periph-
ery of the blood spot as it dries.[128,129] This phenomenon has been shown to have a
greater impact in diluted samples compared to non-diluted serum samples, and can be
further avoided by the use of reduced size blood spots.[130] The use of robotic microflui-
dics for standardization of sample loading alongside vacuum drying techniques has pro-
duced spectral data with higher reproducibility than non-automated processes; these
developments will aid the future implementation of a robust, high-throughput analytical
platform required for large-scale laboratory investigations.[131]

Optimum sample preparation for FTIR spectroscopy on blood serum has been
recently investigated to support the translation of IR spectroscopy to the clinical setting.
Repeatability and reproducibility for both ATR- and high throughput-FTIR has been
demonstrated, achieving spectral sample deviations of 0.0015 for both methods, and the
ability to discriminate similar spectral variances in a patient study.[130] The importance
of sample preparation methods for FTIR spectroscopic analysis of tissues have also been
described following examination of spectral variance following different preservation
techniques (drying, ethanol or formalin fixation).[132] The use of freshly excised tissue
was deemed the optimum approach in order to avoid perturbing the biochemical com-
position of the tissue; nevertheless, the conduction of FTIR spectroscopy studies requir-
ing sample preservation remain valuable provided consideration is given to the spectral
alterations that may arise.[132]
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Conclusion

Vibrational biospectroscopy is a tool that is being increasingly applied in the field of
diagnostic medicine. The potential applications of FTIR and Raman spectroscopy have
advanced in recent years due to the developments made in both instrumentation and
crucially bioinformatics. This review describes its application to clinical immunology,
highlighting the key findings from research studies across the major disorders of the
immune system; autoimmunity, immune deficiency and allergy. These immunological
disorders are complex, often demonstrating interaction across multiple molecular path-
ways. As increased knowledge of these signaling pathways expand, the use of targeted
immunotherapies has become routinely available. However, advances in molecular
medicine are not being translated into laboratory diagnostics. The limitations facing
current laboratory methods, which detect only single or few discrete biomarkers are
becoming increasingly problematic, highlighting the need for a new approach. The
potential for vibrational spectroscopy to fill this gap and be translated into the clinical
setting has been explored and promoted throughout this review. However, as widely
discussed throughout the literature,[39,133,134] there remain a number of barriers to over-
come before these methods become routinely applied. To accomplish this, increasing
collaborations between partners based within a clinical setting and academia is vital,
with particular emphasis placed upon the implementation of robust quality control
processes and high-throughput automation.
In summary, the proof-of-concept for applying vibrational spectroscopy within the

clinical immunology setting has proven successful across a number of immune-mediated
disorders. However wide-scale longitudinal research studies are now required to fully
unleash the diagnostic potential of vibrational spectroscopy in the immunology labora-
tory. As increasing interest in the field of biospectroscopy continues, it is hoped that
consensus- and best-practice protocols will be published, further promoting the standar-
dized approach required for the clinical setting. If successful, this methodology could
prove transformative within healthcare, improving patient diagnosis, prognosis and
treatment monitoring.
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 Introduction (continued) 1.2

This section has been added to supplement the review article in section 1.11. This will 

provide an introduction to the immunological disorder, common variable 

immunodeficiency deficiency (CVID), the clinical setting in which this project will focus. 

The project aims and objectives have been included out at the end of this section, 

bringing together aspects from both sections of the introduction to set out the line of 

enquiry within this research project.  

Further studies to investigate CVID using omics-based methods (transcriptomic and 

proteomics) have been published since the experimental work for this project has been 

completed; the findings and relationship to biospectroscopy analysis will be discussed in 

this section. 

1.2.1 Common Variable Immunodeficiency 

Common variable immunodeficiency deficiency (CVID) is the most frequent life-

threatening and symptomatic primary immune deficiency (PID) diagnosed in adulthood2. 

Precise prevalence data is lacking, but is estimated to be at between 1:10,000 and 

1:100,000 of the population, with two peak ages of onset, one before the age of ten and 

another between 30-40 years of age3,4.   

CVID is a heterogeneous group of polygenic disorders for which an exact pathogenesis 

remains poorly understood5ʹ7. The majority (>80%) of CVID cases are thought to be 

sporadic and therefore diagnosis remains one of exclusion8. Due to the molecular and 

symptomatic diversity found amongst PIDs, discrimination between primary and 

secondary antibody deficiencies can be challenging in the clinical setting; evidenced by an 

average diagnostic delay of around 4-5 years9.  Correct and prompt classification is vital to 

improve patient outcomes; ensuring appropriate patient pathways are followed and 

further disease-associated complications are recognised and well-managed. 

In CVID, 90% of patients suffer recurrent infections resulting from a failure to produce 

protective immunoglobulins, there is also an increased risk of autoimmune disorders 

(22% of patients) and malignancy (16% of patients)3,10ʹ12. These non-infectious 
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manifestations related to underlying immune dysregulation are associated with an 

increased morbidity and mortality within the CVID patient group13,14. 

In the management of CVID patients, it is generally accepted that the only therapeutic 

option available is replacement immunoglobulin. Evidence for its use in CVID is 

substantial; with adequate replacement therapy resulting in improvements in the overall 

health and quality of life of patients, increasing life expectancy and preventing  and major 

infections15ʹ17.  

Replacement immunoglobulin can be given intravenously or subcutaneously, and for 

most patients treatment is a lifelong requirement. This can be supplemented with 

antibiotics as clinically required in certain cases, and to treat breakthrough infections. 

Dosing is patient-dependent and clinically targeted however a general aim is to maintain 

trough levels of IgG within the normal adult range (6ʹ16 g/L)18,19. Whilst immunoglobulin 

replacement therapy can prevent infectious complications, there is limited evidence to 

guide clinicians on the treatment and management of patients with inflammatory 

complications resulting from immune dysregulation20,21. 

1.2.2 The need for a new approach to diagnosis and management 

There are no clinical or laboratory features that are pathognomonic for CVID therefore 

diagnostic criteria have been developed which require sequential application of both 

clinical and laboratory findings in order to increase the specificity for the diagnosis. 

Current diagnostic criteria10,22 define hypogammaglobulinemia as a major requirement 

for the diagnosis of CVID, but only when used in conjunction with further clinical or 

laboratory criteria. This is due to the low specificity of hypogammaglobulinemia for CVID; 

reduced serological levels of immunoglobulin are associated with a vast array of other 

primary and secondary immune disorders.  

The incidence and prevalence rates of hypogammaglobulinemia are not clearly defined, 

however secondary causes are more common; Perez et al.16 review the incidence of 

hypogammaglobulinemia in several disorders. The requirement to exclude secondary 

causes of hypogammaglobulinemia limits the use of immunoglobulins as a diagnostic 

marker however given the hallmark of CVID is a reduced serum level of IgG, IgA and/or 

IgM; it remains a fundamental test for this disorder.  
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The definition of local or regional population reference ranges will impact the diagnostic 

utility of results, as will the laboratory choice of analytical method (with nephelometry 

and turbidimetry being most widely used). An absolute lower limit value of IgG at 4.5 g/L 

for adults has been proposed; as despite the wide range of IgG levels observed in CVID 

patients, Chapel and Cunningham-Rundles3 described the majority of their 334 patients 

(94%) as having initial IgG levels <4.5 g/l at diagnosis.  

Further laboratory testing such as measuring specific antibodies to vaccine responses, 

enumeration of lymphocyte subsets (B, T and NK cells) and class-switched memory B cells 

by flow cytometry can provide additional evidence to suggest defective antibody 

production. The application of reference ranges for peripheral blood immunophenotyping 

remains a challenge, particularly within CVID, due to the disease heterogeneity.  Findings 

are variable across the disease group and can also vary within individual patients. Repeat 

testing has been suggested to confirm any sub-normal findings, these limitations have 

been discussed in both of the recent diagnostic criteria10,22. 

Efforts to categorise clinical subgroups within cohorts of established CVID patients have 

further demonstrated the complex diversity of this disorder. Analysis of B cell phenotype 

using flow cytometry has provided additional classification protocols for this 

heterogeneous disease; examining the population sizes of class-switched memory- and 

transitional B cells  in correlation with clinical aspects have demonstrated that defects at 

various stages of B cell differentiation occur in different subgroups of CVID patients23ʹ25.  

Known phenotypic B cell populations associated with increased risk of immune 

dysregulation in CVID include a severe reduction in class-switched memory B cells 

(splenomegaly and granulomatous disease); expansion of CD21low B cells (splenomegaly); 

and expansion of transitional B cells (lymphadenopathy)24. Whilst these studies confirm 

that B-cell homeostasis is a pathogenic and clinically meaningful parameter for 

classification, low numbers of class-switched or memory B cells are not specific to CVID 

therefore diagnostic utility of these tests in isolation is limited3. Other risk factors for the 

development of immune dysregulation include a reduction of naïve CD4+ T cells and IgA 

deficiency26,27.  
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Immunophenotyping can provide a useful tool towards clinically subgrouping CVID 

ƉĂƚŝĞŶƚƐ͖� ŚŽǁĞǀĞƌ� ŝƚ� ƉƌŽǀŝĚĞƐ� ŽŶůǇ� ůŝŵŝƚĞĚ� ŝŶĨŽƌŵĂƚŝŽŶ� ŽŶ� Ă� ƉĂƚŝĞŶƚ͛Ɛ� ĐƵƌƌĞŶƚ�

inflammatory profile. Further to this, the peripheral blood compartment may not be the 

most appropriate to evaluate when searching for diagnostic or prognostic markers in 

CVID. The lack of protective, class-switched B cells suggests defective germinal centre 

function; however, it would not be suitable to undertake lymph node biopsies and 

immunophenotypic analysis of germinal centres as a routine front-line test, therefore 

investigations are limited to peripheral blood.  

Given that non-infectious complications are associated with increased morbidity and 

mortality, there is an unmet need for the identification of new biomarkers associated 

with immune dysregulation, and further, a means to monitor patients for disease 

progression. 

Similar to other complex diseases the aetiology of CVID is likely multifactorial, with 

genetic and environmental factors both contributing to the development of the immune 

dysregulation7. In recent years a number of monogenic disease-causing defects have been 

discovered, these include genes for ICOS, TACI, CD19, Msh5, CD81, CD20, CD21 and BAFF-

R, which contribute to key immune regulatory pathways8,28ʹ32. These mutations are only 

found in a small minority of cases (approximately 10-20%); nevertheless they provide a 

further diagnostic test and add to the knowledge on the pathogenic mechanisms of 

antibody deficiency33. 

In the remaining 80% of patients, the lack of an identified genetic defect not only renders 

the diagnosis one of exclusion, it also limits the development of novel treatment 

approaches and personalised management plans as the immune components and 

signalling pathways involved remain unknown. In order to improve understanding of the 

CVID, and gain a greater insight into the pathogenesis of antibody deficiencies, further 

detailed investigations and immunological studies are required.  

To explore the likely polygenic cause of the majority of CVID patients, the combined use 

ŽĨ�͚ŽŵŝĐƐ͛-like technologies and whole sample profiling is beginning to provide more clues 

in the search for diagnostic biomarkers and causative aetiology. Through advances in 

molecular methods it is now understood that additional micro-environmental factors play 
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a role in the varied clinical phenotypes observed within a disease entity. In CVID, these 

include post-translational epigenetic alterations, such as DNA methylation34 and histone 

modifications35; as well as transcriptional disturbances, such as single nucleotide 

polymorphisms (SNPs) impacting on CVID susceptibility36ʹ38.  

Several research groups have reported disturbed cytokine and chemokine profiles in CVID 

patients39ʹ45, however the development of a diagnostic or disease-monitoring profile has 

not been successful due to lack of agreement across the studies. CVID-associated profiles 

include increased serum levels of cytokines: IL-4 and IL-1040; IL-2 and IL-1041.; IL-6,  IL-8 

and TNF-ɲ42,46; and increased IL-10, IL-RA, and TNF-ɲ43. In contrast to majority of studies, 

IL-10 levels were reported to be decreased by Polito et al.,46 with levels of IL-2, IL-4, and 

INF-ɶ�ĐŽŵƉĂƌĂďůĞ�ďĞƚǁĞĞŶ�ŚĞĂůƚŚǇ�ĐŽŶƚƌŽůƐ�ĂŶĚ��s/��ƉĂƚŝĞŶƚƐ͘� 

The mixed findings likely reflect the clinical heterogeneity between CVID patients, but will 

also relate to the current inflammatory state of a patient, for example, CVID patients with 

immune dysregulation and active inflammation will likely have a different cytokine profile 

to CVID patients with an infection-only phenotype. To address this, recent studies have 

focussed on segregating patients into CVID with immune dysregulation-, and CVID with 

infection-ŽŶůǇ� ŐƌŽƵƉƐ͘� dŚƌŽƵŐŚ� ƚŚĞ� ƵƐĞ� ŽĨ� ͚ŽŵŝĐƐ-based technologies coupled with 

machine-learning, signature immune profiles for different subgroups of CVID patients are 

beginning to emerge37,47ʹ49.  

In 2020, Hultberg et el.49 applied proteomic technology, immunophenotyping and 

multivariate analysis for the first time to the study of CVID. In comparing all CVID patients 

from healthy controls they demonstrated differences between 72 of the 145 immune-

related proteins detected in the plasma samples. Further to this, they determined two 

distinct plasma protein profiles capable of segregating CVID patients with immune 

dysregulation from those with infections only. In the immune dysregulation patients, 24 

ƉƌŽƚĞŝŶƐ� ƌĞůĂƚĞĚ� ƚŽ� /E&ɶ� ƐŝŐŶĂůůŝŶŐ� ǁĞƌĞ� ĨŽƵŶĚ� to be elevated. The immune profile 

associated with immune dysregulation included increased CD4+ T-helper-1 (Th1) 

cytokines, increased T cell activation (increased numbers of CD8+ T cells, increased 

CD8+HLADR+ T cells; increased CD4+HLA-DR+ T cells and increased CD4+PD-1+ T cells), 

and an increased concentration of the specific chemokine, CXCL10, which was identified 

as a potential predictive biomarker for this group.  
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In 2021, Berbers et al.48 measured 180 immune-related markers using targeting 

proteomics; following the application of multivariate analysis and machine-learning 

algorithms they successfully classified infection-only CVID patients from patients with 

immune dysregulation. They identified MILR1, LILRB4, IL10, IL12RB1, and CD83 and key 

markers to discriminate between groups with a sensitivity of 83%, and specificity of 75%. 

This study corroborated the finding of Hultberg et al. in reporting increased Th1 signalling 

in CVID patients with immune dysregulation, in addition, they demonstrated increased IL-

10, LAG3, TNFRSF9, CD83 and Th17 signalling in this group. An ongoing inflammatory 

response resulting in immune exhaustion has been postulated as an underlying 

mechanism driving immune dysregulation48,49. 

dŚĞƐĞ�ƐƚƵĚŝĞƐ�ŚŝŐŚůŝŐŚƚ�ƚŚĞ�ƉŽƚĞŶƚŝĂů�ƵƐĞ�ŽĨ�͚ŽŵŝĐƐ-based profiling as a diagnostic tool to 

identify CVID patients at risk of developing immune dysregulation. Further studies to 

validate recently identified biomarkers and to determine their role in driving 

immunopathology are required. This will not only advance our understanding of CVID but 

ĐŽƵůĚ�ĞŶĂďůĞ�ƌŝƐŬ�ƐƚƌĂƚŝĨŝĐĂƚŝŽŶ�ĂŶĚ�ŝŶĚŝǀŝĚƵĂůŝƐĂƚŝŽŶ�ŽĨ�ƚƌĞĂƚŵĞŶƚ͘�,ŽǁĞǀĞƌ͕�͚ŽŵŝĐƐ-based 

technologies are not widely used in the clinical setting; there remains a need to reduce 

costs, overcome technical challenges and to alleviate cŽŵƉůĞǆŝƚŝĞƐ� ĂƐƐŽĐŝĂƚĞĚ�ǁŝƚŚ� ͚ďŝŐ�

ĚĂƚĂ͛�ƉƌŽĐĞƐƐŝŶŐ�ďĞĨŽƌĞ�ƚŚĞƐĞ�ƉůĂƚĨŽƌŵƐ�ĐĂŶ�ďĞ�ƐƚĂŶĚĂƌĚŝƐĞĚ�ĂŶĚ�ƐƵďƐĞƋƵĞŶƚůǇ�ĞŶƚĞƌ�ƚŚĞ�

routine clinical setting50,50,51.  

In light of this, novel approaches to complement current molecular findings are 

warranted. One potential and innovative candidate that could provide molecular level 

analysis for CVID patient blood samples is vibrational spectroscopy; specifically 

attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. As 

discussed in detail in Section 1.11, ATR-FTIR spectroscopy describes the technique used to 

produce a unique spectƌƵŵ͕� Žƌ�ŵŽůĞĐƵůĂƌ� ͚ĨŝŶŐĞƌƉƌŝŶƚ͛� ŽĨ� Ă� ƐĂŵƉůĞ� ĨŽůůŽǁŝŶŐ� ĞǆĐŝƚĂƚŝŽŶ�

with light. The molecular fingerprint of a given sample relates to its biomolecular 

constituents (i.e. proteins, lipids, nucleic acids, carbohydrates) and is generated from the 

vibrations of the chemical bonds present in these molecules.  

The molecular composition of a sample can be altered in the presence of disease; these 

changes will be reflected in the spectrum obtained using vibrational spectroscopy, making 

it an ideal choice for the study of pathological processes and the development of a novel 
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diagnostic platform52. Towards this goal, the interrogation of whole unprocessed samples 

with vibrational spectroscopy will provide a new approach to investigate CVID, a disorder 

that remains largely undefined, despite four decades of research12. The use of this 

platform not only has diagnostic potential in the clinical setting, but will generate a new 

ůŝďƌĂƌǇ� ŽĨ� ͚ďŝŐ� ĚĂƚĂ͛� ĨŽƌ� �s/�� ;Ăƚ� ĂŶ� ŵZE�͕� �E�� ĂŶĚ� ƉƌŽƚĞŝŶ� ůĞǀĞůͿ͘� dŚŝƐ� ĚĂƚĂ� ĐĂŶ�

ƐƵďƐĞƋƵĞŶƚůǇ� ďĞ�ĞǆĂŵŝŶĞĚ� ŝŶ� Ă� ͚ƐǇƐƚĞŵƐ�ďŝŽůŽŐǇ͛� ĂƉƉƌŽĂĐŚ� ƚŽ� ĂĚĚ� ƐĐŝentific knowledge 

and further understanding of the pathological mechanisms underpinning CVID.   

Through the use of multi-omics technologies, the challenges once faced using traditional, 

ĂŶĚ� ĞǀĞŶ� ƐŝŶŐůĞ� ͚ŽŵŝĐƐ͛� ĂƉƉƌŽĂĐŚĞƐ͕� ĐŽƵůĚ� ďĞ� ŽǀĞƌĐŽŵĞ͕� ĞŶĂďůŝŶŐ� ƚŚĞ� ŵƵltifactorial 

pathways of complex immunological disorders to be unravelled53,54. 

1.2.3 Aims and Objectives  

The aims of this research project will be to seek out disease-related changes in the 

͚ŵŽůĞĐƵůĂƌ�ĨŝŶŐĞƌƉƌŝŶƚ͛�ŽĨ��s/��ƉĂƚŝĞŶƚƐ�ĐŽŵƉĂƌĞĚ�ƚŽ�Ă�ĐŽŶƚƌŽů�ŐƌŽƵƉ�ƵƐŝŶŐ�ƚŚĞ�ǀŝďƌĂƚŝŽŶĂů�

spectroscopy method ATR-FTIR. This will be a proof-of-concept study which will be 

initially piloted in a small cohort due to the rarity of the disease. Given that the clinical 

phenotype and pathological features associated with CVID are likely to manifest from 

underlying defects and alterations in cellular mechanisms; these changes may be 

reflected in the biological composition of blood samples therefore be detectable by 

vibrational spectroscopy. We hypothesise that pathological changes in CVID patients 

produce characteristic FTIR spectra that distinguish them from healthy controls. 

The spectral data generated from blood serum and plasma samples collected from a 

cohort of CVID patients and a control group will be analysed to investigate whether 

reproducible variances exist within the well-described fingerprint (1800-900 cm-1)  and 

high (3700-2800 cm-1) regions of the IR spectrum. These variances will be subject to a 

blind testing and verification process to assess whether the method can correctly classify 

individuals into the correct category (disease versus non-disease). Postulations will be 

made as to the molecular composition attributing to any variances identified.  

The results from conventional serological investigations and clinical notes will be used to 

subgroup CVID patients with the aim to assess whether spectral variances can be 

detected between patients with- and without further disease-associated complications. In 



Chapter 1 
 

16 
 

the application of vibrational spectroscopy to CVID, we anticipate that similar analytical 

advantages will be observed to those previously described in the literature for complex 

pathologies such as malignancy and neurological disorders. Through the detection of 

characteristic spectral features relating to CVID, this may lead to the development of a 

novel diagnostic technique and a means to risk-stratify patients, in addition to uncovering 

new molecular data to further elucidate pathological processes in CVID. We hypothesise 

that FTIR spectroscopy will provide an improved description of CVID; the work conducted 

within this thesis will address this through the aims and objectives set out within this 

section.  

1.2.4 Summary of Aims 

x Identify the spectral pattern (band wavelengths and intensities) known as the 

͚ŵŽůĞĐƵůĂƌ� ĨŝŶŐĞƌƉƌŝŶƚ͛� ĨŽƌ� ĞĂĐŚ� ƐĂŵƉůĞ� ŽĨ� ƚŚĞ� �s/�� ƉĂƚŝĞŶƚ� ĐŽŚŽƌƚ� ĂŶĚ� ĐŽŶƚƌŽů�

group. 

x Compare spectral features from CVID patients against normal controls by 

performing computational analysis on each unique spectrum to investigate 

variances.  

x Develop and verify classification methods to allow for correct assignment of 

unknown samples into the correct groups (CVID versus non-CVID). 

x Correlate spectral variances with clinical presentation and results from 

conventional immunological investigations in CVID patients. 

x Postulate molecular bond assignments in order to tentatively identify biological 

constituents responsible for heterogeneous clinical presentations of CVID.  

 Alternative thesis 1.3

This research project and thesis has been completed and written up in journal format 

towards the University of Manchester qualification for Doctorate of Clinical Sciences 

(module C). The publication-style thesis was chosen by the author as the most 

appropriate format to present the research findings; this enabled the author to gain 

experience of submitting original work for peer review, and resulted in the successful 

publication of two journal articles. A summary of each of the thesis chapters has been 

provided below, including the level of contribution made by the author, and any co-
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authors listed on the two published articles. As first author on each of the published 

papers, I played a major role and contributed to all aspects of the work, including 

conception of research question, obtaining ethical approval, undertaking the practical 

work for data acquisition, analysis of results and the writing of the papers. A series of 

appendices are also included at the end of this thesis, which refer to additional scientific 

training and qualifications gained, academic components completed, and evidence of any 

research-related experiences gained during the course of the higher specialist scientific 

training programme. 

 

Chapter 1 ʹ  (Introduction: review article) Vibrational spectroscopy and 

multivariate analysis techniques in the clinical immunology laboratory: a 

review of current applications and requirements for diagnostic use  

Authors: Emma L. Callery & Anthony W. Rowbottom  

Publishing journal: Applied Spectroscopy Reviews  

This paper provides an overview of vibrational spectroscopy in the clinical setting, with a 

focus on clinical immunology; bringing together both underpinning knowledge of 

vibrational spectroscopy methods and the impact that advances in these platforms may 

have on future immunology investigations. The review article was constructed from an 

iteration of the assessed literature review, completed as part of module C of the DClinSci 

Higher Special Scientific Training Programme, expanded to include a review of current 

applications in clinical immunology. Building upon the recent expansion of interest for 

using vibrational spectroscopy in the clinical setting (predominantly in cancer 

diagnostics), this review covers the application of this methodology within three major 

areas of immunology; Autoimmune disease, Allergic and hypersensitivity disorders and 

Immune deficiency.  

This review was published in Applied Spectroscopy Reviews in 2021 1. As first author I am 

solely responsible for writing the text for this paper. The co-author contributed to the 

conception of the review, critically reviewed the final draft of the manuscript and 

provided intellectual discussions toward the successful publication of this article. 
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Chapter 2 ʹ Method Evaluation 

This chapter considered three areas of methodological and analytical process associated 

with biospectroscopy.  The findings from this chapter have informed the final processes 

applied to produce the results in the main study (Chapter 3). This included the choice of 

pre-processing technique applied to the spectral data prior to multivariate analysis, the 

suitability and variability between blood sample types (serum versus plasma) and the 

potential impact of environmental factors on analysis of spectra collected over multiple 

different days. 

I am responsible for writing the entirety of this text with the exception of a sub-section of 

the methods section͕�͚ŵƵůƚŝǀĂƌŝĂƚĞ�ĂŶĂůǇƐŝƐ͕͛�ǁŚŝĐŚ�has been contributed to by Camilo L. 

M. Morais, a chemometrician and co-author listed on the main study (Chapter 3); The 

complete chapter has been reviewed by my supervisors, comments and suggestions 

following review were included in the final text. I am responsible for the computational 

(chemometric) and statistical analysis of the data with the sections examining pre-

processing techniques and blood sample-type suitability. In the section examining the 

impact of environmental factors, Camilo L. M. Morais performed chemometric analysis of 

the spectral data to produce the results. I am solely responsible for the interpretation and 

further discussions related to the results obtained throughout all sections of this method 

evaluation.  

Chapter 3 ʹ New Approach to Investigate Common Variable 

Immunodeficiency Patients Using Spectrochemical Analysis of Blood.  

Authors: Callery, E. L.; Morais, C. L. M.; Paraskevaidi, M.; Brusic, V.; 

Vijayadurai, P.;  Anantharachagan, A.; Martin, F. L.; Rowbottom, A. W.  

Publishing Journal: Nature Scientific Reports  

This manuscript is representative of the main body of work undertaken towards this 

research project. I was solely responsible for all experimental laboratory work and 

acquisition of spectral data. Dr Camilo Morais, a chemometrics expert at University of 

Central Lancashire provided advice and guidance on all computational analysis 

undertaken within this work. I performed the pre-processing, principal component 
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analysis (PCA) and PCA-linear discriminant analysis (PCA-LDA) for the acquired spectral 

data. Complex chemometric techniques including splitting of the datasets, support vector 

machine (SVM) machine-learning algorithms (applied to classify data) and feature 

selection methods (applied for biomarker identification) were performed by Dr Morais.  

My supervisors Professor Anthony Rowbottom and Professor Frank Martin provided 

advice and guidance on the conception of the study and all experimental work. As first 

author I am solely responsible for writing the text for this manuscript. The co-authors 

provided intellectual discussions and critically reviewed the final draft of the manuscript. 

Comments received from the co-authors, and journal reviewers were incorporated into 

the final text to produce the final published manuscript.  

Chapter 4 ʹ Critical Appraisal of Project and suggestions for further work  

This chapter provides a critical appraisal of the research project, focussing on the study 

design, the methods applied and the impact of the results obtained. The major strengths 

and weaknesses associated with the project have been highlighted, with alternative 

approaches considered where applicable. Further experimental work and scope for 

development into a new laboratory test have also been included. I am solely responsible 

for writing this chapter. My supervisors have reviewed this chapter and provided 

comments, which have been incorporated in the final version. 

 

List of Appendices 

Appendix A ʹ Innovation project proposal 

The structure of module C of the HSST was amended for Cohort 3 students onwards. The 

innovation project (formerly C1 module) was no longer required to be submitted as 

formative assessment but was instead to be included as an appendix in the thesis. The 

written innovation project piece included as Appendix A puts forward a case for 

implementing vibrational spectroscopy into the clinical immunology laboratory. This piece 

of work has been assessed by both my workplace and academic supervisors. 
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Appendix B ʹ >ĂǇŵĂŶ͛Ɛ�ŽƌĂů�ƉƌĞƐĞŶƚĂƚŝŽŶ�ĨĞĞĚďĂĐŬ 

��ĨŽƌŵĂů�ĂƐƐĞƐƐŵĞŶƚ�ŽĨ�ƚŚĞ�ƌĞƐĞĂƌĐŚ�ƉƌŽũĞĐƚ�ƉƌŽƉŽƐĂů͕�ƉƌĞƐĞŶƚĞĚ�ƚŽ�Ă�>ĂǇŵĂŶ͛Ɛ�ĂƵĚŝĞŶĐĞ�

is required as a part of module C of the HSST. The feedback and assessment outcome has 

been included as Appendix B. 

Appendix C ʹ Confirmation of ethical approval  

This study was approved by the ethics committee of the NHS Research Ethics Committee, 

Health Research Authority (HRA) (IRAS No. 212518). Appendix C is a copy of the approval 

letter to commence the study. 

Appendix D ʹ Research study documentation  

This appendix includes copies of the approved study documentation (patient information 

sheets, consent form, letters of invitation) given to the eligible participants.  

Appendix E ʹ Summary of results from A modules of DClinSci 

This research project and DClinSci Thesis forms module C of the HSST programme 

provided by the University of Manchester. Results for the taught module A, and summary 

of previously assessed module C components for this programme are included as 

Appendix E. 

Appendix F ʹ Qualifications 

This appendix includes evidence of the formal qualifications and work-based components 

required for the completion of the HSST.  This includes passing The Royal College of 

Pathologists (RCPath) examinations in Clinical Immunology (Part 1 - Written, Part 2 - 

Practical and Part 2 - Oral) and completion of the five domains of the Standards of 

Proficiency. This thesis also forms the research component required for completion of the 

RCPath Part 2 examinations. 

Appendix G ʹ Supplementary Information for published manuscript (Chapter 3) 

This appendix contains the supplementary information associated with Chapter 3. This 

document was submitted to the journal Nature Scientific Reports, alongside the research 
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ŵĂŶƵƐĐƌŝƉƚ� ͚EĞǁ��ƉƉƌŽĂĐŚ� ƚŽ� /ŶǀĞƐƚŝŐĂƚe Common Variable Immunodeficiency Patients 

hƐŝŶŐ�^ƉĞĐƚƌŽĐŚĞŵŝĐĂů��ŶĂůǇƐŝƐ�ŽĨ��ůŽŽĚ͛͘�ZĞĨĞƌĞŶĐĞƐ�ƚŽ�ƚŚĞ�&ŝŐƵƌĞƐ�ĂŶĚ�dĂďůĞƐ�ǁŝƚŚŝŶ�ƚŚŝƐ�

document are included in the text of the published manuscript (Chapter 3).  

Appendix H ʹ Additional Research undertaken during HSST 

This appendix contains a summary of a COVID-ϭϵ� ƌĞƐĞĂƌĐŚ�ƉƌŽũĞĐƚ� ͚�y�Ks/Z͛� ;�ǆƉůŽƌŝŶŐ�

COVID-19 specific immune responses in acute and convalescent phases of infection) to 

which I have provided a major contribution to during the final 18 months of HSST. As a 

Clinical Scientist completing the Life Sciences pathway, research and development will 

continue to be an important aspect of my role going forward.  
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Chapter 2: Method Evaluation 

 Background 2.1

2.1.1 Evaluation of pre-processing techniques and chemometric methods applicable to 

ATR-FTIR spectroscopy 

ATR-FTIR spectroscopy requires minimal sample preparation, is relatively low-cost, and 

can be applied to a vast range of sample types (blood, tissue, CSF, urine etc.). However a 

number of pre-analytical, analytical, and post-analytical factors must be considered prior 

to translation into the clinical laboratory setting. In order to obtain robust, unbiased, high 

quality data from vibrational spectroscopy studies towards the development of a new 

diagnostic platform, a series of method optimisation steps and computational data 

analysis processes must be undertaken.  

A standardised and reproducible approach for sample collection and acquisition of 

spectral data is paramount; subsequent to this, pre-processing is the next most important 

step that must be performed prior to further analysis1. There are several protocols 

published in the literature to describe the application of pre-processing steps to 

biospectroscopy data2ʹ4.  The minimum recommended steps include cutting, baseline 

correction and normalisation, for which there are various methods available. 

 If ATR-FTIR spectroscopy is to become a routine diagnostic technique, it is important for 

researchers and healthcare professionals to understand the mathematical techniques 

applied in the conversion of sample absorption spectra to a numerical value. The various 

potential methods of pre-processing and data reduction algorithms must be assessed 

ĚƵƌŝŶŐ�Ă� ůĂďŽƌĂƚŽƌǇ͛Ɛ�ŵĞƚŚŽĚ�ĚĞǀĞůŽƉŵĞŶƚ�ƉŚĂƐĞ�ŽĨ��dZ-FTIR biospectroscopy, prior to 

clinical evaluation. On completion of pre-processing method development, further 

application of multivariate analysis and classification tools can be applied to assess the 

performance characteristics of the method (sensitivity, specificity, misclassification rate) 

for the purpose of answering pathological questions. 

The unique spectral read-ŽƵƚ� Žƌ� ͚ŵŽůĞĐƵůĂƌ� ĨŝŶŐĞƌƉƌŝŶƚ͛� ŽĨ� Ă� ƐĂŵƉůĞ� ƌĞůĂƚĞƐ� ƚŽ� ŝƚƐ�

biomolecular constituents (i.e. proteins, lipids, nucleic acids, carbohydrates) and is 

generated from the vibrations of the chemical bonds in these molecules. Each biological 

sample analysed using ATR-FTIR spectroscopy can generate a spectrum consisting of 



Chapter 2 
 

29 
  

hundreds or thousands of individual data points, depending on the acquired spectral 

range and resolution. Within this complex data set it is extremely difficult to identify 

relevant  and disease-specific spectral features from the background of high variance 

(noise)2.  De-noising methods, such as smoothing, baseline correction and normalisation 

are extensively applied pre-processing technique in FTIR biospectroscopy.   

Several spectral features contribute to the enormous total variance between biological 

samples; these include wavenumber (peak) distribution, absorbance intensity and shape 

(area under the peak). The high levels of background variance observed between 

biological spectra are in part due to the heterogeneous sample matrices within 

physiological samples.  

As almost all of the biological components present in human serum and plasma samples 

are consistent between individuals, the FTIR spectra will contain numerous shared 

spectral features (both within and between disease and non-disease groups) which may 

mask the presence of any unique disease-associated features. In addition to this, relevant 

spectral differences occurring between healthy and pathological samples are very small, 

and rarely observable by eye in the raw spectral data3,5. In order to visualise and interpret 

any subtle spectral variances between samples which may have biological or clinical 

relevance both univariate and multivariate (chemometric) methods are required. Samples 

with unique (potentially disease-associated) spectral features can then be grouped 

together in order to build powerful prediction models for subsequent diagnostic or 

quantitative analysis6,7.  

During the first part of this method evaluation, I will explore the suitability and strength 

of a number of well-recognised biospectroscopy pre-processing techniques in order to 

determine the optimum conditions for the research study. There are a range of 

computational methods that can be applied to biospectroscopy data analysis; however a 

consensus on a standardised approach has yet to be established. A critical appraisal of the 

machine learning and statistical techniques available for FTIR biospectroscopy have been 

published in a review by Trevisan et al.2, and provides a means for researchers to 

understand the mathematical algorithms and chemometric processes required for 

spectral data analysis.  
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Based on the evidence in the literature and the experience of the research group, the pre-

processing techniques evaluated within this study include spectral region extraction 

;͚ĐƵƚƚŝŶŐ͛Ϳ� ĂŶĚ� ƚŚƌĞĞ� ĚŝĨĨĞƌĞŶƚ� ŵŽĚĞƐ� ŽĨ� ďĂƐĞůŝŶĞ� ĐŽƌƌĞĐƚŝŽŶ� ǁŝƚŚ� ŶŽƌŵĂůŝƐĂƚŝŽŶ�

(rubberband correction with amide I normalisation, rubberband correction with amide II 

normalisation and Savitzky-Golay (SG) second-order differentiation baseline correction 

followed by vector normalisation). The principle of these techniques is described in the 

methods section.  

As biospectroscopy becomes more widely used, standard protocols are being developed 

however the final choice of data analysis should be guided by the individual parameters 

and requirements of the study.  

2.1.2 Assessment of blood sample type suitability: Serum versus plasma  

Blood serum and plasma are ideal sample types for clinical investigations, being easily 

accessible biofluids easily collected by relatively non-invasive procedures. Whilst serum 

and plasma are both derived from the liquid compartment of whole blood once the cells 

have been removed, there are distinct differences in the molecular compositions of each 

biofluid. Most notably, clotting factors and fibrinogen are removed from blood serum in 

the process of separating the cells (clot) from the liquid. In plasma these proteins are not 

removed as the clotting cascade is prevented through the addition of anti-coagulant 

Ethylenediaminetetraacetic acid (EDTA), centrifugation is therefore routinely used to 

separate the liquid from the cellular component. 

In light of this, plasma has a higher total protein content than serum, however both 

biofluids contain approximately 60ʹ80 mg/mL, the majority of which is made up of 

albumins and globulins (approximately 50-60% and 40%, respectively)8,9. Prevention of 

the clotting cascade in EDTA-anticoagulated plasma is due to chelation of metallic ions 

such as calcium, magnesium, zinc and potassium; this results in serum having higher 

concentrations of these analytes compared to plasma10. 

Routine laboratory analysis techniques such as enzyme-linked immunosorbent assay 

(ELISA), nephelometry and turbidimetry often permit the interchangeable use of either 

blood serum or blood plasma for analysis, measuring discrete biochemical analytes within 

the sample media which are largely unaffected by the sample matrix of either serum or 

plasma. However, in a recent study using UHPLC-mass spectrometry, Liu et al.11 reported 
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significant differences in the metabolomics profiles of serum and plasma; with 46% of the 

216 identified metabolites showing different levels between the biofluids, 44% of which 

were at higher levels in serum. The authors suggest that these metabolomics alterations 

are most likely a result of clotting-associated processes (for serum collection) such as the 

activation of platelets and conversion of fibrinogen in the fibrin clot. This study further 

reported there to be no significant differences in the majority of amino acids, bile acids 

and phospholipids. Similar findings were observed in an earlier study by Yu et al.12, with 

higher concentrations of metabolites reported in serum. The research group postulated 

that this could be attributed to the removal of the clotting protein fraction and therefore 

result in a smaller volume remaining for distribution of the remaining metabolites. 

The second aspect of the method evaluation will explore the suitability of using blood 

serum and blood plasma for ATR-FTIR analysis. As vibrational spectroscopy shares 

similarities with the omics-based studies in that during the analysis, a spectrum of the 

complete sample is collected which will be representative of all of the biochemical 

constituents present within the biofluid. Any chemical changes or modifications that 

occur during the collection and separation of blood serum or blood plasma will be 

reflected in the spectrum. In order to examine samples for disease-specific spectral 

differences, the variances attributed to serum or plasma must be considered. 

In this sample type evaluation I will compare the spectra of blood serum and blood 

plasma to confirm or exclude the presence of statistically significant variance between the 

sample types, and to determine if either sample type is superior in its ability to separate 

disease from healthy control samples using both unsupervised and supervised methods of 

multivariate analysis. I will also assess whether any major spectral variances observed 

between the two sample types are independent of disease class (i.e. observed in both 

healthy controls and immune deficiency patients).  

The findings from these explorative preliminary studies will be used to validate the choice 

of materials, methods and data analysis techniques applied to the main chapter of this 

research, in which ATR-FTIR spectroscopy will be used as a novel analytical platform for 

the investigation of common variable immunodeficiency (CVID).  
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2.1.3 Evaluation of environmental influence 

Environmental variations (including temperature, humidity, and pressure) and any day-to-

day fluctuations relating to instrumentation or user input can have an impact the quality 

of the spectra acquired. To reduce the impact of these known sources of error, 

standardised processes for sample collection, sample storage, slide preparation and 

spectral acquisition were performed throughout the research project. In order to assess 

the reproducibility of these processes, the final aspect of the method evaluation will 

investigate whether any inter-assay spectral variance relating to environmental factors 

can be observed.  

 Materials and Methods  2.2

2.2.1 Population 

This study was approved by the ethics committee of the NHS Research Ethics Committee, 

Health Research Authority (HRA) (IRAS No. 212518). All participants were recruited at 

Royal Preston Hospital and samples were collected with informed written consent; all 

methods were carried out in accordance with relevant guidelines and regulations. The 

study population included 21 adult (>18 years old) CVID patients and 30 healthy controls 

(HCs).  

CVID patients were clinically diagnosed according to the European Society for 

Immunodeficiencies and the Pan American Group for Immunodeficiency (ESID/PAGID) 

(1999) diagnostic criteria13. All HCs completed a brief questionnaire to document any past 

medical history relating to immune disorders or recurrent infections, any current 

medications and the occurrence of any infections requiring medical attention in the past 

six months. Individual patient characteristics were not considered during this method 

development aspect of the study. 

2.2.2 Sample Collection and preparation  

Whole-blood samples were collected into EDTA-treated or serum gel-separator tubes and 

centrifuged at 110 x g for 5; extracted supernatant samples were then stored as 0.3 mL 

aliquots at -80°C until required. Prior to spectroscopic analysis, individual aliquots were 

thawed; mixed and 50 µL from each aliquot was deposited onto IR-reflective glass slides 
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(MirrIR Low-E slides; Kevley Technologies). For each study subject (n = 51), 50 µL dried 

blood spots were produced in duplicate (Figure 2.2.1).  

Slides were left to air dry for up to 8 hours before being placed into a desiccator 

overnight. Once generated, dried blood spot slides were analysed the subsequent day. 

Double-blind unbiased acquisition of spectra was performed on all 51 samples following 

the allocation of a randomised unique study number to each subject at the point of 

recruitment.  This process was undertaken for both serum and plasma samples. 

 

Figure 2.2.1. The generation of dried blood spot slides prior to spectral acquisition. In 
brief, sample aliquots stored at -80 °C were thawed and mixed; 50 ul of sample was 
pipetted in duplicate onto IR-reflective glass slides (MirrIR Low-E slides; Kevley 
Technologies). The samples were then spread out using the pipette tip in a circular 
motion to achieve two similar sized blood spots and left to air dry on the bench prior to 
being placed in a desiccator overnight. 

2.2.3 ATR-FTIR spectroscopy 

Spectra of undiluted serum and plasma samples were obtained using a Tensor 27 FTIR 

spectrometer with Helios attenuated total reflection (ATR) attachment (Bruker Optics Ltd) 

operated by OPUS 5.5 software. Spectral acquisition was collected from an approximate 

ƐĂŵƉůŝŶŐ� ĂƌĞĂ� ϮϱϬ� п� ϮϱϬ� ʅŵ� ;ĚĞĨŝŶĞĚ� ďǇ� ƚŚĞ� ĚŝĂŵŽŶĚ� ĐƌǇƐƚĂů� ƐƵƌĨĂĐĞ� ŽĨ� ƚŚĞ� ŝŶƚĞƌŶĂů�

reflective element) at a resolution of 8 cmо1 with two times zero-filling, giving a data 

spacing of 4 cmо1 over the range 4,000ʹ400 cmо1.  In order to reduce the level of 

interference from fluctuations in atmospheric conditions, a background spectrum was 

collected prior to each new sample measurement (study subject) and automatically 

removed from the sample spectra via OPUS 5.5 software. The diamond crystal was 

cleaned with distilled water and dried between each patient sample and between 

replicate blood spots. Single point spectral measurements were obtained for each study 

subject, collecting 10 spectra per 50 µL dried blood spot replicate (total of 20 spectra per 

biofluid). In order to minimize bias and account for variations in sample thickness or 
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sample homogeneity, point spectra were collected from 10 different locations across 

each blood spot. 

2.2.3.1 Spectral Acquisition Detail 

OPUS 5.5 software was used for all spectral data collection. The Bruker Tensor 27 

ƐƉĞĐƚƌŽŵĞƚĞƌ�ǁĂƐ��ĞƋƵŝƉƉĞĚ�ǁŝƚŚ�Ă�ƌŽŽŵ�ƚĞŵƉĞƌĂƚƵƌĞ��ĞƵƚĞƌĂƚĞĚ�>ĂŶƚŚĂŶƵŵ�ɲ��ůĂŶŝŶĞ�

doped TriGlycine Sulphate (DLaTGS) detector, mid-IR source (4000 to 400 cm-1) and a 

potassium bromide (KBr) beamsplitter. 

The instrument test, called the Performance Qualification Test (PQ test) was performed 

every day to prove that the spectrometer was measuring correctly. An advanced 

measurement file was set up for the serum and plasma samples, with a specified file 

name and location for storage of the spectral data. The following parameters were saved 

within the experiment settings: Resolution ʹ 4 cm-1; Sample Scan Time ʹ 32 Scans; 

Background Scan Time ʹ 32 Scans; Save Data from - 4000 cm-1 to 400 cm-1; Result 

Spectrum ʹ ATR spectrum; Data blocks to be saved ʹ ATR Spectrum, Single Channel, 

Background. 

WƌŝŽƌ�ƚŽ�ĞĂĐŚ�ĞǆƉĞƌŝŵĞŶƚ͕�ƚŚĞ�͚�ŚĞĐŬ�^ŝŐŶĂů͛�ƚĂď�ǁĂƐ�ƵƐĞĚ�ƚŽ�ĐŽŶĨŝƌŵ�ĂŶĚ�ƌĞĐŽƌĚ�ƚŚĞ�ƉĞĂŬ�

position and amplitude of the interferogram. The purpose of checking the signal is to 

either achieve a maximum interferogram signal or to optimize the shape of the single-

channel spectrum.   

A single beam background spectrum was collected prior to each sample replicate (every 

ϭϬ� ƐƉĞĐƚƌĂ� ĐŽůůĞĐƚĞĚͿ͘� hƐŝŶŐ� ƚŚĞ� ͚�ĂƐŝĐ͛� ƚĂď͕� ͚�ĂĐŬŐƌŽƵŶĚ� ^ŝŶŐůĞ� �ŚĂŶŶĞů͛� ǁĂƐ� ƐĞůĞĐƚĞĚ͕�

ensuring that there was no sample slide in the measurement beam path underneath the 

ATR crystal. A background spectrum was also collected if there were any changes in 

atmospheric conditions, for example a door opening or a temperature change. 

Once checks were completed, the dried blood spot slides were added to the beam path 

and visualised using the instrument digital camera, this aided in locating a region of 

interest (avoiding the edges of the blood spot) prior to bringing into direct contact with 

the ATR crystal. Once the region was selected, the sample stage was moved up to the 

crystal and the pressure was increased until a suitable preview image of the spectra could 

ďĞ� ŽďƐĞƌǀĞĚ� ŽŶ� ƚŚĞ� ƐĐƌĞĞŶ͘� hƐŝŶŐ� ƚŚĞ� ͚�ĂƐŝĐ͛� ƚĂď͕� Ă� ƐƉĞĐƚƌƵŵ�ǁĂƐ� ĂĐƋƵŝƌĞĚ� ďǇ� ĐůŝĐŬŝŶŐ�

͚^ĂŵƉůĞ�^ŝŶŐůĞ��ŚĂŶŶĞů͛͘��ĂĐŚ�ƐƉĞĐƚƌƵŵ�ƚŽok approximately 2 minutes to acquire. Once 
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complete, the sample was moved away from the crystal; the crystal was cleaned with 

distilled water and dried with absorbent cloth prior to moving the sample stage into a 

new location to repeat the spectral acquisition 10 times. Consistent pressure was applied 

when collecting the spectra from each location. Files were saved in OPUS format prior to 

loading into the analysis software, MATLAB R2017a (Mathworks). 

2.2.4 Pre-processing techniques 

Analysis of the spectral datasets was performed using the IRootLab toolbox 

(trevisanj.github.io/irootlab/), within MATLAB R2017a software (MathWorks), unless 

stated otherwise. The major objectives from the application of computational methods 

(pre-processing and multivariate statistical analysis) are to determine class similarities 

and differences (i.e. HC vs CVID, or serum vs plasma) within the population dataset, in 

addition to identifying specific wavenumber peaks that are attributed to the most 

relevant differences4. 

The Fingerprint region, between wavenumbers 1800-900 cm-1, which includes known 

wavenumbĞƌƐ� ŽĨ� ŝŶƚĞƌĞƐƚ� ĨŽƌ� ďŝŽůŽŐŝĐĂů� ƐĂŵƉůĞƐ͕� ǁĂƐ� ŝŶŝƚŝĂůůǇ� ĞǆƚƌĂĐƚĞĚ� ;͚ĐƵƚ͛Ϳ� ĨƌŽŵ� ƚŚĞ�

dataset. Subsequently, pre-processing steps were performed in order to improve the 

quality of the data and optimise further analysis. The output of major pre-processing 

techniques assessed during this method development stage were; i) rubberband baseline 

correction followed by either amide I, amide II or vector normalisation; and ii) Savitzky-

Golay (SG)14 second-order differentiation baseline correction followed by vector 

normalisation.  

Baseline corrected spectra are obtained by subtracting the baselines from the original 

spectra. Rubberband correction is a popular technique applied to FTIR data that stretches 

the spectra down by simulating a rubber band. In brief, the rubberband baseline is drawn 

by finding the convex polygonal line whose edges trace the minimal (trough) signals 

throughout the region of interest. This is then subtracted from the original spectrum to 

eliminate slopes.  

Normalisation to amide I or amide II applies a scaling factor so that all spectra have the 

same absorbance intensity at the amide I or amide II peak, respectively. The disadvantage 

of these normalisation methods are that they eliminate these peaks as biomarkers, as any 
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spectral variance between samples will be eliminated at either the amide I- or amide II-

associated wavenumbers.  

Vector normalization is typically applied after differentiation-based baseline correction 

methods but can be applied more widely. As this normalisation technique does not 

require a reference peak as amide I/II normalisation does, it can be advantageous if the 

amide I/II peaks are to be used as potential biomarkers3. 

Smoothing techniques are commonly applied during the analysis of digital data. The use 

of Savitzky-Golay (SG) smoothing14 is a well described technique within spectral data 

analysis as a means to increase precision when detecting relevant wavenumber peaks. 

The SG filter is an improved version of a moving average filter. This is achieved by 

performing least-squares fit of a small consecutive set of data points to a polynomial of a 

given degree, and taking the central point (filter coefficient) of the fitted polynomial curve 

as the new smoothed data point. The aim of the SG digital filter is to improve the signal-

to-noise ratio by eliminating random error within the spectrum. The limitation of SG 

smoothing includes the potential to smooth out relevant peaks or amplify unwanted 

signals therefore care must be taken when selecting the tuning parameters 2.  

Polynomial fitting and differentiation-based baseline correction methods are often 

combined with Savitzky-Golay (SG) smoothing to improve signal-to-noise ratio. These 

techniques will account for several causes of a skewed baseline including scattering, 

reflection, temperature fluctuation, sample thickness and instrumental issues15. Lower 

order polynomials are well suited for background correction in FTIR spectroscopy.  

Applied in combination with SG smoothing, second order derivatives can efficiently 

correct the background signal present in the FTIR spectrum that can be accentuated from 

taking the derivative of the spectral data points2. Whilst this method can successfully 

eliminate slopes and resolve overlapping bands, applying a second-order differentiation 

algorithm adds complexity to the visual interpretation of spectral data as both positive 

and negative values are plotted on the y-axis (as compared to rubberband baseline 

correction which has only positive values on the y-axis). 
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2.2.5 Multivariate analysis 

Principle component analysis (PCA) is a widely used unsupervised multivariate technique 

which provides a mathematical and statistical means of identifying maximally relevant 

biochemical information, whilst retaining the majority of the original variance in the 

dataset.  

Each PC is composed of scores and loadings, the scores are used to identify clustering 

patterns among the samples and the loadings to identify the main wavenumbers 

responsible for class differentiation. In order to obtain the loading vectors, commonly 

referred to as principle components (PCs), the original data is linearly transformed and 

ordered such that the first PC retains the maximal variance and each succeeding 

component retains the next highest variance. Each successive PC is orthogonal to the 

others (i.e. forms an angle of 90 with the PCs). This enables the data to be visualised in a 

reduced dimensional space and any relationship between classes can be identified with 

less difficulty16. 

Application of this mathematical algorithm can reduce a complex spectral data matrix (܆) 

(potentially containing over thousands of data points), to a much fewer number of 

relevant variables termed principal components (PCs), composed of scores (܂) and 

loadings (۾) for final interpretation. This decomposition is performed as follows 16: 

܆ ൌ ୘۾܂ ൅ ۳           

(Equation 1) 

where ۳ represents the residuals (non-explained spectral variability), and the superscript 

� represents the matrix-transpose operation.  

PCA has weak discriminatory power as it is an unsupervised method of multivariate 

analysis; however it can also be used as a pre-processing step prior to supervised 

methods of multivariate analysis, such as linear discriminant analysis (LDA). Throughout 

this method development study, exploration of any spectral variance between classes 

was initially assessed by comparing the scores after PCA. As a means of supervised 

multivariate analysis, principal component analysis linear discriminant analysis (PCA-LDA) 

was used to observe inter-group differences by means of a linear discriminant function 

applied to the PCA scores17.  
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The PCA-LDA scores [݂ܿሺܜ௜ሻ] are calculated as follows 17: 

݂ܿሺܜ௜ሻ ൌ ሺܜ௜ െ ҧ௞ሻ୘۱୮୭୭୪ୣୢିଵܜ ሺܜ௜ െ     ҧ௞ሻܜ

    (Equation 2) 

where ܜ௜ is the PCA scores for a given sample ݅; ܜҧ௞ is the mean scores vector for class ݇; 

۱୮୭୭୪ୣୢ is the pooled covariance matrix; and � denotes the matrix transpose operation. 

As recommended by Kelly et al.15 in the literature, 10 PCs were chosen for inclusion in the 

PCA-LDA analysis. The suitability of using 10 PCs was further confirmed by looking at the 

Pareto charts; whilst choosing too few PCs may omit important spectral information, the 

inclusion of increasing numbers of principle components (past the point at which the 

amount of explained variance begins to plateau) will increase the amount of noise and 

may lead to overfitting.  

Visualisation of supervised multivariate analysis output was done using scores plots and 

cluster vector plots. Scores plots are scatter diagrams used to assess class separation, 

whereas cluster vectors plots provide a means to identify which wavenumbers are 

responsible for the variance in the datasets and thus the observed separation18.  

To construct a PCA-LDA scores plot, the calculated PCA-LDA projected scores (equation 2) 

from the spectral data within each class are plotted on the scatter diagrams. The scores 

plots display each spectrum as a point in multidimensional space, with the number of 

dimensions (D) determined by the number of classes being compared (n) minus 1, (n-1). 

In this evaluation only two classes were compared during each analysis (HC vs CVID; or 

Serum vs plasma) therefore the scores plots were always displayed in 1D.  

The spectral variation between the two classes can be interpreted visually by how far 

apart the points contributing to each class are positioned in the scores plot; overlapping 

scatter plots indicate spectral similarities between classes. A one-way ANOVA was used to 

calculate p-values for PCA-LDA scores where statistical significance was evaluated at a 

95% confidence level (P < 0.05). 

The cluster vector plots are constructed following PCA-LDA data reduction, and the 

creation of loadings vectors for each class. Each vector points from the origin of the PCA-

LDA factor space to the centre of its corresponding class .The cluster vector plots create 
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pseudo-spectra, in that whilst they are associated with wavenumbers, the loadings 

vectors that are constructed for each class are in fact linear combinations of variables 

ĨƌŽŵ�>���ƚŚĂƚ� ͚ƉĂƐƐ� ƚŚƌŽƵŐŚ͛� ƌĞƐƉĞĐƚŝǀĞ�ĚĂƚĂ�ƉŽŝŶƚƐ� ;ǁĂǀĞŶƵŵďĞrs) instead of pointing 

towards void space15.  

The loadings plots and cluster vector plots allow the user to identify which wavenumbers 

are responsible for the major spectral variances between classes. The absorbance 

intensity associated with the identified wavenumbers can subsequently be measured on 

the original FTIR spectrum; this enables the absorbance intensity change to be used as a 

potential diagnostic biomarker, i.e. either increased or decreased in the disease 

population compared to the control population or reference absorbance intensity. 

In this method development section, construction of the classic cluster vectors was done 

using the IRootLab toolbox, for which the index of the class to be the origin of the PCA-

LDA factors space was left as zero (ignored)18, an alternative approach is to use the centre 

of one of the classes as the origin, resulting in its corresponding cluster vector being a flat 

line in the centre. The cluster vĞĐƚŽƌƐ� ŐĞŶĞƌĂƚĞĚ� ĨƌŽŵ� ƚŚĞ� ͚ƚĞƐƚ͛� ĐůĂƐƐĞƐ� ĐĂŶ� ƚŚĞŶ� ďĞ�

plotted from this index, allowing key wavenumber variance and potential biochemical 

changes to be identified.   

Verification of pre-processing techniques 

In this section of the method development study, the strength of each pre-processing 

technique in its ability to reduce noise and optimise the spectral data quality was 

evaluated by calculating and comparing the standard deviation of the mean spectra for 

each class (CVID patients versus healthy controls; and serum versus plasma). Subsequent 

to this, each pre-processing method was then put through multivariate analysis 

(unsupervised and supervised) to evaluate whether the choice of pre-processing 

technique could improve or reduce the ability to identify key spectral variances and/or 

discriminate between classes. A one-way ANOVA was used to calculate p-values for PCA-

LDA scores where statistical significance was evaluated at a 95% confidence level (P < 

0.05). 
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Assessment of blood sample type suitability: Serum versus Plasma 

Suitability of blood sample type was assessed through performing supervised and 

unsupervised methods of analysis on the spectral data. Pre-processing methods selected 

during previous method evaluation section were applied as described above. PCA scores 

and PCA-LDA projected scores were calculated as described in multivariate analysis 

methods section, and assessed for significance using a one-way ANOVA (P < 0.05), as 

above. The discriminating biomarkers extracted following PCA-LDA analysis of serum 

versus plasma samples were obtained from the cluster vector analysis. A peak detection 

algorithm was applied to identify the 12 most segregating peaks. 

Evaluation of environmental stability 

Assessment of inter-assay variability associated with environmental factors and acquiring 

spectral data across several different days was performed by grouping samples into 

classes based on the date of spectral acquisition, and examining for significant spectral 

variance between the classes. This was done independently for both HC and CVID patient 

samples. Pre-processing and multivariate analysis was performed using the MATLAB 

R2014b software (MathWorks, Inc., USA) through the PLS Toolbox version 7.9.3 

(Eigenvector Research, Inc., USA) and lab-made routines. Firstly, pre-processing of the 

acquired spectra was performed to remove physical interferences and improve the signal-

to-ŶŽŝƐĞ�ƌĂƚŝŽ͘�dŚŝƐ�ǁĂƐ�ŵĂĚĞ�ďǇ�͚ĐƵƚƚŝŶŐ͛�ƚŚĞ�ĨŝŶŐĞƌƉƌŝŶƚ�ƌĞŐŝŽŶ�;ϭϴϬϬʹ900 cm-1), followed 

by Savitzky-Golay 2nd derivative (window of 5 points, 2nd order polynomial fitting) and 

vector normalisation. The PCA scores for each spectrum were used to assess 

environmental stability. P-values were calculated based on a MANOVA test of the scores 

within PC1, PC2 and PC3. Statistical significance was evaluated at a 95% confidence level 

(P < 0.05). 
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 Results & Discussion 2.3

2.3.1 Verification of pre-processing techniques ʹ Results 

A) All spectra ʹ unprocessed 400-3600 cm-1 
 

B) All spectra ʹ unprocessed 400-3600 cm-1, 
with SD 

  

C)  All spectra - unprocessed cut at fingerprint 
region 1800-900 

D) All spectra - unprocessed cut at fingerprint 
region 1800-900, with SD 

  

Figure 2.3.1. Visualisation of the raw serum spectra for CVID patients and HCs. Unprocessed 
serum spectra for HC and CVID patients (mean spectra) with and without standard deviation 
(SD) displayed.  
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Fingerprint region cut, pre-processed serum spectra for HC and CVID patients (mean spectra) 
A) Rubberband baseline correction only B) Rubberband baseline correction, with SD 

  

C) Rubberband normalised to Amide I D) Rubberband normalised to Amide I, with SD 

  

E) Rubberband normalised to Amide II F) Rubberband normalised to Amide II, with 
SD 

  

G) Rubberband normalised to vector H) Rubberband normalised to vector, with SD 

  

Figure 2.3.2. Visual examination of rubberband baseline corrected mean spectra and associated 
standard deviations following Amide I, Amide II and vector normalisation techniques with and 
without standard deviation (SD) displayed. 
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In Figure 2.3.1A and B, the raw spectra of serum samples from 30 HC and 21 CVID 

patients are illustrated (plotting the class mean spectra for the wavenumber region 3600-

400 cm-1). These spectra were initially cut at the fingerprint region, 900-1800 cm-1, 

(Figure 2.3.1C and D), reducing the size of dataset for the evaluation of pre-processing 

techniques.  

Visually, the spectra from each class appear very similar therefore the application of 

multivariate statistical analysis will be required to further investigate whether FTIR 

spectroscopy can be used to discriminate between serum samples from each class. 

Analysis of the variance of absorbance intensities within the spectral dataset was 

performed (using standard deviations (SD)). As expected for unprocessed data, higher SD 

was observed, depicted by the grey shaded regions across the spectra in Figures 1B and 

D, and the first two columns of Table 1.  

Table 2.3.1. Standard deviations of mean spectra for each group following rubberband and 
second-differential (SG smoothed) pre-processing of serum samples. 

 None Cutting (900 ʹ 1800 cm-1) 
 Cut only Rubberband Baseline correction 2nd Differential SG 
 + Normalisation method: 

None Amide I Amide II Vector Vector 

HC 0.0181 0.0212 0.0181 0.0157 0.0176 0.0023 0.0054 
CVID 0.0176 0.0213 0.0180 0.0161 0.0184 0.0024 0.0050 

Figure 2.3.2, and Table 2.3.1, illustrates the mean spectra and SDs following rubberband 

and second-differential (SG smoothed) baseline correction and subsequent normalisation 

using three methods (Amide I, Amide II and Vector). Once again, visual interpretation of 

the spectra revealed high similarities between the pre-processed spectra for the two 

classes, however the SDs, represented by the shaded regions, are greatly reduced. This 

indicates that the reproducibility of the data is greater following baseline correction and 

normalisation due to the reduction of noise and correction of interference from sample 

or environmental factors.  

Table 2.3.1 shows the mean SD calculated across each wavenumber in the spectral 

dataset for each class. In comparison to the unprocessed, cut spectral data for HC and 

CVID samples (both at 0.021), the SDs are lower for all pre-processed datasets, improving 

reproducibility. Between each class (HC and CVID), the SDs associated with each pre-

processing technique are comparable, indicating that a similar level of variance 
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(potentially attributed to environmental and sampling variations) is inherent to the 

collection of spectra from both classes.  

For the rubberband baseline corrected spectra, the normalisation method which showed 

the lowest average SD for both CVID and HC spectral data was the vector normalisation 

method (at 0.0024 and 0.0023 respectively). SDs of the mean spectra were also calculated 

following second-differential (SG smoothed) baseline correction with vector 

normalisation of the CVID and HC spectral data (at 0.0050 and 0.0054, respectively), and 

included in Table 2.3.1. 

For polynomial based methods of baseline correction, vector normalisation is the only 

suitable normalisation method that can be applied. Following this initial analysis, the two 

pre-processing methods chosen to take forward for subsequent multivariate analysis 

were rubberband baseline corrected spectra with vector normalisation and second-

differential (SG smoothed) baseline correction with vector normalisation. 

The variance and segregation of serum samples from each class (HC and CVID) were 

investigated by PCA and PCA-LDA following two different methods of pre-processing 

(rubberband, vector normalised and second differential, vector normalised) to determine 

the best possible separation techniques (illustrated in Figures 2.3.3 and 2.3.4). The 

number of PCs used was optimised using the Pareto function in the IRootLab toolbox to 

capture maximal variance whilst minimising inclusion of noise.  

Figure 2.3.3A illustrates 98.9% of the variance to be captured within the first 10 PCs; we 

therefore limited subsequent analysis to a maximum of 10 PCs, dramatically reducing the 

size of the dataset prior to further exploratory analysis. During PCA cluster analysis, each 

spectrum can be plotted in either 2D or 3D within the linearly transformed space. The use 

of multiple plots enables improved visualisation and selection of the PCs responsible for 

separating the classes.  

Figure 2.3.3B and 2.3.3C shows the scatterplots generated from plotting the first three 

PCs against each other, which together are responsible for 84% of the spectral variance. 

In figure 2.3.3B, the projected axis drawn using PC3 shows superior separation of the two 

classes compared to PC1 and PC2. Whilst PCA is useful to gain an initial overview of the 

spectral data and assess the presence or absence of any clear class separation, this mode 

of multivariate analysis has weak discriminatory power. Supervised PCA-LDA analysis 
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(using the first 10 PCs) was therefore performed to explore class segregation following 

rubberband vector normalised pre-processing. 

The scores plot in Figure 2.3.3D demonstrates significant segregation of classes following 

PCA-LDA (P<0.0001). Second-order differential baseline correction is a widely accepted 

pre-processing technique for biological samples and was also considered within this 

study. The variance and segregation between classes was assessed using PCA and PCA-

LDA, respectively, as previously described. 

Figure 2.3.4A confirms that inclusion of the first 10 PCs is also appropriate for the second-

differential, vector normalised pre-processed spectra. In Figure 2.3.4B and 2.3.4C, PCA 

analysis using the first three PCs (capturing 70% of the total variance) revealed PC2 has 

the greatest ability to separate classes. The scores plots derived from subsequent 

supervised analysis (PCA-LDA) demonstrated improved and significant (P<0.0001) class 

separation, as illustrated in figure 2.3.4D. 
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Serum: Rubberband baseline correction with vector normalisation 

A) Determining optimal number of PCs 

 

B) PC1, PC2, PC3 scatterplots (84% of the total variance) 

 

C) PC1, PC2, PC3 scatterplots 

 

D) PCA-LDA scores plots (P<0.0001) 

 

Figure 2.3.3. Examining the effect of pre-processing techniques on subsequent multivariate 
analysis techniques (unsupervised and supervised separation). 
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Serum: 2nd differential correction with vector normalisation 
A) Determining optimal number of PCs 

 

B) PC1, PC2, PC3 scatterplots (70% of the total variance) 

 

C) PC1, PC2, PC3 scatterplots 

 

D) PCA-LDA scores plots (P<0.0001) 

 

Figure 2.3.4. Examining the effect of pre-processing techniques on subsequent multivariate 

analysis techniques (unsupervised and supervised separation). 
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2.3.2 Verification of pre-processing techniques ʹ Discussion 

Pre-processing techniques are required prior to chemometric analysis in order to correct 

for unwanted signals (background noise) such as sloping baseline effects, fluorescence, 

scattering, variations in sample thickness, environmental conditions and instrumental 

variations2,15. These unwanted signals cause oscillations in the spectrum, producing false 

absorption bands that do not represent the sample composition. 

The effects of the major pre-processing techniques (cutting, de-noising, baseline 

correction and normalisation) were explored within this study. Visualisation of the mean 

class spectra (with standard deviations), alongside the average calculated standard 

deviations, illustrated high levels of variance in the original unprocessed data which could 

be successfully reduced following application of these widely-used pre-processing 

techniques.  As the most important spectral regions measured in biological samples are 

typically found within the fingerprint region, all spectra were firstly cut to extract this 

dataset (1800-900 cm-1), which also includes the amide I and amide II regions (1500ʹ1700 

cm-1).  

The standard deviation calculated for both HC and CVID groups increased following 

cutting of the spectrum and extraction of the fingerprint region. This was likely a result of 

reducing the wavenumber range of the spectrum. In focussing analysis on a smaller 

specific wavenumber range, several wavenumber regions which would have exhibited 

ǀĞƌǇ�ůŽǁ�ĂďƐŽƌďĂŶĐĞ�ƐŝŐŶĂůƐ�;͚ĚĞĂĚ͛�ĂƌĞĂƐͿ�ǁŽƵůĚ�ďĞ�ĞůŝŵŝŶĂƚĞĚ͘��dŚĞƐĞ�ĚĞĂĚ�ĂƌĞĂƐ�ǁŽƵld 

have had small levels of variation attributed with them thus the increased SD associated 

with cutting is likely a concentration effect once these regions were removed. In addition, 

it is known that the fingerprint region contains the spectral data for the majority of 

biologically relevant molecules so we would expect higher levels of variation, both within-

class and between-class across this region.  

Following application of rubberband baseline correction and normalisation to amide I, 

amide II or vector, the variation across the spectral data is reduced for both HC and CVID 

patient groups. These observations are similar to those reported in other studies using 

ATR-FTIR spectroscopy on human serum19,20, with Hands et al. reporting reproducibility 

data (average SD of 0.014 and 0.0015, for unprocessed and rubberband vector-normalised 

spectra, respectively).  



Chapter 2 
 

49 
  

Amide I normalisation is an accepted method of normalisation for biological samples and 

reduces the intra-class variance compared to the cut, unprocessed data for both sample 

groups. However it is unknown at this stage in our investigations whether the 

contribution of Amide I absorbance to group-specific variance is significant, (thus a 

potential disease-specific biomarker). As normalisation to the amide I peak will eliminate 

variance between the classes at that wavenumber (1650 cm-1), vector normalisation is 

concluded to be more suitable. Furthermore, vector normalisation is the only choice of 

normalisation for polynomial-based background correction techniques therefore was 

chosen for subsequent analysis for both rubberband and second-order differentiation 

pre-processing techniques prior to the application of unsupervised and supervised 

multivariate analysis. 

The ability to separate the serum sample spectra into the two study groups (HC and CVID) 

was examined using unsupervised (PCA) and supervised (PCA-LDA) analysis techniques for 

both the rubberband- and second-order differentiated-vector normalised data. The 

pareto charts obtained for both sets of pre-processed data illustrates that 98% of the 

sample variance is captured within the first ten PCs, this is in keeping with previously 

reported studies using biological samples21.  

As an unsupervised exploratory data analysis, the group labels or class information (i.e. 

HC or CVID) is omitted from PCA to prevent over-fitting of the data and introduction of 

bias. The goal of PCA is to reduce the complexity of a dataset by producing a fewer 

number of independent variables (called loadings vectors), while retaining the maximum 

levels of variation present in the original data. This enables the data to be visualised in a 

reduced dimensional space and any relationship between classes can be identified with 

less difficulty16.  

Visualisation of the scatterplots from the rubberband- and second differential-baseline 

corrected spectra was done using PC1, PC2 and PC3 (Figures 2.3.3B and 2.3.3C; and 2.3.4B 

and 2.3.4C) which accounted for 84% and 70% of the total variance, respectively. These 

plots illustrate that the spectra from each class are clustered together to some degree, 

and that prior to any consideration of class within the analysis, there is evidence of 

within-class similarities and between-class differences. As an unsupervised multivariate 

method, PCA has weak discriminatory power, illustrated in the scatterplots by the high 

level of overlap between class cluster, which limits its use in classification and prediction 
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models. This can be overcome by combining PCA with more powerful supervised methods 

such as linear discriminant analysis (LDA). PCA will therefore be applied as a further pre-

processing step for subsequent computational analysis and data mining algorithms used 

in the main body of the project. 

In conclusion, both rubberband- and second-order differentiation methods for baseline 

correction are accepted in the field. As demonstrated in this method development 

section, both methods are vital pre-processing steps to improve the quality of the 

spectral data and increase the signal-to-noise ratio prior to further multivariate analysis. 

Encouragingly, in this initial piece of exploratory work, application of both methods 

demonstrated clear separation between classes when PCA-LDA multivariate analysis was 

applied to the pre-processed spectra from serum samples.  

As the rubberband-vector normalised technique does not contain a smoothing step and 

that second-order differentiation correction is considered to be a more powerful 

technique (it increases the amplitude of discriminant spectral features between the 

classes), the second-differential baseline correction (with SG smoothing) followed by 

vector normalisation will be the pre-processing method applied to the subsequent 

classification work undertaken for this research study. These findings support the 

continuation of further analysis and development of classification models to potentially 

generate a novel diagnostic platform for CVID. 
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2.3.3 Investigating choice of biofluid - Results 

Fingerprint region serum and plasma spectra for HC (mean spectra) 
A) Raw, unprocessed spectra B) Raw, unprocessed spectra with SD 

  

C) Rubberband vector normalised D) Rubberband vector normalised with SD 

  

E) Second differential vector normalised F) Second differential vector normalised 
with SD 

  

Figure 2.3.5. Visualisation of raw and pre-processed spectra for blood serum and plasma in 

healthy controls (mean spectra) with and without standard deviation (SD) displayed. 

To further validate and confirm the observations from the previous pre-processing 

techniques evaluation, the mean absorbance spectra and associated standard deviations 

of the serum and plasma samples from healthy controls were visualised (Figure 2.3.5A-F). 

The results mirrored the earlier findings in that the standard deviation (shaded areas) of 

the spectra within each class is reduced following the application of well-recognised 

approaches to baseline correction and normalisation processes. The chosen methods to 

take forward within the previous section were rubberband- and second-order differential 
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followed by vector normalisation, both of which result in improvements in the overall 

spread of the spectral data for each class, as illustrated by the reduction in shaded areas 

associated with the mean class spectra in Figure 2.3.5 (B, D and F).  

In this initial visualisation and comparison of the mean spectra from HC serum and 

plasma samples (Figure 2.3.5A-F) it is noteworthy that there are fewer overlapping areas 

and greater peak separation between the classes (serum vs plasma) when compared to 

the previous method section, which compared classes (HC vs CVID) within the same 

biofluid type (i.e. serum or plasma). This suggests that even prior to the application any 

further unsupervised or supervised multivariate analysis to identify subtle variances, 

there are significant spectral differences evident between the two biofluids.  

To explore these differences further, an unsupervised comparison of the mean spectra 

(cut to the fingerprint region) from HC serum and plasma biofluids was performed on 

second differential vector normalised pre-processed spectra. Figure 2.3.6A represents the 

PCA scatterplots generated using the first three PCs (includes 82% total variance).  The 

clustering observed within the same class, and separation between the two classes 

(serum = red; plasma = blue) is clearly illustrated within PC1, and to some degree within 

PC2. This indicates that there are fundamental differences between the spectra of each 

class and that the two sample types could not be used interchangeably if biospectroscopy 

methods were translated into the routine pathology laboratory.  

The findings from the unsupervised analysis warrant further investigation to determine 

which wavenumbers (and associated biomolecular assignments) account for the major 

variances observed. A supervised multivariate method (PCA-LDA) was used to derive the 

scores plots and corresponding cluster vector plots for the two sample types. Figure 

2.3.6B illustrates clear and statistically significant separation between the classes on the 

PCA-LDA scores plots (p < 0.0001).  

The PCA-LDA loadings plot indicates which variables have the largest effect on the class 

separation and are responsible for clustering (as described in the methods section). As 

there are only two classes being compared, the cluster vector plots are generated from 

only one LDA loadings plot (Figure 2.3.6C). This results in the cluster vector plots (Figure 

2.3.6D) being a mirror image of each other. The application of a peak detector to the 

loadings and cluster vector plots identifies the twelve most prominent peak variances 
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(positive or negative) between the classes, and thus can be used to identify the molecular 

groups which contribute to the major variances between the two classes.  

For the healthy control group, the twelve most prominent wavenumber peaks that 

distinguish between the serum and plasma biofluids are labelled on the cluster vector 

plot in Figure 2.3.6D and described in Table 2.  The wavenumbers (and associated 

molecular assignments) are 926 cm-1 and 984 cm-1 (protein phosphorylation vibrations), 

1041 cm-1 (glycogen), 1119 cm-1  (C-O stretching vibrations), 1304 cm-1 (amide III), 1354 

cm-1 and 1393 cm-1  (COO- symmetric stretching vibrations of fatty acids and amino acids), 

1481 cm-1  (proteins), 1531 cm-1 (amide II), 1589 cm-1, 1624 cm-1 and 1666 cm-1 (amide I). 
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HC group - Serum vs plasma biofluid comparison (2nd differential vector 
normalised spectra) 

A) PC1, PC2, PC3 scatterplots (82% of total variance) 

 

B) PCA-LDA scores plots (P<0.0001) 

 

C) PCA-LDA loadings plot. Application of a peak detector identifies the 
top 12 biomarkers responsible for the difference between the groups 

 

D) PCA-LDA cluster vector plot. Key wavenumbers identified using the 
peak detector on the loadings plots 

 

Figure 2.3.6. Unsupervised (PCA) and supervised (PCA-LDA) analysis of spectral variance 
between serum and plasma samples from healthy controls. 
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CVID patients - Serum vs plasma biofluid comparison (2nd differential vector 
normalised spectra) 

A) PC1, PC2, PC3 scatterplots (83% total variance) 

 

B) PCA-LDA scores plots (P<0.0001) 

 

C) PCA-LDA loadings plot. Application of a peak detector identifies the 
top 12 biomarkers responsible for the difference between the groups 

 

D) PCA-LDA cluster vector plot. Key wavenumbers identified using the 
peak detector on the loadings plots 

 

Figure 2.3.7. Unsupervised (PCA) and supervised (PCA-LDA) analysis of spectral variance 
between serum and plasma samples from CVID patients 
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In order to assess whether the spectral differences observed between the serum and 

plasma samples in the HC cohort were replicated in the disease group (CVID patients), the 

same analysis process was undertaken with the spectral data from the CVID patient 

samples. Figure 2.3.7A demonstrates the clustering of the generated PCA scores for each 

class (serum = red; plasma = blue) analysed using PC1, PC2 and PC3 (which covers 83% 

total variance). 

As observed within the HC group scatterplots, two discrete clusters could be observed 

when using PC1, confirming the existence of significant spectral differences between the 

two biofluids. Although the unsupervised analysis was capable of separating the two 

clusters using PC1, the scatterplots of the CVID group spectra showed a greater degree of 

overlapping scores from each class, and the clusters appeared less clearly defined 

compared to the HC group. 

Following the inclusion of class data into the PCA-LDA supervised analysis, the CVID 

patient spectra associated with each biofluid could be clearly separated, illustrated using 

PCA-LDA scores plots in Figure 2.3.7B. Once again, the separation observed between the 

biofluid classes of the CVID patients was less apparent on PCA-LDA scores plots when 

compared to the HC samples. To assess the significance of the class separation, a one-way 

ANOVA was used to calculate p-values for PCA-LDA scores, which demonstrated a 

statistical significance of P < 0.0001. Loadings plots (Figure 2.3.7C) and cluster vector plots 

(Figure 2.3.7D) were generated as previously described, with the twelve most 

distinguishing wavenumbers selected by application of the peak detector, as described in 

Table 2.3.2. 

For the CVID patient group, the twelve most prominent wavenumber peaks (and 

associated molecular assignments) that distinguish between the serum and plasma 

biofluids were 972 cm-1 (protein phosphorylation vibration), 1034 cm-1 (glycogen), 1072 

cm-1  (symmetric phosphate stretching), 1122 cm-1 (C-O stretching vibrations), 1184 cm-1 

(carbohydrate), 1331 cm-1 (COO- symmetric stretching vibrations of fatty acids and amino 

acids), 1416 cm-1  and 1473 cm-1  (proteins), 1570 cm-1 (amide II), 1636 cm-1 and 1690 cm-1 

(amide I), and 1732 cm-1 (C=O stretching band mode of the fatty acid ester).  

The key wavenumbers extracted from the biofluid comparison for both HC and CVID 

patients are listed in adjacent columns in Table 2.3.2. The peaks occurring at closely 

associated wavenumbers or molecular assignments have been grouped together by 
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colour to illustrate any shared discriminating features observed within each group. In 

total there were seven overlapping molecular assignments associated with key spectral 

differences between serum and plasma samples. The discriminating features observed in 

both HC and CVID patients were; protein phosphorylation, glycogen, C-O stretch, COO- 

symmetric stretching, proteins, amide II and amide I. 

Table 2.3.2. Key spectral wavenumbers associated with greatest spectral variance between 

serum and plasma samples identified using PCA-LDA cluster vector analysis. Closely associated 

wavenumbers observed within the HC and CVID group have been grouped together by colour 

across the two columns. These wavenumbers were identified following independent analysis of 

the serum and plasma samples from HC and CVID patients, respectively.  Tentative molecular 

assignments generated from the IRootLab toolbox.  

waves
/cm-1 

HC waves
/cm-1 

CVID  

926  Protein phosphorylation 972  Protein phosphorylation 
984  Protein phosphorylation 

 
  

1041  Glycogen 1034  Glycogen 
    1072 Symmetric phosphate 
1119 C-O stretch (nu CO) 1122 C-O stretch (nu CO) 
    1184 Carbohydrate 
1304 Amide III     

1354 
COO- symmetric stretching vibrations 
of fatty acids and amino acid 1331 

COO- symmetric stretching vibrations 
of fatty acids and amino acid 

1393 
COO- symmetric stretching vibrations 
of fatty acids and amino acid     

    1416 Proteins 
1481 Proteins 1473 Proteins 
1531 Amide II 1570 Amide II 
1589 Amide I     
1624 Amide I 1636 Amide I 
1666 Amide I 1690 Amide I 
    1732 Lipid 
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2.3.4 Investigating choice of biofluid - Discussion 

The diagnosis of pathological disease can be greatly improved by undertaking 

appropriate, highly sensitive and specific laboratory testing of biological samples. The 

choice of sample type (cells, tissues, or biofluids) should be carefully considered to ensure 

that the appropriate compartment is being investigated, and that any disease-specific 

changes can be detected. The most widely used sample type for clinical investigation of 

human disease is blood, due to the fact that collection is relatively non-invasive, it is 

easily accessible, and that its molecular composition is reflective of structural and 

functional changes occurring within the human body.  

An enormous number of discrete, measurable analytes can be detected in the blood. 

Whilst analytes shown to have disease-specific changes in concentration or function can 

be used as diagnostic biomarkers, there continues to be a lack of reliable biomarkers for 

the diagnosis and management of many pathological disorders and thus an unmet need 

for the development of innovative approaches to diagnostic medicine 22.  

In this study we have chosen to analyse blood serum and blood plasma by ATR FTIR 

spectroscopy, assessing the complete composition of the sample as a whole rather than 

individual analytes. In this section of the method evaluation we have considered the 

molecular variances that are present between these two biofluids to avoid 

misclassification of samples in the main study due to sample-specific spectral variation 

rather than disease-specific variation. 

In contrast to the subtle differences observed between the pre-processed mean spectra 

of serum samples from CVID patients and healthy controls in the previous results section, 

the differences between the mean spectra for serum and plasma samples (within the 

same class, healthy controls) were immediately apparent. This was anticipated given that 

the two sample types have fundamental differences in biochemical composition (removal 

of clotting proteins from serum), and based on the metabolic differences observed in 

previous studies using mass spectrometry 11,12.  

The initial visualisation of the mean pre-processed spectra and SDs from serum and 

plasma samples mirrored the previous findings and confirmed the suitability of the pre-

processing methods selected in the previous section (rubberband or second differential 

baseline correction followed by vector normalisation).   
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Subsequent multivariate analysis using PCA and PCA-LDA demonstrated significant 

variances between the two sample types. In both the HC and CVID patient group the 

blood sample types are not interchangeable for this methodology platform, unlike the 

majority of assays currently performed in the immunology laboratory (i.e. ELISA, 

immunoblot, turbidimetry, nephelometry, radioimmunoassay, electrophoresis, and 

indirect immunofluorescence). Notably, although the PCA-LDA score plots for both classes 

(HC and CVID) demonstrated a significant difference between the classes  (p<0.0001), in 

the HC group the separation between the classes on the supervised (PCA-LDA) scores 

plots was greater, with less overlap compared to the CVID patient group.  

We hypothesise that this may be due to the presence of additional disease-specific 

variables within the CVID group, which may relate to co-morbidities such as infection, 

inflammation, autoimmunity, or a result of treatment such as replacement 

immunoglobulin or antibiotics. If these disease-specific variances are present in both the 

serum and plasma compartments, the variances separating the two sample types will be 

less apparent when applying unsupervised methods to separate the classes, as illustrated 

in PC2 separation within Figure 2.3.6A. This reiterates the requirement for supervised 

methods of multivariate analysis (such as LDA), which consider the class data within the 

analysis to aid class separation and enable the detection of subtle class-specific variances 

within the spectral data. 

To investigate the biochemical differences between the serum and plasma samples 

further and assess which spectral features account for the major variance between the 

two sample types, a peak detector was applied to the PCA-LDA loadings plots. In the HC 

group, the twelve most prominent wavenumbers were  926 cm-1 and 984 cm-1 (protein 

phosphorylation vibrations), 1041 cm-1 (glycogen), 1119 cm-1  (C-O stretching vibrations), 

1304 cm-1 (amide III), 1354 cm-1 and 1393 cm-1  (COO- symmetric stretching vibrations of 

fatty acids and amino acids), 1481 cm-1  (proteins), 1531 cm-1 (amide II), 1589 cm-1, 1624 

cm-1 and 1666 cm-1 (amide I); and in the CVID group, 972 cm-1 (protein phosphorylation 

vibration), 1034 cm-1 (glycogen), 1072 cm-1  (symmetric phosphate stretching), 1122 cm-1 

(C-O stretching vibrations), 1184 cm-1 (carbohydrate), 1331 cm-1 (COO- symmetric 

stretching vibrations of fatty acids and amino acids), 1416 cm-1  and 1473 cm-1  (proteins), 

1570 cm-1 (amide II), 1636 cm-1 and 1690 cm-1 (amide I), and 1732 cm-1 (C=O stretching 

band mode of the fatty acid ester). 
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As the most distinguishing peaks separating the serum and plasma biofluids occurred at 

closely associated wavenumbers for both the HC and CVID patient groups, this suggests 

that the differences are due to the biochemical differences between the sample types, 

and not due to within-group (disease-related) variances.  

Further work to assess the differences in these spectral biomarkers between sample 

types, i.e. whether they increase or decrease in concentration would be informative. Both 

serum and plasma have approximately 60-80 mg/mL of total protein, largely made up of 

albumin and globulins, with plasma having the higher total protein content of the two 

biofluids, due to the removal of clotting factors and fibrinogen in serum 9,23. As several of 

the tentative molecular assignments from the key wavenumbers identified are associated 

with proteins;  1304 cm-1 (amide III), 481 cm-1  (proteins), 1531 cm-1 (amide II), 1589 cm-1, 

1624 cm-1 and 1666 cm-1 (amide I), 1416 cm-1  and 1473 cm-1  (proteins), 1570 cm-1 (amide 

II), 1636 cm-1 and 1690 cm-1 (amide I), we hypothesise that an increased contribution 

from these molecular vibrations will be observed in the plasma samples.  

Prevention of the clotting cascade in plasma samples occurs through addition of 

Ethylenediaminetetraacetic acid (EDTA) and chelation of calcium, magnesium, zinc and 

potassium ions 10; the concentration of these metallic ions will therefore be increased in 

serum samples compared to plasma. However, as FTIR spectroscopy can only be used to 

characterise molecules with a dipole moment, it would not be possible to detect these 

monoatomic ions and thus any concentration differences between the biofluids using 

ATR-FTIR. 

This piece of work validates the requirement to include both biofluids as separate 

experiments within the main study, as at this point we are unsure which will identity the 

most significant spectral changes which could be used as CVID-specific biomarkers in the 

future. This investigation also confirms that the two biofluids are fundamentally different 

and have discrete FTIR molecular fingerprints. These two sample-types therefore cannot 

be used interchangeably within this testing platform.  

In the main study, we propose that disease classification models (HC versus CVID spectra) 

will be built for each sample type (serum and plasma). In order to assess which biofluid 

has superior performance for the potential use as a diagnostic test, we will compare the 

calculated classification rates (ability to correctly classify spectra as either a HC or CVID 

sample), and the sensitivity and specificity values associated with each biofluid 
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classification model. We also aim to extract major wavenumber variances between HC 

and CVID patients and evaluate the value of using key spectral peaks as individual disease 

biomarkers. The spectra of both biofluids will be explored; if successful, a wavenumber 

library of potential CVID-specific wavenumbers will be built for both serum and plasma 

samples.  
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2.3.5 Examining environmental variance - Results  

In the final aspect of the method evaluation section, the contributing variances from 

environmental factors was considered by investigating whether significant variance could 

be observed between serum samples analysed on different days (inter-assay variation). 

Figure 2.3.8A illustrates the mean unprocessed spectra of samples analysed on different 

dates for the HC group, and Figure 2.3.8B for the CVID patient group. 

In total, 10 individual data acquisition dates were compared within this evaluation 

(08/06/2017, 14/06/2017, 05/07/2017, 26/07/2017, 03/08/2017, 18/08/2017, 

30/08/2017, 06/09/2017, 28/09/2017, and 03/10/2017). As expected and observed 

throughout this method evaluation study, any obvious initial visual differences of the 

mean spectra between the classes were no longer observed following pre-processing 

(cutting, second differential baseline correction followed by vector normalisation), as 

shown in Figure 2.3.8C and 2.3.8D, for HC and CVID populations, respectively.  

The exploratory analysis was undertaken using PCA and MANOVA statistical testing. 

Examination of the scores within PC1, PC2 and PC3 demonstrated there to be no 

significant difference between the spectra acquired on the different days for the CVID 

patient population (p = 0.351), illustrated in Figure 2.3.8F. Of note, there was a significant 

difference observed within spectra collected over different days within the HC group (p 

<0.0005), illustrated in Figure 2.3.8E. Due to the complexity of the PCA results output and 

number of classes being compared, it is not possible to clearly discern any discrete 

clustering of scores within the 3D scatterplots with visual examination alone. 
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Mean serum spectra classed into individual spectral acquisition dates 
A) HC ʹ unprocessed mean spectra  B) CVID - unprocessed mean spectra 

 
 

C) Fingerprint region cut, second differential 
vector normalised 

D) Fingerprint region cut, second differential 
vector normalised 

  

E) PCA 3D scatterplot of PC1, PC2 and PC3 
(67% of the total variance) P < 0.0005 

F) PCA 3D scatterplot of PC1, PC2 and PC3 
(73% of the total variance) P = 0.351 

 

 

Figure 2.3.8. Examining the spectral differences between serum samples analysed across 
different dates (inter-assay variation) in HC and CVID patient populations using unsupervised 
PCA analysis. 
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2.3.6 Examining environmental variance - Discussion 

In the environmental stability data, there is a significance (p < 0.0005) observed between 

the spectra collected on different days in the HC samples, which was not observed within 

the CVID patient study population. As highlighted in the introduction, environmental 

variances (including temperature, humidity, instrumentation or user input) can have an 

impact on the quality of spectra acquired and potentially lead to the incorrect 

identification of spectral variance between classes that is not disease or class-related. 

Several steps have been undertaken to account for these factors and eliminate bias 

within this research project, these include: using standardised processes for sample 

collection, sample storage, slide preparation and spectral acquisition, having a single 

researcher performing all of the aforementioned processes and by applying appropriate 

pre-processing steps to the data prior to multivariate analysis. 

This aspect of the method evaluation has highlighted the fact that significant spectral 

variances can be observed between samples (or groups of samples) within the sample 

study population when the analysis is conducted over multiple different days. At this 

point it would not be possible to attribute this solely to environmental differences, as the 

findings were not mirrored in the CVID patient group, with no significant variance 

observed between samples processed on different days.   

An alternative explanation would be that the observed variances detected between HC 

samples acquired on different days are attributed to inter-donor variability, which has 

become more apparent when the samples are divided into smaller groups of individual 

participants for comparison. This would not be surprising given the wide variety of 

ĚĞŵŽŐƌĂƉŚŝĐ�ĂŶĚ�ƉĂƌƚŝĐŝƉĂŶƚ�ĐŚĂƌĂĐƚĞƌŝƐƚŝĐƐ�ƚŚĂƚ�ĐŽƵůĚ�ďĞ�ŝŶĐůƵĚĞĚ�ŝŶ�Ă�͚,ĞĂůƚŚǇ��ŽŶƚƌŽů͛�

cohort. Further evaluation to elucidate the significance of wavenumber variances 

between individual HCs would be informative; however it was outside the scope and 

timescale of this piece of work.  

Exclusion criteria were applied to the HC cohort to control the age range (participants 

were all 18-50 years old) and to prevent the inclusion of pregnant women or immune 

deficient individuals. Further steps were taken to collect information on participant 

infection history, medication and the presence of any immune-related disorders through 

the use of a brief questionnaire. Nevertheless, detailed demographics were not collected 
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for the HC group thus it would not be possible to fully explore within-class spectral 

variance within this study.  

To summarise, the findings from the evaluation into the impact of environmental 

influence are not conclusive however this piece of work adds value towards the 

determination of analytical methods chosen in the main study. Whilst there were no 

significant differences observed between CVID patient samples tested on different days, 

the HC group demonstrated that environmental variability could potentially play a role as 

a source variance between samples.  

This can be accounted for in the building of the classification modes in the main study. 

The construction of Ă� ĐůĂƐƐŝĨŝĐĂƚŝŽŶ�ŵŽĚĞů� ƌĞƋƵŝƌĞƐ� ƚŚĞ� ĚĂƚĂ� ƚŽ� ďĞ� ƐƉůŝƚ� ŝŶƚŽ� Ă� ͚ƚƌĂŝŶŝŶŐ͛�

ĚĂƚĂƐĞƚ�ĂŶĚ�Ă� ͚ƚĞƐƚ͛�ĚĂƚĂƐĞƚ͘�dŚĞ�ƐƉůŝƚƚŝŶŐ�ŽĨ�ƚŚĞ�ĚĂƚĂ� ŝŶƚŽ�ƚǁŽ�ĚŝƐĐƌĞƚĞ�ƐƵďƐĞƚƐ�ƉƌŽǀŝĚĞƐ�

the opportunity to use the first set in the calibration stage of the classification model 

consƚƌƵĐƚŝŽŶ͘� dŚĞ� ŵŽĚĞů� ĐĂŶ� ƐƵďƐĞƋƵĞŶƚůǇ� ďĞ� ͚ƚĞƐƚĞĚ͛� ĨŽƌ� ƉƌĞĚŝĐƚŝŽŶ� ĐĂƉĂĐŝƚǇ� ƵƐŝŶŐ� Ă�

second subset of study data. It is important that most sources of variance are captured 

within the training dataset to ensure that the final classification model is not skewed by 

inter-assay variation and environmental factors. In light of the findings here, it is vital that 

the training dataset includes samples tested across multiple different days. 

The two most commonly used computational-based splitting methods applied to 

spectroscopy data are Random selection (RS) and the Kennard-Stone (KS) algorithm24. 

Whist the RS method is favoured for its simplicity; KS is often the preferred choice for 

biochemical analysis. By including most of the variability in the training dataset, it 

provides a more uniform and representative training model for classification purposes25.  

In the construction of classification models within the main study, the KS algorithm will be 

used to ensure that all potential sources of environmental and inter-donor variability are 

contemplated in the training process.  

Further to this, this splitting process will be performed on an individual patient basis 

rather than an individual spectrum basis (as 20 spectra were acquired per patient), to 

ensure that the training and test groups do not contain spectra from the same patient. 
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 Summary of all Method Evaluation Results  2.4

x The pre-processing techniques chosen to be applied to spectral data prior to 

constructing the classification models within the main body of work will be second 

differential (SG) baseline correction followed by vector normalisation. 

x Serum and plasma biofluids both show suitability to use as sample types within the 

main study.  

x Significant spectral variances identified between the two biofluids will require that 

each sample type is analysed independently to assess which provides the superior 

classification model in the main study. 

x The potential impact from environmental factors will be considered during the 

analysis of the spectral data. The construction of a classification model in the main 

study will be done using a training dataset, generated using recommended 

computational methods. To prevent skewing of the final model, the training dataset 

will include sample spectra collected from a variety of different dates, ensuring that 

all sources of environmental variability are considered. 
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Common variable immunode!ciency (CVID) is the most frequent life-threatening and symptomatic primary 
immune de!ciency (PID)1. "e estimated prevalence is between 1:10,000 and 1:100,000 of the population, with 
two peak ages of onset, one before the age of ten and another between 30–40 years of age2,3. "e majority (>80%) 
of CVID cases are sporadic and the main diagnostic method is exclusion; o#en with a delay of approximately 5 
years4. Failure to produce su$cient immunoglobulins results in recurrent infections in 90% of CVID patients; an 
increased risk of autoimmune disorders (22% of patients) and malignancy (16% of patients)5–8. CVID is a heter-
ogeneous group of polygenic disorders for which the exact pathogenesis remains poorly understood9–11. Genetic 
mutations are implicated in CVID in 10–20% of patients; with defects found in more than 30 genes4,8,12.

"ere are no clinical or laboratory features that are pathognomonic for CVID. Diagnostic criteria have there-
fore been developed which require sequential application of both clinical and laboratory !ndings in order to 
increase the speci!city of the diagnosis. Current diagnostic criteria5,13,14 de!ne hypogammaglobulinemia as a 
major requirement for the diagnosis of CVID, but only when used in conjunction with further clinical or labora-
tory !ndings. "is is due to the low diagnostic speci!city of hypogammaglobulinemia for CVID; as reduced sero-
logical levels of immunoglobulin are also associated with a vast array of other primary and secondary immune 
disorders. "e incidence and prevalence rates of hypogammaglobulinemia are not clearly de!ned, however 
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secondary causes are more common15. Although the requirement to exclude secondary causes of hypogam-
maglobulinemia limit the use of this !nding as a diagnostic marker for CVID, it remains a fundamental test, 
given that the hallmark of the disease is a reduced serum level of IgG, IgA and/or IgM. "e de!nition of local or 
regional population reference ranges will impact the diagnostic utility of immunoglobulin results, as will the lab-
oratory choice of analytical method (nephelometric and tubidmetric methods are most widely used). An absolute 
lower limit value of IgG at 4.5 g/L for adults has been proposed, as despite the wide range of IgG levels observed in 
CVID patients, Chapel and Cunningham-Rundles2 described the majority of their 334 patients (94.2%) as having 
initial IgG levels <4.5 g/l at diagnosis.

Further laboratory testing, such as measuring speci!c antibodies to vaccine responses, enumeration of lym-
phocyte subsets (B, T and NK cells) and class-switched memory B cells by &ow cytometry, can provide additional 
evidence to suggest defective antibody production. Findings are variable across the disease group and also within 
individual patients. Repeat testing has therefore been suggested to con!rm any sub-normal !ndings; these limi-
tations have been discussed in recent diagnostic criteria5,13.

E'orts to categorise clinical subgroups within cohorts of established CVID patients using &ow cytometry 
have further demonstrated the complex aetiology of this disorder, emphasising the variety of B cell di'erentiation 
defects that can contribute to the disease. Phenotypic analysis of B cells using population sizes of class-switched 
memory- and transitional B cells, in correlation with clinical aspects has generated three classi!cation proto-
cols for patients with CVID16–18. Whilst these studies demonstrate that B cell homeostasis is a pathogenic and 
clinically meaningful parameter for classi!cation, reduced numbers of class-switched or memory B cells are not 
speci!c to CVID hence the diagnostic utility of these tests in isolation is limited2.

Further challenges with current diagnostics relate to a lack of understanding as to which physiological com-
partment should be investigated for CVID-associated abnormalities, i.e., tissues, biological &uids, or cells. A 
potential novel diagnostic methodology for CVID is vibrational biospectroscopy. High resolution spectroscopy 
methods such as Fourier-transform infrared (FTIR) spectroscopy can provide unique spectral patterns that 
re&ect the chemical and molecular composition of biological samples. We hypothesised that pathological changes 
in CVID patients produce characteristic FTIR spectra that distinguish them from healthy controls. "e interac-
tion of infrared (IR) light with biological matter produces an absorption plot, or ‘spectral !ngerprint’, for each 
biological sample. "e principles and biological applications of FTIR spectroscopy have been reviewed in detail 
in Baker et al.19. Vibrational spectroscopy is gaining recognition in the !eld of diagnostic medicine for a range of 
complex pathologies, mostly for malignancies19–21. A key requirement for diagnostic investigations is the highly 
accurate discrimination of pathological features from healthy neighbouring tissue or cells. "ese measurements 
are o#en performed on samples characterised by high background signals (or ‘noise’) relating to biological activ-
ity (e.g., increased cell turnover or in&ammatory states). Due to the high complexity of vibrational spectroscopy 
data, computational-based methods (chemometrics) are needed to explore and extract relevant information 
from the experimentally acquired spectra. For this, multivariate classi!cation techniques can be employed for 
feature extraction and classi!cation, allowing biochemically-relevant information to be extracted and the auto-
matic grouping of samples into pre-de!ned categories. "is can be achieved using a combination of chemometric 
algorithms, such as forward feature selection (FFS), principal component analysis linear discriminant analysis 
(PCA-LDA), and principal component analysis support vector machines (PCA-SVM). All of these algorithms 
are based on a principal component analysis (PCA) decomposition, which signi!cantly reduces the original data 
complexity to a fewer number of relevant factors, named principal components (PCs). PCA-LDA performs a 
linear discriminant analysis (LDA) of the PCA scores to assign the samples to their predicted groups; whereas 
PCA-SVM does the same procedure but in a non-linear classi!cation fashion through a support vector machines 
(SVM) algorithm. FFS allows identi!cation of main biomarkers responsible for class di'erentiation by calculating 
p-values for the spectral wavenumbers with larger PCA loadings. Vibrational spectroscopy has been successfully 
applied across a wide area of clinical medicine; providing a new approach to detect molecular and structural 
changes caused by complex disorders such as Alzheimer’s disease22,23, multiple sclerosis24, mental disorders25,26, 
HIV/AIDS27, diabetes28 and carcinogenesis25,29–32. High diagnostic accuracy was demonstrated for classi!cation 
of numerous cancer types and other biological applications33–38. We hypothesised that vibrational spectroscopy 
will demonstrate similar analytical advantages within our cohort, allowing for the sensitive detection of charac-
teristic spectral !ngerprints that represent underlying pathological processes in CVID patients.

To our knowledge, this study reports for the !rst time, the application of FTIR methods, speci!cally, attenu-
ated total re&ection-FTIR (ATR-FTIR) spectroscopy, for detection of CVID. In this !rst phase we have explored 
the application of this technique to stratify CVID patients from healthy controls (HC) using serum and plasma. 
We performed strati!ed spectroscopic classi!cation at multiple levels, to di'erentiate subgroups of CVID patients 
with- and without- further clinical complications. Finally, we have identi!ed a number of meaningful and dis-
criminating spectral biomarkers, tentatively assigned to speci!c molecular entities. "ese promising initial !nd-
ings encourage further development of FTIR spectroscopy as a diagnostic technique for immune de!ciency.

Results
"e major aim of this study was the discrimination of CVID patients from HC in two bio&uids; serum and 
plasma using FTIR-spectroscopy and multivariate analysis techniques. "e ATR-FTIR spectra from 51 subjects 
(1020 spectra) were obtained and analysed using multiple chemometric methods. An exploratory (unsupervised) 
analysis using PCA model was undertaken, followed by classi!cation using supervised methods (PCA-LDA, 
FFS, SVM) to enable successful segregation of subjects into their respective groups, CVID patients and healthy 
controls.
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�����������������������������������������������������
�������������������������������������������������������Ƥ����������������������������������
groups. Rubber-band baseline correction and vector normalisation produces spectra for crude visualis-
ation of di'erences between the two groups, and corrects for experimental variation; this recognised technique 
improves accuracy and interpretability of the data whilst maintaining spectral integrity. "e generated !gures 
(Supplemental Fig. 1a,b (!ngerprint region); Supplemental Fig. 1e,f (high region)) demonstrate visual spectral 
similarities for each class (CVID, HC), prior to the application of multivariate analysis tools. As expected for bio-
logical samples, the Amide I band was most prominent in the IR spectrum of the !ngerprint region, dominated 
by C=O stretching, and N-H bending vibrations of proteins39,40. To enhance spectral variability between groups, 
second-order di'erentiation was applied (Supplemental Fig. 1c,d (Fingerprint region); Supplemental Fig. 1g,h 
(High region)) prior to implementation of multivariate approaches.

Serum. Key di'erences observed in the !ngerprint region of serum (Supplemental Fig. 1a) at the pre-processing 
stage were lower absorbance intensities in the CVID group compared to HC at the nucleic acid-associated asym-
metric stretching (νas) of PO2

− (DNA/RNA) [1242 cm−1 (p = 0.0003). At the high region (Supplemental Fig. 1e) 
the CVID group revealed increased absorbance peaks within the lipid and protein associated (CH3 and CH2) 
stretching vibrations21 (serum 3000–2800 cm−1 p =< 0.0001).

Plasma. "e !ngerprint region of the plasma spectra (Supplemental Fig. 1b) revealed greatest variance between 
the two groups at the Amide I [1643 cm−1 (p < 10−6)] and Amide II [1535 cm−1 (p < 10−6)] and Amide III peaks 
[1315 cm−1 plasma p =< 0.0001)], with lower absorbance found in the CVID group compared to HC. At the high 
region (Supplemental Fig. 1f), peak increases at 2928–2932 cm−1 (p =< 0.0001) were found in the CVID group 
compared to HC.

��������������������������������������������������������������������������������������������
�������������������������������������	�����������ȋͷ;ͶͶȂͿͶͶ���−ͷȌ����������ȋ͹ͽͶͶȂ͸;ͶͶ���−ͷȌ�
regions. Additional examination of the spectra was performed using cross-validated PCA-LDA. "e 1D 
PCA-LDA scores plots (Fig. 1A–D) were generated, and utilised to illustrate the signi!cant di'erences between 
the CVID group (red) and the HCs (blue) (p < 0.0005); the “scores” here represent individual spectra, (!nger-
print region serum p < 10−6 and plasma p < 10−6; high region serum p < 10−6 and plasma p ≈ 10−4). To further 
explore whether the classes could be signi!cantly separated on a study subject-level basis, mean values of the 20 
(second-order di'erentiated) spectral replicates per sample were calculated prior to performing cross-validated 
PCA-LDA (illustrated in Supplemental Fig. 1a–d), in which each score represents an individual study subject. We 
again demonstrated signi!cant di'erences between HC and CVID groups, this time on a patient level, for both 
serum and plasma at the !ngerprint region (p < 10−6 for both), and at the high region (p < 10−6 for both).

����������������������������������������������������Ƥ�������������
����������Ƥ����������������������������������������������������������������Ǥ� Following successful 
segregation of classes using PCA-LDA scores plots, the ability and performance of FTIR as a tool to discriminate 
CVID patients from HC was assessed through creation of classi!cation models. Classi!cation of CVID and HC 
was performed on the Fingerprint and High regions of the IR spectrum using support vector machine (SVM) 
learning algorithms as described in the methods. "e SVM models were generated using 2/3 of the spectral data 
for the four distanced groups (Serum Fingerprint, Serum High, Plasma Fingerprint and Plasma High) prior to 
being tested with the remaining 1/3. "e confusion matrices generated following the input of the test data into 
each classi!cation model can be illustrated graphically in the form of confusion balls (Fig. 2a–d). Supplemental 
Table 2 speci!es the c and γ values outputted by the four grid searches. Within the serum, correct classi!cation 
was achieved for 99% of HC and 92% of CVID patients using the !ngerprint region (Fig. 2a); and 71% of HC and 
44% of CVID patients using the high region (Fig. 2c). Within the plasma, correct classi!cation was achieved for 
96% of HC and 92% of CVID patients using the !ngerprint region (Fig. 2b); and 72% of HC and 51% of CVID 
patients using the high region (Fig. 2d). "e highest sensitivities and speci!cities were obtained for the !nger-
print region, achieving 97% and 93% respectively for serum; 94% and 95% respectively for plasma. In the high 
region, sensitivities and speci!cities were lower, at 66% and 91% respectively for serum; 55% and 69% for plasma 
(Fig. 2d).

����������Ƥ����������������������������������������������������������Ǥ� CVID patients were fur-
ther divided based on clinical manifestations (see methods) prior to application of SVM learning algorithms 
for classi!cation (Fig. 3); the parameters identi!ed during grid searches of the training data are included in 
Supplemental Table 3.

Serum. In the HC group, 10% of subjects were classi!ed correctly; within the two CVID sub-groups, the classi!-
cation model correctly assigned 56% of the CVID patients without further complications and 56% of patients with 
further complications into their respective groups (Fig. 3a). Classi!cation using the high region achieved correct 
group assignment for 79% of HC subjects, 16% of CVID patients without further complications and 51% of CVID 
patients with further complication (Fig. 3d). "e sensitivities and speci!cities of the !ngerprint SVM model a#er 
incorporation of clinical data are documented in Fig. 3c; with greatest speci!city, 91%, achieved when classifying 
HC subjects using the !ngerprint region. For the classi!cation of CVID subgroups using the high region, spe-
ci!cities of 92% for CVID-non complication patients and 82% for CVID-complication patients were achieved 
(Fig. 3f). In comparison to the classi!cation model based on HC vs all CVID patients, sensitivities achieved 
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following clinical subgrouping were lower, at 41% for CVID-non complication and 71% for CVID-complication 
patients using the !ngerprint region.

Plasma. SVM models generated for the plasma data demonstrated increased classification ability com-
pared to the serum, correctly assigning 93% of HC, 77% of CVID-non complication patients and 76% of 
CVID-complication patients using the !ngerprint region (Fig. 3b); classi!cation rates in the high region were 
75%, 41% and 52% respectively (Fig. 3e). Sensitivities and speci!cities for the three groups are documented in 
(Fig. 3c,f). Classi!cation using the !ngerprint region achieved highest sensitivities and speci!cities; HCs were 
classi!ed with a sensitivity and speci!city of 93% and 87% respectively, CVID-non complication patients with 
73% and 93% respectively and CVID-complication patients with 73% and 95% respectively.

������������������
Feature extraction was performed as described in the methods; the key biomarkers extracted from each technique 
are illustrated in Fig. 4 (!ngerprint) and Supplemental Fig. 3 (high region) and documented in Supplemental 
Tables 4 and 5, along with the tentative molecular assignments previously described for individual wavenum-
bers. Relative increases or decreases in the absorbance intensity of CVID spectra are indicated where further 
subject-level analysis was performed.

Figure 4 and Supplemental Fig. 3(a,b) illustrates the 6 most variant peaks elucidated using the Student’s 
T-Test method; Fig. 4 and Supplemental Fig. 3(c,d) shows the biomarkers selected from the cluster vectors using 

Figure 1. Supervised multivariate analysis techniques (PCA-LDA) successfully segregate classes (CVID vs HC). 
(A,B) Fingerprint region (900–1800 cm−1); 1D scores plots (LD1) a#er cross-validated PCA-LDA of the training 
dataset (CVID n = 13; HC n = 18) for serum and plasma respectively. (C,D) High region (2800–3700 cm−1); 1D 
scores plots (LD1) a#er cross-validated PCA-LDA of the training dataset (CVID n = 13; HC n = 18) for serum 
and plasma respectively.
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PCA-LDA; and Fig. 4 and Supplemental Fig. 3(e,f) are FFS histograms illustrating the number of times each 
wavenumber was selected as a key feature for di'erentiating between the two classes. Figure 4 and Supplemental 
Fig. 3(g,h) visually represent the spectral wavenumber location where the 18 biomarkers were found using the 
three techniques. "e points showing close proximity or overlap indicate the close agreement of the selected wav-
enumbers from the three methods of biomarker extraction.

Fingerprint region biomarkers. Serum. Within the serum a total of 10 spectral wavenumbers 
(p =< 0.05) were extracted. Wavenumber 1034 cm−1 was extracted by two di'erent methods, which strengthens 
its utility as a serum biomarker.

Individual subject-level wavenumber intensity analysis was performed on each of the biomarkers 
(pre-processed (rubber-band, vector normalised) data). Four key peaks were shown to demonstrate signi!cant 
di'erences (p < 0.05) between mean absorbance intensity for CVID and HC subjects (Fig. 5a–d); 1115 cm−1 
(symmetric stretching P–O–C), 1034 cm−1 (collagen), 1528 cm−1 (C=N guanine, adenine, cytosine) and 
1759 cm−1 (C=O ester group vibration of triglycerides). Intensity di'erences between the clinical sub-groups 
(patients with- and without further complications), were also explored. "e increased absorbance intensity of 
wavenumbers 1115 cm−1, 1034 cm−1 and 1759 cm−1 were statistically signi!cant in CVID compared to the HC 
group; whereas the intensity of wavenumber 1528 cm−1 was lower. "is !nding was mirrored in the CVID sub-
groups; patients with further complications demonstrated higher absorbance intensity for 1115 cm−1, 1034 cm−1 
and 1759 cm−1 compared to the patients without complications; with lower intensities observed for wavenumber 
1528 cm−1.

Plasma. 12 unique wavenumbers demonstrated signi!cant absorbance intensity di'erences (p =< 0.05) within 
the plasma when comparing CVID patients and HC (Supplemental Table 4). Of these, 9 wavenumbers revealed 

Figure 2. SVM classi!cation model for CVID vs HC using each bio&uid at the !ngerprint (900–1800 cm−1) and 
high region (2800–3700 cm−1) of the spectrum. (a–d) SVM confusion matrices for (a) serum !ngerprint, (b) 
plasma !ngerprint, (c) serum high and (d) plasma high regions. "e tuning parameters (c, γ) extracted from a 
grid search of the training dataset were used to subsequently generate confusion matrices (coloured balls) and 
associated classi!cation rates for the test dataset (CVID n = 8; HC n = 12). (e) Sensitivity and speci!city of SVM 
models calculated using the corresponding ‘accumulated hits’ data (individual spectra).
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Figure 3. SVM classi!cation model ‘HC vs CVID-non complications vs CVID-complications’ for each bio&uid 
at the !ngerprint (900–1800 cm−1) and high region (2800–3700 cm−1) of the spectrum. (a,b) SVM confusion 
matrices for a, serum !ngerprint, (b) plasma !ngerprint. "e tuning parameters (c, γ) extracted from a grid 
search of the training dataset were used to subsequently generate confusion matrices (coloured balls) and 
associated classi!cation rates for the test dataset (CVID n = 8; HC n = 12). (c) Sensitivity and speci!city of 
SVM models using Fingerprint region, calculated using the corresponding ‘accumulated hits’ data (individual 
spectra). (d,e) SVM confusion matrices for (c) serum high and (d) plasma high regions. (e) Sensitivity and 
speci!city of SVM models using High region, calculated using the corresponding ‘accumulated hits’ data 
(individual spectra).
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signi!cant di'erences on individual subject-level analysis (Fig. 6a–i); 984 cm−1, 1007 cm−1, 1053 cm−1, 1084 cm−1, 
1107 cm−1 and 1119 cm−1 (within phosphodiester region 900−1 300 cm−1); 1416 cm−1, 1566 cm−1 and 1639 cm−1 
(within protein region; Amide I, Amide II). Wavenumber 1053 cm−1 was extracted by two di'erent methods, 
strengthening its utility as a serum biomarker.

Absorbance intensities of 8 of the 9 wavenumbers increased in the CVID group compared to HC, with 
only wavenumber 1639 cm−1 (Amide I; thymine, adenine, guanine) demonstrating a lower absorbance inten-
sity. Consistent with the serum data, the !ndings within the CVID subgroups re&ected the intensity di'erences 
observed between the CVID patients and HC, with absorbance intensity for 8 of the 9 biomarkers found to be 
increased in the CVID patients with further complications compared to those patients without, and only wave-
number 1639 cm−1 demonstrating a lower intensity respectively.

Di'erences between HC subjects and CVID patients with further complications were calculated as signi!cant 
for all 9 biomarkers. In contrast to the serum data, exploration of the plasma biomarkers revealed signi!cant 
di'erences between HC and CVID patients without further complication. Wavenumbers 1107 cm−1, 1119 cm−1 
and 1416 cm−1 all demonstrated higher absorbance intensities in the CVID-non group compared to HC, whereas 
wavenumber 1639 cm−1 showed lower intensity. None of the 9 plasma wavenumbers demonstrated signi!cant 
absorbance di'erences to segregate the two CVID subgroups.

Figure 4. Serum and plasma Fingerprint region biomarkers identi!ed using three feature extraction 
methods on the training dataset (CVID n = 13; HC n = 18). (a) Serum T-test. (b) Plasma T-test. (c) Serum 
FFS. (d) Plasma FFS. (e) Serum cross-validated PCA-LDA. (f) Plasma cross-validated PCA-LDA. (i,j) Visual 
representation of wavenumber location for extracted biomarkers from each method for serum and plasma 
respectively. FFS Forward Feature Selection.
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����������������������Ǥ� Serum. In the high region 11 biomarkers were calculated to be statistically sig-
ni!cant when comparing intensities between the two classes (HC vs CVID) (Supplemental Table 5).

On individual subject-level analysis, 2 significant biomarkers (p < 0.05) were identified; 2932 cm−1 and 
2862 cm−1, corresponding to important CH, CH2 and CH3 molecular vibrations found in lipids and fatty acids 
(Fig. 5e,f). "e absorbance intensity of both wavenumbers were increased within the CVID patients compared to 
HC; similarly, intensity increases were observed in CVID patients with further complications compared to those 
without. "e increased absorbance intensities were calculated to be signi!cant for HC vs CVID patients-with 
further complications, HC vs CVID patients-without complications, but not between the two CVID subgroups.

Figure 5. Serum Biomarkers. Between group absorbance intensity analysis for discriminating spectral 
wavenumbers. Mean absorbance intensity plotted for each study subject (20 replicates) per wavenumber. CVID 
n = 21 (CVID-non n = 8; CVID-comp n = 13); HC n = 30. Data are expressed as mean (±95% CI). *P < 0.05; 
**P < 0.005.
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Plasma. 10 biomarkers were found to demonstrate significant differences between CVID and HC groups 
(Supplemental Table 5). Only one wavenumber demonstrated signi!cant intensity di'erences between HC and 
CVID patients on an individual subject level (3302 cm−1) however the tentative assignment of this wavenumber 
to water renders it unsuitable for use as a biomarker.

Figure 6. Plasma Biomarkers. Between group absorbance intensity analysis for discriminating spectral 
wavenumbers. Mean absorbance intensity plotted for each study subject (20 replicates) per wavenumber. CVID 
n = 21 (CVID-non n = 8; CVID-comp n = 13); HC n = 30. Data are expressed as mean (±95% CI). *P < 0.05; 
**P < 0.005; ***P < 0.0005.
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����������������������������������������������������Ǥ� Of all identi!ed serum and plasma bio-
markers (total 17) only one wavenumber, 1528 cm−1 (Fig. 5c) detected in the !ngerprint region of the serum, 
was shown to be a discriminating biomarker between the CVID patients presenting with further complications 
(CVID-comp) and those remaining complication-free (CVID-non) (p = 0.037). The mean intensity of this 
wavenumber was reduced in both of the CVID groups compared to HC (HC = 0.1456, CVID-non = 0.1454, 
CVID-complications = 0.1455).

����������
Although great progress has been made in developing diagnostic and classi!cation criteria for CVID6,16–18,41, there 
is still no robust method to achieve this. "is study has demonstrated the e'ectiveness of FTIR spectroscopic 
methods towards the diagnosis of CVID, correctly segregating CVID patients and HC into their respective groups 
following analysis of bio&uids. "is has been performed using a classi!cation model on the !ngerprint region of 
the ATR-FTIR spectrum with a sensitivity and speci!city of 94% and 95% respectively for plasma, and 97% and 
93% respectively for serum. "e high region of the spectrum was similarly analysed, providing a classi!cation 
model with a sensitivity and speci!city of 55% and 69% respectively for plasma, and 66% and 91% respectively for 
serum; suggesting analysis of the !ngerprint region would be more appropriate for classi!cation of CVID. "e use 
of blood-based vibrational spectroscopy to detect di'erences between clinical sub-groups of CVID patients has 
also been achieved; demonstrated by the successful assignment of individual study subjects into their respective 
groups; greatest sensitivities and speci!cities were achieved within the plasma !ngerprint region, at 93% and 87% 
respectively for HC subjects, 73% and 94% for CVID patients without complications and 73% and 95% for CVID 
patients with further complications.

A further aim of the current study was to extract spectral biomarkers responsible for the di'erentiation 
between CVID patients and HC. As each wavenumber corresponds to molecular bonds within biochemical sam-
ple components, we could tentatively assign the most discriminating peaks for use as potential disease biomark-
ers. In the serum we found evidence of detectable alterations in band intensities at four wavenumbers 1034 cm−1 
(collagen42), 1115 cm−1 (symmetric stretching P–O–C43), 1528 cm−1 (C=N guanine, adenine, cytosine43,44) and 
1759 cm−1 (C=O ester group vibration of triglycerides45,46). We hypothesise that the signi!cant increase in the 
collagen-associated peak (1034 cm−1) observed in CVID patients may be associated with increased collagen 
turnover and production of degradation fragments following recurrent respiratory tract infection-driven lung 
damage. Abnormal distributions of extracellular matrix components, such as collagen type I and III, have been 
demonstrated in !brotic lung conditions such as alveolitis, respiratory distress syndrome and chronic obstructive 
pulmonary disease (COPD)47–50; with degradation fragments detected and used as diagnostic makers in COPD 
and idiopathic pulmonary !brosis51. We postulate 1034 cm−1 wavenumber analysis could have similar clinical 
utility, thus warranting a more detailed evaluation as a disease marker. Interestingly, in patients with further 
CVID-associated complications, a further increase in 1034 cm−1 peak intensity was observed, signi!cantly segre-
gating this group from the HCs (p < 0.05). "is increase may signal the progression of early lung damage to bron-
chiectasis; if so, this marker could be used to identify high risk patients and avoid progression of this irreversible 
complication reported in over 2/3 of CVID patients3. Given the ubiquitous expression of collagen throughout the 
body, biomarker 1034 cm−1 intensity could re&ect systemic serological levels, thus, further exploration in patients 
with other !brotic co-morbidities or respiratory disorders are required to determine disease speci!city.

Examination of nucleic acid-associated wavenumbers revealed a number of interesting observations. "ree 
signi!cant wavenumbers observed in plasma showed an increased intensity in CVID patients compared to HCs 
(984 cm−1, 1053 cm−1, 1084 cm−1) as did wavenumber 1115 cm−1 in serum. Each of these wavenumbers have been 
assigned to bond vibrations found in molecules containing phosphodiester regions, PO2 and P-O-C bonds, such 
as moieties found in the DNA/RNA sugar phosphate backbone42,44,45,52–58. Wavenumber intensity increases were 
accentuated further in the CVID-complications group compared to those patients without complications; albeit 
not to a statistically signi!cant level (p => 0.05). We postulate that the increased trend in DNA/RNA-associated 
wavenumbers observed in the CVID group may be associated with increased levels of transcription for a number 
of genes involved in immune signalling pathways. Altered cytokine and chemokine pro!les have been observed in 
CVID patients by several groups59–65, thought to be driven by a state of chronic immune activation. "is has been 
attributed to microbial activation of monocyte-macrophage and granulocyte lineages59 or alternatively a predom-
inance of the "2 pathway60. CVID-associated pro!les include increased serum levels of IL-4 and IL-1060, IL-2 
and IL-1061, IL-6, IL-8, IL-1RA and TNF-a62 and increased IL-10, IL-RA, and TNF-α63. Treatment with IVIg has 
been shown to dampen down this immune activation in CVID patients, although the exact mechanism of action 
remains unclear59. Of note within our study, we found CVID patients with further complications demonstrated a 
further intensity increase in the four DNA/RNA-associated wavenumbers. One suggestion for this could relate to 
poor control of immune activation due to higher requirements of replacement Ig in certain individuals. Further 
investigation into elevated serological levels of chemokines and cytokines in relation to key wavenumber intensity 
is warranted to determine the relationship between these CVID-associated biomarkers.

Surprisingly, wavenumbers 1528 cm−1 (in serum) and 1639 cm−1 (in plasma) were shown to have a decreased 
absorbance intensity in CVID patients compared to HC (p < 0.005 and p < 0.0005, respectively). "ese wavenum-
bers have been assigned more closely to C=N, C=C and N-H bonds found in nucleotide bases such as guanine, 
adenine, cytosine and thymine37,44,66, as opposed to phosphate-associated moieties as in the previously described 
DNA/RNA-associated wavenumbers. We speculate this may re&ect a general decrease in the nucleotide pool in 
CVID patients, and if so may elucidate some of the far-reaching biological and metabolic e'ects observed within 
this group. Since DNA replication is pertinent to chromosomal replication, amongst numerous other activities, 
these may all be directly or indirectly a'ected when nucleotide concentrations deviate from a physiologically nor-
mal range67. Unbalanced nucleotide pools have been linked to the activation of p53 and cell cycle arrest in actively 
dividing cells68, therefore similar processes could relate to B cell maturational arrest in CVID.
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"e intensity in both wavenumbers 1528 cm−1 and 1639 cm−1 were further decreased in the CVID subgroup 
with further complications, compared to those without complications. Of heightened interest, wavenumber 
1528 cm−1 was the only biomarker of the 18 identi!ed to demonstrate signi!cant di'erences in absorbance 
intensity between the two CVID subgroups (p < 0.05). "is wavenumber could aid further elucidation of disease 
pathophysiology in addition to serving as a potential marker to determine severity of disease and development 
of further complications.

"e !ndings from the !rst stage of this study are encouraging based on the impact that the translation of FTIR 
spectroscopy into a diagnostic platform for CVID could have on clinical practice. Whilst we have demonstrated 
the ability of this method to correctly classify CVID patients from HCs, diagnostic capabilities must be further 
established in subsequent multi-centre studies.

Within the setting of CVID, the diagnostic e$ciency of current laboratory methods and FTIR spectroscopy 
will remain di$cult to ascertain until disease-speci!c features and pathogenic disease mechanisms are further 
elucidated. "e low diagnostic speci!city of current tests such as serum immunoglobulins, vaccine responses 
and B cell immunophenotyping, and reliance on complex classi!cation criteria for CVID, highlights the clin-
ical requirement for an improved approach. In order to demonstrate the power of biospectroscopy as a novel 
diagnostic tool, the next phase of this study will work towards the validation and veri!cation of the method. 
Test speci!city will be addressed through inclusion of additional patient groups, across multiple centres, such as 
patients with other primary- or secondary immune de!ciency disorders. Further work to fully determine how 
the identi!ed FTIR biomarkers relate to the molecular and cellular composition of CVID patient samples will 
be a key milestone in determining whether any pathognomonic features can be identi!ed. Until this is achieved, 
it is most likely that FTIR will be used alongside current diagnostic methods in order to add a further level of 
evidence-based criteria to the diagnosis of CVID.

Once achieved, a major advantage of using FTIR over current methods would be the capability for monitoring 
multiple biochemical changes in patient samples over a time-course analysis. "e information collected would 
enable clinicians to adapt treatment options and undertake additional investigations in a timely manner. By 
detecting disease-associated complications earlier, before irreversible damage occurs, the life-expectancy of this 
patient group (in which secondary complications have the biggest impact), could potentialy be extended8. In con-
trast to some of the limitations facing FTIR spectroscopy analysis in other high-risk clinical areas such as malig-
nancy, where it is o#en required as a one-shot investigation, CVID is a chronic, life-long condition and therefore 
would be a more suitable candidate for long-term monitoring.

In conclusion, our study has demonstrated that FTIR spectroscopy is a promising analytical tool for deter-
mining di'erences between healthy controls and CVID patients. A classi!cation method based on the !ngerprint 
region in serum was able to correctly discriminate up to 99% of the spectra representative of controls and 92% 
of spectra representative of disease, and for plasma, 96% of controls and 92% of disease. Several spectral wave-
numbers have been identi!ed as key biomarkers; each demonstrating signi!cant statistical di'erences in band 
intensities when comparing subjects from the CVID and control groups. "ese biomarkers have been tentatively 
assigned to bond vibrations found in important biochemical moieties that should be further explored in relation 
to pathophysiological mechanisms causing CVID. "is work therefore opens the way for the !rst application of 
FTIR spectroscopy in a clinical immunology laboratory, which could rapidly translate into a point-of-care device 
to enable ‘while-you-wait’ diagnostic testing in the immunode!ciency clinic.

Materials and Methods
Population. "is study included 21 adult (>18 years old) CVID patients and 30 healthy age-matched controls 
recruited at Royal Preston Hospital. "is study was approved by the ethics committee of the NHS Research Ethics 
Committee, Health Research Authority (HRA) (IRAS No. 212518). All samples were collected with informed 
written consent for study participation and all methods were carried out in accordance with relevant guidelines 
and regulations. Double-blinded unbiased acquisition of spectra was performed from all 51 samples following the 
allocation of a randomised unique study number to each subject at the point of recruitment. All patients clinically 
diagnosed with CVID ful!lled the European Society for Immunode!ciencies and the Pan American Group for 
Immunode!ciency (ESID/PAGID) (1999) diagnostic criteria14. "e cohort characteristics are shown in Table 1 
and more detailed patient demographics information is shown in Supplemental Table 1 [see Supplementary 
Information].

���������������ȋ�
Ȍ��������Ǥ� Management of CVID patients with immunoglobulin (IG) replacement 
was noted for the analysis the patient cohort results (see Supplemental Table 1). Serum immunoglobulin lev-
els were measured for all patients and controls on the date of recruitment into the study, (IG-treated patient 
mean = 7.86 g/L, SD2.37; HC mean IgG = 10.48 g/L, SD = 1.72). Pre-treatment mean IgG levels for the patient 
cohort were 2.17 g/L, SD = 2.56.

Clinical sub-groups. The CVID patient cohort was sub-grouped based on the presence, or absence of 
additional clinical complications using data extracted from individual patient !les, clinical notes, and labora-
tory test results. "e CVID-complications group consisted of 13 patients in total. Each patient in this group had 
documented clinical history of one or more of the following complications: bronchiectasis (n = 10), autoim-
munity (n = 4), splenomegaly (n = 6), malignancy (n = 5), or gastrointestinal complications (n = 4). "e CVID 
complications-free group consisted of 8 patients; review of the available clinical history (clinical letters, patient 
discussion, electronic/paper notes) revealed no indication of any relevant clinical complications.

Sample Collection. Whole-blood samples were collected into EDTA-treated or serum gel-separator tubes 
and centrifuged at 110 × g for 5 min to separate the plasma or serum supernatant from the cells. Serum and 
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plasma samples were then stored as 0.3 mL aliquots at −80 °C until required. Prior to spectroscopic analysis, 
individual aliquots were thawed; mixed and 50 µL from each aliquot was deposited onto IR-re&ective glass slides 
(MirrIR Low-E slides; Kevley Technologies) in duplicate. Slides were le# to air dry for up to 8 hours before being 
placed into a desiccator overnight. Once generated, dried blood spot slides were analysed the subsequent day. "is 
process was undertaken for both serum and plasma samples.

ATR-FTIR spectral acquisition. "e spectra were obtained using a Tensor 27 FTIR spectrometer with 
Helios ATR attachment (Bruker Optics Ltd) operated by OPUS 5.5 so#ware. "e sampling area, de!ned by the 
internal re&ection element (a diamond crystal), was ≈250 × 250 µm. Spectral resolution was 8 cm−1 with two 
times zero-!lling, giving a data spacing of 4 cm−1 over the range 4,000–400 cm−1.

"e acquisition of an FTIR spectrum involves collecting a ‘single-beam’ spectral measurement at one point 
within a sample. For each study subject, blood spots of both serum and plasma were produced in duplicate; 10 
spectra were collected per 50 µL dried blood spot (total of 20 spectra per bio&uid). In order to enlarge the area 
of acquisition and minimize bias associated with sample thickness and molecular heterogeneity, spectra were 
collected from 10 di'erent point locations within each blood spot. In consideration of the well-described ‘co'ee 
ring e'ect’69–71, point spectra from the peripheral edges of the dried blood spots were avoided. "e diamond 
crystal was cleaned with distilled water and dried between samples and replicates. Pre-processing of spectra was 
performed according to recommended protocols19,36,72.

����������������������Ǥ� "e spectra !les were pre-processed using the IRootLab toolbox (trevisanj.github.
io/irootlab/), within MATLAB R2017a so#ware (MathWorks). Initially, the 20 replica spectra per sample were 
averaged in order to work with a sample-based classi!cation. Two pre-processing techniques were independently 
tested: (1) rubber-band baseline correction followed by vector normalisation72 and (2) by Savitzky-Golay (SG) 
smoothing (second-order polynomial and nine !lter coe$cients)73. Once the spectra had been pre-processed, 
two regions of interest were extracted from the spectra; the Fingerprint region, which covers the area between 
wavenumbers 1800–900 cm−1; and the High region, which covers wavenumbers 3700–2800 cm−1.

Principal component analysis linear discriminant analysis (PCA-LDA) was used to observe inter-group dif-
ferences by means of a linear discriminant function applied to the principal component analysis (PCA) scores74. 
PCA is an unsupervised classi!cation technique of exploratory analysis that reduces the spectral dataset into a 
small number of principal components (PCs) responsible for the majority of the original data variance75.

Support vector machine (SVM) is a supervised machine-learning was applied for classifying data. "e data 
was pre-processed as above using SG-2nd di'erential baseline correction and de-noising and vector normalisation. 
We used an SVM algorithm performed in MATLAB, run with an n-fold leave one out, cross validation technique 
(n = 5) to select the best parameters for c and gamma (γ). "e parameters (c, γ) for SVM are selected by using a 
grid search function in MATLAB72. To investigate the classi!cation rate, sensitivities and speci!cities were calcu-
lated for each model tested76. "e SVM was trained using 2/3 of the spectral data and tested using the remaining 
1/3. "e data set was split using the Kennard-Stone algorithm to achieve uniformity and representativeness within 

CVID patient demographics
Clinical complications n=

Bronchiectasis 10
Splenomegaly 6
AI 4
malignancy 5
ENT 4
GI 4
Passed away 2
Treatment
IVIG 6
SC 13
NONE 2
IgG measurement (g/L)
IgG levels < 6 6
IgG levels > 6 15
Age segregation (yrs)
20–40 6
40–60 8
60+ 7
Sex
Female 9
Male 12

Table 1. Summary of CVID patient demographics.
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the samples selected for the training set77. "is splitting process was performed in a patient basis, where the spec-
tral data assigned to the training and test sets were from di'erent samples, so the training and test groups do not 
contain spectra from the same patient. "e models were built using 10-fold cross-validation for optimization. "e 
classi!cation percentage calculated from the confusion balls (graphical representation of a confusion matrix) of 
each SVM model designates the rate of correct group assignation when applying the test dataset to the trained 
SVM model. Sensitivity and speci!city of each SVM classi!cation was calculated using the accumulative hits 
data (number of true positives, true negatives, false positives, and false negatives) generated from the confusion 
matrices.

Feature extraction was performed on the training dataset to extract potential biomarkers and identify the 
spectral wavenumbers that account for the largest di'erences between the CVID and HC groups. "is was 
undertaken using three methods of biomarker extraction on the training dataset for serum and plasma: Student’s 
T-Test, PCA-LDA and Feature Forward Selection (FFS), for both Fingerprint and High regions of the spectra. "e 
six key biomarkers extracted from each method were subsequently investigated for relative increases or decreases 
in absorbance intensity between the classes (subject groups). Wavenumbers not demonstrating signi!cant inten-
sity variance between CVID and HC groups were not taken forward for individual subject level intensity analysis 
(using average intensities of 20 spectral replicates). Extracted wavenumbers within close proximity (10 cm−1) 
of an adjacent biomarker were omitted, as closely associated wavenumbers will be in&uenced from intensity 
increases or decreases in nearby peaks already identi!ed as biomarkers.

"e Student’s T-Test method was performed on the training dataset for both !ngerprint and high regions 
of the spectra. "e −log10 of the P-value of the T-test for each wavenumber was then plotted to identify the 
potential biomarkers from the T-test. "e biomarkers extracted following PCA-LDA were obtained from the 
cluster vector analysis. FFS was applied within IRootLab using the PCA loadings to identify the main biomarkers 
responsible for class segregation by calculating p-values for the variables with larger loadings coe$cients78. A 
peak detection algorithm was applied to each method to identify the six most segregating peaks. Extracted wav-
enumbers within 10 cm−1 proximity of an adjacent biomarker were also omitted (n = 2) resulting in a total of 10 
spectral wavenumbers (p =< 0.05).

��������������������Ǥ� A student’s t-test (two–tailed, 95% con!dence interval (CI)) was performed to calcu-
late statistical signi!cance of spectral variance between groups, with a P-value of less than 0.05 being considered 
signi!cant. A power test based on a two-tailed t-test (data input as mean and standard-deviation of the plasma 
pre-processed spectra in the !ngerprint region for each class) indicated a minimum number of samples of 26 HC 
and 15 CVID patients for a power of 80%. "e number of samples used herein (HC = 30, CVID = 21) is above this 
minimum. Statistical analysis was carried out on averaged spectra to account for di'erences between individuals 
and not spectra.

���������������Ǥ� "e data (raw spectra and pre-processed spectra) reported in this paper are available at the 
publicly accessible data repository Figshare (https://doi.org/10.6084/m9.!gshare.7751309).

�����������������
All data (raw and pre-processed spectra) along with appropriate code identi!ers will be uploaded onto the pub-
licly accessible data repository Figshare.
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Critical Appraisal of the Research Project 

Abstract 

Biospectroscopy has been gaining wider acceptance and application in the clinical setting 

over the past decade; however, it has yet to reach NHS laboratories and healthcare clinics 

as a routine platform for clinical assessment. In this research project we have used ATR-

FTIR spectroscopy and multivariate analysis tools to examine its application to the 

primary immunodeficiency disorder, common variable immune deficiency (CVID).  

To our knowledge, this is the first time that these methods have been applied to the 

investigation of CVID. In this final chapter we critically appraise the project, focussing on 

the choice of methods used, the disease population studied, and the contribution 

provided to theoretical and clinical practice.  

The advantages offered by biospectroscopy include low-cost, whole-sample 

measurements without sample destruction, minimal sample preparation, and use of small 

sample volumes. Disadvantages include a lack of best practice guidance for analytical 

protocols, and the requirement for specialist staff for computational analysis. The 

classification power of this platform has been illustrated within our study, a strength that 

has been well-documented in the literature, with seven decades of cancer research 

studies demonstrating diagnostic accuracies in the order of 80-100%.  

However, further progression towards clinical translation is being hindered by the 

unfamiliarity of the method, the limited repertoire of pathological conditions being 

investigated, and the fact that the majority of studies remain at the proof-of-concept 

stage, yet to be validated by larger-scale studies.  

The scope for further work will be considered at the end of the chapter. We propose 

experiments to add value and strengthen the validity of our findings, and future work 

using Raman Spectroscopy, with the goal to embed vibrational spectroscopy into the 

immunology laboratory testing pathway for CVID.  

 Introduction 4.1

Biospectroscopy is an emerging field used to provide new insights into biological 

questions by coupling computational analysis with physical sciences. Spectroscopy 
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measurements and spectral patterns are derived following the absorption, emission or 

scattering of electromagnetic radiation by atoms or molecules. The application of 

spectroscopy methods to investigate biological material is termed biospectroscopy. The 

features of a spectrum generated from interrogating biological material are directly 

related to the molecular structure of the biological compounds within the sample. This 

includes specific absorption or emission wavenumber bands, their intensity and their 

ƐŚĂƉĞ͖�ĐŽůůĞĐƚŝǀĞůǇ�ŬŶŽǁŶ�ĂƐ�ƚŚĞ�͚ďŝŽĐŚĞŵŝĐĂů�ĨŝŶŐĞƌƉƌŝŶƚ͛1,2.   

The detection of conventional single-analyte disease markers, commonly measured in 

biofluids and tissues are unlikely to be appropriate for heterogeneous, multidimensional 

disorders. Instead, there is an increasing look to apply a systems biology approach, such 

as genome-wide screening and mathematical modelling to add new knowledge and fulfil 

the void in appropriate diagnostic biomarkers.  However, for the majority of  

immunological disorders it has not been possible to find the monogenic link to the 

disease3ʹ8; this therefore limits the clinical utility of a genomic approach in routine 

diagnostics and an alternative strategy is required.  

KƚŚĞƌ� ͚ŽŵŝĐƐ-based methods (proteomics, transcriptomics, metabolomics and 

epigenetics) have been applied to the study of immune-mediated disorders; a recent 

review of this topic has been published by Chu et al.9.  The systems biology approach has 

been widely applied to complex diseases such as cancer, and more recently to immune-

mediated pathologies10ʹ14. The ultimate goal is to stratify heterogeneous patient groups 

and enable the progression of personalised medicine. The work presented in this thesis 

aligns with this new approach, as we have applied an analytical technology 

(biospectroscopy), capable of whole sample profiling, to the investigation of a complex 

and clinically heterogeneous immunological disorder. 

The use of biospectroscopy as a screening, diagnostic or prognostic tool in clinical practice 

is gaining more widespread acceptance following an expansion of studies over the past 

decade; reports of using biospectroscopy to successfully diagnose cancers of the bladder, 

ovary, brain, breast, cervix, and colon in addition to applications in transplant rejection, 

cardiology and biomarker detection have ignited interest in applying this platform within 

clinical immunology (as described in Chapter 1, Section 1.1). As evidenced by the small 

number of studies in autoimmunity, allergy and immune deficiency, biospectroscopy is 

still in its infancy within clinical immunology15.  
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If the full potential of biospectroscopy is to be harnessed, both as a diagnostic tool and to 

advance our theoretical knowledge of disease mechanisms, the frequency and design of 

ƐƉĞĐƚƌŽƐĐŽƉǇ�ƐƚƵĚŝĞƐ�ŵƵƐƚ�ĚĞǀĞůŽƉ�ƉĂƐƚ�ƚŚĞ�ƐƚĂŐĞ�ŽĨ�͚ƉƌŽŽĨ-of-ĐŽŶĐĞƉƚ͛͘�tĞ�ĞŶǀŝƐĂŐĞ�ƚŚŝƐ�

ǁŝůů� ƌĞƋƵŝƌĞ� ƐƚƌŽŶŐ� ĐůŝŶŝĐĂů� ĂŶĚ� ĂĐĂĚĞŵŝĐ� ƉĂƌƚŶĞƌƐŚŝƉƐ͕� ĂŶĚ� Ă� ͚ŵƵůƚŝ-ŽŵŝĐƐ͛� ĂƉƉƌŽĂĐŚ� ƚŽ�

gain further insight into the molecular assignments of key disease-specific spectral 

patterns.  

In Chapters 2 and 3, the clinically heterogeneous primary immune deficiency disorder, 

Common Variable Immune Deficiency (CVID) was selected as the disease population to 

investigate with biospectroscopy. Within this group, we assess the suitability of applying 

ATR-FTIR spectroscopy and machine learning approaches for diagnostic classification and 

biomarker identification. As, to our knowledge, this is the first time such methods have 

been applied, we cannot compare our findings to those reported by other researchers.  

Chapter 2 describes and evaluates the early data processing techniques that can be 

applied to big data such as pre-processing, principal component analysis (PCA) and PCA-

linear discriminant analysis (PCA-LDA). These techniques not only apply to 

biospectroscopy data, but are used during the analysis of data produced using the other 

͚ŽŵŝĐƐ-ďĂƐĞĚ�ŵĞƚŚŽĚ͘�tĞ� ĐŽŶƐŝĚĞƌ� ǀŝďƌĂƚŝŽŶĂů� ďŝŽƐƉĞĐƚƌŽƐĐŽƉǇ� ĂůŝŐŶƐ�ǁĞůů�ǁŝƚŚ� ͚ŽŵŝĐƐ-

based approaches as a method group, in that it generates large complex datasets which 

require the application of machine learning and artificial intelligence to extract 

meaningful results from an abundance of background data16.  

In this study we successfully applied data reduction steps (PCA) to identify discriminating 

features within the data that influence separation, and subsequently enable classification 

of CVID patient cohorts from healthy controls (HCs); this technique has also been 

demonstrated within similar sized CVID  studies using proteomics17,18. In addition, we 

demonstrate the importance of controlling pre-analytical factors in the production of 

unbiased and robust data. The selection of pre-processing techniques, evaluation of 

sample types, and use of a single researcher to perform sample processing have helped to 

control unwanted sources of variation which could skew the final classification models. 

As a novel method within immune deficiency research, the selection of spectroscopy 

technique and computational methods used throughout the study have been influenced 

by the work of other researchers within the group, alongside guidance from published 
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protocols1,2,19ʹ25. The use of complex mathematical modelling brings inherent variation; 

therefore prior to the development of a diagnostic platform for CVID, the classification 

models generated within this study would require further validation in this setting. This 

chapter provides a platform to critically reflect on the methods used within this project; 

to discuss the advantages and limitations, the theoretical benefits to clinical practice and 

to put forward suggestions for future work.  

 Critical appraisal of the study protocol and methodological approach 4.2

4.2.1 Common variable immune deficiency as the study population 

CVID is the most common, symptomatic primary immunodeficiency (PID) worldwide26ʹ28. 

It is now understood that rather than a discrete disease, CVID encompasses a wide 

ƐƉĞĐƚƌƵŵ�ŽĨ�ĚŝƐŽƌĚĞƌƐ�ǁŚŝĐŚ�ƉƌĞƐĞŶƚ�ǁŝƚŚ�Ă�ŚĞƚĞƌŽŐĞŶĞŽƵƐ�;ŚĞŶĐĞ�ƚŚĞ�ŶĂŵĞ�͚ǀĂƌŝĂďůĞ͛Ϳ͕�

clinical picture but share similar laboratory findings of hypogammaglobulinemia and poor 

vaccine responses27. For these reasons, as highlighted throughout this thesis, diagnosis 

remains one of exclusion, and a single pathognomonic clinical or laboratory feature has 

yet to be discovered, or more likely, does not exist. 

Identification of CVID patients therefore relies on diagnostic criteria, which have been 

developed based on both clinical and laboratory findings28ʹ30. Diagnostic delay remains a 

major issue for these patients, and whilst infectious complications are the most frequent 

clinical feature, non-infectious manifestations (autoimmunity, lung disease, 

gastrointestinal inflammatory disease, malignancy) related to immune dysregulation are 

associated with increased morbidity and mortality within the CVID patient group31,32.  

The rationale for choosing a cohort of CVID patients as a study population is based on a 

number of factors, some of which have been highlighted in the summary of the disorder 

above. Firstly, to our knowledge, vibrational spectroscopy has not been applied to the 

study of any primary or secondary immunodeficiency disorder; therefore immune 

deficiency provided a novel area to investigate within this research project. Given the 

clinical variability of CVID, it is likely that multiple immune regulatory pathways are 

implicated in causing the shared laboratory finding of hypogammaglobulinemia. Our 

understanding of these pathways has increased over the last four decades, however the 

underlying cause, and the factors influencing whether CVID patients present with- or 

without further inflammatory complications has yet to be defined33.  
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As described in Chapter 1, Section 1.2, this is beginning to be elucidated as recent proof-

of-concept studies using proteomics and machine-learning methods have identified 

signature panels of immune-related markers specific to CVID patients with immune 

dysregulation, not found in patients with infectious complications only17,18. These studies 

were published in 2020 and 2021, respectively, at a later date to our published research 

manuscript (2019). Although different technologies have been used for sample analysis, 

these recent papers illustrate a new trend for CVID research. Rather than examining 

single-, or small numbers of discrete analytes, whole sample profiling and application of 

computational methods provides a more suitable approach to study undefined disorders 

with variable clinical phenotypes. 

The heterogeneity of CVID makes it a good candidate disease for whole sample profiling; 

in transcriptomic and proteomic studies in CVID, thousands of immune-related RNA 

transcripts and proteins can be assessed to produce disease- or disease-subgroup-related 

signatures. Likewise, in a single experiment using biospectroscopy, the dataset obtained 

from each sample can contain around 3600 variables relating to wavenumber absorbance 

values34. In this study, the identification of unique spectral patterns (biochemical 

fingerprint) associated with samples from CVID patients has upheld our proposition - that 

biospectroscopy provides a novel opportunity to examine this disorder.  

Whilst the heterogeneity of CVID makes it a suitable candidate for biospectroscopy, 

investigating this disorder as the study population also has limitations. The limiting factors 

were considered throughout the conception and design of the study, and where possible, 

steps were taken to address them. The challenges identified were: the rarity of CVID, 

whilst relatively common in the context of PIDs, CVID is still classified as rare disorder 

(affecting between 1:10,000 and 1:100,000 of the population27,35); the impact of 

treatment (replacement immunoglobulin) on the spectra of blood samples; the wide 

variety and shared clinical features with other pathologies (predominantly secondary 

immune deficiency but also gastrointestinal disorders, respiratory disorders, 

lymphoproliferative disease, autoimmune disorders, and granulomatous diseases); and 

the fact that the disorder is not molecularly well-defined, remaining a diagnosis of 

exclusion. These factors have been critically appraised throughout the project, as 

variables that could impact the interpretation of any generated results. 
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The therapeutic treatment given to CVID patients is replacement immunoglobulin (IG), 

given either intravenously (IV) or subcutaneously (SC). Therapeutic IG is a sterile 

preparation of immunoglobulins, produced by the fractionation and purification of pooled 

plasma from thousands of healthy donors. In light of this we acknowledge that CVID 

patients, as a cohort, face restrictions when undergoing serological assessment, for 

example any serological tests for microbial or autoimmune assessment that require 

quantification of antibodies of the IgG class are unreliable36.  

As a live blood product, the final composition will depend on the concentration, and 

variation of antibodies present in the donor population. Final formulations will also vary 

depending on the manufacturer and the production process. IgG makes up more than 

90% of the final composition of therapeutic IG; the remaining portion includes small 

amounts of albumin, IgA, traces of other immunoglobulins, cytokines and soluble 

receptors37. It was beyond the scope of this project to determine specific wavenumber 

variances associated with replacement IG in samples of treated patients. However the 

potential impact on this study has been considered below and suggestions for further 

experiments have been included in the next section.  

Firstly, we recognised that IVIG and SCIG, despite the formulation differences dependent 

on manufacturer, are made up of a finite number of constituents, the majority of which 

being IgG derived from healthy donors. Therefore, given that ATR-FTIR spectroscopy 

generates a spectrum representative of the complete composition of a sample (proteins, 

carbohydrates, lipids, DNA) it is unlikely that contribution from therapeutic IG will impact 

the entire spectrum, but will be almost completely restricted to the protein-associated 

peaks.  

Blood plasma contains a large number of proteins, albumin accounts for approximately 

65% of the total protein concentration, with gammaglobulins accounting for 

approximately 11% (of which IgG makes up 80%)38,39. As the target dose of therapeutic IG 

is similar to normal physiological levels, we can expect that a similar percentage of the 

protein contribution (11%) will potentially come from IG treatment. Taking that into 

consideration, we postulate that the remaining 89% of the protein-associated 

wavenumbers, and the regions associated with carbohydrates, lipids and DNA are unlikely 

to have absorbance contributions from replacement IG. 
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In the further consideration of the potential impact of replacement IG, we examined the 

demographics and immunoglobulin levels in the study participants. There were two CVID 

patients that were treatment-naïve, the mean serum level of IgG in 19 treated patients 

was 7.86 g/L (SD 2.37), and in HCs 10.48 g/L (SD 1.72). There were six CVID patients with 

IgG levels < 6g/l and 15 with levels > 6 g/L; 13 on SCIG and six receiving IVIG. The inclusion 

of the treatment-naïve patients into the study adds strength to the notion that the 

spectral differences resulting in the successful classification of CVID patients from HCs is 

independent of replacement IG therapy.  

A further aim of the study was to extract spectral biomarkers contributing to the main 

differences in spectra from CVID patients and HCs. We identified 28 potential CVID 

biomarkers in wavenumbers associated with nucleic acids, collagen, lipids and 

carbohydrates, but only six wavenumbers associated with protein molecules (see Chapter 

3 and Appendix G). This suggests that the presence of replacement IG in serum and 

plasma (likely associated with protein wavenumber variances) was not a major 

contributing factor to the discrimination of CVID spectra from HCs.  

This research project was undertaken on a study population recruited from the clinical 

immunodeficiency service provided by Lancashire Teaching hospitals NHS Trust (LTHTR). 

This service is adult-based, and includes the management of approximately 60 clinically 

diagnosed CVID patients. Based on our local population, recruiting from this group of PID 

patients would provide the greatest opportunity to obtain an adequate numbers of 

participants to ensure sufficient statistical power during analysis.  

In summary, CVID was chosen as the study cohort as it provided a novel area to apply 

biospectroscopy. Moreover, if successful, this technology could be developed into a new 

diagnostic test for a disease in which current laboratory approaches are limited.  

4.2.2 ATR-FTIR as the biospectroscopy method 

IR spectroscopy has been used commercially as an analytical platform for several 

decades. Advances in instrumentation and more importantly, in computerised analysis, 

have recently enabled its more wider-reaching application, including into biomedical and 

diagnostic research. Despite this, the majority of biospectroscopy research studies are 

undertaken within the academic setting, as the highly advanced, technical 

instrumentation required is better suited to research laboratories. To overcome these 
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challenges and undertake this study in the clinical setting, we built upon an existing 

collaborative partnership between our Immunology department at LTHTR and the 

University of Central Lancashire (UCLAN). This was a major strength for the success of the 

project. As a specialist technique, not available within any NHS pathology laboratory in 

the UK, it would not have been possible to undertake this biospectroscopy-based 

research without this clinical-academic partnership.  

This project has further built upon the existing active research interaction with UCLAN. 

The data presented in this thesis shows the successful initial application of ATR-FTIR in 

the diagnostic setting of CVID, and has opened up enormous opportunities for continued 

biospectroscopy research between UCLAN and clinical immunology at LTHTR 40,41. The 

expansion of this research group and ongoing application of biospectroscopy methods in 

immunology studies will be essential; not only for helping healthcare scientists and 

clinicians to gain an increased awareness of this powerful diagnostic platform, but 

towards contributing to the understanding of disease-related mechanisms underpinning 

complex immunological diseases. 

The specific analytical method choice was guided by the experience and expertise of the 

biospectroscopy research group at UCLAN. The research group have published widely in 

the field of biospectroscopy (over 200 peer-reviewed articles and four book chapters), 

specifically developing Nature Protocol Tutorials for using FTIR and Raman spectroscopy 

to analyse biological materials and for the application of multivariate analysis to 

vibrational spectroscopy of biological samples 19,20,42,43.  

As specified in Section 1.1, both FTIR and Raman spectroscopy can be used to examine 

biological samples, and as they are based on fundamentally different principles (change in 

a dipole moment compared to change in polarizability, respectively) they are often used 

as complimentary techniques. In our application for ethical approval, we included the use 

ŽĨ�ďŽƚŚ�ŵĞƚŚŽĚŽůŽŐŝĞƐ�ƵŶĚĞƌ�ƚŚĞ�ƵŵďƌĞůůĂ�ƚĞƌŵ�ŽĨ�͚ǀŝďƌĂƚŝŽŶĂů�ƐƉĞĐƚƌŽƐĐŽƉǇ͛͘�,ŽǁĞǀĞƌ͕�

due to the length of time allocated to acquiring competence the new methodology, 

understanding the principles for computational data analysis, and on the collection, 

processing and analysis of the serum and plasma samples, it was only possible to apply 

one of the techniques within the time-frame of this research project.  
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FTIR spectroscopy was selected due to its broader range of application than Raman 

spectroscopy; almost all organic molecules have a dipole moment and can become 

excited to undergo vibrations after absorption of IR light 44ʹ46.  Of the three sampling 

modes of FTIR spectroscopy (transmission, transflection and Attenuated total reflection 

(ATR)), ATR was selected as it is considered the most suitable for biological samples 47,48. 

Further work using Raman spectroscopy should be undertaken to provide further insight 

into the diagnostic application of vibrational spectroscopy, and will be discussed in the 

final section on suggestions for future work.  

4.2.3 Sample collection and processing 

Vibrational spectroscopy is a powerful tool capable of classifying samples into discrete 

groups based on subtle differences; however this also has limitations, being highly 

sensitive to the introduction of bias into the analysis process. For this reason, sample 

collection, storage and processing onto slides prior to FTIR analysis must be carefully 

controlled and standardised as far as practicable. To manage this, I attended the adult 

immunodeficiency clinic led by Dr Vijayadurai, Consultant Immunologist at LTHTR to 

recruit patients and transport study samples immediately to the laboratory where they 

were centrifuged, aliquoted and frozen at -80 °C until required.  

As CVID is a rare disease, in order to maximise patient recruitment, letters of invitation 

(Appendix D) were sent out to eligible patients two weeks prior to clinic appointment, 

along with the patient information sheets and consent forms. Prior to opening the study, I 

attended the Introduction to Good Clinical Practice training course held at Royal Liverpool 

Hospital, where I gained the requisite skills and competency to obtain patient consent 

and recruit study participants.  

From the total CVID cohort under the care of Clinical Immunology at LTHTR, we had 

anticipated to reach our target of 20 participants in six months. The recruitment target 

was actually met over a nine month period, with a total of 21 CVID patients recruited into 

the study. At the six month time point we had 18 patients and 30 HCs; the decision was 

made to keep recruitment open to increase the statistical power of any key findings. 

In order to gain access to a larger cohort of CVID patients for future larger-scale validation 

studies; a multi-site recruitment protocol would be required and additional ethical 

approval obtained. We would approach other immunology centres through The European 
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Society for Immunodeficiencies (ESID) and UK Primary Immunodeficiency Network 

(UKPIN). Based on our current working relationships with UK centres, we would initially 

include Liverpool, Manchester, Cambridge and Oxford in future studies. For the size and 

time-scales associated within this proof-of-concept study, a single-site based protocol was 

deemed appropriate.  

In the design of the study protocol, blood serum and plasma samples were chosen for 

ATR-FTIR analysis. These biofluids were chosen for a number of reasons; i) prior 

experience within the group, ii) suitability for batch analysis, and iii) ease of sample 

collection, transport and storage in the clinical setting. The significant experience of 

analysing these sample types within the group provided a template protocol to aid 

standardisation of sample collection and slide preparation prior to analysis.  

The acquisition of sample spectra is a manual process most suited to small batch analysis, 

with each sample taking approximately one hour to analyse (two blood spot replicates, 10 

spectra acquired per replicate). As patient recruitment was undertaken over nine months, 

samples were required to be aliquoted and frozen prior to analysis. This was vital to 

prevent the introduction of bias from variable aging samples stored at 2-8 °.  

One of the reasons for using blood serum and plasma as opposed to whole blood 

peripheral blood mononuclear cells (PBMCs) was to avoid the introduction of any further 

variability from additional preparation processes. In the design of this study it would not 

have been possible to collect and process samples with 72 hours as is usually 

recommended for fresh peripheral blood, therefore Ficoll-Paque separation and freezing 

of PBMCs with subsequent thawing would have been required prior to spectra analysis.  

Further, in our aim to establish ATR-FTIR as a method to analyse patient samples and 

develop vibrational spectroscopy into a routine laboratory test, the successful application 

of using ATR-FTIR on serum or plasma samples would provide a more accessible approach 

for the clinical setting and laboratory analysis.  

The sample processing and spectral analysis was conducted over a six month time period. 

In total 102 samples were tested in duplicate (21 CVID patients; 30 HCs, for both serum 

and plasma samples). ATR-FTIR spectral acquisition was undertaken within the School of 

Pharmacy and Biomedical Science laboratories at UCLAN. The spectra were obtained 
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using a Tensor 27 FTIR spectrometer with Helios ATR attachment (Bruker Optics Ltd) 

operated by OPUS 5.5 software.  

As previously stated, FTIR spectrophotometers designed for research laboratories are 

complex, state-of-the art pieces of equipment requiring specialist expertise for data 

collection and analysis; spectroscopy training and guidance was provided by Professor 

Frank Martin and post-doctoral scientists within the research group. Prior to commencing 

ĂŶĂůǇƐŝƐ� ŽĨ� ƌĞƐĞĂƌĐŚ� ƉƌŽũĞĐƚ� ƐĂŵƉůĞƐ͕� /� ŽďƚĂŝŶĞĚ� ƉƌĂĐƚŝĐĂů� ĞǆƉĞƌŝĞŶĐĞ� ƵƐŝŶŐ� ͚ƚƌĂŝŶŝŶŐ͛�

samples, preparing slides and acquiring spectra to ensure I had full competency to use the 

equipment unsupervised.  

Research samples were thawed and deposited in duplicate onto IR-reflective glass slides 

(Low-E), air-dried on the bench and placed in a desiccator overnight. All slides were 

analysed the subsequent day to ensure standardisation of the protocol. Further steps to 

prevent bias included having one researcher performing all spectral acquisition, and the 

generation of random study numbers for each participant; this allowed all samples (CVID 

ĂŶĚ�,�ƐͿ�ƚŽ�ďĞ�ĂŶĂůǇƐĞĚ�͚ďůŝŶĚ͕͛�ĂŐĂŝŶ�ƚŽ�ŵŝŶŝŵŝƐĞ�ƚŚĞ�ŝŶƚƌŽĚƵĐƚŝŽŶ�ŽĨ�ďŝĂƐ�Ăƚ�ĂŶy point of 

the data collection process.  

dŚĞ� ĂĐƋƵŝƐŝƚŝŽŶ� ŽĨ� ĂŶ� &d/Z� ƐƉĞĐƚƌƵŵ� ŝŶǀŽůǀĞƐ� ĐŽůůĞĐƚŝŶŐ� Ă� ͚ƐŝŶŐůĞ-ďĞĂŵ͛� ƐƉĞĐƚƌĂů�

measurement at one point within a sample. To minimize any bias associated with 

variance in sample thickness and sample heterogeneity, 10 spectra were collected from 

different point locations within the dried blood spot for each study subject. As 

recommended by the literature, point spectra were not taken from the peripheral edges 

of the blood spot to avoid interference from the well-descƌŝďĞĚ�͚ĐŽĨĨĞĞ�ƌŝŶŐ�ĞĨĨĞĐƚ͛�49ʹ51.  

A total of 2040 spectra were acquired; 20 spectra per biofluid per participant, which 

equated to over one hundred hours of spectral analysis. Whilst steps were taken to 

maintain a robust methodological approach, due to the involvement of a series of manual 

techniques, the sample processing stage remains a potential source of error within this 

ƌĞƐĞĂƌĐŚ�ƉƌŽũĞĐƚ͘�KŶĐĞ�ƐĂŵƉůĞƐ�ǁĞƌĞ� ƚŚĂǁĞĚ�ĂŶĚ�ŵŝǆĞĚ͕�ϱϬ�ʅ>�ǁĞƌĞ�ŵĂŶƵĂůůǇ�ƉŝƉĞƚƚĞĚ�

onto the glass slides, producing an approximately 10 mm diameter blood spot (see 

�ŚĂƉƚĞƌ� Ϯ͕� ƐĞĐƚŝŽŶ� ͚Ϯ͘Ϯ͘Ϯ� ^ĂŵƉůĞ� �ŽůůĞĐƚŝŽŶ� ĂŶĚ� ƉƌĞƉĂƌĂƚŝŽŶ͛� ĨŽƌ� ĨƵƌƚŚĞƌ� ĚĞƚĂŝů� ĂŶĚ� ĂŶ�

example image of a dried blood spot slide). Although I was the sole researcher preparing 

the slides, there would have been variance between the size and thickness of the blood 
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spots. Taking 10 replicates for blood spot and the subsequent application of pre-

processing techniques (described in Section 2) were considered adequate steps to control 

this potential source of error. Additional steps to control the sample thickness would be 

to introduce an automated platform for sample preparation, as reported by Ollesch et 

al.52 where the authors reported higher reproducibility of acquired spectra compared to 

the non-automated method.  

In an alternative approach, Sala et al.53 recently evaůƵĂƚĞĚ� ƚŚĞ� ƚĞĐŚŶŝƋƵĞ� ŽĨ� ͚ĚŝŐŝƚĂů�

ĚƌǇŝŶŐ͖͛� ĐŽůůĞĐƚŝŶŐ� ƐƉĞĐƚƌĂ� ĨƌŽŵ� ͚ǁĞƚ͛� ƐĂŵƉůĞƐ� ĂƉƉůŝĞĚ� ĚŝƌĞĐƚůǇ� ƚŽ� ƚŚĞ� ĚŝĂŵŽŶĚ� ŝŶƚĞƌŶĂů�

reflection element and computationally subtracting the spectral contribution from water. 

The group demonstrated increased classification performance of spectra collected from 

digitally dried samples compared to air-dried samples, proposing that this could provide a 

promising technique to aid clinical translation of ATR-FTIR spectroscopy. This approach 

would eliminate the need to prepare slides, not only saving significant amounts of time 

but would also improve the standardisation of spectral acquisition.  

The length of time samples spent drying may have also attributed to potential error. It 

would take approximately one hour to manually acquire 20 point spectra per sample; the 

maximum number of samples processed in a single practical session was eight samples. 

This would result in the final slide having an additional seven hours drying time compared 

to the first slide; introducing a potential source of variance in the dataset. As highlighted 

above, pre-processing techniques are applied to aid the elimination of any variances or 

͚ŶŽŝƐĞ͛�ĂƚƚƌŝďƵƚĞĚ�ƚŽ�ĞŶǀŝƌŽŶŵĞŶƚĂů�ĨĂĐƚŽƌƐ�Žƌ�ƐĂŵƉůŝŶŐ�ǀĂƌŝĂŶĐĞ͘� 

Additional factors considered to limit the impact was the inclusion of sufficient 

participants, undertaking analysis over several different days, and implementing a process 

for blind sample preparation and spectral acquisition. In this regard it would be unlikely 

that all HC or all CVID slides would be grouped together and subject to extended drying 

conditions. Using Raman spectroscopy should be considered as an alternative 

spectroscopy method to avoid the drying step, as through using an immersion objective 

or microfluidic device liquid, biofluids can be examined directly43,54.  

4.2.4 Data Analysis and interpretation  

As in other specialities, the future direction of immunology investigations will require a 

ǁŝĚĞƌ͕�͚ƐǇƐƚĞŵƐ�ďŝŽůŽŐǇ͛�ĂƉƉƌŽĂĐŚ͘�dŚŝƐ�ŝƐ�ŶŽǁ�ƉŽƐƐŝďůĞ�ƚŚƌŽƵŐŚ�ƚŚĞ�ĚĞǀĞůŽƉŵĞŶƚ�ŽĨ�ůĂƌŐĞ-
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scale analysis methods such as genomics, proteomics and transcriptomics, whereby an 

astonishing amount of data is generated from a single sample to gain a far more 

ĐŽŵƉƌĞŚĞŶƐŝǀĞ� ǀŝĞǁ�ŽĨ� ƚŚĞ� ŝŵŵƵŶĞ� ƐǇƐƚĞŵ͘�dŚĞ�ŵƵůƚŝĚŝŵĞŶƐŝŽŶĂů� ͚ďŝŐ�ĚĂƚĂ͛� ŐĞŶĞƌĂƚĞĚ�

using these technologies cannot be analysed using traditional or simple univariate 

analysis methods. Instead, the application of chemometrics, such as multivariate analysis 

and computational (machine-learning) methods are vital to extract the relevant 

information for clinical interpretation.  

In light of this, interest in bioinformatics and the use of multivariate analysis techniques 

within the field of immunology has started to rapidly expand10,11,18,55ʹ58. This suggests that 

these methods will become central to future immunology research. As large 

multidimensional datasets are generated from biospectroscopy, this project provided an 

opportunity to gain experience and understanding of these advanced analytical 

platforms. As a non-expert in bioinformatics and chemometrics, the data analysis phase 

of this project was a challenging task which required expert supervision and guidance to 

undertake. A substantial amount of time within the project was allocated to learning the 

fundamental chemometric processes, and how to apply appropriate pre-processing and 

analysis techniques to complex spectral datasets.  

As chemometrics is a speciality in its own right, in order to produce robust data from 

biospectroscopy studies, it is not recommended for non-experts to process the data 

independently. The multivariate data analysis undertaken within was performed using the 

high-level computer programming software, MATLAB (MathWorks). This software, along 

with the vibrational spectroscopy-focussed computer programming toolbox (IRootLab), 

developed within the UCLAN research group, were both novel data analysis platforms 

applied to the investigation of CVID data within this project.  

Supported by an expert chemometrician, Dr Camilo L. M. Morais at UCLAN, I successfully 

evaluated and applied pre-processing (cutting, baseline correction, smoothing, 

normalisation), unsupervised- (principal component analysis (PCA)) and supervised (PCA-

linear discriminant analysis) multivariate analysis techniques within this project (Chapter 

2). The programming associated with the final support vector machine (SVM) 

classification models and feature extraction methods was undertaken by Dr Morais; 

however in order to interpret the results and perform statistical analysis on the identified 
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biomarkers within Chapter 3, I gained necessary experience of performing feature 

extraction techniques and building classification models within MATLAB.  

The requirement of complex computational analysis to interpret biospectroscopy data 

can be considered as both a strength and weakness within this project. The use of 

chemometrics has been well documented within biospectroscopy studies19,21, however 

the complexity of these methods have often deterred non-experts and researchers in 

smaller centres from applying them to clinical immunology studies. In this regard, a major 

strength of this project was the collaborative partnership with academia; as within the 

research group at UCLAN, there was significant expertise in chemometrics, analytical 

chemistry and biospectroscopy. 

Given that we were applying a novel technique (ATR-FTIR spectroscopy) to the 

investigation of CVID, a methodology that would be largely unfamiliar to Immunologists 

and life sciences researchers, the support of an expert chemometrician ensured the 

generation of robust results and added credibility to the project findings.  

Importantly, it should be noted that on completion of experimental spectral analysis and 

construction of classification models, the application of chemometrics would not 

routinely be required. Instead, the platform could be used as a routine laboratory test 

with sample spectra put through defined classification algorithms to determine a 

diagnostic result. As technologies and computational programming continues to advance 

there is a now a drive towards the development of plug-and-play and point-of-care 

devices; this will increase the accessibility of biospectroscopy as an investigative tool and 

aid the translation of biospectroscopy into clinical use59ʹ61,61. 

 Contribution to theory and clinical practice (including suggestions for further 4.3

work) 

The work presented in this thesis demonstrates the successful proof-of concept of 

applying ATR-FTIR spectroscopy to the study of CVID. Given that this is the first time that 

this technology and data analysis approach has been applied to an immune deficiency 

disorder, the scope for future work is extensive. We, as a research group at LTHTR 

Immunology department, continue our interest in the application of vibrational 

spectroscopy to investigate immunological disease.  
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Suggestions for future work relating to this project are outlined below. In addition, we 

have commenced further research applying biospectroscopy as one of several methods 

used to investigate COVID-ϭϵ͖�͚�y�Ks/Z͛�;�ǆƉůŽƌŝŶŐ��Ks/�-19 specific immune responses 

in acute and convalescent phases of infection) opened in January 2020, a summary of the 

project outline has been included in Appendix H. 

Clinically, and from a laboratory results perspective, secondary immune deficiency 

presents with many of the same features of CVID, i.e. low serum immunoglobulin levels 

and recurrent infection. With adults being the major population affected; this poses a 

diagnostic dilemma to clinicians, particularly in primary care where the awareness of 

primary immune deficiency in adults is lower.  

Currently, the cost to determine immune deficiency is approximately £500 per patient; 

this current approach is hindered by the lack of specific diagnostic biomarkers for CVID, 

and the requirement to exclude all secondary causes before a diagnosis can be reached. 

With ever-increasing incidence of secondary causes of immune deficiency (due to 

haematological malignancy, therapeutic drugs, protein-losing disorders, transplant, 

infection, age)62 the financial burden on the NHS will continue to rise. An improved 

approach is therefore required.  

Establishing vibrational spectroscopy as novel laboratory platform could provide this 

improvement and contribute to clinical practice. Further validation studies are required to 

fully assess potential to accurately identify CVID patients and diagnose patients at an 

earlier time point; this would have a significant beneficial impact on patient outcome, 

prompting earlier initiation of treatment and minimising any disease-associated morbidity 

related to diagnostic delays. 

A major aim of this project was to establish the methodology and data analysis 

techniques required to use biospectroscopy within the clinical immunology laboratory. 

The data presented in this thesis shows that patients with CVID can be correctly classified 

from HCs based on the spectral fingerprint of serum and plasma samples. For the serum 

data, correct classification of HCs and CVID patients demonstrated success rates of 99% 

and 92%, respectively; and for plasma, 96% and 92% respectively.  

Following successful classification of participants, further investigations to identify CVID-

associated biomarkers were undertaken, alongside the examination of CVID patient sub-
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groups (infection-only versus additional complications). Following individual subject-level 

analysis (i.e. taking the average of the 20 spectral replicates per sample), we identified six 

discriminating wavenumber biomarkers in the serum demonstrating significant 

absorbance intensity differences between CVID patients and HCs (1115 cm-1, 1034 cm-1, 

1528 cm-1, 1759 cm-1, 2932 cm-1 and 2862 cm-1, of which one biomarker (1528 cm-1) was 

also capable of discriminating between CVID patient subgroups.  In the plasma, nine 

biomarkers were identified (984 cm-1, 1007 cm-1, 1053 cm-1, 1084 cm-1, 1107 cm-1, 1119 

cm-1, 1416 cm-1, 1566 cm-1, and 1639 cm-1), however, none of which were significantly 

different between the CVID patient subgroups. 

Classification models built towards the discrimination of HCs, from CVID patients-without 

complications, and from CVID patients-with complications demonstrated mixed results 

dependant on the choice of biofluid and region of the spectra investigated. Greatest 

classification rates were achieved when using the plasma fingerprint spectral data, in 

which sensitives for correct grouping of HCs, CVID patients-without complication and 

CVID patients-with complications were 93%, 73%, and 73%, respectively, and specificities 

were 87%, 93%, 95%, respectively.  

The lower classification rate observed for the clinical sub-group analysis would have been 

influenced by the reduced population numbers; eight CVID-without complications and 

thirteen CVID-with complications patients. As these numbers would have been reduced 

further in the splitting of the samples to produce training and test sets, the final 

classification model statistics were restricted to a much smaller test dataset (made up of 

two CVID-without complications and six CVID-with complications patients).  

Whilst encouraging findings have been put forward in this project for subgrouping 

patients based on spectral data, further work with the inclusion of a larger CVID patient 

cohort is required to validate our findings and fully examine the potential of 

biospectroscopy to subgroup patients and identify those at risk of severe disease. Given 

ƚŚĞ� ƌĞĐĞŶƚ� ƉƵďůŝĐĂƚŝŽŶƐ� ƵƐŝŶŐ� ͚ŽŵŝĐƐ-based technologies to define immune profiles of 

CVID patients with immune dysregulation distinctly from CVID patients with infections 

only17,18, further biospectroscopy studies should align with the clinical phenotypes 

described in these reports. 
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Following on from the success of this biospectroscopy study which demonstrated the 

discrimination of CVID patients from HCs with sensitivities and specificities of up to 97% 

and 95%, respectively, the next step would be to undertake a wider clinical study 

including additional disease control cohorts. Suggested groups to include would be 

patients with secondary immune deficiency, inflammatory disorders (i.e. chronic 

respiratory diseases) and a molecularly defined PID associated with 

hypogammaglobulinemia such as X-linked agammaglobulinemia.  

As noted earlier, further experimental work to examine the spectral variances associated 

with replacement IG are warranted. We propose inclusion of a further patient group also 

treated with IVIG, such as neurology patients (Guillain-Barre syndrome and chronic 

inflammatory demyelinating polyneuropathy) or autoimmune inflammatory disease 

patients, and look for any shared spectral features with CVID patients, not observed in 

the HC group. Additional experiments would include the recruitment of additional IG 

treatment-ŶĂŢǀĞ�ƉĂƚŝĞŶƚƐ͕�ĂŶĚ�ƚŚĞ� ͚ƐƉŝŬŝŶŐ͛�ŽĨ�,��ƐĞƌĂ�ǁŝƚŚ� ŝŶĐƌĞĂƐŝŶŐ�ĐŽŶĐĞŶƚƌĂƚŝŽŶƐ�ŽĨ�

replacement immunoglobulin products to determine any significant spectral changes 

associated. 

In the laboratory investigation of CVID, analysis of lymphocyte surface marker by flow 

cytometry can contribute to diagnosis and disease severity subgrouping. However the 

sample preparation and work-up is time consuming, a specialised, highly skilled workforce 

is required and there is a high cost associated with the equipment and reagents. Raman 

spectroscopy could provide an alternative vibrational spectroscopy method that could be 

applied to the analysis of whole cells. 

In contrast to flow cytometry, Raman spectroscopy can provide a chemical fingerprint and 

image of whole cells without fixation, lysis or use of labels which may disrupt the 

structure of the cells 63ʹ66. As differentiated cells produce specific markers and chemicals 

throughout development, this technique could be used on whole blood samples to define 

specific spectral features associated with the particular stages of B and T cell 

differentiation. We would look to apply Raman spectroscopy alongside flow cytometry 

methods using the EUROclass67 classification of CVID patients to develop a novel, rapid, 

label-free and lower-cost assay for the classification of CVID patients.  
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As the tentative molecular assignments for FTIR and Raman Spectroscopy wavenumber 

libraries are continually evolving it would be of great interest to collaborate with research 

groups specialising in the immune profiling of CVID patients. Future work using a multi-

omics approach would aid the molecular interpretation of key wavenumbers by aligning 

CVID-specific protein- or RNA panels with CVID-specific spectral biomarkers.   

Whilst the aim of this study was to set out the proof-of-concept for using ATR-FTIR 

spectroscopy in the setting of CVID, we predict that future development and use of this 

technology could provide novel insights into aetiological and molecular mechanisms 

underpinning CVID. 

 Final thoughts and conclusion 4.4

The application of IR spectroscopy has developed substantially over the past 60 years. In 

the mid-1940s, early IR spectrophotometers were developed using a diffraction grating to 

disperse the light; these instruments required absorbance measurements to be taken 

from each wavelength sequentially in order to produce a complete spectral read-out. 

Initially, IR spectroscopy was used for the analysis of organic compounds within research 

and development, particularly in the petrochemical industry. Fourier Transform IR (FTIR) 

spectrophotometers were later developed in the 1980s, which were capable of measuring 

all wavelengths simultaneously through the use of the Michelson interferometer. This 

advancement made it possible to acquire more spectral data in a much shorter time, and 

increased the analytical sensitivities of the instrument. This had a far-reaching impact on 

the popularity and application of FTIR spectroscopy, which is now being used across 

several sectors including chemistry, biology, pharmaceuticals, food and drink, materials 

science, healthcare, and forensics, among many others.  

In particular, ATR-FTIR spectroscopy has gained popularity within the field of biochemical 

sample analysis, as it permits acquisition of spectral measurements from almost any 

sample type and provides high resolution data. Further recent instrument developments 

include the use of higher sensitivity mercury cadmium telluride (MCT) detectors. 

Compared to the standard �ĞƵƚĞƌĂƚĞĚ�>ĂŶƚŚĂŶƵŵ�ɲ��ůĂŶŝŶĞ�ĚŽƉĞĚ�dƌŝ'ůǇĐŝŶĞ�^ƵůƉŚĂƚĞ�

(DLaTGS) detectors, MCT detectors can make sample measurements at higher speeds 

without losing any IR response, and show a better signal-to-noise ratio even when the IR 

signal is low. The use of MCT detectors therefore reduces spectral acquisition times 
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without losing any sensitivity; further increasing the applicability of vibrational 

spectroscopy to the clinical setting. 

Alongside instrument advances, developments associated with spectral data analysis have 

increased exponentially in recent years. Computational advances have changed how 

spectroscopists analyse data; the availability of a wide range of approaches for pre-

processing and multivariate analysis (chemometrics) has enabled spectroscopists to 

uncover subtle but relevant spectral information from large datasets in a timely manner. 

Some of the chemometric techniques referenced throughout this thesis (LDA, SVM) can 

ďĞ�ĐŽŝŶĞĚ� ͚ŵĂĐŚŝŶĞ� ůĞĂƌŶŝŶŐ͛�ƉƌŽĐĞƐƐĞƐ͘�DĂĐŚŝŶĞ� ůĞĂƌŶŝŶŐ� ŝƐ�Ă�ƐƵď-specialism within the 

larger field of Artificial Intelligence, and it is revolutionising how large and complex 

datasets within healthcare science can be analysed. Using statistical algorithms and 

mathematical modelling, computers can be programmed to learn how to analyse data 

without human intervention. These tools can uncover new information that would have 

previously been overlooked using conventional approaches. Used in the healthcare 

setting, machine learning techniques can improve the efficiency of diagnostic testing and 

precision medicine, resulting in a better quality of patient care.  

The limitations associated with using machine learning in healthcare have been recently 

reviewed68. These include potential issues with data quality, clinical governance, and the 

introduction of bias. Steps are being taken to address these concerns, and ensure that the 

expansion and use of analytical tools with artificial intelligence in healthcare are 

appropriate and ethical.  

Within vibrational spectroscopy, machine learning techniques have been successfully 

applied to diagnostic studies across numerous pathologies. A practical and detailed 

review has been recently published by Rehman et al. 202169, with the aim to bridge the 

knowledge gap between spectroscopists (who understand chemometrics) and data 

scientists (who have an advanced knowledge of machine learning). Of note, some of the 

machine learning techniques currently applied in pilot biospectroscopy studies are not all 

well-suited to large, continually expanding datasets, which would be anticipated following 

clinical translation into larger-scale studies.  To overcome this, the use of alternative 

artificial intelligence algorithms such as artificial neural networks (ANNs) has been 

highlighted. When used as supervised machine learning methods in vibrational 

spectroscopy, ANNs have demonstrated improved accuracy in a prostate cancer study 
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compared to PCA-LDA, PCA-linear regression and SVM70. Further to this, biospectroscopy 

research also using ANNs has demonstrated predictive accuracies of 75%-90% for the 

identification of different bacterial species of Burkholderia71. These latest developments 

within spectroscopy and machine learning could play an integral role in the translation of 

vibrational spectroscopy into the clinical setting. 

The advantages offered by biospectroscopy compared to traditional investigations 

include minimal sample preparation, rapid sample processing, the use of small sample 

volumes and the non-destructive nature of the tests, which allows for further 

investigations to be performed if required54. The weaknesses of this method largely relate 

to issues with reproducibility. Due to a lack of published guidelines and best practice 

documents, there remains significant protocol variability between research groups. To 

overcome this, the inclusion of internal quality controls, implementation of an external 

quality assurance programme or sample exchange scheme between laboratories, and the 

generation of an immunology-focussed reference library will enable researchers to assess 

the consistency of results.  

For clinicians, having vibrational spectroscopy as an additional tool in their armoury of 

investigations would be ground-breaking, particularly when applied to complex diseases 

which may have previously required a large number of clinical and laboratory 

investigations, some of which highly invasive (such as tissue biopsies).  Diagnostic delays 

could be significantly improved, cost-savings could be made, and the patient pathways for 

a wide repertoire of diseases could be transformed. The increasing number of studies 

reporting excellent sensitivities and specificities, alongside the low cost of 

biospectroscopy analysis has already highlighted the potential use of this platform within 

large-scale screening programs54,72. To this end, the question as to why biospectroscopy 

has not yet been translated into a routine clinical laboratory test remains as pertinent as 

ever.  

Research groups in the field continue to publish extensively on this subject, with a shared 

aim to support the development of a standardised process and facilitate clinical 

translation20,60,61,61,73ʹ77.  The major barriers identified include stakeholder buy-in, current 

instrument constraints, and the inability to win the hearts and minds of clinical and 

laboratory users. 
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In terms of stakeholder buy-in, the number of different participants required is often 

overlooked. Collaborative working between spectroscopists, researchers, instrument 

manufacturers, laboratory directors, clinicians, biomedical scientists, intellectual property 

lawyers and health economists is vital to improve patient care whilst making cost savings 

for the NHS. As vibrational spectroscopy has yet to reach the healthcare market, it is 

viewed as a considerable risk for instrument manufacturers to produce new instruments 

with features that are more suited to a routine clinical laboratory (improved automation 

and reduced user complexity). Recently however, enterprises between spectroscopy 

manufacturers and biospectroscopy researchers are forming (for example, Glyconics 

Limited and ClinSpec Diagnostics Limited) in an attempt to overcome pre-analytical and 

instrumentation challenges within the clinical setting. Financial planning and health 

economics modelling is a key prerequisite when considering the introduction of a new 

technology or laboratory test. The presentation of a detailed and robust business case 

evidencing the improvements  biospectroscopy can have on patient care, alongside 

substantial cost savings will also have a major influence on the clinical translation of 

vibrational spectroscopy60.  

Finally, due to the recent appearance of vibrational spectroscopy within clinical and 

biological studies, the majority of clinicians and laboratory scientists will be unfamiliar 

with this analytical platform. If the clinical translation of vibrational spectroscopy is to be 

successful, it is vital to win the hearts and minds of the clinical stakeholders and take 

appropriate action to improve understanding. To do this continuous communication and 

education is paramount; this could be achieved through holding user group meetings, 

one-to-one training sessions, educational seminars, participation in sample share 

schemes and providing user group-specific information leaflets. We predict that in the 

future vibrational spectroscopy data will be used and understood in an equal manner to 

conventional laboratory tests. For successful clinical translation we must avoid 

ďŝŽƐƉĞĐƚƌŽƐĐŽƉǇ� ĨĂůůŝŶŐ� ŝŶƚŽ� ƚŚĞ� ͚ďůĂĐŬ� ďŽǆ͛� ůĂďŽƌĂƚŽƌǇ� ƚĞƐƚŝŶŐ� ŶŽƚŝŽŶ� ƚŚĂƚ� ǁŽƵůĚ� ĚĞƚĞƌ�

clinicians from using the service78.  

In summary, vibrational spectroscopy has made huge strides in becoming an analytical 

technique that can be translated into the healthcare setting. In line with this, and the 

increasing interest and application to immunology research, we envisage that 
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biospectroscopy methods will become a routine platform in NHS laboratories in the near 

future.  

Within this research project, the significant variation in spectral fingerprint observed 

between CVID patients and HCs provide an encouraging foundation for the development 

of biospectroscopy into a novel diagnostic approach for CVID. Characteristic spectral 

features and wavenumber biomarkers have been identified, the absorbance intensity of 

which have demonstrated significant differences within the CVID group compared to HCs. 

These biomarkers may provide a future tool to monitor CVID patients over time and to 

identify those at risk of disease progression.  

The results reported here would now require clinical validation in a larger-scale study, 

and further experimental work has been suggested within this appraisal chapter. The 

work presented throughout this thesis has accomplished the first phase of a larger 

aspiration, to translate the novel methodology, ATR-FTIR spectroscopy, into a diagnostic 

platform for CVID. 
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APPENDIX A 

HIGHER SPECIALIST SCIENTIFIC TRAINING MODULE C ʹ INNOVATION PROPOSAL 

This appendix contains the innovation proposal document. This piece of work is required 

by all Life Sciences Higher Specialist Trainees in Cohort 3 and onwards to be included as 

an appendix in the thesis. Assessment of the innovation proposal has been undertaken by 

ƚŚĞ�ĂƵƚŚŽƌ͛Ɛ workplace and academic supervisors. 

Innovation Proposal - Pass/Fail 
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Establishing a new diagnostic pathway for immune deficiency disorders in the Clinical 

Immunology Laboratory 

Executive Summary 

Immunological disorders are complex, often demonstrating interaction across multiple molecular 

pathways which results in delayed diagnosis. The frequency of immune deficiency is rising, 

especially in older adults; the number of patients with secondary immunodeficiencies (SIDs) 

greatly exceeds those with primary immunodeficiencies (PIDs); however the prevalence of both 

appears to be on the rise probably because of increased access to laboratory investigations, 

greater use of immunosuppressive drugs and a growing aging population. Vibrational 

spectroscopy is being applied in many fields and here we propose an innovation project for its use 

in clinical immunology, specifically within the investigation of immune deficiency disorders. The 

most prevalent, symptomatic primary immunodeficiency, common variable immunodeficiency 

(CVID) is a key area to pilot this innovation project. There is currently no diagnostic test specific 

for CVID. This leads to patients experiencing an average diagnostic delay of 4-5 years, during 

which time irreversible airway damage can occur as a result of recurrent infections 1. Moreover, 

due to the fact that presentation is mostly in adulthood, it can be difficult to discriminate CVID 

from secondary immune deficiencies, for which the clinical care pathways largely differ. CVID 

patients require life-long treatment with replacement intravenous immunoglobulins (IVIG), and 

close clinical monitoring to recognise and manage further disease-associated complications. If 

successful, the potential benefits of introducing vibrational spectroscopy into a routine test for 

immunodeficiency include; its use in disease diagnosis, monitoring and treatment response, an 

enhanced understanding of both genetic and non-genetic components of CVID, and the prediction 

of future clinical outcomes. The implementation of vibrational spectroscopy within Lancashire and 

Lakeland Regional Immunology Service will be the first NHS laboratory to translate this technique 

into routine practice for investigation of immune deficiency disorders. 

Project Background and Rationale 

Immune deficiency disorders are caused by a defect in the immune system which results in the 

absence or reduced function of vital immune components needed to fight infection. These 

disorders can be divided into genetically inherited primary immunodeficiency disorders (PIDs) and 

secondary immunodeficiency disorders, which are acquired as a result of disease or 

environmental factors.  The diagnosis and monitoring of immunodeficiency largely involves 

investigation of lymphocytes (T- B- and NK-cells) and numerous proteins associated with these 

cells. A wide range of laboratory methods are routinely used to investigate suspected 

immunodeficiency including multi-colour flow cytometry, enzyme immunoassays, cell 
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proliferation, and nephelometric assays. The results obtained from these tests can provide an 

indication of the immunological defect leading to a compromised immune system. However, each 

method has its limitations, and consequently information obtained at the macromolecular level is 

restricted. An enhanced and more detailed analysis of the cells involved in the immune response 

would develop current understanding and add to the discovery of defective components or 

signalling pathways implicated in immunodeficiency. 

In the 2019 update to the International Union of Immunological Societies (IUIS) classification of 

Inborn Errors of Immunity report, 430 distinct PIDs were characterised, ranging in prevalence 

from very rare to relatively common 2. Common Variable Immune Deficiency (CVID) is the most 

prevalent symptomatic primary immunodeficiency disorders (PIDs)3, with 90% of patients 

suffering from recurrent infections due to the failure to produce protective antibodies (called 

immunoglobulins). There is also an increased risk of autoimmune disorders (22% of patients) and 

malignancy (16% of patients) because of underlying immune dysregulation 4ʹ7. In light of its 

heterogeneous clinical presentation and lack of disease-specific biomarker, diagnosis remains one 

of exclusion. Current diagnostics rely heavily on the measurement of immunoglobulins alongside 

clinical symptoms, with both International CONsensus (ICON) and European Society for 

Immunodeficiencies (ESID) criteria requiring patients to have low serological levels reported 

(hypogammaglobulinemia)4,8. The caveat to this finding is the requirement to exclude all other 

causes of low immunoglobulins, for which there are a wide variety of causes9, the most prevalent 

of which are secondary, acquired due to multiple causes including HIV, malignancy, therapeutics, 

malnutrition and protein loss. Due to its low clinical specificity, the use of immunoglobulins as a 

diagnostic biomarker for CVID is limited, highlighting the need for an improved diagnostic 

approach.  

New discoveries and advances in technologies mean that we can explore new laboratory 

approaches for the investigation of complex disorders. Methods designĞĚ�ĨŽƌ�͚ŽŵŝĐƐ-ůŝŬĞ͛�ĂŶĂůǇƐŝƐ͕�

such as genome, transcriptome and proteome investigations are often a challenge to bring into 

routine laboratory use due to the high cost burden associated with these analytical platforms. 

There is an unmet need for a low cost and simple to process analytical platform that can be 

routinely accessible within the financial constraints of NHS laboratories. One potential and 

innovative candidate that enables sample analysis at the molecular level is vibrational 

spectroscopy. Vibrational spectroscopy is an umbrella term to describe the techniques used to 

produce a unique spectral read-ŽƵƚ͕� Žƌ�ŵŽůĞĐƵůĂƌ� ͚ĨŝŶŐĞƌƉƌŝŶƚ͛� ŽĨ� Ă� ƐĂŵƉůĞ� ĨŽůůŽǁŝŶŐ� ĞǆĐŝƚĂƚŝŽŶ�

with light10. The unique molecular fingerprint of a sample relates to its biomolecular constituents 

(i.e. proteins, lipids, nucleic acids, carbohydrates) and is generated from the vibrations of the 

chemical bonds in these molecules. The most important optical techniques are infrared (IR) and 
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Raman spectroscopy 11; both of which  are well established methods for studying sample types 

such as biofluids, tissues and cell cultures 10. As the molecular fingerprint of a sample will change 

due to the presence of disease; vibrational spectroscopy is a well-placed candidate for the study 

of pathological processes and development of a novel diagnostic platform 11. Thorough the use of 

computational methods and machine learning for spectral data analysis, this innovation will 

promote the digital revolution and potentially be the first of many to apply machine learning 

applications to clinical pathways. As discussed in detail within the literature in Chapter 1, the 

diagnostic potential of vibrational spectroscopy has already been pioneered and proven 

successful when applied to a wealth of proof-of concept studies. These studies have been 

undertaken across a wide range of medical disciplines, including disorders associated with 

immune dysfunction. No NHS laboratory is currently using vibrational spectroscopy within the 

clinical setting of immunodeficiency. 

Project Objectives 

The objectives for the innovation project, to embed vibrational spectroscopy into the immunology 

laboratory testing pathway for CVID are to: 

x Further validate and assess clinical utility of individual CVID-associated wavenumber 

biomarkers identified in proof-of-concept study12. These included wavenumbers in regions 

ŝŶĚŝĐĂƚŝǀĞ�ŽĨ�ŶƵĐůĞŝĐ�ĂĐŝĚƐ�;ϵϴϰരĐŵо1͕�ϭϬϱϯരĐŵо1͕�ϭϬϴϰരĐŵо1͕�ϭϭϭϱരĐŵо1͕�ϭϱϮϴരĐŵо1͕�ϭϲϯϵരĐŵо1), 

and a collagen-ĂƐƐŽĐŝĂƚĞĚ�ďŝŽŵĂƌŬĞƌ�;ϭϱϮϴരĐŵо1) in serum and plasma samples 

x Examine the proof-of concept for investigating lymphocytes with Raman spectroscopy and 

benchmark against existing conventional methods (flow cytometry) for immunodeficiency 

diagnosis within a clinical setting 

x Improve diagnostic sensitivity and specificity for CVID by potentially eliminating the need to 

exclude all other causes of hypogammaglobulinemia prior to classification of patients as CVID 

x Reduce diagnostic delay for CVID patients 

Feasibility 

Option 1: Do nothing 

Immunodeficiency is one of the major immunological disorders investigated within the NHS 

clinical immunology service, investigations to determine a diagnosis costs approximately £500 per 

patient; there remain questions about the specificity of this conventional approach and it is a 

significant burden on existing resources. For this option, measurement of serum immunoglobulins 

and response to test vaccinations will remain the mainstay of laboratory testing for CVID. There 

would be no further research studies undertaken using vibrational spectroscopy methods, and 

there would be no additional equipment or staff training required. As previously stated, the 
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findings from these tests will not differentiate between primary and secondary causes of 

hypogammaglobulinemia. Patients presenting with symptoms suggestive of immune deficiency 

without an obvious secondary cause for subnormal immunoglobulins levels, will continue to be 

referred to secondary care services. Further investigations will then be undertaken on fresh whole 

blood samples; these will include flow cytometry-based testing for the enumeration of 

lymphocyte subsets and assessment of B-lymphocyte differentiation (presence of class-switched 

memory B lymphocytes). There would be no additional costs associated with this option however 

hypogammaglobulinemia patients would require collection of additional blood samples and 

outpatient clinic appointments prior to specialised investigations being undertaken. Patient care 

would remain unchanged but any potential cost savings through reduced hospital visits, 

unnecessary clinic appointments and use of phlebotomy services would be difficult. The risk for 

this option is low; however there would be minimal scope to improve patient care, particularly in 

relation to improving diagnostic delays and reducing the financial pressures associated with 

investigation of immunodeficiency patients. 

Option 2: Introduce vibrational spectroscopy as an adjunct to current laboratory investigation 

for CVID 

Following on from the success of our proof-of-concept study which demonstrated the ability of 

ATR-FTIR spectroscopy to discriminate CVID patients from healthy controls with sensitivities and 

specificities of up to 97% and 95%, respectively, we propose a novel laboratory diagnostic 

approach to CVID, which embeds vibrational spectroscopy techniques into the clinical 

immunology laboratory for the first time. Our main objectives within this service improvement 

are to use both Raman and ATR-FTIR spectroscopy techniques alongside current laboratory assays 

for CVID (analysis of serum immunoglobulins and B lymphocyte cell surface markers) in order to 

increase the diagnostic sensitivity and specificity of the current diagnostic testing pathway. This 

strategy will aim to reduce the diagnostic delay for CVID patients and thus progression of 

irreversible lung and other complications. Moreover, as CVID is considered to be a group of 

disorders with a spectrum severity, we aim to use disease-specific wavenumbers as biomarkers in 

order to assess patient risk for developing severe disease, enabling prompt and more aggressive 

treatment if required. Finally, with improved diagnostic specificity, it will also aid in preventing 

erroneous categorisation of secondary immunodeficiency patients as CVID, which would ensure 

that patients receive the correct clinical management, and that expensive blood-derived products 

such as IVIG are used appropriately.  

Using Raman spectroscopy to identify individual populations of lymphocytes has potential to be 

developed into a new diagnostic method for identifying immune cell disorders. The Raman 

method could replace current investigations such as flow cytometry, and provide a lower cost 
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alternative that could be offered to laboratories and clinical services across the UK.  Raman 

spectroscopy is an emerging area which can provide a chemical fingerprint of cells without 

fixation, lysis or use of labels which may disrupt the structure of the cells.  The translation of 

vibrational spectroscopy into the clinical setting of immunodeficiency has the ability to impact the 

patient pathway and clinical management of a large volume of patients. Collaboration between 

partners based within a clinical setting and academia is always challenging; however we have an 

existing active research interaction in this area with UCLAN which opens up enormous 

opportunities. We are aware of interest nationally and internationally in developing these 

technologies. There will be minimal upfront investment required during the initial Clinical 

Validation phase of the project as spectroscopy-based analysis will be performed at UCLAN, 

where there is existing expertise in these methodologies. The specialised immunology testing 

which is currently performed will remain unchanged, using the facilities and expertise already 

present within the Immunology department of Lancashire and Lakeland Regional Immunology 

service.  

Stakeholder engagement and further support has been offered by Regional spectroscopy 

network, to which the project has been presented. The network is made up of clinicians (across a 

wide range of disciplines) at Lancashire Teaching Hospitals NHS Trust (LTHTR), spectroscopy 

research scientists (Professor, post-doc and PhD level academics) at UCLAN and bioinformaticians 

at LTHTR and UCLAN. Consultant immunologists are supportive and currently manage a cohort of 

approximately 60 CVID patients. Possible barriers to implementing this option include regular 

access to specialised spectroscopy equipment once the test becomes a routine immunology 

assay, the laboratory would be required to purchase own spectrophotometer which would 

involve a large capital purchase or managed service contract. Ethical consideration and formal 

approval would be required to conduct the further research required prior to translating 

vibrational spectroscopy into a routine test. Gaining the funding to conduct further research 

would require successful grant application, and finally there would be time and costs associated 

with training current immunology staff to undertake the testing once the platform is fully 

validated. 

Clinical impact & Patient care  

In a typical primary care trust such as Preston, approximately 10,000 cases of suspected 

immunodeficiency annually are screened at a cost of £200k in a catchment area of 370k 

population. Rolled out nationally, this is a significant cost burden. The proposal to develop 

vibrational spectroscopy into a routine immunology test would provide a high throughput 

technology that is inexpensive with greater potential sensitivity and specificity. If proved to be 
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effective, vibrational spectroscopy could vastly improve individualised patient care and 

management. Usually, the only prompt for clinicians suspect an underlying immunodeficiency is 

that the patient develops recurrent or serious infections and is then investigated for potential 

immunological defects, by which time inflammatory changes and irreversible organ damage may 

have already occurred. Establishing a novel laboratory platform with the potential to accurately 

identify these patients at an earlier time point would have a significant beneficial impact on 

patient outcome, prompting earlier initiation of treatment and minimising any disease-associated 

morbidity related to diagnostic delays. The treatment and management of immunodeficiency 

patients depends on severity and whether the cause is primary- or secondary. Introduction of a 

new diagnostic test that could accurately discriminate between primary and secondary immune 

deficiency disorders would ensure patients are entered onto the correct clinical pathway and 

managed more effectively, alleviating financial pressures and inappropriate use of expensive 

blood-derived therapeutics such as IVIG. 

Conclusion and Next steps 

Immunodeficiency disorders are a common immune problem. There is an urgent need for 

translation of a new methodology that would facilitate high throughput analysis in an inexpensive 

fashion. Using vibrational spectroscopy has potential to be developed into a new diagnostic 

method for identifying immunodeficiency disorders. Following the remarkable findings from our 

proof-of-concept study using FTIR spectroscopy alone to successfully classify CVID patients from 

healthy controls (with sensitivities and specificities of up to 97% and 95%, respectively), the next 

steps required to implement this innovation project would involve securing funding for a Raman 

spectroscopy-based study of lymphocytes in immune deficiency disorders. Subsequently, in the 

clinical setting, we propose a multi-centre large-scale evaluation study whereby biospectroscopy 

will be used alongside the current laboratory investigations recommended within the CVID 

diagnostic criteria (measurement of immunoglobulins, vaccine responses, class-switch) to assess 

the impact that including this novel method could have on improving diagnostic delays and 

patient management. We envisage biospectroscopy would add value in the first instance by 

eliminating the requirement to exclude all other causes of hypogammaglobulinemia. This method 

could replace current investigations such as flow cytometry, and provide a lower cost alternative 

that could be offered to laboratories and clinical services across the UK, if deemed superior in 

performance characteristics (see appendix 1). This piece of work would provide the necessary 

evidence to streamline the diagnostic investigations for CVID; by proposing new testing 

algorithms and diagnostic guidelines to improve the future diagnosis and management of patients 

with CVID. We envisage establishing the first national FTIR- and Raman spectrochemical 
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diagnostic laboratory within a clinical setting; such an entity would generate employment towards 

lab managers, data analysts and bio-imaging personnel.  
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Appendix 1 

Laboratory 
analysis Basic technique Advantages Limitations Through-

put 

Approx. 
cost per 
test (£) 

Serum 
Immunoglob
ulins & 
electrophores
is 

Quantitation of IgG, 
IgA, IgM & total 
protein by 
turbidimetry or 
nephelometry. 
Electrophoresis 
separates proteins 
into 5 groups of 
similar size, shape, 
and charge using an 
electrical field. 

Major requirement for 
diagnosis: decreased 
IgG fundamental to 
diagnose CVID (in both 
ICON and ESID criteria) 
 
Highly automated, 
rapid, cost-effective, 
long-standing, 
standardised assay 
(ERM-DA470k/ 
IFCC reference 
material) 

Not Diagnostic for CVID in 
isolation ʹ must exclude 
all secondary causes of 
hypogammaglobulinemia 

High 10 

Lymphocyte 
subsets 
(TBNK) 

Flow cytometry is 
used to detect, 
identify, and count 
specific cells. 
Fluorochrome-
tagged monoclonal 
antibodies against 
cell surface markers 
enable each subset 
(T- B- and NK- cells) 
to be enumerated 
in whole blood. 

Informative, useful to 
investigate for any 
quantitative 
deficiencies in each of 
the lymphocyte 
subsets. 
CVID thought of as B 
cell defect but T cell 
lymphopenia noted in 
approx. 50% patients. 

Not required for 
diagnosis and not 
diagnostic for CVID in 
isolation ʹ B cells can be 
low/normal; T cells 
variable 
 
Manual assay - not fully 
automated  
 
Specialist skilled staff to 
perform and interpret 
results 

Medium 35 

Class-switch 
+/- Euroclass 

Method as above ʹ  
Fluorochrome-
tagged monoclonal 
antibodies against 
B-cell specific 
surface markers 

Included in ESID (2014) 
diagnostic criteria 
Assessment of CVID 
clinical phenotype and 
risk severity based on 
percentages of class-
switched memory B 
cells, transitional cells, 
or CD21low cells. 

Not Diagnostic for CVID in 
isolation 
 
Not possible to perform 
in patients with B cell 
lymphopenia (<50 
cells/ul) 
 
Not essential for 
diagnosis 
 
Specialist skilled staff to 
perform and interpret 
results 

Medium 30 
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Laboratory 
analysis Basic technique Advantages Limitations Through-

put 

Approx. 
cost per 
test (£) 

Vaccine 
responses  
Specific 
Microbial 
antibodies ʹ 
Tetanus 
(TET)/Haemo
philus 
influenza b 
(HIB) and 
Pneumococca
l 
polysaccharid
e serotypes 
(PNS) 

Multiplex or ELISA-
based test to assess 
the efficiency of IgG 
antibody response 
to active 
immunisation (or 
infection) to HIB, 
TET or PNS in 
immunocompromis
ed individuals. 

Included in ESID (2014) 
Measurement of 
specific antibody 
production 
(spontaneous and post 
immunisation) is useful 
in the assessment of 
patients with suspected 
immune 
(immunoglobulin) 
deficiency (hereditary 
or acquired). 
 
Can assess T-dependent 
and T-independent 
pathways by using 
pneumococcal 
conjugated vaccines 
(PCV) or pneumococcal 
polysaccharide vaccine 
(PPV), respectively 
 
Automated assay 
platforms available 

Not Diagnostic for CVID in 
isolation ʹ must exclude 
other causes of poor 
vaccine responses. 
 
Not standardised, results 
using different platforms 
not comparable.  
A widely misused test ʹ 
not to be used as general 
test of vaccination and 
certainly not as a test of 
infection. 
 
The pneumococcal 
antibody test (total IgG) is 
of limited use in testing 
for specific immunisation 
status since the new 
vaccines contain very 
different serotypes ʹ 
serotype specific test 
required. 
 
No universal agreement 
as to what constitutes a 
͚ŶŽƌŵĂů͛�ƐĞƌŽƚǇƉĞ-specific 
response to the PPV; 
AAAAI definition most 
commonly used. 

High 85 

Genetic 
Analysis   
 

Next-generation 
and targeting 
sequencing; 
involves  
array-based 
massive parallel 
sequencing 
(genomic DNA is 
fragmented and 
ligated for library 
preparation 
followed by 
amplification and 
sequencing) 
 
Whole-exome or 
whole- genome 
approaches can be 
used. Panel of 16 
genes offered by 
PreventionGenetics 
covering the coding 
regions of targeted 
genes plus ~10 
bases of non-coding 
DNA flanking each 
exon 

Diagnostic for CVID 
(genetic defects found 
in ~20% CVID cases) 
 
Commercial production 
of panels for PID-
associated genes have 
reduced costs and 
therefore increased 
accessibility of genetic 
testing 
 
 
High throughput 
analysis 
 
High sensitivity 
 
Performed using 
nanograms of starting 
material 

Expensive test ʹ not 
appropriate as a first line 
investigation in NHS 
healthcare services 
 
Majority of patients have 
polygenic or 
multifactorial disease 
therefore not helpful for 
diagnosis 
 
Complex data - Requires 
highly specialist scientific 
staff and bioinformatics 
experts,  
 
Expensive  set-up costs 
and infrastructure 
required 
 
Not useful if gene/variant 
of interest is not known 

Low-
Medium 
 
(high 
through-
put 
analysers 
however 
complex 
interpreta
tion 
increases 
turnaroun
d time to 
>14 days) 

650 
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Laboratory 
analysis Basic technique Advantages Limitations Through-

put 

Approx. 
cost per 
test (£) 

Vibrational 
spectroscopy 

Detect biochemical 
changes on the 
basis of spectral 
features. Changes 
in energy due to 
vibration of 
molecular bonds.  
These changes 
reflect the chemical 
and molecular 
composition of a 
sample which can 
be associated with 
specific pathological 
conditions 

Potentially diagnostic in 
isolation - proof of 
concept study 
demonstrated 
sensitivity and 
specificity >95%; 
requires verification in 
larger-scale trials 
 
Non-invasive technique, 
suitable with a wide 
range of sample types 
(cells, tissues, biofluids 
inc. blood, urine, CSF) 
 
Rapid, label- and 
reagent-free 
methodology, non-
destructive therefore 
allows further sample 
analysis if required 
 
Inexpensive  
 
Scope to become used 
as a point-of- care 
testing device ʹ in 
development in 
commercial companies  

Currently largely used as 

a research technique, 

limited clinical application 

ʹ unfamiliar with 

clinicians and NHS 

laboratory scientists 

Lack of large-scale clinical 

trials to validate initial 

findings & support 

translation into the 

clinical setting 

Complex data produced ʹ 

requires specialist staff 

and bioinformaticians to 

process and interpret 

data (chemometrics) 

Not yet automated or 
standardised ʹ ongoing 
work is being undertaken 
to address this. 

Medium 
 
(potential 
to 
become 
high 
throughpu
t with 
automatio
n of 
sampling 
and 
bioinform
atics 
analysis) 

0.60 

 

 

 



Appendix B 
 

110 
 

APPENDIX B 

PROJECT PRESENTATION - >�zD�E͛^�KZ�>�WZ�^�ETATION FEEDBACK 

Name of Trainee:  Emma Callery   Specialism:  Clinical Immunology 
Innovation Title:  A novel laboratory approach using biospectroscopy methods for the 
investigation of CVID patients 
Assessment criteria: 

x Quality and clarity of explanation of the innovation for a lay audience (awareness of the 
use of jargon, scientific language and acronyms) 

x Synthesis of relevant scientific evidence for a lay audience 
x Ability to persuade a lay audience of the merits (or otherwise) of the innovation and its 

potential role in healthcare science services 
x Style of presentation (slides, delivery; body language, eye contact, voice, confidence) and 

appropriateness for a lay audience 
x Demonstration of values, attitudes and behaviours expected of a leader in clinical science 

Final Result Pass  

Summary comments for feedback: 

The presentation was within time limits and delivered in a professional manner.    

Emma explained the background to her project clearly in lay terms, using her slides very 
effectively to illustrate complex scientific information.  The novelty of the project was 
demonstrated, and the clinical need for such novel approaches was explained well.  Although 
the clinical need was addressed, it would have been beneficial to see more examples from the 
point of view of the CVID patient group, and the anticipated patient journey / impact on patient 
care. Overall, terminology was well explained but some areas of the presentation, and language 
used, could have been simplified more for the benefit of a lay audience.   

Slides were of excellent quality, well planned, colourful and with a very good balance between 
text and images.  Use of the animation tool within PowerPoint was effective to build up 
complex information gradually and aid understanding.  Without animation, slides would have 
contained too much text. 

�ŵŵĂ͛Ɛ�ƉƌĞƐĞŶƚĂƚŝŽŶ�ƐƚǇůĞ�ƐĞĞŵĞĚ�ƐĐƌŝƉƚĞĚ͕�ĂŶĚ�ƐŽƵŶĚĞĚ�Ă�ůŝƚƚůĞ�ƵŶŶĂƚƵƌĂů�ŐŝǀĞŶ�ƚŚĞ�ƐŵĂůů�ƐŝǌĞ�
of the audience.  Body language was rather stiff to begin with, but improved as she started to 
relax and gain confidence, and eye contact was maintained with all of the audience throughout 
her presentation.  Voice projection, intonation and expression were Ăůů�ĞǆĐĞůůĞŶƚ͘���ŵŵĂ͛Ɛ�
enthusiasm for the project shone through. 

There was demonstration of professional values with a primary focus on diagnostic needs, and 
service provision. Emma answered all of the questions from the panel well; she seemed much 
more relaxed and fluent when communicating with the audience during the Q&A session.   

Overall, the presentation was understandable to the lay representative who commented that 
Emma explained the science well, and was very confident in the Q&A session. 
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APPENDIX C 
 

IRAS AND HRA APPROVALS 

This appendix contains copies of the Integrated Research Approval System (IRAS) and Health 
Research Authority (HRA) approvals for this study. Permission was granted 22nd November 2016. 
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APPENDIX D 

PATIENT INFORMATION AND CONSENT 

This appendix contains study-related documents (Patient Information Sheet, Consent form, 
invitation to study letter) approved by the Integrated Research Approval System (IRAS) and Health 
Research Authority (HRA). The patient information sheets were sent out to potential study 
participants via post, with an accompanying invitation letter from the Consultant, to patients 
previously diagnosed with Common Variable Immunodeficiency 2 weeks prior to their 
appointments at the immunodeficiency follow- up clinic. Consent was taken either by me or by 
the Consultant following the clinic appointment. All verbal and written communication was 
captured in the electronic patient notes. 
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Appendix E 

 

This appendix includes the final marks for Module A, PGDip Leadership and Management 

in the Healthcare Sciences. A description of the five units and the assignment 

requirements has been included in the table below. For the life sciences students, the A 

units are usually undertaken over a five year period however the author completed the 

five units in the first two years of the Higher Specialist Scientific Training (HSST). This 

thesis forms Module C of the HSST; additional assessed requirements within this module 

include a literature review, a lay presentation, an innovation proposal and two online 

modules, i) Research Integrity, ii) Export Control. 

A Units and C Credits for DClinSci Thesis 

Alliance Manchester Business School (AMBS) 
A Units 

Unit Title Credits Assignment Word Count 
A1: Professionalism and Professional 
Development in the Healthcare Environment 

30 A1 ʹ Assignment 1 ʹ 2500 words 
(40%) 
A1 ʹ Presentation ʹ 10 mins 
(10%) 
A1 ʹ Assignment 2 ʹ 3000 words 
(50%) 

A2: Theoretical Foundations of Leadership 20 A2 ʹ Assignment 1 ʹ 3000 words 
(50%) 
A2 ʹ Assignment 2 ʹ 3000 words 
(50%) 

A3: Personal and Professional Development to 
Enhance Performance 

30 A3 ʹ Assignment 1 ʹ 1500 words 
(30%) 
A3 ʹ Assignment 2 ʹ 4000 words 
(70%) 

A4: Leadership and Quality Improvement in the 
Clinical and Scientific Environment 

20 A4 ʹ Assignment 1 ʹ 3000 words 
(50%) 
A4 ʹ Assignment 2 ʹ 3000 words 
(50%) 

A5: Research and Innovation in Health and Social 
care 

20 A5 ʹ Presentation ʹ  15 mins 
(25%)  
A5 ʹ Assignment ʹ 4000 words 
(75%) 
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APPENDIX F 

QUALIFICATIONS 

The achievement of this doctoral degree will result in completion the Higher Specialist Training 

Programme (HSST) with DClinSci. The project presented in this thesis has been accepted by The 

Royal College of Pathology; it forms the research component of the Part Two examinations for 

eligibility to become a Fellow of The Royal College of Pathology. In order to complete the HSST, 

applicants on the life sciences pathway must have achieved Fellowship of the Royal College of 

Pathology, received official confirmation of the academic qualification from the University and 

have all Standards of Proficiency signed off within the e-portfolio.  The author is a registered 

Clinical Scientist with the Health and Care Professions Council, has had all five domains of the 

Standards of Proficiency signed off, has passed The Royal College of Pathology Part One 

examinations in Spring 2019 and Part Two Examinations (Practical and Oral) in Spring 2021. 

Evidence of qualifications are included in this appendix.  
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Standards of Proficiency - Summary of Onefile e-portolio
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APPENDIX G 

SUPPLEMENTARY INFORMATON 

This appendix contains the supplementary information associated with the Nature Scientific 

Reports manuscript in Chapter 3. This information is also available online: 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-019-43196-

5/MediaObjects/41598_2019_43196_MOESM1_ESM.docx (recent date accessed 11/10/2021) 

  

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-019-43196-5/MediaObjects/41598_2019_43196_MOESM1_ESM.docx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-019-43196-5/MediaObjects/41598_2019_43196_MOESM1_ESM.docx
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Supplementary Information 

Supplemental Figure 1 ʹ Improving robustness, accuracy and interpretability of the data. Class means of 
pre-processing techniques applied to all spectra in training dataset (CVID n=13 (260 spectra); HC n=18 
(360 spectra)) to correct for experimental variation and to improve resolution of peak overlap. For each 
subject 20 individual spectra were acquired per biofluid (10 replicates of each dried blood spot, in 
duplicate). a-d Fingerprint region (900-1800 cm-1). a, b, Rubber-band corrected, vector normalised spectra 
for serum and plasma respectively. c, d, Second order differentiated, vector normalised spectra for serum 
and plasma respectively. e-h, High region (2800-3700 cm-1). Rubber-band corrected, vector normalised 
spectra for serum and plasma respectively. g, h, Second order differentiated, vector normalised spectra 
for serum and plasma respectively. 
Serum Fingerprint region Plasma Fingerprint region 

a)  b)  
 

 

 

 
c)  d)  

 

 

 

 
Serum High Region Plasma High Region 

e)  f)  
 

 

 

 

g)  h)  
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Supplemental Figure 2 - Supervised multivariate analysis techniques (PCA-LDA) successfully segregate 
classes on a subject level basis (CVID vs HC). a, b, Fingerprint region (900-1800 cm-1); 1D scores plots (LD1) 
after cross-validated PCA-LDA of the training dataset (CVID n=13; HC n=18) for serum and plasma 
respectively. c,d, High region (2800-3700 cm-1); 1D scores plots (LD1) after cross-validated PCA-LDA of the 
training dataset (CVID n=13; HC n=18) for serum and plasma respectively. 

Serum Fingerprint Region Plasma Fingerprint Region 

a) Serum fingerprint region cross-
validated PCA-LDA scores plots (p 
<0.0005) 

b) Plasma fingerprint region cross-
validated PCA-LDA scores plots (p 
<0.0005) 

  
Serum High Region Plasma High Region 

c) Serum high region cross-validated PCA-
LDA scores plots (p <0.0005) 

d) Plasma high region cross-validated 
PCA-LDA scores plots (p <0.0005) 
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Supplemental Figure 3. - Serum and plasma High region biomarkers identified using three 
feature extraction methods. a, Serum T-test. b, Plasma T-test. c, Serum FFS. d, Plasma FFS. e, 
Serum cross-validated PCA-LDA. f, Plasma cross-validated PCA-LDA. i, j, Visual representation of 
wavenumber location for extracted biomarkers from each method for serum and plasma 
respectively. FFS Forward Feature Selection. 

Serum High Region Plasma High Region 
a) T-test  b) T-test  

 

 

 

 
c) PCA-LDA Cluster Vectors  d) PCA-LDA Cluster Vectors  

 

 

 

 
e) FFS f) FFS 

 

 

 

 
g) Comparison of all extracted wavenumbers h) Comparison of all extracted wavenumbers 
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Supplemental Table 1. Patient demographics
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Supplemental Table 2. Parameters for the SVM models. Classification of HC vs CVID. 

 Serum Plasma 
Grid-search parameters c ɶ c ɶ 
Fingerprint region 1 x 10^7 1x 10^-1 1 x 10^7 1x 10^-1 
High region 1 x 10^3 1x 10^1 1 x 10^3 1x 10^1 
 

Supplemental Table 3. Parameters for the SVM models following sub-classification of CVID 
patients. HC vs CVID-non complications vs CVID-complications. 

 Serum Plasma 
Grid-search parameters c ɶ c ɶ 
Fingerprint region 1 x 10^-1 1x 10^-7 1 x 10^3 1x 10^-1 
High region 1 x 10^7 1 x 10^-2 1 x 10^5 1 x 10^-1 
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Supplemental Table 4. Serum & plasma fingerprint wavenumbers.  
Wavenumber 

(cm-1) 
Biofluid Tentative Assignments Reference Method P-value (T-

Test) 
јљ�/Ŷ��s/� 

933 Serum Z type DNA 64 
 

T-Test 0.0203*  

984 Plasma Phosphodiester region (900-1300 
cm-1) 

51,65 
 

FFS 0.000469*** ј 

1007 Plasma Ring stretching  vibrations mixed 
strongly with CH in-plane bending 

(1000-50 cm-1) 

66 
 

T-Test 3.15E-
25**** 

ј 

1034 Serum Collagen 5 T-Test 
& PCA-

LDA 

1.31E-
12**** 

ј 

1053 Plasma vC - O & dC - O of carbohydrates, 
Shoulder of 1121 cm-1 (Symmetric 
phosphodiester stretching band) 

DNA (nucleic acids and 
phospholipids) 

5ʹ7 FFS, T-
test 

2.64E-
69**** 

ј 

1084 Plasma DNA (band due to PO2
- vibrations), 

Nucleic acidʹPhosphate band 

3,6ʹ11 PCA-
LDA 

0.007575* ј 

1107 Plasma v(CO), v(CC), ring (polysaccharides, 
pectin) 

12 FFS 2.74E-
05**** 

ј 

1107 Serum v(CO), v(CC), ring (polysaccharides, 
pectin) 

12 FFS 2.53E-
20**** 

 

1115 Serum Symmetric stretching P ʹ O ʹ C 13 T-Test 2.02E-
26**** 

ј 

1119 Plasma C - O stretching mode 14 T-Test 6.94E-
30**** 

 

1312 Serum Amide III band components of 
proteins 

15,16 T-Test 1.49E-
08**** 

 

1393 Serum CH2 wagging vibration of the acyl 
chains (phospholipids) (1250-400 

cm-1) 

5 FFS 4.23E-
06**** 

 

1416 Plasma Deformation CʹH, NʹH, stretching 
CʹN 

13 PCA-
LDA 

8.34E-
13**** 

ј 

1420 Serum Ring stretching vibrations with CH 
in-plane bending (1400-500 cm-1) 

17 PCA-
LDA 

8.73E-
07**** 

 

1435 Plasma Ring stretching vibrations with CH 
in-plane bending (1400-500 cm-1) 

17 T-Test 1.43E-
28**** 

 

1528 Serum C=N guanine, adenine, cytosine 11,13 PCA-
LDA 

5.57E-
12**** 

љ 

1566 Plasma Amide II (1540-650 cm-1) 18 FFS 0.004467** ј 

1589 Serum Amide II (1540-650 cm-1) 18 FFS 0.00109**  

1639 Plasma C=C thymine, adenine, N-H guanine 
Amide I 

13,15 T-Test 3.08E-
39**** 

љ 

1651 Serum Amide I: (mainly protein C=O 
ƐƚƌĞƚĐŚŝŶŐͿ͕�ɲ-helical structure 

1,19 T-Test 0.0462*  

1732 Plasma C=O stretching band mode of the 
fatty acid ester (1725-45 cm-1) 

20 T-Test 1.09E-
19**** 

 

1759 Serum C=O vibrations of esters 
(triglycerides) 

10,21 FFS 7.61E-
12**** 

ј 

1763 Plasma Fatty acid esters (1700-1800 cm-1) 20 FFS 1.30E-
13**** 

 

Significant to *P <0.05; **P <0.005; ***P  0.0005; ****P <0.00005. 
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Supplemental Table 5. Serum and Plasma High region biomarkers. 

Wavenumber 
(cm-1) 

Biofluid Tentative Assignments Reference 
 

Method P-value 

2862 Serum Fatty acids 19 T-
Test/PCA-
LDA/FFS 

1.19E-
13**** 

2870 Plasma CH3 symmetric stretching: protein side 
chains, lipids, with some 

contribution from carbohydrates and nucleic 
acids 

1 T-Test, 
PCA-LDA 

1.13E-
18**** 

2916 Serum vibrations of CH2 and CH3 of phospholipids, 
cholesterol and creatinine 

22 PCA-LDA 2.79E-
10**** 

2920 Plasma CʹH, Lipid region, 
CH3, CH2-lipid and protein (2800-3000 cm-1) 

 5,23,24 T-Test, 
PCA-LDA 

2.64E-
18**** 

2932 Serum C-H, C-H stretching bands in malignant tissues 23,25 T-Test 3.99E-
12**** 

2962 Plasma CH3 asymmetric stretching  26 T-Test 3.72E-
18**** 

2970 Serum ʆas CH3, lipids, fatty acids 12 PCA-LDA 1.53E-
05**** 

3024 Serum C-H stretching vibrations of methyl (CH3) and 
methylene (CH2) 

groups and olefins (2800ʹ3100 cm-1) 

25 FFS 0.0003*** 

3067 Serum C-H stretching vibrations of methyl (CH3) and 
methylene (CH2) 

groups and olefins (2800ʹ3100 cm-1) 

25 T-Test 0.00714* 

3248 Plasma Symmetric and asymmetric vibrations 
attributed to water. So, it would be better 

not to consider this region for detailed 
analysis (3200-550 cm-1) 

22 T-Test 1.14E-
18**** 

3302 Plasma As above 22 T-Test 2.31E-
19**** 

3348 Plasma As above 22 T-Test 0.000206*** 

3441 Plasma As above 22 FFS 5.05E-
05**** 

3448 Serum As above 22 FFS 2.72E-
08**** 

3499 Serum As above 22 PCA-LDA 0.0146* 

3556 Serum OH bonds(3500ʹ600 cm-1) 27 PCA-LDA 0.00108** 

3591 Plasma OH bonds(3500ʹ600 cm-1) 27 PCA-LDA 8.48E-
05**** 

3630 Plasma O-H stretching (water) 5 PCA-LDA 1.10E-
05**** 

3637 Serum O-H stretching (water) (3000ʹ700 cm-1) 5 FFS 0.00019** 

3645 Plasma O-H stretching (water) (3000ʹ700 cm-1) 5 FFS 4.60E-
06**** 

3672 Serum O-H stretching (water) (3000ʹ700 cm-1 ) 5 PCA-LDA 0.032* 

Significant to *P <0.05; **P <0.005; ***P <0.0005; ****P <0.00005. 
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APPENDIX H 

ADDITIONAL RESEARCH CONDUCTED DURING HSST 

Exploring COVID-19 specific immune responses in acute and convalescent phases of infection - 
EXCOVIR 

This appendix contains a summary of a COVID-ϭϵ�ƌĞƐĞĂƌĐŚ�ƉƌŽũĞĐƚ�͚�XCOVIR͛ (Exploring COVID-19 
specific immune responses in acute and convalescent phases of infection) which the author is 
currently leading on alongside Professor Anthony Rowbottom. The work associated with this 
project commenced in May 2020, taking priority over any non-COVID-19 research. Ethical 
approval was granted on 12th June 2020. The EXCOVIR project is an Immunology research study 
looking at the cellular responses (T cells) found in patients during- and post-infection with 
coronavirus. Currently, much of the attention is directed to the ability of the immune system to 
produce antibodies however the evidence for long term protection and immunity is sparse.  A 
better understanding of the role and longevity of T cell responses are essential. EXCOVIR aims to 
assess T cell responses in the early phases of SARS-COV-2 infection (before day twelve) and will 
continue to follow up patients for twelve months to determine longer-term immunity. 

As part of this project we have collected serum and saliva sample for analysis with 
biospectroscopy. We intend to apply this novel platform to explore samples for unique spectral 
features associated with COVID-19 and with varying severities of disease. The findings from the 
biospectroscopy analysis will provide a complementary methodology which may offer new 
knowledge and molecular insight into the pathological mechanisms of COVID-19. 

EXCOVIR is being conducted by Lancashire and Lakeland Immunology department (LTHTR), 
supported by UCLAN Clinical Trials Unit and the NIHR Lancashire Clinical Research Facility (LCRF) 
at Royal Preston Hospital. The role of the author has included writing the research protocol, 
completing the IRAS application for ethical approval, creation of study documentation, 
organisation and chairing of clinical meetings with Consultants and subsequent bi-weekly 
meetings with research nurses, submission of funding applications, preparing and presenting the 
Site Initiation Visit (SIV), developing novel methods for investigating SARS-COV-2 specific T cell 
responses, leading a team of laboratory researchers, analysing samples and performing 
subsequent data analysis. At the time of writing this thesis, patient follow-up sampling, data 
collection and data analysis is ongoing, with the aim to submit the findings from the first phase for 
publication to a peer-reviewed journal before the end of 2021.  

The new tests developed within this study will enable us to measure immune cells specific to 
SARS-CoV-2 in COVID-19 patients following recovery from infection. There are still many 
unknowns associated with COVID-19, particularly witŚ� ƌĞŐĂƌĚ� ƚŽ� ͚>ŽŶŐ-�Ks/�͛͘� dŚĞ� ƚĞƐƚƐ�
developed within this project will help to unravel the immune phenotypes associated with COVID-
19 patients, and could potentially be translated into clinical practice to improve patient care. This 
appendix includes a description of the study (project aims, plan of investigation, immunology 
investigation, statistical power) taken from the study protocol; a research project communications 
summary produced for the LTHTR media webpage; example study documentation; and copies of 
the HRA and Health and Care Research Wales (HCRW) approvals for this study.  
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Title:  

Exploring COVID-19 specific immune responses in acute and convalescent phases of infection - 
EXCOVIR 

Aims:  

The primary aim is to characterise host adaptive immune responses in COVID-19 patients over 
time adding knowledge to the overall immune response following infections with SARS-CoV-2.  

There are currently no tests to predict how severe the disease will be in individual patients. Our 
secondary aims are to identify predictors of disease severity through detection of circulating levels 
of immune signalling molecules, evaluation of immune cell surface markers and specific immune 
cell populations in people with varying severities of COVID-19 disease (critical, severe and 
moderate/mild). If successful, this can be applied to clinical practice as a sensitive and objective 
marker of disease activity, and, potentially serve as a predictive determinant of disease severity in 
SAR-CoV-2 infected patients. These findings could inform the future acute care of COVID-19 
patients, rapidly identifying those at risk of developing a severe disease requiring immediate 
treatment and management.  We will investigate a new testing method to identify whether people 
had been previously infected with SARS-CoV-2. This would look at SARS-CoV-2 specific immune 
cells, a different approach to the SARS-CoV-2 antibodies test. This will be particularly useful in the 
future for those patients and staff members with a clinical history consistent with COVID-19 but not 
supported by antibody levels.  

Further, we aim to provide additional evidence towards identifying an appropriate correlate of 
immunity to SARS-CoV-2. By analysing immune responses at future time points (1 month, 6 
months, 12 months) after convalescence, we aim to determine the longevity of a potentially 
protective immune response to SARS-CoV-2 post infection. 

Plan of investigation:  

This study will involve collecting serial samples from COVID-19 patients over 2 phases of the 
disease course; an acute infection phase (day 1, day 7 and day 12), and a convalescent phase 
(day 28, 6 months and 12 months). The acute phase will compare the immune responses of 
patients admitted to hospital with symptoms of COVID-19 in different disease severity groups.  

All patients admitted with COVID-19 will be approached to participate. We will take informed 
consent directly from the patient if possible and from a consultee if not. We will take saliva and/or 
blood samples at day 1, day 7, day 12, day 28, 6 months and 12 months. We will use these 
VDPSOHV� WR� ORRN� DW� KRZ� HDFK� LQGLYLGXDO¶V� LPPXQH� V\VWHP� UHVSRQGV� WR� WKH� LQIHFWLRQ� LQ� WKH� DFXWH�
stage and determine if there any specific results that may predict which patients may become very 
ill. If it can be determined which patients may develop more severe symptoms then this would 
facilitate an earlier more appropriate treatment plan and also allow for smarter resource and 
capacity planning. 

Recruited patients will be retrospectively classified into severity groups depending on the clinical 
course of their disease. We anticipate to recruit patients into the following groups i) patients with 
active COVID-19 disease (moderate symptoms) ii) patients with active COVID-19 disease (severe), 
and iii), patients with active COVID-19 disease (critical symptoms). Hospital admissions for 
asymptomatic patients and those with mild symptoms will be rare therefore we will not evaluate the 
acute infection response in these groups. We will however evaluate the immune responses of 
recovered mild and asymptomatic COVID-19 patients, with enrolment into the convalescent 
sampling phase commencing at day 28 post infection. 

We will follow the participants for 12 months to measure how the immune system responds and if it 
sustains (memory) immunity in the longer term.  Participants recruited during convalescence will 
follow the same schedule as above commencing at 28 days. A healthy donor population will be 
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recruited from volunteers following advertisement at recruiting sites. Healthy donors will provide 
blood samples at a single time point for use as reference measurements for the study tests in the 
non- SARS-CoV-2 infected population. 

We will investigate a number of immunological parameters in both serum and whole blood samples 
using established techniques. The primary outcome will be to determine immune cell population 
characteristics and cytokine profile changes within and between disease severity groups at each 
time point during acute (active) infection, measured with flow cytometry (cell surface marker 
VWDLQLQJ�DQDO\VLV�DQG�7&5�9ȕ�UHSHUWRLUH�TXDQWLILFDWLRQ�WHVW���%LR-Plex Multiplex Immunoassays and 
biospectroscopy. Secondary outcomes will include evaluation of predictive disease severity 
biomarkers. Differences in any immunological markers (cytokine quantity or profile, immune cell 
SRSXODWLRQV��7&5�9ȕ�UHSHUWRLUH�TXDQWLILFDWLRQ��FRUUHODWLQJ�ZLWK�GLVHDVH�VHYHULW\�ZLOO�EH�DVVHVVHG�DW�
each time-point. Correlates of immunity will be explored through identification and quantification of 
SARS-CoV-2 specific immune response, through specific cell marker analysis and functional 
testing of these immune cells post recovery from COVID-19 at 28 days, 6 months and 12 months 
post infection. Results from the tests in this study will be compared and correlated with SARS-CoV-
2 serology (antibody) tests.  

Immunology Study Investigations  

Cellular Assays: 
x SARS-COV-2 & Influenza matrix protein A MHC Class I Pentamer analysis 
x HLA typing (to assess Pentamer compatibility) 
x Immunophenotyping T Cell Subpopulations (TSUB) 10 cell-marker panel 
x Immunophenotyping CD4+ T regulatory cells (TREG) 8 cell-marker panel 
x Immunophenotyping Lymphocyte activation and plasmablasts (LYAS) 10 cell-marker panel 
x SARS-COV2 specific lymphocyte activation (peptide stimulation and intracellular cytokine 

staining) 
x CD4+ TCR VB Family expression (24 Vb families) 

 
Serological assays: 

x 17-plex cytokine analysis (G-CSF, GM-CSF, IFN-Ȗ�� ,/-�ȕ�� ,/-2, IL-4, IL-5, IL-6, IL-7, IL-8, 
IL-10, IL-12 (p70), IL-13, IL-17A, MCP-1 (MCAF), MIP-�ȕ��71)-Į� 

x SARS-COV2 antibody responses (spike and nucleocapsid) 
x Vibrational Spectroscopy Analysis (Serum and Saliva samples at Lancaster University) 

Power & Statistical analysis 

As this is a feasibility study there is no requirement for a power calculation. However, with at least 
20-25 per group, no single individual has the potential to dominate the descriptive statistics for that 
group. Within a group, a percentage of 32% would have a 95% confidence interval of 14%-50%. A 
comparison between two groups would have 80% power to detect large differences in group 
percentage of around 40% as statically significant at the 5% level.  

There will be a descriptive analysis of the data collected in the acute phase and convalescent 
phase and the disease severity groups within each of these phases. Rates of recruitment per 
month per centre will be described. Proportions falling into each disease severity group will be 
presented, where appropriate with 95% confidence intervals. Given the very large number of blood 
and serum measurements per patient there is the potential for a very large number of statistical 
comparisons, typically of measured data, using independent t-tests, ANOVA or non-parametric 
equivalents. Despite the great potential for type 1 errors due to multiple testing, these comparisons 
are not expected to have the power to provide definitive answers to research questions, but will 
instead provide estimates of differences between means in different groups and standard errors for 
planning a larger more definitive study. 
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Protocol Flow Charts: 
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