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This thesis is dedicated to the electronic properties of few-layer twistronic graphene,
and in particular, the electron transport in twisted bilayer graphene. I introduce the
continuum-model Hamiltonian to describe twisted graphene heterostructures and give
an overview of the band structures for twisted bilayer graphene, twisted double bilayer
graphene and twisted monolayer-bilayer graphene.

In this thesis, I show that the electronic properties in twisted bilayer graphene
are different for varying twist angles. For relatively large angles of ∼ 2°, I model
transverse magnetic focusing and theoretically explain the ballistic transport observed
in the experiment. In addition, we study the effects of an applied displacement field
to the system where we observe selective focusing from each minivalley. At relatively
smaller angles below 1° with a large perpendicular electric field, we found that there are
independent, perfect one-dimensional channels propagating in three different directions
in the lattice. Using the continuum-model Hamiltonian, we demonstrate that an applied
bias causes two well-defined energy windows on either side of zero energy that contain
the one-dimensional channels. Lastly, the resistivity from umklapp electron-phonon
interaction is analytically calculated for twisted bilayer graphene and twisted double
bilayer graphene. This is a specific mechanism where an electron tunnels from one
layer to another layer whilst transferring momentum to the superlattice. We find that
there is a weak contribution to resistivity even at room temperature.
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Chapter 1

Introduction

For decades, scientists around the world theorised about the potential existence of

graphene. Graphene is an allotrope of carbon and can be found in what we call pencil

lead as part of a material called graphite. Graphite is a three-dimensional crystalline

form of the element carbon with its atoms arranged in a hexagonal structure. When we

isolate a single layer of graphite, we obtain graphene, which is a single layer of carbon

atoms arranged in the shape of a two-dimensional honeycomb lattice.

In 2004, graphene gained global traction from researchers when it was first isolated

and characterised by Andre Geim and Konstantin Novoselov at the University of

Manchester [1]. Using adhesive tape, the mechanical exfoliation technique was used

to extract graphene from a single piece of graphite. This was the first time a truly

two-dimensional material was ever isolated in human history. Graphene is a promising

material for next-generation electronic devices as a result of the rich physical phenomena

and electronic properties observed in the material [2]. In the following years, a variety

of unique properties and physical phenomena not found in bulk three-dimensional

materials were discovered. This was a springboard to the start of an exciting new era

of condensed matter physics and materials science in two-dimensional materials.

Following this, there has been intense interest in a new class of two-dimensional

materials called van der Waals heterostructures [3, 4]. These materials are artificially

stacked atomic layers where isolated atomic planes are designed, fabricated and produced

layer by layer. Crystallographic alignment of atomically thin crystals stacked together

in a van der Waals heterostructure is a powerful tool that enables fine-tuning of their
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electronic spectra and thus opens up a wealth of opportunity for revealing novel physics

where different materials can be selected, the number of layers chosen, as well as the

ability to finely tune the relative crystallographic alignment between successive layers.

One of the most researched van der Waals heterostructures is graphene overlaid on

hexagonal boron nitride (hBN) that emerged as a promising substrate for graphene

devices to enhance its electronic properties [5, 6]. Hexagonal boron nitride, like

graphene, is atomically flat with a honeycomb lattice structure. It is an insulating

material with a lattice constant that is 1.8% longer than the graphene lattice constant.

This small lattice mismatch combined with any relative twist angle between their

crystallographic axes generates a large-scale periodic hexagonal interference pattern

known as a moiré superlattice. The superlattice potential results in a reconstruction of

the graphene band structure offering a myriad of opportunities to observe new physical

phenomena. There are many research studies on graphene/hBN heterostructures where

novel physics has been realised including enhanced electronic mobility in graphene and

the first realisation of Hofstadter’s butterfly [7, 8].

In the past few years, a graphene superlattice called twisted bilayer graphene (TBG)

attracted a surge of interest from the condensed matter physics community. Unlike

graphene/hBN heterostructures where one layer is conductive and one is insulating,

both layers of graphene have the same lattice constant and are conductive. This

gives rise to electronic states that are hybridised in different ways depending on the

twist angle. These twist-engineered changes in the electronic properties of TBG have

been shown to exhibit many interesting physical phenomena. A twist at discrete

‘magic’ angles results in flattened low-energy bands, periodically modulated interlayer

hybridisation and a strong enhancement of electron correlations, which led to the

discovery of superconductivity and Mott insulator transitions in TBG [9, 10, 11].

Consequently, there has been an avalanche of theoretical and experimental research in

the field of graphene twistronics. Many theoretical studies are investigating the low-

energy electronic spectrum in TBG, most notably, the presence of the moiré superlattice

potential that reduces the Fermi velocity at the Dirac points as the twist angle between

the two layers decrease and the emergence of van Hove singularities [12].

The long-range wavelength of the superlattice period means that the size of the



10 CHAPTER 1. INTRODUCTION

Brillouin zone is reduced. This leads to the interaction between the original Dirac

cones of the two graphene layers to generate minibands, which has been captured

experimentally via scanning tunnelling microscopy [13, 14, 15]. Figure 1.1a shows two

graphene lattices overlaid on top of each other with an in-plane relative twist resulting

in a moiré pattern. In the absence of interlayer coupling, the low-energy band structure

consists of four Dirac cones from the two layers and two valleys, as illustrated in Fig.

1.1b. In the presence of interlayer coupling, the Dirac cones from each layer hybridise

with each other to produce avoided crossings, and leads to the formation of van Hove

singularities in the band structure. At large twist angles, the low-energy band structure

resembles that of two decoupled graphene layers as the Dirac cones from each layer are

far apart from each other. As the twist angle decreases, the hybridisation between the

layers means that the low-energy Dirac cone states become coupled.

Figure 1.1: (a) Two graphene lattices superimposed on top of each other with an
in-plane relative twist to give TBG. (b) The red and green hexagons are the original
Brillouin zones of the individual graphene layers where the Dirac cones from each
graphene layer are shown. Alternating corners of the hexagons belong to inequivalent
sets of K and K ′ Brillouin zone corners shown by the open and closed circles. Figure
adapted from Ref. [16].

Twisted bilayer graphene consists of two layers of graphene overlaid on top of each

other with an in-plane relative twist. This rotation gives rise to a moiré pattern with a

superlattice period given by λ = a
2 sin (θ/2)

where a is the graphene lattice constant. The

moiré pattern has three characteristic areas that resemble AA, AB and BA stacking

regions. Figure 1.2 shows the moiré superlattice where the local stacking arrangement
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between the atoms in the two graphene layers are shown. In the right panel, the

interlayer coupling strength as a function of the position is shown. This means that at

each position, the local stacking arrangement is considered to be homogeneous. We

see that the interlayer coupling strength in AA regions reaches a maximum energy

eigenvalue shown by the red regions as tunnelling between the two layers produces

a gap in AA-stacked bilayer graphene. Conversely, the energy eigenvalue vanishes

at AB and BA regions where tunnelling between the two layers does not produce

a gap. In this thesis, we study ballistic transport and consider twisted graphene

heterostructures without disorder where the mean free path exceeds the superlattice

period [17]. Experimentally, high-quality graphene encapsulated with hBN is needed to

support long-range ballistic transport in TBG [18]. This work will probe the electronic

properties of the minibands to analyse the transport properties in graphene twistronic

systems.

Figure 1.2: The left panel is the moiré pattern in TBG where two graphene layers are
stacked on top of each other with a relative twist angle θ. The moiré superlattice period
is given by λ = a

2 sin (θ/2)
where a is the graphene lattice constant. The local stacking

regions AA, AB and BA are shown. The right panel shows the energy eigenvalues of
the interlayer coupling Hamiltonian between the two layers. At AA regions, we reach a
local maxima and at AB and BA stacking regions, the energy eigenvalues vanish.
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This thesis is organised as follows: In Chapter 2, we probe the electronic properties

of twisted graphene heterostructures. This is addressed by formulating a continuum-

model Hamiltonian to describe twisted bilayer graphene and extending the theory to two

other graphene moiré systems, twisted double bilayer graphene (TDBG) and twisted

monolayer-bilayer graphene (TMBG). TDBG is composed of two AB-stacked bilayer

graphene layers rotationally stacked on top of each other whereas TMBG consists

of bilayer graphene stacked on top of monolayer graphene. Chapter 3 addresses the

ballistic transport properties of TBG in a regime where the angles are larger than the

magic angle at ∼ 2°. This work was conducted in collaboration with experimentalists at

the University of Manchester where we showed that the band structure of TBG can be

probed using a magnetic field applied to the sample to observe the transverse magnetic

focusing of electrons. In addition, we studied the effect of an electric displacement

field on the system where minivalley polarised magnetic focusing was observed. The

chapter will present the experimental data supported by theoretical modelling that

describes and explains the manifestation of these features that were observed in the

experiment. Chapter 4 addresses the regime where a network of topological channels

is formed in TBG. The chapter is devoted to investigating the electronic structure

of small-angle TBG with a large potential asymmetry between the top and bottom

layers where we also explain the origin of these emergent topological channels. This

work was conducted at Osaka University under the Japan Society for the Promotion

of Science Summer Programme. In Chapter 5, we consider umklapp electron-phonon

interactions in TBG using an analytical method. We study a specific electron-phonon

process where momentum is transferred to the superlattice when electrons tunnel from

one layer to another layer; this work is also extended to TDBG. Finally, we conclude

our findings in Chapter 6.



Chapter 2

Miniband spectra of twisted graphene

heterostructures

Since the discovery of both superconductivity and insulating behaviour in twisted bilayer

graphene [19, 10, 9, 20, 11], there has been an avalanche of research focused on twisted

graphene systems. In twistronic systems, a relative twist between the crystallographic

axes of neighbouring layers leads to the formation of a moiré interference pattern.

Similar to the graphene/hBN superlattice, the additional spatial periodicity reduces

the size of the Brillouin zone and a long-range periodic perturbation is created, which

results in a strong modification of the electronic structure by the superlattice band

folding [21, 22, 23, 24, 25, 12, 26, 27, 28, 29]. As the twist angle decreases, the

superlattice unit cell increases in size. This means that the individual nature of the

atoms can be neglected and the low-energy electronic band structure of the system can

be described using a continuum model [21, 22, 12, 30, 27]. This chapter will introduce

the continuum-model Hamiltonian used to describe twisted bilayer graphene and the

resulting electronic miniband spectra. In addition, we generalise the model to describe

twisted double bilayer graphene and twisted monolayer-bilayer graphene spectra.

13
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2.1 Twisted bilayer graphene (TBG)

2.1.1 Continuum-model Hamiltonian

We calculate the electronic band structure of twisted bilayer graphene using a low-

energy continuum model that is constructed using two Hamiltonian blocks from isolated

monolayer graphene sheets and an interlayer off-diagonal tunnelling Hamiltonian block

to describe the hopping between the two layers [21, 12, 26, 27, 31, 32, 33, 34]. For small-

angle TBG, the Hamiltonian is a 4× 4 matrix with the basis of atoms (A1, B1, A2, B2).

It is given by

HTBG =

HMLG T

T † HMLG

+ V, (2.1.1)

where

HMLG =

 0 −υπ†

−υπ 0

 , (2.1.2)

and

T =
∑

j=0,1,2

ei(K
j
ξ−K0

ξ)·r0

 wAA wABe
iξ 2π

3
j

wABe
−iξ 2π

3
j wAA

 . (2.1.3)

The vectors Kj
ξ (j = 0, 1, 2) are three distinct Dirac points closest to the Γ point in

the graphene Brillouin zone and are given by

Kj
ξ = ξ

4π

3a

[
cos

(
2πj

3

)
,− sin

(
2πj

3

)]
, (2.1.4)

where the valley index ξ = ±1 is used to distinguish between K and K ′ valleys, and

a = 2.46 Å is graphene’s lattice constant. As a result of the moiré superlattice potential,

the interlayer hybridisation has a periodic coordinate dependence. This is described

by the two graphene layers laterally offset by r0 with respect to each other such that



2.1. TWISTED BILAYER GRAPHENE (TBG) 15

the spatial modulation is described by r0 = θẑ × r, where ẑ is the unit vector in

the perpendicular direction [34]. A unitary gauge transformation is applied to the

Hamiltonian in Eq. (2.1.1) to establish common momentum coordinates in the system,

HTBG = U †HTBGU. (2.1.5)

The wave vectors in both layers are measured relative to their Dirac points such that

the original graphene Brillouin zones of the top and bottom layers are rotated by

±∆K0
ξ/2,

U =

ei∆K0
ξ ·r/21 0

0 e−i∆K0
ξ ·r/21

 , (2.1.6)

where 1 is the 2×2 identity matrix, and ∆K0
ξ is related to K0

ξ by ∆Kj
ξ = θz×Kj

ξ. After

applying the gauge transformation and using the vector identity a ·(b× c) = (a× b) ·c

with the definition of r0 to give the relation Kj
ξ · r0 = −∆Kj

ξ · r, the off-diagonal

interlayer matrix in Eq. (2.1.3) becomes

T =
∑

j=0,1,2

e−∆Kj
ξ·r

 wAA wABe
iξ 2π

3
j

wABe
−iξ 2π

3
j wAA

 . (2.1.7)

We assume that the applied perpendicular electric field is constant, which gives the

interlayer potential V as

V =

∆
2

1 0

0 −∆
2

1

 . (2.1.8)

The on-diagonal blocks of the Hamiltonian in Eq. (2.1.1) describe the two graphene

layers where π = ℏ(ξkx + iky). The parameter υ is the band velocity of monolayer

graphene where ℏυ/a = 2.1354 eV [31, 35], and ∆ represents the electrostatic energy

shift induced by the perpendicular electric field. The off-diagonal blocks describe the

moiré interlayer coupling between the two twisted layers where we retain the hopping

parameters from each site in layer 1 to the closest sites in layer 2. In addition, we use

parameters wAA = 0.0797 eV and wAB = 0.0975 eV [35] to describe corrugation effects

perpendicular to the plane, which enhances the gap between the lowest energy bands
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and the excited bands [35, 36, 37]. The vectors ∆Kj
ξ (j = 0, 1, 2) account for the shift

between the original Brillouin zone corners of the two graphene layers shown in Fig.

2.1 such that the original Dirac point of layer 1 is placed at the corner of the moiré

Brillouin zone (mBZ) at κ and the original Dirac point of layer 2 is placed at κ′ as

illustrated in Fig. 2.1.

Figure 2.1: Brillouin zone of the two twisted graphene layers where the black and
red hexagons are the original Brillouin zones of graphene layer 1 and layer 2 and they
are overlaid with a relative twist. The vectors ∆Kj (j = 1, 2, 3) account for the shift
between the original Brillouin zone corners of the two graphene layers to make TBG.

2.1.2 Numerical procedure for band structures

To calculate the band structures, we must first construct the Hamiltonian that will be

diagonalised. We take a basis of k-states from both graphene layer 1 and 2, which are

taken as

k(1)
m1,m2

= k +∆K0 +m1G1 +m2G2

k(2)
m1,m2

= k −∆K0 +m1G1 +m2G2, (2.1.9)

respectively, where k is the wave vector in the first mBZ spanned by G1 and G2, where

m1 and m2 are integers. Note that in the definitions of k(i)
m1,m2

, we account for the twist

angle by including a rotation matrix R(±θ/2), ± for i = 1 and 2, respectively.
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Let us take an example of TBG with twist angle θ = 5°, the minimum number of

basis states needed such that the band structures are converged up to a cut-off energy

of 1 eV when the Hamiltonian is numerically diagonalised is 24. The set of basis states

comprises of two triangular sublattices where half of the states belong to graphene

layer 1 and half of the states belong to graphene layer 2. This is illustrated in Fig. 2.2.

More basis states are needed for smaller angles such that more orders of mBZs are

included. For θ = 1°, basis states must include the 6th mBZ to converge the miniband

spectra at low energies. Fig. 2.2 shows the basis states needed for θ = 5° where the

origin is the γ point, and the 6 basis states that are closest enclose a hexagon in which

the area is the first mBZ. With 24 basis states, the full Hamiltonian is a 48 × 48

matrix as a result of zone folding. The on-diagonal is comprised of 24 alternating

2× 2 matrices describing the isolated monolayer graphene sheets on layer 1 and layer 2,

respectively, as shown in Eq. 2.1.2. The off-diagonal of the Hamiltonian is comprised of

the interlayer tunnelling Hamiltonian blocks in Eq. (2.1.3) between every basis k-state

in layer 1 with every basis k-state on layer 2. In other words, we use zone folding to

bring the states in each valley with momenta connected by the moiré reciprocal lattice

vectors, G1 = ∆K1 −∆K0 and G2 = ∆K2 −∆K0, from the second mBZs into the

first mBZ.

To find the 3D band structure, we first create a mesh of states to cover the first mBZ.

For each state in the mBZ, we apply the full Hamiltonian and numerically diagonalise

the matrix to find the eigenvalues for that particular state. Note that we calculate the

energy spectra for the K and K ′ valleys independently because the intervalley coupling

is negligible at small twist angles as a result of the long-wavelength superlattice period.

The electronic spectra for the two valleys are connected by a π-rotation, and this is as

a result of the connected triangular sublattices that are related by a π-rotation.
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Figure 2.2: The set of basis k-states needed to construct the full Hamiltonian for
θ = 5° twisted bilayer graphene. The origin is the γ point of the first mBZ. The black
and red states belong to graphene layers 1 and 2, respectively.

2.1.3 Band structures with no electric field

Varying the relative twist angle between the two layers in TBG affects not only the

wavelength of the moiré pattern but also the strength of the interlayer coupling between

the layers. At larger twist angles, the two graphene layers are almost decoupled such

that the low-energy spectrum of the TBG system for a given valley exhibits two Dirac

cones where one cone belongs to one graphene layer and one cone belongs to the second

graphene layer. As we decrease the twist angle, the interlayer coupling between the

two graphene layers causes the Dirac cones to hybridise, and the Fermi velocity of the

Dirac cones renormalises and decreases further [12]. The presence of the Dirac points

means that at charge neutrality, there is a zero density of states. In addition, a feature

of the TBG spectra is the presence of van Hove singularities in the first conduction

and valence bands, which emerge between the Dirac points. Figure 1.2 presents the

three-dimensional electronic spectra for TBG at various twist angles, θ = 5°, 2.5° and

1.05° of K-valley bands with no perpendicular electric field, ∆ = 0. At an angle

θ ≈ 1.05°, the velocity at the Dirac point vanishes and the bands at the Fermi energy

are flattened.
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The TBG band structure exhibits electron-hole symmetry and this is clearly seen

in Fig. 2.4 where the electronic spectra for varying twist angles are shown along the

path κ→ γ → µ→ κ′ for both the K (black) and K ′ (red) valleys. In agreement with

previous works on the electronic spectra of TBG, the flattening of the lowest energy

bands is not monotonous with decreasing twist angle as we can see that the bands are

less flat for θ = 0.9° [12].

Figure 2.3: Three-dimensional twisted bilayer graphene band structures calculated
for twist angles θ = 5°, 2.5° and 1.05° at the K valley with zero displacement field.
The outline of the hexagon is the moiré Brillouin zone where the γ point is at the
centre of the hexagon. The band structures exhibit Dirac cones characteristic of the
low-energy electronic spectrum of graphene such that each non-identical cone belongs
to each graphene layer. As the twist angle decreases, the Fermi velocity of the Dirac
cones decreases and at the magic angle 1.05°, the first conduction and valence bands
are flattened.
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Figure 2.4: Twisted bilayer graphene band structures calculated for twist angles
θ = 2°, 1.5°, 1.05° and 0.9° with zero displacement field. The black and red lines are
the band structures calculated for the K and K ′ valleys, respectively.

2.1.4 Band structures with an electric field

A displacement field results in an on-site energy difference between the top and

bottom layers of graphene, respectively. Figure 2.5 illustrates the three-dimensional

band structures for different displacement fields for θ = 2.5° in the K valley. The

displacement field breaks the layer symmetry and we see that the energies of the

low-energy bands that touch at the Dirac points, κ and κ′, are shifted upwards and

downwards relative to each other. The energy shifts are proportional to the applied

displacement field. The result of this relative shift is that there is no longer a zero

density of states at charge neutrality. Figure 2.6 shows the band structures of TBG

at θ = 2.5° and varying ∆ for both the K (black) and K ′ (red) valleys. We see

that electron-hole symmetry is preserved and the band structures in each valley is

a π-rotation from each other as the minivalleys at κ and κ′ are shifted in opposite

directions for opposite valleys.
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Figure 2.5: Three-dimensional band structures of K-valley bands for TBG at
θ = 2.5° for varying ∆. The finite displacement field breaks the layer symmetry
of the minivalleys such that Dirac points in the κ and κ′ minivalleys shift upwards
and downwards, respectively, meaning there is a non-zero density of states at charge
neutrality.

Figure 2.6: Calculated band structures for twisted bilayer graphene at twist angle
θ = 2.5° for varying ∆ plotted for the K (black) and K ′ (red) valleys.

2.2 Twisted double bilayer graphene (TDBG)

Recently reported experimental observations of superconductivity, tunable correlated

states and topologically non-trivial phases in twisted double bilayer graphene (TDBG)

systems have garnered huge interest amongst researchers [38, 39, 40, 41]. There



22 CHAPTER 2. MINIBAND SPECTRA

is an emerging number of theoretical studies related to the electronic properties of

these systems to understand the TDBG band structure in the single-particle picture

[42, 43, 44, 45, 46, 47]. In this section, we extend the continuum-model Hamiltonian

used in TBG and present the electronic band structures for TDBG.

Twisted double bilayer graphene is two bilayer graphene systems stacked on top of

each other with an in-plane relative twist between the two bilayers where each bilayer

graphene is Bernal-stacked, i.e. in the AB stacking arrangement. Here, we present

two configurations of TDBG, both AB-AB and AB-BA stacking. In addition, we

employ both the minimal and full parameter model of each bilayer graphene using the

continuum-model Hamiltonian and compare the band structures in the absence of and

with a perpendicular electric field.

2.2.1 Continuum-model Hamiltonian

We calculate the electronic band structure of TDBG by adapting the continuum-model

approach for twisted bilayer graphene in Eq. (2.1.1). The Hamiltonian is a 8 × 8

matrix with the basis of atoms (A1, B1, A2, B2, A3, B3, A4, B4), and the AB-AB stacking

Hamiltonian is given by

HTDBG =

HBLG T

T † HBLG

+ V, (2.2.1)

where

HBLG =


0 −υπ† υ4π

† υ3π

−υπ ∆′ γ1 υ4π
†

υ4π γ1 ∆′ −υπ†

υ3π
† υ4π −υπ 0

 (2.2.2)
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and

T =


0 0∑

j=0,1,2

e−i∆Kj
ξ·r

 wAA wABe
iξ 2π

3
j

wABe
−iξ 2π

3
j wAA

 0

 , (2.2.3)

where 0 is the 2× 2 zero matrix. We assume that the applied perpendicular electric

field is constant giving the interlayer potential V as

V =



3
2
∆1

1
2
∆1

−1
2
∆1

−3
2
∆1

 , (2.2.4)

where 1 is the 2× 2 identity matrix and ∆ represents the electrostatic energy shift in-

duced by the perpendicular electric field between adjacent layers. The same parameters

are used for the band velocity of monolayer graphene and the values of wAA and wAB

are the same as the values used for TBG in section 2.1.1. Within each bilayer graphene,

the vertical interlayer coupling between dimer sites is γ1 = 0.4 eV, the interlayer

coupling between non-dimer sites is related to υ3 and the interlayer coupling between

dimer and non-dimer sites is related to υ4. The relation used is vi = (
√
3/2)γia/ℏ for

i = 3, 4 where γ3 = 0.32 eV and γ4 = 0.44 eV [48]. In addition, the energy difference

between the dimer and non-dimer sites is given by ∆′ = 0.05 eV [48]. To obtain the

AB-BA TDBG Hamiltonian, we interchange the matrix elements so that the basis of

atoms is (A1, B1, A2, B2, A4, B4, A3, B3) in relation to the AB-AB TDBG Hamiltonian.

We numerically diagonalise the continuum-model Hamiltonian using the zone folding

method discussed for TBG to obtain the miniband spectra. Note that in this section

we use the parameters used in Ref. [42] to produce similar band structures that are

also in agreement with Ref. [41].
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2.2.2 Minimal model

To calculate the low-energy band structure of TDBG, we first consider a minimal model

for each individual bilayer by including only γ1, wAA and wAB. We exclude the rotation

matrix R(±θ/2) and neglect the relatively small parameters by setting υ3, υ4,∆′ = 0.

Without the presence of υ4 and ∆′, both the band structures for AB-AB and AB-BA

configurations exhibit an artificial electron-hole symmetry. This holds true even in the

presence of a constant perpendicular electric field. Figures 2.7a and 2.7b show the

calculated band structures for θ = 1.3° with ∆ = 0, 10, 20 and 30 meV for both AB-AB

and AB-BA configurations using the minimal parameter model for both the K (black)

and K ′ (red) valleys. The band structures for AB-AB and AB-BA TDBG using the

minimal parameter model are comparable. Similar to the TBG band structure where

the electronic spectra exhibit two non-equivalent Dirac points, one from each graphene

layer, the original parabolic dispersion of bilayer 1 is placed at the corner of the mBZ

at κ and the original parabolic dispersion of bilayer 2 is placed at κ′.

In Fig. 2.7, these parabolic dispersions are seen at the minivalleys in the absence

of a perpendicular electric field. Similar to the TBG band structures, the parameters

wAA and wAB account for corrugation and the lowest energy bands are well-separated

from the excited bands. When an asymmetric interlayer potential V is applied, the

low-energy degenerate bands split and a gap is opened at the charge neutrality point for

both configurations of TDBG. Unlike in TBG where an applied electric field preserves

the Dirac points, the gap opening in TDBG is perhaps unsurprising as single bilayer

graphene also exhibits a band opening in the presence of a perpendicular electric field.

As we increase ∆, the low-energy conduction and valence bands separate further.
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Figure 2.7: (a) Band structures for AB-AB TDBG at θ = 1.3° with ∆ = 0, 10, 20
and 30 meV, calculated using the minimal parameter model. Black and red lines are
spectra for the K and K ′ valleys, respectively. (b) Corresponding plots for AB-BA
TDBG.

Figure 2.8 shows the TDBG band structures calculated using the minimal parameter

model for various twist angles with ∆ = 0. Similar to the TBG band structures, as

the twist angle decreases, the bandwidth of the lowest energy bands decreases and the

number of bands in a given energy window increases. For both AB-AB and AB-BA

stacking configurations, flat bands that are isolated from the excited bands are observed

at the magic angle, θ = 1.05°. Notably, for comparable angles, the bandwidths of the

low-energy bands in TDBG are approximately half of those exhibited in TBG. This

suggests that TDBG could be an interesting prospect for generating narrow bandwidth

flat bands in an experiment.
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Figure 2.8: (a) TDBG band structures for various twist angles, θ = 2°, 1.5°, 1.05°
and 0.9°, calculated using the minimal parameter model for AB-AB configuration
with ∆ = 0. The red and black lines correspond to the bands for the K and K ′

valley, respectively. (b) Corresponding plots for AB-BA TDBG. In both configurations,
isolated flat bands are observed at 1.05°.

2.2.3 Full parameter model

Implementing the additional parameters causes significant changes to the low-energy

band structure of TDBG. Figure 2.9 shows the calculated TDBG band structures using

the full parameter model for twist angle θ = 1.3° and varying ∆ for AB-AB and AB-BA

configurations. The υ3 term gives rise to trigonal warping leading to the broadening of

the low-energy bands. This is consistent with the effect of trigonal warping in single

bilayer graphene where the range of band touching points is widened. In the presence

of υ4 and ∆′, the artificial electron-hole symmetry observed in the minimal model

band structures is broken. As ∆ increases, the bandwidth of the first conduction band

decreases whilst the bandwidth of the first valence band increases and becomes more
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dispersed. In both TDBG configurations, the first conduction band is relatively flat and

isolated from the other bands. As a result, the band gaps separating the lowest energy

bands from the excited bands on the electron side is greater than that of the hole side.

Experimental findings show that a correlated insulating phase is only observed on the

electron-doping side, which is in agreement with the broken electron-hole symmetry in

theoretical calculations [41]. At θ = 1.3° and ∆ = 0 meV, there are overlapping bands

at charge neutrality, which is consistent with metallic behaviour. As ∆ increases, the

low-energy bands become increasingly separated and no longer overlap.

Figure 2.9: (a) Band structures for AB-AB TDBG at θ = 1.3° with ∆ = 0, 10, 20
and 30 meV, calculated using the full parameter model. Black and red lines are spectra
for the K and K ′ valleys, respectively. (b) Corresponding plots for AB-BA TDBG.

Figure 2.10 shows the TDBG band structures for twist angles θ = 2°, 1.5°, 1.05° and

0.9°. At the magic angle θ = 1.05°, the low-energy bands are dispersed and there are no

longer flat bands as was observed in the minimal parameter model band structures. At

a relatively large angle of θ = 2°, there is a band gap at the charge neutrality point, and

as the twist angle decreases, the lowest energy bands begin to overlap. The four-fold
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spin and valley degeneracy means that each moiré miniband has a filling factor of four

electrons or holes per moiré superlattice cell area. For both TDBG configurations, Fig.

2.10 shows that there is an insulating gap between the third and the fourth valence

bands for θ = 1.05° and 0.9°. The calculated band structures are consistent with the

experiment where AB-AB stacked TDBG is shown to exhibit insulating gaps at filling

factors where four and twelve electrons and holes fill a moiré superlattice unit cell for

devices with twist angles θ = 1.26°, 1.28° and 1.33° [39].

Figure 2.10: TDBG band structures for various twist angles, θ = 2°, 1.5°, 1.05° and
0.9°, calculated using the full parameter model for AB-AB configuration with ∆ = 0.
The red and black lines correspond to the bands for the K and K ′ valley, respectively.
(b) Corresponding plots for AB-BA TDBG. In both configurations, the isolated flat
bands observed in the minimal model at 1.05° are no longer present.
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2.3 Twisted monolayer-bilayer graphene (TMBG)

Compared to TBG, there are more tuning parameters in twisted monolayer-bilayer

graphene (TMBG) because the band structures in multilayer graphene are more

tunable than monolayer band structures [49, 50, 51, 52]. In this section, we extend the

continuum-model Hamiltonian to TMBG where bilayer graphene is stacked on top of

monolayer graphene and we show a couple of band structures to highlight how the

continuum model can be generalised to study and understand emergent phenomena in

the field of twistronics.

2.3.1 Continuum-model Hamiltonian

To calculate the band structures for TMBG, we employ the continuum-model Hamil-

tonian following the method used for TBG and TDBG in the previous sections. The

Hamiltonian is a hybrid of the twisted bilayer graphene and twisted double bilayer

graphene Hamiltonians such that one on-diagonal block of the matrix is the Dirac

Hamiltonian for monolayer graphene and the other on-diagonal block is that for bilayer

graphene. These blocks are coupled by 2× 4 off-diagonal tunnelling matrices to couple

the two systems. The resulting Hamiltonian is a 6× 6 matrix given by

HTMBG =

HMLG T

T † HBLG

+ V, (2.3.1)

where

T =
∑

j=0,1,2

e−i∆Kj
ξ·r

 wAA wABe
iξ 2π

3
j 0 0

wABe
−iξ 2π

3
j wAA 0 0

 . (2.3.2)

The on-diagonal blocks HMLG and HBLG are defined in Eqs. (2.1.2) and (2.2.2),

respectively. Using the same approach as in TBG and TDBG, the perpendicular

electric field is assumed to be constant and pointing from the monolayer to the bilayer.

Here, the interlayer potential is given by V = diag(−∆/2,−∆/2, 0, 0,∆/2,∆/2).
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2.3.2 Band structures

For a large twist angle of θ = 5°, the low-energy spectrum is as though the monolayer

and the bilayer are decoupled. This results in the band structure exhibiting a Dirac

cone from the monolayer and a parabolic dispersion from the bilayer at each minivalley.

This is illustrated in Fig. 2.11a where we see band touching points at charge neutrality.

Similar to TDBG, the band structures exhibit electron-hole asymmetry. For smaller

twist angles, the interlayer coupling between the monolayer and bilayer causes the

Dirac point to shift to positive energy, which we denote as EDS, even in the absence

of a perpendicular electric field. Figure 2.11b shows the TMBG band structure for

θ = 1.22° with ∆ = 0 meV. We see that the lowest energy bands are well separated

from the excited bands. In the experiment published in our paper, this is observed as

two single-particle gaps at full fillings where four electrons and holes occupy the first

conduction and valence bands and thus, gives rise to band insulators [53]. With the

addition of an asymmetric interlayer potential as shown in Fig. 2.11c, the degeneracies

at the κ and κ′ minivalleys are broken and a band gap at charge neutrality emerges,

which is observed as the increase in resistivity in the experiment. Also, the first

conduction band is much flatter than the first valence band. We also note that the

band gap between the first conduction band and the second conduction band decreases

in size with the addition of a perpendicular electric field whereas the gap on the valence

band side between the first and second bands decreases slightly.
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Figure 2.11: (a) Calculated band structure for TMBG for θ = 5° and ∆ = 0 meV.
(b)(c) Calculated band structures for θ = 1.22° with no potential energy difference
between the top and the bottom layer of TMBG and with a potential difference of
∆ = 70 meV, respectively. Red and black correspond to the K and the K ′ valleys,
respectively.

Figure 2.12 shows the shift of the Dirac point energy with respect to zero energy,

EDS, as a function of the twist angle. For all twist angles, the Dirac energy shift

originating from the monolayer is always shifted upwards compared to the electronic

states originating from the bilayer regardless of the sign of the applied perpendicular

electric field [53].

Figure 2.12: Dirac energy shift EDS as a function of twist angle calculated using
the continuum model. The results are comparable to the results obtained using the
tight-binding model in Ref. [54].



Chapter 3

Transverse magnetic focusing (TMF)

of twisted bilayer graphene

Transverse magnetic focusing (TMF) is a powerful experimental technique that uses a

weak transverse magnetic field to focus charge carriers onto a detector over a scale of

microns [55, 56, 57, 58, 59, 60]. Electrons can move ballistically and propagate over

macroscopic distances in periodic lattices without scattering, and this phenomenon

has enabled the use of TMF to be used to study the shape of the Fermi surface of

metals [61], semiconductor heterostructures, as well as two-dimensional materials such

as graphene [60].

The concept of TMF can be understood by considering electrons injected into a

two-dimensional system via a narrow contact. Magnetic fields force these ballistic

electrons to propagate along skipping orbits along the boundary of the material where

the skipping trajectories converge to form caustics. This leads to pronounced resistance

peaks at nearby voltage probes as electrons are focused onto the detector. This

technique is analogous to charge mass spectroscopy and can be used to study the

electronic structure of metals as well as to demonstrate ballistic transport.

In this chapter, we present the use of magnetic focusing to probe the band structure

of twisted bilayer graphene with a twist angle of ∼ 2°. This research was completed in

collaboration with Alexey Berdyugin at the University of Manchester who conducted

the experiments. The following will present the experimental data along with the

supporting theoretical work and will use notation and conventions that are aligned with

32
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our published paper [18]. We found that the minibands in TBG support long-range

ballistic transport limited at low temperatures by intrinsic electron-electron scattering.

In addition, applying a voltage bias between the layers causes strong minivalley splitting,

which allows selective focusing of electron trajectories from different minivalleys and

hence, of interest for using this degree of freedom in the field of valleytronics.

In section 2.1, we showed that at larger angles, the TBG spectrum corresponds to a

metal with several minibands at each K and K ′ valley of the original graphene Brillouin

zones. The twist angle between the two graphene layers modifies the electronic spectra

by the presence of the long-range interference pattern with a moiré period that we

denote λs in this chapter, which is illustrated in Fig. 3.1a. It is expected that the

electronic properties of such a metal are different from the behaviour of Dirac electrons

in monolayer or Bernal-stacked bilayer graphene and this research probes the electronic

properties of TBG in more detail and, in particular, the behaviour of the lowest

energy minibands where the secondary Dirac points are present, as illustrated in Fig.

3.1b where the band structure is computed using the continuum-model Hamiltonian

described in section 2.1. We present the experimental manifestation of the TMF of

electrons in a perpendicular magnetic field explained using theoretical analysis to probe

the properties of moiré minibands in TBG. In addition, we use a vertical displacement

field, D, to break valley degeneracy between the two constituent graphene layers and

show that we can selectively enhance transport in one of the minivalleys.
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Figure 3.1: (a) Schematics of the moiré superlattice induced by the twist of graphene
layers. Here, two graphene sheets are rotated by an angle θ relative to each other,
which creates an additional spatial periodicity λs = a/[2sin(θ/2)] (a is graphene’s
lattice constant) with the unit cell area of AS =

√
3/2λ2S. (b) Band structure of TBG

graphene in the K valley of the Brillouin zone calculated for the twist angle θ = 1.87°.
(c) Optical image of TBG device D1 with θ = 1.87°. Scale bar, 4 µm. (d) Two examples
of TMF signals measured in device D2 (D = 0 Vnm−1) at 5 K for the carrier density
3.7× 1012 cm−2 (left) and 9.3× 1012 cm−2 (right) at a distance of 4.9 µm from the
injector. The latter is close to the main and secondary neutrality points, respectively,
as illustrated in (b). The insets are examples of focusing caustics near the main (left)
and secondary (right) neutrality points. Arrows highlight the focal points for caustics,
red star marks the current injection point, and red lines show typical trajectories that
extend from the injector to the first focal point.

3.1 Equations of motion and TMF

To model transverse magnetic focusing, we first establish a connection between the

miniband dispersion, ϵ(k), and the transport properties using the equations of motion

for an electron in an out-of-plane magnetic field, B = Bẑ,

k̇ = −ev(k)×B, ṙ = v(k), v(k) =
∂ϵ(k)

∂(k)
. (3.1.1)

The equations of motion show that energy is conserved and that the velocity is always

perpendicular to the dispersion. This means that the orbit in real space can be obtained

from the orbit in reciprocal space by rotating by 90° and scaling by 1/eB. The equations
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above follow from [62],

ṙ =
∂ϵ(k)

ℏ∂k
− k̇×Ω(k), ℏk̇ = −eE − eṙ ×B (3.1.2)

where Ω(k) is the Berry curvature for the two-dimensional system [63]. To obtain Eq.

(3.1.1), we set ℏ = 1 and take E = 0 so that the equations can be rewritten as,

k̇(1 + eB ·Ω(k)) = −e∂ϵ(k)
∂k

×B, ṙ(1 + eB ·Ω(k)) =
∂ϵ(k)

∂k
. (3.1.3)

From this, it follows that the Berry curvature only affects the speed at which the

electron trajectory is traversed but not the shape of the orbit. Consequently, we take

Ω(k) = 0 to give Eq. (3.1.1).

To simulate transverse magnetic focusing (TMF) maps, we first calculate the band

structures to extract the Fermi surfaces according to the miniband dispersion ϵ(k) and

then determine the cyclotron orbits in real space by rotating the orbits in reciprocal

space by a 90° rotation and scaling by 1/eB according to Eq. (3.1.1). The sign of the

effective charge influences whether the charge carrier propagates in the clockwise or

anticlockwise direction. We assume specular boundary conditions so that in a magnetic

field the carriers travel along the edge of the sample following cyclotron (skipping)

orbits and caustics of skipping orbits focus onto equidistant points. The drift direction

of the skipping orbits depends on the effective charge of the carriers and the directions

of the magnetic field. To achieve consistency with the experiment we select the states

that are moving away from the injection point with energies between ϵF and ϵF + eV .

The Fermi energy and applied voltage is denoted by ϵF and V , respectively. The group

velocity is calculated from the band structure using v ∝ ∇kϵ(k). In other words, the

group velocity is related to the energy dispersion, for example, the velocity is smaller

in flatter parts of the dispersion. Accordingly, as the applied voltage elevates the

Fermi level, it results in extra states being occupied such that the available states are

populated with a probability proportional to |∇kϵ(k)|−1 and different injection angles

are weighted with a probability proportional to the density of states.

The TMF spectra are calculated numerically by using a similar method to Ref.
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[55]. This is achieved by counting how many electrons enter contact 3 in Fig. 3.1c

with a finite width w. The non-local resistance Rf = (V3 − V4) /I1 is then found by

calculating (N3 −N4) /N1, where N1 is the total number of injected electrons, N3 is

the number of electrons entering contact 3 and N4 is a smooth background given by

N4 =
∑N1

i w/di. Here, the subscripts correspond to the device contacts in Fig. 3.1c

and di is the distance between consecutive skips along the edge of the ith trajectory.

For quantitative comparison with experiment where the y-axis is in terms of carrier

density n, the Fermi energy ϵF for each Fermi surface extracted was converted to the

corresponding carrier density by creating a dense mesh of k-states in the mBZ and

cumulatively counting the number of states below each Fermi energy, multiplying by 4

to account for the spin and valley degeneracy and dividing by the area of the moiré

unit cell to obtain the correct units.
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3.2 Device setup for TMF experiment

This work studies two high-quality dual gated TBG devices encapsulated with ∼

30− 50 nm thick hBN crystals at two different twist angles: device D1 with a twist

angle of θ = 1.87± 0.01° (shown in Fig. 3.1c) and device D2, with θ = 2.60± 0.01°.

Transport measurements showed that both devices exhibited similar behaviour, with

low-temperature mobilities in excess of 400000 cm2V−1s−1 for carrier density n ∼

1012 cm−2. The high mobility in both devices enabled the observation of TMF, which

is a manifestation of the ballistic motion of electrons. Using theoretical methods to

compare to the TMF maps obtained from the experiment, we show that the TMF

technique can identify key features related to the shape of the Fermi surface in TBG.

Figure 3.1c shows the geometry of the device used to study the magnetic focusing

effect in TBG. The narrow contacts 1 and 2 are used for injecting electrons into the

device, i.e. driving current I12, and contacts 3 and 4 are used to detect the voltage

V34. With a perpendicularly applied magnetic field, electrons injected at contact 1

propagate along the edge of the device in skipping orbits. The shape of the Fermi

surface characterises the caustic pattern observed and this is illustrated in the insets

of Fig. 3.1d. We can see that the caustics are focused onto equidistant focal points

along the sample edge highlighted by the black arrows in the inset. In addition, the

drift direction of the skipping orbits is determined by the sign of the magnetic field

such that electrons and holes propagate in opposite directions for the same sign of

the magnetic field. Varying the magnitude of the magnetic field varies the size of the

skipping orbits and consequently the positions of the focal points. When the caustic

focal points coincide with the position of the voltage probe, contact 3 in Fig 3.1c, a

focusing peak is observed in the non-local resistance, which is given by Rf = I12/V34.

Figure 3.1d shows the observed focusing peaks measured at different carrier densities,

one TMF trace near the secondary Dirac points at the main neutrality point and one

trace near the γ point in the mBZ.
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3.3 Focusing maps with zero displacement

Figure 3.2a shows the dependence of Rf on the carrier density and magnetic field at

zero displacement field, D = 0 Vnm−1, for device D1. The presence of a Rf signal in a

particular quadrant of the B − n map reflects the sign of the cyclotron mass. Upon

doping, the change of the quadrant of the TMF signal indicates an inversion of the

electron dispersion, in other words, a change of sign of the mass from electrons to

holes or vice versa. At zero carrier density, we see a fan-like pattern emerging from the

centre of the TMF map in Fig. 3.2a. The pattern converges and changes direction at

the main neutrality point. Similarly, at higher electron and hole densities, we observe

qualitatively similar behaviour where a change in sign of the cyclotron mass is observed

such that the TMF map resembles inverted fan-like patterns at higher energies. These

indicate that the electronic dispersion converges towards a secondary neutrality point,

which is shown in the calculated band structure in Fig. 3.1b at the γ point in the

mBZ. The crossover carrier densities between these two regimes at n ≈ 3× 1012 cm−2

and −3× 1012 cm−2 correspond to the presence of van Hove singularities (vHS) in

the moiré miniband spectra. Figure 3.2b presents the theoretically calculated TMF

map and we see good quantitative agreement between experiment and theory, which

suggests that the band structure of TBG is well described by the calculated spectrum

shown in Fig. 3.1b.
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Figure 3.2: (a) Focusing signal Rf as a function of the magnetic field and carrier
density measured at 2 K for device D1 in zero displacement field, D = 0 V nm−1.
Colour scale: blue to red, ±3 Ω. (b) TMF map calculated from the energy spectrum
shown in Fig. 3.1b. The angle between the zigzag edge of one of the monolayers and
the sample boundary is taken as 45° to avoid any spurious effects of crystallographic
alignment. The calculated TMF map is only very weakly sensitive to the mutual
orientation between graphene and the sample edge, confirming the generality of our
results. Note that the scale is the same as for panel (a). (c) Contour plot of the first
conduction miniband shown for the K valley of the Brillouin zone for zero (left) and
nonzero (right) displacement fields. Black and red dashed lines outline the shape of
the Fermi surfaces for carrier densities marked by black and red dashed lines in (a);
the latter corresponds to equivalent doping levels relative to the main (black) and
secondary (red) neutrality points. The colour scale is from 0 to 154 meV.
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In both the TMF map obtained from the measurement and the theoretically

produced TMF map shown in Figs. 3.2a and 3.2b, the fan-like patterns emerging from

the main and secondary neutrality points of the TBG superlattice - around zero carrier

density and above the vHS, respectively - have different periodicities. This difference

can be attributed to the different sizes of the Fermi surfaces at equivalent doping levels

shown by the black and red dashed lines in Fig. 3.2a. Figure 3.2c shows a contour

plot for the first conduction miniband shown for the K valley of the Brillouin zone

for zero (left) and nonzero (right) displacement fields. The black and the red dashed

lines correspond to the Fermi surface contours for the doping levels shown in Fig. 3.2a

where the black dashed lines are around the κ and κ′ points of the mBZ, i.e. the main

neutrality point, and the red dashed line is around the γ point, i.e. the secondary

neutrality point. Our theoretical analysis shows that the Fermi surfaces near the γ

point are triangular in shape, which results from the strong interlayer hybridisation

of the states originating from both graphene layers. In sharp contrast, the Fermi

surfaces around κ and κ′ points that coincide with the valley centres of the top and

bottom graphene layers, are almost isotropic and similar to the Fermi surfaces found

in monolayer graphene at the Dirac points. This suggests that there is weak interlayer

hybridisation of these states at these points.

We calculate the density of states (DoS) of TBG using

DoS(E) = 4

ˆ
mBZ

d2k

(2π)2
δ(E − ϵF), (3.3.1)

where the factor of 4 encompasses spin and valley degeneracy and ϵF denotes the Fermi

energy. Figure 3.3 shows the DoS plot for twist angle θ = 1.87°. The minivalleys

manifest itself as a zero DoS at charge neutrality, which is in agreement with the

experimental TMF map in Fig. 3.2a that shows the fan-like pattern converging at the

main neutrality point. In addition, the DoS shows minima at ±4 carriers per moiré

unit cell, which corresponds to the filling of one moiré miniband per spin and valley

for a total degeneracy of 4. There is a sharp peak in the DoS on either side of charge

neutrality, which indicates the presence of vHSs, which were observed in the TMF

map in Fig. 3.2a where there is a change in sign of the cyclotron mass within the first

conduction and valence bands.
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Figure 3.3: Calculated density of states for TBG with θ = 1.87°
.

3.4 Focusing maps with a displacement field

As there is an absence of interlayer coupling between κ and κ′ minivalleys, we can

disentangle the TMF contributions from each by applying a finite displacement field.

A field of up to D = 0.75 Vnm−1 without damaging the devices was applied and this

shifted the onsite potential for the electrons. As a result, the layer symmetry is broken

and the energies of the Dirac cones at κ and κ′ shift upwards and downwards with

respect to each other. This means that the size of the Fermi surfaces for equivalent

doping levels about the Dirac points are now different as illustrated in Fig. 3.4c. The

breaking of the layer-symmetry lifts the degeneracy between κ and κ′ and the motion

of the electrons from different valleys are separated in the presence of the magnetic

field with different sizes of cyclotron orbits. This generates two magneto-oscillation

frequencies of Rf at low carrier densities, |n| < 1012 cm−2. This is well seen in Fig. 3.4

where separate focusing peaks appear for the electrons from each valley and we see

qualitatively that the theoretically produced TMF map shows minivalley splitting.
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Figure 3.4: (a) Rf as a function of magnetic field and carrier density for device D2
measured at T = 2 K and D = 0.75 Vnm−1 at a distance of 8.5 µm from the injector.
Color scale: blue to red, ±0.2 Ω. (b) TMF map calculated numerically for device D2 in
a displacement field, which shows the splitting of the focusing peaks originating from
the different miniband dispersion at κ and κ′. Scale is the same as for panel (a).

3.5 TMF with different orientations

To investigate whether the TMF spectra are sensitive to the crystallographic orientation

of graphene layers with respect to the skipping direction, i.e. the edge of the sample.

Figure 3.5 compares TMF maps simulated for different edge orientations characterised

by an angle ϕ. To this end, we fix the orientation of one of the monolayers so that

ϕ = 0° corresponds to the zigzag edge and ϕ = 90° to the armchair edge. The results for

parameters of device D1 at |n| = 6.6× 1012 cm−2 give triangular skipping orbits with

the distance between the focusing peaks along the sample boundary weakly dependent

on ϕ. Similar results are obtained for all carrier densities where the Fermi surfaces

are anisotropic, i.e., for |n| > 3× 1012 cm−2 where the Fermi surface around the γ

point has a pronounced triangular shape. Corresponding TMF maps show focusing

peaks at slightly shifted positions relative to each other. The 3-fold symmetry of the

triangular Fermi surface means that the TMF maps repeat every 60°. This can be

seen when comparing the TMF maps for ϕ = 30° and ϕ = 90°, which are identical. At

low carrier densities, near the main neutrality point, the Fermi surfaces are almost

isotropic and the TMF maps are independent of ϕ. In addition, the positions of van

Hove singularities are also independent of ϕ, in agreement with Ref. [55].
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Figure 3.5: TMF maps simulated skipping orbits for different edge alignment. The
units are arbitrary with the red and blue representing positive and negative resistance,
respectively. The TMF maps are simulated for ϕ = 0°, 20°, 30°, 45° and 90° for device
D1. The orientation of one of the monolayers is fixed such that 0° corresponds to
the zigzag edge and 90° to the armchair edge. The skipping orbits are shown at
|n| = 6.6× 1012 cm−2.
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3.6 TMF with a displacement field

The transverse magnetic focusing (TMF) map in Fig. 3.4 shows the effect of a finite

displacement field between the two graphene monolayers. To find the effective electric

field for each carrier density n, we take into account electrostatic screening. At twist

angles ∼ 2° and at low carrier densities, the two monolayers are almost decoupled. To

take into account electrostatic screening in this case, we include a screening term as

proposed in Refs. [64, 65] given by the equations

ec0
ϵ0ϵ

(
ϵ0D −

(
1 + ϵ

4

)
(n1 − n2) e

)
=

hυ

2
√
π

(
s1
√
|n1| − s2

√
|n2|
)
, (3.6.1)

n = n1 + n2. (3.6.2)

The carrier densities in the two parallel graphene layers are given by n1 and n2 and

they are separated by a distance c0. The applied displacement field is denoted D, Dirac

velocity is υ and the band indices s1 and s2 are given by si = ni/|ni|. Here, we take the

electron charge as e < 0. In the case of TBG, we use d ≈ 0.34 nm and following Refs.

[65, 66, 67], the dielectric constant for twisted bilayer graphene is ϵ = 2.7 as the field

D is screened by both the free charges and also the dielectric environment between

the layers. The total carrier density n is given by Eq. (3.6.2). To find the effective

electric field for each value of n and D used in the experiment, the two equations are

solved simultaneously using the Dirac velocity for monolayer graphene, υ = 106 ms−1.

In the calculation, we take n1 to be the bottom layer and n2 to be the top layer. The

positive direction of the applied field D is from the top to the bottom (i.e. pointing

downwards). After the corresponding onsite potential difference was calculated for each

carrier density, the Fermi surfaces were extracted for each doping to apply the TMF

method described in section 3.5. Figure 3.6 shows additional TMF maps obtained

from experiment and compared to the theoretically calculated maps for device D2 with

D = 0.5 Vnm−1 and D = 0.75 Vnm−1. The experiment shows good agreement with

the theoretical calculations where the higher applied displacement field causes more
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pronounced splitting between the minivalleys at low carrier densities. This can be seen

by tracing the eye of the two split peaks in the TMF map in Figs. 3.6a and 3.6b close

to B = 0 T.

Figure 3.6: (a) Rf as a function of magnetic field and carrier density measured for
device D2 at T = 2 K and D = 0.5 Vnm−1 at a distance of 4.9 µm from the injector.
Color scale: blue to red, ±2.5 Ω. (b) TMF map calculated numerically for panel (a).
(c) Rf as a function of magnetic field and carrier density measured for device D2 at
T = 5 K at a distance 4.9 µm from the injector in a displacement field 0.75 Vnm−1.
Color scale: blue to red, ±1.5 Ω. (d) TMF map calculated numerically for panel (c).
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3.7 Self-consistent screening

In section 3.6, modelling TMF with a displacement took into account electrostatic

screening by solving Eqs. (3.6.1) and (3.6.2) simultaneously. This section will show

the stand-alone iterative self-consistent calculation that was completed for TBG with

twist angle θ = 3° to show that an applied interlayer potential and the resulting

charge density redistribution strongly screens an external electric field. The goal of the

self-consistent calculation is to find the corresponding onsite potential energy difference

∆, given by the left-hand side of Eq. (3.6.1), between the two graphene layers for a

fixed applied displacement field D and a fixed doping n. Figure 3.7 shows a diagram

illustrating the directions of the applied and screening field. The applied displacement

field D points downwards and causes electrons to accumulate on graphene layer 1. This

charge instability in the system causes electrons to redistribute so that a screening

field Es is generated in the opposite direction to counteract the direction of the applied

field. The self-consistent calculation reflects the screening effect in the physical system

as charges redistribute between the two layers until the system is stable.

Figure 3.7: Schematic of TBG with applied displacement field D and the resulting
electrostatic screening field Es.

For the first iteration, we take the interlayer potential difference from the unscreened

equation, which is the first term of Eq. (3.6.1). A fine mesh is created in k-space

and using the Hamiltonian in Eq. (2.1.1), the matrix is diagonalised to find the

corresponding eigenvalues and eigenvectors for every k-state. For each iteration of the

self-consistent calculation, the charge neutrality point is found by finding the energy

where the electron count and the hole count is the same. With this information, the

Fermi energy at the fixed doping is found. Following this, the occupied wave functions
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at energies below the Fermi energy are identified. The screening electron density

accumulated on each layer ni for i = 1, 2 is then found by calculating

ni = 4

ˆ
mBZ

d2k

(2π)2

4∑
l=1

[(∣∣Ψl
Ai
(k)
∣∣2 + ∣∣Ψl

Bi
(k)
∣∣2) f(ϵl − ϵf )− 1

]
, (3.7.1)

where i is either layer 1 or layer 2, l is the band index for which there is four in TBG,

Ψl
Ai
(k) and Ψl

Bi
(k) are the normalised wave functions of sublattices A and B in a

particular layer, f is the Fermi function, ϵf is the Fermi level and the −1 ensures

electrical neutrality when there is the interlayer potential [68]. The −1 originates from

the fact that carbon has four valence electrons, and when only the valence band is filled

at charge neutrality with zero doping, the Fermi-Dirac distribution has a contribution

of 1/2 for each electron. The excess carrier densities n1 and n2 are substituted back

into the equation to produce a new ∆ to give the screened field. Numerically stable

self-consistent solutions are obtained for a range of fixed D and doping n.

Figure 3.8 plots the interlayer energy difference ∆ against the carrier density n for

a range of displacement fields D. As carrier density increases, the displacement field is

more screened. This can be intuitively understood by considering the band structure for

TBG with a perpendicular electric field in section 2.1.4, at higher Fermi energies, the

difference in excess carrier densities accumulated on each layer increases. In comparison

to the electrostatic screening present in bilayer graphene in Ref. [51], the effect of

screening is greater in TBG as a result of stronger coupling between the graphene

layers. For a displacement field D = 2 Vnm−1 in bilayer graphene, ∆ ∼ 200 meV [51],

while in TBG ∆ ∼ 150 meV as shown in Fig. 3.8.
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Figure 3.8: Interlayer potential difference ∆ as a function of carrier density n for
various applied displacement fields for twisted bilayer graphene with a twist angle of
θ = 3°. The dashed lines are the corresponding unscreened calculations.
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3.8 Temperature dependence of TMF

By considering the temperature dependence of TMF and the evolution of consecutive

focusing peaks, we can gain a deeper understanding of the carrier dynamics in TBG.

Figure 3.9a shows how the amplitude of the TMF oscillations are affected by temperature

T in the range 2K < T < 30K close to the main neutrality point at κ and κ′, and

the secondary neutrality point at γ. As temperature increases, the TMF amplitude

becomes suppressed. We extract the relative scattering length for quantitative analysis

using the same equation as in Ref. [55]

Ls

Lpath
=

(
ln
[
A(Tbase)

A(T )

])−1

, (3.8.1)

where Lpath is the length of the trajectories traversing from the injection point to

the first focal point as shown in the insets in Fig. 3.1, A(T ) and A(Tbase) are the

areas under the first or second focusing peak in Fig. 3.9a at temperature T and

Tbase = 2 K, respectively. Figure 3.9b is a plot of the temperature dependence of the

relative scattering length, which show that all focusing peaks follow a T−2 scaling.

This dependence suggests that low-angle electron-electron scattering dominates at low

temperatures rather than phonon-dominated scattering, which would be characteristic

of a T−1 dependence [60, 69]. Such temperature dependence was also found to be the

reason for TMF suppression in graphene/hBN superlattices [55].

We can further analyse the differences between the TMF focusing of electrons

near the main neutrality points and secondary neutrality points by calculating the

ratio between the areas under the 2nd and 1st focusing peaks in Fig. 3.9a, A2/A1.

This ratio characterises the proportion of electrons that undergo specular reflection

at the sample boundary. The closer the ratio is to one, the higher the probability

for injected electrons to reflect specularly. The inset in Fig. 3.9b shows the ratio of

the amplitudes of the second and first focusing peak as a function of temperature for

carrier densities n = 1.8×1012 cm−2 (right panel of Fig. 3.9a) and n = 6.6×1012 cm−2

(left panel of Fig. 3.9a). At low carrier densities where the Fermi surfaces are almost

isotropic, A2/A1 ≈ 0.8, which points towards almost specular reflection whereas for
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higher carrier densities where the Fermi surfaces are triangular, A2/A1 ≈ 0.65, which

is less specular in comparison. For the latter case, it indicates a higher probability

of diffusive scattering, which is consistent with the greater sensitivity of triangular

Fermi surfaces in the miniband spectrum to perturbations of the moiré pattern near

the sample edge. On the other hand, there is little hybridisation between the layers in

the vicinity of κ and κ′ and thus, it is expected that the scattering of Dirac electrons

are less affected by the termination of the superlattice periodicity near the edge, while

the spectrum near the γ point is affected more, which promotes diffusive scattering.

Figure 3.9: (a) Temperature dependence of the TMF signal measured at two
characteristic carrier densities for device D1 (see legends). T was varied from 2 to 30
K (blue to red). (b) T dependence of the relative scattering length (see text) extracted
from experimental data for consecutive focusing peaks. Absolute scattering lengths
for several relative orientations of the crystallographic axes and the sample edge are
shown in Fig. 3.5. The dashed line shows T−2 dependence. The inset shows the ratio
of the areas under the first and second focusing peaks in (a) as a function of T . Arrows
correspond to A2/A1 = 0.8 and 0.65. Error bars indicate the accuracy of determining
A2/A1; large errors at T > 20 K are due to the relatively large background signal as the
focusing peaks become strongly suppressed. [Figure provided by Alexey Berdyugin.]

Near the main neutrality point, there is little hybridisation between the two layers

and the Fermi surfaces are isotropic and almost circular. This means Lpath of electrons

for low carrier densities can be approximated by Lpath ≈ πL/2 where L is the distance

from the current injector to the voltage probe. The length of this trajectory is

independent of the angle between the crystallographic axes orientation of the graphene

layers and the sample edge. However, Fig. 3.5 shows that near the secondary neutrality

point, Lpath is sensitive to the relative orientation of the graphene layers and the sample
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edge. For different orientations of TBG with the sample edge, Lpath was calculated for

several characteristic angles between the device edge and zigzag axis of the top graphene

layer: Lpath−0° = 1.11 L; Lpath−10° = 1.25 L; Lpath−20° = 1.58 L; Lpath−30° = 1.77 L;

Lpath−45° = 1.93 L. Using these values, the absolute scattering length Ls was extracted

as shown in Fig. 3.10. For all cases, scattering lengths vary between ∼ 100 µm and a

few µm at low temperatures, indicating that at elevated temperatures, electron-electron

scattering plays an important role in TMF suppression.

Figure 3.10: Electron scattering lengths corresponding to different relative orienta-
tions of the graphene’s crystallographic axes and the sample edge were extracted from
the temperature dependence of the first focusing peak in Fig. 3.9b using the calculated
Lpath. [Figure provided by Alexey Berdyugin.]

To conclude, this work uses TMF as a tool to probe the band structure of TBG. We

have demonstrated the ballistic propagation of electrons in TBG and electron transport

properties have been determined by the reconstruction of the energy spectrum in the

presence of the long-range moiré potential. Furthermore, theoretical calculations are in

agreement with the experiment where it is shown that a displacement field can be used

to selectively manipulate electrons originating from different valleys. This could open

up an avenue of implementing and exploiting the valley degree of freedom in electronic

devices.



Chapter 4

Network of topological channels in

twisted bilayer graphene

The ability to vary the electronic properties of twisted bilayer graphene by simply

altering the twist angle between the layers has provided a versatile platform for

researchers to explore rich physical phenomena at different twist angles. Previous

theoretical works have investigated the effect of a perpendicular electric field on TBG

[70, 71, 72, 73, 74, 75, 76, 77], and it was found that a large enough bias gives rise

to a network of topological channels on the domain boundaries between AB and BA

stacking regions [71, 73, 74, 75, 76, 77]. At these stacking regions, the electronic states

are locally gapped out by the interlayer bias [78]. Previous works have shown the

presence of two topological modes per spin and per valley along each AB-BA boundary

[79, 80, 81, 82, 83, 84, 85]. The AB and BA regions have opposite signs of single-valley

Hall conductivities, +e2/h and −e2/h, respectively [86]. The difference of 2e2/h results

in two boundary modes per spin and per valley. The band structures obtained from the

K and K ′ valley are π rotations of each other, which means the two modes propagate

in opposite directions between the two valleys. We showed that the overlap of two

graphene layers with a relative twist between the directions of their crystallographic

axes forms a moiré pattern where the AB and BA regions appear periodically in a

hexagonal pattern [87, 88, 89]. The boundary channels form a triangular grid with two

modes travelling between adjacent AA stacking regions, as illustrated in Fig. 4.1a.

52
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Figure 4.1: (a) Domain structure showing AB and BA regions and topological
boundary channels that connect AA regions in biased TBG. The solid and dashed
arrows represent independent propagating modes, modes 1 and modes 2, for the K
valley. (b) Independent 1D eigenmodes in three directions. [Figure provided by Mikito
Koshino.]

There are experimental studies that probe the network of topological channels

present in TBG using transport measurements [90, 91, 92] and scanning tunnelling

spectroscopy [20]. Given the structure of the moiré pattern, it may be expected that the

electronic transport in the emergent topological channels of TBG could be described

using a percolation network on a triangular lattice [93]. In general, such a percolation

network model would split incoming modes into two or more outgoing modes in different

directions. However, we show that for small-angle TBG with a large bias, instead of

the expected two-dimensional network of topological modes, perfect 1D eigenmodes

appear on the triangular AB-BA domain boundary and they propagate independently

in three different directions. A schematic of these modes is shown in Fig. 4.1b where

specific incoming and outgoing modes are connected at each vertex, i.e. at the AA

stacking region nodes. The modes along different directions are never hybridised, and

therefore all these states serve as independent perfect 1D channels over the entire

TBG lattice. The results in this chapter have been published in [94] and our findings

are consistent with Ref. [75] that discusses the perfect nesting of the Fermi surface

in biased TBG. The versatility of tuning the TBG energy dispersion by applying a

perpendicular electric field means there are opportunities to explore the parameter

space to experimentally realise these 1D eigenmodes.
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In this chapter, we study TBG for angles below the magic angle with an applied

bias using the continuum-model Hamiltonian described in section 2.1. We demonstrate

the emergence of two well-defined energy windows that contain sparsely distributed

1D eigenmodes on either side of zero energy. At zero energy, the band structures

exhibit a cluster of nearly flat bands around the charge neutrality point. The origin of

these energy windows are explained using a perturbational approach from the small

interlayer coupling limit, and also by considering the two-band model consisting of

the intersecting electron and hole bands of single-layer graphene in the presence of an

interlayer bias.

4.1 Band structures and wave functions

Figure 4.2a presents the electric field dependence of the TBG band structure for various

twist angles below the magic angle, θ = 1°, 0.5°, 0.3° and 0.2°. The band structures

include energy bands from both the K (black) and K ′ (red) valleys and is shown

for the path κ → γ → µ → κ′ in the mBZ illustrated in Fig. 4.2b. In this work,

we do not account for corrugation between the two graphene layers such that the

interlayer coupling used in the tunnelling block of the Hamiltonian in Eq. (2.1.3)

is u = wAA = wAB = 0.103 eV in this chapter. In addition, the convention used

in this chapter is that the original Dirac point of layer 1 is placed at κ′ while the

original Dirac point of layer 2 is placed at κ. For small-angle TBG, we see that as the

perpendicular electric field ∆ increases, bands gradually shift towards zero energy both

on the conduction and valence sides of the spectrum. This results in the formation of a

cluster of very narrow bands around the charge neutrality point. Simultaneously, two

well-defined energy windows are formed above and below the zero-energy band cluster

where the energy bands within are sparsely distributed in comparison. In addition, we

see that the size of the energy windows have a weak dependence on the size of ∆, which

can be seen for θ = 0.2° where the energy window stays a similar size in increasing ∆.

The formation of 1D propagating modes inside the energy windows is of particular

interest. These modes connect the cluster of bands at zero energy to the bulk bands

outside of the energy windows. Figure 4.2c shows a three-dimensional band structure
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of TBG calculated for θ = 0.5° and ∆ = 400 meV in the K valley. On either side of

charge neutrality, we see intersecting planes in the energy windows. Figure 4.2d shows

the Fermi surface of the same system at a Fermi energy EF = 50 meV with both the

K and K ′ valleys plotted in black and red, respectively. For each valley, the electronic

dispersion is composed of three intersecting planes within the energy windows. For the

K valley, the planes have band velocities that are parallel to (0,−1), (
√
3/2, 1/2) and

(−
√
3/2, 1/2) directions. The different planes are independent of each other and there

is no hybridisation between them, which results in nearly straight Fermi lines at a given

Fermi energy. These findings were also reported in Ref. [75]. Moreover, we notice the

presence of some flat bands near the upper limits of the energy windows close to the

bulk bands that are independent of the 1D states. For example, in Fig. 4.2a, θ = 0.3°

in the largest bias ∆ = 400 meV, there are three horizontal lines between 50 meV

< |E| 100 meV, which can be interpreted as pseudo-Landau levels of the fictitious

gauge field [73]. The qualitative features shown in the band structures obtained from

the continuum-model Hamiltonian in Fig. 4.2, including the presence of the energy

windows and the perfect 1D eigenmodes, agree with the band structures obtained from

the tight-binding model shown in our paper [94].



56 CHAPTER 4. NETWORK OF TOPOLOGICAL CHANNELS

Figure 4.2: (a) Band structure of the twisted bilayer at various twist angles and
varying ∆, calculated using the continuum model. (b) The moiré Brillouin zone showing
the high symmetry points. (c) A three-dimensional plot of K-valley bands, and (d) the
contour plot at EF = 50 meV, calculated for θ = 0.5° and ∆ = 400 meV. The black
and red lines represent K and K ′ valleys, respectively.
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Figure 4.3 shows the wave functions for states in the energy window of TBG with

θ = 0.5° and ∆ = 600 meV in the K valley. The states are chosen from the same

Fermi energy on the conduction side of the spectrum. The figure shows the squared

amplitude on sublattices A1, B1, A2 and B2 and we see that the wave amplitude is

mainly concentrated on layer 1, while it is concentrated on layer 2 in the valence band

states. For the state marked by the red circle along the κ−γ direction in Fig. 4.3 where

the velocity is along the ky direction, the wave function takes a 1D form and extends

along the y-direction with no contribution in the x-direction. The wave functions for

the states marked by the yellow and green circle in Fig. 4.3 are obtained by a ±120°

rotation. These zigzag-shaped wave functions are localised on the AB-BA boundary

separating the AB and BA regions where the energy band is gapped out. This work is

in agreement with wave functions obtained from the tight-binding model in our paper

[94] and were also reported in Ref. [75].

For the sake of completeness, we note that in the presence of lattice relaxation in

TBG, described in our paper [94], the AB and BA significantly expand and the wave

functions become more confined to the AB-BA boundary [75, 76]. In addition, the

wave functions in the y-direction for relaxed TBG show that the amplitude is only

on the boundaries of the other two directions along (
√
3/2,−1/2) and (−

√
3/2,−1/2)

rather than the y-direction. Furthermore, the structure of the wave function along

(
√
3/2,−1/2) and (−

√
3/2,−1/2) boundaries differ. Given that there are two topologi-

cal modes per spin and per valley along each AB-BA boundary as illustrated in Fig.

4.1, this suggests that mode 1 is always scattered to mode 2 in the −120° direction

and mode 2 is always scattered to mode 1 in the +120° direction. This results in three

independent 1D propagating modes that are related by a 120° rotation as illustrated in

Fig. 4.3.
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Figure 4.3: Energy spectrum and the wave functions of typical states at K valley in
the energy window (indicated in the spectrum) calculated for θ = 0.5° and ∆ = 600 meV.
The plots of the wave functions represent squared amplitude on sublattice A1, B1, A2

and B2 separately, where the hexagonal outline indicates a single moiré unit cell.

4.2 Origin of the perfect 1D eigenmodes

The origin of the energy window and the 1D eigenmodes can be intuitively understood

by a perturbational approach from the small interlayer coupling limit. Figure 4.4 shows

the continuum-model band structure of TBG with θ = 0.3° and ∆ = 400 meV, and

with increasing interlayer coupling u from zero to the actual value in TBG. With small

u, we see that two gaps open on the electron side and the hole side, and they eventually

become the window regions in the full u parameter. We see that the 1D eigenmodes

always remain inside the gap, preventing the spectrum from becoming fully gapped.

The width of the energy window is on the order of u. As u increases, the energy

bands between the two energy windows become squashed to form the zero-energy band

cluster.
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Figure 4.4: Band structure of the continuum model for twisted bilayer graphene
with θ = 0.3° and ∆ = 400 meV, and the interlayer coupling u from zero to the actual
value in TBG.

We can explain the opening of the two energy gaps for small u by considering what

happens between the conduction band of one graphene layer and the hole band of the

other graphene layer in the presence of an interlayer bias in the two-band model. For

large ∆, the low-energy band structure is dominated by the hole band of graphene

layer 1 and the electron band of layer 2 such that the two conical bands cross each

other with a relative momentum shift of ∆Kj(j = 0, 1, 2) via the interlayer tunnelling

Hamiltonian T in Eq. (2.1.7), and the band anticrossing occurs at the cross-section.

Figure 4.5a shows the crossing lines between the hole band of graphene layer 1 and

the electron bands of graphene layer 2 with the three relative momentum shifts for

θ = 0.3° and ∆ = 200 meV. The red, blue and green circles correspond to the crossing

points with the hole band for j = 0, 1, 2. In Fig. 4.4, the size of the energy gap is

approximately the value of the interlayer coupling u. By calculating the matrix element

between the eigenstates of the hole band and the electron band, we do indeed find

that the matrix element is approximately proportional to u, i.e. the size of the gap.

Graphene’s eigenstates in the (A,B) spinor representation are written as

|k, s |=⟩ 1√
2

 1

−seiθ(k)

 , (4.2.1)

where s = ± denotes either the conduction or valence band, respectively and the polar
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angle is given by θ(k) = arctan(ky/kx). The matrix element of T from the hole band

of graphene layer 1 to the conduction band of graphene layer 2 is calculated as

⟨k +∆Kj,+|T |k,−⟩ ≈ iu sin

[
θ(k)− 2πj

3

]
, (4.2.2)

where we assume |∆Kj| ≪ |k|. Figure 4.5b shows the amplitude of the interlayer

matrix element on the crossing lines on the Dirac cones of the two graphene layers.

The thicker the line, the higher the amplitude. The matrix element vanishes near

zero energy, which is marked by the black ring in Fig. 4.5b. This is the reason why

two energy windows form on either side of charge neutrality. For a small-u limit, the

number of states per unit area sandwiched by the two gaps is given by 2nW ,

nW = gvgs
∆

4πℏυ
|∆Kj|, (4.2.3)

where gs = gv = 2 are the spin and valley degeneracies and |∆Kj| = 4πθ/(3a). The

parameter nW characterises the carrier density needed to reach the energy window of

the 1D eigenmodes, for example, for θ = 0.3° and ∆ = 200 meV the carrier density is

nw = 1.08× 1012 cm−2. To obtain Eq. (4.2.3), the density of states for |E| < ∆/2 is

found to be D(E) = gsgv∆/(2πℏ2υ2) and this is multiplied by the maximum energy of

the crossing lines between the Dirac cones in Fig. 4.5a, which is given by ℏυ|∆Kj|/2.

The perfect 1D eigenmodes appear in the energy window when the region is dominated

by the hole band of one graphene layer and the electron band of the other layer. For

the interlayer bias to be large enough and the Fermi energy to be in the corresponding

region of the 1D eigenmodes such that |EF | ≲ u, we obtain the condition ∆/2 ≳ u, i.e.

∆ ≳ 200 meV.
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Figure 4.5: (a) Crossing lines between the Dirac cones, where three circles (red, blue
and green) correspond to j = 0, 1, 2. Here we take θ = 0.3° and ∆ = 200 meV. (b)
Amplitude of the interlayer matrix element on the crossing lines on the Dirac cones of
layer 1 and 2. (c) and (d) Relative positions of the Fermi surfaces of layer 1 (dashed)
and layer 2 (solid), in absence of u and at EF = 20 meV. (e) The hybridised Fermi
surfaces after the infinitesimal anticrossing. [Figure provided by Mikito Koshino.]

In the energy windows that are accessible by the interlayer bias, the Fermi surfaces

consist of nestable Fermi lines [75] meaning these surfaces are connected via reciprocal

lattice vectors. These 1D eigenmodes can be explained by understanding the recon-

struction of the Fermi surface. Figures 4.5c and 4.5d illustrate the Fermi surfaces with

no interaction between the layers, u = 0, and with Fermi energy EF = 20 meV, which is

slightly below the maximum energy of the crossing rings. Figure 4.5c shows the Fermi

surface of the hole band from graphene layer 1 in dashed lines and the three solid black

lines are Fermi surfaces for the electron band of layer 2 with the relative momentum

shifts ∆Kj(j = 0, 1, 2). Figure 4.5d shows the hole band of layer 1 centred instead.

The hybridised Fermi surfaces after the anticrossing are shown in Fig. 4.5e. We see

that three open Fermi surfaces are all related by a 120° rotation and there are also

three closed pockets. When the interlayer interaction is turned on, the nesting between
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the electron and hole parts of the closed pockets are gapped out of the constant energy

plane as the Fermi surfaces are near an energy-momentum degeneracy and hybridise.

In contrast, the open Fermi surfaces remain ungapped, which explains the origin of the

1D eigenmodes filling the gap.

From our calculations, the 1D eigenmodes propagate independently in three di-

rections and never hybridise. This poses the question of how disorder plays a role

in the system and how it affects electronic transport. In Fig. 4.1b, the independent

1D eigenmodes form a zigzag trajectory composed of straight lines along the AB-BA

boundary and cornered angles in the AA regions. Hybridisation between different

1D eigenmodes can only occur when there is a local mixing of modes 1 and 2 on the

AB-BA boundaries, or in the presence of an irregular reflection at the AA regions.

In a real TBG lattice, the effect of lattice relaxation means that the moiré pattern

exhibits a distorted triangular pattern with shifted AA spots and either extended or

shortened AB-BA boundaries [87, 88, 89]. Despite this moiré-scale distortion across

the lattice, we expect that this would not cause a strong mixing between different 1D

eigenmodes because the local atomic structures of AA and AB/BA regions are not

modified significantly, and as such, the 1D eigenmodes would still be confined to the

AB-BA boundary and linked at the AA regions as the AB and BA regions are locally

gapped out by the interlayer bias [95]. It is expected that major scatterings are only

caused by a short-range disorder that is smaller than the local structures of the AB-BA

boundary and the AA regions, which is about a few nm.

To conclude, the electronic transport is dominated by the ballistic transport through

the 1D eigenmodes when the Fermi energy is in the energy window and scattering effects

are neglected. In addition, it is expected that we do not have the Aharanov-Bohm

(AB) oscillation in magnetic fields because the 1D eigenmodes are zigzag in shape

and do not enclose triangular domains over the lattice, and thus do not cause any

interference. Experiments have reported measurements on small-angle TBG in the

presence of an interlayer bias, and a significant AB oscillation was observed [90, 91, 92].

We expect that magnetic oscillations take place when the perfect 1D eigenmodes are

not well-formed because the bias is not large enough or the Fermi energy is not in the

region of the energy windows, which may explain the experimental observations.



Chapter 5

Umklapp electron-phonon interaction

The moiré superlattice potential present in TBG makes it an interesting system to

consider umklapp scattering. Umklapp scattering is a scattering process that allows

wave vectors that fall outside of the first mBZ to be expressed as a wave vector inside

the first mBZ by using the reciprocal lattice vectors. This chapter will present a

calculation of the resistivity generated by umklapp scattering in which the Dirac

electrons from the graphene layers in TBG interact with the superlattice potential to

emit in-plane acoustic phonons. This work aims to quantify a specific mechanism for

electron-phonon coupling where electrons tunnel from one graphene layer to another

graphene layer whilst simultaneously transferring momentum to the superlattice. We

consider processes that change the wave vector k or k′ by absorbing or emitting a

phonon with momentum q, respectively,

k′ + q → k, (5.0.1)

k → q + k′. (5.0.2)

Similarly, we also account for processes that change the wave vector to k or k′ by

emitting or absorbing a phonon with momentum q, respectively,

k′ → k + q, (5.0.3)

k + q → k′. (5.0.4)

63
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We use the Boltzmann transport calculation to find the resistivity produced by the

Umklapp scattering of electrons with acoustic phonon modes and show that the electron-

phonon contribution to the resistivity is on the order of 1 Ω and hence, unlikely to be

the dominant scattering mechanism producing resistivity. Here, we use ℏ = kB = 1.

The following will show the method for calculating the resistivity in TBG and we apply

the same method to TDBG in section 5.5 where we find that the resistivity is also on

the order of 1 Ω.

5.1 The Boltzmann transport equation

The linearised Boltzmann equation for the electron distribution function, f 0
k, for a

steady state system with a homogeneous electric field applied in the x-direction is given

by

∂f 0
k

∂t

∣∣∣∣
field

+
∂f 0

k

∂t

∣∣∣∣
scattering

= 0. (5.1.1)

This can be written in terms of the collision integral I{δfk} [96, 97], which is defined

as the rate of change of the distribution function,

− eE · vk
∂f 0

k

∂ϵk
= I{δfk}. (5.1.2)

The electron velocity is given by vk = ∂ϵk
∂k

= sv (cosθk, sinθk) where the band index

s = ±1 is for the conduction and valence bands, respectively. In response to the electric

field, electrons in a particular state in equilibrium will be perturbed by an unknown

function of energy ψk, hence, the electron distribution function can be expanded as

f(k) = f0(ϵk) + δfk ≈ f0(ϵk − ψkcosθk) ≈ f0(ϵk)−
∂f0(ϵk)

∂ϵk
ψkcosθk, (5.1.3)

where the equilibrium electron distribution function is given by

f0(ϵk) =
1

e(ϵ−ϵF /T ) + 1
. (5.1.4)



5.1. THE BOLTZMANN TRANSPORT EQUATION 65

We neglect the hybridisation of the wave functions between the two layers in TBG

and the two bilayers in TDBG and thus, we have a degeneracy factor of 8 that accounts

for spin-valley degeneracy and layer degeneracy. Resistivity is obtained using

1

ρ
=

j · x
E

=
8e

E

ˆ
dk

(2π)2
fkvk · x. (5.1.5)

Substituting in the expanded electron distribution function and velocity gives

1

ρ
=

8e

E

ˆ
dk

(2π)2

(
−∂f0(ϵk)

∂ϵk
ψkcosθk

)
(svcosθk)

=
2esv

π2

ˆ
kdkdθkcos2θk

(
−∂f0(ϵk)

∂ϵk
ψkcosθk

)
ψk

E
.

(5.1.6)

We perform the integration at the Fermi level and approximate −∂f0(ϵk)/∂ϵk using

a Delta function because

− ∂f0(ϵk)

∂ϵk
=

1

T

e
ϵk−ϵF

T(
e

ϵk−ϵF
T + 1

)2 =
f0 (ϵk) (1− f0 (ϵk))

T
(5.1.7)

only has a non-zero numerator when we are at the Fermi energy. The resistivity is

then obtained using

1

ρ
=

2eskF
π2

ˆ
dθkcos2θk

ψk

E
, (5.1.8)

where ψk/E is found using the Boltzmann equation.

The collision integral includes 4 electron-phonon scattering processes between the

states k and k′, which conserve wave vector and energy. The collision integral can be

split into two contributions with the same energy conservation delta functions such

that I = I1+ I2. The first contribution describes processes that change the wave vector

to k or k′ as shown in Eqs. (5.0.1) and (5.0.2) to give the first term of the collision

integral as

I1 = 2π
∑
k′,q

δ (ϵk − ϵk′ − ωq)
[ ∣∣∣ ⟨k|V̂ |k′, q⟩

∣∣∣2 fk′(1− fk)−
∣∣∣ ⟨k′, q|V̂ |k⟩

∣∣∣2 fk(1− fk′)
]
,

(5.1.9)
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where the bras and kets denote the initial and final states, and the V̂ inside the bra-kets

represent the electron-phonon interaction. Similarly, the second contribution to the

collision integral originates from processes that change the wave vector to k or k′ as

shown in Eqs. (5.0.3) and (5.0.4) giving the contribution to the collision integral as

I2 = 2π
∑
k′,q

δ (ϵk − ϵk′ + ωq)
[ ∣∣∣ ⟨k, q|V̂ |k′⟩

∣∣∣2 fk′(1− fk)−
∣∣∣ ⟨k′|V̂ |k, q⟩

∣∣∣2 fk(1− fk′)
]
.

(5.1.10)

5.2 Electron-phonon interaction in TBG

In this work, we are interested in the interlayer electron-phonon interaction where an

electron from one graphene layer scatters to the other graphene layer whilst absorbing

or emitting a phonon. The interaction Hamiltonian with the phonon field in TBG

can be described by considering small local deformations u (r) of the superlattice that

produces umklapp electron-phonon scattering [98]. The deformations allow the Dirac

electrons to emit or absorb in-plane acoustic phonons. The interacting Hamiltonian

describing the electron-phonon interaction between the two graphene layers is given by

Te-ph = w
∑

j=0,1,2

ei(K
j
ξ−K0

ξ)·(r0+u(r))

 1 eiξ
2π
3
j

e−iξ 2π
3
j 1

 , (5.2.1)

where we took the interlayer Hamiltonian of TBG in Eq. (2.1.3) and added a small

in-plane local deformation u(r). The phonon displacement field is real and Hermitian,

and can be written using the quantised phonon field operators,

u (r, t) =
∑
q,Λ

√
1

2Aρmωq,Λ

(
Πq,Λaq,Λe

−iωq,Λt +Π−q,Λa
†
−q,Λe

iωq,Λt
)
eiq·r. (5.2.2)

The polarisation of the phonon mode Πq,Λ is either parallel (Λ = L) to or perpendicular

(Λ = T) to the direction of phonon propagation such that Πq,L = q/q and Πq,T =

z × q/q for longitudinal and transverse phonons, respectively. The graphene mass

density is ρm = 7.6× 10−7 kgm−2 and for acoustic phonons, the linear dispersion is
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given by ωq,Λ = cΛq where cL = 0.15 eVÅ and cT = 0.09 eVÅ [99]. We retain terms at

first order in the displacements in Eq. (5.2.1) to give the electron-phonon interaction

matrix,

Te-ph = iw
∑
j,q,Λ

 1 eiξ
2π
3
j

e−iξ 2π
3
j 1

√ 1

2Aρmωq,Λ

×
{
Kj

ξ ·
(
Πq,Λaq,Λe

−iωq,Λt +Π−q,Λa
†
−q,Λe

iωq,Λt
)}

ei(q+∆K0
ξ−∆Kj

ξ)·r. (5.2.3)

5.3 Collision integral for TBG

In the collision integral in Eqs. (5.1.9) and (5.1.10), the interacting potential V̂ is

sandwiched between the graphene wave functions to find the matrix elements. The wave

functions are normalised to the area of the sample A, and account for the ±∆K0
ξ/2

rotation to the top and bottom layers as described in section 2.1.1,

ψ(k) =
1√
2A

 1

sξeiξθk

 e
i

(
k±

∆K0
ξ

2

)
·r
, (5.3.1)

where s is the band index and the polar angle of momentum in the graphene plane is

given by θk = arctan(kx/ky). The equilibrium phonon distribution is given by

N0
q =

1

eωq,Λ/T − 1
(5.3.2)

and the resulting transition amplitudes for the 4 scattering processes are

∣∣∣ ⟨k|V̂ |k′, q⟩
∣∣∣2 = w2

8A

∑
j,Λ

∣∣∣1 + siξe
iξ( 2π

3
j+θ

k′) + sfξe
−iξ(θk+ 2π

3
j) + sisfξ

2eiξ(θk′−θk)
∣∣∣2

×
(
Kj

ξ ·Πq,Λ

)2
ρmωq,Λ

Nqδq,k−k′+∆Kj
ξ
, (5.3.3)
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∣∣∣ ⟨k′, q|V̂ |k⟩
∣∣∣2 = w2

8A

∑
j,Λ

∣∣∣1 + siξe
iξ( 2π

3
j+θk) + sfξe

−iξ(θk′+
2π
3
j) + sisfξ

2eiξ(θk−θ
k′)
∣∣∣2

×
(
Kj

ξ ·Π−q,Λ

)2
ρmωq,Λ

(Nq + 1) δq,k−k′+∆Kj
ξ
, (5.3.4)

∣∣∣ ⟨k, q|V̂ |k′⟩
∣∣∣2 = w2

8A

∑
j,Λ

∣∣∣1 + siξe
iξ( 2π

3
j+θ

k′) + sfξe
−iξ(θk+ 2π

3
j) + sisfξ

2eiξ(θk′−θk)
∣∣∣2

×
(
Kj

ξ ·Π−q,Λ

)2
ρmωq,Λ

(Nq + 1) δq,k′−k+∆Kj
ξ
, (5.3.5)

∣∣∣ ⟨k′|V̂ |k, q⟩
∣∣∣2 = w2

8A

∑
j,Λ

∣∣∣1 + siξe
iξ( 2π

3
j+θk) + sfξe

−iξ(θk′+
2π
3
j) + sisfξ

2eiξ(θk−θ
k′)
∣∣∣2

×
(
Kj

ξ ·Πq,Λ

)2
ρmωq,Λ

Nqδq,k′−k+∆Kj
ξ
. (5.3.6)

We simplify the contributions to the collision integral in Eqs. (5.1.9) and (5.1.10) using(
Kj

ξ ·Πq,Λ

)2
=
(
Kj

ξ ·Π−q,Λ

)2
, and convert the sum over k′ to an integral. This gives

I1 = 2π

ˆ
dk′

(2π)2

∑
q,j,Λ

w2

8

(
Kj

ξ ·Πq,Λ

)2 ∣∣∣1 + siξe
iξ( 2π

3 j+θk′) + sfξe
−iξ(θk+ 2π

3 j) + sisfξ
2eiξ(θk′−θk)

∣∣∣2
ρmωq,Λ

× δ (ϵk − ϵk′ − ωq,Λ) δq,k−k′+∆Kj
ξ
[Nqfk′ (1− fk)− (Nq + 1) fk (1− fk′)] , (5.3.7)

I2 = 2π

ˆ
dk′

(2π)2

∑
q,j,Λ

w2

8

(
Kj

ξ ·Πq,Λ

)2 ∣∣∣1 + siξe
iξ( 2π

3 j+θk′) + sfξe
−iξ(θk+ 2π

3 j) + sisfξ
2eiξ(θk′−θk)

∣∣∣2
ρmωq,Λ

× δ (ϵk − ϵk′ + ωq,Λ) δq,k′−k+∆Kj
ξ
[(Nq + 1) fk′ (1− fk)−Nqfk (1− fk′)] . (5.3.8)

Note that the collision integral vanishes when the distribution functions are the

equilibrium ones. To prove this, we can look at I1 in Eq. (5.3.7) and substitute the

equilibrium distributions, f 0
k and N0

q , to show that it goes to zero (similarly with I2),
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δ (ϵk − ϵk′ − ωq,Λ)
[
N0

qf
0
k′
(
1− f 0

k

)
−
(
N0

q + 1
)
f 0
k

(
1− f 0

k′
)]

=

(
1

eωq,Λ/T − 1

)(
1

e(ϵk−ωq,Λ)/T + 1

)(
eϵk/T

eϵk/T + 1

)
−
(

eωq,Λ/T

eωq,Λ/T − 1

)(
1

eϵk/T + 1

)(
e(ϵk−ωq,Λ)/T

e(ϵk−ωq,Λ)/T + 1

)
= 0. (5.3.9)

This means we can study the collision integral close to equilibrium distributions. If

we are not in equilibrium, we can write the electron distribution function as the

combination of the equilibrium distribution function and a perturbation as shown in

Eq. (5.1.3). This is substituted into the collision integral such that the square brackets

in I1 and I2 (Eqs. (5.3.7) and (5.3.8)) are δfk′ (Nq + f 0
k) − δfk

(
Nq + 1− f 0

k′

)
and

δfk′ (Nq + 1− f 0
k)− δfk

(
Nq + f 0

k′

)
, respectively.

Using Eq. (5.1.7), we obtain δfk = f0 (ϵk) (1− f0 (ϵk))ψk/T , and this is substituted

into the collision integral. Phonon absorption and emission is accounted for using

η = ±1, and the full collision integral [96, 97] is given by

I =

ˆ
dk′

(2π)2

∑
q,j,Λ,η

Wk′,q
∂N0 (wq,Λ)

∂wq,Λ

(f0 (ϵk)− f0 (ϵk′)) (ψk′ − ψk) ηδ (ϵk − ϵk′ + ηωq,Λ) ,

(5.3.10)

Wk′,q =
πw2

4

(
Kj

ξ ·Πq,Λ

)2 ∣∣∣1 + siξe
iξ( 2π

3
j+θ

k′) + sfξe
−iξ(θk+ 2π

3
j) + sisfξ

2eiξ(θk′−θk)
∣∣∣2

ρmωq,Λ

,

(5.3.11)

q = k − k′ + η∆Kj
ξ. (5.3.12)

We simplify the collision integral further using

f0 (ϵk)− f0 (ϵk′) = f0 (ϵk)− f0 (ϵk + ηωq,Λ) ≈ −ηωq,Λ
∂f0 (ϵk)

∂ϵk
, (5.3.13)
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to obtain

I =

ˆ
dk′

(2π)2

∑
q,j,Λ,η

Wk′,q
∂N0 (wq,Λ)

∂wq,Λ

(
−ωq,Λ

∂f0 (ϵk)

∂ϵk

)
(ψk′ − ψk) δ (ϵk − ϵk′ + ηωq,Λ) .

(5.3.14)

We substitute this into the Boltzmann equation in Eq. (5.1.2) and assume that the

phonon energy is negligible such that
∑

η δ (ϵk − ϵk′ + ηωq,Λ) ≈ 2δ(k − k′)/v, where

the graphene dispersion is ϵk = vk. This gives

eEsvcosθk =

ˆ
2

v

kFdθk′

(2π)2

∑
vectq,j,Λ

Wk′,q
∂N0 (ωq,Λ)

∂ωq,Λ

ωq,Λ (ψk′cosθk′ − ψkcosθk) . (5.3.15)

The delta function requires that k = k′ meaning we assume ψk ≈ ψk′ , and Eq. (5.3.15)

can be rewritten as

E

ψk

=

ˆ
kFdθk′

2π2esv2

∑
q,j,Λ

Wk′,q
∂N0 (ωq,Λ)

∂ωq,Λ

ωq,Λ

(
cosθk′

cosθk
− 1

)
. (5.3.16)

5.4 Analytical expression for resistivity

To find an analytical expression, we take T > ωq,Λ so that ∂N0 (ωq,Λ) /∂ωq,Λ = −T/ω2
q,Λ.

In the limit of ∆Kj
ξ ≫ k,k′, the phonon wave vector is on the same order of magnitude

as the moiré reciprocal lattice vectors, i.e. q ∼ ∆Kj
ξ. Applying these assumptions

gives us an integral that can be calculated analytically. Taking si = sf = 1 and ξ = 1

for the scattering between conduction bands in the K valley, we obtain

E

ψk

=
πw2

4

ˆ
kFdθk′

2π2esv2ρm

∑
j,η,Λ

(
Kj

ξ ·Πq,Λ

)2 ∣∣∣1 + ei(
2π
3
j+θ

k′) + e−i(θk+ 2π
3
j) + ei(θk′−θk)

∣∣∣2
× T

ω2
q,Λ

(
1− cosθk′

cosθk

)
. (5.4.1)

Using

ω2
q,Λ ≈ c2Λ(∆K)2, and

(
Kj

ξ ·Πq,Λ

)2
=


0 for Λ = L

K2 for Λ = T

, (5.4.2)
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gives the resistivity in SI units as

ρ =
9w2πK2kBℏT

8e2v2ρmc2T (∆K)2
. (5.4.3)

For high temperatures, resistivity is inversely proportional to the square of the twist

angle θ,

ρ =
9w2πkBℏT
8e2v2ρmc2T θ

2
, (5.4.4)

and is on the order of 1 Ω. Figure 5.1 shows the linear dependence of resistivity with

temperature for a twist angle of θ = 3° suggesting that the umklapp electron-phonon

process make a small contribution to resistivity in TBG.

5.5 Resistivity in TDBG

Using the same method as for TBG, we look at the resistivity generated by umklapp

electron-phonon scattering processes in TDBG by using the low-energy bilayer graphene

wave function [48], which accounts for the non-dimer sites in the system and is given by

ψ(k) =
1√
2A


1

0

0

sξei2ξθk

 e
i

(
k±

∆K0
ξ

2

)
·r
. (5.5.1)

Using the same method as for TBG in Eq. (5.4.1), E/ψk is given by

E

ψk

=
πw2

4

ˆ
kFdθk′

2π2esv2ρm

∑
j,η,Λ

(
Kj

ξ ·Πq,Λ

)2 ∣∣∣ξe−iξ(2θk′+
2π
3
j)
∣∣∣2 T

ω2
q,Λ

(
1− cosθk′

cosθk

)
.

(5.5.2)

Using Eq. (5.1.8) and following the same method as for TBG, we obtain the resistivity

as

ρ =
3w2πkBℏT
8e2v2ρmc2T θ

2
, (5.5.3)

which is also on the order of 1 Ω as shown in Fig. 5.1. This chapter concludes that

for both TBG and TDBG, the contribution to resistivity from a specific mechanism
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of electron-phonon scattering where an electron tunnels from one layer to another

layer while transferring momentum to the superlattice is unlikely to be the dominant

scattering process generating resistivity, even at room temperature. In graphene/hBN

superlattices, it was shown that umklapp electron-electron scattering was the dominant

scattering mechanism [98], which could be the subject of further study.

Figure 5.1: Resistivity as a function of temperature in TBG and TDBG with twist
angle θ = 3°. For both heterostructures, the resistivity is on the order of 1 Ω.



Chapter 6

Conclusions

The work in this thesis is dedicated to the electronic properties of few-layer twistronic

graphene. The first part of the thesis introduces the continuum-model Hamiltonian

for twisted bilayer graphene and the theory is extended to both twisted double bilayer

graphene and twisted monolayer-bilayer graphene. The resulting electronic miniband

spectra are presented for both with and without a perpendicular electric field.

Moreover, we have investigated twisted bilayer graphene at relatively large angles

of approximately 2° with the transverse magnetic focusing effect. The theoretical work

supports the experimental manifestation of micrometre-scale ballistic transport in the

system and allowed us to probe the band structure of the material. In addition, we

studied the system in the presence of a perpendicular electric field and found that

the breaking of the layer degeneracy causes minivalley splitting and allows selective

focusing originating from different minivalleys, which is of interest for using this degree

of freedom in valleytronics.

Furthermore, we looked at small-angle twisted bilayer graphene below 1° with a

large potential asymmetry between the top and bottom layers. We found that for

sufficiently large biases, two well-defined energy windows form on either side of zero

energy, which contain one-dimensional eigenmodes. We found that the perpendicular

electric field causes the AB and BA regions in the lattice to be locally gapped out

to create a network of one-dimensional states at the domain boundaries. We showed

that the topological channels do not form a percolating network, but instead, the

one-dimensional eigenmodes propagate independently in three different directions.

73



74 CHAPTER 6. CONCLUSIONS

Finally, we present an analytical calculation of umklapp electron-phonon interaction in

twisted bilayer graphene and twisted double bilayer graphene. We conclude that despite

being possible, it is unlikely that this is the dominant scattering mechanism generating

resistivity in these systems, even at room temperature. It would be interesting to study

umklapp electron-electron interactions in future works as this was shown to be the

dominant scattering mechanism in graphene/hBN superlattices.
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