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In medical studies, most common diseases including cancer are heterogeneous that
they vary in etiology, pathogensis, and prognosis, which we have limited knowledge.
Some longitudinal biomarkers include important information from the past history and
provide feedback to the future events. It is frequent to collect both repeated measures
of longitudinal processes and the time to an event of interest simultaneously. The ex-
isting literature considers heterogeneity of survival data analysis under the FMCox PH
models, joint analysis of longitudinal and time-to-event data under the standard joint
models. In Chapter 2, the joint FMCox PH models and the corresponding estimation
procedures have been proposed to deal with the longitudinal and time-to-event data
analysis, considering the heterogeneity. The consistency of the proposed estimators
has also been proved in Chapter 2. In Chapter 3, we further develop FMCox PH mod-
els with time-varying coefficients, which could explore the time-efficient associations
of the covariates of interest. The local partial likelihood technique has been reviewed.
This approach and one-step method have been used in the estimation procedures for
the proposed models in Chapter 3. And the asymptotic results for the estimators have
also been provided in Chapter 3. For these two projects, two simulation scenarios have
been provided, the first simulation scenario focuses on comparing the performance of
FMCox PH models and the proposed models in this thesis, the second simulation s-
cenario explains the performance of the proposed models in more general cases. And
the proposed joint FMCox PH models and the FMCox PH models with time-varying
coefficients have also been used for the AIDS study analysis.
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Chapter 1

Introduction

1.1 Background

It is common to collect both longitudinal data and life time data from the same medical

study. These two types of data are often associated with each other in some ways.

Practical interests include the trajectory of longitudinal biomarkers and the failure

time process, together with their interrelationships. For example, trajectory of CD4

counts and time to AIDS are always collected simultaneously, and in studies of prostate

cancer trajectory of Prostate Specific Antigen (PSA) and time to disease recurrence

are always obtained at the same time. Wu et al. (2012) proposed several situations

where the joint analysis of longitudinal and time-to-event data are needed:

1. survival data analysis including time-dependent covariates with measurement

error (Wulfsohn and Tsiatis, 1997);

2. longitudinal data analysis including informative dropout (Dupuy and Mesbah,

2002);

3. the longitudinal process and event time process are linked through latent com-

ponents (Henderson et al., 2000).

For these different issues, the main objective and corresponding approaches are differ-

ent. Particular emphasis is placed on the first situation in this thesis.

Most common diseases including cancer are heterogeneous that they vary in etiol-

ogy, pathogenesis, and prognosis, which we have limited knowledge. For example, the

12



1.2. METHODS FOR LONGITUDINAL AND TIME-TO-EVENT DATA 13

patients may have different prognoses to the same treatment, but we usually do not

know why some patients are more responsive to a certain treatment than the others.

In the medical research, a highly plasusible and widely accepted reason is the existence

of various subtypes of a perceived same disease (Curtis et al., 2012; Koboldt et al.,

2012; Schlicker et al., 2012).

Therefore, the risk factors and treatment responses may differ among differen-

t disease subtypes, identifying disease subtypes and applying the certain treatments

are important objectives in precision medicine. For example, Roustaei et al. (2018)

proposed an approach to study the latent heterogeneous problem in CPCRA study,

compared with joint latent class model (JLCM) proposed by Liu et al. (2015) and

separate approach. In the clinical trial from the Terry Beirn Community Programs

for Clinical Research on AIDS (CPCRA) study (Abrams et al., 1994), 467 patients in-

fected with the human immunodeficiency virus (HIV) were randomized into treatment

daddanoisene (ddI) and zalcitabines (ddC). In this study, repeated measures of CD4

cell counts and the time of infection or death were recorded at the same time. The

main objective is estimating the association between CD4 count and death rate, and

whether the given treatment have different effects on the patients in different latent

classes. And this real data will be analyzed in this thesis as well.

In the following sections, methods for longitudinal and time-to-event data and

FMCox PH models are introduced. Evaluating the parameters which link the time-

independent covariates, biomarker measures and event time is of primary interest.

1.2 Methods for Longitudinal and Time-to-Event

Data

For the first situation mentioned before, the longitudinal data are observed as time-

dependent covariates with measurement errors in the event time process. Various

approaches have been proposed e.g. likelihood approach (Tsiatis et al., 1995; Wulf-

sohn and Tsiatis, 1997), conditional score method (Tsiatis and Davidian, 2001) and

corrected score method (Wang, 2006). As for the second situation, the dependency

of dropout and censoring on the longitudinal response need to be properly addressed

in the longitudinal process. And the shared parameter model (Vonesh et al., 2006) is
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the most useful tool for the last situation in which the potential association between

the longitudinal and time-to-event process can be fully characterized. This section

covers the notations, definition, important concepts and some properties for the first

situation, laying the groundwork for the next sections.

1.2.1 Analysis for time-to-event data

Assuming that the event time T̃ is continuous, the survival function which is primarily

used to describe the distribution of T̃ , is defined as

S(t) = Pr(T̃ > t) =

∫ ∞
t

f(s)ds,

where f(·) denotes the corresponding probability density function. Another important

function in survival analysis is the hazard function, which describes the instantaneous

risk for an event in the time interval [t, t+ dt) and is defined as

λ(t) = lim
dt→0

Pr(t ≤ T̃ < t+ dt | T̃ ≥ t)

dt
, t > 0,

which can be written as

λ(t) = lim
dt→0

Pr(t ≤ T̃ < t+ dt)

dt · S(t)
=
f(t)

S(t)
= −S

′(t)

S(t)
.

The survival function can be expressed in terms of the risk function as

S(t) = exp{−Λ(t)} = exp

{
−
∫ t

0

λ(s)ds

}
, (1.1)

where Λ(·) is the cumulative hazard function which describes the accumulated risk up

until time t.

Ideally, the true event time is known, in this case all the information is contained

in the event time T̃ . But in practice, censoring must be taken into account. For each

subject i, let Ti = min(T̃i, Ci) be the observed event time, with T̃i being the true event

time and Ci being the right-censored event time. δi = I(T̃i ≤ Ci) indicates whether or

not the observed time Ti is censored.

In general, estimation of the distribution of T̃ using the available information

{T̃i, Ci} is the main objective in survival analysis. The most well-known nonparametric

estimator of survival function was proposed by Kaplan and Meier (1958), which does
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not need any assumptions for the underlying distribution of the event time. Another

nonparametric estimator named the Nelson-Aalen estimator ((Aalen, 1976; Altshuler,

1970; Fleming and Harrington, 2011; Nelson, 1972)) is used for the cumulative hazard

function.

Kaplan-Meier estimator

Let t1 < t2 < ... < tk−1 < tk denote the observed event times in one sample. The prob-

ability of survival time could be written as the product of the conditional probabilities,

using the law of total probability:

Pr
(
T̃ > t

)
= Pr

(
T̃ > t | T̃ > tk

)
× Pr

(
T̃ > tk | T̃ > tk−1

)
× . . .

Using this expansion and accounting for the censoring, the survival probability at

the unique event time could be obtained:

ŜKM(t) =
∏
i:ti≤t

ri − di
ri

, (1.2)

where ri is the number of subjects at risk at ti and di is the number of events at

ti. The variance of ŜKM(t) could be calculated by Greenwood’s formula ((Greenwood

et al., 1926; Kalbfleisch and Prentice, 2011)). And a better approach is to calculate

a confidence interval for log Λ(t) so that the confidence interval for S(t) could be

proposed.

Nelson-Aalen estimator

Using the same notation, the similar nonparametric estimator for the cumulative haz-

ard function was proposed:

Λ̂NA(t) =
∑
i:ti≤t

di
ri
. (1.3)

Breslow (1972) suggested the following estimator for the survival function based

on the relation (1.1) and Nelson-Aalen estimator:

ŜB(t) = exp
{
−Λ̂NA(t)

}
=
∏
i:ti≤t

exp (−di/ri) . (1.4)

These two nonparametric estimators of the survival function are asymptotically equiv-

alent.
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Cox PH models

Although the nonparametric estimators introduced before have provided robust sta-

tistical inference for the time-to-event data, the event time usually depends on some

covariates of interest in practice. Cox (1972) proposed the proportional hazards mod-

els (Cox PH models) in the modern survival analysis, which assumes that covariates

have effect on the hazard for an unique event:

λi(t) = h0(t) exp
(
ηTXi

)
, (1.5)

where Xi = (xi1, ..., xip)
T denotes the p−vector of covariates which are assumed to be

associated with the hazard of each subject, η is the corresponding regression coeffi-

cients and h0(t) is called baseline hazard function.

From the PH Cox model (1.5), the assumptions of the distribution of the event time

T̃ are included in the specification of the baseline hazard function, e.g. the baseline

hazard function is h0(t) = φσtt
σt−1 if T̃ follows the Weibull distribution. If the baseline

hazard function has a specific assumption, the estimation of all the parameters θ in the

given model (1.5) could be obtained by maximizing the corresponding log-likelihood

function:

`(θ) =
n∑
i=1

[δi log f (Ti; θ) + (1− δi) logSi (Ti; θ)] , (1.6)

which could be rewritten in terms of the hazard function, using the relation (1.1):

`(θ) =
n∑
i=1

[
δi log λi (Ti; θ)−

∫ Ti

0

λi(s; θ)ds

]
. (1.7)

However, Cox (1972) proposed another estimation method for the parameters of

interest η, which did not require the specific assumption of the baseline hazard function

h0·, that is, without specifying the distribution of event time T̃ . In this case, the

semiparametric model (1.5) has been widely used, and the parameters η could be

estimated by maximizing the partial log-likelihood function:

p`(η) =
n∑
i=1

δi

η>xi − log

∑
Tj≥Ti

exp
(
η>xj

)
 . (1.8)

1.2.2 Analysis for longitudinal data

As described above, estimating the parameters which characterize the association be-

tween the event occurrences and covariates of interest is usually the main objective in
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time-to-event data analysis. The methods introduced in section 1.2.1 are used in the

case just considering time-independent covariates, e.g. gender or medical status mea-

sured at baseline observation time. As for the case which includes the time-dependent

covariates, the observations of the covariates are always collected intermittently.

If the repeated measurement of the time-dependent covariates are available, the

observations are appropriate to be used in the analysis of time-to-event data (Fisher

and Lin, 1999). There are two common situations used for this problem. In one

situation, the event time is associated with the current values of the time-dependent

covariates, which could be assessed by the longitudinal biomarker (Prentice, 1989). In

another situation, the event time is associated with the time-dependent covariates just

based on the random effects which are used for characterizing the longitudinal data

(Tsiatis and Davidian, 2001; Wang, 2006). In order to characterize the trajectory of

the longitudinal covariate, linear mixed effects models are most useful.

For each subject i, let Yi = (Yi1, ..., Yini)
T denote the response vector, Xi denote

the design matrices for fixed effects and Zi denote the design matrices for random

effects. Assuming β as the coefficients for the fixed effects and αi as the random

effects for each subject i, the linear mixed effects model was proposed by Laird and

Ware (1982):

Yi = Xiβ + Ziαi + εi, i = 1, . . . ,m,

where εi = (εi1, . . . , εini)
T are usually assumed to follow multivariate normal distribu-

tion N(0,Σi), and is independent of the random effects αi.

1.2.3 Analysis for longitudinal and time-to-event data

Based on the linear mixed-effects models and Cox PH models presented in the pre-

vious two sections, the joint modeling framework for longitudinal and time-to-event

data (Faucett and Thomas, 1996; Henderson et al., 2000; Tsiatis and Davidian, 2004;

Wulfsohn and Tsiatis, 1997) was proposed to characterize the association between the

biomarkers and event time.

Let Zi(t) be the true and unobserved measurement of longitudinal biomarker at

time t. The Cox PH model with time-independent and time-dependent covariates

could be written as:

λi(t) = h0(t) exp
{
ηTxi + γZi(t)

}
, (1.9)
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where γ quantifies the strength of the association between the biomarker and the risk

of the event and xi is the vector of baseline covariates.

Therefore, to measure the effect of the longitudinal covariate to the event time, the

unobserved covariate Zi(t) needs to be estimated through the observed longitudinal

data Yi, using the linear mixed effects model:

Yi(t) = Zi(t) + εi(t)

= xTi (t)β + zTi (t)αi + εi(t), εi(t) ∼ N
(
0, σ2

)
,

(1.10)

where xi(t) and β denote the fixed-effects part, zi(t) and αi denote the random-effects

part. Assuming that the event time and the longitudinal observations for each subject

are independent if the distribution of the random effects αi is known, these two models

are associated through the joint distribution:

f (yi, Ti, δi) =

∫
f (yi | αi)

{
λ (Ti | αi)δi S (Ti | αi)

}
f (αi) dαi, (1.11)

where αi is the vector of random effects, Ti = min(T̃i, Ci) is the observed event time,

δi = I(T̃i ≤ Ci) indicates whether or not the observed time Ti is censored, f(·) is the

density function and S(·) is the survival function.

1.3 FMCox PH Models

Finite mixture models are typically used to deal with heterogeneity in many fields

by assuming a separate distribution for each sub-class (Fraley and Raftery, 2002;

McLachlan and Basford, 1988; Muthén and Masyn, 2005; Qin and Self, 2006; Wedel

and DeSarbo, 1995). A finite mixture model is a statistical model that assumes the

presence of latent classes, within an overall population. And every latent class could

be fit with its own model. It is natural to develop Finite mixture Cox PH model for

time-to-event data. Eng and Hanlon (2014) used the EM algorithm and proposed a

Cox-assisted clustering algorithm for FMCox PH model. And this mixture relaxes the

PH assumption that hazards are proportional within their given clusters.

1.3.1 Model definition

Let (Ti, δi, xi), i = 1, ..., n be an independent right-censored sample, T = (T1, ..., Tn),

∆ = (δ1, ..., δn) and xi denote the vectors of observed event time, indicators and
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regression covariates. To account for heterogeneity, each subject is assumed to arise

from the K latent classes with probability πk, k = 1, ..., K,
∑

k πk = 1. Therefore, the

FMCox PH models are proposed by assuming Cox PH model within each sub-class k,

so that the covariates x effects the event time in different latent class k log-linearly

via a class-specific hazard:

log λk(t | x) = log h0k(t) + ηTk x. (1.12)

Recall that the right-censored observation following Cox PH model has the density

function as

fk(T , δ | x) =
[
h0k(T ) exp

(
ηTk x

)]δ
exp

[
−H0k(T ) exp

(
ηTk x

)]
, (1.13)

where h0k(·) and H0k(·) are the baseline hazard function and baseline cumulative

hazard function for the latent k-th class. Therefore, the joint density function of

(Ti, δi) for each subject i could be written as

f (Ti, δi | xi) =
K∑
k=1

πkfk (Ti, δi | xi) . (1.14)

The mixture likelihood may be written as

f(T,∆ | x) =
n∏
i=1

K∑
k=1

πkfk (Ti, δi | xi) . (1.15)

The log-form of the mixture likelihood based on the observed data is,

logf(T,∆ | x) =
n∑
i=1

log
K∑
k=1

πkfk (Ti, δi | xi) . (1.16)

In order to obtain the MLE estimators of the fixed effects ηk for k = 1, 2, ..., K, this

observed log-form mixture density function need to be maximized intuitively. But the

score function from it is difficult to calculate, which is similar to the case of Guassian

mixture distribution. Therefore, the EM-algorithm (Dempster et al., 1977) can be used

to find the MLEs of ηk, if the unobserved latent indicator variable cik according to

whether or not the i-th subject comes from the k-th latent class, is known. Assume that

the latent class U = (U1, U2, ..., Un), where Ui ∼ Multinomial(π), Ui ∈ {1, 2, . . . , K}

and cik = 1{Ui=k}, are observed, the complete data likelihood of the complete data

(Ti, δi, xi, Ui) could be written as:
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f(T,∆ | x, U) =
n∏
i=1

K∏
k=1

[πkfk (Ti, δi | xi)]cik , (1.17)

where U = (cik)n×K is a n × K matrix with all elements either 0 or 1. Eng and

Hanlon (2014) proposed maximizing this mixture density function via the EM algo-

rithm framework (Dempster et al., 1977) to estimate the regression coefficients ηk and

baseline hazard functions h0k(·).

Therefore, the interpretation of the FMCox PH model is organizing observations

into clusters which don’t have a known prior. This type of clustering should not

be confused with the case where the observations are obtained from several known

sources e.g. different hospitals. Instead, observations are gathered according to their

best-fitting subclass model.

1.3.2 Cox-assisted clustering algorithm

Based on the observed data (Ti, δi, xi) for each subject i, let

i. the parameters of interest as the mixing proportions π = (π1, π2, . . . , πK), the

baseline hazard functions h = {h01(t), . . . , h0K(t)} and the coefficient vectors

η = (η1, . . . , ηK);

ii. observed event time T = (T1, ..., Tn), indicator variables ∆ = (δ1, ...., δn) and

time-independent covariates vectors x = (x1, ..., xn).

If we know the classification parameters cik = 1{Ui=k} i.e. whether the i-th subject

comes from the k-th latent class, the mixture likelihood (1.17) from complete data

with mixing parameters π and class-specific parameters h and η could be separated

into a mixing distribution part and a component distribution part as

log f(π,h,η;T ,∆,U | x) =
n∑
i=1

K∑
k=1

cik log πk +
n∑
i=1

K∑
k=1

cik log fk (Ti, δi | xi)

= logL1(π;U) + logL2(h,η;T ,∆ | U ,x),

where the first part is simply

logL1(π;U) =
K∑
k=1

(
n∑
i=1

cik

)
log πk, (1.18)
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and the second part is

logL2(h,η;T ,∆ | U ,x) =

K∑
k=1

n∑
i=1

[δicik log h0ki + δicikx
T
i ηk − cikH0ki exp

(
xTi ηk

)
].

(1.19)

In order to obtain the MLE of the parameters of interest, the EM approach is needed

here, which has the main idea that plugging ĉik = E (cik | Ti, δi,x) into the complete

data mixture density function (1.17). Supposing that the current values of the pa-

rameters of interest are π
(m)
k , h

(m)
0ki , H

(m)
0ki and η

(m)
k at the m-th iteration. The proposed

algorithm proceeds as follow:

E-step the conditional expectation of c
(m+1)
ik is:

ĉik = E (cik | Ti, δi,x) =
π
(m)
k

[
h
(m)
0ki exp

(
xTi η

(m)
k

)]δi
exp

[
−H(m)

0ki exp
(
xTi η

(m)
k

)]
∑

k′ π
(m)
k′

[
h
(m)
0k′i exp

(
xTi η

(m)
k′

)]δi
exp

[
−H(m)

0k′i exp
(
xTi η

(m)
k′

)] ,
(1.20)

which is calculated according to the application of Bayes rule. Note that the

update of the conditional expectation of cik only depends on the current estimates

of π and η, if the baseline hazard functions are assumed to be the same across

clusters.

M-step update of the mixing proportions π is straightforward:

π
(m+1)
k =

∑n
i=1 ĉik
n

. (1.21)

To update the unspecific baseline hazard function h, the profile estimates which

are similar to Breslow (1974) have been proposed:

h
(m+1)
0k (Ti) =

ĉik∑
j:Tj≥Ti ĉjk exp

(
xTj η

(m+1)
k

) , (1.22)

H
(m+1)
0k (Ti) =

∑
l:Tl≤Ti

ĉlk∑
j:Tj≥Tl ĉjk exp

(
xTj η

(m+1)
k

) . (1.23)

Therefore, the profile objective is a partial likelihood weighted by the conditional

expectation ĉik:

logL2(h(η), η;T, δ, Û | x) =

K∑
k=1

n∑
i=1

δi

ĉikxTi ηk − log
∑

j:Tj≥Ti

exp
[
ĉjkx

T
j ηk
] .

(1.24)
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Finally, iterates between the E-step and M-step until the increment in log mixture

density function is small.

The reasonable initial values for the parameters of interest are important in the

EM algorithm, and have effects on the convergence speed. Eng and Hanlon (2014)

proposed setting initial value for every classification indicator variable cik randomly,

using multiple starts and picking the best fitting results.

Classification rule

Given K and the corresponding parameters of interest π, η and h obtained from the

Cox-assisted clustering algorithm, the sub-population that a sample (T, δ, x) belongs

to could be determined by

argmax
k
{f (π,h,η; cik = 1 | (T , δ,x))} ,

where

f (π,h,η; cik = 1 | (T , δ,x)) =
πkfk (T, δ | x, h0k(·), ηk)∑K

k′=1 πkfk′ (T, δ | x, h0k′(·), ηk′)
is the posterior probability that the sample belongs to the k-th sub-class, given the

parameters of interest.

1.4 Structure of the Thesis

In Chapter 1, the background of longitudinal and time-to-event data has been intro-

duced, and literature for longitudinal data analysis, survival data analysis and joint

modeling of these two outcomes has been reviewed at the same time. However, the

latent heterogeneity arise in the survival data analysis and many approaches have been

proposed to focus on the association between the event time and some covariates of

interest and deal with the effects of the heterogeneity. FMCox PH models are one

of the most common models to be used in this case. FMCox PH models and the

corresponding estimation procedures also have been introduced in Chapter 1.

Based on the background of analysis for longitudinal and time-to-event data and

FMCox PH models, it is natural to notice that the latent heterogeneity arise in the

longitudinal and time-to-event data as well. So the joint FMCox PH models have been

proposed in Chapter 2, which could estimate the association between both the event
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time and the time-independent covariates of interest and the longitudinal processes.

Considering the complexity of the standard likelihood technique used for the proposed

models, conditional score method has been proposed in the estimation procedures in

Chapter 2, which did not need any assumptions on the random effects. The consistency

of the proposed estimators has also been proved in Chapter 2. And two simulation

scenarios have been provided, the first simulation scenario focuses on comparing the

performance of FMCox PH models and the proposed models in this thesis, the second

simulation scenario explains the performance of the proposed models in more general

cases. At the end of Chapter 2, the proposed joint FMCox PH models have been used

for the AIDS study.

In Chapter 3, we further develop FMCox PH models with time-varying coefficients,

which could explore the time-efficient associations of the covariates of interest. The lo-

cal partial likelihood technique has been reviewed. This approach and one-step method

have been used in the estimation procedures for the proposed models in Chapter 3.

And the asymptotic results for the estimators have also been provided in Chapter 3.

Two simulation scenarios have been provided, the first one focuses on the performance

compared with FMCox PH models, the second one explains the performance of the

proposed models in more general cases. At the end of Chapter 3, the proposed FM-

Cox PH models with time-varying coefficients have also been used for the AIDS data

analysis.

In Chapter 4, we give a full discussion of the new models proposed in this thesis,

including the practical problems and limitations. Further extension and future work

is also addressed.



Chapter 2

Conditional Score Method for

FMCox PH Model with Multiple

Longitudinal Covariates Measured

with Error

In many medical studies, the repeated measures of a biomarker and the event time

of interest always are recorded simultaneously, and unobserved heterogeneity will also

make effects on the time-to-event data analysis. As been reviewed in chapter 1, the

existing literature considers heterogeneity of time-to-event data under the FMCox

PH model (Eng and Hanlon, 2014), joint analysis of longitudinal and time-to-event

data under the standard joint models (Faucett and Thomas, 1996; Henderson et al.,

2000; Tsiatis and Davidian, 2004; Wulfsohn and Tsiatis, 1997). It is natural to extend

the FMCox PH model to the case with multiple time-dependent covariates measured

with error, where the time-dependent covariates could be regarded as the longitudinal

processes or the biomarkers and be modeled based on the longitudinal data analysis.

So in this chapter, the FMCOx PH models with both time-independent covariates and

time-dependent covariates measured with error (called the joint FMCox PH models in

this thesis) and the estimation procedure for the proposed models will be presented.

The rest of this chapter is organized as follows, the definitions and notations of the

joint FMCox PH models will be introduced at first in Section 2.1. The proposed joint

modeling framework for longitudinal and time-to-event data with latent heterogeneity,

24
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consists of longitudinal sub-model, Cox PH sub-model and latent classification indi-

cator variable. Section 2.2 describes the estimation procedure and the large sample

property of the proposed estimators. Simulation study and real data analysis are p-

resented in Section 2.4 and 2.5. Finally, the discussion of this work will be given in

Section 2.6.

2.1 Notations and models

Longitudinal sub-model

For each subject i, i = 1, ..., n, assume that the L longitudinal covariate process Zil(u),

l = 1, ..., L, follow the following models,

Zil(u) = αTilfl(u), (2.1)

where fl(u) is a (ql×1) vector of functions of time u, αil is a (ql×1) vector of random

effects, and fl(u) and αil may be different for each l.

The longitudinal covariate process Zil(u) which will be regarded as the time-

dependent covariates in the Cox PH sub-models, are not observed directly. Instead,

we have the longitudinal measurements Wil(tilj) for the l-th covariate at time tilj,

j = 1, 2, ...,ml, and use the the linear mixed effects models (Laird and Ware, 1982)

Wil(tilj) = Zil(tilj) + eilj, (2.2)

where measurement error eilj are assumed to be normally distributed with 0 mean,

variance σll, for l = 1, ..., L, j = 1, ...,mil. For the different longitudinal measurements

Wil(tilj) and Wil′(til′j′), l, l
′ = 1, ..., L, j = 1, ...,mil, j

′ = 1, ...,mil′ , let cov(eilj, eil′j′) =

σll′I(tilj = til′j′), where σll′ is the covariance between the measurement errors eilj and

eil′j′ at the same time point. Otherwise, we assume that all covariance between the

measurement errors at different time point equals 0.

Survival sub-model

For each subject i, let Ti = min(T̃i, Ci) be the observed event time, with T̃i being the

unobserved true event time and Ci being the right censored event time. δi = I(T̃i ≤ Ci)
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indicates whether or not the observed time Ti is censored. The Cox PH model with

time-independent and time-dependent covariates for subject i in the k-th sub-class is:

λik(u) = lim
du→0

du−1Prk{u ≤ Ti < u+ du|Ti ≥ u,αi,xi,Ui, ei(u), ti(u)}

= h0k(u) exp{γTkG(u,αi) + ηTk xi}.
(2.3)

Here, h0k(u) is an unspecified baseline hazard function of the k-th sub-class;G (u, αi) =

G(u)αi = (αTi1f1(u), ...,αTiLfL(u))T is a (s×1) vector whose elements are functions of

u and αi ; for k-th sub-class γk and ηk are the corresponding (s× 1) and (p× 1) effect

parameters of time-dependent covariatesG (u, αi) and time-independent covariates Zi,

respectively; ti(u) = (tilj 6 u; l = 1, . . . , L) denotes the observation times up to and

including time u; and ei(u) = (eilj : tilj 6 u; l = 1, . . . , L). Our main interest focuses

on estimation of every γk and ηk for the different sub-classes.

Latent variable

Let U = (cik)n×K be a n×K matrix with all elements either 0 or 1:

cik =

1 if subject i belongs to sub-class k

0 otherwise
,

with the mixing probability:

P{cik = 1} = πk and
K∑
k

πk = 1.

Joint FMCox PH models

Based on the observed data (Ti, δi,xi,Wi), the subject i belongs to sub-class k follows

a Cox PH model, and has the following density function, under the conditional inde-

pendent assumption that the longitudinal observations Wi and observed event time

Ti are independent if the distribution if the random effects αi is known (Tsiatis and

Davidian, 2004):

fk(Ti, δi,Wi|xi) =

∫
{λik(Ti|αi,xi)δi exp[−Λik(Ti|αi,xi)]}f(Wi|αi)p(αi)dαi. (2.4)

Therefore the log-likelihood based for the observed data, which is similar to the

FMCox PH models, could be obtained as,
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lobs(Π,H ,Θ;T ,∆,W |X) =
n∑
i=1

log
K∑
k=1

πkfk (Ti, δi,Wi|xi) . (2.5)

It is difficult to optimize this observed log-likelihood function w.r.t. the parameters

γk and ηk for k-th sub-class. The EM algorithm is helpful if we know the unobserved

latent indicator random variables cik. Then the complete log-likelihood is,

lc(Π,H ,Θ;T ,∆,W ,U |X) =
n∑
i=1

K∑
k=1

cik log πk +
n∑
i=1

K∑
k=1

cik log fk (Ti, δi,Wi|xi) .

(2.6)

2.2 Inference procedure and large sample property

However, since the joint likelihood function may be complicated, a main challenge for

the standard likelihood method is computation. Note that the density function (2.4)

for k-th sub-class will be a integral w.r.t. the random effects, which makes maximizing

the complete log-likelihood (2.6) is also too complex. The estimation procedures of

the FMCox PH model (1.12) can not be directly used for the joint FMCox PH model

proposed in this chapter. To remove the complication which comes from the latent

random effects, the conditional score method (Tsiatis and Davidian, 2001) which does

not need any distributional assumption on the random effects,is proposed to replace

the partial likelihood weighted estimations in the M-step of the cox-assisted clustering

algorithm described in section 1.3.2.

This approach exploits the conditional score idea of standard joint models for lon-

gitudinal and time-to-event data Tsiatis and Davidian (2001). And this idea proposed

the unbiased estimating equations for the fixed effects in every sub-class are based

on treating the random effects αi as ‘nuisance parameters’ and conditioned on an

appropriate ‘sufficient statistic’.

2.2.1 EM-Algorithm with conditional score method

Before introducing the iteration steps in the algorithm, the ‘sufficient statistic’ which

replace the random effects in the calculations need to be proposed at first.
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‘sufficient statistic’

Assume that ω = {σll′ : l ≥ l′} is known. Define the at risk process:

Yi(u) = I (Ti > u,mil(u) > ql, l = 1, . . . , L) .

Conditional on Yi(u) = 1, αi, Zi, ti(u), define the counting process increment be

dNi(u) = I (u 6 Ti < u+ du, δi = 1,mil(u) > ql, l = 1, . . . , L) .

And for the subject i, which is assumed to be only in one sub-class, the counting

process increment dNi(u) is distributed as Bernouli with probability (for k-th sub-

class), based on (2.3):

Prk(dNi(u) = 1|Yi(u) = 1, cik = 1,αi,Zi, ti(u)) = h0k(u)du exp
{
γTkG(u)αi + ηTk xi

}
.

Therefore we can rewrite density function for subject i in sub-class k (i.e. (Ti, δi,xi)

in sub-class k), if the unobserved random effectsαi are known, the new density function

for (Ti, δi,xi) i.e. fk (Ti, δi|xi,αi) is:

fk (Ti, δi|xi,G(u,αi)) =∏
all grid points u

Prk{dNi(u) = 1}dNi(u)[1− Prk{dNi(u) = 1}]1−dNi(u).
(2.7)

Let α̂il(u) be the ordinary least-squares estimator of αil based on all the longitudinal

data measured before time u for the l-th covariate for subject i.

In order to get α̂il, we need at least ql observations (which is similar to the ordinary

least square problem, the rank of the design matrix is ql,i.e. mil(u) ≥ ql for each l.

Note that mil(u) denote the number of time points in til(u).

Define

Fil =


fTl (til1)

fTl (til2)

...

fTl (tilmil(u))

 =⇒ Zil = Filαil, (2.8)

where fl(u) is a (ql × 1) vector of functions of time u and Fil is a (mil(u) × ql)

design matrix, Zil is a mil(u)-vector and αil is a ql-vector. and we have:

αi =


αi1

αi2

...

αiL

 (2.9)
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is a q-vector, where q =
∑

k ql.

For ∀l, i.e. any random effect αil of time-dependent covariate Zil(u), we can

calculate the least-square estimator of αil, and obtain the following properties:

E(α̂il) = αil

V ar(α̂il) = σll{F T
il Fil}−1F T

il IillFil{F T
il Fil}−1,

where Iill is a mil(u)×mil(u) matrix whose (j, j′) entry is I(tilj = tilj′), for j, j′ =

1, ...,mil(u). As for any ∀l and l′ we have:

Γill′(ω)ql×ql′ = cov(α̂il, α̂il′) = σll{F T
il Fil}−1F T

il Iill′Fil′{F T
il′Fil′}−1,

where ω = {σll′ : l > l′} and Iill′ is a mil(u)×mil′(u) matrix whose (j, j′) entry is

I(tilj = til′j′), for j = 1, ...,mil(u), j′ = 1, ...,mil′(u).

For G(u,αi) = G(u)αi, we can obtain that G(u)α̂i have the normal distribution

N{G(u)αi,Σi(u, ω)}, where the covariance matrix of G(u)α̂i is G(u)Γi(ω)GT (u),

and Γi(ω) is the covariance matrix of α̂i:

Γi(ω)q×q =


Γi11(ω) Γi12(ω) · · · Γi1L(ω)

Γi21(ω) Γi22(ω) · · · Γi1L(ω)
...

...
. . .

...

ΓiL1(u, ω) ΓiL2(ω) · · · ΓiLL(ω)

 .

The joint conditional probability mass function of {dNi(u),G(u)α̂i(u)} in k-th

sub-class, given {Yi(u) = 1, cik = 1,αi,Zi, ti(u)} up to order du:

Prk{dNi(u) = r|Yi(u) = 1, cik = 1,G(u)αi(u),αi,xi, ti(u)}

× Pr{G(u)α̂i(u) = G(u)αi(u)|Yi(u) = 1, cik = 1,αi,xi, ti(u)}

= exp
{
STik(u, γk, ω)Σ−1i (u, ω)G(u)αi

} {h0k(u)du exp
(
ηTk xi

)}dNi(u)
(2π)s/2 |Σi(u, ω)|1/2

× exp

{
−α̂

T
i G

T (u)Σ−1i (u, ω)G(u)α̂i +αTi G
T (u)Σ−1i (u, ω)G(u)αi

2

}
,

where Sik(u,γk, ω) = G(u)α̂i + dNi(u)Σi(u, ω)γk, is a complete sufficient statistic

for αi in k-th subtype. It suggests that conditioning on Sik(u,γk, ω) would remove

the dependence of the conditional hazard for k-th subtype on the random effects and

proof will be presented in the rest of this section.
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Theorem 2.2.1. The density function conditional on the sufficient statistic Sik(u,γk, ω)

is independent of the random effects α.

Proof. Rewriting G(u)α̂i as the following form:

G(u)α̂i = Sik(u,γk, ω)− dNi(u)Σi(u, ω)γk

Therefore, the joint conditional p.m.f could be written as:

{h0k(u)du exp(ηTk xi)}dNi(u) ×Kk{u,αi, ω,γk}×

exp{− [Sik(u,γk, ω)− dNi(u)Σi(u, ω)γk]
TΣ−1i (u, ω)[Sik(u,γk, ω)− dNi(u)Σi(u, ω)γk]

2
}
,

where

Kk{u,αi, ω,γk} = exp{2STik(u,γk, ω)Σ−1i (u, ω)G(u)αi −αTi GT (u)Σ−1i (u, ω)G(u)αi
2

}

× (2π)−s/2|Σ−1i (u, ω)|−1/2.

Hence, for each sub-class k, the information inαi have been represented inKk{u,αi, ω,γk}.

Therefore, we have the probability for the counting process increment in sub-class k:

Prk{dNi(u) = 1|Sik(u,γk, ω),xi, ti(u), Yi(u), cik = 1}

=

∫
Prk{dNi(u) = 1,Sik(u,γk, ω)|αi,xi, ti(u), Yi(u), cik = 1}p(αi|xi, ti(u), Yi(u))dαi

num+
∫
Prk{dNi(u) = 0,Sik(u,γk, ω)|αi,xi, ti(u), Yi(u), cik = 1}p(αi|xi, ti(u), Yi(u))dαi

The numerator of the probability is

{h0k(u)du exp(ηTk xi)} ×
∫
Kk{u,αi, ω,γk}p{αi|xi, ti(u), Yi(u)}dαi × Yi(u)×

exp{− [Sik(u,γk, ω)−Σi(u, ω)γk]
TΣ−1i (u, ω)[Sik(u,γk, ω)−Σi(u, ω)γk]

2
}.

The denominator of the probability is

num+

∫
Kk{u, αi, ω,γk}p{αi|xi, ti(u), Yi(u)}dαi

× Yi(u)× exp{−S
T
ik(u,γk, ω)Σ−1i (u, ω)Sik(u,γk, ω)

2
}.

Let

Ak = exp{−S
T
ik(u,γk, ω)Σ−1i (u, ω)Sik(u,γk, ω)

2
}Yi(u)

×
∫
Kk{u,αi, ω,γk}p{αi|xi, ti(u), Yi(u)}dαi,

Bk = {h0k(u) exp(ηTk xi)} exp{2STik(u,γk, ω)γk − γTk Σi(u, ω)γk
2

}
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up to order du, we have:

Prk{dNi(u) = 1|Sik(u, γk, ω),xi, ti(u), Yi(u), cik = 1} =
Bk × du

1 +Bk × du
× Yi(u)

= [1− 1

1− (−Bk × du)
]× Yi(u)

= Bk × du× Yi(u) + o(du)

Therefore, the hazard function for subject i in the k-th subtype, conditioning on

Sik(u, γk, ω) and up to order du, is:

λik(u) = lim
du→0

du−1Prk{dNi(u) = 1|Sik(u,γk, ω),xi, ti(u), Yi(u), cik = 1}

= {h0k(u) exp(ηTk xi)} exp{2STik(u,γk, ω)γk − γTk Σi(u, ω)γk
2

}Yi(u).

(2.10)

The probability for the counting process increment in sub-class k is:

Prk{dNi(u) = 1|Sik(u,γk, ω),xi, ti(u), Yi(u), cik = 1}

= {h0k(u)du · exp(ηTk xi)} exp{2STik(u,γk, ω)γk − γTk Σi(u, ω)γk
2

}Yi(u).
(2.11)

The density function fk (Ti, δi|xi,αi) could be rewritten as the following form con-

ditioning on the ‘complete sufficient statistic’ Sik(u,γk, ω):

fk(dNi(u)|Sik(u,γk, ω),xi)

=
∏

all grid points u

Prk{dNi(u) = 1|Sik(u,γk, ω),xi, ti(u), Yi(u), cik = 1}dNi(u)

× [1− Prk{dNi(u) = 1|Sik(u,γk, ω),xi, ti(u), Yi(u), cik = 1}]1−dNi(u),

(2.12)

which is independent of the random effects.

Estimation procedures in iterations

From the results above, we can obtain the complete log-likelihood conditional on the

‘complete sufficient statistic’ Sik(u,γk, ω):

`(Π,H ,γ,η;T ,∆,U |X,F ) =
n∑
i=1

K∑
k=1

cik[log πk + log fk(dNi(u)|Sik(u,γk, ω), xi)].

It is natural to consider the EM algorithm to estimate the parameters. Given the

parameter estimates in the m-th iteration:
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E-Step compute U (m+1) according to the posterior probability:

c
(m+1)
ik =

π
(m)
k f

(m)
k (dNi(u)|Sik(u,γk, ω),xi)∑K

k′=1 π
(m)
k′ f

(m)
k′ (dNi(u)|Sik(u,γk, ω),xi)

.

M-Step Update Π(m+1) according to

π
(m+1)
k =

∑n
i=1 c

(m+1)
ik

n
.

As for the updating procedures for γk, ηk and hok, we need to maximize the last

term in the complete log-likelihood:

`(γ,η,H) =
n∑
i=1

K∑
k=1

∫
u

cik[dNi(u) logPrk + (1− dNi(u)) log(1− Prk)].

Note that: ∂`
∂γk

= ∂`
∂Prk
× ∂Prk

∂γk
and ∂`

∂ηk
= ∂`

∂Prk
× ∂Prk

∂ηk
, where

∂Prk
∂γk

= {h0k(u)du exp(ηTk xi)} exp{2STik(u,γk, ω)γk − γTk Σi(u, ω)γk
2

}Yi(u)×Sik(u,γk, ω),

∂Prk
∂ηk

= {h0k(u)du exp(ηTk xi)} exp{2STik(u,γk, ω)γk − γTk Σi(u, ω)γk
2

}Yi(u)×xi,

∂`

∂Prk
=

n∑
i=1

∫
cik[

dNi(u)

Prk
− 1− dNi(u)

1− Prk
].

Let E0ik(u,γk,ηk, ω) = exp{ηTk xi + STik(u,γk, ω)γk − γTk Σi(u, ω)γk/2}Yi(u),

E0k(u, γk, ηk, ω) =
n∑
i=1

E0ik(u, γk, ηk, ω)cik.

Let E1ik(u,γk,ηk, ω) = (STik(u,γk, ω),xTi )TE0ik(u,γk,ηk, ω),

E1k(u,γk,ηk, ω) =
n∑
i=1

E1ik(u,γk,ηk, ω)cik.

Therefore the conditional score estimating equations for γk and ηk are:

n∑
i=1

∫
cik[dNi(u)− E0ik(u,γk,ηk, ω)hok(u)du]× Sik(u,γk, ω) = 0

n∑
i=1

∫
cik[dNi(u)− E0ik(u,γk,ηk, ω)hok(u)du]× xi = 0.

(2.13)
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And the proposed estimator for hok(u)du in the (m + 1)-th iteration could be

obtained:

ĥok(u)du =

∑n
i=1 c

(m+1)
ik dNi(u)

E0k(u,γk,ηk, ω)
(2.14)

replace hok(u)du in equations (2.13) by (2.14), we can obtain the conditional

score estimating equations for γ
(m+1)
k and η

(m+1)
k :

n∑
i=1

∫
[(STik(u,γk, ω),xTi )T − E1k(u,γk,ηk, ω)

E0k(u,γk,ηk, ω)
]c

(m+1)
ik dNi(u) = 0. (2.15)

Generally, the parameters ω are unknown, under the assumptions, it may be es-

timated based on least-squares fits to all the data on each covariate for each subject

when possible (i.e. mik > qk). It is shown that an unbiased estimator for ω is ω̂, with

element σkk′ estimated by

σ̂kk′ =

∑n
i=1 I (mik > qk,mik′ > qk′ ,mikk′ > 0)RT

ikA
∗
ikk′Rik′∑n

i=1 I (mik > qk,mik′ > qk′ ,mikk′ > 0) tr {PikA∗ikk′Pik′A∗Tikk′}
,

where

• Pik = Imik − Fik
(
F T
ikFik

)−1
F T
ik ;

• Rik = PikWik = Pikeik;

• Suppose covariates k and k′ are observed in common at mikk′ > 0 time points;

• Aik is the (mikk′ ×mik) matrix of zeros and ones that identifies the residuals

for covariate k at the common time points, define Aik′ similarly, and A∗ikk′ =

AT
ikAik′ (mik ×mik′).

Therefore, the final conditional score estimating equations for the parameters of inter-

est in the (m+ 1)-th iteration, with the replacement of ω by its unbiased estimator ω̂

introduced above, are:

n∑
i=1

∫
[(STik(u,γk, ω̂),xTi )T − E1k(u,γk,ηk, ω̂)

E0k(u,γk,ηk, ω̂)
]c

(m+1)
ik dNi(u) = 0. (2.16)

2.2.2 large-sample property

We give a brief proof showing that solving the conditional score estimating equations

(2.15) with the parameters ω known should yield consistent estimators for (γk,ηk).

We demonstrate this property via simulations in Section 2.3.



34CHAPTER 2. CONDITIONAL SCOREMETHOD FOR FMCOX PHMODELWITHMULTIPLE LONGITUDINAL COVARIATESMEASUREDWITH ERROR

Theorem 2.2.2. Under regularity conditions, as n→∞, a solution to the conditional

score estimating equations (2.15), say (γ̂k, η̂k), exists uniquely in a neighborhood of

true parameters (γ0k,η0k) with probability 1.

Lemma 2.2.3. Glivenko-Cantelli lemma: Assume that X1, X2, ..., Xn are i.i.d

random variables in R with common cumulative distribution function F (x). The em-

pirical distribution for X1, X2, ..., Xn is

Fn(x) =
1

n

n∑
i=1

I[Xi,∞)(x),

and

‖Fn − F‖∞ = sup
x∈R
|Fn(x)− F (x)| → 0 almost surely.

Proof. Defining S̄k(u,γk,ηk, ω) = E1k(u,γk,ηk,ω)
E0k(u,γk,ηk,ω)

to be the weighted average of vectors

{Sik(u,γk, ω),xTi }T among individuals i in sub-class k at risk at time u, and letting

µk(u,γk,ηk, ω) denote the probabilistic limit of S̄k(u,γk,ηk, ω), by adding and sub-

tracting common terms, we can rewrite the conditional score estimating equations

(2.16) as:

n∑
i=1

∫
[(STik(u,γk, ω),xTi )T−S̄k(u,γk,ηk, ω)]{cikdNi(u)−cikE0ik(u,γk,ηk, ω)

E0k(u,γk,ηk, ω)

n∑
i=1

cikdNi(u)},

(2.17)

which could be rewritten as:

n∑
i=1

∫
[(STik(u,γk, ω),xTi )T−µk(u,γk,ηk, ω)]{cikdNi(u)−cikE0ik(u,γk,ηk, ω)

E0k(u,γk,ηk, ω)

n∑
i=1

cikdNi(u)},

(2.18)

+
n∑
i=1

∫
[µk(u,γk, ηk, ω)−S̄k(u,γk,ηk, ω)]{cikdNi(u)−cikE0ik(u,γk,ηk, ω)

E0k(u,γk,ηk, ω)

n∑
i=1

cikdNi(u)}.

(2.19)

If set equal to zero with the function µk(u,γk,ηk, ω) known, (2.18) is an unbi-

ased estimating equation for (γk,ηk), which follows as, at the true values (γ0k,η0k),

(2.18) is a sum of independent and identically distributed zero-mean random vectors.

Taking the expectation inside the integral for the i-th summand and conditioning on

[(STik(u,γ0k, ω),xTi )T ,xi, ti(u), Yi(u)], which yields
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∫
E{[(STik(u,γ0k, ω),xTi )T − µk(u,γ0k,η0k, ω)]

× (E[cikdNi(u)|STik(u,γ0k, ω),xTi )T ,xi, ti(u), Yi(u)]− cikE0ik(u,γ0k,η0k, ω)

E0k(u,γ0k,η0k, ω)

n∑
i=1

cikdNi(u))},

(2.20)

as

E[cikdNi(u)|STik(u,γ0k, ω),xTi )T ,xi, ti(u), Yi(u)] =
cikE0ik(u,γ0k,η0k, ω)

E0k(u,γ0k,η0k, ω)

n∑
i=1

cikdNi(u),

is the conditional intensity in section 2.2, the inner expectation is equal to zero, so

that (2.20) is zero, demonstrating the unbiasedness. That n−1 times (2.19) converges

in probability to zero uniformly in a neighbourhood N (γ0k,η0k) of (γ0k,η0k) follows

from the inequality

sup
N (γ0k,η0k)

|
∫

[µk(u,γk,ηk, ω)− S̄k(u,γk,ηk, ω)]

× n−1
n∑
i=1

{cikdNi(u)− cikE0ik(u,γk,ηk, ω)

E0k(u,γk,ηk, ω)

n∑
i=1

cikdNi(u)}|
(2.21)

≤ sup
N (γ0k,η0k)

[sup
u
{|µk(u,γk,ηk, ω)− S̄k(u,γk,ηk, ω)|}] (2.22)

×[n−1
n∑
i=1

∫
cikdNi(u) + n−1

n∑
i=1

sup
N (γ0k,η0k)

{
∫
cikE0ik(u,γk,ηk, ω)

E0k(u,γk,ηk, ω)

n∑
i=1

cikdNi(u)}].

(2.23)

The first term in (2.23) is bounded by 1, and the second converges to

E{ sup
N (γ0k,η0k)

∫
cikE0ik(u,γk,ηk, ω)

E0k(u,γk,ηk, ω)

n∑
i=1

cikdNi(u)}

in probability. Uniform covergence of n−1E0k(u,γk,ηk, ω) and n−1E1k(u,γk,ηk, ω),

and hence of S̄k(u,γk,ηk, ω), both in u and (γk,ηk) in N (γ0k,η0k), could be estab-

lished by a modification of the Glivenko-Cantelli lemma, thus showing convergence in

probability to zero of (2.19).

Therefore, the behaviour of the estimators solving conditional score equations

(2.15) could be dictated by (2.18). Since (2.18) is an unbiased estimating equation,

under regularity conditions, a consistent sequence of solutions to it exists Andersen

and Gill (1982), indicating the existence of consistent solutions to (2.18).
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2.3 Simulation

In this section, two simulation studies have been proposed to assess the performance

of the joint FMCox PH models and the corresponding estimation method. Scenario

1 mimicked the simulation studies given by Eng and Hanlon (2014), which focuses on

the special type of the joint FMCox PH models proposed in this thesis. And from

the scenario 1, the performance of the joint FMCox PH models and the FMCox PH

model (Eng and Hanlon, 2014) could be compared directly. Scenario 2 was aimed to

illustrate the performance of the proposed estimator for the more general parameters

settings.

For the following simulation studies, recall the proposed joint FMCox PH models:

Longitudinal sub-model:

Zi(u) = fT (u)αi e.g. Zi(u) = α0i + α1iu

Wi(u) = Zi(u) + εij εij ∼ N(0, σ2)
(2.24)

where αi are the random effects, α0i is the random intercept and α1i is the random

slope.

Survival sub-model:

Ti = min(T̃i, Ci) and δi = I(Ti ≤ Ci)

hazard function (i.e. the Cox PH model) for subject i in sub-class k is:

λik(u) = h0k(u) exp{γkZi(u) + ηkxi} (2.25)

Latent variable:

cik =

1 if subject i belongs to sub-class k

0 otherwise

with the probability

P{cik = 1} = πk and
∑
k

πk = 1

2.3.1 Simulation study scenario 1

From the simulation study proposed by Eng and Hanlon (2014), the main objective is

estimating the fixed effect of the time-independent covariate x. To compare the per-

formance of the proposed joint FMCox PH models and the FMCox PH models in Eng
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and Hanlon (2014), scenario 1 focuses on the situation of a single time-independent co-

variate x with the corresponding parameters ηk of interest and a given time-dependent

covariate Z(u) with the corresponding coefficients as γk = 0.

Assume that the number of latent classes K = 2, all the 2n observations have a

single covariates (x1, ..., x2n) ∼ N(µ·12n, I2n). The relationship between the event time

of interest and covariate X is controlled by η, where the first class has η1 = η and the

second class has η2 = −η. Let the baseline hazard function for each class be hok(u) = 1.

Hence, the survival time for the ith subject is generated by T̃i = Ui
exp(xiηk)

, where

Ui ∼ Exponential(1). The censoring time is generated from Ci ∼ Uniform(0, λ), where

λ depends on the choice of µ and β and a target censoring rate. The corresponding

observed survival time is Ti = min(T̃i, Ci).

Set n = 500 subjects in each class and set η = 3 so that η1 = 3 and η2 = −3.

To target 40% censoring rate, λ is set λ = exp(0.99) for µ = 0 and λ = exp(12.83)

for µ = 5. As for the time-dependent covariate, which could be observed as the

longitudinal process W (u), could be generated from the linear mixed model:

Zi(u) = α0i + α1iu u = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4.

Wi(u) = Zi(u) + εij εij ∼ N(0, σ2 = 0.692)

where the random effects (α0i, α1i)
T are generated from the multivariate normal distri-

bution N2(µ,Σ) with µ = (8.03,−0.16)T and Σ =
(

0.87 −0.001
−0.001 0.02

)
. And the coefficients

γk, k = 1, 2 for the time-dependent covariate Z(u) are set equals 0 in this simulation.

Figure 2.1: 20 samples of the longitudinal processes in simulation study scenario 1
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As for the simulated event time, the Kaplan-Meier survival curve could be plotted

in Figure 2.2 and Figure 2.3.

Figure 2.2: the Kaplan-Meier survival curves for the given latent classes in one simu-

lation of the scenario 1, with the mean of the time-independent covariate µ = 0.

Figure 2.3: the Kaplan-Meier survival curves for the given latent classes in one simu-

lation of the scenario 1, with the mean of the time-independent covariate µ = 5.

From the Figure 2.2 and 2.3, it is obvious that the event times in the two specific

latent classes have two extreme presented form, the first one is that the event times

have no significant difference between the two classes, and the other one is that the

event times have the difference in ten thousand times the order of magnitude. In this

case, the standard joint modeling of longitudinal and time-to-event data will be used

at first, which did not consider the latent class, the estimation results are presented

in Table 2.1 and Table 2.2. Therefore, this method couldn’t provide the estimation

results for the parameters γk. And the estimation results for the parameters ηk are

the same in different latent class, which is contrary to the facts.
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Table 2.1: estimation results from the standard joint modeling of longitudinal and
time-to-event data in the scenario 1, with the mean of the time-independent covariate
µ = 0.

coef se(coef) z Pr(> |z|)
X 0.01556 0.03131 0.497 0.619

exp(coef) exp(-coef) lower .95 upper .95
X 1.016 0.9846 0.9552 1.08

Table 2.2: estimation results from the standard joint modeling of longitudinal and
time-to-event data in the scenario 1, with the mean of the time-independent covariate
µ = 5.

coef se(coef) z Pr(> |z|)
X -0.25971 0.02903 -8.947 < 2e− 16

exp(coef) exp(-coef) lower .95 upper .95
X 0.7713 1.297 0.7286 0.8164

From these estimation results, it is necessary to take the latent class into consider-

ation. FMCox PH models (Eng and Hanlon, 2014) just include the time-independent

covariate x and estimate the corresponding coefficients ηk. The joint FMCox PH

models proposed in this thesis will include both time-independent covariate x and

time-dependent covariate Z(u) and estimate the corresponding coefficients ηk and γk.

We study the same scenarios over 500 simulations. In the following tables, we

report the estimated mixing probability πk, the estimated ηk from the FMCox PH

models (Eng and Hanlon, 2014), estimated ηk and γk from the proposed joint FMCox

PH models (3.36) and the oracle estimator, which is named under the situation if the

classification parameters cik are known. Classification accuracy is also represented in

the Table 2.3 and Table 2.4, which means the proportion of observations assigned to

their correct class.

The results imply that the proposed joint FMCox PH model and its corresponding

EM-algorithm with conditional score method work well when the dataset include time-

independent X and time-dependent Z(u) with the corresponding coefficients equal to

0, and has heavy censoring rate. The bias between the proposed estimators (ηjoint,1,

ηjoint,2, γjoint,1, γjoint,2) and the oracle estimators is believed from the algorithm greed-

ily reinforcing. And the bias between the proposed estimators and the results from

the FMCox PH model, which just include the time-independent covariate, are quite

small. Based on these conclusion, the joint FMCox PH models and its corresponding
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Table 2.3: Comparison among the estimation results for FMCox PH models, pro-
posed joint FMCox PH models and the oracle estimators, with the mean of the time-
independent covariate µ = 0

Parameter
Scenario

γ10 = γ20 = 0,η10 = 3,η20 = −3
ηFMCox,1(SD) 3.45 (0.53)
ηFMCox,2(SD) -3.46(0.52)
γjoint,1(SD) 0.01337(0.94)
γjoint,2(SD) 0.00896(0.89)
ηjoint,1(SD) 3.52(0.97)
ηjoint,2(SD) -3.34(0.92)
γoracle,1(SD) 0.00956(0.32)
γoracle,2(SD) 0.01082(0.36)
ηoracle,1(SD) 3.05(0.34)
ηoracle,2(SD) -3.02(0.33)
π1(SD) 0.5052(0.15)
π2(SD) 0.4948(0.18)

Accuracy(range) 0.87(0.81-0.93)
Censoring(range) 0.39(0.32-0.48)

Table 2.4: Comparison among the estimation results for FMCox PH models, pro-
posed joint FMCox PH models and the oracle estimators, with the mean of the time-
independent covariate µ = 5

Parameter
Scenario

γ10 = γ20 = 0,η10 = 3,η20 = −3
ηFMCox,1(SD) 3.24 (0.58)
ηFMCox,2(SD) -2.14(0.55)
γjoint,1(SD) 0.01717(0.85)
γjoint,2(SD) 0.004952(0.98)
ηjoint,1(SD) 3.44(0.56)
ηjoint,2(SD) -3.08(1.09)
γoracle,1(SD) 0.00245(0.45)
γoracle,2(SD) 0.03984(0.34)
ηoracle,1(SD) 3.03(0.28)
ηoracle,2(SD) -3.12(0.57)
π1(SD) 0.5093(0.14)
π2(SD) 0.4907(0.13)

Accuracy(range) 0.89(0.72-0.97)
Censoring(range) 0.39(0.31-0.44)
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estimation procedures proposed in thesis could complete the work what the FMCox

PH models (Eng and Hanlon, 2014) have done.

2.3.2 Simulation study scenario 2

In this scenario, we evaluate the performance of our proposed joint FMCox PH mod-

els and the corresponding estimating procedure when the coefficients for the time-

dependent covariate γ are not 0. At first, we need to simulate the time-dependent

covariate, which could be observed as the longitudinal process W (u), and could be

generated from the linear mixed model:

Zi(u) = α0i + α1iu u = 0, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

Wi(u) = Zi(u) + εij εij ∼ N(0, σ2 = 1)

where the random effects (α0i, α1i)
T are generated from the multivariate normal dis-

tribution N2(µ,Σ) with µ = (4.173,−0.0103)T and Σ =
(

1.24 −0.001
−0.001 0.001

)
. Note that

this longitudinal process is motivated from the AIDS CLINICAL TRIALS GROUP

175 presented by Tsiatis and Davidian (2001).

Figure 2.4: 50 samples of the longitudinal processes in simulation study scenario 2

Assume that the number of latent classes K = 2, all the 2n observations have a

single time-independent covariate x, which is obtained from the Bernoulli distribution

with the probability 0.5. This simulated time-independent covariate is motivated from

the treatment in many medical research. The relationship between the event time
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of interest and the time-independent covariate x is controlled by η, where the first

class here has η1 = 0 and the second class has η2 = 0.5. The relationship between

the event time and the time-dependent covariate Z(u) is controlled by γ, where the

first class here has γ1 = −1 and the second class has γ2 = −0.5. Let the baseline

hazard function for each class be h0k(u) = 1. Hence, the survival time T̃i for the i-th

subject could be generated from the specific formulation proposed by Austin (2012);

Bender et al. (2005). The censoring time is generated from Ci ∼ exp(110), where the

simulated censored times are bounded by the given observed measurement times in the

longitudinal process. The observed event time used in this scenario is Ti = min(T̃i, Ci).

Set n = 300 subjects in each class and set η1 = 0, η2 = 0.5, γ1 = −1, γ2 = −0.5, and

Ci ∼ exp(110) so that the censoring rate is around 10%. Therefore, the Kaplan-Meier

survival curve could be plotted as follow:

Figure 2.5: the Kaplan-Meier survival curves for the given latent classes in one simu-

lation of the scenario 2.

The standard joint modeling of longitudinal and time-to-event data and the corre-

sponding R package JM (Rizopoulos, 2010) will be used for this scenario at first, and

the estimation results are presented in the Table 2.5

From the Table 2.5, the estimation of the longitudinal process is reasonable, the

estimation of the covariance matrix for the random effects α and the measurement

residual are quite close to the true parameters setting. But in the event process,

the coefficient for the time-independent covariate is estimated as η̂ = 0.0777 and
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Table 2.5: estimation results from the standard joint modeling of longitudinal and
time-to-event data in the scenario 2.

Joint Model Summary:
Longitudinal Process: Linear mixed-effects model
Event Process: Relative risk model with piecewise-constant baseline risk function
Parameterization: Time-dependent

log.Lik AIC BIC
-6989.349 14006.7 14068

Variance Components:
StdDev Corr

(intercept) 1.1227 (Intr)
time 0.0285 0.0602
residual: 1.0092
Coefficients:
Longitudinal Process

value Std.Err z-value p-value
(intercept) 4.1272 0.0529 78.0335 <0.0001
time -0.0146 0.0023 -6.3027 <0.0001
Event Process

value Std.Err z-value p-value
x 0.0773 0.0926 0.8342 0.4042
association -0.1318 0.0360 -3.6649 0.0002

the coefficient for the time-dependent covariate is estimated as γ̂ = −0.1318, which

have large bias compared with the true simulation settings, and could not explain the

heterogeneity in this scenario.

We study the same scenario over 500 simulations. In Table 2.6, we report the esti-

mated γk and ηk from the proposed joint FMCox PH models and the oracle estimator

if the true classification situation is known. Accuracy is the proportion of observations

assigned to their correct class.

The results in Table 2.6 imply that the estimation procedures for the longitudi-

nal sub-model perform quite similar to the standard joint modeling work, which will

characterize the properties of longitudinal process well. As for the estimation in the

survival sub-model, there are non-ignorable but small bias between the estimators of

the proposed inference procedures and the true parameters setting. These biases to-

ward larger absolute parameter estimates, which compared with the oracle estimators,

that we believes comes from the algorithm greedily reinforcing as discussed in scenario

1. And comparing these results with the estimation results in Table 2.5, the proposed

joint FMCox PH models perform better than than the standard joint modeling when
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Table 2.6: Comparison between the estimation results for the proposed joint FMCox
PH models and the oracle estimators in the scenario 2.

Joint FMCox PH Model Summary:
Longitudinal Process: Linear mixed-effects model
Event Process: Cox PH model with piecewise-constant baseline hazard function
Variance Components:

StdDev Corr
(intercept) 1.199504 (Intr)
time 0.2943384 0.53743
residual: 1.021486
Coefficients:
Longitudinal Process

value Std.Err
(intercept) 4.106106 0.0453
time -0.01646654 0.0034
Event Process

value Std.Err
x (class 1) 0.03253 0.9445
x (class 2) 0.46726 0.7933
association (class 1) -0.94352 0.8608
association (class 2) -0.62669 0.6861

The oracle estimators:
value Std.Err

x (class 1) 0.00452 0.4434
x (class 2) 0.53234 0.2313
association (class 1) -1.03867 0.3935
association (class 2) -0.57451 0.467

Mixing probability estimation:
π1 (SD) for class 1: 0.5165 (0.21)
π2 (SD) for class 2: 0.4835 (0.23)
Accuracy (range): 0.84 (0.78-0.91)
Censoring (range): 0.10 (0.08-0.15)
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dealing with the heterogeneous problem in the longitudinal and time-to-event data.

2.4 Real analysis

Among infectious diseases, the AIDS studies are a good example to be used in joint

modeling of the longitudinal and survival processes in many literature In the last

few decades (Brilleman et al., 2016; Brombin et al., 2016; Farahani et al., 2016; Liu

and Huang, 2009). In AIDS studies, CD4 cells are always considered as a sign of

disease progression in HIV-infected patients, which are help to coordinate the immune

system’s response to certain microorganisms e.g. viruses. And based on the medical

knowledge (Brombin et al., 2016; Farahani et al., 2016; Song et al., 2017), the lower

the CD4 count is, patients are at the higher risk of infection.

In this section, the AIDS dataset from Community Programs for Clinical Research

on AIDS (CPCRA) was used (Abrams et al., 1994). And in this study, there are 467

patients infected with HIV. Two outcomes were recorded for this study, the first one

is CD4 counts, which were measured at different given time points, i.e. 0,6,12 and 18

months, and several samples of the log CD4 counts processes are presented in Figure

2.6. The other one is the time-to-death outcome, our main interest focuses on how the

CD4 process and other time-independent covariate e.g. the given treatment effect the

risk of infection or death. In CPCRA study, patients received two different treatments,

Zalcitabine (ddC) or Didanosine (ddI), randomly.

Roustaei et al. (2018) proposed an approach to study the latent heterogeneous

problem in CPCRA study, compared with joint latent class model (JLCM) proposed

by Liu et al. (2015) and separate approach. But these three methods need to model

the class membership probability for each patient at fist, and even assume that the

longitudinal processes are independent of the event time, conditional on the given

classification. For simplicity, some prior knowledge was used for our real data analysis

directly, such as there are K = 2 latent classes, and the main time-independent co-

variate of interest is the treatment. Due to the skewed distribution of CD4 cell level,

logCD4 was used as the longitudinal outcomes. The baseline hazard functions were

assumed to be piecewise-constant functions. At first, we need to plot the longitudinal

process, so that we could assume the following linear mixed effects model for this study
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based on Figure 2.6.

Zi(u) = fT (u)αi e.g. Zi(u) = α0i + α1iu

Wi(u) = Zi(u) + εij εij ∼ N(0, σ2)
(2.26)

where αi are the random effects, α0i is the random intercept and α1i is the random

slope. The observed measurement time points are u = 0, 6, 12, 18. It is obvious that

the random slope may be negative and its absolute value may be quite small.

Figure 2.6: 20 samples of the log CD4 counts processes in AIDS study.

Considering the logCD4 as the time-dependent covariate in the survival sub-model,

the next objective is estimating the coefficients ηk for time-independent covariate treat-

ment and the coefficients γk for time-dependent covariate logCD4. Recall the survival

sub-model:

λik(u) = h0k(u) exp{γk × logCD4i + ηk × treatmenti} (2.27)

with the latent classification variable

cik =

1 if subject i belongs to sub-class 1

0 otherwise
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and

P{cik = 1} = πk and
2∑
k

πk = 1.

The estimation results were presented in Table 2.7.

Table 2.7: Estimation results for the AIDS study.

Joint FMCox PH Model Summary:
Longitudinal Process: Linear mixed-effects model
Event Process: Cox PH model with piecewise-constant baseline hazard function
Variance Components:

StdDev Corr
(intercept) 0.6719533 (Intr)
time 0.1054032 0.3242496
residual: 0.06033
Coefficients:
Longitudinal Process

value
(intercept) 1.835005
time -0.0333369
Event Process

value
x (class 1) -0.194
x (class 2) -0.284
association (class 1) -0.933
association (class 2) -0.436

Mixing probability estimation:
π1 for class 1: 0.6843
π2 for class 2: 0.3157

And the the Kaplan-Meier survival curves for the two latent classes in this AIDS

study could be plotted in Figure 2.7
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Figure 2.7: the Kaplan-Meier survival curves for the two latent classes in the AIDS

study.

Note that the estimations of association parameters between logCD4 and the event

time γ1 = −0.933 and γ2 = −0.436 are both negative, which satisfy the medical fact

that the lower the CD4 count is, patients are at the higher risk of infection or death.

And the estimations of association parameters between treatment and the event time

η1 = −0.194 and η2 = −0.284 are also negative, which mean that taking the given

treatment will decrease the risk of infection or death. And from the Kaplan- Meier

survival curves, the CD4 level and the given treatment would have different effects

on the patients from different latent classes, the patients in latent class 1 have the

lower survival probabilities. For the patient from the latent class 1, the CD4 level

would make more effect and treatment would make less effect on the risk of infection

or death, compared with the patients from the latent class 2.

2.5 Discussion

In this chapter, we presented the joint FMCox PH models, which could estimate the

associations of event times and both time-independent covariates and longitudinal pro-

cesses, considering the latent heterogeneity in the longitudinal and time-to-event data.

To remove the complication which comes from the latent random effects associated

two sub-models, the conditional score method which does not need any assumption
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on the distribution of the random effects, is proposed to replace the standard partial

likelihood weighted estimators in the EM iterations. Based on these ideas, the EM-

algorithm with conditional score method was provided as the estimation procedures

for the joint FMCox PH models, and the consistency of the estimators have also been

represented in this chapter.

To assess the performance of the joint FMCox PH models, two simulation studies

have been proposed in this chapter. Under the scenario 1, the performance of the

joint FMCox PH models is very similar to the performance of FMCox PH models,

which means that the joint FMCox PH models could replace FMCox PH models to

handle the heterogeneity in survival data analysis. Under the scenario 2, the per-

formance of the joint FMCox PH models show that this proposed models and the

corresponding estimation procedures could give the reasonable estimators, considering

the heterogeneity in longitudinal and time-to-event data analysis.

However, there are many limitations in this work, such as the lack of the choice of

the number of latent classes, more than one time-independent and one time-dependent

covariates simulations. In this chapter, we didn’t consider the situations where the

number of latent classes is not known, but it is common in practice. Therefore, some

choice criteria e.g. AIC, BIC used in standard joint modeling, need to be proposed

and assess the corresponding performance in the future work. And the joint FMCox

PH models we proposed in section 2.1 consider multiple longitudinal processes and

baseline covariates. Therefore, more complex simulation, e.g. including more than

one time-independent and time-dependent covariates, will also be needed in the future

work.



Chapter 3

FMCox PH Model with

Time-varying Coefficients

In the survival analysis, the main objective is to explore the association between the

event time T and the observed covariate vector x. The most popular semi-parametric

regression model used for time-to-event data analysis is the proportional hazard model

(COX PH model), which is proposed by Cox (1972). And the standard COX PH model

has the important assumption that the regression coefficients are constant over time.

However, it is often important to characterize the effects over time of the covariates

of interest on the event time in many medical research. For example, in the AIDS study

which needs to compare a new treatment with an active control, suppose that the time

to a clinical event e.g. death is the primary endpoint. The new treatment may work

well in the initial clinical period, but may gradually lose the efficiency due to mutation

of the virus. If the treatment is indeed time-efficient, then it is necessary to know when

and how fast the treatment becomes ineffective. Therefore, the Cox PH model with a

time-varying coefficient (Gamerman, 1991; Hastie and Tibshirani, 1993; Martinussen

and Scheike, 2002; Marzec and Marzec, 1997; Murphy and Sen, 1991; Zucker and Karr,

1990) is much more flexible and may be needed for medical research and survival data

analysis.

To estimate the coefficient functions, Murphy and Sen (1991) assumed the coeffi-

cient functions are piecewise constant and proposed the histogram sieve estimation.

Based on the similar assumption that both the baseline hazard function h0(t) and time-

varying coefficient functions η(t) are piecewise constant functions which are constant

50
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between distinct event times, Gamerman (1991) proposed the dynamic linear model

approach for the estimations of time-varying coefficients. This strong assumption are

not appropriate in practice, Zucker and Karr (1990) and Hastie and Tibshirani (1993)

described the smoothing spline partial likelihood method to overcome the drawback,

where the baseline hazard function has the unspecific form and the coefficient functions

could be estimated smoothly. King (1997) suggested using a local partial likelihood

estimation technique for the hazard regression model with time-varying coefficients.

And the local partial likelihood technique used in this chapter has the similar basic idea

and is a simple extension of the local linear fitting technique used in the scatterplot

smoothing, which is proposed by Cai and Sun (2003).

3.1 The local partial likelihood technique

Let T̃ be the unobserved true event time and C be the right censored time, so that

T = min(T̃ , C) be the observed event time, with the indicator variable δ = I(T̃ ≤ C)

and the associated covariates x. {(Ti, δi,xi)}ni=1 be an i.i.d sample obtained from the

population (T , δ,x) that follows the Cox PH model with time-varying coefficients:

λi(t) = h0(t) exp
(
ηT (t)xi

)
(3.1)

where h0(t) is the baseline hazard function, η(t) = (η1(t), ..., ηp(t))
T be the time-

varying coefficient functions and xi is the p-vector covariates. DefineNi(t) = I (Ti ≤ t, δi = 1)

be the counting process of observed event time for i-th subject, and Yi(t) = I (Ti ≥ t)

be the ’at risk’ indicator process. The logarithm of Cox’s partial likelihood based on

observations over time interval [0, τ ] for τ > 0 is:

`(η) =
n∑
i=1

∫ τ

0

[
xT
i η(s)− log

{
n∑
l=1

Yl(s) exp
(
xT
l η(s)

)}]
dNi(s) (3.2)

where the baseline hazard function h0(t) are assumed to be unspecific, positive and

continuous, the coefficient functions η(s) = (η1(s), ..., ηp(s))
T are assumed to have

continuous second derivative in a neighborhood of given time point t. Therefore, for

any time s in a neighborhood of given time point t, by Taylor’s expression, the time-

varying coefficient function could be written as

ηj(s) ≈ ηj(t) + bj(t)(s− t)
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Let β = (η1(t), . . . , ηp(t), b1(t), . . . , bp(t))
T and Xi(s) = xi × (1, s − t)T . And let

K(·) be a kernel function which weights smoothly down the contribution of remote

data points and h = hn be the bandwidth parameter which controls the size of the

local neighborhood of the given time point. Based on the local linear fitting technique

and partial likelihood method, the local linear partial likelihood function could be

obtained as:

`(β) =
n∑
i=1

∫ τ

0

Kh(s− t)

[
XT

i (s)β − log

{
n∑
l=1

Yl(s) exp
(
XT

i (s)β
)}]

dNi(s) (3.3)

where Kh(·) = K(·/h)/h. Therefore, the local linear partial MLE of the time-varying

coefficient functions η(t) is the vector consisting of the first p components of the

estimator β̂, which maximize (3.3) w.r.t. β.

3.2 Notations and models

As has been described in section 1.3, FMCox PH model was proposed to address

heterogeneity in survival analysis. The extension to time-dependent covariates with

measurement error are discussed in chapter 2. Another alternative to make the FMCox

PH model (1.13) more flexible is to allow the coefficients ηk to change over time t.

For instance, cancer patients may have different time-efficient prognoses to the same

new drug. In this case, identifying disease subtypes and applying the more effective

treatment are as the same important as characterizing how the effects of the same

treatment changes over time. The extension of FMCox PH model to the FMCox PH

model with time-varying coefficients may be needed for more flexible use in medical

and survival data analysis.

Let T be the observed event time of a subject with a covariate vector x, of length

p. Let δ = 0 or 1 indicate whether or not T is censored. And suppose that there

are K ≥ 2 sub-class with the mixing probabilities π = (π1, ..., πK), which have the

property
∑K

i=1 πi = 1. Assuming that the hazards are proportional within the given

sub-classes of subjects, the subject i in class k follows the Cox PH model with time-

varying coefficients:

λik(t) = h0k(t) exp
[
ηTk (t)Xi(t)

]
(3.4)
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where ηk(t) = (ηk1(t), . . . , ηkp(t))
T is the time-varying coefficient functions for sub-

class k. The p-vector of covariates Xi(t) could be both time-dependent and time-

independent, but there is no measurement error on the covariates. Note that the

baseline hazard function h0k(t) are assumed to be unspecific, positive and continuous,

the coefficient functions ηk(t) = (ηk1(t), . . . , ηkp(t))
T are assumed to have continuous

second derivative in a neighborhood of given time point t.

These observations in sub-class k have the following density function:

fk(Ti, δi|Xi) = λk(Ti|Xi)
δiS(Ti|Xi)

= {h0k(Ti) exp[ηTk (Ti)Xi(Ti)]}δi · exp{
∫ Ti

0

h0k(t) exp[ηTk (t)Xi(t)]dt}.

(3.5)

Therefore, the logarithm of the density function is:

log fk(Ti, δi|Xi) =
n∑
i=1

{δi[log h0k(Ti) + ηTk (Ti)Xi(Ti)] +

∫ Ti

0

h0k(t) exp[ηTk (t)Xi(t)]dt}.

(3.6)

The mixture likelihood based on the observed data, could be written as

L(T , δ |X) =
n∏
i=1

K∑
k=1

πkfk (Ti, δi |Xi) .

Let the latent variable cik = 1 if subject i belongs to sub-class k, otherwise equals

0, with the probability

P {cik = 1} = πk and
∑
k

πk = 1.

The mixture likelihood based on the complete data, if the latent classification

variable cik is known and let U = (cik)n×K , could be written as:

L(T , δ|X) =
n∏
i=1

K∏
k=1

[πkfk(Ti, δi|Xi)]
cik . (3.7)

To obtain the estimators of the time-varying coefficient functions of interest, define

Ni(t) = I (Ti ≤ t, δi = 1) be the counting process of observed event time for i-th sub-

ject, and Yi(t) = I (Ti ≥ t) be the ‘at risk’ process, the local partial likelihood method

will be used for the proposed model, for sub-class k the partial likelihood could be

obtained as follow:

PLk =
n∏
i=1

Pfk(Ti, δi|Xi) =
n∏
i=1

exp[ηTk (Ti)Xi(Ti)]∑n
l=1 exp[ηTk (Tl)Xl(Tl)]Yl(Ti)

. (3.8)
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Therefore, the mixture partial likelihood used for estimating time-varying coefficient

functions base on the complete data is:

PL =
n∏
i=1

K∏
k=1

[πkPfk(Ti, δi|Xi)]
cik . (3.9)

3.3 Estimation procedure and asymptotic results

3.3.1 Proposed algorithm

In order to maximize the complete mixture partial likelihood function (3.9), the EM

iteration is needed here. The logarithm of the mixture partial likelihood function

w.r.t the mixing probabilities π = (π1, ..., πK), the baseline hazard functions h =

(h01(t), ..., h0K(t)) and the time-varying coefficient functions ηk = (ηk1(t), ..., ηkp(t)),

k = 1, ..., K could be written as

plc(π,h, η;T, δ,U |X) =
n∑
i=1

K∑
k=1

cik log πk +
n∑
i=1

K∑
k=1

cik logPfk (Ti, δi |Xi) . (3.10)

The objective Q function used in the EM iteration is

Q(θ) = EU |θ̂[plc(θ;T, δ |X)

=
n∑
i=1

K∑
k=1

cik log πk +
n∑
i=1

K∑
k=1

cik logPfk (Ti, δi |Xi) ,
(3.11)

where θ represents all the unknown parameters of interest, which includes π,h, η.

And the n×K matrix U = [cik]n×K has the elements cik = 1 if the subject i belongs

to the sub-class k, otherwise cik = 0.

E-step Given the parameters estimates in the m-th iteration, the (m + 1)-th E-step

calculates the posterior probability:

c
(m+1)
ik := E[cik|Ti, δi, θ̂(m)] =

π
(m)
k × Pfk

(
Ti, δi |Xi, θ̂

(m)
)

∑K
r=1 π

(m)
r × Pfr

(
Ti, δi |Xi, θ̂(m)

) , (3.12)

after using the Bayes’ theorem.

M-step To update the mixing probabilities π, the Lagrange multipliers technique could

be used:

π̂
(m+1)
k =

1

n

n∑
i=1

c
(m+1)
ik . (3.13)
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To update the time-varying coefficient η(·), the local partial likelihood technique

described in section 3.1 will be needed. The logarithm of partial likelihood based

on observations over the time interval [0, τ ] for τ > 0 is given by:

Q2(θ) =
n∑
i=1

K∑
k=1

c
(m+1)
ik logPfk(Ti, δi|Xi,θ)

=
n∑
i=1

K∑
k=1

c
(m+1)
ik

∫ τ

0

[Xi(s)
Tηk(s)− log{

n∑
j=1

Yj(s) exp(Xj(s)
Tηk(s))}]dNi(s).

(3.14)

The assumptions of the baseline hazard functions and time-varying coefficient

functions described in section 3.2 will be applied in the following procedures.

For any time s in a neighborhood of the given time point t, using the Taylor’s

expression, the time-varying coefficient function could be re-written as:

ηkj ≈ ηkj(t) + bkj(t)(s− t) (3.15)

Let βk = (ηk1(t), ..., ηkp(t), bk1(t), ..., bkp(t))
T and X̃i(s, s−t) = Xi(s)

⊗
(1, s−t)T

with
⊗

being the Kronecker product. And let h = hn > 0 be the bandwidth

parameter that controls the size of a local neighborhood and let K(·) be the

kernel function which is a symmetric probability density function with support

[1, 1], mean 0, and bounded first derivative. The logarithm of local linear partial

likelihood function in the (m+ 1)-th M-step, is:

`(βk) =

n∑
i=1

K∑
k=1

c
(m+1)
ik

∫ τ

0

Kh(s− t)[X̃i(s, s− t)Tβk

− log{
n∑
j=1

Yj(s) exp(X̃i(s, s− t)Tβk)}]dNi(s),

(3.16)

where Kh(·) = K(·/h)/h. Computing such an implicit estimator requires an it-

erative algorithm such as Newton-Raphson method or Fisher’s scoring method.

Even worse, for certain given t, there does not exist a local partial likelihood

estimator due to the limited amount of data around t. Because of these draw-

backs, the one-step estimator (Fan and Chen, 1999) was proposed as a viable

alternative.
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The local partial likelihood estimator β̂k is found via solving the likelihood equa-

tion `′(βk, τ) = 0. To facilitate notation, from now on the dependence of `(βk, τ)

on τ will be dropped. For a given initial estimator β̂0k, by Taylor expansion:

`′(β̂0k) + `′′(β̂0k)(β̂k − β̂0k) ≈ 0. (3.17)

Thus, the one-step estimator β̂OSk is defined as

β̂OSk = β̂0k − {`′′(β̂0k)}−1`′(β̂0k). (3.18)

However, the choice of given initial estimator β̂0k plays an important role on

calculating the one-step estimator β̂OSk, and Cai et al. (2000) provided a useful

idea for solving this problem. The basic idea is to compute the local partial

likelihood estimates at several given points at first, e.g. computing the local par-

tial likehood estimates at specific grid time points t10, t30, t50, t70, t90. Then using

these estimators as the initial values of their nearest grid points and calculating

the one-step estimators at these grid points. These obtained one-step estimators

(e.g. at time points t9, t11, t29, t31, ... ) will be used as the initial values of their

nearest grid points to compute the one-step estimators and so on, until all the

one-step estimators at the given time points are obtained.

Therefore, this one-step estimator β̂
(m+1)
OSk is the final update of the time-varying

coefficient functions in the (m+ 1)-th iteration.

3.3.2 Estimation of the baseline hazard function

With estimators of time-varying coefficient functions ηk(·) obtained from the proposed

algorithm, the following estimate for the cumulative baseline hazard function Λ0k(t) =∫ t
0
λ0k(u)du:

Λ̂0k(t) =

∫ t

0

1

Ŝ∗n,0k(u)
dN̄k(u), (3.19)

where Ŝ∗n,0k(t) = n−1
∑n

i=1 ĉikYi(t) exp(XT
i (t)η̂k(t)) and N̄k(u) = n−1

∑n
i=1 ĉikI(Ti ≤

t, δi = 1), for some consistent estimators η̂k(t) of ηk(t), ĉik of cik. This estimator is an

analogue to the estimator (Breslow, 1972) commonly used to estimate the cumulative

baseline hazard function in the ordinary Cox PH model. To estimate λ0k(t) itself, a
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kernel smoothing technique can then be employed here to obtain an estimate via

λ̂0k(t) =

∫
Khλ(u− t)dΛ̂0k(u) =

1

nhλ

n∑
i=1

K((Ti − t)/hλ)δi · ĉik
Ŝ∗n,0k(Ti)

, (3.20)

where Khλ(·) = K(·/hλ)/hλ, K(·) is a given kernel function and hλ is a given band-

width.

3.3.3 Concavity of the local linear partial likelihood

In the most of the parametric likelihood theories (Lehmann and Casella, 2006), it

is only known that there exists a consistent solution to the local partial likelihood

equation. But if there are multiple roots, the consistent estimator may not be found.

However, if `(βk) is strictly concave, then the solution to (3.16) is unique and must

be consistent. To obtain the consistent estimators in every iteration of the proposed

algorithm, the concavity of the local linear partial likelihood for each sub-class k is

need to be proved.

Theorem 3.3.1. The estimators in every iteration of the proposed algorithm are the

consistent estimators, i.e. the local linear partial likelihood for each sub-class k is

convex.

Proof. Let Gi(s,βk) = exp
(
X̃i(s, s− t)Tβk

)
and G(s,βk) =

∑n
i=1 Yi(s)Gi(s,βk).

Then (3.16) can be re-expressed as follows:

`(βk) =
n∑
i=1

K∑
k=1

cik

∫ τ

0

Kh(s− t)[logGi(s, βk)− logG(s, βk)]dNi(s),

and the first order derivative of `(βk) is

`′(βk) =
n∑
i=1

K∑
k=1

cik

∫ τ

0

Kh(s− t)[X̃i(s, s− t)−
G′(s,βk)

G(s,βk)
]dNi(s),

where G′(s,βk) =
∑n

i=1 Yi(s)Gi(s,βk)X̃i(s, s − t). Therefore, the Hessian matrix of
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`(βk) is given by

`′′(βk) = −
n∑
i=1

K∑
k=1

cik

∫ τ

0

Kh(s− t)
G2(s, βk)

[G(s,βk)
n∑
j=1

Yj(s)Gj(s,βk)X̃j(s, s− t)⊗2

−G′(s,βk)⊗2]dNi(s)

= −
n∑
i=1

K∑
k=1

cik

∫ τ

0

Kh(s− t)
G2(s,βk)

[
∑
j<l

Yj(s)Yl(s)Gj(s,βk)Gl(s,βk)

· (Xj(s)−Xl(s))
⊗2 ⊗

 1 s− t

s− t (s− t)2

]dNi(s),

(3.21)

where A⊗2 denotes AAT for a vector or matrix A. To prove the right-hand side of

(3.21) is negatively definite as n→∞, we need to prove

(Xj(s)−Xl(s))
⊗2 ⊗

 1 s− t

s− t (s− t)2


is positive defined. Let any 2p-vector d = (dT1 , d

T
2 )T and Xj(s)−Xl(s) = B, we have

tr[dT (Xj(s)−Xl(s))
⊗2 ⊗

 1 s− t

s− t (s− t)2

d]

= tr[dT1BB
Td1 + dT2BB

T (s− t)d1 + dT1BB
T (s− t)d2 + dT2BB

T (s− t)2d2].

Let dT1B = e1 and dT2B(s− t) = e2, it can be written as

tr[e21 + 2e1e2 + e22] ≥ 0.

Note that Xj(s) 6= Xl(s), therefore the proof is completed.

3.3.4 Asymptotic theory

In this section, the large sample properties of the one-step local linear partial likeli-

hood estimators η̂k for each sub-class k would be presented in the following theorems.

Conditions A

(A.1) The kernel function K(·) is a bounded and symmetric density with a bounded

support, say, [−1, 1].

(A.2) There exists a random vector Y such that sups∈N (t,ε) |X(s)| ≤ Y and

E[exp

{
2

(
sup

s∈N (t,ε)

|ηk(s)|+ η′k(t) + 3

)
Y

}
] <∞.
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(A.3) Let Pk(t | x) = P (T ≥ t | X(t) = x,U = k), define

Q0k(t) = E[Pk(t | X(t))λk(t | X(t))];

Q1k(t) = E[Pk(t | X(t))λk(t | X(t))X(t)];

Q2k(t) = E[Pk(t | X(t))λk(t | X(t))X(t)⊗2];

Q0k(s) > 0, Q1k(s) and Q2k(s) are continuous in the neighborhood N (t, ε).

(A.4) The sequence h→ 0 and nh→∞ as n→∞ and nh5 = O(1)

(A.5) The classification indicator variables cik are unbiased estimated in every iteration

of the proposed algorithm.

(A.6) Assume that in a neighbourhood of t, λ0k(s) is positive and continuous, Pk(s|x) >

0, and coefficient functions {ηkj(s)} have a continuous second derivative.

(A.7) Denote µj =
∫
sjK(s)ds and vj =

∫
sjK2(s)ds for 0 ≤ j ≤ 2.

(A.8) Denote Σk(t) = Q2k(t)−Q1k(t)Q1k(t)
T/Q0k(t).

Theorem 3.3.2. under conditions A1− A8, η̂k(t)
P−→ ηk(t) as n→∞

Lemma 3.3.3. Let cnk(s) = n−1
∑n

i=1 Yi(s)cikgk(s,Xi(s)) and ck(s) = E[Pk(s|X(s)gk(s,X(s)))].

If sups∈N (t,ε)E [g2k(s,X(s))] <∞, then

sup
s∈N (t,ε)

|cnk(s)− ck(s)| = Op

(
n−1/2

)
Proof. Let H = diag{Ip, hIp} and Ũi(s, s− t) = H−1X̃i(s, s− t). Let β̃k be the run-

ning parameter in local linear partial likelihood function (3.16), for the true parameter

βk, β̂k be the MLE maximizing (3.16). Let αk = H(β̃k − βk) and α̂k = H(β̂k − βk).

Then, by the local linear partial likelihood function (3.16), α̂k maximizes

`n(αk, τ) =

∫ τ

0

Kh(s− t)n−1
n∑
i=1

K∑
k=1

cik

[
X̃i(s, s− t)Tβk + Ũi(s, s− t)Tαk

]
dNi(s)

−
∫ τ

0

Kh(s− t)n−1
n∑
i=1

K∑
k=1

cik log{nSn,0k(αk, s)}dNi(s)

(3.22)
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w.r.t. αk, where Sn,0k(αk, s) = n−1
∑n

i=1 Yi(s) exp
(
X̃i(s, s− t)Tβk + Ũi(s, s− t)Tαk

)
.

It is easy to see that

`n(αk, τ)− `n(0, τ) =

∫ τ

0

Kh(s− t)n−1
n∑
i=1

K∑
k=1

cikŨi(s, s− t)TαkdNi(s)

−
∫ τ

0

Kh(s− t)n−1
n∑
i=1

K∑
k=1

cik log{Sn,0k(αk, s)
Sn,0k(0, s)

}dNi(s).

(3.23)

Let the filtration Fnt be the statistical information accruing during the time [0, t],

namely,

Fnt = σ {Xi(s), Ni(s), Yi(s), i = 1, . . . , n, 0 ≤ s ≤ t} .

Then, under the independent censoring scheme,

Mik(t) = Ni(t)−
∫ t

0

Yi(s)λk(s|Xi(s))ds (3.24)

is an Fnt-martingale. A substitution of (3.24) into (3.23) gives

`n(αk, τ)− `n(0, τ) = An(αk, τ) +Rn(αk, τ), (3.25)

where

An(αk, τ) =

∫ τ

0

Kh(s− t)
K∑
k=1

[S∗n,k,1(s)
Tαk − log{Sn,0k(αk, s)

Sn,0k(0, s)
}S∗n,k,0(s)]λ0k(s)ds,

(3.26)

where S∗n,k,j(s) = n−1
∑n

i=1 cikYi(s) exp(XT
i (s)ηk(s))Ũ

j
i (s, s− t), and

Rn(αk, τ) =

∫ τ

0

Kh(s− t)n−1
n∑
i=1

K∑
k=1

cik[Ũi(s, s− t)Tαk − log{Sn,0k(αk, s)
Sn,0k(0, s)

}]dMik(s).

(3.27)

The proof is straightforward, and omitted, for details, see the proof of lemma 6.1

in Masry and Tjøstheim (1997).

Under condition A1-A8, by lemma 3.3.3, we have:

An(αk, τ) =

∫ τ

0

Kh(s− t)
K∑
i=1

[S∗k,1(s)
Tαk − log{S0k(αk, s)

S0k(s)
}S∗k,0(s)]λ0k(s)ds+ op(1)

=
K∑
k=1

{Q1k(t)
T ⊗ (1, µ1)αk −Q0k(t)

∫
log{Sk(αk, t, v)

Q0k(t)
}K(v)dv}+ op(1)}

=
K∑
k=1

A(αk, τ) + op(1),

(3.28)
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where

S∗k,j(s) = E[Pk(s|X(s)) exp(XT (s)ak(s))Ũ(s, s− t)⊗j];

S0k(αk, s) = E[Pk(s|X(s)) exp(X̃(s, s− t)T )βk + Ũ(s, s− t)Tαk)];

Sk(αk, t, v) = E[Pk(t|X(t))λk(t|X(t)) exp(X̃(t, v))Tαk].

Using the facts that E (Y 2Z)− E(Y Z)2 = E [(Y −E(Y Z))2Z] ≥ 0 for Z ≥ 0

and a matrix B being positive definite is equivalent to aTBa ≥ 0 for any column

vector a with an appropriate dimension, it is not difficult to check that A(αk, τ) is

strictly concave, with a maximum at the point αk = 0. The process Rn(αk, ·) is a

locally square integrable martingale with the predictable variation process

Cn(v) ≡ 〈Rn(αk, ·), Rn(αk, ·)〉 (v)

= n−2
n∑
i=1

K∑
k=1

c2ik

∫ v

0

K2
h(s− t)[Ũi(s, s− t)Tαk − log{Sn,0k(αk, s)

Sn,0k(0, s)
}]2Yi(s)λk(s|Xi(s))ds.

By condition A1 − A8 and lemma 3.3.3, one can show that for any 0 ≤ v ≤ τ and

0 ≤ cik ≤ 1,

E [Rn(αk, v)]2 = E [Cn(v)] = O
(
(nh)−1

)
= o(1).

This, in conjunction with (3.25) and (3.28), implies that

ln(αk, τ)− ln(0, τ) =
K∑
k=1

A(αk, τ) + op(1).

Since α̂k maximizes the concave function ln(αk, τ)− ln(0, τ), by the concavity lemma

in appendix II of Andersen and Gill (1982), we have

α̂k = H(β̂k − βk)
P−→ 0.

This completes the proof of theorem.

The following notations are needed to construct the asymptotic theorem:

Using the same notation as in the proof of theorem 1, let

Sn,0k(αk, s) = n−1
n∑
i=1

Yi(s) exp
(
X̃i(s, s− t)Tβk + Ũi(s, s− t)Tαk

)
S0k(αk, s) = E

[
Pk(s|X(s)) exp

(
X̃(s, s− t)Tβk + Ũ(s, s− t)Tαk

)]
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For j = 0 and 1, set

S∗n,jk(s) = n−1
n∑
i=1

Yi(s) exp
(
Xi(s)

Tηk(s)
)

Ũj
i (s, s− t),

and

S∗jk(s) = E
[
Pk(s|X(s)) exp

(
X(s)Tηk(s)

)
Ũ(s, s− t)⊗j

]
.

For 0 ≤ j ≤ 2, let

Sn,jk(s) = n−1
n∑
i=1

Yi(s) exp
(
X̃i(s, s− t)Tβk

)
Ũi(s, s− t)⊗j,

and

Sjk(s) = E
[
Pk(s|X(s)) exp

(
X̃(s, s− t)Tβk

)
Ũ(s, s− t)⊗j

]
.

Note that S∗
n,1k(s), S

∗
1k(s), Sn,1k(s) and S1k(s) are 2p-vectors, Sn,2k(s) and S2k(s)

are 2p× 2p matrices and the rest are scalar.

Motivated from the theorem 2 proposed by Cai and Sun (2003), the asymptotical

optimal bandwidth depends on the unknown parameters Σk(t) and η′′k(t), we propose

the following theorem:

Theorem 3.3.4. (Asymptotic normality) under conditions A1 − A8, when t is the

interior point of [0, τ ], we have,

√
nh

[
η̂k(t)− ηk(t)−

h2

2
µ2η

′′
k(t)

]
D−→ N

{
0, v0Σ

−1
k (t)

}
as n→∞.

Proof. Let γn = (nh)(−1/2), β̃k be the running parameter in local linear partial likeli-

hood function (3.16), for the true parameter βk, β̂k be the MLE maximizing (3.16).

Define αk == γ−1n H(β̃k −βk). Then β̃k = γnH
−1αk +βk, and by (3.25), it is easy to

obtain that

ln (γnαk, τ)− ln(0, τ) = An (γnαk, τ) +Rn (γnαk, τ) ,

where An(·, τ) and Rn(·, τ) are defined in (3.26) and (3.27), respectively. By Taylor’s

expansion at αk = 0, it follows that

log

{
Sn,0k (γnαk, s)

Sn,0k(0, s)

}
=
Sn,1k(s)

Tγnαk
Sn,0k(0, s)

+
1

2
γ2nα

T
k

[
Sn,2k(s)

Sn,0k(0, s)
− Sn,1k(s)

⊗2

S2
n,0k(0, s)

]
αk+op

(
γ2n
)

(3.29)
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Under condition A, by lemma 3.3.2, for |s− t| < ch, (3.29) becomes

log

{
Sn,0k (γnαk, s)

Sn,0k(0, s)

}
=
S1k(s)

Tγnαk
S0k(0, s)

+
1

2
γ2nα

T
k

[
S2k(s)

S0k(0, s)
− S1k(s)

⊗2

S2
0k(0, s)

]
αk + op

(
γ2n
)

(3.30)

as n→∞. Substituting (3.30) into An (γnαk, τ) given in (3.26) and applying lemma

3.3.2 to S∗n,jk(s) for j = 0, 1, we can obtain

Ank (γnαk, τ) = γnAn,1k(τ)Tαk −
1

2
γ2nα

T
kFn,1k(τ)αk + op

(
γ2n
)
,

where

An,1k(τ) =

∫ τ

0

Kh(s− t)
[
S∗1k(s)−

S1k(s)

S0k(s)
S∗0k(s)

]
λ0k(s)ds,

and

Fn,1k(τ) =

∫ τ

0

Kh(s− t)
[
S2k(s)

S0k(s)
− S1k(s)

⊗2

S2
0k(s)

]
S∗0k(s)λ0k(s)ds.

It follows from condition A1-A8 and theorem 1 in Sun (1984) that, for each τ > 0, as

n→∞,

Fn,1k(τ)−Σk(t)⊗ Ω = op(1)

where Ω =

 µ0 µ1

µ1 µ2

. Therefore,

Ank (γnαk, τ) = γnAn,1k(τ)Tαk −
1

2
γ2nα

T
kΣk(t)⊗ Ωαk + op

(
γ2n
)
, (3.31)

Similarly, substituting (3.30) into Rnk (γnαk, τ) given in (3.27), we have

Rnk (γnαk, τ) = γnRn,1k(τ)Tαk −
1

2
γ2nα

T
kFn,2k(τ)αk + op

(
γ2n
)
,

where

Rn,1k(τ) =

∫ τ

0

Kh(s− t)n−1
n∑
i=1

[
Ũi(s, s− t)−

Sn,1k(s)

Sn,0k(s)

]
dMik(s),

and

Fn,2k(τ) =

∫ τ

0

Kh(s− t)
[
S2k(s)

S0k(s)
− S1k(s)

⊗2

S2
0k(s)

]
dM̄k(s)

with M̄k(t) = (1/n)
∑n

i=1Mik(t). By considering the second moment of Fn,2k(τ) and

some simple analysis, we have Fn,2k(τ) = Op (γn). Therefore,

Rnk (γnαk, τ) = γnRn,1k(τ)Tαk + op
(
γ2n
)
.
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This, in conjunction with (3.25) and (3.31), implies that

ln (γnαk, τ)− ln(0, τ) = [An,1k(τ) +Rn,1k(τ)]T γnαk −
1

2
γ2nα

T
kΣk(t)⊗ Ωαk + op

(
γ2n
)
.

Now, let α̂k = γ−1n H(β̂k − βk). Then α̂k maximizes ln (γnαk, τ) w.r.t αk. By the

quadratic approximation lemma (Fan and Gijbels, 2018), we can obtain

α̂k = γ−1n (Σk(t)⊗ Ω)−1 [An,1k(τ) +Rn,1k(τ)] + op(1) (3.32)

Define

S̃1k(s) = E
[
P (s|X(s)) exp

(
X̃(s, s− t)Tβk

)
X(s)

]
,

and

S̃n,1k(s) = n−1
n∑
i=1

Yi(s) exp
(
X̃i(s, s− t)Tβk

)
Xi(s).

Let

A∗n,1k(τ) =

∫ τ

0

Kh(s− t)
[
Q1k(s)− S̃1k(s)λ0k(s)

S∗0k(s)

S0k(s)

]
ds, (3.33)

and

R∗n,1k(τ) =

∫ τ

0

Kh(s− t)n−1
n∑
i=1

[
Xi(s)−

S̃n,1k(s)

Sn,0k(s)

]
dMik(s).

Since (Σk(t)⊗ Ω)−1 = Σk(t)
−1 ⊗ Ω−1, the first p-components of (3.32) yields

γ−1n (âk(t)− ak(t)) = γ−1n Σ−1k (t)
[
A∗n,1k(τ) +R∗n,1k(τ)

]
+ op(1). (3.34)

Next, we apply the Taylor expansion to the term Q1k(s)−S̃1k(s)λ0k(s)S
∗
0k(s)/S0k(s)

in (3.33) around t to calculate the bias for âk(t). Note that X̃(s, s−t)Tβk = ηk(t)
TX(s)+

(s− t)η′k(t)TX(s) and

Q1k(s)−S̃1k(s)λ0k(s) = E
[
Pk(s|X(s))λ0k(s)X(s)

(
exp

(
ηk(s)

TX(s)
)
− exp

(
X̃(s, s− t)Tβk

))]
.

For |u− t| < h,

ηk(s)
TX(s) = ηk(t)

TX(s) + (s− t)η′k(t)TX(s) +
1

2
(s− t)2η′′k(t)TX(s) + op

(
(s− t)2

)
.

Thus, by condition A1-A8,

Q1k(s)− S̃1k(s)λ0k(s)

= E
[
Pk(s|X(s))λ0k(s) exp

(
ηTk (s)X(s)

)
1
2
(s− t)2X(s)X(s)Tη′′k(t)

]
+ o ((s− t)2)

= 1
2
(s− t)2Q2k(s)η

′′
k(t) + o (h2)
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Similarly,

S∗0k(s)− S0k(s) =E
[
Pk(s|X(s))

(
exp

(
ηTk (s)X(s)

)
− exp

(
X̃(s, s− t)Tβk

))]
=

1

2
(s− t)2Q1k(s)

Tη′′k(t)/λ0k(s) + o
(
h2
) ,

and

(S∗0k(s)− S0k(s)) /S0k(s) =
1

2
(s− t)2Q1k(s)

Tη′′k(t)/Q0k(s) + o
(
h2
)
.

Therefore,

Q1k(s)− S̃1k(s)λ0k(s)
S∗0k(s)

S0k(s)
=

1

2
(s− t)2Σk(s)η

′′
k(t) + op

(
h2
)
. (3.35)

Plugging (3.35) in the expression for A∗n,1k(τ) given in (3.33), (3.34) becomes

γ−1n

[
η̂k(t)− ηk(t)−

h2

2
µ2η

′′
k(t)

]
= γ−1n Σ−1k (t)X∗n,1k(τ) + op(1),

so that

√
nh

[
η̂k(t)− ηk(t)−

h2

2
µ2η

′′
k(t)

]
= Σ−1k (t)

√
nhX∗n,1k(τ) + op(1).

Finally, the process U∗nk(v) =
√
nhX∗n,1k(v) is a locally square integrable martingale

with the predictable variation process

〈U∗nk, U∗nk〉 (v) = n−1h
n∑
i=1

∫ v

0

K2
h(s− t)

[
Xi(s)−

S̃n,1k(s)

Sn,0k(s)

]⊗2
Yi(s)λk (s|Xi(s)) ds.

By lemma 3.3.3, we can show that

〈U∗nk, U∗nk〉 (v) =

∫
K2(s)ds

[
Q0k(t)Q2k(t)−Q1k(t)

⊗2] /Q0k(t)+op(1) = v0Σk(t)+op(1).

Write the lth element of the vector U∗nk(v) as
√
nh

n

n∑
i=1

∫ t

0

Kh(s− t)Hn,i,l(s)dMik(s),

To prove the asymptotic normality, we need to check the Lindeberg condition
n∑
i=1

∫ v

0

n−1hK2
h(s−t)H2

n,i,l(s)I
{√

h/nKh(s− t) |Hn,i,l(s)| > ε
}
Yi(s)λk (s|Xi(s)) ds

P−→ 0

for all ε > 0. The last statement is valid by condition A1-A8 and lemma 3.3.3. This

establishes that

√
nhX∗n,1k(v)

D−→ N {0, v0Σk(t)} , 0 ≤ v ≤ τ.

Therefore,

√
nh

[
η̂k(t)− ηk(t)−

h2

2
µ2η

′′
k(t)

]
D−→ N

{
0, v0Σ

−1
k (t)

}
.

The proof of the theorem is complete.
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3.4 Simulation

In this section, the simulation studies show that the proposed estimation procedures

for FMCox PH models with time-varying coefficients are reliable and useful. The

Epanechnikov kernel function K(s) = 0.75(1− s2)+ is used for all the following exam-

ples. And the performance of the estimated time-varying coefficients η̂jk(·) could be

assessed by the mean absolute deviation (MAD)

MADjk = n−1
n∑
l=1

|η̂jk (tl)− ηjk (tl)| , j = 1, . . . , p,

where {tl, l = 1, . . . , n} are the grid points at which ηjk(·) are estimated.

3.4.1 Simulation study scenario 1

Motivated by the simulation study proposed by Eng and Hanlon (2014), the main

objective is estimating the effect of the time-independent covariate x. To compare the

performance of the proposed FMCox PH models with time-varying coefficients and the

FMCox PH models in Eng and Hanlon (2014), scenario 1 focuses on the situation of

a single time-independent covariate x with the constant coefficients ηk(t) = constant

of interest.

Assume that the number of latent classes K = 2, all the 2n observations have a

single covariates (x1, ..., x2n) ∼ N(µ · 12n, I2n). For the two different latent classes, we

consider the models:

λik(t) = h0k(t)exp{ηk(t)xi},

where h0k(t) = 1, the first class has η1(t) = 3 and the second class has η2(t) = −3.

Hence, the survival time and censoring time for the ith subject is generated through

the same technique described in Section 2.3. Set n = 500 subjects in each class and to

target 40% censoring rate, the mean value of covariates is µ = 0 and censoring event

time is generated from U(0, exp(0.99)). Therefore, the Kaplan-Meier survival curve

for the simulated event time could be plotted in Figure 3.1:
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Table 3.1: Simulation results for MAD based on 100 replicates for scenario 1
40% censoring

n h Av.MAD1 Std.MAD1 Av.MAD2 Std.MAD2

500 0.6 0.6732 0.5315 0.5348 0.4628
750 0.6 0.5861 0.4127 0.4359 0.3376
1000 0.6 0.5076 0.3894 0.4318 0.3148
Av. classification accuracy: 87%

Figure 3.1: the Kaplan-Meier survival curves for the given latent classes in the simplest

simulation study with the mean of the time-independent covariate µ = 0.

In both models, we restrict to the estimation of the time-varying coefficients on the

time interval [0, 2.5]. In this simulation study, the choice of bandwidth is h = 0.6 and

the choice of the grid points are 0.005 + 0.25l, l = 0, 1, ..., 9. The simulation results for

MAD are showed in Table 3.1, and the average classification accuracy is 87%. These

results show that the proposed procedure is reliable. Figure 3.2 and Figure 3.3 display

the estimate of the time-varying coefficients for the two given latent class η1(t) and

η2(t) based on the sample data.
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Figure 3.2: estimation of η1(t) for the simulated models

Figure 3.3: estimation of η2(t) for the simulated models
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3.4.2 Simulation study scenario 2

In this scenario, we evaluate the performance of the proposed FMCox PH model with

time-varying for the non-constant coefficients. Assume that the number of latent

classes K = 2, all the 2n observations have a single covariates (x1, ..., x2n) ∼ N(µ ·

12n, I2n). For the two different latent classes, we consider the models:

λik(t) = h0k(t)exp{ηk(t)xi},

where h0k(t) = 1, the first class has η1(t) = 4−0.5t and the second class has η2(t) = −1.

Hence, the survival time and censoring time for the ith subject is generated through

the same technique described in Section 2.3. Set n = 500 subjects in each class and

to target 30% censoring rate, the mean value of covariates is µ = −0.1 and censoring

event time is generated from U(0, exp(1.6)). Therefore, the Kaplan-Meier survival

curve for the simulated event time could be plotted as follow:

Figure 3.4: the Kaplan-Meier survival curves for the given latent classes in the given

scenario with the mean of the time-independent covariate µ = −0.1.

In both models, we restrict to the estimation of the time-varying coefficients on

the time interval [0, 5]. In this simulation study, the choice of bandwidth is h = 1

and the choice of the grid points are 0.005 + 0.5l, l = 0, 1, ..., 9. The simulation results

for MAD are presented in Table 3.2, and the average classification accuracy is 82%.

These results show that the proposed procedure for the proposed FMCox PH model

with time-varying for non-constant coefficients, is reliable. Figure 3.5 and Figure 3.6

display the estimate of the time-varying coefficients for the two latent class η1 and η2

based on the sample data for this simulation study.
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Figure 3.5: estimation of η1(t) for the simulated models

Figure 3.6: estimation of η2(t) for the simulated models
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Table 3.2: Simulation results for MAD based on 100 replicates for scenario 2
25% censoring

n h Av.MAD1 Std.MAD1 Av.MAD2 Std.MAD2

500 1 0.7459 0.6568 0.5734 0.6973
750 1 0.7045 0.5676 0.5475 0.5475
1000 1 0.6784 0.4865 0.4967 0.4367
Av. classification accuracy: 82%

3.5 Real data analysis

We will illustrate the proposed method by applying the procedure to analysis a real

data set from the study of AIDS (Abrams et al., 1994). And in this study, there

are 467 patients infected with HIV, and they have received two different treatments,

Zalcitabine (ddC) or Didanosine (ddI), randomly. The main interest focuses on how

the treatment effects the risk of infection or death.

For simplicity, some prior knowledge (Liu et al., 2015; Roustaei et al., 2018) were

used for our real data analysis directly, such as there are K = 2 latent classes, and

the main time-independent covariate of interest is the treatment. The baseline hazard

functions were assumed to be piecewise-constant functions. The objective is estimating

the coefficients ηk(·) for time-independent covariate treatment. Recall the survival sub-

model:

λik(u) = h0k(u) exp{ηk(u)× treatmenti}, (3.36)

with the latent classification variable

cik =

1 if subject i belongs to sub-class 1

0 otherwise

and

P{cik = 1} = πk and
2∑
k

πk = 1.

The estimation results of the time-varying coefficients for the two latent class η1(t)

and η2(t) are presented in Figure 3.7 and Figure 3.8. And the Kaplan-Meier survival

curves for the two latent classes in this AIDS study could be plotted in Figure 3.9.

Note that the estimation of the treatment effects in the two latent classes are negative

at any time point, which means that taking the given treatment will decrease the risk

of infection or death. And the given treatment is more effective for the patients in the
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second latent class. From the Figure 3.9, the similar results could be obtained, i.e. the

patients in the second latent class have the higher survival probability.

Figure 3.7: estimation of η1(t) for AIDS data

Figure 3.8: estimation of η2(t) for AIDS data
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Figure 3.9: the Kaplan-Meier survival curves for the two latent classes in the AIDS

study.

3.6 Discussion

In this chapter, we extend the FMCox PH models to characterize the effects over time

of the covariates of interest, and proposed the FMCox PH models with time-varying

coefficients. The local partial likelihood technique has been used for the estimation

procedures, and the drawbacks of a local partial likelihood estimator due to the limited

amount of data around the given time point t, could be overcome through the one-step

estimator used in the EM iterations. The concavity of the local linear partial likelihood

and the asymptotic normality of the local partial likelihood estimators across every

sub-class have also been provided in this chapter.

To assess the performance of the FMCox PH models with time-varying coefficients

and the corresponding proposed estimation procedures, two simulation studies have

been proposed in this chapter. Under the scenario 1, the performance of the FMCox

PH models with time-varying coefficients is quite reliable, compared with the perfor-

mance of FMCox PH models. Under the scenario 2, the performance of the FMCox

PH models with time-varying coefficients show that this proposed models and the cor-

responding proposed estimation procedures could provide the reasonable estimators,

considering non-constant coefficients. And we also finish the real data analysis, which
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means the proposed models could handle the clinical trial data analysis and provide

the explanatory estimators.

However, there are many limitations in this work, such as the lack of the choice

of the number of latent classes, more than one time-independent covariates simula-

tions and time-dependent covariates without measurement error simulations. In this

chapter, we didn’t consider the situations where the number of latent classes is not

known, but it is common in practice. Therefore, some choice criteria e.g. AIC, BIC

used in standard joint modeling, need to be proposed and assess the corresponding

performance in the future work. Therefore, more complex simulation, e.g. includ-

ing more than one time-independent covariates or time-dependent covariates without

measurement error, will also be needed in the future work.



Chapter 4

Conclusion and Discussion

In medical studies, most common diseases including cancer are heterogeneous that

they vary in etiology, pathogensis, and prognosis, which we have limited knowledge.

Some longitudinal biomarkers include important information from the past history and

provide feedback to the future events. It is frequent to collect both repeated measures

of longitudinal processes and the time to an event of interest simultaneously. The

existing literature considers heterogeneity of survival data analysis under the FMCox

PH models, joint analysis of longitudinal and time-to-event data under the standard

joint models.

It is natural to extend the FMCox PH model to the case with multiple longitudinal

covariates measured with error and to the case which could characterize the effects over

time of the covariates of interest. Therefore, the joint FMCox PH models and FMCox

PH models with time-varying coefficients have been proposed in chapter 2 and 3,

respectively. And the conditional score method is proposed in EM iteration for the

joint FMCox PH models, which does not need any assumption on the distribution

of the random effects, the estimation procedures lead to consistent estimators for the

parameters of interest. To assess the performance of the joint FMCox PH models,

two simulation studies have been proposed in chapter 2. Under the scenario 1, the

performance of the joint FMCox PH models is similar to the performance of FMCox

PH models, which means that the joint FMCox PH models could replace FMCox

PH models to handle the heterogeneity in survival data analysis. Under the scenario

2, the performance of the joint FMCox PH models show that this proposed models

and the corresponding estimation procedures could give the reasonable estimators,

75
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considering the heterogeneity in longitudinal and time-to-event data analysis. And

the local partial likelihood technique has been used for the estimation procedures for

FMCox PH models with time-varying coefficients, and the drawbacks of a local partial

likelihood estimator due to the limited amount of data around the given time point,

could be overcome through the one-step estimator used in the EM iterations. The

concavity of the local linear partial likelihood and the asymptotic normality of the

local partial likelihood estimators across every sub-class have also been provided in

chapter 3. To assess the performance of the FMCox PH models with time-varying

coefficients and the corresponding proposed estimation procedures, two simulation

studies have been proposed in chapter 3. Under the scenario 1, the performance of

the FMCox PH models with time-varying coefficients is quite reliable, compared with

the performance of FMCox PH models. Under the scenario 2, the performance of

the FMCox PH models with time-varying coefficients show that this proposed models

and the corresponding proposed estimation procedures could provide the reasonable

estimators, considering non-constant coefficients. And we also finish the real data

analysis, which means the proposed models could handle the clinical trial data analysis

and provide the explanatory estimators.

However, there are many limitations in this thesis. In these two works, we didn’t

consider the situation where the number of latent classes is not known, but it is

common in practice. Therefore, some choice criteria e.g. AIC, BIC used in standard

joint modeling, need to be proposed and assess the corresponding performance in the

future work. And in both two projects, the simulation studies are limited, e.g. just

including one time-independent covariate and time-dependent covariate in chapter 2,

no time-dependent covariate without measurement error in chapter 3. Therefore, more

simulation studies and real data analysis will be finished in the future work.
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