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Abstract Knowing the conserved quantities that a galaxy’s stellar orbits conform to is
important in helping us understand the stellar distribution and structures within the galaxy.
Isolating integrals of motion and resonances are particularly important, non-isolating in-
tegrals less so. We compare the behavior and results of two methods for counting the
number of conserved quantities, one based on the correlation integral approach and the
other a more recent method using machine learning. Both methods use stellar orbit trajec-
tories in phase space as their only input, and we create such trajectories from theoretical
spherical, axisymmetric and triaxial model galaxies. The orbits have known isolating in-
tegrals and resonances. We find that neither method is fully effective in recovering the
numbers of these quantities, nor in determining the number of non-isolating integrals.
From a computer performance perspective, we find the correlation integral approach to be
the faster. Determining the algebraic formulae of (multiple) conserved quantities from the
trajectories has not been possible due to the lack of an appropriate symbolic regression
capability. Notwithstanding the shortcomings we have noted, it may be that the methods
are usable as part of a trajectory analysis tool kit.

Key words: galaxies: kinematics and dynamics – methods: numerical

1 INTRODUCTION

In this Introduction, we first consider briefly traditional stellar dynamical modeling, and then point out
how some aspects of the modeling may be dealt with using machine learning techniques. We complete
the Introduction by setting our objectives for the investigation described in this article. We describe our
approach to meeting the objectives in the next section.

The stellar dynamics of galaxies are explored by developing some model of a galaxy, constraining
it with observational data, and then examining the model to see what might be learnt about the real
galaxy. Binney & Tremaine (2008) describe the theory behind many of the modeling techniques that
might be used. A key point which must be understood about external galaxies is that our models are
only indicative and illustrative of real (external) galaxies because of the current technical limitations of
the instruments we employ for observations: in essence, we can not obtain 3D galaxy data. Observing
and modeling our Galaxy is different as we do have the capability to collect 3D spatial and velocity data.
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Theoretically, the collisionless Boltzmann equation (CBE), by linking a galaxy’s gravitational po-
tential and its phase space distribution function f(x, v, t), gives us a start point for modeling. Integrating
the distribution function (a probability density function) in various ways gives us a means of creating
model observables which can then be compared with real stellar observables (that is, the observed data).
Equations of motion (if they are needed) come from Hamiltonian mechanics, giving a 6D phase space.
Constants or integrals of motion come from considering the Jeans theorems, and lead to isolating inte-
grals which partition phase space, and non-isolating integrals which do not. Typical isolating integrals
are energy, and some or all of the components of angular momentum. Spatial resonances may arise from
the equations of motion under certain circumstances, and resonant orbits may have trajectories which
influence the shape sub-structures present in the galaxy. Steady state where the potential and distribution
function are not time dependent is a major simplifying assumption which is often used. In a similar vein,
the form of the potential is frequently assumed from the shape of the galaxy.

Modeling methods typically come from the Jeans equations, or from processes trying to avoid know-
ing the distribution function, or from using processes where the form of the distribution function is
assumed. Schwarzschild’s method (Schwarzschild, 1979) and the made-to-measure (M2M) method of
Syer & Tremaine (1996) are two methods which use weighted orbits or particles to tailor models with
the intention that, by adjusting the weights, model observations will match real observations. While
the weights can be interpreted astrophysically their values are in fact set by purely numerical methods
(Long, 2016; Long & Mao, 2018; Long et al., 2021). The M2M method we will refer to later. Jeans
equation methods may yield non-physical models (for example, van de Ven et al., 2003; Cappellari,
2008) so we will not discuss them further.

Having set the context using a more traditional stellar dynamical modeling approach, we now con-
sider what has been achieved and might be achieved by using machine learning. Bulk processing of
noisy, image data at radio and optical wavelengths to classify galaxies is well-advanced - see, for ex-
ample, Clarke et al. (2020), Canducci et al. (2022) and Tang et al. (2022). For single galaxies, orbit
trajectory data and normalizing flows provide the capability to determine distribution functions and ac-
celerations from the gravitational potential - see Green & Ting (2021), An et al. (2021) and Naik et al.
(2022). An et al. (2021) used a Hernquist (1990) model in their experiments. From our own experiences
(as yet unpublished) converting to other models appears to work satisfactorily. Training models to learn
and follow conservation laws in a Hamiltonian context was accomplished by Greydanus et al. (2019)
with a Lagrangian implementation in Cranmer et al. (2020). Data driven discovery of coordinates and
equations of motion using an autoencoder architecture with symbolic regression was investigated by
Champion et al. (2019). Symbolic regression (see review by La Cava et al., 2021) is concerned with
taking numerical input and output data and producing an algebraic formula to convert the input to the
output. Its value in a stellar dynamical modeling context is appreciable: it means, for example, that we
should be able to take the weights from a M2M modeling run and produce an algebraic formula for the
galaxy distribution function. Both Karniadakis et al. (2021) and Meng et al. (2022) deal with physics-
informed machine learning with the latter surveying the methods and techniques available. What is
required in due course is that the physics-informed techniques are investigated for their applicability in
an astronomy, stellar dynamics context.

What is hopefully now clear is that there is sufficient overlap between the traditional stellar dy-
namical modeling techniques and machine learning techniques to warrant further investigation. The end
position we should be aiming for is to see how far we can get in developing new stellar dynamical mod-
eling tools based on machine learning to augment if not replace the existing traditional tooling. The gap
is not that large in that appropriate machine learning based tools are emerging, and the existing tradi-
tional M2M scheme already has some features found in neural networks, for example back propagation
(Rumelhart et al., 1986).

Turning now to this paper, as we said in the Abstract, knowing the conserved quantities that a
galaxy’s stellar orbits conform to is important in helping us understand the stellar distribution and
structures within the galaxy. Isolating integrals of motion and resonances are particularly important,
non-isolating integrals less so. The first step is knowing just how many conserved quantities an orbit
conforms to, and we will do this by examining and comparing two methods for counting such quanti-
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ties, the first based on a traditional approach and the second on machine learning. The traditional method
is closely related to the correlation integral method described in Carpintero (2008) which is based on
the work of Carnevali & Santangelo (1984) and Barnes (2001), which in turn are based on Grassberger
& Procaccia (1983). The machine learning method is as described in Liu & Tegmark (2021), and takes a
manifold dimensionality approach enabled by Saremi & Hyvärinen (2019). Liu & Tegmark (2021) was
developed in a physics rather than an astronomy context, and we are not aware of any previous galaxy-
based usage. As a consequence, our research objectives are to compare and contrast methods (with
and without the exploitation of machine learning) for determining the number of integrals of motion
and resonances from galaxy stellar orbit trajectories. These trajectories will be created by integrating
the equations of motion in various theoretical gravitational potentials representing galaxies, where the
expected number of isolating integrals is known in advance.

The structure of our paper is as follows. Section 2 describes at a top level the approach we will take
to our investigations. Relevant theory and descriptions of the methods are in Section 3. Our results and
subsequent discussion are in Sections 4 and 5, with our conclusions in Section 6.

2 APPROACH

The motion of stellar objects within a galaxy is usually described and analyzed mathematically by using
Hamiltonian mechanics (Binney & Tremaine, 2008). Galaxy stellar orbit phase space trajectories define
manifolds (Arnold, 1989), and we use the local properties of manifolds to help us determine the number
of conserved quantities present in an orbit trajectory. In particular, manifolds are locally homeomorphic
to a Euclidean space, and conserved integral quantities act to reduce the effective dimensionality of the
manifold, as do resonances. As indicated in the Introduction, Section 1, we are comparing two different
methods, a recent method by Liu & Tegmark (2021) using manifold machine learning techniques, and
an earlier, correlation integral method based on the work of Grassberger & Procaccia (1983). Liu &
Tegmark (2021) in their supplementary material do mention briefly the correlation integral method but
refer to it as the ‘fractal’ method. In this paper, our correlation integral methodology is mainly influenced
by Carpintero (2008).

Our comparison utilizes theoretical galaxy models of increasing complexity, where the normally
expected number of isolating integrals is known. If more than the expected number are found, this
implies that a trajectory has additional conserved quantities, for example, resonances (Carpintero, 2008).
If fewer are found, then we are dealing with irregular or chaotic orbits. In 6D phase space, the minimum
number of conserved quantities is one (corresponding to energy) and the maximum is five (which would
imply a 1D orbit). It is important to note that the methods operate with the trajectory of a single orbit.
Even though we will talk about galaxy models and orbits from those models, in no sense do the methods
operate at a galaxy level utilizing many orbits in one model: the methods operate on single orbits only.

Our galaxy models have various morphologies and include spherical, axisymmetric (oblate), and
triaxial (ellipsoidal) theoretical models. We have deliberately picked models that have been used else-
where for similar related work. Our spherical models are taken from Plummer (1911) and Hernquist
(1990), and our axisymmetric model is the logarithmic model from Richstone (1980) in both cored and
singular forms. For our triaxial model, we use the perfect ellipsoid described in de Zeeuw (1985).

Both methods take orbit trajectories as their only data input. We create 6D phase space orbit trajecto-
ries in Cartesian coordinates, but also use coordinates specific to the morphologies of our galaxy models
to help us shed light on the functioning of the methods.. For spherical models, we use 2D Cartesian con-
figuration coordinates in the individual orbital planes of the trajectories, and similarly for axisymmetric
models where we use the meridional plane. For triaxial models, we also use 3D confocal ellipsoidal co-
ordinates. For operational, time efficiency reasons, we limit our work to 64 orbit trajectories per galaxy
model. The trajectories are the same for both modeling schemes. Note that resonances, if present, may
manifest themselves differently in different coordinate systems (Papaphilippou & Laskar, 1996).

For each model within the three galaxy morphologies mentioned, we execute four modeling runs
made up of the two methods with two coordinate schemes, all utilizing the same 64 orbits. In the com-
parison, we are looking for a high level of consistency between the two methods with the expectation
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that the number of conserved quantities for an individual orbit will be correct and the same (within, of
course, the limitations of the analysis techniques available to us).

Our work is limited to a comparison between methods using trajectory data from simple theoretical
models. We are concerned to understand whether the individual methods function correctly and consis-
tently with 6D phase space data. As a consequence, more complex scenarios, such as the following, are
out of scope,

• perturbed trajectories,
• general time-varying systems where the gravitational potential is a function of time,
• time-averaged conserved quantities as in Qin & Shen (2021) for example,
• rotating bar potentials as in Barnes (2001), and
• the impact of adiabatic variations on orbits.

In addition, determining formulae for conserved quantities is not performed: various schemes are de-
scribed in the literature but, from our own experiences with them, no robust, reliable method exists as
yet to do so for multiple conserved quantities in 6D phase space.

For the remainder of this paper, we refer to the machine learning method as the ML method, and the
more traditional method using the correlation integral as the CI method. To clarify, since we are not able
to determine formulae and therefore are unable to confirm quite what we have counted, we use the term
‘conserved quantities’ (CQ) to cover both integrals and resonances. This lack of formulae is not specific
to our work, and is present in earlier CI work. We use the notation CQ = n to indicate n conserved
quantities.

To be clear, our work is concerned with stellar dynamics in a galaxy context. Use of methods and
the results achieved must be interpreted in that context: they may not be applicable in other contexts.

3 THEORY AND METHODS

3.1 The CI Method

Our design and implementation of the correlation integral (CI) method is based on that in Carpintero
(2008). The method aims to determine the number of effective dimensions Neff of an orbit. Having done
that the number of conserved quantities CQ for the orbit is just

CQ = NPS −Neff , (1)

where NPS is the number of phase space dimensions of the orbit.
Thinking now of the manifold the phase space orbit trajectory defines, given the number of con-

served quantities reduces the dimensionality of the trajectory, if we define a hypersphere of radius
rs << 1 around a trajectory point, the number of other trajectory points Npts in the hypersphere should
increase as rNeff

s as rs is increased. So, for increasing rs

Npts ∝ rNeff
s , (2)

a power law relationship which allows Neff and thus CQ to be determined.
More formally, the correlation integral can be written as

C(rs) = lim
N→∞

2

N(N − 1)

N∑
i=1

N∑
j>i

Θ(rs − |Xi −Xj |), (3)

where Xi and Xj are phase space trajectory points, Θ is the Heaviside function, and N is the number
of trajectory points contributing to the integral. Changing terminology slightly, it should be clear that
the correlation integral is just the 2-point correlation function of the trajectory points. Taking Equations
(2) and (3) together, Npts is equivalent to C(rs). From Equation (3), the single computer processor
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performance of the method nominally scales as N2 but the C(rs) calculation is readily amenable to
parallelization: in computing terms, it is just a for loop within a for loop.

For rs, from experimentation, we take 80 values uniformly spaced logarithmically in the range
[10−3, 1]. In subsequent sections, we will refer to rs as a scale length. Prior to calculating the correlation
integral, we normalize the coordinates of a trajectory’s points using min-max normalization as in Floß
et al. (2018). Distances d between two points in phase space (on the manifold) are calculated as

d =
√
δx2 + δy2 + δz2 + δv2x + δv2y + δv2z , (4)

where the difference in positions is (δx, δy, δz) and in velocities (δvx, δvy, δvz).
We utilize two approaches in determining an integer value for Neff and subsequently CQ. We can

work with the correlation integral directly, or we can work with its (numerically determined) gradient.
We have implemented and use both approaches but our preference is the gradient approach. All the CI
results described here are based on that approach, with the direct approach being used in a supporting
role.

Neff is the gradient in a log-log formulation of Equation (2). This gradient varies with rs, is not a
constant, and does not have an integer value that we can immediately associate with Neff . We arrive at a
constant integer value by fitting possible integer values (1 to 5) of the gradient, and taking the value with
the smallest squared residual with the integral gradient. We do not use all the gradient points in a single
fitting process but using a number of successive gradient points (eight in our case), and perform multiple
rolling fits of the gradient by advancing the start point by one position along the gradient for each fit.
As part of the fitting process, we employ a range constraint on the selected points to deal with binning
noise in constructing the correlation integral and its gradient: the minimum to maximum difference has
to be less than some tolerance (0.2 initially). If no gradient can be found using a given tolerance, the
tolerance is relaxed slightly (by 0.05) until integer gradient is found.

The approach using the correlation integral directly also employs the rolling fit tactic but fits a
straight line to the integral points themselves, and uses the line’s gradient to arrive at a value for Neff .
Carpintero (2008) use a similar process.

Figure 1 illustrates the CI method for an orbit and contains two plots, one showing the correlation
integral, and a second showing the best-fitting integer gradient. The points contributing to the best-fitting
gradient are highlighted in yellow on both plots. 6D phase space is being used so, in this case, a gradient
of 2 corresponds to the number of conserved quantities being 4.

Fig. 1 CI Method - example plots

Example plots from using the CI method on trajectory data taken from a triaxial model orbit. The left hand plot
shows the correlation integral plotted against scale length as a log-log plot. The right hand plot shows the gradient
of the curve on the left with the points contributing to the best-fitting integer gradient (2) marked in yellow. In this
case, the gradient of 2 corresponds to the number of conserved quantities being 4. The fitting process is described

in Section 3.1.
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3.2 The ML method

Functionally, the ML method has similar aims to the CI method but whereas the CI method attempts to
determine the number of effective dimensions of an orbit trajectory, the ML method attempts to deter-
mine the number of conserved quantities an orbit trajectory conforms to. Using Equation (1) from the
previous section, the ML method obtains a value for CQ and then Neff . Cross-matching mathematical
symbols with Liu & Tegmark (2021), their ŝ is the equivalent of our Neff , and their neff is our CQ.

Since we use their main algorithm and software largely unchanged, we only briefly outline the
method and point the reader to Liu & Tegmark (2021) and Saremi & Hyvärinen (2019) for a fuller
explanation. The method has three main phases,

1. preprocessing involving trajectory data whitening, and (optional) removal of any linear conserved
quantities using Principal Component Analysis (PCA),

2. trajectory manifold sampling using a neural empirical Bayes technique (Saremi & Hyvärinen, 2019)
to characterize the local tangent space by perturbing the trajectory data, and

3. use of PCA explained variance ratios to estimate the number of effective dimensions and the number
of conserved quantities.

It is important to note that phase (2) above is repeated multiple times using different degrees of pertur-
bation controlled by a scale length parameter.

We use the AI Poincaré Python software package produced by Liu & Tegmark (2021) unchanged
except for making the user interface more amenable to batch operation, and splitting the package so
that the plots are produced in a script separately runnable from the main modeling code. The original
package is publicly available on the internet (github.com/KindXiaoming/aipoincare). In training the
neural networks, we use the ‘Adam’ optimizer (Kingma & Ba, 2014) and mean square error for the loss
function. In machine literature generally, there is no precise guidance on setting the number of hidden
layers and the number of nodes in neural networks other than that more complex modeling requires
more hidden layers and nodes. After some experimentation, we find this to be true in our work where
we use two layers of 128 nodes for spherical models, four layers of 192 nodes for our axisymmetric
model, and four layers of 320 nodes for the triaxial model. Similarly, we experiment with the values
of the training learning rate and the number of training iterations, and arrive at a value of 0.001 for the
learning rate and values of 500 (spherical models) and 2000 (other models) for the training iterations.
We take values of [0.001, 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.25, 0.5, 1.0] for the scale (perturbation)
lengths.

For the ML method, we use the plots described by Liu & Tegmark (2021) to monitor the behavior of
the method (see their explained ratio diagrams), and add a further plot to examine training loss reduction
and convergence. Figure 2 shows example plots taken from our work. In PCA terms, explained variance
is the variance attributed to individual components, and the ratio is this variance as a fraction of the
total variance across all components. As set out in Liu & Tegmark (2021), low ratios for a component
for a number of consecutive scale factors are taken to indicate a conserved quantity (component), and
high ratios unconserved quantities. The valley Liu & Tegmark (2021) see around a scale factor of 0.1,
we also see in our results. Their ratio cut-off of 0.1/N is not met consistently in our results for 6D
data modeling (in particular, in our axisymmetric and triaxial galaxy models) but is met when modeling
with 4D data. As a consequence we treat the explained ratio diagrams as informative but prefer to quote
results based on CQ estimation as described in the text surrounding the cosine formula in equation (3)
of Liu & Tegmark (2021). The key difference between the two mechanisms is that the explained ratio
diagrams are based on perturbing a single data point from a trajectory while the CQ estimation uses
multiple data points. In our case, we use 200 data points perturbed 2000 times.

3.3 Galaxy Models

In this section, we cover briefly the theoretical galaxy models and potentials we use in creating the orbit
trajectories. We include any parameter values required to use the models, and indicate the number of
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Fig. 2 ML Method - example plots

Example plots from using the ML method on trajectory data taken from a triaxial model. The left and middle plots
are as described by Liu & Tegmark (2021). The right plot shows the change in the loss function as the neural net

for a given scale (perturbation) length is being trained. The scale length in this case is 0.1. The gradient is
calculated from fitting a straight line to the last 20% of the loss values from the training iterations (the short red

line).

isolating integrals expected. In what follows (x, y, z) are Cartesian coordinates and r is the spherical
radius. For the axisymmetric model, (R, z) are taken from cylindrical polar coordinates aligned along
the symmetry axis of the galaxy. For all models, the total mass M = 3, and the gravitational constant
G = 1. All units are theoretical.

For the spherical Plummer (1911) galaxy model, the potential ϕ is

ϕ(r) = − GM√
r2 + b2

, (5)

where b is the scale length (b = 0.5 in our models). For the Hernquist (1990) model,

ϕ(r) = − GM

r + a
, (6)

where a is the scale length (a = 0.5 in our models). For both potentials, we expect four integrals to be
counted by our modeling, energy and the three components of angular momentum. Given that angular
momentum is conserved, an orbit’s trajectory will be in a plane orthogonal to the angular momentum
vector. In such an orbit plane, trajectories have a rosette appearance, for example as in figure 3.1 in
Binney & Tremaine (2008) and here in our Figure 5, and are confined to the region between an inner
and an outer circle.

For the axisymmetric logarithmic models based on Richstone (1980),

ϕ(R, z) =
1

2
v20 log(R

2 +
z2

q2
+R2

c), (7)

where v0 is the scale velocity, q is the z-axis flattening, and Rc is the core radius. In our models, v0 = 1
and q = 0.9, and Rc = 0.1 or Rc = 0 depending on whether a cored or singular (uncored) model
is being used. We expect three integrals (energy, the z component of angular momentum, and a ‘non-
classical’ third integral) to be counted for models in 3D Cartesian coordinates, but only two (energy and
the third integral) for 2D meridional plane (R, z) coordinates. Orbit trajectories are typically tube orbits
about the z-axis, for example, as in figure 3.4 in Binney & Tremaine (2008).

For the triaxial, perfect ellipsoid galaxy model (de Zeeuw, 1985),

ϕ(x, y, z) = −GM

π

∫ ∞

0

1

1 +m2(u)

du√
(a2 + u)(b2 + u)(c2 + u)

, (8)

where

m2(u) =
x2

a2 + u
+

y2

b2 + u
+

z2

c2 + u
, (9)
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with a ≥ b ≥ c > 0. For consistency with table 2 of de Zeeuw (1985), we take a = 1, b = 0.625,
and c = 0.5. The relevant equations in de Zeeuw (1985) are, for ellipsoidal coordinates, equations 6
to 10, for the potential, and equations 13 to 17 and section 4.2 for the integrals of motion. We expect
three integrals of motion to be counted by our modeling, energy and two related to angular momenta.
These integrals are consistent with the Stäckel formulation of the perfect ellipsoid potential. Depending
on the values of the integrals, orbit trajectories are associated with one of four families - boxes, inner
long axis tubes, outer long axis tubes, and short axis tubes as described in de Zeeuw (1985) section
5.1. We adopt the same integration style for the potential and its Cartesian coordinate derivatives as in
section 2 of Merritt & Fridman (1996), where a substitution is used to make integration bounds finite.
Although trajectories in ellipsoidal coordinates are unlikely observationally, we do use them in some of
our models for completeness.

3.4 Orbit Initial Conditions and Trajectories

The same initial conditions (spatial positions and velocities) for the trajectories are used for each galaxy,
regardless which modeling method is being utilized. For the spherical models, we create a spatial distri-
bution of positions that matches the theoretical mass density distribution associated with the galaxy, and
use Gaussian sampling with mean zero and the theoretical velocity dispersion to allocate velocity val-
ues. For the axisymmetric model, we use a three isolating integral scheme as employed in, for example,
Cappellari et al. (2006) or Long & Mao (2012). For the triaxial model, we match its density distribution
to create spatial positions and then allocate velocities uniformly randomly having previously assigned
kinetic energies to the initial spatial positions of the orbits. In creating the initial conditions, no attempt
has been made to create orbits with specific characteristics: we have just reused our existing stellar
dynamical modeling software.

Orbit trajectories are created in a given galaxy potential using a 3rd order leapfrog integrator (Ruth,
1983) with a time step of 10−2 units. With such a scheme, the known isolating integrals are reproduced
to approximately 1 part in 107. The number of trajectory points varies according to the orbital period
of an orbit. Orbital periods are determined for spherical and axisymmetric models using an epicyclic
approximation (see Binney & Tremaine, 2008, section 3.2.3) with an equivalent long axis tube orbit ap-
proximation being employed for the triaxial model (Valluri & Merritt, 1998). Based on our experiences,
we limit orbit trajectories to 75 orbital periods (Barnes, 2001, used 50), and set an overall upper limit
on the number of trajectory points per orbit to 640K. Using more orbital periods has little impact on
our results. To avoid any short distance bias to the modeling calculations only every nth point is actually
utilized. From experimentation, we take n = 16 for triaxial models, n = 8 for spherical models, and
n = 4 for axisymmetric models. Trajectories are always constructed using Cartesian coordinates, and
then converted later to other coordinate systems as required by the modeling.

The software base for initial conditions and trajectories is taken from the lead author’s implemen-
tation of the Syer & Tremaine (1996) made-to-measure stellar dynamical modeling method and the
Schwarzschild (1979) orbit based modeling method. This software was first used in Long & Mao (2010),
and most recently in Long et al. (2021).

3.5 Resonances

Resonances are concerned with integer relationships between the main frequencies of the coordinate
components of an orbit’s trajectory. A resonance is defined by

K∑
k

mkwk = 0, (10)

where the wk are the main frequencies, mk are integer coefficients, and K is the dimension of configu-
ration space (2 or 3 in our work). We determine component frequencies using the Python NAFF imple-
mentation by Zisopoulos et al. (2019) (NAFF is the Numerical Analysis of Fundamental Frequencies
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described in Laskar (1990, 1993)). We will not describe NAFF in any detail: there is plenty of material
regarding its theory and operational use in the literature, for example, Papaphilippou & Laskar (1996,
1998), Valluri & Merritt (1998), Merritt & Valluri (1999), and Wang et al. (2016). We concentrate on
describing how we provide input to NAFF, and use its output to find resonances. There is an alternative
approach in Carpintero & Aguilar (1998) for obtaining resonances which we do not utilize.

We provide input to NAFF in complex form (zk) combining component positions (xk) as the real
part and velocities (vk) as the imaginary part,

zk,j = xk,j + ivk,j , (11)

where subscript j indicates the jth point along the orbit’s phase space trajectory. The outputs from
NAFF relevant to our purposes are the component amplitudes (the real amplitudes, to be precise) and
their frequencies. Practically, it is convenient to sort the component amplitudes and their frequencies
into descending amplitude order to facilitate the searching for frequencies that is required. Quite how
we select the main frequencies depends on whether we are working with 2D or 3D orbits. By default,
we use 3D orbits but there are times when using 2D alternatives are appropriate, for example, when we
are working with orbital plane or meridional plane coordinates.

For 2D orbits, the first component’s main frequency (w1) is taken as the frequency associated with
the first component’s maximum amplitude. Searching the second component frequencies (searching as
described above), the second main frequency (w2) is taken as the first encountered frequency that is not
equal to first component’s main frequency (w1).

For 3D orbits, the first main frequency (w1) is taken as the maximum amplitude frequency from the
component that has the largest amplitude across all three components. The second main frequency (w2)
comes from the component that has the second largest amplitude across all three components, and is the
frequency (after searching) that does not have an integer relationship with the first main frequency (w1).
The third main frequency (w3) comes from the remaining component, and is the frequency that does not
have an integer linear relationship with the two main frequencies previously determined (w1 and w2).

The final step is to determine whether or not integer coefficients (mk) can be found such that the
main frequencies (wk) have an integer relationship as in Equation (10). We do this using the integer
programming capabilities of the publicly available Python package OR-Tools (github.com/google/or-
tools). If we are able to find such integer coefficients, then we have found a resonance.

4 RESULTS

We group our results by galaxy model, and include results from both modeling methods in the same
figures for ease of comparison. In these plots and figures, results are color-coded with blue being used for
the CI method, and orange for the ML method. Most of the comparison plots are displaying percentages.
With 64 orbits in total for each galaxy model, 1 orbit equates to ≈ 1.6% of the total. For individual
orbits, we show typical results plots in Figures 1 and 2, in Sections 3.1 and 3.2. The galaxy models we
have employed mean that we know the number of isolating integrals that should be found. Ignoring any
non-isolating integrals and resonances, this gives us a basis for examining our results, and enables us to
discuss whether more or less conserved quantities than expected have been detected by the methods.

4.1 Spherical Galaxy Models

Results for the Plummer and Hernquist spherical galaxy models, using both the CI and ML methods
with 2D and 3D configuration spaces, are shown in Figure 3.

Considering first the Plummer model 3D results, they are largely as anticipated with all the orbits
having either CQ = 4 or CQ = 5 conserved quantities. The CI and ML methods achieve the same
CQ for 86% (55 out of 64) of orbits. Where the methods differ is in the number of orbits with more
conserved quantities than anticipated (CQ = 5), with 12 for the CI method and 3 for the ML method.
The 3 ML orbits are found by the CI method as well. This difference (12 vs 3 orbits) may be related to
whether or not the methods are able to handle non-isolating integrals as conserved quantities. Certainly,
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Fig. 3 Spherical Galaxy Models - Plummer and Hernquist

Plummer Hernquist

3D

2D

Plummer and Hernquist models in 3D Cartesian coordinates and 2D orbital plane coordinates. The plots show
histograms of the percentages of orbits having the indicated numbers of conserved quantities. As stated at the start
of Section 4, CI results are in blue and ML results in orange. We expect the peak percentages to be associated with

CQ = 4 for 3D modeling and with CQ = 2 for 2d modeling, and this is met in practice.

‘ring’ orbits, where the orbital plane inner radius is approximately equal to the outer radius, are present
in the orbit sample. Such orbits are described as having non-isolating integrals in Binney & Tremaine
(2008) section 3.1, equation 3.62. The 3 common CQ = 5 orbits are ‘thin’ ring orbits (see Fig. 4)
whereas the additional 9 orbits found by the CI method have slightly ‘fatter’ rings.

Almost all the 2D orbital plane Plummer orbits have the expected number of conserved quantities
(CQ = 2) with only 3 orbits being identified by the CI method as having more quantities (CQ = 3).
None of these orbits is part of the CQ = 5 set of orbits from the 3D work above. Also, as can be seen
from Figure 5, none of the orbits has an obvious ‘thin’ ring structure. Without having a mechanism
to attempt to determine the formulae for the conserved quantities, it is not clear why the CI method
identified these orbits as having more conserved quantities. Similarly, it is unclear why the ML method
has not identified any such orbits as it was able to do when modeling in 3D.

The Hernquist model results, both 2D and 3D, are very similar to the Plummer results. However,
the ML method for the Hernquist model finds no orbits with more conserved quantities than anticipated,
that is, no orbits with CQ = 5 (3D) nor with CQ = 3 (2D). The CI method is able to find 8 CQ = 5
orbits with a ring structure, of which 5 are considered to be ‘thin’. In other words, the CI method is able
to identify at least some orbits as having non-isolating integrals. The ML method appears to find none
for the Hernquist models but was able to do so for the Plummer model.
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Fig. 4 Plummer ‘Thin’ Ring CQ = 5 Orbits

Plummer model ‘thin’ ring CQ = 5 orbits plotted in their orbital planes. Both the CI and ML methods agree on
the categorization of these orbits as CQ = 5. As such the orbits have more conserved quantities than anticipated.

In this case the categorization appears to be as a result of the orbits having a non-isolating integral of motion.

Fig. 5 Plummer 2D Orbital Plane - Orbits with additional CQs

Plummer model 2D orbital plane orbits having more conserved quantities (CQ > 2) than expected. The orbit
trajectories have been restricted to 10K data points so that the orbit structures are visible. As may be seen, none of
the orbits has a ‘ring’ structure. Without formulae for the conserved quantities, it is not clear why the CI method

has determined the orbits have CQ = 3 rather than the anticipated CQ = 2.

4.2 Axisymmetric Galaxy Models

Results for the singular and cored axisymmetric logarithmic galaxy models, using both the CI and ML
methods with 2D and 3D configuration spaces, are shown in Figure 6 and Tables 1 and 2.

The pattern of results is similar between the singular and cored models. We examine the singular
results first and then deal with any differences shown by the cored results. Looking at the plot of the
singular modeling with 3D Cartesian coordinates in Figure 6, it is clear that orbits have predominately
CQ ≥ 3 (as expected) but that the ML results are more peaked at CQ = 3 than the CI results: the CI
results have significantly more orbits with additional conserved quantities (CQ > 3). The two methods
only achieve the same results for 47% of the orbits (30 out of 64). Looking at the 2D meridional plane
results in Figure 6, the agreement is much higher with 95% of the orbits (61 out of 64) having the same
results but with few orbits having additional conserved quantities.

A resonance analysis (Sect. 3.5) of the singular model orbits shows that 22 orbits are resonant, and
might be expected to have an increased number of conserved quantities (CQ > 3). The CI method 3D
Cartesian results have 11 orbits with CQ = 4, and 5 with CQ = 5. By comparison, the ML method
results have only 3 orbits with CQ = 4; of the remaining 19, 18 have just the anticipated number of
conserved quantities (CQ = 3) which seems not be correct. Examining the 2D meridional plane results,
the CI method has 2 resonant orbits (see Fig. 7) having an increased number of conserved quantities
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Fig. 6 Axisymmetric Logarithmic Models - Singular and Cored

Singular Cored

3D

2D

Singular and cored axisymmetric logarithmic models in 3D Cartesian coordinates and 2D meridional plane
coordinates. We expect the peak percentages in the histograms to be associated with CQ = 3 for 3D modeling and

with CQ = 2 for 2d modeling. For the 3D CI models, this peak expectation is not met.

(CQ = 3), with the ML method having the same orbits also with CQ = 3. In the 3D results, both
methods show orbits with increased conserved quantities (CQ = 4).

Fig. 7 Singular Axisymmetric Model - Orbits with additional CQs

Singular axisymmetric model orbits with additional conserved quantities. Both the orbits are categorized as
CQ = 3 (2D modeling) and CQ = 4 (3D modeling) by both methods. As such, these orbits have more conserved
quantities than might be expected from considering only isolating integrals. The resonance analysis of the orbits

indicates both are resonant.



Counting Conserved Quantities 13

Table 1 Axisymmetric Logarithmic Models - Singular

CQ CI Method ML Method Common
Orbits Resonances Orbits Resonances Orbits Resonances

1 0 0 0 0 0 0
2 3 2 1 1 1 1

3D 3 25 4 51 18 21 3
4 28 11 12 3 8 2
5 8 5 0 0 0 0
1 1 1 1 1 1 1

2D 2 59 19 60 19 58 19
3 4 2 3 2 2 2

Axisymmetric singular logarithmic models showing the distribution of orbits and resonances by model-determined
CQ value. The Orbits and Resonances columns give the number counts of orbits, and orbits with resonances, for

each CQ value. The Common column gives the number of times the CI and ML methods agree on the CQ
categorization. The main points to note are that some orbits have more conserved quantities than might be

expected and this can not be explained by resonances alone; resonances, with the exception of the CI-3D results,
do not appear to be identified very well; and, lastly, the 2D meridional results show less variation (lack of

discrimination ?) than the 3D results.

From the previous paragraphs in this section, hopefully it is clear that the numbers of orbits with in-
creased conserved quantities (CQ ≥ 4) in the 3D singular runs can not be explained by resonances
alone. The numbers imply that an appreciable number of orbits must have non-isolating integrals.
Having formulae for the conserved quantities would enable these orbits to be investigated.

The 3 singular 3D model orbits with less conserved quantities (CQ = 2) than expected are shown
in Figure 8. The left hand plot orbit trajectory visually appears to be similar to the chaotic orbit in figure
7 of Zotos (2014), and has both the CI and ML methods agreeing on its categorization. Also, the orbit is
categorized similarly in the 2D meridional plane modeling. Quite why the other 2 orbits have category
CQ = 2 is unclear.

Fig. 8 Singular Axisymmetric Model - Orbits with less CQs

Singular axisymmetric model orbits with less conserved quantities. From the 3D modeling, both the CI and ML
methods agree these three orbits have less conserved quantities than might be expected from considering only
isolating integrals (CQ < 3). The orbit in the left hand plot has similarities with the chaotic orbit in figure 7 of

Zotos (2014). The remaining orbits do not appear to be chaotic but may have a reduced number of isolating
integrals. The 2D meridional plane modeling also indicates that the left hand plot orbit has less conserved

quantities (CQ = 1).

The results for the cored axisymmetric model are very similar to the singular results, so we will
focus on just the resonance related matters in Table 2. For the 3D cored model, a resonance analysis
shows that there are 26 resonant orbits. 17 of these orbits (65%) have been categorized by the CI method
as having an increased number of conserved quantities (CQ ≥ 4). The ML method is only able to
categorize 7 resonant orbits as CQ = 4. More broadly, the CI method has 40 orbits with CQ ≥ 4, while
the ML method has 13 orbits. Even with the resonant orbits subtracted, there is still an appreciable
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Table 2 Axisymmetric Logarithmic Models - Cored

CQ CI ML Common
Orbits Resonances Orbits Resonances Orbits Resonances

1 0 0 0 0 0 0
2 3 2 3 1 0 0

3D 3 21 7 48 18 20 7
4 22 9 13 7 8 4
5 18 8 0 0 0 0
1 0 0 0 0 0 0

2D 2 60 23 61 24 60 23
3 4 3 3 2 3 2

Axisymmetric cored logarithmic models showing the distribution of orbits and resonances by model-determined
CQ value. The columns are as defined for Table 1. Not that unsurprisingly, given the similarities in gravitational

potentials, the results are consistent with the singular modeling results in Table 1.

number left with an increased number of conserved quantities that require explaining. Having formulae
for the conserved quantities would assist matters.

4.3 Triaxial Galaxy Model

Results for the perfect ellipsoid triaxial galaxy model, using both Cartesian and ellipsoidal coordinates,
are shown in Figure 9 and Table 3. The 64 orbit sample for this triaxial galaxy comprises 37 X-tube
orbits (58%), 10 Z-tube (16%), and 27 box orbits (26%).

Fig. 9 Triaxial Model - Perfect Ellipsoid

3D Cartesian Coordinates 3D Ellipsoidal Coordinates

Perfect ellipsoid triaxial models in 3D Cartesian coordinates and 3D ellipsoidal coordinates. We expect the peak
percentages in the histograms to be associated with CQ = 3, and this is met in practice.

The results for the triaxial modeling are generally as anticipated with most orbits having CQ = 3
as expected, or CQ = 4, an increased number of conserved quantities. Both methods have categorized
some orbits as having fewer conserved quantities than expected (CQ = 2) indicating irregular orbits.

A resonance analysis (Sect. 3.5) of the orbits shows that 18 are resonant. Using 3D Cartesian coor-
dinates, the CI method categorizes 7 of these orbits in the CQ = 4 or CQ = 5 bands where they might
be expected to be. By comparison, the ML method only places 2 orbits in the CQ = 4 band. This would
appear to leave 11 orbits (CI method) and 16 orbits (ML method) unrecognized as resonant orbits. The
equivalent orbit numbers, unrecognized when ellipsoidal coordinates are used, are 13 orbits (CI method)
and 17 orbits (ML method).
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Table 3 Triaxial Model - Perfect Ellipsoid

CQ CI ML Common
Orbits Resonances Orbits Resonances Orbits Resonances

1 0 0 0 0 0 0
2 2 0 7 3 0 0

Cartesian 3 50 11 55 13 44 9
4 11 6 2 2 2 2
5 1 1 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0

Ellipsoidal 3 47 13 63 17 47 13
4 17 5 1 1 1 1
5 0 0 0 0 0 0

Perfect ellipsoid triaxial models showing the distribution of orbits and resonances by model-determined CQ value.
The columns are as defined for Table 1. The distribution patterns are consistent with those for the axisymmetric

models - see Tables 1 and 2.

The CI and Ml methods reach the same CQ categorization for 72% (46 out of 64) of the orbits
when Cartesian coordinates are in use, and 75% (48 out of 64) when using ellipsoidal coordinates.
The CQ = 2 orbits, indicating orbits with fewer conserved quantities than expected, are a concern,
particularly for the ML method, as all the orbits for the triaxial galaxy model have 3 isolating integrals
by construction (which were explicitly confirmed as conserved during trajectory construction - see Sect.
3.4). Note that no CQ = 2 orbits have been counted when modeling with ellipsoidal coordinates. Also,
it should be noted that the CQ = 4 orbits which are not resonant may have non-isolating integrals.
Having formulae for the conserved quantities would enable these unexplained CQ = 2 and CQ = 4
orbits to be investigated.

4.4 Computer Utilization

Modeling runs were performed on a 20 core desktop PC. No attempt was made to use graphics process-
ing units (GPUs) to improve performance but their use is not precluded. All software used is Python 3
based with some use of Cython for performance critical code. PyTorch is used in the machine learning
scripts. Multi-processor working, limited to a maximum of 10 processors, was invoked for both the CI
and ML implementations.

Table 4 Modeling Runtimes per Orbit

3D Cartesian Alternative
Coordinates Coordinates
CI ML CI ML

Spherical Models
Plummer 1s 5s 1s 5s

Hernquist 1s 5s 1s 5s
Axisymmetric Models

Singular 5s 38s 4s 18s
Cored 10s 39s 10s 18s

Triaxial Model
Ellipsoid 8s 58s 8s 28s

Processing runtimes per orbit for the different galaxy models. The alternative coordinates are 2D orbital or
meridional plane coordinates for the spherical and axisymmetric models respectively, while for triaxial the

coordinates are 3D ellipsoidal coordinates. Times for the ML method are appreciably higher than the CI method:
this is explained in Section 4.4 by the need to train neural networks.

In Table 4, we show the processing runtimes for the various galaxy models using both methods
up to an equivalent point in each method. For the CI method this point is just after the correlation
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integral has been computed, and for the ML method just after neural net training has been completed.
Internally, the ML method trains one neural network per scale length (10 in total for our purposes).
For the CI method, the correlation integral is computed from a single pass of the trajectory data using
multiple scale lengths: it does not need to be repeated for each scale length. Given that both methods
use the same number of computer cores (10), training costs explain why the ML method takes longer.
Note that the performance achieved is dependent on how the methods are configured: changing various
hyperparameters (for example, the number of hidden neural net layers, or the number of orbital periods)
will change the performance profiles. In looking at the table, it should be understood that we have
used only a few orbits (64) per galaxy model. If we were looking to analyze galaxy orbits from, say,
a cosmological simulation, we might want to analyze several thousand in a reasonable time frame of
perhaps just a few hours (less than 8 hours, for example).

5 DISCUSSION

As will be clear from preceding sections, our research would benefit from being able to use robust meth-
ods and software to determine algebraic formulae for all conserved quantities in a computationally cost
effective and timely manner. The key here is all: software which will nominally find a single conserved
quantity does exist (but does not always perform in a timely manner). A very recent article Liu et al.
(2022) appeared once the work here was substantially complete and may suggest a solution. Given the
problem domain in which we are operating (galaxies), we are able to provide support to any symbolic
regression packages trying to find algebraic formulae from trajectory data. For example, once a coor-
dinate system has been determined for a galaxy, potentially conserved quantities such as momenta can
readily be calculated from trajectory coordinates; total energy cannot be, but the kinetic component can.
From the literature, material from the 1990s on genetic algorithms, capable of identifying multiple so-
lutions, is readily identifiable. A further consequence of the lack of a symbolic regression capability is
that no false positive or negative analyses have been possible.

Claims in Liu & Tegmark (2021) that the ML method outperforms the correlation integral (fractal)
method do not appear to have been confirmed by our work. In our particular, galaxy context, the ML
method is slower than the CI method.

Resonances are not handled well by either method though the CI method does appear to outperform
the ML method, unless of course there is some coincidentally hidden factor in operation. For non-
isolating integrals, they do seem to be recognized for spherical models but the position is much less clear
for our axisymmetric and triaxial models. It may be that spherical model non-isolating integrals are easy
to detect because of their simple ring structure but that more complex structures are inherently harder
to detect. What is clear is that for orbits with more than the expected number of conserved quantities
(based on counting isolating integrals), the increase can not be explained by resonances alone: it does
appear as if there is some other factor contributing which could be non-isolating integrals. Also, it must
not be forgotten that functions of conserved quantities are also conserved.

We have previously commented on increasing the number of hidden neural network layers and their
nodes as complexity rises from spherical to triaxial orbit modeling. Learning rate is another parameter
to experiment with but we found no benefit from so doing. Our approach to setting hyper-parameters
has been to assume that using the same parameter values for all orbits from a given galaxy model is
acceptable, but it may not be. It may be appropriate to set parameters for individual orbits, for example,
for orbits that remain very close to the center of the galaxy.

It has been useful to use 2D orbits in this research to help examine the behaviors of the methods.
When working with observed Galaxy data or with cosmological simulations, say, it is likely that 3D
orbits will be more usual. Related to the orbits is the number of orbit trajectory points available. What
would be appropriate in the future would be to investigate how few trajectory points can be used both to
count conserved quantities and to determine their formulae.

Not withstanding the issues we have identified, it may be worth considering using the CI and ML
methods in this paper as part of a set of phase space trajectory tools. For example, such a tool set might
comprise
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• the CI and ML methods to count CQs;
• a trajectory-based angular momentum conservation analyzer;
• resonance analysis as per Section 3.5;
• kinetic energy is not conserved but is easy to calculate from the trajectory for use elsewhere; and
• using symbolic regression to find the total energy, subtracting the kinetic energy to give the gravita-

tional potential.

Work on the last point above is already well advanced and will be submitted for publication in the near
future.

6 CONCLUSIONS

We have met the objectives set out in the Introduction, Section 1, in that we have compared two schemes
for determining the number of integrals and resonances. One scheme utilizes machine learning while
the other using more traditional methods does not.

Overall, the results are mixed - neither scheme appears to be clearly better than the other in all
aspects. Both fail to deal with resonances adequately though the correlation integral approach does
appear to perform somewhat better. It is tempting to say that the machine learning approach is better
able to identify isolating integrals but this would have to be in the absence of any non-isolating integrals
and resonances. Equally, it could be said that the correlation integral approach appears to be finding
some non-isolating integrals but it is difficult to know truly whether they are non-isolating integrals and
whether all such integrals have been found.

The reason we say ’appears to’ above is that no robust mechanism yet exists for determining the
algebraic formulae for multiple conserved quantities from a single trajectory in a timely manner, though
it may be that the investigations of Liu et al. (2022) will suggest a viable solution. Addressing this
symbolic regression issue needs to be tackled with some urgency, and this or a similar investigation
repeated.

While the issues we have noted are being addressed, the CI and ML methods might form part of a
trajectory tool kit for simulated galaxies.
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