
The University of Manchester Research

Cross-Language Interoperability of Heterogeneous Code

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Stratikopoulos, A., Blanaru, F., Fumero Alfonso, J., Xekalaki, M., Papadakis, O., & Kotselidis, C-E. (Accepted/In
press). Cross-Language Interoperability of Heterogeneous Code. 1-5.
https://research.manchester.ac.uk/files/262497442/Stratikopoulos_MoreVMs2023_Preprint.pdf

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:05. Sep. 2023

https://research.manchester.ac.uk/en/publications/914f3273-c000-4181-a447-2580867dc7fc
https://research.manchester.ac.uk/files/262497442/Stratikopoulos_MoreVMs2023_Preprint.pdf

Cross-Language Interoperability of Heterogeneous Code
Athanasios Stratikopoulos
The University of Manchester
Manchester, United Kingdom
{first}.{last}@manchester.ac.uk

Florin Blanaru∗
OctoML

Seattle, United States
fblanaru@octoml.ai

Juan Fumero
The University of Manchester
Manchester, United Kingdom
juan.fumero@manchester.ac.uk

Maria Xekalaki
The University of Manchester
Manchester, United Kingdom

maria.xekalaki@manchester.ac.uk

Orion Papadakis
The University of Manchester
Manchester, United Kingdom

orion.papadakis@manchester.ac.uk

Christos Kotselidis
The University of Manchester
Manchester, United Kingdom

christos.kotselidis@manchester.ac.uk

ABSTRACT
In recent years, the Java Virtual Machine has evolved from a cross-
ISA virtualization layer to a system that can also offer multilingual
support. GraalVM paved the way to enable the interoperability
of Java with other programming languages, such as Java, Python,
R and even C++, that can run on top of the Truffle framework
in a unified manner. Additionally, there have been numerous aca-
demic and industrial endeavors to bridge the gap between the JVM
and modern heterogeneous hardware resources. All these efforts
beacon the opportunity to use the JVM as a unified system that
enables interoperability between multiple programming languages
and multiple heterogeneous hardware resources.

In this paper, we focus on the interoperability of code that ac-
celerates applications on heterogeneous hardware with multiple
programming languages. To realize that concept, we employ Tor-
nadoVM, a state-of-the-art software for enabling various JDK dis-
tributions to exploit hardware acceleration. Although TornadoVM
can transparently generate heterogeneous code at runtime, there
are several challenges that hinder the portability of the generated
code to other programming languages and systems. Therefore, we
analyze all challenges and propose a set of modifications at the
compiler and runtime levels to constitute Java as a prototyping
language for the generation of heterogeneous code that can be used
by other programming languages and systems.

CCS CONCEPTS
• Software and its engineering→ Language features.

KEYWORDS
code interoperability, programming languages, heterogeneous hard-
ware

∗The work was done when employed at the University of Manchester.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX,
,
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Athanasios Stratikopoulos, Florin Blanaru, Juan Fumero, Maria Xekalaki,
Orion Papadakis, and Christos Kotselidis. 2023. Cross-Language Interoper-
ability of Heterogeneous Code. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 5 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Previous research work has showcased how Java and particularly
the Java Virtual Machine (JVM) can be used as a platform that
facilitates the implementation of new programming languages [11].
The emergence of GraalVM along with its unified approach to reuse
the optimizing JIT compiler for multiple programming languages,
have spearheaded interoperability across multiple programming
languages, such as Java, Python, R, Ruby, and C++ (via Sulong). The
polyglot support can be useful in software domains (e.g., statistical
analysis, machine learning, etc.), which employ a wide range of
programming languages and libraries [10].

In the mean time, several academic and industry efforts [1, 4–
6, 9] have examined ways to bridge the gap between the JVM,
which executed exclusively on CPUs, and hardware acceleration. Al-
though hardware acceleration is not natively supported by the JVM,
there are technologies, such as TornadoVM [4], that aim to offer
a programmer-friendly way for Java programmers to access mod-
ern hardware resources, such as GPUs, and FPGAs. TornadoVM [3]
exposes a hardware-agnostic API to Java programmers and transpar-
ently generates heterogeneous code via a JIT optimizing compiler.
TornadoVM includes three compiler backends that can generate
either source code (i.e., OpenCL, PTX), or binary code (i.e., SPIR-V).
Although Java programmers that use TornadoVM are abstracted
from the knowledge of heterogeneous programming models (e.g.,
OpenCL, CUDA, OneAPI), the heterogeneous code that is generated
can be executed only within TornadoVM. This is due to numerous
challenges, with the most severe one lying on the TornadoVMmem-
ory management system which allocates a memory space in device
that enacts as a device memory heap [2]; similar to the JVM heap.

In this paper, we discuss the lessons learned from the emerging
challenges and we present our work-in-progress to enable inter-
operability of the generated heterogeneous code with other pro-
gramming languages and systems, besides Java. In detail, this paper
makes the following contributions:

• It analyzes the challenges that block the portability of Tor-
nadoVM generated code with other programming languages
and systems.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX,
,

Athanasios Stratikopoulos, Florin Blanaru, Juan Fumero, Maria Xekalaki, Orion Papadakis, and Christos Kotselidis

• It presents our work-in-progress system, which proposes a
new mode, called “code-interoperability-mode”, as a mean
to alleviate the emerging challenges and emit code that has
cross-language interoperability.

• It beacons how the JVM and Java can be used as a unified
platform and programming language for prototyping het-
erogeneous code that can run in parallel on various types of
hardware and from different programming languages.

2 CHALLENGES FOR CROSS-LANGUAGE
INTEROPERABILITY

This section presents an overview of the challenges posed within
the JVM and TornadoVM with regard to the portability of hetero-
geneous code to other programming languages and systems. The
former two challenges concern the JVM as a platform, whereas the
latter two are specific to TornadoVM and the interoperability with
other programming languages.

2.1 Memory Management
JVM is a managed runtime environment that offers automatic mem-
ory management. Java programmers are not required to explicitly
perform operations such as the allocation and release of memory
space. Instead, the platform can handle these operations in an au-
tomatic manner via its Memory Management, and by employing
Garbage Collection (GC). Figure 1 illustrates the way that memory
is managed between the JVM and TornadoVM (any version prior
to v0.14). As shown in the figure, the JVM offers the heap memory
space, in which all the objects that are created by an application
reside. The objects are stored in the heap until they are no longer
referenced, and they are garbage collected. The size of the JVM
heap along with the growth rate of the utilized memory of an ap-
plication are factors that can increase the frequency of garbage
collection. Additionally, the JVM allows programmers to allocate
and use off-heap memory. The memory space that operates off
heap does not fall into the garbage collection, and thus, it is not
managed by the runtime but has to be declared explicitly.

Similarly to JVM, TornadoVM (any version prior to v0.14) allo-
cates a memory space on each targeted hardware device that acts
as a device memory heap [2]. That memory space is a replica of
the heap memory space that is used by a Java application, and it is
transferred on the device memory (i.e., DDR memory) in order to
allow any heterogeneous code that executes on the device to access
the data in the heap. However, an emerging challenge is that the
maximum size of the allocation of a single memory space on the
device memory is significantly lower than the physical memory ca-
pacity, thereby resulting in memory underutilization. For instance,
the maximum size of a permitted allocation in OpenCL is a quarter
of the total memory capacity [8].

2.2 Accessing of Objects’ Header
Java arrays are handled by the JVM as objects. Therefore the arrays
are stored in the JVM heap in a layout that consists of the object
header and the data, as shown in Figure 2. The total size of the object
header is twenty four bytes, since TornadoVM is configuredwith the
option of compressed ordinary object pointers (CompressedOops)
as disabled. Thus, the first eight bytes in the header are used to

R
un

tim
e JVM Heap

object ...object object

Memory
Management

Global Memory (DDR) on GPU/FPGA

Garbage CollectorEx
ec

ut
io

n
En

gi
ne

JVM

Device Heap

data trasferred

object

Off-Heap Memory

object...

Figure 1: Thememorymanagement scheme between the JVM
and TornadoVM (any version prior to v0.14).

Object Header Data

m
ar

kw
or

d

cl
as

sw
or

d

ar
ra

y
le

ng
th

al
ig

nm
en

t

8 8 4 4

Figure 2: The layout of an object that stores an array in JVM
when CompressedOops are disabled.

store the markword that stores meta information about the object,
whereas the next eight bytes store the classword. The following
four bytes contain the array length, while the latter four bytes are
used to fix the alignment of data.

As mentioned in Section 2.1, the deployment of a device memory
heap by TornadoVM is a mechanism that enables the generated
heterogeneous code to access data in the same way as the JVM.
Therefore, to access the data of an array and skip the object header,
a code generated by TornadoVM has to add an offset of 24 bytes. For
example, Listing 1 presents a code snippet that shows the format
that TornadoVM uses to make the generated heterogeneous code
access data. Although this snippet is presented in OpenCL C, the
same mechanism is applied to the remaining TornadoVM backends
(i.e., PTX, SPIR-V). In this example, the object_base is a pointer to
the base address of the allocated object in the device heap memory,
while index is the aligned value of the induction variable (i.e., i).
As shown in line 5, the calculated address is used to load the data
stored in the i position of the array. Similarly, line 7 shows how
the generated kernel retrieves the size of the array from the object
header.

Although accessing the header of an object from a kernel (e.g.,
OpenCL, PTX or SPIR-V) unlocks further functionality with regard
to the implicit access of the array sizes, the alignment of the words,

Cross-Language Interoperability of Heterogeneous Code

Conference acronym ’XX,
,

1 // ...

2 index = i << 2;

3 offset = index + 24L;

4 address = object_base + offset;

5 data = *((__global int *) address);

6 // ...

7 array_length = object_base + 16L;

Listing 1: Example in TornadoVM to show the memory oper-
ations within a generated OpenCL code.

etc., it hinders the portability with other programming languages
that do not adhere to the same memory layout. For instance, a
kernel generated by TornadoVM to access the data by applying an
offset of twenty four bytes for every load/store operation, cannot
be executed in an ordinary C++ host application.

2.3 Replacement of Arguments with Literals
The TornadoVM JIT compiler is a superset of the Graal JIT compiler,
extended with further compilation phases that specialize the com-
pilation graph for execution on heterogeneous hardware. One of
the optimization phases in the compiler is “constant folding”. This
phase is applied by the TornadoVM JIT compiler over the input
arguments. The input arguments of a compiled Java method that
hold a literal value are replaced by the compiler with a constant
node. That optimization phase replaces all the occurrences of the
input arguments with the corresponding constant value, thereby
impacting the parameterization of the generated code. For instance,
consider a method that uses an argument that stores the size of
iterations to be internally processed by that method. If the size of
the iterations is modified in a later stage of the Java program, then
the generated heterogeneous code is not functional and the method
has to be re-compiled.

2.4 Signature of Generated Kernels
The last challenge regards the signature of the generated heteroge-
neous kernels. The generated kernels contain TornadoVM-specific
arguments which break their portability with other programming
languages. A list of those arguments is as follows:

• _kernel_context: A pointer to a memory segment that is
allocated to store information about the grid and the number
of threads deployed by a kernel.

• _constant_region: A pointer to a memory segment that is
allocated in constant memory, which is a region within the
global memory that remains constant during the execution
of a kernel [7].

• _local_region: A pointer to a memory segment that is al-
located in the local memory, which is used similar to the
CPU cache memory to store data shared between a specific
number of threads (work-items) in a work-group [7].

• _atomics: A pointer to a memory segment that is allocated
to be used for atomic memory operations.

3 CODE INTEROPERABILITY MODE
To enable the TornadoVM system to generate heterogeneous code
(e.g., OpenCL kernels) that will be executable by any system out

TornadoVM
Code Interoperability Mode

TORNADO VM

Java

API Call Compilation

Code executable in Java

TornadoVM
Conventional Java Mode

Code executable in other
programming languages

Figure 3: The Code Interoperability Mode in TornadoVM.

R
un

tim
e JVM Heap

object ...object object

Global Memory (DDR) on GPU/FPGA

JVM

objectobject object...

Figure 4: The memory management scheme of TornadoVM
since version v0.14 and onwards.

1 private static void vectorAdd(int[] a, int[] b, int[] c,

2 int size) {

3 for (@Parallel int i = 0; i < size; i++) {

4 c[i] = a[i] + b[i];

5 }

6 }

Listing 2: Example of a vector addition Java method imple-
mented in TornadoVM.

of the JVM, we implemented a new mode, named “Code Interoper-
ability Mode (CIM)”. Figure 3 depicts how the proposed mode can
unlock code interoperability with other programming languages
beyond Java. The proposed mode contains numerous modifications
in the TornadoVM JIT compiler and runtime as a mean to address
the challenges described in Section 2. The following subsections
present each modification.

To demonstrate each modification we present a Java implemen-
tation of a vector addition method in TornadoVM v0.14, as shown
in Listing 2. The OpenCL C code that is generated by TornadoVM to
execute in the conventional Java mode is presented in Listing 3. List-
ing 4 presents the OpenCL C code that is generated by TornadoVM
using the CIM Mode.

Modification in the Memory Model of TornadoVM. To ad-
dress the limitation of the maximum allocation size for a single
allocation (Section 2.1), we have modified the TornadoVM memory
management scheme to perform a separate allocation per input
argument (i.e., array) of a compiled method, from version v0.14
and onwards. Figure 4 shows that the global memory of the device
contains as many allocated segments as the number of objects (i.e.,
arrays) utilized by an accelerated method. The TornadoVM runtime
is also augmented to manage the allocated memory segments in
an efficient manner that would re-assign any pre-allocated seg-
ments that are not utilized. If the size of the required allocations

Conference acronym ’XX,
,

Athanasios Stratikopoulos, Florin Blanaru, Juan Fumero, Maria Xekalaki, Orion Papadakis, and Christos Kotselidis

1 __kernel void vectorAdd(__global long *_kernel_context,

2 __constant uchar *_constant_region,

3 __local uchar *_local_region,

4 __global int *_atomics,

5 __global uchar *a,

6 __global uchar *b,

7 __global uchar *c,

8 __private int size)

9 {

10 // ...

11 for(;i_4 < 1024;)

12 {

13 // BLOCK 2

14 l_5 = (long) i_4;

15 l_6 = l_5 << 2;

16 l_7 = l_6 + 24L;

17 ul_8 = ul_0 + l_7;

18 i_9 = *((__global int *) ul_8);

19 ul_10 = ul_1 + l_7;

20 i_11 = *((__global int *) ul_10);

21 ul_12 = ul_2 + l_7;

22 i_13 = i_9 + i_11;

23 *((__global int *) ul_12) = i_13;

24 i_14 = get_global_size(0);

25 i_15 = i_14 + i_4;

26 i_4 = i_15;

27 } // B2

28 // BLOCK 3

29 return;

30 } // kernel

Listing 3: A vector addition OpenCL kernel generated by
TornadoVM v0.14.

exceeds the available unutilized size, then the memory segments
are released and new allocations are performed. The vector addi-
tion kernel that is generated by the Java snippet code in Listing 2
is shown in Listing 3. As shown in lines 5 to 8, the three input
arguments that correspond to the Java arrays are pointers to the
allocated memory segments that reside in global memory, while
the last argument that corresponds to a variable that stores the size
is allocated in private memory (i.e., stored in a register).

Replacement of Header Offset for Memory Accesses. As dis-
cussed in Section 2.2 and shown in line 16 of Listing 3, the Tor-
nadoVM JIT compiler emits an offset to skip the header of the array
objects. Therefore, we modified the TornadoVM JIT compiler to
eliminate this offset (See line 12 of Listing 4) in order to make the
memory operations compatible with the memory layout of other
programming languages that operate out ot the JVM.

Disabling the Replacement of Arguments with Literals. As
shown in line 11 of Listing 3, the input argument of the size should
be used as the bound value in the for loop, but it is replaced by
the compiler with the literal 1024. To eliminate the replacement of
input arguments that store literals when acting in the CIMmode, we
modified the TornadoVM JIT compiler to disable constant folding
for this case. Thus, the generated code utilizes the input argument
for the loop bound value as shown in lines 7-8 of Listing 4.

1 __kernel void vectorAdd(__global uchar *a,

2 __global uchar *b,

3 __global uchar *c,

4 __private int size)

5 {

6 // ...

7 i_3 = (ulong) size;

8 for(;i_5 < i_3;) // Replacement of constant value

9 {

10 // BLOCK 2

11 l_6 = (long) i_5;

12 l_7 = l_6 << 2; // Header offset (24L) is skipped

13 ul_8 = ul_0 + l_7;

14 i_9 = *((__global int *) ul_8);

15 ul_10 = ul_1 + l_7;

16 i_11 = *((__global int *) ul_10);

17 ul_12 = ul_2 + l_7;

18 i_13 = i_9 + i_11;

19 *((__global int *) ul_12) = i_13;

20 i_14 = get_global_size(0);

21 i_15 = i_14 + i_5;

22 i_5 = i_15;

23 } // B2

24 // BLOCK 3

25 return;

26 } // kernel

Listing 4: A vector addition OpenCL kernel generated by
TornadoVM with the Code Interoperability Mode.

Modification in the Signature of the Generated Code. The
last modification is the elimination of the four TornadoVM-specific
input arguments (see Section 2.4) from the generated kernels. As a
result, the signature of the generated kernel in Listing 3 is similar to
the layout of the compiled method in Listing 2. Note that although
the type of the pointers differ, the kernel is compatible to operate
with any type used in a host code (e.g., C++).

4 CONCLUSIONS
In this paper, we show our work-in-progress regarding enabling
the cross-language interoperability of heterogeneous code that is
generated by Java. To realize that concept, we have extended Tor-
nadoVM with a new mode, named “Code Interoperability Mode”,
which unlocks the portability of its generated codes to other pro-
gramming languages and systems. In the future, we plan to assess
the performance of the proposed mode across a large number of
benchmarks in order to attest the impact of generating less number
of lines of code as well as performing memory accesses without
skipping the header of the objects.

ACKNOWLEDGMENTS
This work is partially funded by grants from Intel Corporation and
the European Union Horizon 2020 ELEGANT 957286. Additionally,
this work is supported by the Horizon Europe AERO, ENCRYPT
and TANGO projects which are funded by UKRI grant numbers
10048318, 10039809 and 10039107.

Cross-Language Interoperability of Heterogeneous Code

Conference acronym ’XX,
,

REFERENCES
[1] AMD. 2022. . https://aparapi.github.io/
[2] Florin Blanaru, Athanasios Stratikopoulos, Juan Fumero, and Christos Kotselidis.

2022. Enabling Pipeline Parallelism in Heterogeneous Managed Runtime Environ-
ments via Batch Processing. In Proceedings of the 18th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE).

[3] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria
Xekalaki, Christos Kotselidis, and Mikel Luján. 2018. Exploiting High-
Performance Heterogeneous Hardware for Java Programs Using Graal. In
Proceedings of the 15th International Conference on Managed Languages &
Runtimes (ManLang).

[4] Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki, James
Clarkson, and Christos Kotselidis. 2019. Dynamic Application Reconfiguration on
Heterogeneous Hardware. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE).

[5] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach. 2017. Just-
In-Time GPU Compilation for Interpreted Languages with Partial Evaluation.
In Proceedings of the 13th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE).

[6] Juan José Fumero, Toomas Remmelg, Michel Steuwer, and Christophe Dubach.
2015. Runtime Code Generation and Data Management for Heterogeneous Com-
puting in Java. In Proceedings of the Principles and Practices of Programming
on The Java Platform (PPPJ).

[7] Khronos OpneCL Working Group. Accessed in December 2022. SYCL™ Speci-
fication: Generic heterogeneous computing for modern C++. https://registry.
khronos.org/SYCL/specs/sycl-2020-provisional.pdf

[8] Khronos OpneCL Working Group. Accessed in December 2022. The OpenCL
C Specification. https://www.khronos.org/registry/OpenCL/specs/3.0-unified/
html/OpenCL_C.html

[9] Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, and Vivek Sarkar. 2015. Com-
piling and Optimizing Java 8 Programs for GPU Execution. In 2015 International
Conference on Parallel Architecture and Compilation (PACT). https://doi.org/
10.1109/PACT.2015.46

[10] Lawrence Miller. Accessed in December 2022. GraalVM for Dummies eBook.
https://go.oracle.com/LP=105746

[11] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule ThemAll (Onward! 2013). https://doi.org/10.1145/2509578.
2509581

https://aparapi.github.io/
https://registry.khronos.org/SYCL/specs/sycl-2020-provisional.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020-provisional.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://doi.org/10.1109/PACT.2015.46
https://doi.org/10.1109/PACT.2015.46
https://go.oracle.com/LP=105746
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Challenges for Cross-Language Interoperability
	2.1 Memory Management
	2.2 Accessing of Objects' Header
	2.3 Replacement of Arguments with Literals
	2.4 Signature of Generated Kernels

	3 Code Interoperability Mode
	4 Conclusions
	Acknowledgments
	References

