
The University of Manchester Research

DeepJudge: A Testing Framework for Copyright Protection
of Deep Learning Models

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Chen, J., Sun, Y., Wang, J., Cheng, P., & Ma, X. (Accepted/In press). DeepJudge: A Testing Framework for
Copyright Protection of Deep Learning Models. In 45th IEEE/ACM International Conference on Software
Engineering

Published in:
45th IEEE/ACM International Conference on Software Engineering

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2023

https://research.manchester.ac.uk/en/publications/d6a0fae3-38d8-4c04-bb03-941b35d24553


DEEPJUDGE: A Testing Framework for Copyright
Protection of Deep Learning Models

Jialuo Chen∗, Youcheng Sun†, Jingyi Wang∗, Peng Cheng∗B, Xingjun Ma‡
∗Zhejiang University, †University of Manchester, ‡Fudan University

∗{chenjialuo, wangjyee, lunarheart@zju.edu.cn}, †{youcheng.sun@manchester.ac.uk},‡{xingjunma@fudan.edu.cn}

Abstract—Deep learning (DL) models have become one of the
most valuable assets in modern society, and those most complex
ones require millions of dollars for the model development. As a
result, unauthorized duplication or reproduction of DL models
can lead to copyright infringement and cause huge economic
losses to model owners.

In this work, we present DEEPJUDGE, a testing framework
for DL copyright protection. DEEPJUDGE quantitatively tests
the similarities between two DL models: a victim model and
a suspect model. It leverages a diverse set of testing metrics
and efficient test case generation algorithms to produce a chain
of supporting evidence to help determine whether a suspect
model is a copy of the victim model. Our experiments confirm
the effectiveness of DEEPJUDGE under typical model copyright
infringement scenarios. The tool has been made publicly available
at https://github.com/Testing4AI/DeepJudge. A demo video can
be found at https://www.youtube.com/watch?v=LhNeo615YOE.

I. INTRODUCTION

Deep learning models, e.g., deep neural networks (DNNs),
have become the standard models for solving many complex
real-world problems, such as image recognition [12], natural
language processing [7], and autonomous driving [5]. How-
ever, training such models is by no means trivial, which
requires not only large-scale datasets but also significant
computational resources. It is thus of utmost importance to
protect DNNs from unauthorized duplication or reproduction.

Recent studies have shown that stealing a DNN can be
done very efficiently without leaving obvious traces [20], [19].
Arguably, unauthorized fine-tuning or pruning is the most
straightforward way of model stealing, if the model parameters
are publicly accessible (for research purposes only) or the
adversary is an insider. Even when only the API is exposed,
the adversary can still exploit advanced model extraction
techniques [18], [3] to steal most functionalities of the hidden
model. These attacks pose serious threats to the copyright of
DL models, calling for effective protection methods.

DNN Watermarking The watermarking techniques have
been the overwhelming approach to protect the copyright
of DL models, which work in two main steps: embedding
and verification. In the embedding step, the owner embeds a
secret watermark into the model during the training process
by exploiting the over-parameterization property of DNNs [1].
Depending on how much knowledge of the model is available
in the verification step, existing watermarking methods can be
broadly categorized into two classes: a) white-box methods
for the case when model parameters are available; and b)

black-box methods when only predictions of the model can
be acquired. White-box watermarking embeds a pre-designed
signature (e.g., a string of bits) into the parameter space
of the model via certain regularization terms [8], [21]. The
ownership could be claimed when the extracted signature from
a suspect model is similar to that of the owner model. Black-
box watermarking usually leverages backdoor attacks [11] to
implant a watermark pattern into the owner model by training
the model with a set of backdoor examples (also known as the
trigger set) relabeled to a secret class [14], [23]. The ownership
can then be claimed when the defender queries the suspect
model for examples attached with the watermark trigger and
receives the secret class as predictions.

However, watermarking is invasive, i.e., it needs to tam-
per with the model training procedure, which may affect
the model’s utility. Since the effectiveness of watermarking
completely depends on how well the model memorizes the
watermark, these techniques are also particularly vulnerable to
the emerging model extraction attack that only extracts the key
functionality of the model [6], [15], however, the embedded
watermark is often task-irrelevant.

Very recently, a novel testing approach has been proposed
for DL copyright protection [6]. In particular, it defines a
family of complementary metrics to actively measure the
similarities between a victim (owner) model and a suspect
model from multiple angles. In this paper, we present in
details DEEPJUDGE that implements the DL copyright testing
theory in [6]. As illustrated in Fig. 1, DEEPJUDGE is com-
posed of three major components. First, a set of multi-level
testing metrics are used to fully characterize a DNN model
from different angles. Second, efficient test case generation
algorithms magnify the similarities (or differences) measured
by the testing metrics between the two models. Finally, a
‘yes’/‘no’ judgment, on whether the suspect model is a stolen
copy, will be made for by the judging mechanism.

Compared to existing watermarking-based defenses, advan-
tages of DEEPJUDGE include: 1) non-invasive, as it works
directly on the model and does not tamper with the training
process; 2) efficient, as it only needs a small set of seed test
cases and a quick scan of the two models; 3) flexible, as it can
easily incorporate new testing metrics or test case generation
methods to obtain a more confident judgement, and can be
applied in both the white-box and black-box settings; and 4)
robust to various model stealing attacks.

https://github.com/Testing4AI/DeepJudge
https://www.youtube.com/watch?v=LhNeo615YOE


Fig. 1: The overview of DEEPJUDGE Testing Framework.

We have made DEEPJUDGE publicly available as an open-
source toolkit and our experimental results confirm the ef-
fectiveness of DEEPJUDGE in providing strong evidence for
identifying the stolen copies of a victim model.

II. THE DEEPJUDGE FRAMEWORK

The overall architecture of DEEPJUDGE tool is shown in
Fig. 1. In principle, DEEPJUDGE takes the owner model (a.k.a.
victim model), a set of data associated with the model and a
suspect model as inputs, and it returns the measured values
according to the testing metrics as evidence, as well as the
final judgement. In order to produce more reliable judgement,
DEEPJUDGE advocates evidence-based ownership verification
via multi-level testing metrics that complement each other
and smart test case generation methods to fully exercise the
metrics.

Specifically, the tool has the following features.
a) Seed Selection: Seed selection prepares the seeds exam-

ples used to generate the test suites. By default, we apply
the sampling strategy DeepGini [9] to select a set of high-
certainty seeds from the provided dataset. The intuition is
that high-certainty seeds are well-learned by the victim model,
thus carrying more unique features of the victim model. More
adaptive seed selection strategies are supported to fight against
adaptive model attacks.

b) Multi-level Testing Metrics: Multi-level testing metrics
comprehensively characterize the differences between models.
The six testing metrics in DEEPJUDGE are summarized in
Table I, with their suitable defense settings highlighted in the
last column. In the white-box setting, DEEPJUDGE has full
access to the internals of the suspect model, while in the black-
box Setting, DEEPJUDGE can only query the suspect model
to obtain the probability vectors or the predicted labels. We
refer more details about the metrics to our previous work [6].

c) Test Case Generation Engine: Test Case Generation
Engine generates the test suites to fully exercise the defined
testing metrics. The engine respects the suspect model acces-
sibility in the two defense settings. In the black-box setting,
we integrate existing adversarial attacks (e.g., FGSM [10],
PGD [17] and C&W [4]) to populate the test suite on the

TABLE I: Proposed multi-level testing metrics.

Level Metric Defense Setting
Property-level Robustness Distance (RobD) Black-box

Neuron-level
Neuron Output Distance (NOD) White-box
Neuron Activation Distance (NAD) White-box

Layer-level
Layer Outputs Distance (LOD) White-box
Layer Activation Distance (LAD) White-box
Jensen-Shanon Distance (JSD) Black-box

victim model. For the white-box setting, a more fine-grained
fuzzing algorithm [6] is developed to explore the corner region
[16] of each neuron’s activation for a given hidden layer.

d) Test Suites: The test suites are generated from DEEP-
JUDGE respectively for the two defense settings, where white-
box tests are a set of extreme test cases with neuron locations,
and black-box tests are a set of adversarial inputs with the
corresponding ground-truth labels.

e) Judging Mechanism: With the metrics values, the judging
mechanism identifies whether the suspect model is a copy
of the owner model by two steps: thresholding and voting.
The thresholding step determines a proper threshold for each
testing metric based on the statistics of contrast models that
are models trained independently from the owner model. The
voting step examines the suspect model against each testing
metric, and gives a positive vote if the measured distance is
lower than the threshold. DEEPJUDGE identifies a positive
copy if the suspect model gets a positive vote on more than
half of the metrics.

f) Evidence and Judgement: DEEPJUDGE reports the judge-
ment with supporting evidence. The judgement answers
whether the suspect model is a copy of the victim model,
and evidence are the measured multi-level metric values.

g) Extension Modules: As a highly flexible and extensible
testing tool, more advanced testing metrics, generation algo-
rithms, judging rules and functional extensions can be effort-
lessly incorporated into DEEPJUDGE to fight against diverse
copyright threats in the arms race between DEEPJUDGE and
the adversary. For instance, the neuron matching plug-in can
help DEEPJUDGE defend against one new emergent model
copyright threat, i.e., shuffling attacks [22].

h) Model Stealing Attacks: Typical model copyright threats,
e.g., model fine-tuning, pruning, shuffling, and extraction
attacks, have been implemented in the tool to help evaluate
the effectiveness and robustness of copyright defenses in a
standard attack setting.

i) Model Copyright defenses: DEEPJUDGE is a strong
complement to existing model copyright defenses, and rep-
resentative state-of-the-art works are implemented in the tool
to help better understand the role of DEEPJUDGE, including
both watermarking [23], [21] and fingerprinting [2].

A. Example Usage

The DEEPJUDGE framework supplies the users with a list
of command line options. Here we explain its usage through
several examples. For instance, the following command calls



DEEPJUDGE to select the seeds for feeding the generation
engine. The option --model and --dataset specifies the owner
model and the provided dataset associated with the model.
The option --order sets the selection rule and by max, the tool
will select seed samples with high-certainties. The option --
num is the number of seeds. The selected seeds then will be
automatically stored in directory seeds.

Next, the command below calls DEEPJUDGE to generate
the white-box test suite for the victim model, which will be
deposited into directory tests. The --seeds sets up the selected
seed samples used for generation in the above step. The option
--layer and --neuron set up the layer index and neuron index
to test respectively. The option --iters 1000 configures the
maximum iterations for the gradient optimization loop.

Finally, DEEPJUDGE calculates the similarity between the
victim model (--model) and the suspect model (--suspect),
by white-box testing metrics. The option --tests specifies the
test suite used for model testing, and the results will be
automatically stored in directory results.

III. EXPERIMENTS

In this section, we demonstrate the effectiveness of DEEP-
JUDGE against model fine-tuning and model pruning attacks,
which are two main copyright threats extensively studied by
existing defenses [1], [8], [21]. We run the experiments on
the CIFAR-10 dataset [13]. The victim model is trained with
ResNet-20 [12] structure, which is also provided as an example
model in the repository.1

Positive suspect models are derived from the victim model
via two types of stealing attacks, including three fine-tuning
strategies, i.e., fine-tune the parameters of the last layer and
all layers, and retrain all the layers (denoted as FT-LL, FT-
AL and RT-AL), and two weight pruning strategies with 20%
and 60% pruning rate (denoted as P-20% and P-60%). Data-
augmentation techniques are also used to strengthen these
attacks. These models are considered as stolen copies of the
owner model, and DEEPJUDGE should provide evidence for
the ownership claim for them. Negative suspect models are
trained independently using the same (Neg-1) or similar data
(Neg-2). These models serve as the control group to make sure

1Experiments in this paper focus on demonstrating the utility of DEEP-
JUDGE tool. Advantages of DL copyright testing against other defenses
including watermarking can be found in [6].

Fig. 2: Example test cases generated in the black-box and
white-box settings. Note that the white-box test cases are not
regular inputs and are unlabeled.

that DEEPJUDGE does not claim wrong ownership, and are
also used to calculate thresholds for the judging mechanism.

We apply the sampling strategy DeepGini [9] to select a
set of high-certainty seeds from the victim dataset for the
generation. For the black-box test suite, untargeted PGD-L∞

attack is adopted, with 0.03 bound and 10 steps. For the white-
box test suite, layer 6 with all the neurons are tested.

Our experiments are conducted on a work station with a
2.40GHz Intel Xeon E5 and NVIDIA GTX 1080 Ti. Overall,
the generation process costs (seconds) about 4s for the black-
box test suite (with matrix acceleration) and about 1,200s for
the white-box test suite. This time cost is regarded as efficient
since the test case generation is a one-time effort, and the costs
of the metric evaluations are negligible (less than 1s).

Fig. 2 demonstrates several example test cases generated
in the two settings. In DEEPJUDGE, test inputs are used to
measure the similarity between two models, and they are not
necessarily of high picture quality or even human readable.

Fig. 3 shows the testing results for each metric respectively.
We repeat the experiment multiple times and report the average
value with standard deviation. For all the metrics, the smaller
the value, the more similar the suspect model is to the victim
model. Clearly, all positive suspect models are more similar to
the victim model with significantly smaller metric values than
negative suspect models. That is, the two sets of models are
completely separable, leading to highly accurate detection of
the positive copies. The gap between positive suspect models
and negative ones in the white-box setting is larger than the
black-box setting, which is not surprising as white-box testing
can collect more fine-grained information from the suspect
models. In both the black-box and white-box settings, all the
positives (orange) are below the threshold while the negatives
(blue) exceed the threshold, thus the voting step in DEEP-
JUDGE overwhelmingly supports the correct final judgement.
It is worth reminding that, compared to watermarking [1],
[21], [8], DEEPJUDGE does not need to tamper with the model
training procedure.



Fig. 3: Metric values (distances) of different suspect models to the victim model. The red dotted line is the calculated threshold
for each testing metric. We use the orange color for the positive suspect models and the blue color for the negatives.

IV. CONCLUSION

DEEPJUDGE is a novel testing framework for copyright
protection of DL models. The core of DEEPJUDGE is a family
of multi-level testing metrics that characterize different aspects
of similarities between the victim model and a suspect model.
Efficient and flexible test case generation methods are also
developed in DEEPJUDGE to help boost the discriminating
power of the testing metrics. As a generic testing framework,
DEEPJUDGE is applicable in both black-box and white-box
settings, new testing metrics or generation methods can be
effortlessly incorporated into DEEPJUDGE to help defend
against future threats. We foresee that there is an arms race
between the model owner and the adversary, and we believe
DEEPJUDGE will play an indispensable role in the long run
of model copyright protection.

ACKNOWLEDGEMENT

This research was supported by the Key R&D Program of
Zhejiang (2022C01018) and the NSFC Program (62102359,
61833015, U1911401).

REFERENCES

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph
Keshet. Turning your weakness into a strength: Watermarking deep
neural networks by backdooring. In USENIX Security, 2018.

[2] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. IPGuard: Protecting
intellectual property of deep neural networks via fingerprinting the
classification boundary. In Asia CCS, pages 14–25, 2021.

[3] Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. Cryptanalytic
extraction of neural network models. In CRYPTO. Springer, 2020.

[4] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In S&P (Oakland), pages 39–57. IEEE, 2017.

[5] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deep-
Driving: Learning affordance for direct perception in autonomous driv-
ing. In ICCV, pages 2722–2730, 2015.

[6] Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun, Peng Cheng,
Shouling Ji, Xingjun Ma, Bo Li, and Dawn Song. Copy, right? A testing
framework for copyright protection of deep learning models. In IEEE
S&P (Oakland), pages 824–841, 2022.

[7] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Ko-
ray Kavukcuoglu, and Pavel Kuksa. Natural language process-
ing (almost) from scratch. Journal of machine learning research,
12(ARTICLE):2493–2537, 2011.

[8] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. DeepSigns:
an end-to-end watermarking framework for ownership protection of deep
neural networks. In ASPLOS, pages 485–497, 2019.

[9] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and
Zhenyu Chen. DeepGini: prioritizing massive tests to enhance the
robustness of deep neural networks. In ISSTA, pages 177–188, 2020.

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv:1412.6572, 2014.

[11] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
BadNets: Evaluating backdooring attacks on deep neural networks. IEEE
Access, 7:47230–47244, 2019.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, pages 770–778, 2016.

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[14] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier
stitching for remote neural network watermarking. Neural Computing
and Applications, 32(13):9233–9244, 2020.

[15] Nils Lukas, Edward Jiang, Xinda Li, and Florian Kerschbaum. Sok:
How robust is image classification deep neural network watermarking?
In S&P (Oakland), pages 787–804. IEEE, 2022.

[16] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li,
Chunyang Chen, Ting Su, Li Li, Yang Liu, et al. Deepgauge: Multi-
granularity testing criteria for deep learning systems. In ASE, 2018.

[17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[18] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets:
Stealing functionality of black-box models. In CVPR, 2019.

[19] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Asia CCS, pages 506–519, 2017.

[20] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction APIs. In
USENIX Security, pages 601–618, 2016.

[21] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh.
Embedding watermarks into deep neural networks. In ICMR, 2017.

[22] Yifan Yan, Xudong Pan, Yining Wang, Mi Zhang, and Min Yang. ”and
then there were none”: Cracking white-box dnn watermarks via invariant
neuron transforms. arXiv:2205.00199, 2022.

[23] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin,
Heqing Huang, and Ian Molloy. Protecting intellectual property of deep
neural networks with watermarking. In Asia CCS, pages 159–172, 2018.


	Introduction
	The DeepJudge Framework
	Example Usage

	Experiments
	Conclusion
	References

