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Computational Methods for Predicting Human

Behaviour in Smart Environments

Rob Dunne ∗1, Oludamilare Matthews1, Julio Vega1, Simon Harper1, and
Tim Morris1

1University of Manchester, Manchester, UK

13th January 2023

Abstract

This systematic literature review presents the computational methods of human
behaviour prediction research from Pentland and Liu’s seminal 1999 paper on hu-
man behaviour prediction to the latest research to date. The PRISMA framework
for systematic reviews was used as the review methodology to structure this in-
formation aggregation. This review provides a high-level summary of the field with
key areas identified for new research. The results show that there are frequently
used datasets for training predictive models: MavHome, MavLab, LIARA, CASAS,
PlaceLab, and REDD. Accuracies in the range of 43.9% to 100% for predictions
of varying complexity. Common data structures for modelling behavioural data:
Vectors, tables, trees, Markov models, and graphs. Algorithms that fall into three
distinct categories: Machine Learning (NN, RL, LSTM), Probabilistic Graphical
Models (namely Bayesian and Markov variants), and Statistical and Trend Analysis
(ARIMA, Prophet). Additionally, we document other notably useful algorithms that
fall outside of these three main categories including Jaro-Winkler and Levenshtein
distances. Opportunities identified for further research include the use of audio as
the data source for behaviour prediction methods, and applying times-series predic-
tion machine learning algorithms (RNN, LSTM) to the smart home problem space.

Keywords: human behaviour prediction, human activity prediction, datasets, ambient in-
telligence, ambient assistive living, smart environments, smart home

1 Introduction

There is a rapidly growing interest in smart home and assistive living technology, and predicting
human behaviour is a key component of progressing from reactive to pre-emptive systems in
smart environments. The resurgence of machine learning, computer vision, and other Artificial
Intelligence (AI) fields in the last decade has created new opportunities for human behavioural
prediction in assisting people in their homes, workplaces, vehicles, and healthcare scenarios. This
review collates data and methods of behaviour prediction, covering over 20 years of research,
to identify where new research opportunities exist in this field, and provide a foundation of
knowledge for further research.

1.1 Background

This systematic review of computational methods of human behaviour prediction examines key
algorithms and datasets with the purpose of determining what the most relevant advancements
are for computationally predicting human behavioural outcomes. The review is bounded from
1999 to 2022, starting with the highly cited Pentland and Liu paper [1] which began the new
generation of behaviour prediction work in computer science, and includes research up to the
present day, at the time of writing. This review addresses a gap in the literature of an aggregate
of the key work in this area, presented as an accessible summary of the important sub-fields
and computational methods, and provides a starting point for researchers new to this field. The
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authors used this literature review as the foundation for behaviour prediction research at the
University of Manchester. It was first conducted in 2018 and then updated in 2022 to share with
the wider research community. As such the data tables include both the original and updated
review papers and the aggregate data from both in the analysis.

1.2 Key concepts in behaviour prediction

The behaviour prediction field builds upon work in object recognition, action recognition, and
behaviour modelling, also known as Human Activity Recognition (HAR). Action or object re-
cognition uses discrete classifiers to determine an object or event such as dog, cat, human or
waving, walking, running - for example. This is usually achieved through computer vision ana-
lysis of images or video combined with a classification model. These datasets are built up by
using human classifiers to label video or images so they can be correctly validated to determine
the model accuracy. Once we have these discrete attributes and an ability to classify them it
becomes possible to model the behaviours of humans, perhaps using a knowledge graph or other
suitable data structure. For example, we can model the behaviour of a human by connecting
its action attributes such as talk, eat, walk, run, sit, and sleep. We now have a human model,
but how do we know what it will do next? A prediction algorithm takes the features of human
behaviour and calculates - through various different methods as detailed later in this paper -
and determines which behaviour, or state, will happen next. These techniques are known as
Human Activity Prediction (HAP), and are often a probabilistic state change value determined
by previously observed data of the human’s behaviours and how one state can lead to another.
For example ’run’ will rarely precede ’sleep’, but ’eat’ may often occur before ’sleep’ and so it
will have a higher likelihood of being the next state after eating.

Much of the work by the research community in recent years has focussed on solving the
foundational problem of activity recognition [2] [3] [4] [5] [6], which is instrumental in providing
the labelled data for prediction models. All of the predictive methods found in this review build
upon the work done by the research community in activity recognition, and it is important to
understand the dependent relationship between HAR and HAP.

Action and object recognition are the building blocks or precursor that we use to generate
the base data to understand what a human is doing. These algorithms are out of scope of
this review, however, all we need to understand is that action recognition algorithms generate
the labelled sequence of events used for modelling. Connecting these singular classified events
together creates a model of actions or events we understand as behaviours. These models can
be sequential time series tables, or they could be graph-like state change models. Prediction
algorithms then use these models to calculate which is the most likely next event or activity.

Figure 1: The process of next event prediction

1.3 Research questions

The objective of this review was to create a summary of the key information in this field needed
for further computer science research. To achieve this we set the three research questions below,
which will provide the foundation level of knowledge needed to conduct novel investigations
in human behaviour prediction. These questions will determine these pieces of information:
datasets, modelling, and prediction algorithms.

• RQ1 What are the public domain datasets used for behaviour prediction in smart envir-
onments?
Answered in section 4.1

• RQ2 How is behaviour modelled; what are the data structures used to represent human
behaviour and activities of daily living (ADL)?
Answered in section 4.2

2



• RQ3 What algorithms and computational methods are used for behaviour prediction, and
why are different approaches used?
Answered in section 4.3

1.4 Review methodology

We used the PRISMA checklist for selection and review of papers, and modified the results and
discussion sections to exclude areas that are focussed on clinical research rather than computer
science. You will see this reflected in the review sections later in this paper. For this review
we wanted to answer the knowledge discovery research questions in section 1.3. A granular
examination of each dataset and algorithm is out of scope for this review but it would be a good
research opportunity for future work. As such this review presents a high-level overview of the
key information, with relevant comparisons and elaboration where necessary.

2 Methods

2.1 Protocol

The search and selection have all followed the PRISMA guidelines1, and this paper has been
structured using the PRISMA checklist 2; omitting those sections which are not relevant to
computer science. The protocol and all associated data from all stages of this review are available
online3.

2.2 Eligibility criteria

The eligibility criteria used for this systematic review are as follows.

• The study’s main concern is predicting human behaviour, and this is indicated in the title
with the keywords: predict, prediction, predicting, forecast, or forecasting.

• The study was produced from 1999 to 2022.

• The study is not already included from a different database.

• The study uses computational methods.

• The study is a primary study.

These criteria are derived from Boland et al [7] and were agreed with the co-reviewers before
proceeding to the search and selection stage.

2.3 Information sources

The following databases have been searched: Google Scholar, ACM digital library, IEEE Xplore,
ScienceDirect, SpringerLink, and Wiley Online Library. This list of databases was compiled from
the sources found in the scoping search in Google Scholar, which aggregates papers from different
sources. This included the most recognised platform for computer science research (ACM), along
with well known publishing sources (IEEE, Springer, Wiley, and Elsevier (ScienceDirect)).

For the scope of this systematic review the databases listed above are comprehensive and
cover a large amount of research material to both reduce bias, and be reassured that a reasonable
effort has been made to cover all the significant material.

2.4 Search

The search and selection process followed those detailed in the PRISMA guidelines. The keyword
search used ’human behavior prediction’ as its base search terms - from the title of the 1999
Pentland and Liu paper [1], along with combinations of synonyms and spelling variations (U.S.
and British) as seen in Table 3. Boolean operators were also used to improve the accuracy of
search results.

The search string was constructed using the synonyms in each column of Table 3 and com-
bined into one boolean string.

1PRISMA, prisma-statement.org
2Systematic review protocol, https://www.dropbox.com/s/1h7irditae0jpid/

robdunne-behaviour-review-protocol.pdf?dl=0
3Systematic review data, https://www.dropbox.com/sh/f1sbxxpwicgzwig/AADmwRf0G2lQkKKDZ_

kfdMuEa?dl=0
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2.5 Study selection

Each database was searched for all papers that matched the search criteria, before being filtered
using the inclusion criteria in Section 2.2 and the quality assessment below.

The main literature search and de-duplication was conducted using a Python script that
either calls the database API directly, uses the Crossref API, or uses web scraping to acquire the
search data. The script requests the first 1000 entries for the search string from each database
(or fewer if less than 1000 are available). Resulting in a maximum of 6000 papers for this review.

The lists of papers were then de-duplicated, and at the same time filtered for some of the
inclusion criteria: published date, and keywords in the title. This part was quite aggressive in
only including results with the string predict or forecast in the title, and as such reduced the
number of results from 3360 to 134. The results for each stage of the process for the main
database search and selection are shown in Table 4.

The Python search code is available online at Github4, and is freely available for other
researchers to reproduce this research - or to modify for their own use. Citation details are
included in the code repository.

To check this process was not excluding relevant papers, 33 papers (approximately 1% of the
initial search results) were randomly selected from the list of 3360. The papers were selected using
a random number generator in a Python script that only selected papers that had previously
been excluded. The random number corresponded to the spreadsheet row number in the list
of papers. The results of the test to validate the filtering process show that none of the 33
random papers selected passed the eligibility criteria - therefore validating the title keyword and
publication date filter. The list of random papers, Python script, and inclusion criteria test are
available online5.

Finally each paper was assessed and awarded points based on the following criteria: 1 point
if it meets the criteria, 0.5 points if it partly meets the criteria, or 0 (zero) if it does not meet
the criteria. Papers with a score of less than 4 (four), a QA of less than 80%, were rejected.

• QA 1: Is there is a clear statement of the aim of the research?

• QA 2: Is the work put into context of other research?

• QA 3: Are system or algorithm design decisions explained?

• QA 4: Is the methodology throughly explained and reproducible?

• QA 5: Are the results clear and include appropriate analysis?

These criteria were derived from Kofod-petersen [8], and agreed with the co-reviewers veri-
fying the protocol, as appropriate for filtering out low quality papers.

To minimise subjective bias in the review process, the review search and selection (including
inclusion criteria and quality assessment) was conducted by three PhD researchers from the
University of Manchester’s Interaction Analysis and Modelling Lab6.

2.6 Data collection process

The data to answer the systematic review objectives was extracted from each of the final papers
into a spreadsheet. High level attributes of each study plus prediction accuracy were sufficient
for the data summary performed here to produce a list of methods and algorithms, and their
respective accuracies.

2.7 Data items

The data collected from each source: Input data type, input dataset, data structure used to
represent behaviour, processing method / algorithm used, output model or data, prediction
accuracy (%), results analysis used, use cases stated, keywords.

3 Results

3.1 Data extraction

The key data extracted from the literature includes the smart home datasets used; prediction
algorithms; data structures used for modelling behaviour; and input data types e.g. sensors,

4Python API search and de-duplication, https://github.com/robdunne-uom/cs-literature-search
5Filter validation files, https://www.dropbox.com/sh/dfggv6b02kzyh5v/

AADetG-mtb3s0i7q6e3XkPU9a?dl=0
6IAM Lab, http://www.cs.manchester.ac.uk/our-research/laboratories/iam/
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video, location data; and keywords and use cases from each of the papers e.g. Ambient Assistive
Living (AAL). The key extracted data can be found in Tables 7, 9, 11, and 13.

Full research data extracted from the final papers (listed in Table 5 is available online for
re-use, validation, and further research7.

3.2 Datasets and input data types

Many of the studies use freely available datasets from research universities such as MIT or Wash-
ington State. These are Mavhome8, MavLab9, CASAS10, LIARA11, REDD12, and PlaceLab13.

The datasets contain different input data types from smart environments, see Figure 2, in-
cluding sensors placed around a home, power consumption of different appliances, device opera-
tions, location data, video, and accelerometers. A comparison of the dataset to highest recorded
prediction accuracies in Table 15 shows that MavHome, CASAS, LIARA, and Placelab have
generated comparable high accuracies from their data.

Figure 2: Input data types

S
en
so
rs

S
en
so
rs

an
d
d
ev
ic
es

L
o
ca
ti
o
n
d
at
a
an

d
d
ev
ic
es

V
id
eo

ca
m
er
a
s
a
n
d
lo
ca
ti
o
n
d
at
a

S
en
so
rs

a
n
d
lo
ca
ti
on

d
a
ta

A
p
p
li
a
n
ce

d
at
a
an

d
p
ow

er
co
n
su
m
p
ti
on

A
cc
el
er
o
m
et
er

D
ev
ic
e
op

er
at
io
n
s

W
ir
el
es
s
se
n
so
rs

lo
ca
ti
on

an
d
d
ev
ic
es

S
m
a
rt
p
h
on

e
se
n
so
rs

0

5

10

15

20

25

30 28

7

3
2 2 2

1 1 1 1

T
o
ta
l
p
er

d
at
a
in
p
u
t
ty
p
e
in

re
v
ie
w

p
a
p
er
s

3.3 Data structures used to model behaviour

Choosing a data structure to model behaviour is an important precursor to behaviour prediction.
We can see in Table 16 that the literature shows behavioural activities are modelled in five

7https://www.dropbox.com/s/ziy08qur1gjqk4z/data-analysis.xlsx?dl=0
8http://ailab.wsu.edu/mavhome/research.html
9http://ailab.wsu.edu/mavhome/research.html

10http://casas.wsu.edu/datasets/
11http://liara.uqac.ca/dataset/
12http://redd.csail.mit.edu/
13http://web.mit.edu/cron/group/house_n/data/PlaceLab/PlaceLab.htm
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different ways: Graphs, Markov graphs, Time-series tables, Tree, and Vector. Fundamental to
modelling this type of data is representing the sequential or temporal nature of the data in the
data structure.

Vectors are the simplest of all these data structures. We can imagine a sequence of events
represented as sensor values (27, 14, 1, 903, 43, 17) and a vector is simply a 1-dimensional rep-
resentation of some sequence of behavioural events. To enrich this data we may want to create
a 2-dimensional representation of the data. This is where time-series event tables are used to
create a matrix of the events, such as annotating those sensor values with ’occupant’, ’sensor
source’, and ’location’, for example.

To model more complex relationships between events, activities, and data points within
a smart environment we must look at data structures that can support a higher number of
dimensions, and be extensible to advanced algorithmic processing. Graph data structures are
an ideal candidate and lend themselves well to behaviour modelling where vertices represent
activities or events, and edges represent the connections or transitions between them. A graph
can show causality by following the chain of vertices, and is incredibly versatile in enabling
calculations to be performed on the edges or on the vertices using many different computational
methods. Graphs also have notable subsets which include Markov variants that can reduce
down the the number of states by grouping them, so only the current state or n-th number of
states is considered in a transition rather than a longer sequence of events. Trees are another
type of graph, acyclic in nature, that represent the behavioural data in the opposite way to
Markov graphs, in that they are purely causal in showing how one event leads to another.
Graph data structures and combinations of different types of graphs have the most potential to
computationally represent highly complex behaviours.

3.4 Behaviour prediction algorithms

Prediction algorithms or methods fall into three categories: Machine Learning (ML), Prob-
abilistic Graphical Models (PGMs), and Statistical and Trend Analysis [9]. Machine learning
algorithm variants include Reinforcement Learning (RL) [10] [11], Neural Networks (NN) [12] [13]
[14] [15], Recurrent Neural Networks (RNN) [16], Long Short Term Memory (LSTM) [16] [17],
and Support Vector Machines (SVM) [17]. Probabilistic Graphical Models include SPEED al-
gorithm variants (sequence prediction via enhanced episode discovery) [18] [19] [20] and CRAFFT
algorithm variants (current activity and features to predict next features / Bayesian network) [21].
Lastly, Statistical and Trend Analysis which includes Facebook’s Prophet, ARIMA, and SAR-
IMA [22] [23]. A full list of algorithms can be found in Table 7, and a simple relationship between
data structures and algorithms can be found below in Table 1.

Table 1: Data structures and corresponding prediction algorithm types

Data structure Prediction algorithms groups

Vector LeZi, ARIMA, Pattern mining
Time-series table Rulesets, CRAFFT, SPEED, Bayesian variants, RNN/LSTM
Markov variants Baum-Welch, Viterbi
Graph variants Graph Neural Networks, Bayesian networks

3.5 Prediction accuracy (%)

The prediction accuracies range from 43.9 to 100, as seen in Table 7. However, the studies were
predicting different behaviour types so future research would need to differentiate based on their
use case. Some studies focussed on complex behaviours such as Activities of Daily Living (ADL),
whereas others simply predicted the next location a person would occupy. The use cases and
keywords in Table 13 demonstrate this further.

Table 15 shows a comparison of the different algorithm’s prediction accuracies (%) for each
of the datasets used, where the highest stated prediction accuracy for each dataset / algorithm
combination is used for each table entry.

Accuracy expressed as a percentage of correct predictions (%) features most commonly in
the results of this review. This is standard way of assessing the efficacy of classification tasks.
However, prediction tasks with a continuous output tend to use Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) which appears in a number of papers, and denotes the
error distance from the regression line of best fit, where a low number equates to better accuracy.
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3.6 Output type

The majority of the systems output a single value - the prediction. This could be: an action, a
probability, a location, a health data value, an appliance or device usage. None of the systems
detailed in the studies used more complex data structures, such as matrices, to output multiple
data points (multiple time based predictions) at the same time.

3.7 Use cases stated

All of the uses cases stated, see Table 13, can be categorised as smart environments, with distinct
sub-categories that focus on Activities of Daily Living (ADL) or Ambient Assistive Living (AAL).

4 Discussion

Results from this review are able to answer the research questions set out in the objectives in
section 1.2 - and detailed in the following sections.

4.1 What are the key datasets?

The majority of current research in this area focusses on the MavHome [24] [25] [26], MavLab [27]
[20], CASAS [28] [29] [30] [15] [31], LIARA [32] [33], and Placelab [34] [35] datasets from MIT and
Washington State University. Some novel datasets exist which report excellent results, as shown
in Table 15, specifically the Shanghai smart home dataset and Neural Network combination
which reported a perfect score [36].

As expected the input data from the datasets are a mix of types: sensors including motion
sensors, actuators, and switches; appliances such as kettles and cookers; devices like thermostats;
and more complex data input such as accelerometers, location data, and less commonly video.

The relatively low use of video is interesting given the advances in computer vision. The pro-
cessing of video for behaviour prediction may have been too computationally expensive, some-
thing that has changed only very recently. Or there could be cultural and privacy concerns that
make researchers believe it is unlikely that a video feed in every room of a home is ever likely to
be accepted by the public, and therefore that research is not worth pursuing.

Furthermore, the complete absence of audio as an input method is also significant given
the smart home industry’s focus on their commercial devices predominantly using audio as the
user interface method (e.g. Amazon’s Alexa and Google Home). It could be that much of this
research is private rather than public. Either way it appears that there is a significant research
contribution to be made in this area.

Location data is featured in the input data types from wearable devices and also motion
tracking sensors. Mobile phones would be an obvious choice for further research in tracking
people around smart spaces, but this may fall into a category with video where there are privacy
concerns for the user. All these input data types could be categorised as obtrusive (mobile
phone data, live video, audio) and unobtrusive (appliance and device data, motion sensors,
power usage), which should be given consideration when conducting research into this area.

The mean prediction accuracy for all results is 79.19%, which could be used as a broad
benchmark for current smart home behaviour prediction research.

4.2 How is behaviour modelled?

Modelling behavioural data can be done with several different types of data structures of increas-
ing complexity that accordingly can reflect different levels of complexity within the behaviours.
In order of complexity we have seen in the literature:

1. Vectors: A simple sequential list of event identifiers, where the ascending list index rep-
resents the arrow of time.

2. Tables: Two dimensional data with rows and columns allowing for augmenting events
with additional data including timestamps. Tables in an SQL database also allow for
some relationships to be mapped.

3. Tree: Good for modelling both the arrow of time and causal relationships between events.
Lends itself well to both statistical and machine learning methods for behaviour prediction.

4. Markov: Variants of graphs with the Markov property are excellent for modelling the state
change nature of behaviour, and the relationships between states.

5. Graphs: The most dynamic and extensible of the modelling techniques. Graphs can be
cyclic, have tree subsets, map relationships, hold data and functions on the edges and
vertices, and lend themselves well to machine learning techniques.
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Graphs are particularly apt for modelling sequences, and inferring which element in a se-
quence might be next. An example of how a graph or graph like data structure can be used for
sequence prediction is detailed in Figure 4. The vertices can be mapped to each known event in
a specific use case, and directed graphs can model the arrow of time. Finally, the edges not only
connect the vertices, or events, in a logical way but can also have probability values attached
to them that can be dynamically updated. For example, when at point A probabilities for each
edge route to points B, D, and E become available (summing to 1). How these probabilities
are calculated is determined by the prediction algorithm, which is often a function of the state
change from one event to another based on previously observed data for these states.

Table 2: Pros and cons of different modelling types

Model type Pro Con

Vector Simple to implement Simple one dimensional data
Table Little preprocessing required to use Not suitable for complex data
Tree Easy to map causal relationships No cyclic representation
Markov State change is easily represented Difficult to augment with extra data
Graph Highly extensible state representation Difficult to implement

4.3 What are the algorithms used for behaviour prediction?

The best results for prediction accuracy are being achieved with machine learning algorithms or
Bayesian networks, with the highest accuracy recorded in the review papers using Hadoop to
process massive datasets that are then used to train a back propagation neural network variant
(BPNN). The amount of training data available often impacts prediction accuracy in machine
learning models, so this will have been a factor in the results. The highest prediction accuracies
are also currently achieved by predicting simple behaviours such as a person moving from one
location to another [36], rather than complex multi-occupancy behaviours. The most common
algorithms for predicting human behaviour are variations of well known machine learning al-
gorithms (NN, RL, Q-Learning, RNN / LSTM), and variations of LeZi, CRAFFT, and SPEED.
All of these algorithms take different approaches to solving a fundamental problem, which is
sequence prediction. If we consider a sequence of events or actions, represented by the stochastic
process X = {x1}, the sequence prediction problem can be stated as follows. Given a sequence
of events {x1, x2, ..., xn}, what is xn+1? Unsupervised learning algorithms do not feature in the
literature but they could be used to infer next behaviours through clustering of the event data.
Alternatively, they could be used as an intermediary step to enhance prediction by filtering out
less likely next events e.g. by grouping events into time-windows, before then passing the reduced
set of labels to a prediction model or algorithm.

4.4 Probabilistic Graphical Models (PGMs)

PGMs combine two features which make them ideal for behaviour prediction. The graph data
structure, which can easily be used to model actions and state changes, combined with prob-
ability calculations on the edges which can be used for prediction values [37] [38]. Probability
is particularly suited for a stochastic process like behaviour as it can account for spontaneity
and randomness, it can have multiple possible options with various levels of confidence, and
can also be calculated with contextual factors taken into account. Additionally, it can also be
updated in real time as new data is observed, so models deployed to smart environments could
update themselves to adapt to individual occupant’s behaviours. PGMs generally fall into two
categories: Markov model variants, and Bayesian model variants.

4.4.1 Markov models

Variations of the Markov model, one of the most well known PGMs, feature heavily in the
literature due to their suitability to both model behaviour as a graph, and also infer the next
behaviour through the probability on each of the edges for transition to another state. Figure
4 demonstrates a very simple type of PGM. A Markov model is similar except that it has
an additional loopback state where each state vertex has an edge that loops back on itself,
representing a change (e.g. over time) but remaining in the same state value (behaviour). This
is also known as a cyclic graph.

There are many different permutations of the Markov Model found in the literature as
researchers try to modify the data structure slightly to better accommodate the nuances of
modelling behaviour e.g. Hidden Markov Model (HMM) [39], Hierarchical Hidden Markov
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Figure 3: Sankey diagram of prediction algorithms in review papers

Figure 4: Simple probabilistic graph example
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Model (HHMM) [40], Improved Hidden Markov Model (IHMM), Variable-Order Markov Model
(VMM) [41], or Maximum Entropy Markov Model (MEMM) [42]. Markov Models (MM) are a
good fit for when all of the state in a system is observable. When there is a non-observable state
to account for Hidden Markov Models can better map these processes. Table 17 shows a matrix
for selecting which type of Markov model to use, depending on the system state and autonomy.

HHMMs have been found to be especially good for behaviour modelling as they allow activity
recognition to start at a higher level, before transitioning down to a more granular level of the
model to determine the activity occurring - like a tree data structure e.g. in a smart home a
person is in the kitchen therefore connected activities are cooking or washing dishes.

There are several key algorithms that recur in the literature related to Markov models which
are useful to understand for processing the state in a HMM. The Viterbi algorithm is used
for the most likely sequence of hidden states. Baum-Welch is used for estimating the starting
probabilities, and the Forward algorithm will calculate the probability of a state at any given
time.

Markov variants are an excellent fit for the behaviour modelling and prediction problem, with
good accuracy results for simple behaviours. The current research problem is how to adapt this
data structure for more complex behaviour types without becoming computationally expensive.

4.4.2 SPEED

Sequence prediction via enhanced episode discovery (SPEED) uses episodes of smart home events,
that are extracted based on the binary state of home appliances (on/off) [19]. An episode is a
sequence of user activities that regularly occur in a smart home. The episodes are transferred
into a finite-order Markov model and processed with a prediction by partial matching (PPM)
algorithm, to predict the next activity in the smart home, from the previous data. SPEED is
different to the Markov variants discussed in that it combines episode discovery (ED) and PPM
on a Markov model - which is used to model the behavioural sequence.

4.4.3 LeZi variants

The LeZi algorithm (notably Update LeZi [43], and Active LeZi [44] [45]) is an incremental
parsing algorithm for sequential prediction that is based on the LZ78 family of data compression
algorithms [44]. The LZ77 and LZ78 data compression algorithms, created by Abraham Lempel
and Jacob Ziv in 1977 and 1978 [46], break down sequences of symbols (e.g. text files) that
repeat with regularity and replaces them with an index key - storing the repeat phrases as
unique array values. This reduces a file to a vector of index keys and an array of unique strings
or phrases. The LeZi prediction algorithms that build upon LZ78 parses events, actions, or
experiences as symbols and stores them in the same way. Massively reducing the size of data
any subsequent learning and prediction has to be applied to. Active LeZi (ALZ) also applies
a sliding window, of the same size as the maximum phrase length, to further contain the data
size. To predict the next event in a sequence the ALZ algorithm calculates the probability for
each state occurring in the sequence, before predicting the value with the highest probability
as the next most likely action. This is essentially a finite state Markov model that predicts the
next symbol in a stochastic sequence, however it is different in that it uses the LZ compression
method to manage the underlying data sequence in a highly optimal way.

4.4.4 Bayesian models

Bayesian networks are a type of Probabilistic Graphical Model (PGM) mentioned previously,
similar to Figure 4, that uses Bayesian inference for probability computations. PGMs provide a
way to both effectively model behaviour and make inferences on future events within one data
structure, and as such they are particularly apt for the behaviour prediction problem. Given a
sequence of events where B is the most recent element in a time series set of events, what is the
probability of A being the next event?

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)

All of the Bayesian variants found in the literature, including Naive Bayes classifiers and the
Dynamic Bayesian Network Artificial Neural Network (DBN-ANN) hybrid models which span
Bayesian and ML methods, all derive their prediction capability from the Bayes theorem stated
above, to determine the probability of an event occurring.

Bayesian variants, and specifically Dynamic Bayesian Networks (DBN), are all Directed Acyc-
lic Graphs (DAG) which in contrast to Markov models, do not have a loopback state, and only
transition from one state to another, as in Figure 4. This allows a DBN or similar to incorporate
the modelling of causality, where one distinct event clearly causes another.
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4.4.5 CRAFFT

The CRAFFT algorithm is a Bayesian Network with some extra contextual features to improve
activity prediction. CRAFFT, short for current activity and features to predict next features,
utilises three features for each activity. These are:

• State variable (Xt), a label of the current activity, or next activity e.g. (Xt+1)

• Activity location feature (Y 1
t ), the current activity’s location in the smart home e.g. Front

door, kitchen, medication cabinet, bedroom, bathroom.

• Activity time of day feature (Y 2
t ), time of day the activity occurs binned into 3 hour

ranges.

• Activity day of week feature (Y 3
t ), an integer value denoting the day of the week from 1

to 7.

By providing temporal context to the existing state and location data, the accuracy of pre-
dictions can be improved. For example the ’bathing’ activity in the morning is usually followed
by the ’personal hygiene’ activity. Whereas in the evening, it is usually followed by the ’sleeping
in bed’ activity label. Augmenting a Bayesian Network with extra contextual features enables it
to more reliably calculate the probability of the next activity label.

4.4.6 Knowledge Graphs and Event Graphs

Knowledge Graphs (KG) and Event Knowledge Graphs (EKG) are a type of graph data structure
also known as semantic networks. They are interlinked pieces of information that have connec-
tions or relationships denoted via the graph edges. The vertices can contain related data e.g.
familial relationships or object genealogy, or more interestingly for human activity prediction,
they can contain event labels. Having a prebuilt graph of related events and activities simplifies
the process of applying algorithms to calculate the transition probability from one event or vertex
the next. They also allow greater depth of causality than Markov Models which observe only
the current state when calculating the most likely next state transition [47] [48] [42].

4.5 Machine Learning (ML)

Machine Learning (ML) algorithms produce some of the best results found in this review for
sequence prediction. Neural Networks (BPNN, ANN) and hybrid Bayesian / Neural Networks
(DBN-ANN), Recurrent Neural Networks (RNN) which are particularly adept at time-series
prediction [49], Reinforcement Learning (Q-Learning) which rewards correct predictions, and
finally Support Vector Machine (SVM) which uses regression. ML algorithms have found their
way into every corner of computer science, particularly for classification and prediction (inference)
problems. To better understand why they are good for human behaviour prediction, or sequence
prediction, it is easier to discuss them as higher level categories: Regression, Neural Networks
(NN), Reinforcement Learning (RL), Long-Short Term Memory (LSTM), and Gated Recurrent
Unit (GRU).

4.5.1 Regression (SVM)

Regression, particularly linear regression like that found in classifiers such as an SVM, can be
used for forecasting the next event in a sequence of known linear historical data and applying
a best fit to determine the most probable class or category the next event. This is unlikely to
scale well for data with many different behavioural events, or correctly predict outlying events
in the data [17].

4.5.2 Neural Networks (NN)

Several NNs are mentioned in the literature, and they all operate in a similar way. The networks
are trained on the time series data, and the resulting models output a prediction of the highest
weight from the known classes when passed a value found in the historical sequence. The different
networks are sensitive to many factors in training such as the amount and quality of the data
used to train the model, any preprocessing or feature engineering performed on the data, the
number of network layers, activation functions, regularisation, pooling, and normalisation to
name a few. There are many permutations for NN based time series prediction that can all have
an impact on the accuracy. However, given a large amount of good quality data they are highly
effective at classifying the next likely event in a sequence.
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4.5.3 Reinforcement Learning (RL)

Reinforcement Learning takes a different approach in that its training process involves learning
from the time series data based on how a reward function is configured to optimise for correct
predictions. An RL variant found in the literature, Q-Learning, is particularly adept at problems
with stochastic transitions and therefore fits well with behaviour prediction when behaviour is
modelled as a stochastic process.

4.5.4 Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) is a neural network that has both feedforward and feedback
connections. They date back to 1997 and were invented to solve the vanishing gradient problem,
but have only more recently become popular in research when applied to sequences of data.
An LSTM is particularly adept at processing sequences of data rather than data with less than
three dimensions, such as images. As such it is well suited to time series data, like observed
human behaviour in a smart home, and produces comparable results to algorithms stated in
Table 7 [50] [51] [52] [13] [53]. The feature of LSTMs that make it especially good at behaviour
prediction is the lower sensitivity to gaps between segments of data. Correctly segmenting data
into activities is a major issue for behaviour prediction systems, and LSTMs are more tolerant to
gaps between data segments, such as when there are lags of unknown duration between events in
the time series data. Therefore they are better able to match activities in sequences and produce
more accurate predictions as activities are not grouped incorrectly.

4.5.5 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) is a simplified version of an LSTM proposed in 2014 by Cho
et al [54]. GRUs and LSTMs are very similar in the type of features that they can learn. GRUs
have far fewer model parameters, and have even been shown to outperform LSTMs in some
sequence prediction tasks [55]. GRUs can achieve the same efficiency, efficacy, and performance
as LSTMs - and are often faster to train due to their lower complexity. However, when it is
necessary to remember longer data sequences then LSTMs outperform GRUs.

4.5.6 Graph Neural Network (GNN)

Graph neural networks (GNN) are a set of deep learning methods that work in the graph domain.
Graphs are an excellent data structure for modelling behaviour, and by processing data repres-
ented as a graph using a Neural Network it can be used for link prediction, or state transition,
between graph vertices, which in the case of behavioural data is events or activities [47] [48].

4.6 Statistical and Trend Analysis

Statistical and trend analysis are good methods for macro level behaviours over longer time-
frames. They can calculate the likelihood that events might occur on monthly or annual time
scales, rather than the highly focussed immediate activity predictions of ML or PGM algorithms.
This type of analysis is often called forecasting, and could be used in smart environments in con-
junction with other prediction methods, to take a longer term look into the likelihood of future
events.

4.6.1 ARIMA

Autoregressive integrated moving average (ARIMA) is a time series analysis model, and a gen-
eralisation of the autoregressive moving average (ARMA) model. ARIMA can be fitted to time
series data to predict, or forecast, future points in a series. As the AR indicates in the acronym,
ARIMA is a type of regression that is suited to non-seasonal time series data. It is a linear
regression model that uses its own lags (past values) as predictors. An ARIMA(p,d,q) model is
characterised by three terms: p, d, q. Where:

• p is the order of the AR (autoregressive) term

• q is the order of the MA (moving average) term

• d is the number of differencing required to make the time series stationary (non-stochastic)

ARIMA is suited to data that tends towards non-stationarity which makes it useful for simple
behaviours rather than behavioural processes that display greater stochasticity.

12



4.6.2 SARIMA

Seasonal ARIMA combines the ARIMA method in the previous section with a seasonal com-
ponent to factor in trending changes in a time series dataset. SARIMA(p,d,q)*(P,D,Q,s) follows
a similar pattern to ARIMA with the addition of the capitalised parameters which indicate a
seasonal version of those values e.g. p and seasonal P . Lastly, a forth value is included in the
seasonal parameters: s, which indicates the seasonal length of the data.

4.6.3 Prophet

Prophet is a trend analysis and forecasting model developed by Facebook [22]. It uses modular
regression to process exceptionally large datasets, and is useful if forecasting is needed for big
data datasets, at scale, over monthly or yearly time periods. It includes seasonality and can be
applied to different types of time-series data. While this is out of the scope of current smart
environment behaviour prediction systems, this kind of processing and statistical forecasting at
scale will be needed when these systems grow in complexity.

4.7 Other notable algorithms

There are other algorithms reported in the literature, that are either unique in their approach,
or have been overtaken by developments in the three main categories outlined above.

4.7.1 Ruleset algorithms

The Apriori algorithm [27] is a ruleset that identifies the most frequently occurring activities in
a time-series dataset as those most likely to occur next. Rulesets are not often used for beha-
viour prediction in recent years as more sophisticated techniques are available such as Markov,
Bayesian, and Machine Learning methods.

4.7.2 Sequence pattern mining

Human Activity Prediction (HAP) models and indeed most time-series inference models are
sequence prediction models - due to the sequential nature of time. Therefore time series datasets
like we find in smart home environments are good candidates for sequence mining algorithms,
sometimes also called sequence pattern mining, which find interesting frequent patterns within
sequential sets of data - such as human activities - that can used to determine what the most
frequently occurring activity is after the current identified sequence [56] [41]. In this respect the
mined data act like rulesets for determining the next activity prediction.

4.7.3 Decision trees

Regression tree classification [15] is found in the literature, which is a form of decision tree,
and used for determining what the next probable action could be. Trees have been popular
throughout computer science for a plethora of problems, however similar to the ruleset algorithm
stated previously it has been overtaken by more apt methods such as the Hierarchical Hidden
Markov Model.

4.7.4 Smart Home Inhabitant Prediction

The Smart Home Inhabitant Prediction (SHIP) [24] algorithm matches the most recent sequence
of events with historical data sequences. SHIP matches sequences with a length greater than
3, and returns matches based on the number of occurrences of the pattern in the history and
length of the matched sequence. Predictions can be made by matching the next element in the
matched sequences.

4.7.5 Grey model

The grey model (GM (1,1)) is a component of Grey System Theory (GST) which aims to manage
the uncertainty of a system (hence, grey system) [26]. GM(1,1) is the core component of all grey
prediction models that are effective at solving problems where the data is uncertain or incomplete.
GM (1,1) works by applying several transformations to the data. First, by taking a vector of
time series data as input and applying the Accumulated Generating Operation (AGO) to it, so
that:

x(0)(k) = (x(0)(1), x(0)(2), . . . ., x(0)(n))

Becomes:
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x(1)(k) = (x(1)(1), x(1)(2), . . . ., x(1)(n))

The GM(1,1) model is then constructed by establishing a first-order differential equation for
x(1)(k) as follows:

dx(1)

dt
+ ax(1) = b

Where a and b denote the coefficient and grey input respectively. The least squared method
is then used, thus:

x̂(1)(k + 1) =

x(0)(1)− b

a


e−ak +

b

a

And by applying inverse accumulated generation operation (IAGO). The prediction will be:

x̂(0)(k) =

x(0)(1)− b

a


(1− ea)e−a(k−1)

Where x̂(0)(n+ i) are the GM(1,1) prediction values.

4.7.6 Jaro-Winkler distance (JWD)

The Jaro-Winkler distance algorithm is used to optimise prediction algorithms by more accur-
ately segmenting a data stream into activities. One of the issues with observing smart home
activities is knowing how to split (segment) the activity data that is being observed into discrete
activities that can then be classified and used for prediction. The JWD is a string metric to
measure the edit distance between two sequences. The more similar two strings (sequences), the
higher the Jaro-Winkler distance. This can then be used to match previously labelled activit-
ies (as string activity sequences) with ones found in the inbound data stream from the smart
environment.

4.7.7 Levenshtein distance

Similar to JWD, Levenshtein distance [57] is a useful method to compare sequence similarity
between predicted activities and actual activities. Levenshtein distance is defined as the number
of operations required to transform one sequence into another. It produces a score from 0 to 1
where 1 is a complete match between the sequences. As such it can be used to quickly compare
the accuracy of two sequences of behaviour when working on prediction systems research i.e. the
actual behaviour sequence and the predicted one.

4.7.8 Other factors in algorithm accuracy

The quality and volume of available smart environment data has a big impact on accuracy scores;
particularly for machine learning algorithms. The Shanghai smart home dataset which produced
a perfect score for a very simple activity (using Hadoop and a BPNN) [36] focussed on utilising
high volumes of training data. Therefore, availability of large amounts of high quality data
should be considered when conducting research.

4.7.9 Algorithm commonalities

In discussing these algorithms it is obvious that there are commonalities. The key elements for
a behaviour prediction algorithm are:

• Model behaviour as a sequence of transitions (Markov models)

• Optimise for time space complexity (LeZi)

• Limit the scope of historical sequence data being observed so the processing does not
become intractable (Markov models, LeZi, SPEED)

• Improve accuracy by observing large amounts of historical data (ML, BPNN)

• Use contextual features to improve accuracy (CRAFFT)

• Use sequence matching to better compare accuracy (Levenshtein distance)

• Use accurate segmentation of data into distinct activities or events (JWD)

• Improve tolerance of gaps in, or between, data segments and episodes (JWD, LSTM, GRU)
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4.8 Scenarios for behaviour prediction

The majority of high level use cases for behaviour prediction in smart environments are for
Ambient Assistive Living (AAL), a subfield of Ambient Intelligence (AmI) - a still theoretical
advanced smart environment with seamlessly embedded artificial intelligence. However, we are
seeing the beginnings of these advanced environments with the use of smart technology in homes
and assistive living settings. Assistive living environments are usually healthcare facilities or care
homes, and use cases focus on Activities of Daily Living (ADL) and how to predict these events
so that they can be preempted, and therefore assisted.

Simple use cases from the literature are systems that know when certain appliances or devices
are going to be used, and can activate them instead of the occupant having to frequently do so [58].
Location prediction also features for determining where an occupant might move next in a smart
home - which produced the highest prediction accuracy of all the review papers seen [36]. More
complex use cases focus on anomaly detection in predicted behaviour. If a pattern of behaviour
deviates from the predicted pattern an alarm can be raised that something unusual might be
happening [59]; which can be particularly useful when passively monitoring the elderly.

The current research understanding, knowledge, and technology for computational human
behaviour prediction is still underdeveloped and the use cases found in the literature reflect that.
Basic scenarios are used as a proof of concept while we unravel the structure of predicting patterns
that can become almost infinitely complex. One of the most fundamental questions that these
use cases should address is: Why is behaviour prediction important for smart environments?
The answer to this is that predictive systems are an evolution from the reactive systems that
our current technology is capable of. With predictive systems there is no need to wait for a
command to be issued. Based on data already seen a system can make a decision for a person.
This cognitive offloading then frees the occupant of a smart environment to focus on other tasks;
whether highly important ones such as in healthcare and professional settings, or more leisure
and entertainment focussed at home. We have seen similar cognitive offloading happen as a
result of technological advances in the past with conventional home appliances, computers, and
domestic white goods that free people to focus their energy and attention on less mundane tasks.
Human behaviour prediction capabilities for smart devices will take care of tasks before they
occur to us; control power usage, IoT devices, and entertainment; and eventually even control
vehicles and macro scale smart city systems [60] [61] [62] [63].

The use cases found in the literature focus on domestic smart home settings, healthcare, and
care homes. However, it is likely that this research could be applied to many different types
of settings - from vehicles to smart cities - using the same theoretical knowledge of sequence
prediction and pattern recognition. Future research could investigate more complex use cases
such as multi-occupant behaviour prediction where behaviours overlap, massive scale behaviour
prediction like that found in crowds at sporting events, or industrial and commercial use cases
for improving safety. Examples of these can be found by looking at the Ambient Intelligence
use cases in the report by the Information Society Technologies Advisory Group (ISTAG) from
2001 [64], which are still relevant today.

4.9 Further research

Several opportunities for further research have been identified by this systematic literature re-
view. These include:

• Using different types of data input, such as video and/or audio, which is surprisingly
missing from any of the research

• Trying different combinations of the datasets, algorithms, and data structures identified
in this review which could yield interesting results

• Investigating the efficacy of newer machine learning algorithms such as Graph Neural
Networks.

• Developing the identified behaviour modelling techniques, with richer more dynamic data
structures that could output probability distributions for a range of likely behaviours,
rather than a single value - building on the work of Tax, 2018 [50].

• Exploring further the use of context to improve activity prediction, as put forward in the
CRAFFT algorithm.

4.10 Centres of research

Based on the number of papers per affiliation in the review data the centres of research for
behaviour prediction computation are Washington State University, The University of Texas, and
Nottingham Trent University. However, several of the datasets produced are from MIT, which
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may not have a focus on behaviour prediction, but does have a significant amount of research
in smart environments. The top researcher in this field is Diane J. Cook of Washington State
University with a significant amount of named author papers, and a high number of citations for
those papers.

5 Conclusion

In conducting this review it was revealed that the state of the art is simplistic in terms of
what is currently achievable with these predictions systems. None of the research deals with
complex human interactions, how to make predictions when multiple people are overlapping
their interactions, or how to dynamically identify a behaviour given different contexts and then
make predictions - amongst many other challenges still to be resolved in this research area. There
is good availability of datasets with which to conduct research, and many algorithms that yield
promising results. There also appears to be little crossover with other fields, such as computer
vision, that could potentially produce much better results [65]. The computational resources
needed to parse large datasets and use machine learning algorithms are only recently becoming
affordable, so this may explain the many gaps in the literature in this area. These gaps provide
many opportunities for researchers to explore and contribute new knowledge; most notably using
audio and / or video as the input data types, and investigating much more advanced sequence
prediction methods such as LSTMs. In conclusion, we can reiterate what what we discovered in
answering our research questions in section 1.3.

RQ1 What are the key datasets? These are MavHome, MavLab, CASAS, LIARA, REDD,
and PlaceLab.

RQ2 How is behaviour modelled? Early research used simple time-series event tables, how-
ever nearly all of the recent research uses some variation of a graph data structure to model
behaviour, which is then augmented with a probabilistic state change calculation.

RQ2 What algorithms are used for prediction? The algorithms used for prediction fall into
three distinct categories: Machine Learning, Probabilistic Graphical Models, and Statistical and
Trend Analysis. The approaches are all different, but fundamentally they are all methods for
algorithmically inferring the next event in a data sequence.
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Table 3: Search term synonym/variation table

1 2 3 4 5

A human behaviour prediction algorithm smart home
B people behavior predicting method smart environment
C person action forecast technique smart homes
D - activity forecasting learning smart environments
E - - - - ambient intelligence

Table 4: Main search and selection process

Stage Task Papers

1 Retrieve papers from 6 databases using automated script 3360
2 Run de-duplication and inclusion criteria filter script 134
3 Title and abstract review against the inclusion criteria 42
4 Full paper review against the quality assessment criteria 33
5 Final papers after comprehensive reading 31
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Table 5: Final review papers

Paper id Title Published

1 The role of prediction algorithms in the MavHome smart home ar-
chitecture

2002

2 Identifying tasks and predicting actions in smart homes using unla-
belled data

2003

3 Person movement prediction using neural networks 2006
4 Mining sensor data in smart environment for temporal activity pre-

diction
2007

5 A predictive framework for location-aware resource management in
smart homes

2007

6 Occupant behaviour prediction in ambient intelligence computing
environment

2008

7 Combined fuzzy state q-learning algorithm to predict context aware
user activity under uncertainty in assistive environment

2008

8 A context-aware service model using a multi-level prediction al-
gorithm in smart home environments

2009

9 Traffic modelling and prediction using camera sensor networks 2010
10 Energy prediction based on resident’s activity 2010
11 Detecting and predicting of abnormal behavior using hierarchical

Markov model in smart home network
2010

12 SPEED: An inhabitant activity prediction algorithm for smart
homes

2012

13 Bayesian networks structure learning for activity prediction in smart
homes

2012

14 Smart homes for the elderly dementia sufferers: identification and
prediction of abnormal behaviour

2012

15 Unsupervised mining of activities for smart home prediction 2013
16 Towards appliance usage prediction for home energy management 2013
17 HMM-based human fall detection and prediction method using tri-

axial accelerometer
2013

18 Hardware simulation of pattern matching and reinforcement learning
to predict the user next action of smart home device usage

2013

19 A unified framework for activity recognition-based behavior analysis
and action prediction in smart homes

2013

20 Human behavior prediction for smart homes using deep learning 2013
21 Regression tree classification for activity prediction in smart homes 2014
22 The behavioral profiling based on times series forecasting for smart

homes assistance
2015

23 CRAFFT: an activity prediction model based on Bayesian networks 2015
24 A time series based sequence prediction algorithm to detect activities

of daily living in smart home
2015

25 Automatic sensor data stream segmentation for real-time activity
prediction in smart spaces

2015

26 User behavior prediction model for smart home using parallelized
neural network algorithm

2016

27 Behavior prediction using an improved Hidden Markov Model to
support people with disabilities in smart homes

2016

28 A study on compression-based sequential prediction methods for oc-
cupancy prediction in smart homes

2016

29 Context-aware activity prediction using human behavior pattern in
real smart home environments

2016

30 Employing Grey Model forecasting GM (1, 1) to historical medical
sensor data towards system preventive in smart home e-health for
elderly person

2016

31 A Bayesian network based method for activity prediction in a smart
home system

2017
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Table 6: Updated review search, 2022

Paper id Title Published

32 Completion Time and Next Activity Prediction of Processes Using
Sequential Pattern Mining

2014

33 Prediction of Human Activity by Discovering Temporal Sequence
Patterns

2014

34 Graph-based representation of behavior in detection and prediction
of daily living activities

2017

35 Robust, Informative Human- in-the-Loop Predictions via Empirical
Reachable Sets

2017

36 An improved extreme learning machine model for the prediction of
human scenarios in smart homes,

2017

37 A Location Based Sequence Prediction Algorithm for Determining
Next Activity in Smart Home

2017

38 A Genetic Neural Network Approach for Unusual Behavior Predic-
tion in Smart Home

2017

39 Predicting Human Behaviour with Recurrent Neural Networks 2018
40 An Intelligent Human Behavior-Based Reasoning Model for Service

Prediction in Smart Home
2018

41 A sequential deep learning application for recognising human activ-
ities in smart homes

2019

42 SPADE: Activity Prediction in Smart Homes Using Prefix Tree
Based Context Generation

2019

43 ”Predicting of Sleep Behaviour in Smart Homes Based on Multires-
idents Using Machine Learning Techniques ”

2020

44 Skeleton-based structured early activity prediction 2020
45 LSTM Networks Using Smartphone Data for Sensor-Based Human

Activity Recognition in Smart Homes
2021

46 Abnormal Behavior Forecasting in Smart Homes Using Hierarchical
Hidden Markov Models

2021

47 Constructing the Sequential Event Graph for Event Prediction to-
wards Cyber-Physical Systems

2021

48 Using Knowledge Graphs for Machine Learning in Smart Home Fore-
casters

2021

49 Extrinsic Behavior Prediction of Pedestrians via Maximum Entropy
Markov Model and Graph-Based Features Mining

2022

50 Activities Recognition, Anomaly Detection and Next Activity Pre-
diction Based on Neural Networks in Smart Homes

2022

51 Future Activities Prediction Framework in Smart Homes Environ-
ment

2022
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Table 7: Data extraction: Algorithm accuracies

Paper id Algorithm Prediction accuracy (%)

1 LeZi-Update, Smart Home Inhabitant
Prediction (SHIP), Episode Discovery
(ED),

60.94, 53.4, n/a

2 Markov Model (MM), Hidden Markov
Model (HMM)

Not stated

3 Neural Network (NN) 92
4 Weka / Apriori (ruleset), Active LeZi Not stated
5 LeZi-Update 94
6 Evolving Fuzzy Predictor (EFP), Auto Re-

gressive Moving Average (ARMA) model,
Adaptive-Network-based Fuzzy Inference
System (ANFIS), Transductive Neuro-
Fuzzy Inference model with Weighted data
normalization (TWNFI)

Not stated

7 Fuzzy-State Q-Learning algorithm 72.1
8 Multi-Level Prediction Algorithm 90
9 Bayesian framework, based on semi-

Markov process
Not stated

10 Naive Bayes Classifier, Bayes Net, ANN,
SVM

∼90

11 Dynamic Bayesian Network (DBN), Vi-
terbi algorithm

92.14

12 SPEED, PPM 88.3
13 Search and Score (S&S), Constraint Based

(CB) algorithms
70.33

14 RNN (ESN) Not stated
15 Weka / Flocking algorithm 92.49
16 HMM / EGH 84
17 Support Vector Machine (SVM) 81
18 ML Reinforcement learning, IPAM deriv-

ation
87

19 SVM, Conditional Random Fields (CRF)
algorithm

92.7

20 DBN-ANN, DBN-R, 43.9, 51.8
21 ML Regression tree Not stated
22 Fuzzy C-Means (FCM), ARIMA 83
23 CRAFFT 74.57
24 M-SPEED 96.8
25 Jaro-Winkler distance (JWD) 76
26 Hadoop, Neural network (BPNN) 100
27 Baum-Welch algorithm 78
28 Active LeZi 65
29 Active Lezi in 85
30 Grey Model GM(1,1) 99.39
31 CRAFFT and CEFA algorithms 81.3
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Table 8: Data extraction: Algorithm accuracies update, 2022

Paper id Algorithm Prediction accuracy (%)

32 Custom sequential pattern mining al-
gorithm

78

33 Sequential Pattern Mining (SPM) and
Variable Order Markov model (VMM)

95

34 PGM 82.10
35 Probabilistic set selection 98
36 Recurrent Extreme Learning Machine

(RELM)
99.93

37 Modified SPEED ∼40
38 Recurrent Output Neural Network model

based on Genetic algorithm (RO-NN-GA)
and Unusual Behavior Algorithm (UBA)

RMSE: 0.0009

39 LSTM 85.89
40 Human Behaviour-based Reasoning

(HBR) Model
83

41 LSTM 94.33
42 Sequence Prediction via All Discoverable

Episodes (SPADE) - modified SPEED
80.47, 84.11

43 SVM 100
44 Custom PGM 97.6, 100, 96.11
45 LSTM 99.39
46 HHMM 96.20
47 Scaled Graph Neural Network (SGNN) Not stated
48 Graph Neural Networks (GNN) Not stated
49 Graph mining, Maximum Entropy Markov

Model (MEMM),
90.50

50 LSTM 93
51 BiLSTM 98.70
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Table 9: Data extraction: Input data types

Paper id Input data type Dataset Prediction accuracy (%)

1 Location data -
wearable, device
interaction

MavHome experi-
ment

60.94, 53.4, n/a

2 Location data,
device interaction

Simulated, self-
created dataset

Not stated

3 Location data, per-
son ID

Simulated 92

4 Sensors MavLab, simulated Not stated
5 Sensors, location

data
MavHome 94

6 Wireless sensors.
Location, environ-
ment, device.

Self-created dataset Not stated

7 Sensors, devices Self-created data-
set, simulated

72.1

8 Sensors, devices Self-created data-
set, simulated

90

9 Video cameras, loc-
ation data

Self-created dataset Not stated

10 Sensors CASAS smart en-
vironment

∼90

11 Sensors MIT Placelab 92.14
12 Sensors, devices MavLab 88.3
13 Sensors CASAS smart en-

vironment
70.33

14 Sensors Self-created dataset Not stated
15 Sensors, devices LIARA smart home

lab
92.49

16 Appliance data,
power consumption

REDD dataset
(MIT)

84

17 Accelerometer Self-created dataset 81
18 Sensors, devices Self-created dataset 87
19 Sensors CASAS smart en-

vironment
92.7

20 Sensors, devices MIT home activity
dataset

43.9, 51.8

21 Sensors CASAS smart en-
vironment

Not stated

22 Sensors LIARA smart home
lab

83

23 Sensors Self-created dataset 74.57
24 Sensors, devices Self-created dataset 96.8
25 Sensors MIT Placelab 76
26 Sensors Shanghai smart

home dataset
100

27 Device operations Fudan CISL Self-
care Intelligent
Control and Mon-
itor Platform
(DASICMP)

78

28 Sensors Self-created dataset 65
29 Sensors CASAS smart en-

vironment
85

30 Sensors, location
data

MavHome 99.39

31 Sensors CASAS smart en-
vironment

81.3
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Table 10: Data extraction: Input data types update, 2022

Paper id Input data type Dataset Prediction accuracy (%)

32 Time series event
log

Self-generated 78%

33 Activities labels de-
rived from sensor
data

MPII-Cooking
and UCI-
OPPORTUNITY
data sets

95%

34 Video, audio, accel-
erometer

Self-generated 82.10%

35 Vehicle sensors Self-generated 98%
36 Data sensors time

series
e-health monitoring
open data project

99.93%

37 Appliance sensor
data

Self-generated ∼40%

38 Data sensors time
series

e-health monitoring
open data project

RMSE: 0.0009

39 Sensor data Kasteren et al 85.89%
40 Smart home sensors Self-generated 83%
41 Activities labels de-

rived from sensor
data

CASAS 94.33%

42 Activities labels de-
rived from sensor
data

CASAS, MavLab 80.47%, 84.11%

43 Activities labels de-
rived from sensor
data

ARAS dataset gen-
erated from multi-
residents in Smart
Homes

100%

44 Activities labels de-
rived from sensor
data

CAD-60, UT-
Kinect, and
Florence 3D

97.6% , 100%, 96.11%

45 Smartphone sensor
data

UCI-HAR 99.39%

46 Activities labels de-
rived from video
data

CASIA activity re-
cognition dataset

96.20%

47 Activities labels de-
rived from car event
data

Self-generated Not stated

48 Smart home sensors Smart Applica-
tions REFerence
ontology (SAREF)

Not stated

49 Activities labels de-
rived from video
data

A Day onCampus
(ADOC) dataset

90.50%

50 Activities labels de-
rived from sensor
data

CASAS 93%

51 Activities labels de-
rived from sensor
data

CASAS 98.70%
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Table 11: Data extraction: Data structures for modelling behaviour

Paper id Data structure Dataset Prediction accuracy (%)

1 Graphs, sets MavHome experi-
ment

60.94, 53.4, n/a

2 MM, HMM Simulated, self-
created dataset

Not stated

3 Binary vector / NN Simulated 92
4 Time series event

table
MavLab, simulated Not stated

5 Graphs, sets MavHome 94
6 Not stated Self-created dataset Not stated
7 MM Self-created data-

set, simulated
72.1

8 Tree, set Self-created data-
set, simulated

90

9 Graph, Markov
chain

Self-created dataset Not stated

10 Time series event
table

CASAS smart en-
vironment

∼90

11 HHMM, probability
distribution

MIT Placelab 92.14

12 Finite order Markov
model, tree

MavLab 88.3

13 Bayesian Network CASAS smart en-
vironment

70.33

14 HMM Self-created dataset Not stated
15 Time series event

table
LIARA smart home
lab

92.49

16 Sets, HMM REDD dataset
(MIT)

84

17 HMM Self-created dataset 81
18 Graph Self-created dataset 87
19 Time series event

table
CASAS smart en-
vironment

92.7

20 Not stated MIT home activity
dataset

43.9, 51.8

21 Tree CASAS smart en-
vironment

Not stated

22 Time series event
table

LIARA smart home
lab

83

23 Time series event
table, Bayesian Net-
work

Self-created dataset 74.57

24 Tree Self-created dataset 96.8
25 Set / string MIT Placelab 76
26 Vector Shanghai smart

home dataset
100

27 Improved Hidden
Markov Model
(IHMM)

Fudan CISL Self-
care Intelligent
Control and Mon-
itor Platform
(DASICMP)

78

28 MM, tree Self-created dataset 65
29 MM, tree CASAS smart en-

vironment
85

30 HMM MavHome 99.39
31 Bayesian Network CASAS smart en-

vironment
81.3
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Table 12: Data extraction: Data structures for modelling behaviour update, 2022

Paper id Data structure Dataset Prediction accuracy (%)

32 Time-series set Self-generated 78%
33 Markov model MPII-Cooking

and UCI-
OPPORTUNITY
data sets

95%

34 Two-level state-
space graph

Self-generated 82.10%

35 Time-series set Self-generated 98%
36 Time-series set e-health monitoring

open data project
99.93%

37 Markov Self-generated ∼40%
38 Time-series set e-health monitoring

open data project
RMSE: 0.0009

39 Time-series set Kasteren et al 85.89%
40 Time-series set Self-generated 83%
41 Time-series set CASAS 94.33%
42 Time-series set CASAS, MavLab 80.47%, 84.11%
43 Time-series set ARAS dataset gen-

erated from multi-
residents in Smart
Homes

100%

44 PGM CAD-60, UT-
Kinect, and
Florence 3D

97.6% , 100%, 96.11%

45 Time-series set UCI-HAR 99.39%
46 Markov model CASIA activity re-

cognition dataset
96.20%

47 Event graph - type
of knowledge graph

Self-generated Not stated

48 Knowledge graph Smart Applications
REFerence ontology
(SAREF)

Not stated

49 Graph A Day onCampus
(ADOC) dataset

90.50%

50 Time-series set CASAS 93%
51 Time-series set CASAS 98.70%

28



Table 13: Data extraction: Use cases and keywords

Paper id Use cases Keywords

1 Smart home, ADL LeZi, Sequence prediction, signific-
ant episodes

2 Smart home, ADL Markov, probability
3 Smart environment Neural network
4 Smart environment LeZi, probability, Markov model
5 Smart environment LeZi, Markov model
6 Ambient Intelligence EFP, ARMA, ANFIS, TWNFI
7 Assistive Environment, AAL AAL, Fuzzy, Q-learning
8 Smart home, ADL Location then device
9 Smart environment Location prediction, MM, Kalman

filter
10 Smart home, ADL ML comparisons
11 Smart home, ADL HHMM, HMM
12 Smart home, ADL Sequence prediction, comparison of

methods, Big O analysis
13 Smart home, ADL Probability distribution, compar-

ison of methods
14 Smart home, ADL, AAL AAL
15 Smart home, ADL, AAL Automatic ADL recognition, Big O
16 Smart home, ADL HMM
17 Smart home, ADL, AAL Acceleration time series (ATS), fall

prediction, hidden Markov model
(HMM)

18 Smart home, ADL RL
19 Smart home, ADL SVM
20 Smart home, ADL Deep learning, DBN, RBM, SVM
21 Smart home, ADL, AAL Regression trees, AAL
22 Smart home, ADL, AAL Fuzzy C-means, AAL
23 Smart home, ADL PGMs, Next activity plus start

time
24 Smart home, ADL, AAL M-SPEED, SPEED, HMM, PPM
25 Smart home, ADL JWD, data stream
26 Smart home, ADL NN, MapReduce, Hadoop
27 Smart home, ADL, AAL Voice command dataset
28 Smart home, ADL LeZi, Markov model
29 Smart home, ADL, AAL CASAS, LeZi
30 Smart home, ADL, AAL Grey Model, ARIMA
31 Smart home, ADL, AAL CEFA
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Table 14: Data extraction: Use cases and keywords updated, 2022

Paper id Use cases Keywords

32 Smart home, ADL Pattern mining
33 Smart home, ADL Activity prediction, causality,

context-cue, predictability
34 Smart home, ADL, AAL Behavior understanding, Smart

homes, Assisted living, Machine
learning, Graph-based structures

35 Semi-autonomous driving Autonomous vehicles, Probability
36 Smart home, ADL, AAL Behavior prediction, Smart home,

Time series prediction
37 Smart home, ADL Artificial intelligence, Hidden

Markov Models, Prediction by
partial matching, Smart homes,
Location agent

38 Smart home, ADL, AAL Unusual Behavior Algorithm; Re-
current Output Neural Network;
Genetic Algorithm; Elderly People;
Smart Home.

39 Smart home, ADL, AAL Long short-term memory networks,
Behavior modelling, Intelligent en-
vironments, Activity recognition

40 Smart city Internet of Things, Service predic-
tion, Human behavior-based reas-
oning, Intelligent embedded system

41 Smart home, ADL, AAL Smart home, Human activity re-
cognition, Deep learning, LSTM

42 Smart home, ADL, AAL Activity prediction,Prediction by
partial matching, Sequence predic-
tion, smart home

43 Healthcare: Sleep behaviour and
disorders

Prediction, Sleep ,Smart homes,
Multi-residents, Machine learning
techniques

44 Smart home, robot interaction Probabilistic graphical models, Hu-
man activity early prediction, Dis-
tributed structured prediction, Lat-
ent structured support vector ma-
chines, RGB-D

45 Smart home, ADL, AAL HAR, LSTM, Deep learning, Time-
series data, Smartphone sensor fea-
ture extraction

46 Smart home, ADL, AAL HHMM, Forecasting
47 Smart car Event graph, Cyber-physical sys-

tem CPS), Event prediction, Event
evolution

48 Smart home, ADL Internet of Things, Ontology, Data
mapping, Smart home, Forecast-
ing, Machine learning, Federated
learning

49 Smart city Cluster analysis, Deep flow fea-
tures, Extrinsic behavior predic-
tion, Graph optimization, Max-
imum Entropy Markov Model

50 Smart home, ADL, AAL Smart homes, activity recognition,
anomaly detection, sequence pre-
diction, deep neural network, au-
toencoder, LSTM

51 Smart home, ADL Smart home, BiLSTM neural net-
works, sequence prediction
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