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Abstract 

Global antimicrobial resistance is a health crisis that can change the face of modern 

medicine. Exploring diverse natural habitats for bacterially-derived novel antimicrobial 

compounds has historically been a successful strategy. The deep-sea presents an exciting 

opportunity for the cultivation of taxonomically novel organisms and exploring potentially 

chemically novel spaces. In this study, the draft genomes of 12 bacteria previously isolated 

from the deep-sea sponges Phenomena carpenteri and Hertwigia sp. are investigated for the 

diversity of specialized secondary metabolites. In addition, early data support the production 

of antibacterial inhibitory substances produced from a number of these strains, including 

activity against clinically relevant pathogens Acinetobacter baumannii, Escherichia coli, 

Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. 

Draft whole-genomes are presented of 12 deep-sea isolates, which include four 

potentially novel strains: Psychrobacter sp. PP-21, Streptomyces sp. DK15, Dietzia sp. PP-

33, and Micrococcus sp. M4NT. Across the 12 draft genomes, 138 biosynthetic gene clusters 

were detected, of which over half displayed less than 50% similarity to known BGCs, 

suggesting that these genomes present an exciting opportunity to elucidate novel secondary 

metabolites. Exploring bacterial isolates belonging to the phylum Actinomycetota, 

Pseudomonadota and Bacillota from understudied deep-sea sponges provided opportunities to 

search for new chemical diversity of interest to those working in antibiotic discovery. 
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Introduction 

In the year 2019 there was an estimated 4.95 million deaths associated with bacterial 

antimicrobial resistance (AMR) (Murray et al. 2022), and it is predicted that by 2050 there 

will be 10 million annual deaths (O’Neill, 2014). As such, there needs to be considerable 

emphasis on mobilizing global initiatives to tackle AMR. One strategy for addressing this 

global health crisis is the discovery and development of new antimicrobials. Marine microbes 

isolated from invertebrates are well recognized as a promising source of novel 

pharmaceuticals, including those with antimicrobial properties. Marine sponges, in particular, 

are prolific sources of novel chemistry (Piel 2004). Microbes from all domains of life 

(Bacteria, Archaea, Eukarya and Viral) are known to associate with sponges (Li et al. 2016; 

Pascelli et al. 2020). Sponges form intimate associations with symbionts and associated 

bacteria, which contributes to holobiont metabolism. Functions include nutrient cycling, 

vitamin production and defence compound production (Pita et al. 2018). Marine sponge 

research has intensified over the past decade due to the potential of sponges and their 

associated microbes to produce secondary metabolites relevant to industry and medicine (Piel 

2004; Anjum et al. 2016). In addition, secondary metabolites from shallow water sponges 

have found uses in medicine, including compounds with antimicrobial, anti-inflammatory or 

anti-tumour activity, muscle relaxants and cardiovascular agents, to name a few (Anjum et al. 

2016; He et al. 2017). 

Marine invertebrates are important reservoirs of natural products (NPs); a metareview 

of the trends in NP discovery stated a 6.5% increase in the number reported from marine 

sponges (Porifera) in the past decade (Calado et al. 2022). Deep-sea sponges are increasingly 

being shown to have NP potential similar to that of their shallow-water counterparts, 

although their recovery from the deep-sea is more difficult meaning they remain less 

explored than shallow-water sponges (Borchert et al., 2016; Borchert, Knobloch, et al., 2017; 

Borchert, Selvin, et al., 2017). The deep-sea sponges themselves are a source of novel 

chemistry, as demonstrated by the identification of an entire family of peptides with proposed 

anti-fouling activity, the Barrettides, from Geodia barretti (Steffen et al. 2021). However, it 

is the microbial symbionts and associated microbes that have garnered the greatest attention 

so far. The cultured bacteria associated with deep-sea sponges have been reported to be 

diverse and display a range of antibacterial activity against clinically relevant bacterial 

pathogens (Xin et al. 2011; Xu et al. 2018; Williams et al. 2020; Back et al. 2021). The 

majority of the bacterial isolates reported belong to the phylum Actinomycetota and include 
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members of the following genera: Streptomyces, Dietzia, Rhodococcus, Salinispora, in 

addition to a novel Micromonospora strain (Back et al. 2021). 

More than 70% of antibiotics approved for clinical use are derived from species 

within the phylum Actinomycetota (Newman, Cragg and Snader 2003; Newman and Cragg 

2012; Seipke 2015; Qin et al. 2017), with those belonging to the genus Streptomyces 

possessing genomes that have an abundance and diversity of specialist metabolites that 

illustrates their incredible therapeutic potential (Seipke 2015; Gavriilidou et al. 2022). While 

less studied than terrestrial species, marine Actinomycetes are a source of novel 

antimicrobials and are frequently associated with, and cultivable from, marine sponges (Bull 

and Stach 2007; Marinho et al. 2009; Xin et al. 2011; Abdelmohsen et al. 2014). 

The Actinomycetota represent a small fraction of previously reported deep-sea sponge 

microbiota, while members of the Pseudomonadota are present in high relative abundance 

(Steinert et al. 2020). Despite this low relative abundance, they are often reported in 

cultivation efforts (Xin et al. 2011; Xu et al. 2018; Williams et al. 2020). While not as 

historically prolific producers of antibiotics, Pseudomonadota are abundant members of the 

marine sponge microbiomes (Steinert et al. 2020), and likewise are valuable sources of 

marine-derived antimicrobial peptides (see review (Desriac et al. 2013). 

Novel chemistry with potential relevance to pharmaceuticals appears to be present in 

sponge microbiomes. A survey of three species of deep-sea demosponges (Inflatella 

pellicula, Stelletta normani, and Poecillastra compressa) sequencing the subunits of 

polyketide synthases (PKS) and non-ribosomal peptide synthases (NRPS) demonstrated the 

genomic diversity of specialized secondary metabolite (SM) genes present within the deep-

sea sponge microbiota (Borchert et al. 2016). Elsewhere, culture-independent strategies have 

been applied successfully in identifying antimicrobials from bacteria recovered from the 

deep-water species Lissodendoryx diversichela and I. pellicula. Whole-genome sequencing of 

13 sponge-associated Streptomyces spp. revealed that two deep-sea strains were enriched in 

gene clusters encoding NRPS with an overall high abundance of Biosynthetic Gene Clusters 

(BGCs), while assay-based approaches were used to identify activity against clinically 

relevant pathogens (Romano et al. 2018). More importantly, these BGCs showed little to no 

homology with those previously reported. 

Hexactinellida is a class of marine sponges typically found in deep waters >200 m, 

with only 5 known shallow-water species (Leys, Mackie and Reiswig 2007), and they 
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represent 7% of all described members of the phylum Porifera (Hooper and van Soest 2002; 

Van Soest et al. 2012). Compared to other classes of sponges (i.e., Demospongiae), 

hexactinellid sponges are only occasionally included in microbial studies (Mangano et al. 

2008; Xin et al. 2011; Borchert et al. 2017a; Steinert et al. 2020). An early indication of a 

sponge-class specific microbiome may indicate that the hexactinellids are a promising 

unexplored taxonomic space for antibiotic NP discovery (Koch et al. 2021). Antibiotic 

discovery from deep-sea sponges is still in its early days, and there remains a large selection 

of taxonomically distinct deep-sea sponges to be explored for this purpose. Already, there is 

much promise, with novel genomic and chemical diversity reported. In this study, our aims 

were to sequence and investigate the whole genomes of 12 bacterial strains recovered from 

two deep-sea sponges from a previous investigation (Koch et al. 2021), in addition to 

generating preliminary data on the range of antimicrobial substances produced by these 

isolates. 
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Materials and Methods 

Sample collection 

Deep-sea sponges were collected from the North Atlantic west of the UK and Ireland 

as part of the NERC funded Deep Links project research cruise JC136 (2016), and the 

Sensitive Ecosystem Assessment and ROV Exploration of Reef (SeaRover) RH17001 (2017) 

and CE19015 (2019) research cruises, jointly funded by the Irish Government and EU (Fig. 

1). Samples were collected by Remotely Operated Vehicles (ROVs). Sponges were rinsed 

with local surface seawater, photographed, placed in ziplock bags, and frozen at -20°C for the 

remainder of the cruise. Sponges were transported from the research vessel to the University 

of Galway, Ireland for temporary storage at -20°C. Sponges were finally transported on dry 

ice to the University of Plymouth for storage at -80°C. 

 

Figure 1. Map of sampling sites and sponges used for bacterial cultivation. (A) Map of 

deep-sea sampling points for sponges. Blue marker points from top to bottom, sampling sites 

for Deep Links JC136, SeaRovers RH17001 and SeaRovers CE19015. In situ images of 

deep-sea sponges, (B) P. carpenteri JC136_125 (Deep Links), and (C) Hertwigia sp. 
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GRNL_81 (SeaRovers RH17001). Two red laser dots visible in (C) illustrate a 10 cm 

distance. 

Sponges were identified from the analysis of internal and external morphological 

features (i.e., body shape, type, size, and arrangement of spicules) following the Systema 

Porifera taxonomic key (Hooper and van Soest 2002). Sponges used in this study collected on 

the JC136 (2016) and CE19015 (2019) cruises were identified as Pheronema carpenteri 

(order Amphidiscoside, family Pheronematidae) (Table 1, Fig. 1B). While sponges 

GNRL_81 and GNRL_82 (2017) were provisionally identified as associated with the sponge 

Hertwigia falcifera (order Lyssacinosida, family Euplectellidae) (Fig 1C). 

 

Table 1. Summary of hexactinellid sampling metadata and taxonomy used in cultivation 

efforts. Name prefix refers to the research vessel during which the sponges were collected: CE, RV Celtic 

Explorer (CE19015), Republic of Ireland; GRNL, Irish Lights Vessel Granuaile RH17001, Republic of 

Ireland; JC, RSS James Cook (JC136), United Kingdom.

Sample ID 
Sponge identity Sampling Date 

Depth 
(m) 

Coordinates (lat, 
long) 

Cruise report 

JC136_125 P. carpenteri 16/06/2016 1,051 58.85, -13.39 

(Howell et al., 2016) JC136_134 P. carpenteri 16/06/2016 1,054 58.85, -13.39 

JC136_135 P. carpenteri 16/06/2016 1,051 58.85, -13.39 

CE_015_09 P. carpenteri 13/08/2019 1,209 49.53, -12.09 

(O’Sullivan et al., 
2019) 

CE_015_10 P. carpenteri 13/08/2019 1,209 49.53, -12.09 

CE_015_27 P. carpenteri 15/08/2019 1,103 50.98, -13.68 

CE_015_29 P. carpenteri 15/08/2019 1,103 50.98, -13.68 

GRNL_81 Hertwigia sp. 21/07/2017 2,227 54.18, -12.84 (O’Sullivan et al., 
2017) GRNL_82 Hertwigia sp. 21/07/2017 2,175 54.18, -12.84 

 

Draft whole genome sequence generation for sponge-associated bacteria  

Recovery of sponge-associated bacteria 

The bacterial cultures utilised for the purpose of this study were recovered during a 

previous study by Koch et al., (2021). This included the cultivation of bacterial isolates in 

pressurized chambers (5Bar), and utilised various isolation media. In summary, sponge tissue 

was cut from the sponge body disregarding the outer 1 cm of tissue. Individual tissue 

segments (approx. 10 g wet weight) were homogenized and transferred to 50 ml centrifuge 

tubes (Fisher Scientific). Large and un-degradable (i.e. glass spicules) debris was allowed to 
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settle for 5 minutes and remaining suspended homogenate was transferred to a new 50ml 

centrifuge tube. Homogenised tissue was centrifuged at 4,696 x g for 20 minutes and 

supernatant was discarded. The resulting pellet was resuspended in 2 ml sterile PBS and 100 

µl aliquots used to inoculate agar plates. Bacterial isolates were passaged until visibly pure 

cultures were achieved. Pure cultures were preserved with Pro-Lab Diagnostics™ 

Microbank™ Bacterial and Fungal Preservation System tubes for long-term storage at -80°C. 

A summary of the cultivation condition used for the recovery of each strain is detailed in 

Supplementary Table S1. 

Illumina whole-genome sequencing and assembly by MicrobesNG 

DNA extraction and sequencing was outsourced and performed by Microbial 

Genomics Ltd. (MicrobesNG, UK; https://microbesng.com/). Strains were revived from 

cryopreservation beads and streaked out on Reasoner’s 2 agar (R2a; Oxoid, UK) plates 

(Reasoner and Geldreich 1985) and incubated for 5 days at 15ºC. Cultures were passaged 

three times to ensure no contamination was present. Cells were harvested from a streak plate 

and suspended in a tube with cryoperservative (Microbank™, Pro-Lab Diagnostics UK, 

United Kingdom) provided by MicrobesNG. Preserved cells were sent to the company where 

the DNA extraction was performed, as described below.  

Five to forty microlitres of the bacterial suspension were lysed with 120 µL of Triss-

EDTA buffer containing lysozyme (final concentration 0.1 mg/mL) and RNase A (ITW 

Reagents, Barcelona, Spain) (final concentration 0.1 mg/mL), incubated for 25 min at 37°C. 

Proteinase K (VWR Chemicals, Ohio, USA) (final concentration 0.1mg/mL) and SDS 

(Sigma-Aldrich, Missouri, USA) (final concentration 0.5% v/v) were added and incubated for 

5 min at 65°C. Genomic DNA was purified using an equal volume of SPRI beads and 

resuspended in EB buffer (Qiagen, Germany). DNA was quantified with the Quant-iT 

dsDNA HS kit (ThermoFisher Scientific) assay in an Eppendorf AF2200 plate reader 

(Eppendorf UK Ltd, United Kingdom).  

Illumina 2x250 bp paired-end sequencing and genome assembly were performed by 

MicrobesNG. Genomic DNA libraries were prepared using the Nextera XT Library Prep Kit 

(Illumina, San Diego, USA), further details regarding their protocols can be found on the 

company website. Reads were adapter trimmed using Trimmomatic 0.30 (REF) with a sliding 

window quality cutoff of Q15. MicrobesNG identified the closest available reference genome 

with Kraken2 (Wood and Salzberg 2014). Reads were mapped to reference genome with 
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BWA-mem (Li 2013), assessing the quality of the data. De novo assembly of the reads was 

performed with SPAdes (Bankevich et al. 2012), and reads were mapped to de novo 

assembly with BWA-mem. Genomes were annotated with Prokka (Seemann 2014) and 

variants were detected with VarScan (Koboldt et al. 2009, 2012). 

Phylogenetic analysis 

Bacterial genomes were taxonomically classified and novelty determined by Average 

Nucleotide Identity by BLAST+ (ANIb) performed on the JWSpecies server 

(http://jspecies.ribohost.com/jspeciesws/), in addition to digital DNA-DNA hybridization 

with the Genome-to-Genome Distance Calculator (DDGC) (Meier-Kolthoff et al. 2013; 

Meier-Kolthoff and Göker 2019). These two tests mimic digital DNA-DNA Hybridisation 

(dDDH). An ANIb value below 95% indicates that two strains belong to different species, 

while for DDGC it is below 70%. The Type Strain Genome Server (TYGS) was used to 

generate a phylogenetic tree of sponge-associated bacteria, utilizing-genome BLAST distance 

phylogeny. Phylogeny was created by the TYGS, and the resulting intergenomic distances 

were used to infer a balanced minimum evolution tree with branch support via FASTME v. 

2.1.6.1 including subtree pruning and regrafting (SPR) postprocessing (Lefort, Desper and 

Gascuel 2015). Branch support was inferred from 100 pseudo-bootstrap replicates each. The 

trees were rooted at the midpoint (Farris 1972). 

Using the NCBI database, the 16S rRNA gene sequences for cultured sponge bacteria 

from nine previous studies were retrieved (Lafi, Garson and Fuerst 2005; Kim and Fuerst 

2006; Jiang et al. 2007; Mangano et al. 2008; Zhang et al. 2008; Sipkema et al. 2011; Xin et 

al. 2011; Bibi et al. 2020; Koch et al. 2021) (Supplementary Table S2). These nine studies 

were selected for analysis as they contained (i) the full taxonomy of the sponges utilised for 

bacterial isolation, (ii) the studies identified the bacterial strain by sequencing the 16S rRNA 

gene, and (ii) finally these nine studies includes ones that did and did not perform antibiotic 

screening of the recovered strains. Following a manual curation of the retrieved sequences, 

highly similar sequences from the same study were removed by clustering nucleotide 

sequences using CD-HIT at 98% sequence identity (Li and Godzik 2006). Multiple sequence 

alignments were performed with MAFFT v. 7.407 using a standard iterative refinement 

method (Katoh et al. 2002; Yamada, Tomii and Katoh 2016). Phylogeny was inferred by 

Maximum Likelihood implementation in RAxML v. 8 using GTR+GAMMA approximation 

model (Stamatakis 2006; Kozlov et al. 2019), and RAxML halted bootstrapping 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sm
icrobes/advance-article/doi/10.1093/fem

sm
c/xtad005/7051222 by guest on 28 February 2023



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 

automatically. All trees were visualised and metadata added using the interactive Tree Of 

Life v. 6 (iTOL; Letunic and Bork, 2007, 2019), with final adjustments made using Inkscape 

v. 1. 

Predicting of biosynthetic gene clusters (BGCs) 

BGCs were predicted by uploading genomes to the antiSMASH v.6 online portal 

(Medema et al. 2011; Blin et al. 2019) with relaxed strictness and all extra features. Each 

BGC was classified based on its similarity to known BGCs in the antiSMASH database, 

according to the classification described by Benaud and colleagues (2021). In summary; there 

are five classification levels: 1) ‘Analogous’ BGCs, identical to known BGC in both number 

and placement of genes, and individual genes exhibited an average of >80% sequence 

identity; 2) High Similarity BGCs, clusters with 61%-100% of genes similar to known BGC, 

includes all core biosynthetic gene clusters and an average gene sequence identity >50%; 3) 

‘Moderate Similarity’ BGCs, between 11%-87% gene similarity to known cluster, and BGCs 

contained additional or unmatched core biosynthetic genes; 4) ‘Low Similarity’ BGCs, 

cluster share <20% of genes with known cluster and an absence of all core biosynthetic 

genes, with individual genes having >40% sequence identity; 5) ‘Nil Similarity’ BGCs, 

clusters with no significant similarity to any BGC in the antiSMASH database. To facilitate 

predicting antibacterial biological activity from BGCs, DeepBGC v. 0.1.29 was utilized 

(Hannigan et al. 2019). The tool is capable of predicting BGCs and product class and activity 

of detected BGCs using Random Forest classifier. DeepBGC scores were filtered as follows: 

deepbgc score > 50, cluster_type score > 50, activity score > 50, number of domains > 5, 

number biodomains > 1, number of proteins > 1, as previously described (Hrab et al. 2021). 

The .GBK and .JSON files generated by DeepBGC were uploaded onto antiSMASH for 

visualisation. 
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Detection of antibacterial activity 

Bacterial cultures with putative antibacterial activity based on in silico BGC analysis 

(as described above) were screened (in vitro) using a soft-agar overlay technique (Williams et 

al. 2020). Briefly, six solid media were prepared with 1.8% (w/v) agar including R2A, 

Marine agar (MA), Mueller Hinton 2 agar (MHA), International Streptomyces Project 2 agar 

(ISP2) and Actinomycetes Isolation agar (ACT). A single colony of each isolate was then 

streak-plated onto the centre of the agar plate creating a smear of bacterial cells between 5-10 

mm in diameter. The cultures were then incubated aerobically at 15°C under atmospheric 

pressure for 5-10 days until a solid mass of cells was observed. Thereafter, the cultures were 

then overlaid with a 0.7 % (w/v) soft-agar inoculum containing a pathogen culture at a 

concentration of 0.1 OD/mL at Abs 600 nm, and incubated overnight at 37°C. Lastly, the plates 

were inspected for zones of clearance and antibacterial activity was quantified by subtracting 

the size of the colony (mm) from the size of the halo (mm).  The panel of bacterial pathogens 

utilised was: The isolates were screened against a panel of ESKAPE pathogens including 

Acinetobacter baumannii ATCC 19606, Escherichia coli 10418, Klebsiella pneumoniae 

subsp. pneumoniae DSM 30104, Micrococcus luteus NCTC 2665, Pseudomonas aeruginosa 

JCM 5962, and Staphylococcus aureus ST20190863. 
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Results 

Taxonomy and novelty of sponge-associated bacteria 

The draft whole genomes of 12 sponge-associated bacteria were assembled using data 

acquired from Illumina sequencing platform achieving approximately 30X coverage (Table 

S1). The draft genomes are assembled into contigs, with M4NT being the least fragmented 

genome with 29 contigs, and strain PP-21 the most fragmented comprising 186 contigs. 

Despite the fragmentation, all the genomes displayed greater than 99% completion, and all 

but the two Streptomyces strains (ACT2-R2a and DK15) displayed less than 1% 

contamination as measured by CheckM (Table 2). 

There were six strains belonging to the phylum Actinomycetota, four 

Pseudomonadota and two Bacillota (Table 2, multi-locus phylogeny Fig. S1 to S3). The 

closest relative of sponge-associated bacterial strains was identified as Streptomyces 

fulvissimus for ACT2-R2a; Streptomyces lavendulae for DK15; Microbacterium oxydans for 

PC-227; Brevundimonas vesicularis for PC206-O; Psychrobacter pacificensis for PP-21; 

Pseudomonas xanthomarina for PP-22; Bacillus pumilus for PC-24; Bacillus altitudinis for 

Ph1628; Dietzia psychralcaliphila for PP-33; Stenotrophomonas rhizophila for RG-453; 

Micromonospora tulbaghiae for M1TU; and Micrococcus yunnanensis for M4NT.  

Of the 12 strains, five were identified as potentially novel species based on values for 

both ANIb and dDDH below the threshold to be the same species as the closest relative 

(Table 2, Fig. S4). These genomes were: Microbacterium sp. strain PC-227; Psychrobacter 

sp. strain PP-21; Dietzia sp. strain PP-33; Streptomyces sp. DK15; Micrococcus strain 

M4NT, and Stenotrophomonas rhizophila strain RG-453. Multi-locus phylogeny for 

individual organisms can be found in Fig. S5 to S9. The amplification and sequencing of the 

16S rRNA gene for these strains from previous work did not indicate these were potentially 

novel species (Koch et al. 2021). 
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Table 2. Taxonomic identification of isolated bacteria strains and identity to close relatives. (ANIb, average nucleotide identity; GGDC, 

Genome-Genome Distance Calculator; dDDH, digital DNA-DNA Hybridisation; diff., difference; Contam, Contamination; Comp., Completion). 

Detailed assembly statistics and isolation conditions for the strains can be found in Table S1.  

Isolate 
Assembled 
size (Mbp) 

Contigs 
N50 
(kb) 

L50 %GC 
Comp. 

(%) 
Contam. 

(%) 
Phylum Closest relative (Accession number) 

ANIb 
(%) 

GGDC 
DD-DH 

(%) 

%GC 
diff. 

M1TU 6.4 89 249.6 10 73 100 0.79 Actinomycetota 
Micromonospora tulbaghiae DSM 45142 
(GCA_900091605.1) 

99.59 98.6 0.0 

PC-227 3.7 45 393.5 8 69.5 99.9 0.58 Actinomycetota 
Microbacterium algeriense G1T 
(GCA_008868005.1) 

83.5 95.3 0.13 

ACT2_R2a 8.5 105 318.5 5 71.3 99.9 1.05 Actinomycetota 
Streptomyeces fulvissimus DSM 40593 
(GCA_000385945.1) 

98.0 84.9 0.21 

DK15 9.2 137 226.92 13 72 99.64 2.35 Actinomycetota 
Streptomyces lavendulae NRRL B-2774 
(GCA_000718155.1) 

 84.6 39.8 0.9 

PP-33 4.2 46 399.4 4 69.6 99.4 0.59 Actinomycetota 
Dietzia psychralcaliphila ILA-1 
(GCA_003096095.1) 86.8 66.8 0.1 

M4NT 2.4 29 169.6 6 73.1 98.42 0.92 Actinomycetota 
Micrococcus yunnanensis DSM 24531 
(GCA_014874165.1) 82.1 50.7 0.0 

Ph1628 3.8 38 393.44 4 41 99.59 0.00 Bacillota 
Bacillus altitudinis SGAir0031 
(GCA_002443015.2) 

98.22 91.9 0.5 

PP-24 4.3 46 501.2 3 66.6 99.6 0.21 Bacillota 
Bacillus pumilus LLTC96 
(GCA_002998365.1) 

97.46 92.9 0.1 

PP-22 5.0 105 266.4 7 60.3 100.0 0.74 Pseudomonadota 
Pseudomonas xanthomarina PX_371 
(GCA_016622425.1)  

95.7 81.0 0.2 

RG-453 3.8 82 479.1 4.0 41.5 100.0 0.89 Pseudomonadota 
Stenotrophomonas rhizophila DSM 14405 
(GCA_003751305.1) 

91.0 50.6 0.75 

PC206-O 3.4 43 285.3 4.0 66.1 99.7 0.81 Pseudomonadota 
Brevundimonas vesicularis 
FDAARGOS_289 (GCA_002208825.2) 

99.0 80.8 0.0 

PP-21 3.2 186 222.4 4.0 43.6 99.5 0.51 Pseudomonadota 
Psychrobacter pacificensis DSM 23406 
(GCA_900101915.1)  83.1 53.2 0.3 

Values in bold denote results below the threshold value to the closest relative (<95% for ANIb; <75% for GGDC dDDH)
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The phylogenetic diversity of the genomes investigated in this study was compared to 

bacterial strains cultivated from sponges described in published literature. The accession 

numbers of 16S rRNA amplicon sequences from nine published studies were used to this 

effect (Lafi, Garson and Fuerst 2005; Kim and Fuerst 2006; Jiang et al. 2007; Mangano et al. 

2008; Zhang et al. 2008; Sipkema et al. 2011; Xin et al. 2011; Bibi et al. 2020; Koch et al. 

2021). The sequences were retrieved from NCBI and after removing 16S rRNA gene 

sequences from the same study with a sequence identity of >98%, 329 sequences remained. 

This consisted of 186 sequences from studies that screened for bioactivity and 143 sequences 

from studies that did not (Fig. 2, Table S2). In comparing the phylogeny, it was observed that 

Actinomycetota (102 sponge-associated bacteria isolates from 8 studies), Pseudomonadota 

(94 bacteria from 7 studies) and Bacillota (66 bacteria from 7 studies) are highly represented 

among previously reported bacterial producers cultivated from sponge samples. Bacteriodetes 

had the fewest; only 8 sponge bacteria isolated from 2 studies. From the studies selected, 

demosponges constituted most sponges used for bacterial cultivation. This included 13 

species of sponges, Haliclona sp. being the most frequently tested organism. There are 74 

sponge-associated bacteria cultivated from hexactinellid sponges in which bioactivity was 

tested. No single study cultivated bacteria from hexactinellids to explore cultivable diversity, 

though this was extensively done for demosponges. The 74 isolates included 33 

Pseudomonadota, 26 Actinomycetota, 12 Bacillota, and three Bacteroidota. There were only 

four distinct hexactinellid sponges tested, compared to 13 demosponges. 
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Figure 2. Maximum likelihood phylogenetic tree of 16S rRNA gene sequences from 

cultivable sponge-associated bacteria showing that antibiotic producers are 

phylogenetically diverse across all classes and species of sponge. Cultivable sponges 
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presented here include reference organisms, a selection of bacteria cultivated in this study 

that display antimicrobial activity and those from published studies (Lafi, Garson and Fuerst 

2005; Kim and Fuerst 2006; Jiang et al. 2007; Mangano et al. 2008; Zhang et al. 2008; 

Sipkema et al. 2011; Xin et al. 2011; Bibi et al. 2020; Koch et al. 2021). The outer ring 

represents whether organisms were screened for antibiotic activity in the published study, the 

middle ring the class of the sponge bacteria were cultivated, and the inner ring the taxonomy 

of the sponge. Regions of interest are marked numerically (i-iv). Sequence names as part of 

this study are labelled first with an NCBI accession number and the taxonomic classification 

and isolate name of the bacteria from the original study (see Supplementary Table 2). 

Bacterial isolates investigated in this study are labelled with their unique isolate name in bold 

and a grey strip. 

 

Several features are observed from exploring the phylogenetic relationships of 

cultivated sponge-associated bacteria from previous studies, these are denoted in the 

phylogenetic tree (Fig. 2). (i). Dietzia sp. organisms have only been cultivated from both P. 

carpenter and Rossella spp. (ii). There do appear to be more Bacillota sponge bacteria 

recovered demonstrating antibacterial activity than those that were not screened (iii). Many of 

these isolates lack detailed taxonomy and are classified as just Bacillus sp. but are placed 

phylogenetically quite broadly clustering with Psychrobacillus sp., Brevibacillus sp., and 

Virgibacillus sp.  

Among Pseudomonadota, a large clade of metabolically active sponge bacteria was 

found to include organisms closely related to Pseudoalteronomas sp., Shewanella sp. and 

Vibrio sp. (iv). This clade contains bacteria recovered from multiple species of sponges, 

including both sponge classes. There is a diverse clade of cultivable Psychrobacter sp. strains 

from the sponges P. carpenteri and Lissodendoryx nobilis, which includes the potentially 

novel Psychrobacter strain PP-21 presented in this study. Finally, two unique organisms have 

been cultivated from Hexactinellid sponges (marked with an asterisk); Strenotrophomonas 

sp. RG453 and B. vesicularis PC206-O. The two Streptomyces spp. strains investigated in 

this study have no close relatives among the published sequences used in this investigation 

Biosynthetic gene cluster analysis of all deep-sea sponge-associated bacterial genomes 

The antiSMASH webtool was used to identify putative biosynthetic genes and 

organise them into predictive gene clusters. The 12 draft genomes contained a total of 139 
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predicted BGCs across 97 contigs (Fig. 3, Supplementary Tables S3 and S4). Approximately 

30% of the contigs contained multiple BGC classes, and 69.5% of BGCs shared less than 

50% of genes in the cluster with homologues in the database. Terpenes were the most 

abundant class of BGC with 22 detected, followed by 11 Betalactones, 11 Non-ribosomal 

peptide synthases (NRPS), and 10 NRPS-hybrids (Supplementary Table S4). PKS-containing 

clusters and hybrids totalled 22, which included five Type I PKS, seven T1PKS-hybrids, 

three T2PKS, one T2PKS-hybrid, five T3PKS, and one T3PKS-hybrid (Table S3 and Table 

S4). Of the 12 strains, six contained PKS clusters, these were Actinomycetota strains ACT2-

R2a, DK15, M1TU, PP-33, and the Bacillus spp. strains Ph1628 and PP-24. 

 

Figure 3. Predicted biosynthetic gene clusters (BGCs) from sponge-associated bacterial 

genomes. Summary of the predicted BGCs, and the proportion of BGCs classified based on 
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similarity to known BGCs. Strains are ordered from highest to lowest number of predicted 

BGCs going from the left to the right. For a detailed breakdown of all predicted BGCs refer 

to Table S2. (RiPP, ribosomally synthesized post-translationally modified; PKS, Polyketide 

synthase; NRPS, non-ribosomal peptide synthase; *, potentially novel species). 

 

Analysis of the BGCs found 14 were ‘Analogous’, 19 were ‘High similarity’, 31 were 

‘Moderate similarity’, 40 with ‘Low similarity’ and 43 showed ‘Nil similarity’ (Table S6). 

Strain PC-206-O had the highest proportion of BGCs with Nil similarity (75%), followed by 

RG-453 (60%), and then Ph1628 (54.5%). A total of 674 BGCs were detected by DeepBGC, 

4.8X more than antiSMASH predicted (Fig. 4A), then after stringent filtering this reduced to 

345 BGCs or 2.5X more than predicted by using antiSMASH (Fig. 4A). Most of the 

classified activity was antibacterial followed by unclassified (Fig. 4C). Furthermore, 

DeepBGC was unable to assign a class to the majority of BGCs detected (Fig. 4B). 
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Figure 4. Summary of biosynthetic gene clusters (BGCs) and proposed activity as 

predicted by DeepBGC. (A) Comparison of BGCs as detected by the two tools utilized, 

including a stringent filtering step using DeepBGC to remove low-quality hits. Breakdown of 

the (B) classes of BGCs and (C) the predicted biological activity of proposed BGCs as 

detected by DeepBGC. 

 

 

Possible novel deep-sea biosynthetic gene clusters 

Of the 139 identified BGCs, over half had less than 50% similarity to known BGCs, 

this included 40 with ‘low similarity’ and 43 with ‘nil similarity’ to known BGCs (0-51%) as 

well as genome regions (6-35%) (Summarised in Fig. 3, Table S6, and detailed in Table S7). 

These BGCs may encode novel compounds for which the BGCs have not yet been 

characterised. The novel genomes contained high abundances of low to nil similarity BGCs, 

especially the Actinomycetota strains such as PP-21 and M4NT. All detected BGCs predicted 

for Psychrobacter sp. strain PP-21 were of low similarity to previously reported BGCs. Two 
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of the four Micrococcus sp. M4NT BGCs did have low similarity to known BGCs, while the 

remaining two had either nil or moderate similarity. The genomes of strains that were not 

novel with a low abundance of detected BGCs were largely classified as low to nil similarity, 

this includes M. oxydans PC227 and B. vesicularis PC206-O. Potentially novel 

Actinomycetota BGCs are of particular interest given that three of the five novel genomes 

presented in this study are Actinomycetota and the historic value of Actinomycetota in 

natural product discovery (Table 3). 

 

Table 3. Novel deep-sea Actinomycetota biosynthetic gene clusters (BGCs) with lowest 

similarity to known BGCs and sequenced bacterial genome regions. Full data for all 

strains can be found in Table S6. (Rgn, Region; Sim., Similarity) 

Strain Rgn Type 
Most similar known 
cluster 

Sim. 
(%) 

Top significant ClusterBlast 
hit 

Streptomyces sp. 
DK15 

1.4 Terpene monensin 5 Streptomyces sp. INR7 

1.5 Melanin istamycin 4 
Streptomyces vinaceus strain 
ATCC 27476  

1.8 
T1PKS, hglE-KS, 
NRPS-like, RiPP-like 

sanglifehrin A 4 Streptomyces sp. Tue6028  

1.10 
T1PKS, NRPS-like, 
NRPS, transAT-PKS 

caniferolide A/B/C/D 8 
Streptomyces parvulus strain 
2297  

4.1 Melanin istamycin 2 Streptomyces sp. W1SF4 

4.2 T2PKS spore pigment 8 Streptomyces sp. W1SF4 

6.1 Butyrolactone lasalocid 9 
Streptomyces netropsis strain 
CECT 3265 

9.1 NRPS kirromycin 10 Streptomyces sp. Sge12  

20.1 T1PKS tetronasin 3 Streptomyces sp. C 

26.1 Siderophore ficellomycin 3 Streptomyces sp. fd1-xmd 

36.1 
NRPS, NRPS-like, 
Terpene 

malacidin A/B 12 
Streptomyces lavendulae strain 
CCM 3239 

55.1 NRPS-like, Arylpolyene RP-1776 16 
Streptomyces fodineus strain 
TW1S1 

Micrococcus sp. 
M4NT 

11.1 Betalactone microansamycin 7 Micrococcus luteus strain R17 

12.1 NAPAA stenothricin 13 
Micrococcus luteus strain 
O’kane 

Dietzia sp. PP-
33 

1.1 Terpene 
Polyketide:Type II + 
Saccharide:Hybrid/ 
tailoring 

6 Dietzia sp. JS16-p6b 

2.1 NRPS-like sisomicin 5 
Dietzia psychralcaliphila strain 
ILA-1 

14.1 Ladderane arimetamycin B/C/A 13 
Dietzia psychralcaliphila strain 
ILA-1 

4.1 Betalactone ECO-02301 7 
Tsukamurella paurometabola 
DSM 20162 
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Detection of antibacterial activity 

Isolates were screened for antibacterial activity using a soft agar overlay approach. 

The media selected consisted of different carbon and nitrogen sources, and included R2A, 

MA, ACT, MHA, and ISP2 agar. The Gram positive pathogens were most susceptible to 

antagonistic activity with 8 of 9 producers inhibiting M. luteus and 4 of 9 producers 

inhibiting S. aureus (Fig. 5). Seven of the nine producers showed anti-Gram-negative activity 

either towards A. baumannii (3/9), E. coli (4/9), K. pneumoniae (4/9) or P. aeruginosa (3/9). 

ISP2 agar produced the most positive hits (17/54), followed by MHA (10/54), ACT (8/54), 

and R2A (7/54). The isolate DK-15 was the most prolific producer with broad spectrum 

activity against Gram positive and Gram-negative pathogens.  When cultured on R2A, MA, 

ACT, and MHA weak to moderate activity was seen against M. luteus and S. aureus. 

However, when cultured on ISP2 a substantial increase in Gram positive activity and an 

increase in spectrum of activity towards the Gram-negatives including E. coli, K. pneumoniae 

and P. aeruginosa was observed.  
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Figure 5. Evaluation of antibacterial activity of producer isolates as screened by a soft 

agar overlay. Isolates are listed on the y-axis, pathogens on the x-axis, and antibacterial 

activity is quantified by size of zone of inhibition (mm) and represented as colour shifts from 

white (no observed activity; 0 mm) to red (high antibacterial activity; 40 mm).  
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activity against. For example, S. fulvissimus ACT2-R2A and Streptomyces sp. DK15, which 

both contained over 30 BGCs as detected by antiSMASH, displayed activity in all five 

media, with isolates cultured on ACT-R2a-2 displaying activity against all the indicator 

pathogens and DK15 displaying activity against all pathogens with the exception of A. 

baumanii. This relationship however was not always consistent, with the putative Dietzia sp. 

strain PP-33 containing 10 BGCs exhibiting relatively high activity only on plate assays, such 

as activity against both Gram-positive (M. luteus and S. aureus) and Gram-negative (E. coli, 

K. pneumoniae and P. aeruginosa) strains when cultivated on ISP2 media. This pattern 

continued with strain PP-21, which has two BGCs detected by antiSMASH, but displayed 

greater antibacterial activity than strain PC206-0, which had twice the number of BGCs.   

 

Discussion 

Deep-sea sponge-associated bacteria harbour a great potential for novel secondary 

metabolite discovery. In this study, 12 genomes were analysed and found to contain 83 

biosynthetic regions with low gene similarity to known and characterised BGCs, 

demonstrating the value of exploring new habitats and taxa, such as deep-sea sponges, to 

access novel genetic and chemical spaces. Four putatively novel and eight previously 

described bacterial species were investigated for their potential for antibiotic production, 

including those from genera previously cultivated from deep-water sponges; Dietzia (Xin et 

al. 2011), Psychrobacter (Mangano et al. 2008), Microbacterium (Graça et al. 2013; Liu et 

al. 2019), and Streptomyces (Guerrero-Garzón et al. 2020; Williams et al. 2020). 

Among the strains recovered in this study are previously reported producers, 

including P. putida (Marinho et al. 2009), S. fulvissimus (Guerrero-Garzón et al. 2020) and 

B. subtillis isolated from deep-sea corals (Liu et al. 2013) and marine sponges (Zhang, Zhang 

and Li 2009). Multiple S. fulvissimus strains were isolated from a freshwater sponge Antho 

dichotoma and reported to contain multiple BGCs in their whole genome as detected by 

antiSMASH (Guerrero-Garzón et al. 2020), while culture supernatant demonstrated activity 

against E. coli K12 and Bacillus subtilis 188.  

P. xanthomarina has not, to our knowledge, previously been cultivated from sponges, 

but the species was first isolated from marine ascidian specimens (Romanenko et al. 2005), 

and the closely related P. zhaodongensis strain SST2 was recovered from the South Shetland 

Trench at 5,194 m deep on R2A agar supplemented with a fungicide. The strain demonstrated 
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activity against A. baumannii (Abdel-Mageed et al. 2020). Analysis of the draft genome of 

SST2 supports the presence of multiple BGCs, as detected by antiSMASH, similar 

observations were reported for P. xanthomarina strain PP-22 (Fig. 3). The bioactive potential 

of isolate PP-22 was confirmed by in vitro antibacterial screening, where it showed weak 

antibacterial activity against A. baumannii and K. pneumoniae (Fig. 5), this activity was only 

seen when cultured on ISP2 and R2A agar, respectively. Esposito and colleagues (2021) 

showed the impact that culture media has on the expression of antimicrobial compounds from 

marine bacteria. In their study, it was demonstrated that a strain of marine Rhodococcus 

cultivated in 22 different media only expressed unique antimicrobial compounds in one 

culture condition. 

Strain PP-24, identified as B. pumilus, displayed activity in the OSMAC screen 

against only E. coli. B. pumilus strains have been isolated from various marine environments, 

including deep-sea corals (Liu et al. 2013), marine sponges (Zhang, Zhang and Li 2009), and 

sediments (Nithya, Devi and Karutha Pandian 2011). Bioactivity has been seen, such as anti-

biofilm activity (Zhang, Zhang and Li 2009), and production of lipoamides with 

antimicrobial activity against bacterial and fungal pathogens (Berrue et al. 2009). While the 

bacterial isolates recovered from this study are phylogenetically diverse, many are related to 

those that have previously been reported from the shallow water Antarctic sponges Rossella 

spp. (Xin et al. 2011). This adds support to the suggested presence of a distinct hexactinellid 

cultivable clade (Xin et al. 2011), which was further supported by a 16S rRNA gene 

sequencing surveys (Steinert et al. 2020). More cultivation efforts need to occur on multiple 

species of hexactinellid sponges to confirm these early observations. 

Observing that many recovered bacteria with activity belong to the phylum 

Actinomycetota, culturing strategies more targeted towards Actinomycetota recovery would 

be beneficial when aiming to cultivate bioactive bacteria from P. carpenteri and Hertwigia 

sp. This could include heat treatment used to select endospore-forming isolates (Matobole et 

al. 2017). Actinomycetota are historically regarded as prolific producers and are frequently 

the focus of studies intending to screen sponge bacteria cultures (Jiang et al. 2007; Hameş-

Kocabaş et al. 2012; Pham et al. 2016). However, in the phylogenetic analysis of previously 

cultured sponge bacteria with and without detected antibacterial activity, it does become 

apparent that across the three phyla there is an abundance of cultivable sponge-associated 

bacteria with antimicrobial activity. Pseudomonadota and Bacillota were also widely present 
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among the bioactive isolates across the literature, which could be overlooked in an 

Actinomycetota-only focused culturing strategy.  

Bias towards both spore-forming Bacillota and Actinomycetota should be expected 

since spores may easily survive sampling, storage and transport, in addition to growing on 

various standardised media. It can be challenging to compare the phylogenetic diversity of 

cultivable sponge-associated bacteria since media, sponge species, and cultivation conditions 

will affect the isolates recovered (Sipkema et al. 2011). Bacterial isolates from the nine 

studies utilised in the phylogenetic investigation of sponge-associated bacterial producers, 

were recovered on a wide range of isolation media with each publication utilising different 

media (Supplementary Table 2). In those nine studies, there are numerous isolation media 

utilised, such as Sipkema et al. (2011) utilising nineteen, while Xin et al. (2011) utilised 10 

different isolation media. Overall, this phylogenetic tree does represent a broad overview of 

the possible bacterial taxa that can cultivated from both demosponges and hexactinellids. 

It is important to state that many of the organisms reported in the phylogenetic 

analysis of cultivable sponge bacteria were not screened due to the research goals of the 

original publications. Furthermore, the publications that did screen for antibiotic production 

did not identify by 16S rRNA gene sequencing the bacterial isolates that tested negative in 

screening efforts. There could be valuable undetected antibiotic production or novel taxa 

among those unidentified, that initially did not test positive in screening efforts. 

The most prolific producer in this study was Streptomyces sp. DK-15, which belongs 

to the Phylum Actinomycetota with its closest neighbour being Streptomyces lavendulae 

NRRL B-2774 (Table 2). However, according to our multi-locus phylogeny analyses, strain 

DK-15 was predicted to be a novel species with ANIb and dDDH scores of 84.6 and 39.8 %, 

respectively (Table 2). S. lavendulae is well known for its ability to produce lavendamycin 

that has anti-tumour and antibiotic properties, actinomycin C2 and other antimicrobial 

metabolites (2(3H)Furanone, 5acetyldihydro; 1,4 Dioxane, 2,5 dione, 3,6 dimethyl; 

hexanoicacid, 2phenylethylester; 2,4 Dimethyl3pentanol acetate; 2,5 piperazinedione, 3,6 

bis(2methylpropyl); & ergotaman), which have broad spectrum anti-Gram positive and 

Gram-negative activity, anticancer, antifungal, and antioxidant activities (Balitz et al. 1982; 

Kumar et al. 2014). Novel species often have new or uncharacterised chemical analogues of 

known compounds that could have increased biological activity, a wider spectrum of activity, 

or new mechanisms of action (Rahman et al. 2010; Piddock 2015; Hobson, Chan and Wright 
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2021; Schneider et al. 2021). The genome of DK-15 was also mined for bioactive potential 

by searching for BGCs and assessing their novelty (Table 3 and Fig. 4).  

Using the genome mining tool DeepBGC, it was seen that DK-15 returned the highest 

absolute number of BGCs detected; the most BGC classes including NRP, NRP-polyketide, 

‘other’, polyketide, RiPP, saccharide, terpene and ‘unknown’; and the highest percentage of 

predicted bioactive BGCs with putative antibacterial activity (Fig. 4). The genome mining 

tool antiSMASH predicted that DK-15 has potential novel BGCs using the thresholds set by 

Benaud et al. (2021) with the most similar known clusters able to produce antimicrobial 

compounds including monesin, istamycin, caniferolide, lasalocid, kirromycin and tetronasin 

(Table 3). In this study, we assessed if the putative BGC and bioactivity data correlated with 

DK-15 in vitro antibacterial activity (Fig. 5). DK-15 showed a wide spectrum of antibacterial 

activity against Gram positive and Gram-negative pathogens with most potent activity when 

cultured on ISP2 media. The in-silico predictions alongside the preliminary screening results, 

as well as the strain novelty, are good rationale for further investigations of this strain where 

a combined genomics-metabolomics approach is proposed to chemically dereplicate, isolate 

and elucidate active compounds.  

Data presented here supports the observations made that sampling the rarely 

cultivated taxa from dominant phyla such as Actinomycetota, Pseudomonadota and Bacillota 

recovered from deep-sea sponges can lead to the identification of novel chemical diversity. 

This was certainly observed with abundance of BGCs with low similarity from the novel 

genomes (i.e., PP-33, RG-453, M4NT, PP-21 and DK-15) and even in the smaller genomes 

presented in this study (PC2-6-O).  

 

Data Availability Statement 

Bacterial whole-genome assemblies have been deposited at DDBJ/ENA/GenBank 

under the BioProject PRJNA852787. Individual genomes assemblies can be found with the 

following BioSample accessions (SAMN29351843-SAMN29351853): Micromonospora 

tulbaghiae M1TU, SAMN29351843; Microbacterium algeriense PC-227, SAMN29351844; 

Streptomyeces fulvissimus Act-R2a-2, SAMN29351845; Streptomyces sp. DK15, 

SAMN29351846; Dietzia sp. PP-33, SAMN29351847; Micrococcus sp. M4NT, 

SAMN29351848; Bacillus altitudinis Ph1628, SAMN29351849; Bacillus pumilus PP-24, 

SAMN29351850; Pseudomonas xanthomarina PP-22, SAMN2935185; Stenotrophomonas 
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sp. RG-453, SAMN29351852; Brevundimonas vesicularis PC206-O, SAMN29351853; and 

Psychrobacter sp. PP-21, SAMN29351854. 
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