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Abstract In order to characterise the non-Gaussian information contained within the EEG signals, a new feature 

extraction method based on bispectrum is proposed and applied to the classification of right and left motor 

imagery for developing EEG-based brain-computer interface systems. The experimental results on the Graz BCI 

data set have shown that based on the proposed features, a LDA classifier, SVM classifier and NN classifier 

outperform the winner of the BCI 2003 competition on the same data set in terms of either the mutual 

information, the competition criterion, or misclassification rate. 
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1. Introduction 

 

The recent decade has witnessed a rapid development of brain-computer interface (BCI) technology. An 

independent BCI is a communication system for controlling a device, e.g. computer, wheelchair or a 

neuroprosthesis, by human intensions, which does not depend on the brain’s normal output pathways of 

peripheral nerves and muscles but relies on the detectable signals representing responsive or intentional brain 

activities [35]. Current techniques for monitoring brain activities include electroencephalogram (EEG), 

Electrocorticogram, Positron Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI), and 

Magnetoencephalography (MEG), among which EEG has been popularly used for BCI implementation due to its 

low cost, non-invasive nature, and its comparatively easily recording brain signals [12][14][35].  What is more, 

EEG data indicates that neural patterns of meanings in each brain occur in trajectories of discrete steps, whist the 

amplitude modulation in EEG wave is the mode of expressing meanings [7]. Although these EEG wave packets 

do not represent external objects, they embody and implement the meanings of objects for each individual, in 

terms of what they portend for the future of that individual, and what that individual should do with and about 

them [7][8]. The information obtained in EEG can be extracted for social communication.   

However, a successful EEG-based BCI system very much depends on whether the following two 

requirements can be satisfied: 1) The extracted EEG features are able to differentiate the task-oriented brain 

states; and 2) The methods for classifying such features in real time are efficient. Specifically, it is essential to be 

able to extract complex spatial and temporal patterns from noisy multi-channel data obtained from EEG 

measurements [1], as well-studied classification methods are available in the field of machine learning 
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[16][31][37]. The pros and cons of linear and nonlinear classification methods for BCI research can be found in 

[19]. 

Currently, most existing schemes for extracting EEG features are based on autoregressive (AR) models or 

adaptive AR models (AAR) [1][3][8][24][32], and power spectral density (PSD) [2][36] (see [35] for a review). 

In practice, physiologically meaningful EEG features can be extracted from various frequency bands of recorded 

EEG signals. McFarland et al. reported that the imagined movement signals could be reflected in the β rhythm 

(13–22 Hz) [17]. Pfurtscheller showed that µ (8–13 Hz) and/or β  rhythm amplitudes could serve as effective 

inputs for a BCI to distinguish a movement or motor imagery [23].  Moon et al [18] employed a smoothing 

algorithm for the power of )(µα -band (8–13 Hz) and of θ -band (5–7 Hz) frequencies of EEG curve and the 

variation of pulse width obtained from ECG curve, to generate their corresponding trend curves, then the three 

trend features are applied to a fuzzy system to estimate the mental workload. In [22], a fuzzy ARTMAP neural 

network based BCI was proposed, in which two different spectral analyzes methods were used to obtain the PSD 

of the EEG signals from 0 to 50 Hz. 

However, conventional methods for feature extraction based on AR models and PSD assume linearity, 

Gaussianility and minimum-phase within EEG signals, i.e., the amplitudes of EEG signals are normally 

distributed, their statistical properties do not vary over time, and their frequency components are uncorrelated. 

Under these assumptions, the EEG signal is considered as a linear superimposition of statistically independent 

sinusoidal or other wave components, and only frequency and power estimates are considered while phase 

information is generally ignored. In reality, however, EEG signals are generated by a typical nonlinear system 

consisting of, for example, post-synaptic neurons whose firing action potentials are based on whether their 

membrane potential is greater than a threshold. Thus EEG signals would have many sinusoidal components of 

distinct frequencies, interacting nonlinearly to produce one or more sinusoidal components at sum and difference 

frequencies [20], which cannot be completely characterised by autocorrelation functions, as done by AR models 

or PSD estimation methods.  

To overcome this limitation, this paper proposes a new set of features for EEG-based BCI systems, which 

includes higher-order statistics based on the bispectrum of EEG signals. To evaluate the effectiveness of this 

feature set, the LDA (linear discriminant analysis) classifier, support vector machine (SVM) classifier, and neural 

network (NN) classifier are adopted to classify the Graz BCI data set which was used in the BCI competition 

2003 [4]. On the other hand, it is known that in pattern recognition, error rate is the most commonly used 

criterion in measuring the performances of different methods. However, error rate only considers the signs of the 

classifier outputs, but not the degrees of memberships of patterns belonging to each class, so error rate measure 

just provides classification accuracy of the used classifier for us, does not give us the information how much 

confidence about the classifying result is. In order to combine classification accuracy and confidence, in BCI 

competition 2003 on the Graz BCI data set, entropy based mutual information (MI) [28][29] obtained from 

classifying results was used as the criterion to compare the performances of different methods. Greater MI of 

classifying results by a classifier indicates this classifier produces the results with higher confidence.  In this 

paper, the classifying results obtained by the LDA, SVM, and NN classifiers based on the proposed feature set 

are extensively compared with the ones achieved by the BCI competition 2003 winning methods [5] [27] on the 

same data set in terms of the criteria of MI and misclassification rate.  
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2. Bispectrum based feature extraction 

2.1 The definition and properties of the third-order cumulant and bispectrum  

 

For a non-Gaussian third-order stationary random process )}({ tx , its third-order cumulant in a discrete form is 

defined as 

 

[ ])()()(),(3 nkxmkxkxEnmC x ++=        (1) 

 

where E is the expectation over the process multiplied by 2 lagged versions of itself [25][21]. The corresponding 

bispectrum is defined as the 2-D Fourier transform of the third-order cumulant: 

 

[ ]1 2 3 1 2( , ) ( , ) exp 2 ( )x x

m n

B C m n j m nω ω π ω ω
+∞ +∞

=−∞ =−∞

= ⋅ − +∑ ∑        (2) 

 

If a random process )(tx  is Gaussian, then 0),(3 =nmC x , thus non-Gaussian process can be detected by this 

property. If )()()( twtxtz += , where w(t) is Gaussian and independent of x(t), then 

),(),( 33 nmCnmC xz = . Therefore colored or white noise processes are suppressed and the bispectrum of a 

non-Gaussian signal can be recovered. By using higher-order statistics, the standard minimum-phase assumption, 

which is necessary when the process is characterized by linear model based on Gaussian or only second-order 

statistics are used, may be removed. Furthermore, higher-order cumulants can give evidence of nonlinearity, 

while the autocorrelation sequence can not. These properties would be very useful as features for EEG signal 

classification. For instance, Fig. 1 shows an EEG signal corresponding to a left-hand motor imagery, its 

bispectrum and the diagonal slice, while Fig. 2 illustrates an EEG signal corresponding to a right-hand motor 

imagery, its bispectrum and the diagonal slice. At least in the data samples shown, it is obvious that the 

bispectrum provides distinctive features for the two types of EEG signals. This suggests the bispectrum may be 

useful for signal classification. 
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(c) 

Fig.1 (a):An EEG signal corresponding to a left-hand motor imagery; (b): a contour plot of the magnitude of the 

estimated bispectrum on the bi-frequencies ( )1 2,f f plane;  and (c): the diagonal slice of the bispectrum. 
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(c) 

Fig.2 (a): an EEG signal corresponding to a right-hand motor imagery; (b): a contour plot of the magnitude of the 

estimated bispectrum on the bi-frequencies ( )1 2,f f plane;  and (c): the diagonal slice of the bispectrum. 

 

2.2 Feature extraction 

 

In order to characterise the temporal and frequency information within EEG data, this paper proposes to use the 

following hybrid features for an EEG-based BCI system:  

 

1) 4 coefficients of the AR model obtained by the Burg method [30]. 

 

2) 4 features related to PSD:  

(i)   peak frequency of the PSD;  

(ii)  peak value of the PSD; 

(iii) the first-order spectral moment of the PSD: 

 

∑
=

⋅=
N

k

kPSDkPSDm
1

1 )(           (3) 

 

and  

(iv) the second-order spectral moment of the PSD: 

 

∑
=

⋅−=
N

k

kPSDmkPSDm
1

2

12 )()(              (4) 

 

3) 4 features related to the third-order statistics:  

(i) the sum of logarithmic amplitudes of the bispectrum, 
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where F is the frequency range to be considered. 

(ii) the sum of logarithmic amplitudes of diagonal elements in the bispectrum, 

 

( )∑
∈

=
F

xBH
ω

ωω ),(log2                     (6) 

 

(iii) the first-order spectral moment of the amplitudes of diagonal elements in the bispectrum, 

 

( )∑
=

⋅=
N

k

kkxBkH
1

3 ),(log ωω           (7) 

 and 

(iv) the second-order spectral moment of the amplitudes of diagonal elements in the bispectrum, 

 

( )∑
=

⋅−=
N

k

kkxBHkH
1

2

34 ),(log)( ωω       (8) 

 

The above 12 features are extracted for each channel at every sampling point by using a sliding window, in 

which the first order spectral moment and second order spectral moment of PSD as useful statistical descriptors 

are used to convey information about the uncertainty of the PSD distribution, and the four features related to the 

third-order statistics are employed to characterize the nonlinear information within EEG signals. 

3. Classification 

In order to demonstrate the effectiveness of the proposed features in BCI applications, the LDA classification 

method, SVM method, and NN classification method are used in this paper and compared with others. For the 

sake of self-containment, this section briefly introduces the LDA, SVM, and NN classifiers. 

3.1 LDA classifier 

LDA firstly maps the data (feature vector) x to be classified by the following linear transformation: 

0wy
T += xw        (9) 

where w and 0w  are determined by maximising the ratio of between-class variance to within-class variance to 

guarantee maximal separability [6]. The within-class variance matrix is defined by  

T

i

l
K

i

L

l

i

l

w xxS
i

)()(
1 1

µµ −−=∑∑
= =

              (10) 

where K is the number of classes, and iµ the mean vector of the class i, iL the number of samples within class i, 

and the between-class variance matrix is defined by  
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where µ  is the mean of the entire training sample set.  

The classification is conducted as follows (for simplicity 2 class problem is used as an example): 





<

>
∈

02

01

yifclass

yifclass
x              (12) 

3.2 SVM Classifier 

The invention of SVM was driven by underlying statistical learning theory, i.e., following the principle of 

structural risk minimization that is rooted in VC dimension theory, which makes its derivation even more 

profound [33].  The SVMs have been a topic of extensive research with wide applications in machine learning 

and engineering. The output of a binary SVM classifier can be computed by the following expression: 

 

1

sgn ( , )
N

i i i

i

y y k x x bα
=

 = +    
∑     (13) 

where  { }
1

,
N

i i i
x y

=
are training samples with input vectors

d

i
x R∈ , and class labels { 1,1}

i
y ∈ − , 0

i
α ≥ are 

Lagrangian multipliers obtained by solving a quadratic optimization problem, b is the bias, and ( , )
i j

k x x is 

called kernel function in SVM.  The most commonly used  kernel function is the Gaussian RBF function, 

2

2
( , ) exp

2

i j

i j

x x
k x x

σ

 − −  =     

        (14) 

The protruding characteristics of SVM lies in its elegant mechanism of handling nonlinear function classes [33], 

i.e., nonlinear information processing is carried out by means of linear techniques in an implicit high-dimensional 

feature space mapped by a nonlinear transformation ( )
i

xφ from original input space. Although, the analytical 

expressions of ( )
i

xφ is unknown, but because only the inner product operations ( ) ( )T

i jx xφ φ  are involved, the 

kernel functions can be used to substitute the inner product operations according to the Mercer theorem. 

Vapnik’s theory [33] shows that the SVM solution is found by minimizing both the error on the training set 

(empirical risk) and the complexity of the hypothesis space, expressed in terms of VC-dimension. In this sense, 

the decision function found by SVM is a tradeoff between learning error and model complexity.  

3.3 NN Classifier 

NN characterized by parallel computing is a powerful machine learning scheme, which has achieved many 

successful applications.  Promisingly, in some application fields, NN models have achieved human-like 

performance over more traditional artificial intelligence techniques. Now, NN has become a broad term which 

includes many diverse models and approaches. In this paper, we only focus on the most widely used network: 

multi-layer feedforward NN trained by backpropagation of error. 
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A multilayer feedforward network has two or more layers of units, with the output from one layer serving as 

input to the next. There are no connections within a layer. The input layer has N neurons which are merely “fan-

out” units, where N equals number of classification inputs, no processing takes place in these units. The layers 

with no external output connections are referred to as hidden layers, whilst there are M neurons in the output 

layer, where M equals number of classification outputs. In most cases, a feedforward NN with one hidden layer 

of units is used with a sigmoid activation function for the units.  

For a multi-layer feedforward NN, the well known backpropagation algorithm is used to train this network 

from data. Although the backpropagation mechanism of training multilayer networks was derived by Werbos in 

1974 [34], it was not popularized until Rumelhart, Hinton, and Williams introduced the training algorithm- 

generalized delta rule in the late eighties of the twentieth century [26]. Generally speaking, the backpropagation 

algorithm works as follows. At the output layer, the output vector is compared with the desired outputs. The error 

is calculated from the delta rule and is propagated back through the network to adjust the weights in the interests 

of minimizing the difference between the NN outputs and the desired outputs. Such networks can learn arbitrary 

associations by using differentiable activation functions. A theoretical foundation of backpropagation can be 

found in [26] and [34]. 

4. Experimental results  

 

This section presents experimental results on a benchmark EEG data set which was used in the BCI competition 

2003 [4]. The results obtained using the proposed features and the classification methods of LDA, SVM and NN 

are compared to those of the competition winners. 

 

4.1 Description of the Graz BCI data set [4][5]  

 

In collecting the Graz BCI data set, the subject was asked to control a feedback bar by means of imagery left or 

right hand movements after a cue was indicated. The order of left and right cues was random. The experiment 

consists of 7 runs with 40 trials each. In the available data set there are 280 trials. As shown in Fig. 3, each trial 

lasts 9 seconds, in which the first 2 seconds was quiet. At t=2s an acoustic stimulus indicates the beginning of the 

trial, with a cross “+” displayed for 1s. At t=3s, an arrow (left or right) was displayed as a cue, and at the same 

time the subject was asked to do motor imagery along the direction of the cue. Three bipolar EEG channels 

(anterior ‘+’, posterior ‘-‘) were measured over C3, Cz and C4. The EEG was sampled with 128Hz and was 

filtered between 0.5 and 30Hz.   
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Fig. 3: Electrode positions (top) and timing scheme (bottom) for recording the Graz BCI data set [4] 

 

4.2 Experimental results 

 

Because channel Cz shows its independence of the motor imagery, only channel C3 and C4 were used for feature 

extraction. Hence, 24 features were obtained for each trial of the EEG signal, which were sent to the used 

classifier. Because the cue (left or right) appeared at t=3s, in our experiments, only the data between t=3s and 9s 

was used. 

 

Table 1. Examples of feature values of 4 trials  

 

Trials  Feature Values 

1 -1.198   0.436   -0.066   0.049   -1.174   0.490   -0.083   -0.057   17.000   -3.524   0.572   39.251   2.000      

 -3.272   0.584   44.708   -361712.945   -1371.967  1.975  252.727  -352152.281  -1344.930  1.677  216.441 

2 -1.389   0.747   -0.244   0.195   -1.455   0.933   -0.324   0.176   40.000   -3.084   1.009   55.782   44.000  

-3.114   1.234   71.965   -356267.876   -1361.585   3.187   398.842   -353368.409   -1349.770   7.751   908.451 

3 -1.386   0.638   -0.061   0.045   -1.265   0.514   -0.059   0.013   36.000   -3.287   0.905   51.329   2.000    

-3.468   0.607   39.949   -360164.029  -1366.554   4.176   513.481  -356478.939   -1354.895   2.665  335.205 

4 -1.237   0.638   -0.203   -0.029   -1.373   0.756   -0.224   0.089   2.000   -3.372   0.458  34.977   33.000  

-3.393   0.912   57.449   -365534.236   -1398.412  1.231   159.589   -352820.815   -1357.196   5.573   674.378 

 

 

Based on the definitions in section 2.2, features were extracted at every sampling point, with the sliding 

window size being 256 samples in order to capture the rich frequency information in the EEG signal. In our 

experiments on a PC with Dual Core CPU, it takes 3.14 ms to extract features from a pattern with 256 sampling 

points, so the proposed feature extraction method can be applied in real-time mental task classification. Table 1 

illustrates examples of features extracted for 4 trials. In the 280 trials, 140 labeled trials were used to train the 

classifier. Because the true labels of the other 140 trials are now available in [4], they can be used to test the 

generalization performance of the trained classifier. The test data set was kept unseen in the feature extraction 

and the training of the classifiers.  In this paper, the SVM with Gaussian kernel (14) is used. And in the used NN 

with 3 layers, the input layer has 24 nodes for the features, the hidden layer has 15 nodes, and the output layer 

has two nodes for the classes of hand motor imagery, and backpropagation algorithm is used to train the NN. 

However, it should be noted that because the SVM classifier and NN classifier involve the choices of some 

hyper-parameters during construction, i.e., the SVM classifier needs to find optimal values for kernel parameter 

σ and the regularization parameter C, whilst the NN classifier needs to select appropriate learning rates, so in the 

off-line training process, the genetic algorithm (GA) is used to select the optimal values of these hyper-

parameters for the SVM classifier and the NN classifier respectively, in which the original 140 labeled training 

trials are separated into training data subset and validation data subset. 
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Moreover, in order to combine classification accuracy and confidence, in BCI competition 2003 on the Graz 

BCI data set, the MI [28][29] was used as the criterion to compare the performances of different methods. Table 

2 ranks the performances of the BCI competition 2003 winning methods and the LDA, SVM and NN methods 

based on the proposed features in terms  of MI criterion, whilst Table 3 illustrates the ranking order of the BCI 

competition 2003 winning methods and the LDA, SVM and NN methods with the proposed features in terms of 

misclassification rate criterion. To show the time course of the mutual information, Fig. 4 depicts the time 

courses of the mutual information obtained by the BCI competition 2003 winning methods [5][27]. As a 

comparison, Fig. 4 shows the time courses of the mutual information of the NN, LDA and SVM classifiers based 

on the proposed features. In Fig. 4 and Fig. 5, the increase of the mutual information indicates an increase in 

separability between left and right hand motor imagery. In our methods shown in Fig. 5 and most BCI 

competition methods shown in Fig.4, the MI values tend to be zero at time 9s. This is reasonable, because 

according to the experimental settings described in subsection 4.1, the hand motor imagery happens after the cue 

is displayed at time 3s, and this process will not last long. At time 9s, there is no hand motor imagery happening, 

so there is no much information leading to the separation of the left and right hand motor imagery. As a result, 

the MIs values at time 9s should be zero, which has been validated by the proposed methods shown in Fig.5 and 

most BCI competition methods shown in Fig.4.  However, as shown in Fig.4 some BCI competitors’ MI values at 

time 9s are not zero, the possible reason is as follows: the sliding windows used in these methods for online 

feedhacks are so large that they still cover the time sequences of hand motor imagery period at time 9s.  

In terms of the criterion of BCI competition 2003, the NN and LDA classifiers based on the proposed features 

achieve the maximum of the MI 0.64 and 0.63 respectively, both of which are greater than 0.61, the one achieved 

by the first winner of the BCI competition 2003 on the Graz dataset. On the other hand, in terms of the 

misclassification rates, the NN and SVM classifiers based on the proposed features achieve the error rates 10.0%, 

both of which are smaller than the ones achieved by all the winners of the BCI competition 2003. Hence, the 

proposed EEG based mental task classification systems outperform the winner of BCI-competition 2003 on the 

Graz BCI data set, which demonstrates the effectiveness of the propose feature set.  

 

Table 2: Ranking order of the proposed method and the BCI competition 2003 winning methods in terms of the MI on the 

Graz BCI data set  

Ranking Methods 
Maximal 

MI (bit) 

Minimal Misclassification 

Rate (%) 

1 NN with the proposed features 0.64 10.00 

2 LDA with the proposed features 0.63 10.71 

3 BCI_Comp2003_1st winner 0.61 10.71 

4 SVM with the proposed features 0.58 10.00 

5 BCI_Comp2003_2nd winner 0.46 15.71 

6 BCI_Comp2003_3rd winner 0.45 17.14 

7 BCI_Comp2003_4th winner 0.44 13.57 
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Table 3: Ranking order of the proposed method and the BCI competition 2003 winning methods in terms of the error rates on 

the Graz BCI data set  

Ranking Methods 
Minimal Misclassification 

Rate (%) 

Maximal 

MI (bit) 

1 NN with the proposed features 10.00 0.64 

2 SVM with the proposed features 10.00 0.58 

3 LDA with the proposed features 10.71 0.63 

4 BCI_Comp2003_1st winner 10.71 0.61 

5 BCI_Comp2003_4th winner 13.57 0.44 

6 BCI_Comp2003_2nd winner 15.71 0.46 

7 BCI_Comp2003_3rd winner 17.14 0.45 

  

 

 

 

Fig.4 The MI time courses of the BCI competition winning methods (A~I: the serial numbers of competitors) [27]: at t=3 s 

the cue (left or right in random order) was presented.  
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Fig. 5 The MI time courses of the NN (top), LDA (middle) and SVM (bottom) classifiers with proposed features: at t=3 s the 

cue (left or right in random order) was presented.  
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Furthermore, we use another mental task dataset [15] to validate the proposed features for classifying the 

hand motor imageries, this dataset was generated by different experimental settings and different subjects for 

hand motor imagery [15]. In our experiments, 121 samples are randomly selected for training and 121 samples 

for testing. Table 4 illustrates the experimental results using LDA, SVM and NN to classify this data set based on 

the proposed features, in which the SVM with Gaussian kernel (14) and the NN with 3 layers are used. In the 

NN, the input layer has 24 nodes for the features, the hidden layer has 15 nodes, and the output layer has two 

nodes, and backpropagation algorithm is used to train the NN. And GA is used to select the optimal values of the 

hyper-parameters in the SVM classifier and the NN classifier respectively, in which the original 121 labeled 

training trials are separated into training data subset and validation data subset. 

 

 Table 4: Experimental results of the proposed features 

Ranking Methods 
Maximal 

MI (bit) 

Minimal Misclassification 

Rate (%) 

1 NN with the proposed features 0.64 10.00 

2 SVM with the proposed features 0.63 9.00 

3 LDA with the proposed features 0.61 12.00 

  

 

Moreover, as a comparison, the widely used AR features are extracted for LDA, NN and SVM classifiers to 

classify the hand motor imagery tasks [15], in which the AR features are obtained for each channel by using the 

Burg method [30] in AR model. The structures of SVM and NN remain the same, and GA is used to select the 

optimal values of the hyper-parameters in the SVM classifier and the NN classifier respectively, in which the 

training data subset and validation data subset are same as the ones in the above experiments about the proposed 

features. Table 5 shows the experimental results using LDA, SVM and NN to classify this data set based on the 

AR features. It can be seen that the classifiers with the proposed features can achieve better performance than the 

ones with the AR features in terms of the criteria of MI and misclassification rate. 

 

 Table 5: Experimental results of the AR features 

Ranking Methods 
Maximal 

MI (bit) 

Minimal Misclassification 

Rate (%) 

1 NN with AR features 0.38 21.00 

2 SVM with AR features 0.25 18.00 

3 LDA with  AR features 0.27 22.00 

  

 

It is known that EEG signals are generated from human brain which is a system with highly nonlinear 

dynamics, but there is no evidence indicating that the activation of human brain is Gaussian. We believe that if 

the EEG based BCI classification and coding quality is to be improved, then more of the information available in 
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the EEG signals must be exploited, such as the information of non-linearity and non-Gaussianality. The key 

advantages of the proposed feature extraction method lie in that: 

1) the proposed feature set contains high-order statistics information, while the widely used conventional 

features with only second-order measures (such as the power spectrum and autocorrelation functions) 

does not. As a consequence, non-minimum phase signals, such as EEG signals, cannot be correctly 

characterized by the second-order measures, moreover, some types of phase coupling in EEG signals 

which is associated with nonlinearites can not be correctly identified by the second-order measures. 

2) the proposed feature set is less affected by Gaussian background noise than the conventional features 

with only second-order measures due to the property of bispectrum: the bispectrum of Gaussian signal is 

zero. 

The above experimental results have shown that the proposed feature set is very effective in identifying the 

different mental tasks from EEG signals. 

5. Conclusion 

 

In this paper a new feature extraction method is proposed for classifying EEG signals corresponding to 

left/right hand motor imagery. The feature set includes higher-order statistics based on the bispectrum of EEG 

signals. Experimental results have shown that based on the proposed features, the LDA classifier, SVM classifier 

and NN classifier achieve better classification performance than the BCI competition 2003 winner on the same 

BCI data set in terms of the criteria of either MI or misclassification rate.  
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