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Yager’s ordered weighted averaging (OWA) operator has been widely used in soft decision making
to aggregate experts’ individual opinions or preferences for achieving an overall decision. The
traditional Yager’s OWA operator focuses exclusively on the aggregation of crisp numbers. How-
ever, human experts usually tend to express their opinions or preferences in a very natural way via
linguistic terms. Type-2 fuzzy sets provide an efficient way of knowledge representation for mod-
eling linguistic terms. In order to aggregate linguistic opinions via OWA mechanism, we propose
a new type of OWA operator, termed type-2 OWA operator, to aggregate the linguistic opinions
or preferences in human decision making modeled by type-2 fuzzy sets. A Direct Approach to
aggregating interval type-2 fuzzy sets by type-2 OWA operator is suggested in this paper. Some
examples are provided to delineate the proposed technique. C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

In the real world, decision making is one of the most significant and omnipresent
human activities in business, manufacturing, service etc. Existing decision making
paradigms include multiexpert decision making (i.e., group decision making), mul-
ticriteria decision making and multiexpert multicriteria decision making. All of
these approaches require an aggregation operation. The objective of aggregation is
to combine individual experts’ preferences or criteria into an overall one in a proper
way so that the final result of aggregation takes into account in a given fashion all
the individual contributions.1,2 It has become a subject of intensive research due to
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2 ZHOU ET AL.

its practical and academic significance. However, the majority of the existing ag-
gregation operators focus on aggregating crisp numbers, but in real-world decision
applications human experts exhibit remarkable capability to manipulate perceptions
without any measurements and any computations.3 For example, human experts
perceive the distance, size, weight, likelihood, and other characteristics of physical
and mental objects in a very natural way via linguistic terms, such as “very long,”
“big,” “very heavy,” “good,” and so on, when they can not provide exact numbers for
expressing vague and imprecise opinions.4 So the problem about how to effectively
aggregate linguistic judgments for decision makers arises and needs to be addressed.

It is known that linguistic terms can be characterized as linguistic variables by
type-1 fuzzy sets or type-2 fuzzy sets, where type-1 fuzzy sets are the traditional
fuzzy sets proposed by Zadeh5 in 1965, type-2 fuzzy sets were proposed by Zadeh4

later in 1975, and extensively investigated in the recent period.6−9

Previous research has proposed various approaches to aggregating linguistic
information,10,11,13−16 in which type-1 fuzzy sets are used to model the uncertain
information. To aggregate the uncertain information modeled by type-1 fuzzy sets,
two main schemes have been proposed. The first scheme is to work directly on
linguistic labels without considering the (mathematical) expression of the linguistic
terms. The only requirement of this scheme is that these linguistic labels should sat-
isfy an order relation. Bordogna et al.11 proposed a linguistic modeling of consensus
in group decision making, in which both experts’ evaluations of alternatives and
degree of consensus are expressed linguistically. In this approach, the overall lin-
guistic performance evaluation is computed by extending Yager’s OWA operator.12

Another method defined in Refs. 13 and 14 integrates the OWA operator12 and a con-
vex combination method of linguistic labels. One advantage of such a scheme lies
in its high computing efficiency due to its symbolic aggregation in nature. However,
the precision of the linguistic operations is an issue: in some cases, this scheme may
yield a solution set with multiple alternatives for decision makers to choose, rather
than a single one. Another issue is that most of the existing methods based on this
scheme use the traditional OWA operator in nature which aims at aggregating crisp
numbers. The second scheme of aggregating uncertain information is via operations
performed on their associated type-1 fuzzy membership functions. Zimmermann
and Zysno developed a family of compensatory operators for aggregating type-1
fuzzy sets by combining a t-norm and a t-conorm to produce certain compensation
between criteria.17,18 This family of compensatory operators has been extended to
aggregate weighted fuzzy sets in heterogeneous decision making problems,19 in
which different experts were assigned different importance weights in the form
of crisp numbers. Meyer and Roubens20 proposed a fuzzified Choquet integral to
aggregate type-1 fuzzy numbers (normal convex type-1 fuzzy sets) based on a Mo-
bious transform of a fuzzy measure, Yang et al.21 suggested a different version
of fuzzified Choquet integral for fuzzy-valued integrands. The major advantage of
using the Choquet integral lies in that it can provide a profound theoretical analy-
sis and background, but it suffers from the serious drawback of needing to assign
real values to the importance of all possible combinations.20 Moreover, there is
a common problem with the above approaches in the two schemes including the
fuzzified Choquet integral approaches: the importance weights for different experts
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are assumed to be precise numerical values. This assumption implies that uncertain
linguistic labels are aggregated in terms of certain precise crisp weights rather than
uncertain quantities.

Recently, Zhou et al.16 suggested a new type of OWA operator, type-1 OWA
operator, to aggregate the uncertain information with uncertain weights via OWA
mechanism, in which the aggregated objects and importance weights are all modeled
as type-1 fuzzy sets. Type-1 OWA operators have been used to aggregate non-
stationary fuzzy sets for breast cancer decision supports,22 and have the potential
for improving fuzzy model interpretability/transparency and parsimony of fuzzy
models.23−25

However, few efforts have been made to aggregate type-2 fuzzy sets, even
though type-2 fuzzy set is claimed to provide a richer knowledge representation and
approximate reasoning for computing with words and modeling human perception
than type-1 fuzzy sets do.26−28 Wu and Mendel extended the fuzzy weighted average
to the linguistic weighted average by using interval type-2 fuzzy sets (IT2FS) instead
of type-1 fuzzy sets to model the weights in aggregation.29 In this paper, we suggest
another way of aggregating type-2 fuzzy sets, i.e., to generalize Yager’s OWA
operator as an aggregation operator for type-2 fuzzy sets. To this end, a new type of
OWA operator, type-2 OWA operator, is proposed in this paper. A Direct Approach
to aggregation of interval type-2 fuzzy sets by type-2 OWA operator is suggested,
and some open problems induced from type-2 OWA operators are raised.

It is pinpointed that Yager’s OWA operator is a nonlinear aggregation operator
while weighted averaging operator is linear. As a result, the proposed type-2 OWA
operator in aggregating type-2 fuzzy sets is significantly different from the type-2
fuzzy weighted average operator.29

2. REVIEW OF YAGER’S OWA OPERATOR AND TYPE-2 FUZZY SETS

2.1. Yager’s OWA Operator

Since Yager introduced the order weighted averaging (OWA) scheme,12

many OWA based aggregation strategies have been widely investigated and achieved
many successful applications in a wide variety of fields, such as decision
making,12−15,19,30,31 fuzzy control,32,33 linguistic summaries,34,35 market analysis,36

and image compression.37

DEFINITION 1. A Yager’s OWA operator of n dimension space is a function φ :
Rn → R, that is associated with a set of weights in a vector w = (w1, . . . , wn)T

with wi ∈ [0, 1] and
∑n

i=1 wi = 1, and aims to aggregate a list of values a1, . . . , an

in the following way,

φ(a) = φ(a1, . . . , an) =
n∑

i=1

wiaσ (i) (1)
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where σ : { 1, . . . , n } → { 1, . . . , n } is a permutation function such that aσ (i) ≥
aσ (i+1), ∀ i = 1, . . . , n − 1, i.e., aσ (i) is the ith highest value in the set {a1, . . . , an}.

Generally speaking, the OWA operator based aggregation consists of three
steps:

• The first step is to reorder the input arguments in descending order, in particular the
element ai is not associated with a particular weight wi but rather wi is associated with a
particular ordered position of an aggregated element.

• The second step is to determine the weights for the operator.
• Finally, the OWA weights are used to aggregate these re-ordered arguments.

Among the three steps, the first step introduces a nonlinearity into the aggre-
gation process by reordering the input arguments, which make the Yager’s OWA
operator significantly different from the linear aggregation operator-weighted av-
eraging operator. In practice, an OWA operator φ is determined by its associated
importance weights w1, . . . , wn, so strictly speaking, φ should be denoted as φw1···wn

,
but for convenience, we use the notation φ unless otherwise stated.

Example: Assume φ is an OWA operator of size n = 4 with associated weights
w = (0.2, 0.3, 0.1, 0.4)T . The φ is to aggregate the elements of a = (0.8, 1.0, 0.3, 0.4)T

as follows:

φ(a) = wT · (1.0, 0.8, 0.4, 0.3)T = 0.2 × 1.0 + 0.3 × 0.8 + 0.1

× 0.4 + 0.4 × 0.3 = 0.6

It is not difficult to prove that “min” and “max” operators can be achieved by
Yager’s OWA operator via setting w∗ = (0, 0, . . . , 0, 1)T and w∗ = (1, 0, . . . , 0, 0)T

respectively. The “min” and “max” in the family of Yager’s OWA operators can
represent the connectives “and” and “or.” One property of compensative connectives
is that a higher degree of satisfaction of one criterion can compensate for a lower
degree of satisfaction of another criterion. The Yager’s OWA operators can vary
continuously from the “and” (min) to “or” (max) aggregation.

2.2. Type-2 Fuzzy Sets

A type-2 fuzzy set, denoted as Ã, can be formally expressed6 by a two-
dimensional membership function μÃ : X × [0, 1] → [0, 1],

Ã = {((x, u), μÃ(x, u)) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1] } (2)

in which 0 ≤ μÃ(x, u) ≤ 1, Jx
�= {u | μÃ(x, u) > 0} ⊆ [0, 1] is called the primary

membership of x. Ax
�= μÃ(x, ·), called the secondary membership function (slice),
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is a type-1 fuzzy set defined on Jx with membership function:

μAx
(u) = μÃ(x, u) (3)

where u ∈ Jx ⊆ [0, 1]. A type-2 fuzzy set can be expressed by its slices in the
following way:

Ã = {(x, Ax) | ∀x ∈ X} (4)

Type-2 fuzzy sets can be viewed as a way of characterizing higher level of uncer-
tainty.

The union of all primary memberships, ∪x∈X Jx , is called the footprint of
uncertainty (FOU),26 i.e., FOU (Ã) = ∪x∈X Jx . The FOU defines a bounded region
of uncertainty in the primary memberships of a type-2 fuzzy set Ã.

When μÃ(x, u) = 1, ∀ u ∈ Jx, ∀ x ∈ X, the type-2 fuzzy sets are called inter-
val type-2 fuzzy sets (IT2FSs). Because all the memberships in an interval type-2 set
are unity, an interval type-2 set can be represented just by its FOU (Ã).6 Actually,
the two end-points of FOU (Ã) at each point are associated with two type-1 mem-
bership functions, referred to as the upper and lower membership functions, which
are bounds for FOU (Ã). Interval type-2 fuzzy sets reflecting uniform uncertainty
at the primary memberships of x are the most widely used type-2 fuzzy sets to date.

The secondary membership functions of a type-2 fuzzy set are type-1 fuzzy sets.
In type-2 fuzzy modeling, two important operators-meet and join of type-1 fuzzy
sets38,39 are often used for the operations on the secondary membership functions of
type-2 fuzzy sets. Given two type-1 fuzzy sets A and B, the meet and join operations
of A and B are defined as follows.

The meet of A and B, A � B, is defined as

μA�B(z) = sup
x∧y=z

x∈DA,y∈DB

μA(x) ∗ μB(y) (5)

The join of A and B, A  B, is defined as

μAB(z) = sup
x∨y=z

x∈DA,y∈DB

μA(x) ∗ μB(y) (6)

where DA ⊆ X and DB ⊆ X represent the domains of A and B, respectively, ∗
is a t-norm operator, ∧ represents the minimum operation and ∨ represents the
maximum operation.
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3. DEFINITIONS OF TYPE-2 OWA OPERATOR FOR AGGREGATING

TYPE-2 FUZZY SETS

Type-2 fuzzy sets provide efficient way of modeling uncertain information and
experts’ preferences in soft decision making. The motivation for suggesting type-2
OWA operators is to aggregate the linguistic variables modeled as type-2 fuzzy sets
via an OWA mechanism.

3.1. Definition

Let F̃ (X) be the set of type-2 fuzzy sets defined on the domain of discourse
X, i.e. F̃ (X) = {Ã|Ã is type-2 fuzzy set on X}. Based on Zadeh’s Extension Prin-
ciple, in the following we extend Yager’s OWA operator and define the type-2 OWA
operator for aggregating type-2 fuzzy sets.

DEFINITION 2. Given n linguistic weights {W̃i}ni=1 in the form of type-2 fuzzy sets
defined on the domain of discourse U = [0, 1], a type-2 OWA operator is a map-
ping �̃,

�̃ : F̃ (X) × · · · × F̃ (X) → F̃ (X)

(Ã1, . . . , Ãn) �→ G̃

that is associated with {W̃i}ni=1 to aggregate the type-2 fuzzy sets {Ãi}ni=1 ⊂ F̃ (X).
Each slice of the aggregating result, G̃, is defined as

Gx =
⊔

∑n
i=1 w̄iaσ (i)=x

wi∈U,ai∈X

W1, w1 ⊗ · · · ⊗ Wn, wn
⊗ A1, a1 ⊗ · · · ⊗ An, an

(7)

in which Wi, wi

�= μW̃i
(wi, ·) and Ai, ai

�= μÃi
(ai, ·) are type-1 fuzzy sets, w̄i =

wi/
∑n

i=1 wi; σ : { 1, . . . , n } → { 1, . . . , n } is a permutation function such that
aσ (i) ≥ aσ (i+1), ∀ i = 1, . . . , n − 1, i.e., aσ (i) is the ith largest element in the set
{a1, . . . , an};  is the join operator defined in (6), whereas ⊗ is a t-norm operator
that applies to type-1 fuzzy sets, for example, Ai, ai

and Aj, aj
, as follows:

μAi, ai
⊗Aj, aj

(r) = sup
s⊗t=r

s∈Jai
,t∈Jaj

μÃi
(ai, s) ∗ μÃj

(aj , t) (8)

where ∗ is a t-norm operator for crisp numbers and can be different from ⊗. Similar
operations are performed on Wi, wi

⊗ Wj, wj
and Wi, wi

⊗ Aj, aj
.

It can be seen that the aggregation result of type-2 fuzzy sets by the type-2 OWA
(7), G̃ = �̃(Ã1, . . . , Ãn), is a type-2 fuzzy set. However, type-2 OWA operations on
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general type-2 fuzzy sets are computationally intensive. Fortunately, if the linguistic
weights and aggregated objects are IT2FSs, type-2 OWA operations can be greatly
simplified. In the following, we derive the IT2FSs-oriented type-2 OWA operator.

3.2. IT2FSs-Oriented Type-2 OWA Operator

First, we have a theorem.

THEOREM 1 . If the linguistic weights {W̃i}ni=1 and aggregated objects {Ãi}ni=1 are
IT2FSs, then the type-2 OWA aggregating result G̃ = �̃

(
Ã1, . . . , Ãn

)
is an IT2FS.

Proof. Because the linguistic weights {W̃i}ni=1 and aggregated objects {Ãi}ni=1 are
IT2FSs, so μW̃i

(wi, ·) ≡ 1, μÃi
(ai, ·) ≡ 1 ∀ wi, ai . Let C be the type-1 fuzzy set:

Cw1···wna1···an
= W1, w1 ⊗ · · · ⊗ Wn, wn

⊗ A1, a1 ⊗ · · · ⊗ An, an

According to definition (8), for
∑n

i=1 w̄iaσ (i) = x0, we have μCw1 ···wna1 ···an
(r) ≡ 1

∀ r ∈ Jx0 . Then according to the definition of the join () operation (6), μG̃(x, u) ≡
1, where G̃ = �̃

(
Ã1, . . . , Ãn

)
defined in (7), ∀ u ∈ Jx and

∑n
i=1 w̄iaσ (i) = x.

Hence G̃ is an IT2FS. �

According to Theorem 1, in the IT2FS-oriented type-2 OWA aggregation we
only need to calculate the FOU of �(Ã1, . . . , Ãn), i.e. FOU (G̃) = ∪x∈XJx . Hence
given a point x, we need to calculate the primary membership grade Jx of G̃. To
this end, the maximum (∨) of two intervals [b1, c1] and [b2, c2] is defined as in
Ref. 40:

[b1, c1] ∨ [b2, c2]
�= {x1 ∨ x2 | x1 ∈ [b1, c1], x2 ∈ [b2, c2]} (9)

LEMMA 1. 40 Let bi = [bl
i, br

i ] (i = 1, . . . , n) be intervals, then

b1 ∨ · · · ∨ bn = [∨bl
i, ∨br

i

]
(10)

It can be seen from (8) that for the IT2FSs Ãi and Ãj , the domain of Ai, ai
⊗

Aj, aj
is

Jaiaj
= Ja

i
⊗ Ja

j

�= {
s ⊗ t

∣∣ s ∈ Ja
i
, t ∈ Ja

j

}
(11)

then, for the IT2FSs W̃1, . . . , W̃n, Ã1, . . . Ãn, the domain of W1, w1 ⊗ · · · ⊗
Wn, wn

⊗ A1, a1 ⊗ · · · ⊗ An, an
is

Jw1···wna1···an
= Jw1

⊗ · · · ⊗ Jwn
⊗ Ja1

⊗ · · · ⊗ Jan
(12)
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Then we have

Jx =
∨

∑n
i=1 w̄iaσ (i)=x

wi∈U,ai∈X

Jw1···wna1···an
(13)

which is called IT2FS-oriented type-2 OWA operator.
Considering the common case of IT2FS, i.e. the primary membership grades

of type-2 fuzzy sets are intervals,26 let Jwi
= [gl

i,wi
, gr

i,wi
] and Jai

= [gl
i,ai

, gr
i,ai

]. In
this case Jw1···wna1···an

is also an interval. Assume

Jw1···wna1···an
= [

J l
w1···wna1···an

, J r
w1···wna1···an

]
,

then the following Theorem 2 has been proved26:

THEOREM 2 . For t-norm operator ⊗ = min or product ,

J l
w1···wna1···an

= gl
1,w1

⊗ · · · ⊗ gl
n,wn

⊗ gl
1,a1

⊗ · · · ⊗ gl
n,an

(14)

J r
w1···wna1···an

= gr
1,w1

⊗ · · · ⊗ gr
n,wn

⊗ gr
1,a1

⊗ · · · ⊗ gr
n,an

(15)

Theorem 2 indicates that the left and right end points of the interval Jw1···wna1···an

only depends on the left and right end points of the aggregated intervals separately.
Hence, according to Lemma 1, we calculate the left end point and right end point of
Jx = [J l

x, J r
x ] as follows respectively:

J l
x =

∨
∑n

i=1 w̄iaσ (i)=x

wi∈U,ai∈X

J l
w1···wna1···an

(16)

and

J r
x =

∨
∑n

i=1 w̄iaσ (i)=x

wi∈U,ai∈X

J r
w1···wna1···an

(17)

It is noted that if the weights W̃i reduce to intervals W̄i ⊆ [0, 1], the above
type-2 OWA aggregation can be simplified further as

J l
x =

∨
∑n

i=1 w̄iaσ (i)=x

wi∈W̄i ,ai∈X

J l
a1···an

(18)
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and

J r
x =

∨
∑n

i=1 w̄iaσ (i)=x

wi∈W̄i ,ai∈X

J r
a1···an

(19)

where J l
a1···an

and J r
a1···an

are calculated as

J l
a1···an

= gl
1,a1

⊗ · · · ⊗ gl
n,an

and

J r
a1···an

= gr
1,a1

⊗ · · · ⊗ gr
n,an

3.3. A Special Case: Type-1 OWA Operator

For the IT2FS-oriented type-2 OWA operator, one possible question may arise:
what happen to the type-2 OWA operators if the aggregated type-2 fuzzy sets
and associated importance weights reduce to type-1 fuzzy sets? Zhou et al. have
suggested a named type-1 OWA operator16 to aggregate uncertain information with
uncertain weights modeled by type-1 fuzzy sets via OWA mechanism. The following
theorem indicates that the type-1 OWA operator is a special case of the proposed
IT2FS-oriented type-2 OWA operator.

THEOREM 3 . In IT2FS-oriented type-2 OWA aggregation, if the linguistic weights
{W̃i}ni=1 and the aggregated objects {Ãi}ni=1 are type-1 fuzzy sets, then the type-2
OWA operator reduces to a type-1 OWA operator.

Proof. If the linguistic weights {W̃i}ni=1 and the aggregated objects {Ãi}ni=1 are type-
1 fuzzy sets, then for ∀w1, . . . , wn ∈ U, a1, . . . , an ∈ X, the primary membership
grades Jwi

and Jai
, i = 1, . . . , n redcuce to singletons from intervals. As a result,

according to equation 13 the primary membership grade of aggregation result at x =∑n
i=1 w̄iaσ (i) reduces to the definition of type-1 OWA operator 16 for aggregating

the elements a1, . . . , an using the weighting points w1, . . . , wn. �

4. A PROCEDURE FOR PERFORMING IT2FSS-ORIENTED TYPE-2

OWA OPERATIONS

Given the linguistic weights {W̃i}ni=1 ⊂ F̃ (U ), as usual, the domains of X and
U needs to be discretized during calculation in order for the associated IT2FSs-
oriented type-2 OWA operator to aggregate IT2FSs {Ãi}ni=1 ⊂ F̃ (X) on computer.
Let the discretized domains be X̂ = {x̂1, . . . , x̂p} and Û = {û1, . . . , ûk}, which are

International Journal of Intelligent Systems DOI 10.1002/int



10 ZHOU ET AL.

Figure 1. A set generated on the overpartition version of discretized X.

partitions of the spaces X and U, respectively. However,
∑n

k=1 w̄iaσ (i) with all the
combinations (w1, . . . , wn, a1, . . . , an) of weighting points in Û and aggregating
points in X̂ may produce another partitioning of X, i.e,

X̄ = {
x̄j

} =
{

n∑
k=1

w̄iaσ (i)

∣∣∣∣∣wi ∈ Û , ai ∈ X̂, i = 1, . . . , n

}
(20)

The problem is that X̂ ⊆ X̄, i.e., the two discretized versions of X may be
different. X̄ is referred to as overpartition given the used X̂. As a consequence,
the interval type-2 fuzzy set generated on X̄, Ḡ, is likely to be unreadable, because
for some data points that are in X̄ but not in X̂, their primary membership grades
Jx̄j

may not be consistent with the ones of the corresponding nearest points in X̂.
For example, Figure 1 shows one IT2FS generated on X̄. So one should induce the
aggregating result, the IT2FS G on X̂, from the set on X̄. This can be conducted
according to the Extension Principle as follows.

The sets X̂ and X̄ are two partitions of the domain X as shown in Figure 2,
in which X̄ provides a finer resolution than X̂ does. So the data points from the
fine partition X̄ lying between two neighboring points in the coarse partition X̂,

for example x̂i and x̂i+1, form one cluster denoted as �x̂i

�= {x̄j |x̄j ∈ X̄, x̂i ≤ x̄j <

x̂i+1}, in which x̂i is the cluster prototype. This is analogous to a digital map with
different resolutions: by zooming in, we can see a map with fine details, whereas

International Journal of Intelligent Systems DOI 10.1002/int
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Figure 2. The partitions of the domain X.

by zooming out, all the details are displayed in a point, this point acting as one unit
represents all the details behind it. Hence, the whole cluster �x̂i

with the prototype
x̂i is treated as one unit, and all the membership grades of the data points in the
�x̂i

are assigned to this unit. Then according to the Extension Principle, the left end
point of the primary membership grade of this unit is obtained by maximizing all
the available left end points of primary membership grades obtained for this unit,
while the right end point of the primary membership grade of this unit is obtained
by maximizing all the available right end points of primary membership grades
obtained for this unit. Hence, the primary membership grade of the resulting IT2FS
G at the prototype point x̂i is induced as

J l
x̂i

=
∨

x̄j ∈�x̂i

J l
x̂j

(21)

and

J r
x̂i

=
∨

x̄j ∈�x̂i

J r
x̂j

(22)

Figure 3 shows the resulting fuzzy set induced by applying (21) and (22) to the set
depicted in Figure 1. A Direct Approach to IT2FS-oriented type-2 OWA operation
is addressed as follows:

Step 1. Initialization

1. Given the linguistic weights {W̃i}n
i=1 ⊆ F̃ (U ) in the form of IT2FSs for aggregating IT2FS

objects {Ãi}n
i=1 ⊆ F̃ (X).

2. Given the discretized domains of linguistic weights, Û , and that of aggregated objects, X̂.
3. Let the initial Ḡ = (

X̄, μḠ

)
, where X̄ = ∅, J l

0 = 0, J r
0 = 0.

Step 2. Calculate Ḡ.

1. Select w1 ∈ Û , . . . , wn ∈ Û , a1 ∈ X̂, . . . , an ∈ X̂,
2. Normalize (w1, . . . , wn) as w̄i = wi/

∑n

i=1 wi

International Journal of Intelligent Systems DOI 10.1002/int
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Figure 3. An IT2FS on the X̂ induced from the set on the X̄ in Figure 1.

3. Perform Yager’s OWA operation:

ȳ = φw̄1,...,w̄n
(a1, . . . , an)

4. Calculate J l
w1 ···wna1···an

and J r
w1···wna1 ···an

:

J l
w1 ···wna1···an

= gl
1,w1

⊗ · · · ⊗ gl
n,wn

⊗ gl
1,a1

⊗ · · · ⊗ gl
n,an

J r
w1 ···wna1···an

= gr
1,w1

⊗ · · · ⊗ gr
n,wn

⊗ gr
1,a1

⊗ · · · ⊗ gr
n,an

5. If there exists x̄ ∈ X̄ : x̄ = ȳ, then update the potential primary membership grade Jx̄ :

J l
x̄ ← max

(
J l

x̄ , J
l
w1···wna1···an

)
and

J r
x̄ ← max

(
J r

x̄ , J r
w1···wna1···an

)

Otherwise, ȳ is added to X̄, and the primary membership grade at ȳ: Jȳ
�= Jw1 ···wna1···an

.
6. Go to Step 2-1, and continue until all the weight vectors and aggregating points are

selected.

Step 3. Induce the IT2FS G on X̂:

J l
x̂ =

∨
x̄j ∈�x̂

J l
x̂j
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and

J r
x̂ =

∨
x̄j ∈�x̂

J r
x̂j

.

5. ILLUSTRATIVE EXAMPLES

In this section, we present some examples of aggregating interval type-2 fuzzy
sets by type-2 OWA operators.

The IT2FSs to be aggregated on X = [0, 4] for the first two examples are de-
picted in Figure 4. In the first example, a type-2 OWA operator with min t-norm,
�W̃1W̃2W̃3

, is defined by three linguistic weights W̃1, W̃2, and W̃3 in the form of IT2FSs
as shown in Figure 5. As usual, the domains of X and U are discretized during calcu-
lation. In our case, X̂ = {0.2 · k|k = 0, . . . , 20} and Û = {0.05 · k|k = 0, . . . , 20}.
Figure 6 shows the overall result of aggregating the IT2FSs depicted in Figure 4 by
this type-2 OWA operator. For example, at x0 = 0.8, J0.8 = [0.44, 0.95].

In the second example, a type-2 OWA operator is defined by the identical
weights with different order as shown in Figure 7, then Figure 8 illustrates the result
of applying the Direct Approach to this type-2 OWA operator on aggregating the
three IT2FSs depicted in Figure 4.
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Figure 4. Three interval type-2 fuzzy sets to be aggregated by type-2 OWA operators.
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Figure 5. Three linguistic weights defining a type-2 OWA operator.
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Figure 6. Aggregating result by the type-2 OWA operator with linguistic weights in Figure 5.
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Figure 7. Three linguistic weights defining a type-2 OWA operator.
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Figure 8. Aggregating result by the type-2 OWA operator with linguistic weights in Figure 7.
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Figure 9. Four aggregated type-2 fuzzy sets.
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Figure 10. Result of aggregating type-2 fuzzy sets by type-2 OWA operator with interval
weights.
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Interestingly, in type-2 OWA aggregation the linguistic weights can be used to
express semantic meanings. For example, the three IT2FSs shown in the Figure 5
from left to right could be assigned the meanings of “low importance,” “fair im-
portance,” and “high importance,” respectively, producing the result in Figure 6. It
can be seen that the resulting IT2FS in Figure 6 is relatively close to the most-left
aggregated IT2FS object on the domain X. However, if the first linguistic weight is
assigned the meaning “high importance,” the second “fair importance” and the last
linguistic weight “low importance” as in Figure 7, then the resulting IT2FS obtained
via the type-2 OWA operation will move toward to the most-right aggregated IT2FS
object on the domain X as indicated in Figure 8. This is not only intuitively plausi-
ble but also consistent with the compensative property of Yager’s OWA operator12:
Yager’s OWA operators can vary from the “min” (i.e, most-left aggregated object
on the domain X) to “max” (i.e, most-right aggregated object on the domain X)
aggregation.

In the third example, a type-2 OWA operator defined by four intervals W̄1 =
[0, 0], W̄2 = [0.25, 0.4], W̄3 = [0.875, 0.9], and W̄4 = [1, 1] are used to aggregate
four IT2FSs. Figure 10 shows the result of this type-2 OWA operator in aggregating
the four IT2FSs depicted in Figure 9.

6. CONCLUSIONS AND DISCUSSIONS

In this paper, a new type of OWA aggregation operator, termed type-2 OWA op-
erator, is proposed in the interests of aggregating linguistic information represented
by type-2 fuzzy sets in decision making. Moreover, a Direct Approach to type-2
OWA operation on interval type-2 fuzzy sets is suggested.

We believe that the proposed new type of OWA operators will induce some
new interesting topics, the immediate ones include how to perform type-2 OWA
operation on general type-2 fuzzy sets, how to derive the linguistic weights for type-
2 OWA operators etc. Additionally, this new type of OWA aggregation operators
would have great potential for being applied to multiexpert decision making and
multicriteria decision making.

On the other hand, type 2 fuzzy set provides a richer knowledge representation
and approximate reasoning for Zadeh’s computing with words paradigm, we believe
that type-2 OWA operator would be an efficient technique for computing with words
when the words are modeled as type-2 fuzzy sets. These topics certainly merit further
research.
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