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A B S T R A C T   

Large perturbations in the global carbon cycle recorded as carbon-isotope (δ13C) excursions (CIEs) in both 
organic carbon and carbonate records have been linked to volcanism during the emplacement of Large Igneous 
Provinces (LIPs). This link is based primarily on the purported temporal coincidence between CIEs and LIP 
emplacement. Mercury (Hg) concentration in sedimentary rocks has been used as a regional to global tracer of 
large-scale volcanic activity, yet few studies have been undertaken on Upper Jurassic – Lower Cretaceous sed-
iments from Boreal localities compared to those for Tethyan (northern mid-latitude) successions. This has limited 
our understanding of the regional-to-global spatial impact of volcanic activity during this period. This study 
examines the Hg record as a proxy for volcanism, and the δ13C records from organic matter (δ13Corg) of CIEs from 
the uppermost Jurassic to Lower Cretaceous (Callovian – Aptian) successions from Axel Heiberg and Spitsbergen 
in the Canadian Arctic and Svalbard archipelagos, respectively. This interval includes three regional- to global 
CIEs. These sections show no significant variation in the ratio of Hg to total organic carbon (TOC) across the 
Boreal-wide Volgian negative CIE (Volgian Isotopic Carbon Excursion, “VOICE”), which has not been associated 
with LIP volcanism. The examined successions spanning this interval all show some influence from changing 
environmental or post-burial parameters, however, which could have (partially) overprinted a volcanic signal. 
Despite some problems in stratigraphically constraining the Weissert Event, increased Hg/TOC ratios are 
observed across this interval, which may be partially driven by volcanism associated with the emplacement of 
the Paraná-Etendeka Traps. A spike in Hg/TOC is observed immediately prior to the negative peak of the Aptian 
Oceanic Anoxic Event (OAE1a) CIE, supporting recent evidence of a pulse of High Arctic Large Igneous Province 
(HALIP) volcanic activity preceding this oceanic anoxic event.   
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1. Introduction 

The long-term greenhouse conditions that prevailed during the 
Mesozoic were punctuated by episodes of major climate and environ-
mental change, recorded as global perturbations in stable oxygen (δ18O) 
and carbon (δ13C) isotope records and often associated with elevated 
organic matter in the sedimentary record (Robinson et al., 2017). Some 
of the larger climatic disturbances have been linked to the emplacement 
of Large Igneous Provinces (LIPs), based on a temporal correlation be-
tween the ages of LIP rocks, carbon-isotope excursions (CIEs) and biotic 
change that suggests a potential causal connection (e.g. Coffin and 
Eldholm, 1994; Courtillot and Renne, 2003; Weissert and Erba, 2004; 
Ernst, 2014; Bond and Grasby, 2017; Kasbohm et al., 2021). For the 
early Cretaceous LIPs and CIEs, numerous studies have been undertaken 
on mid- and low-latitude sediments deposited during these events (e.g. 
Coffin and Eldholm, 1994; Courtillot and Renne, 2003; Weissert and 
Erba, 2004; Ernst, 2014; Bond and Grasby, 2017; Kasbohm et al., 2021), 
but there has been comparatively little investigation of higher palae-
olatitude sites (Hammer et al., 2012; Jelby et al., 2020a; Galloway et al., 
2020, 2022), which must be examined to test if observed trends in any of 
the proxies examined are indeed global in extent. Sedimentary succes-
sions spanning the uppermost Jurassic and most of the Lower Cretaceous 
(Callovian – Aptian, c. 165–113 Ma) outcrop in the Canadian Arctic and 
Svalbard archipelagos. This interval includes three regional- to global- 
scale carbon isotope excursions (CIEs). In the uppermost Jurassic, an 
Boreal-wide CIE, known as the Volgian Isotopic Carbon Excursion 
(VOICE), is recognised (e.g. Hammer et al., 2012; Galloway et al., 2020; 
Jelby et al., 2020a). Lower Cretaceous Arctic sediments document two 
further CIEs, which are observed in both carbonate and organic carbon 
records from the Berriasian to Aptian worldwide, namely the Val-
anginian Weissert Event and the early Aptian Oceanic Anoxic Event 
(OAE1a) (e.g. Jenkyns, 1980; Weissert et al., 1998; Erba et al., 2004; 
Bodin et al., 2015; Herrle et al., 2015; Vickers et al., 2016; Galloway 
et al., 2020). Each of these CIEs has their own unique characteristics, 
and the mechanisms by which they occurred were likely different, as 
detailed below. 

1.1. The VOICE event 

Boreal records display a strong negative CIE in uppermost Jurassic 
strata, of c. 5 ‰ (e.g. Galloway et al., 2020; Jelby et al., 2020a and 
references therein). This excursion marks the VOICE event (Hammer 
et al., 2012; Koevoets et al., 2016; Galloway et al., 2020), roughly 
spanning the Tithonian/Volgian (Jelby et al., 2020a), from c. 149–142 

Ma; Gradstein et al., 2020). Low- and mid-latitude (i.e. Tethyan and 
Pacific) carbonate carbon isotope records (δ13Ccarb) show a gradual 
decreasing trend from the uppermost Jurassic to Lower Cretaceous, with 
no significant perturbations until the positive CIE of the Weissert Event 
(Price et al., 2016). The VOICE is believed to have arisen due to isolation 
of the Boreal oceans leading to the compositional evolution away from 
open-marine carbon isotopic values (Galloway et al., 2020; Jelby et al., 
2020a). Such separation of the Boreal carbon reservoirs from those the 
global oceans is thought to have been driven by a eustatic sea-level 
lowstand isolating the Boreal basins during the latest Jurassic, fol-
lowed by eustatic sea-level rise in the earliest Cretaceous that led to a 
recoupling of these carbon reservoirs in the Valanginian (Galloway 
et al., 2020; Jelby et al., 2020a). Such basin isolation has led to pro-
nounced oceanic species provincialism, resulting in ongoing challenges 
in correlating the Boreal regional stages to international stages across 
the Jurassic – Cretaceous boundary, and the persistent usage of Boreal- 
specific stage names (e.g. “Volgian, Ryazanian”) (Gradstein et al., 2020). 

The Jurassic–Cretaceous transition was also marked by the 
emplacement of the Shatsky Rise plateau in the northwest Pacific Ocean 
(Fig. 1; Mahoney et al., 2005; Sager et al., 2013; Geldmacher et al., 
2014). It is unclear how much this volcanic event may have influenced 
Earth’s climate and/or global to local carbon cycle changes. 

1.2. The Weissert Event 

The Weissert Event positive CIE is recognised in both terrestrial and 
marine records across the globe in the late Valanginian to early Hau-
terivian (e.g. Weissert et al., 1998; Erba et al., 2004; Gröcke et al., 2005), 
although there is much debate about the exact timing of this event 
(Gradstein et al., 2020). The Weissert Event is hypothesised to reflect 
increased burial of isotopically light (13C-depleted) carbon (organic 
matter), and/or reduction of the isotopically heavier carbon reservoir 
(carbonate). The triggers and mechanism for the Weissert Event CIE are 
debated, but it is widely believed that increased atmospheric CO2 would 
have enhanced hydrological cycling, and thus increased weathering and 
nutrient discharge to global oceans (Weissert and Erba, 2004; Duchamp- 
Alphonse et al., 2007; Gréselle et al., 2011). Nutrient input such as this 
would have effectively fertilised the ocean and caused an increase pri-
mary productivity, which could lead to the development of oxygen- 
deficient conditions and a higher rate of organic matter burial in sea-
floor sediments. The rise in CO2 required to drive such changes in the 
hydrological cycle could have been sourced from volcanic carbon 
emissions (e.g. Weissert et al., 1998; Weissert and Erba, 2004; Duchamp- 
Alphonse et al., 2007; Charbonnier et al., 2017). The Weissert Event was 
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Fig. 1. Volcanic centres in relation to studied sites on a palaeogeographic reconstruction for the earliest Cretaceous (c. 140 Ma). Modified from Charbonnier et al. 
(2020b) after Blakey (2020); http://cpgeosystems.com/euromaps.html). AH = Axel Heiberg, Sp. = Spitsbergen; VB—Vocontian Basin; PB—Polish Basin; UM =
Umbria-Marche Basin; HALIP = High Arctic Large Igneous Province; SR = Shatsky Rise; OJP = Greater Ontong Java Plateau; P-E = Paranà -Etendeka Traps. 
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broadly coeval with the emplacement of the Paraná-Etendeka LIP 
(Fig. 1; e.g. Weissert and Erba, 2004; Duchamp-Alphonse et al., 2007; 
Martinez et al., 2015; Gomes and Vasconcelos, 2021), a large-scale 
emplacement of igneous rocks on continental crust that occurred dur-
ing the rifting between the South American and African plates (Peate, 
1997; Hawkesworth et al., 2000). However, the magnitude of climatic 
effects resulting from Paraná-Etendeka volcanism was small compared 
to its size (e.g. Ganino and Arndt, 2009; Jones et al., 2016), and there is 
limited evidence for climate warming during the Weissert Event 
compared to other episodes of environmental change associated with 
LIPs (e.g. Cavalheiro et al., 2021;Littler et al., 2011;McArthur et al., 
2007;Price and Passey, 2013). The Paraná-Etendeka traps were 
emplaced in a sub-tropical arid environment (e.g. Waichel et al., 2008), 
so the weathering and erosion that would have supplied much of the 
nutrients and alkalinity to the ocean were much diminished (Jones et al., 
2016), countering the theory for this alone causing the widespread 
fertilization and increased productivity of the oceans that resulted in the 
Weissert Event CIE. Moreover, the exact temporal relationship between 
the Weissert Event and emplacement of the Paraná-Etendeka traps re-
mains debated, with volcanism hypothesised to have occurred gradually 
over several million years at a slower pace than many other continental 
LIPs (Dodd et al., 2015), and with a major pulse of eruptions post-dating 
the onset of the carbon-cycle perturbation (Rocha et al., 2020). 

1.3. Ocean Anoxic Event 1a (OAE1a) 

The globally-recognised early Aptian CIE (c. 120 Ma; Gradstein et al., 
2020) is associated with widespread black shale deposition (e.g. Sliter, 
1989; Bralower et al., 1994; Mutterlose et al., 2009) and is considered to 
mark an Oceanic Anoxic Event, known as OAE1a (Jenkyns, 1980). In 
δ13C records, OAE1a is expressed as a sharp negative CIE followed by a 
double-peaked positive “recovery” CIE that is recorded globally in both 
terrestrial and marine organic and carbonate carbon records (Jenkyns, 
1995; Menegatti et al., 1998; Ando et al., 2002; Price, 2003; Weissert 
and Erba, 2004; Herrle et al., 2015). There are two LIPs which were 
emplaced around the same time as OAE1a. The Greater Ontong-Java 
Plateau, formed in the western Pacific Ocean primarily through sub-
marine volcanism, represents the largest preserved LIP known on Earth 
(Fig. 1; Tarduno et al., 1991; Erba et al., 1999, 2015; Chambers et al., 
2004; Thordarson, 2004; Kerr and Mahoney, 2007; Tejada et al., 2009; 
Percival et al., 2021a). The Ontong-Java Plateau alone likely has a 
crustal volume of c. 50 million km3 (Gladczenko et al., 1997), poten-
tially supplemented by additional magmas on the Manihiki and Hikur-
angi plateaus that may have also formed as part of the Greater Ontong- 
Java Plateau (Taylor, 2006; Hoernle et al., 2010). Moreover, if a part of 
the Greater Ontong-Java Plateau was emplaced onto the now-subducted 
Farallon Plate, its original volume may have been greater still (Schlanger 
et al., 1981). Poor resolution of age constraints for both Greater Ontong- 
Java Plateau volcanism and the start of OAE1a has inhibited determi-
nation of whether Greater Ontong-Java Plateau emplacement preceded, 
was simultaneous with, or post-dated the CIE (e.g. Mahoney et al., 1993; 
Parkinson et al., 2002; Tejada et al., 2002, 2009). However, a pro-
nounced shift towards non-radiogenic strontium- and osmium-isotope 
compositions broadly correlative with the basal OAE1a strata in 
numerous stratigraphic records around the world indicates a large in-
crease in mantle-derived volcanism around the onset of the OAE (e.g. 
Jones et al., 1994; Bralower et al., 1997; Jones and Jenkyns, 2001; 
Tejada et al., 2009; Bottini et al., 2012; Martínez-Rodríguez et al., 2021; 
Percival et al., 2021a), generally attributed to Greater Ontong-Java 
Plateau activity. 

The second Aptian LIP is the High Arctic Large Igneous Province 
(HALIP), which was emplaced via both subaerial and submarine erup-
tions and widespread intrusions in pulsed episodes across the Arctic 
region (Fig. 1; Maher, 2001; Estrada and Henjes-Kunst, 2013; Corfu 
et al., 2013; Senger et al., 2014; Evenchick et al., 2015; Polteau et al., 
2016; Davis et al., 2017; Dockman et al., 2018; Naber et al., 2021; 

Bédard et al., 2021; Galloway et al., 2022). This emplacement occurred 
in two major episodes, the first around the middle Hauterivian to early 
Aptian (spanning c. 127 to 120 Ma of pulsed volcanism, peaking at c. 
122 Ma; Evenchick et al., 2015; Dockman et al., 2018; Bédard et al., 
2021; Galloway et al., 2022). The later episode(s) took place during the 
Late Cretaceous (younger than 100 Ma; Dockman et al., 2018 and ref-
erences therein; Naber et al., 2021; Bédard et al., 2021; Galloway et al., 
2022). In the Canadian Arctic Archipelago (Sverdrup Basin), igneous 
rocks (including mafic lavas and intrusions, and bentonites) are found 
mainly on Ellef Ringnes, Amund Ringnes, Axel Heiberg and Ellesmere 
islands (Evenchick et al., 2015; Estrada and Henjes-Kunst, 2013; Davis 
et al., 2017; Dockman et al., 2018; Evenchick et al., 2019; Naber et al., 
2021; Bédard et al., 2021; Galloway et al., 2022). In the Svalbard and 
Barents Basin, the HALIP is marked by the: (i) intrusion of dolerites as 
sills into Carboniferous to Jurassic strata on Spitsbergen (Nejbert et al., 
2011); (ii) occurrence of bentonites in Cretaceous deltaic sediments on 
Spitsbergen (Corfu et al., 2013; Midtkandal et al., 2016); (iii) extrusion 
of lavas on Kong Karls Land (Maher, 2001; Senger et al., 2014); and iv) 
extensive Cretaceous igneous rocks in the Barents Basin (Polteau et al., 
2016). It has been suggested that the first phase of HALIP volcanism is at 
least partially responsible for triggering OAE1a (Polteau et al., 2016; 
Galloway et al., 2022), yet, the relative timings between the emplace-
ment of these LIP rocks and OAE1a are not fully understood. 

This study sets out to assess the possible influence on and relative 
timing of eruptive volcanism to the CIE events outlined above, in 
particular the HALIP, through examining the sedimentary mercury (Hg) 
record from Arctic localities. Despite a number of caveats and consid-
erations, Hg enrichment in the sedimentary record has been used as a 
proxy for volcanic eruptions, as volcanism is one of the major natural 
sources of Hg to the atmosphere (e.g. Sanei et al., 2012; Grasby et al., 
2019; Percival et al., 2021b; Edwards et al., 2021). We investigate two 
sections from the East and West coast of Spitsbergen in the Svalbard 
archipelago, and two localities from Axel Heiberg Island in the Canadian 
Arctic, to determine if Hg is elevated across CIEs and contemporaneous 
with LIP activity in the Arctic. We compare our results to global Hg and 
δ13C records, and discuss the possible links between the CIEs and LIP 
volcanism. 

2. Geological setting 

Today, the Canadian Arctic and Svalbard Archipelagos lie west and 
east of Northern Greenland, respectively (Fig. 2). The Svalbard archi-
pelago is part of the greater Barents Sea region, located on the north- 
western corner of the Barents Shelf. The largest island, Spitsbergen, 
has Mesozoic rocks outcropping on the eastern and western flanks of the 
Central Spitsbergen Basin (Fig. 2C; Johnsen et al., 2001; Dallmann, 
1999; Dallmann et al., 2002; Helland-Hansen and Grundvåg, 2021). 

Both the Spitsbergen domain and Sverdrup Basin formed part of the 
circum-Arctic Boreal Realm, which included Northern Alaska and 
Northern Greenland, and were situated along the northern margins of 
North America and Eurasia during the Late Jurassic and Early Creta-
ceous (Fig. 2A; Torsvik et al., 2002). The Boreal Realm saw the forma-
tion of numerous rift basins during the Late Jurassic due to the break-up 
of Pangea (Harland, 1997). Late Cretaceous thermal uplift and early 
Cenozoic shoulder uplift along the rifted margin of the developing Arctic 
Ocean, followed by transform movements along the western margin, 
were responsible for the emergence of the Svalbard Archipelago to its 
current configuration (Dallmann, 1999). The post-Cretaceous Eurekan 
Orogeny folded and eroded equivalent strata from Ellesmere Island 
(Gion et al., 2017), thereby precluding the possibility of acquiring data 
that might link the two basins. 

2.1. Axel Heiberg, Canadian Arctic Archipelago 

Sediment deposition in the Canadian Arctic Archipelago in the Late 
Jurassic and Early Cretaceous occurred during rifting and post-rift 
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subsidence of the Sverdrup Basin (Embry and Beauchamp, 2019). 
Deposition of the Kimmeridgian – Valanginian Deer Bay Formation 
occurred during peak rifting in the basin (Embry and Beauchamp, 2019). 
The Deer Bay Formation comprises offshore shelf mudstones, and is 
undivided except on southern Axel Heiberg Island, where the sandstone- 
dominated Glacier Fiord Member is identified in its upper part (Embry, 
1985). Whilst the Deer Bay Formation is characteristically mudstone- 
dominated, it has carbonate concretions of variable size and type 
occurring throughout (Grasby et al., 2017). The top of the Deer Bay 
Formation is disconformable to conformable with the overlying Hau-
terivian, Valanginian, or Aptian to Aptian-aged Isachsen Formation 
(Hadlari et al., 2016; Embry and Beauchamp, 2019; Galloway et al., 
2022). 

2.2. Spitsbergen, Svalbard Archipelago 

During the Late Jurassic and Early Cretaceous, deposition in Spits-
bergen occurred in an epicontinental platform and ramp setting (Mid-
tkandal and Nystuen, 2009; Jelby et al., 2020b; Grundvåg et al., 2021), 
and comprised a range of depositional environments, from offshore shelf 
through to coastal plain and fluvial environments of the Adventdalen 
Group (Dypvik et al., 2002; Grundvåg et al., 2019; Midtkandal et al., 
2020). This group is sub-divided into the: (i) offshore to prodeltaic mud-, 
silt- and sandstones of the Bathonian – lower Barremian Janusfjellet 

Subgroup (e.g. Grundvåg et al., 2019; Jelby et al., 2020a, 2020b); (ii) 
sandstone-dominated fluvio-deltaic, Barremian – Aptian Helvetiafjellet 
Formation (e.g. Midtkandal and Nystuen, 2009; Midtkandal et al., 
2016); and (iii) shelf–shoreface mud-, silt- and sandstones of the 
Aptian–Albian Carolinefjellet Formation (e.g. Grundvåg et al., 2021). 
The Janusfjellet Subgroup is further sub-divided into the Bathonian – 
Ryazanian Agardhfjellet Formation, deposited in an open-marine envi-
ronment (Koevoets et al., 2018), and the Valanginian – lower Barremian 
Rurikfjellet Formation (Śliwińska et al., 2020), which was deposited in 
an open-marine shelf to prodeltaic setting (Grundvåg et al., 2019; Jelby 
et al., 2020b). The two formations are transitionally separated by a 
glauconitic, plastic clay unit termed the Myklegardfjellet Bed (Dypvik 
et al., 1992), which probably represents the onshore equivalent of the 
similar-aged base-Cretaceous unconformity recorded in adjacent 
offshore areas (e.g. Lundin and Dore, 1997). A lower Barremian sub-
aerial unconformity of variable magnitude is observed regionally across 
Spitsbergen; the result of a prolonged relative sea-level fall that was 
likely due to the onset of northerly uplift/doming. The fluvio-deltaic 
deposits of the Helvetiafjellet Formation thus unconformably overlie 
and erosionally truncate the Rurikfjellet Formation, and grade 
conformably into the transgressive marine Carolinefjellet Formation of 
Aptian–Albian age (Mørk et al., 1999). 

Fig. 2. (A) Palaeogeographic reconstruction for the earliest Cretaceous, c. 140 Ma (after Blakey, 2020; https://deeptimemaps.com/arctic). (B) Sampling sites on Axel 
Heiberg Island. (C) Sampling sites on Spitsbergen. 
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3. Materials and methods 

3.1. Materials 

Two sites on Axel Heiberg Island, Geodetic Hills (79◦48′N, 89◦48′W) 
and Buchanan Lake (79◦22′N, 87◦46′W) (Fig. 2B) were targeted for 
inorganic geochemical analyses, including Hg, and pyrolysis organic 
chemistry. The lithology and biostratigraphy of these sections are 
described in Galloway et al. (2020). Both sections span the uppermost 
Jurassic VOICE event and the Lower Cretaceous Weissert Event CIE, 
with age control based on macrofossils (ammonites and bivalves) and 
correlation of bulk organic carbon isotope curves (Galloway et al., 
2020). Altogether, 92 samples were collected from Volgian through to 
Valanginian strata at Geodetic Hills, and 154 samples from the correl-
ative section at Buchanan Lake, with excavation of the surface to 30–50 
cm to ensure collection of unweathered samples. 

Two sites on Spitsbergen, Festningen (78◦05′N, 13◦56′E) and Kval-
vågen (77◦29′N, 18◦11′E), were selected for sampling, located on each 
side of the Central Spitsbergen Basin, where Mesozoic strata are exposed 
(Fig. 2C). The targeted successions capture the Weissert Event and 
OAE1a CIEs (Vickers et al., 2019; Jelby et al., 2020a), with the VOICE 
interval hypothesised to occur somewhere in the 260 m stratigraphically 
below the yellow-weathering Myklegardfjellet Bed, based on the find-
ings of Jelby et al. (2020a). 

The first locality, Festningen, is situated on the western side of 
Spitsbergen (Fig. 2C), where the entire Adventdalen Group is exposed as 
vertically bedded coastal cliffs. The exposure is excellent over much of 
the >600 m succession, with only a few metre- to tens of metre-long gaps 
where the outcrop was scree-covered/difficult sample, or where the 
succession is faulted and folded. 

On the eastern coast of Spitsbergen, sub-horizontally bedded mid- 
lower Cretaceous strata (Helvetiafjellet and Carolinefjellet formations) 
are exposed in the mountains around Kvalvågen (Fig. 2C). These sedi-
ments were targeted as they were believed to cover the interval con-
taining the OAE1a (based on the correlation of Grundvåg et al., 2017). 
Whilst there are excellent outcrops on the vertical eastward-facing cliffs 
of Kvalhovden, they are generally only accessible along the gentler, 
scree-covered south and south-western slopes. Thus, sampling was 
mostly undertaken by digging into the scree in the upper parts of the 
succession, excavating up to 1 m into the slope to access fresh material. 
In total, 313 samples were collected from the Volgian through to the 
Aptian at Festningen, and 39 samples were collected from the Barremian 
to Aptian part of the succession at Kvalvågen. 

Samples from all sites were analysed for Hg concentrations, inor-
ganic elemental concentrations, and sequential pyrolysis. In addition, 
sedimentological logging and carbon-isotope analysis were undertaken 
where published information was unavailable. Nine sediment samples 
were selected for palynological examination from the Kvalvågen section 
for age control. 

3.2. Sequential pyrolysis 

The bottom 260 m and top 238 m of the studied part of the Fes-
tningen section (84 samples and 96 samples, respectively), and the 
entire sampled Kvalvågen section (39 samples) were measured using 
programmed pyrolysis by HAWK at the Lithospheric Organic Carbon 
Laboratory at Aarhus University, Denmark. Pyrolysis data for the Axel 
Heiberg localities was also produced using HAWK and are published in 
Galloway et al. (2020). The quantity and quality of organic carbon was 
measured using an open, anhydrous, programmed pyrolysis method 
(Hawk instrument, Wildcat Technologies, USA). The Rock-Eval 6 heat-
ing procedure was applied, in which 50 mg of dry, ground sample is 
subject to a two-step, programmed pyrolysis (heating in an inert atmo-
sphere from 300 to 650 ◦C) and subsequently oxidation heating (com-
bustion in O2 atmosphere from 400 to 850 ◦C) (Lafargue et al., 1998). 
During the pyrolysis step, the sample is heated to an isotemperature of 

300 ◦C for 3 min to release the free hydrocarbons in the rock (S1, mgHC/ 
g rock). The sample is then subject to a ramped heating from 300 to 
650 ◦C at the rate of 25 ◦C min-1. The total concentration of the hy-
drocarbons released due to the thermal cracking kinetics is regarded as 
S2 (mg HC/g rock), which represent the remaining potential of hydro-
carbons in the sample. The organic-derived fractions of CO, and CO2 
released during the ramp heating pyrolysis is the S3 fraction, which 
represents the content of the oxygen containing organic carbon in the 
sample. The sum of S2 and S3 is the pyrolysable organic carbon wt% 
fraction that constitutes “reactive organic carbon” content of the organic 
matter in a sample. The sample was then automatically transferred to 
the oxidation oven in which both the residual organic matter and min-
eral carbon are combusted between 400 and 850 ◦C. The “residual 
organic carbon” (RC wt%) is the content of the residual organically- 
derived CO and CO2 during the oxidation heating stage. The reactive 
organic carbon represents the fraction of carbon that is released due to 
thermal decomposition kinetics of organic matter and hence is consid-
ered chemically reactive compared to the refractory “residual organic 
carbon”. The sum of the reactive organic carbon and residual organic 
carbon is equivalent to TOC wt%. Hydrogen index (HI) is S2/TOC x 100 
and is proportional to the H/C ratio. Similarly, oxygen index (OI) is S3/ 
TOC x 100 and is proportional to the O/C ratio. Tmax is the temperature 
at which the maximum rate of hydrocarbon generation occurs (peak of 
S2). Analyses of standard reference material WT1 (developed by the 
Wildcat Technologies, Houston, U.S.) was run every tenth sample. 
Duplicate analyses were conducted for assessment of analytical preci-
sion. A total of 18 randomly-selected duplicate samples (14 from Fes-
tningen and 4 from Kvalvågen) were run for quality control. The results 
show an accuracy and precision of better than 6% for TOC (see sup-
plementary materials). 

Forty samples from the middle of the Festningen section between 29 
and 192 m, targeting the Weissert Event CIE interval, were measured by 
Rock-Eval analysis at the Department of Earth Sciences, University of 
Oxford, following the protocols of Espitalié et al. (1977) and Behar et al. 
(2001). Eight measurements of internal standard SAB 134 (calibrated 
against the certified international standard IFP 160000) were used to 
monitor machine accuracy and reproducibility, and averaged 2.64 ±
0.02 wt% (1σ), broadly consistent with long-term measurements for the 
laboratory (2.87 ± 0.11 wt%; Storm et al., 2020). 

3.3. Carbon isotope analysis 

Carbon isotope data for both Axel Heiberg sections is published in 
Galloway et al. (2020); and the carbon isotope data for the lower 
Cretaceous-aged part of the Festningen section is published in Vickers 
et al. (2016, 2019). Additional carbon-isotope analysis was undertaken 
for this study on the upper Jurassic succession at Festningen and the 
Kvalvågen section. 

Carbon isotope analysis was undertaken on bulk organic matter, 
following the decarbonation method of Gröcke et al. (1999). A total of 
84 decarbonated samples from the bottom 260 m of the Festningen 
section were analysed for δ13Corg using an Elemental VarioEL Cube 
Elemental Analyzer followed by a trap-and-purge separation and online 
analysis by continuous flow with a DeltaPlus Advantage isotope ratio 
mass spectrometer coupled with a ConFlo III interface at the GG Hatch 
Stable Isotope Laboratory, University of Ottawa. Results are reported as 
‰ relative to Vienna Pee Dee Belemnite (V-PDB) and normalised against 
internal standards that are themselves calibrated to the international 
certified reference materials IAEA-CH-6 (− 10.4‰), NBS-22 (− 29.91‰), 
USGS-40 (− 26.24‰) and USGS-41 (37.76‰). Long-term analytical 
precision is based on blind analysis of the internal standard C-55 
(glutamine; − 28.53‰; not used for calibration), and the mean RPD is 
0.20 ± 0.25% SD. In order to assess measurement repeatability, 9 
samples were analysed in duplicate. 

A total of 40 decarbonated bulk powdered samples from Kvalvågen 
were analysed using a Sercon Integra gas source isotope ratio mass 
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spectrometer at the University of Exeter, Penryn Campus. Measurements 
were performed using decarbonated bulk rock powder with a target 
weight equivalent to c. 400 μg organic. Instrumental drift was corrected 
by monitoring of two in-house standards (alanine, δ13Corg = − 19.62 ‰ 
and bovine liver, δ13Corg = − 28.61 ‰) which were previously calibrated 
against international reference materials and measured after each block 
of ten samples. A two-point calibration of drift-corrected data from the 
two in-house standards was taken to correct for instrumental bias and 
accuracy cross-checked with in-house materials used at the British 
Geological Survey in Keyworth (SoilA, SoilB, SoilC). Reproducibility of 
the δ13Corg data relevant for the samples as determined by repeat mea-
surements over three runs from January 2020 to March 2020 is better 
than 0.2 ‰ (2 s.d.) for both in-house standards (alanine: n = 44; bovine 
liver: n = 22). 

3.4. Elemental analysis 

Inorganic elemental analyses were performed on a regularly-spaced 
subset of samples for each section (targeting the CIE event intervals), 
using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) at Bu-
reau Veritas, Vancouver, British Columbia, following four-acid digestion 
(MA250 package). Briefly, 0.25 g samples were heated in HNO3, HClO4 
and HF to fuming and taken to dryness. The residue was then dissolved 
in HCl. Analysis for 59 different elements was by ICP-ES/MS, including 
Mo, Mn, Fe, Sr, Ca, Al and S. A total of 153 samples were analysed from 
the Buchanan Lake section, 91 samples from the Geodetic Hills section, 
119 samples from the Festningen section, and 20 from the Kvalvågen 
section. 

In order to assess measurement repeatability, several samples from 
each batch were analysed in duplicate. For the Spitsbergen samples, five 
samples were analysed in duplicate, and for the Axel Heiberg samples, 
seven samples were analysed in duplicate. Analytical accuracy and 
precision was monitored through analysis of laboratory standards (STD 
OREAS45E and STD OREAS25A-4A, n = 10 each), 10 blanks, and four 
preparation blanks (acid wash). 

3.5. Mercury analysis 

The analysis of Hg concentrations was undertaken at two labora-
tories. One suite of analyses, on samples spanning the Jurassic–Creta-
ceous boundary and Barremian–Aptian (investigating the VOICE and 
OAE1a CIE), was undertaken at the Centre for Earth Observation Sci-
ence, University of Manitoba, on a Hydra IIC Direct Mercury Analyzer 
(Teledyne) following the methodology outlined in Sanei et al. (2021). 
For each sample, between 10 and 50 mg of the homogenized powder was 
used. Calibration and quality assurance/quality control were carried out 
by using various certified reference materials (CRMs) including MESS-3 
and PACS-3 (marine sediment CRMs from National Research Council of 
Canada), and NIST 2709a (San Joaquin Soil CRM from NIST). The mean 
CRM recoveries were 101.9 ± 9.0%. 

A second suite of analyses on Valanginian samples from Festningen, 
which were expected to extend across the Weissert Event interval CIE, 
was carried out at the Department of Earth Sciences, University of Ox-
ford, using a RA-915 Portable Mercury Analyzer with PYRO PYRO-915 
Pyrolyzer (Lumex), following the methodology outlined in Percival et al. 
(2017). Between 50 and 100 mg samples of rock powder were used, and 
the instrument was calibrated using six standards of peat (NIMT/UOE/ 
FM/001), with further measurements of the peat standard after every 
ten measurements, which averaged 174 ± 11 ng/g (1σ, n = 14), 
consistent with its certified value (169 ± 7 ng/g). 

3.6. Palynology 

Approximately 30 g of sediment from nine regularly-spaced samples 
throughout the succession at Kvalvågen were taken for preparing paly-
nological slides at the Geological Survey of Denmark and Greenland 

(GEUS). The details of the maceration method are described in ́Sliwińska 
et al. (2020), and includes treatment with hydrochloric and hydrofluoric 
acids, as well as oxidation with HNO3.. All palynological slides and (if 
available) organic residues are stored at GEUS. All the slides following 
the final step of preparation (i.e. filtered using a 30 μm nylon mesh) have 
been digitalised by Robert Williams at the Norwegian Petroleum 
Directorate and can be viewed in the Supplementary material. 

3.7. Statistical analysis 

Spearman’s rank correlation coefficient and a t-test were used to 
assess the relationships between variables (Hg, δ13C, elemental and 
pyrolysis analyses) to determine if Hg or carbon-isotope data are related 
to other parameters. Spearman’s rank is a nonparametric test that in-
dicates the strength of the correlation between the two variables of in-
terest, even if the relationship is monotonic rather than linear. The t-test 
indicates the probability of this correlation being significant. The di-
visions used to identify the strength (ρ) and significance (p) of the 
relationship between the variables of interest are shown in Table 1. 

4. Results 

4.1. Sequential pyrolysis 

Measured TOC data for both sections on Spitsbergen are displayed in 
Figs. 4 and 5; HI, OI, and Tmax are shown in Fig. 6. For comparative 
purposes, pyrolysis data for the Axel Heiberg sections as published in 
Galloway et al. (2020); and both pyrolysis and Hg data for the DH-1 
borehole in central Spitsbergen (Fig. 2C), as published in Midtkandal 
et al. (2016) and Percival et al., 2021a are also shown. The complete 
datasets (i.e. containing the other measured variables) are given in the 
supplementary data. Measured TOC from the Agardhfjellet Formation 
(VOICE interval and below) from Festningen show a mean TOC of 2.12 
wt%; range 0.27–8.18 wt% (n = 84; Fig. 4). It is noted that average TOC 
drops off to 0.86 wt% at the top of the Agardhfjellet Formation, going 
into the Weissert Event interval, and remains low, with a narrower range 
(0.78 wt%, range 0.21–2.79 wt%; n = 40), throughout the lower Rur-
ikfjellet Formation (Fig. 4). TOC is on average higher and more variable 
across the OAE1a interval a Festningen (n = 96), mean = 1.99 wt%, 
range = 0.41–11.76 wt%, whilst across the OAE1a interval in the 
Kvalvågen section (n = 39), TOC contents are somewhat more variable, 
ranging from 0.30 to 10.82 wt% (mean 2.27 wt%). 

At Festningen, Spitsbergen, Tmax values (averaging c. 440 ◦C) across 
all CIE intervals indicate that the organic matter is mature (Espitalié 
et al., 1977) (Fig. 6). At the Kvalvågen site on the East coast of Spits-
bergen, average Tmax values the OAE1a interval are even higher (aver-
aging 472 ◦C), contrary to findings from other East coast localities which 
places the Mesozoic sediments from western and central Spitsbergen at 
lower maturation than those from along the East coast (Olaussen et al., 

Table 1 
The divisions used to identify 
the strength (ρ) and signifi-
cance (p) of the relationship 
between the variables of in-
terest. 

0.00 - 0.19 none
0.20 - 0.39 weak
0.40 - 0.69 moderate
0.70 - 0.89 strong
0.90 - 1.00 v. strong
>0.1 none
0.1 - 0.05 weak
0.05 - 0.01 strong
<0.01 v. strong

ρ

p
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2022). However, higher maturity of Mesozoic sediments is observed 
around Edgeøya (i.e. < 70 km from Kvalvågen; Olaussen et al., 2022) 
due to a large volume of sill intrusions, and it may be that more localised 
magmatic activity led to steeper geothermal gradients affecting the 
lower Cretaceous sediments at the Kvalvågen locality. 

Hydrogen and oxygen indices cannot be confidently interpreted at 
the high levels of thermal maturation encountered at Kvalvågen (e.g. 
Tyson, 1995), whereas at Festningen, a significant proportion of the 
samples are immature enough to determine the much of the kerogen 
falls into the Type III (terrestrial OM), with minor marine OM (Fig. 6). 
This has been confirmed by independent palynofacies, microscopy and 
biomarker examination of the organic matter indicates that the organic 
matter present in the Jurassic-Cretaceous strata at Festningen is pre-
dominantly terrestrially – derived (Vickers et al., 2019). 

4.2. Carbon isotope record 

Organic carbon isotope data for the Axel Heiberg sections were 
presented in Galloway et al. (2020) and have been included for 
comparative purposes in Fig. 3. Organic carbon isotope data for the 
Cretaceous succession at Festningen are presented in Vickers et al. 
(2016, 2019), and are included for comparative purposes in Fig. 4. 

Across the uppermost Wilhelmøya Subgroup and Agardhfjellet For-
mation at Festningen, Spitsbergen (− 260 to 0 m; Fig. 4), δ13Corg values 
range from − 31.5 to − 22.8 ‰, with a mean of − 27.2 ‰. The δ13Corg data 
are scattered but generally lie around a mean of − 25.8 ‰ from − 265 m 
to − 106 m (Fig. 4). This is followed by a sharp decline to more negative 
values that persist for c. 50 m. The δ13Corg values then increase over c. 
20 m to − 27.0 ‰, in broad agreement with the mean δ13Corg value for 
the lowermost part of the Rurikfjellet Formation as measured by Vickers 
et al. (2019) and Jelby et al. (2020a). 
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Fig. 3. Organic carbon isotope ratio (δ13Corg), total mercury (THg), total organic carbon (TOC), mercury normalised against TOC (Hg/TOC). Where TOC was <0.2% 
and therefore below the limit for reliability according to Grasby et al. (2016), we denote with dark blue open circles in the Hg/TOC plot, and exclude from subsequent 
interpretation. Selected elemental data for the two sites on Axel Heiberg, Canadian Arctic, spanning the Jurassic – Cretaceous boundary. Graphic log, carbon isotope 
and TOC data are all published in Galloway et al. (2020). Other data analysed for this study. The stratigraphic ages are as given in Galloway et al. (2020) based on 
(limited) biostratigraphic data. New proposed ages based on carbon isotope correlation with Spitsbergen borehole δ13Corg curves from Jelby et al. (2020a). Grey 
shaded blocks highlight the VOICE interval, and the possible interval for Weissert Event positive CIE (grey shows the Weissert CIE interval as proposed by Galloway 
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For the Kvalvågen section on Spitsbergen, the δ13Corg values range 
from − 25.8 to − 21.0 ‰, with a mean of − 23.7 ‰. The most negative 
value (− 25.8 ‰) is reached at 100 m and is followed by a nearly 5 ‰ 
increase over three data points to the Least negative value (− 21.0 ‰) 
recorded, at 144 m (Fig. 5). 

4.3. Elemental analysis 

Elemental analysis was undertaken in order to examine other 
possible host phases for Hg that may rise from e.g. changes in redox 
conditions. In both Canadian Arctic sections, and at Festningen, 
aluminium (which we here use as a proxy for clay), increases sharply at 
the onset of the VOICE, dropping down slightly at the top of the 

Fig. 4. Organic carbon isotope ratio (δ13Corg), total mercury (THg), total organic carbon (TOC), mercury normalised against TOC (Hg/TOC), and selected elemental 
data for the Festningen section, Spitsbergen, spanning the latest Jurassic and Early Cretaceous. Graphic log, ages, and carbon isotope data shown as a line, are from 
Vickers et al. (2019). The stratigraphic column for the Agardhfjellet Formation is modified from Nunn (2007). The precise age divisions within the Kimmeridgian to 
Hauterivian interval is uncertain due again to a lack of biostratigraphically useful fossils, gaps in the carbon isotope record (Vickers et al., 2019), and poor correlation 
between Boreal and lower latitude (e.g. Tethyan) sites (Gradstein et al., 2020; Jelby et al., 2020a). Grey shaded blocks highlight (from bottom to top) the Volgian 
carbon isotope excursion (“VOICE” event), and the OAE1a CIE. The proposed interval for Weissert Event positive CIE is denoted by hatched bands. 
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(possible) Weissert Event interval (Figs. 3 and 4). Aluminium (Al) is 
more variable across the (proximal, delta front) sediments of the OAE1a 
interval at Festningen and Kvalvågen (Figs. 4 and 5). Sulphur (S) is 
variable in the VOICE and Weissert intervals in both Canadian Arctic 
localities and Festningen (between 0 and 3%; average c. 1%; Figs. 3 and 
4). Overall, S is much lower over the OAE1a interval at both Spitsbergen 
localities, with lowest values in the Kvalvågen section (on average <
0.1%; Fig. 5). Molybdenum (Mo) is on average lower in the Weissert 
Event interval than the VOICE interval in both Canadian Arctic localities 
and Festningen (Figs. 3 and 4). At Festningen, Mo is much more variable 
in the OAE1a interval, and, similar to S, is much lower at Kvalvågen than 
Festningen (Figs. 4 and 5). 

4.4. Mercury record 

Measured total mercury concentrations (Hg) are shown in Figs. 3 – 5. 
Due to variations in TOC content throughout the successions and the 
known association between Hg and TOC, we discuss the Hg as normal-
ised against TOC (Hg/TOC ratios) (e.g. Sanei et al., 2012; Grasby et al., 
2013). Average Hg/TOC across the VOICE interval in the Deer Bay 
Formation of Axel Heiberg is 72 ppb/wt% for the Buchanan Lake section 
and 55 ppb/wt% in the Geodetic Hills section, with minimal scatter in 
the data (Fig. 3). In strata above the VOICE interval, average Hg/TOC 
values are much higher (100 and 66 ppb/wt% for the Buchanan Lake 
and Geodetic Hills sections, respectively), with both datasets showing 
more variability (Fig. 3). 

At Festningen (Spitsbergen), the Upper Jurassic Agardhfjellet For-
mation records Hg of >100 ppb in the Oxfordian – Kimmeridgian strata, 
which drops to <50 ppb at the base of the VOICE interval before rising to 
around 250 ppb towards the top of the interval (Fig. 4). This enrichment 
is matched by similarly elevated TOC contents, resulting in a fairly 
consistent average Hg/TOC of around 50 ppb/wt% throughout the 
VOICE interval. Immediately above this CIE, Hg/TOC increases to above 
100 ppb/wt% across the uppermost Agardhfjellet – lower Rurikfjellet 
formations, including the interpreted stratigraphic position of the 
Weissert Event interval (Fig. 4). Following an interval of poor exposure 
and no sampling (Fig. 4), the uppermost Rurikfjellet Formation has an 
average Hg/TOC of 65 ppb/wt% which drops to an average of 15 ppb/ 
wt% across the unconformity at the Rurikfjellet – Helvetiafjellet for-
mation boundary, correlative with a similar decrease in absolute Hg 
concentrations (from >50 to <30 ppb). This low average Hg/TOC is 
maintained throughout the Helvetiafjellet and Carolinefjellet 

formations, with a small peak in the bottom half of the OAE1a interval 
and the very top of the succession (Fig. 6). 

At Kvalvågen (Spitsbergen), Hg/TOC is consistently below 100 ppb/ 
wt% (averaging 21 ppb/wt%) across both Helvetiafjellet and Caro-
linefjellet formations, but shows a small single-point peak to 81 ppb/wt 
% just below the OAE1a negative CIE, and reaching lowest values (c. 5 
ppb/wt%) coincident with the OAE1a positive δ13Corg shift (Fig. 5). 

4.5. Palynology 

None of the examined samples from Kvalvågen yielded 
palynomorphs. 

5. Discussion 

5.1. Correlations and biases 

5.1.1. Carbon isotope trends 
In the Festningen section, the negative CIE at − 86 m is interpreted to 

be the VOICE event, as this excursion matches the δ13Corg trends from 
Hammer et al. (2012), Koevoets et al. (2016), and Jelby et al. (2020a) for 
other localities across Spitsbergen, as well as the curves from the two 
Axel Heiberg localities (Galloway et al., 2020). In the Kvalvågen section, 
the observed excursions at 100 m and 144 m are interpreted to be the 
OAE1a negative CIE and following positive shift(s) (Fig. 5). The low 
magnitude of the negative CIE, and single, rather than double positive 
peak of the OAE1a compared to other δ13Corg records (e.g. Menegatti 
et al., 1998; Gröcke et al., 1999; Robinson et al., 2008; Herrle et al., 
2015) is believed to be due to the relatively sparse sampling. There are 
no indications that other factors such as OM sourcing play a major role 
as shown by correlations between δ13Corg and pyrolysis parameters for 
this locality (Table 2; Fig. 5). 

Possible biases in the Upper Jurassic – Lower Cretaceous δ13Corg 
records from both the Axel Heiberg and Spitsbergen Arctic successions 
have been assessed by Jelby et al. (2020a), Galloway et al. (2020), and 
Vickers et al. (2019). These studies found that the trends have not been 
significantly affected by the thermal maturity of the organic matter, or a 
change in the proportion of terrestrial vs marine sources. In the new 
δ13Corg data presented from the VOICE interval at Festningen, Spear-
man’s rank correlation analysis may indicate a weak but significant 
influence of thermal maturity (as measured by Tmax) on δ13Corg values (ρ 
=0.31, p < 0.005) (Tables 1 and 2). A negative correlation between HI 
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and δ13Corg (ρ = − 0.49, p < 0.001) may highlight biases in the carbon 
isotope record caused by changes in the source of OM to the sediment. 
Suan et al. (2015) propose employment of a correction to δ13Corg to 
remove the effect of amplification of δ13Corg trends by changing organic 
matter sources. When applied to the Upper Jurassic Festningen data, this 
correction does not change the magnitude of the VOICE, which remains 

around 5 ‰ in both uncorrected and corrected δ13Corg values (Fig. 7). 
Thus, we conclude that the uppermost Jurassic – lowermost Cretaceous 
negative shifts in δ13Corg in the Festningen section do represent a major 
disturbance in the Boreal carbon cycle (i.e. likely the VOICE), and is not 
simply an artefact of variable thermal maturity, or a changing source, of 
organic matter. In the Kvalvågen section (Helvetiafjellet and Caro-
linefjellet Formations), no significant correlation is observed between 
δ13Corg and Tmax, HI, OI (ρ < 0.35, p > 0.05; Table 2), indicating that 
variations in thermal maturity and/or terrestrial vs marine OM have not 
biased the δ13Corg record at that location (see supplementary data for full 
suite of analyses). 

5.1.2. Mercury concentrations and normalisation 
Whilst volcanism is generally regarded as a major control on Hg in 

the geological record, a number of other processes can affect concen-
trations of this element in sedimentary rocks (see overviews by Sanei 
et al., 2012, 2015; Grasby et al., 2013, 2019; Percival et al., 2021b). 
Although Hg is dominantly sequestered with OM in oxygenated marine 
conditions, Hg may occasionally be removed and buried via other 
pathways that are partially controlled by ambient redox conditions. 
Under anoxic-sulfidic conditions, Hg may be bound with sulphide 
minerals; yet in well‑oxygenated settings where both organic matter and 
pyrite are limited, Hg may be adsorbed onto clay minerals and/or Fe/Mn 
oxides (e.g. Sanei et al., 2012, 2015; Grasby et al., 2013, 2019). Changes 
in OM source may affect Hg sequestration in OM (Hammer et al., 2019; 
Them et al., 2019), as can post depositional processes such as weath-
ering (Charbonnier et al., 2020a). When interpreting the sedimentary 
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Fig. 6. Selected pyrolysis data. (A) Modified Van Krevelen plot showing OI vs HI as measured for the different intervals (VOICE, Weissert and OAE1a) and localities 
(Festningen and Kvalvågen on Spitsbergen compared to published data from Buchanan Lake and Geodetic Hills on Axel Heiberg, Galloway et al., 2020), excluding 
data where TOC was <0.2%. The majority of the samples fall into the fields for Type III kerogen (largely derived from continental plants) and oxidised, inert residual 
Type IV kerogen, with a smaller fraction falling into the fields for type I (lacustrine-sourced) and II (marine-sourced) kerogen (Tyson, 1995; Hunt, 1996). (B) Tmax vs 
HI for the intervals and sections as described for (A), with maturity zones and kerogen types (e.g. organic matter source) indicated. (C) Plot of Tmax vs Hg/TOC. No 
correlation is observed between the two variables at any of the sites. 

Table 2 
Spearman’s rank correlations between δ13Corg and measured variables, 
strength (ρ) and significance (p) for δ13Corg measurements made for this 
study on Spitsbergen, upper Agardhfjellet and lowest Rurikfjellet for-
mations at Festningen (VOICE interval) and the Kvalvågen section, col-
oured by strength of the strength and significance of the correlation (as 
given in Table 1). 

n ρ p n ρ p

S1 84 -0.15 0.172 39 0.16 0.341
S2 84 -0.27 0.011 39 0.12 0.480
S3 84 -0.28 0.009 39 0.31 0.053

Tmax 84 0.31 0.004 39 0.32 0.051
TOC 84 -0.17 0.133 39 0.09 0.566
HI 84 -0.49 0.000 39 0.18 0.280
OI 84 0.11 0.331 39 0.00 0.976
OI' 84 0.09 0.400 39 -0.09 0.596

Variable

δ13C

Festningen < 0 m Kvalvågen
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Hg record the influence of Hg sequestration pathways are important to 
consider as elevated availability of some host-phases (OM, S) can result 
in higher sedimentary Hg. Previous studies have shown that Hg anom-
alies, such as those from volcanic activity, can be resolved when nor-
malising to the appropriate sedimentary host-phase (e.g. Grasby et al., 
2019). Here, we test whether Hg is associated with organic matter 
(TOC), sulphur (S), clay minerals (Al) and Mn or Fe oxides. 

No single potential Hg carrier is observed to consistently show a 
strong correlation with Hg across all sites, although Hg is always weakly 
positively corelated with TOC (Table 3). Aluminium shows a weak 
correlation with Hg at Buchanan Lake (ρ =0.27; p = 0.001), but not at 
any of the other studied localities (Table 3); nor do any of the sites show 
correlation between Hg and Fe, and only the lowest interval at Fes-
tningen shows a weak correlation with Mn (ρ = − 0.28; p = 0.006). 
Together, these indicate that adsorption of Hg to clay minerals or Fe/Mn 
oxides was not significant in these successions. 

Sulphur (S) shows weak to moderate correlation in both Canadian 
arctic localities (ρ = 0.36 at Buchanan Lake and 0.45 at Geodetic Hills, 
both show p < 0.001), suggesting that here, part of the sedimentary Hg is 
bound with sulphides; yet for the time equivalent interval at Festningen, 
no correlation between Hg and S is observed (Table 3). The Kvalvågen 
locality on Spitsbergen also shows a moderate correlation between Hg 
and S (ρ = 0.66, p = 0.001), which could be consistent with some 
sulphide-bound Hg at this locality; yet the overall very low concentra-
tions of S at this locality (all <0.4%, on average < 0.1%) suggest that this 
might be an artefact. High Mo concentrations (>20 ppm) in sedimentary 
rocks may reflect anoxic conditions (e.g. Tribovillard et al., 2006; Lyons 
et al., 2009; Hlohowskyj et al., 2021). However, whilst there is a weak 
correlation between Hg and Mo at both Axel Heiberg sites and the lowest 
part of the Festningen section (Table 3), the Mo concentrations are 
consistently low (< 10 ppm excepting one outlier of c. 20 ppm; Figs. 3 

and 4) in these parts of the successions, well below that expected during 
deoxygenation (Tribovillard et al., 2006; Lyons et al., 2009). On Spits-
bergen, sedimentological evidence indicates that periodic low-oxygen 
conditions have affected the Volgian strata, as indicated by the occa-
sional presence of black shales (Koevoets et al., 2016), but the rest of the 
succession is well-oxygenated and much more proximal (Vickers et al., 
2019). 

Total organic carbon (TOC), often considered the dominant sedi-
mentary Hg-carrier, is only weakly correlated with Hg in all Arctic lo-
calities (0.2 ≤ ρ ≥ 0.39; Table 3), and this is only strongly significant (p 
< 0.001) in the Buchanan Lake section and lowest part of the Festningen 
section (< 200 m). Changes in organic matter type (e.g. marine vs 
terrestrial) can affect the sedimentary Hg record (e.g. Hammer et al., 
2019; Them et al., 2019), due to higher relative Hg/TOC in terrestrial 
OM. However, only in the Canadian Arctic localities does Hg show weak 
to moderate correlation with HI (p = − 0.43; ρ < 0.001 at Buchanan 
Lake; p = 0.29; ρ =0.006 at Geodetic Hills), which may be used as a 
proxy for OM source (Fig. 6). At Festningen in the VOICE-Weissert in-
terval, there is a moderate negative correlation between Hg and OI. This 
may reflect some influence from changing OM source, possibly not also 
observed in the HI signal since the very high maturity of the sediments 
may have altered the original HI signal (e.g. Tyson, 1995; Hunt, 1996). 

In both Canadian Arctic and Spitsbergen localities, the Mesozoic 
succession is thermally mature to post-mature, as indicated by the high 
Tmax of pyrolysis data (Tmax = c. 440 ◦C at Festningen, Buchanan Lake 
and Geodetic Hills; 472 ◦C at Kvalvågen) (Fig. 6). Increasing maturity 
has been suggested to potentially bias Hg/TOC ratios towards higher 
values, due to the preferential removal of organic carbon (Charbonnier 
et al., 2020a). Whilst there is a strong gradient in maturity of sediments 
across Spitsbergen, as reflected in the different average Tmax from Fes-
tningen vs Kvalvågen, there is limited stratigraphic variation in thermal 

Fig. 7. (A) HI plotted against δ13Corg across the VOICE interval at Buchanan Lake, Geodetic Hills and Festningen, including lines of best fit showing some correlation 
between the two variables in the Buchanan Lake Geodetic Hills and Festningen samples. (B) Overlaying the VOICE excursion from Buchanan Lake, Geodetic Hills and 
Festningen before and after application of the Suan et al. (2015) correction for variable organic matter sourcing. 

Table 3 
Spearman’s rank correlations between Hg and measured variables, and Hg/TOC and measured variables, strength (ρ) and significance (p) for 
the two Axel Heiberg and two Spitsbergen sections, coloured by strength and significance of the correlation (as given in Table 1). 

M.L. Vickers et al.                                                                                                                                                                                                                              



Palaeogeography, Palaeoclimatology, Palaeoecology 613 (2023) 111412

12

maturity within individual sections. Indeed, neither of the Spitsbergen 
sites (Festningen or Kvalvågen) show a correlation between Hg and Tmax 
(ρ ≤ 0.21; p > 0.1; Table 3). On Axel Heiberg, in the Buchanan Lake 
section there is a moderate correlation between Tmax and Hg (ρ = − 0.44, 
p < 0.001), but no such relationship is observed for samples from 
Geodetic Hills (ρ = − 0.18, p = 0.096). 

The weak correlation between Hg and TOC implies that normalising 
the Hg to TOC in this case may not remove a major TOC-induced trend as 
intended. However, anoxia is not believed to have characterised the 
depositional settings in any localities (e.g. Galloway et al., 2020; Vickers 
et al., 2019), and there is a lack of correlation with clay mineral elements 
(Table 3). Further, the successions all contain significant amounts of OM 
(generally > > 0.5%) and, although weak, all sections show positive 
correlations between Hg and TOC. This suggests that organic carbon is 
still expected to be the major host phase for Hg in these sediments. Thus, 
for the purposes of global comparisons, we present the data normalised 
to TOC in Fig. 8. 

5.2. Early Cretaceous volcanism and carbon cycling in the Boreal Realm 

The time interval spanned by this study, latest Jurassic to Early 
Cretaceous, includes four episodes of large-scale volcanism, the sub-
aerial emplacement of the Paraná-Etendeka Traps and of the High Arctic 
LIP, and submarine emplacement of the Shatsky Rise and the Greater 
Ontong-Java Plateau. The emplacement of these LIPs approximately 

coincides with major perturbations in regional and global carbon 
isotope records. The Shatsky Rise was emplaced over a shorter time 
period than the observed Boreal-wide VOICE event, though within the 
same time interval (Mahoney et al., 2005; Geldmacher et al., 2014). The 
globally-recognised Weissert Event CIE (late Valanginian – early Hau-
terivian) occurred at around the same time as the Paraná-Etendeka traps 
were active (Weissert and Erba, 2004; Duchamp-Alphonse et al., 2007; 
Martinez et al., 2015; Gomes and Vasconcelos, 2021); and the OAE1a 
CIE (early Aptian) coincides with both HALIP and the Greater Ontong- 
Java plateau (Jones et al., 1994; Bralower et al., 1997; Jones and Jen-
kyns, 2001; Tejada et al., 2009; Bottini et al., 2012; Evenchick et al., 
2015; Dockman et al., 2018; Bédard et al., 2021; Martínez-Rodríguez 
et al., 2021; Percival et al., 2021a; Galloway et al., 2022). 

For the Late Jurassic, it is unlikely that such a distal location as the 
Boreal Realm would record a Hg signature from the submarine volca-
nism at Shatsky Rise, given that the relatively short residence time of Hg 
in seawater hinders distribution of the element far from a submarine 
source (see Bowman et al., 2015 Scaife et al., 2017; Percival et al., 2018, 
2021a). Instead, any Hg emitted from Shatsky Rise volcanism would 
likely be most clear at sites proximal to that LIP. Yet, the dearth of Hg 
studies from across the Jurassic–Cretaceous boundary interval from such 
archives (Mahoney et al., 2005; Geldmacher et al., 2014) makes it 
difficult to interpret the Boreal records in the context of Shatsky Rise 
eruptions. For the Arctic records examined here, no significant change in 
Hg or Hg/TOC values into the VOICE event is observed in the Festningen 

Fig. 8. Comparison of Upper Jurassic to Lower Cretaceous Hg/TOC records (excluding data where TOC was <0.2%) from the Boreal Realm (this study) to those from 
the Tethyan Realm (Charbonnier et al., 2017; Charbonnier and Föllmi, 2017; Charbonnier et al., 2018), plotted against approximate time (Gradstein et al., 2020). The 
LIPs ages from Dockman et al. (2018); Gomes and Vasconcelos (2021); Kasbohm et al. (2021); Bédard et al. (2021); and Galloway et al. (2022). Due to the poor 
biostratigraphic record from the Arctic sections, and uncertainties in the correlation between the Boreal Realm and lower latitudes, the correlation between sites is 
based on carbon isotope stratigraphy only. The dashed lines indicate the stratigraphic intervals with greatest age uncertainty in the Boreal records, with the cross- 
hatched interval indicating the possible hiatus in the Arctic records (here not assumed). 
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section, and fairly constant values are observed throughout the VOICE 
interval in both Axel Heiberg sections (Figs. 3, 4 and 8). Note that on 
Axel Heiberg, the record starts too high in the stratigraphy to unques-
tionably capture the onset of the VOICE (Fig. 3). Our records do not 
exclude the possibility of distal submarine volcanism playing a causal 
role, as this may only lead to a local-regional Hg increase (e.g. Percival 
et al., 2018). 

Into the hypothesised Weissert Event interval, all three localities 
(Buchanan Lake, Geodetic Hills and Festningen) show an increase in Hg 
and Hg/TOC (Figs. 3 and 4), suggesting a volcanic source for the Hg in 
this interval. However, detailed interpretation is complicated by the 
poor age constraints for the studied Arctic sections across the Jurassic- 
Cretaceous boundary, leading to difficulties locating the Weissert 
Event CIE in all three sections (Figs. 3 and 4; Galloway et al., 2020; Jelby 
et al., 2020a, 2020b). Biozone correlations between the Boreal Realm 
and lower latitudes (e.g. Tethyan Realm) are uncertain due to provin-
cialism and lack of faunal turnover in this interval (e.g. Gradstein et al., 
2020). An increase in Hg/TOC is observed in both Spitsbergen and Axel 
Heiberg localities after the VOICE, which may be synchronous with the 
start of the Weissert Event positive CIE (Figs. 3 and 4; Jelby et al., 
2020a). In the Festningen section, this enrichment occurs across an in-
terval featuring evidence of tectonism, possible hiatuses, and litholog-
ical change. In the Axel Heiberg succession, the Weissert Event was 
previously interpreted as occurring in the upper part of the Deer Bay 
Formation (Valanginian), based on stratigraphic position above fossils 
indicative of early Valanginian age in the Buchanan Lake section (Fig. 3; 
Galloway et al., 2020), and the location of small (< 1 ‰) δ13Corg ex-
cursions. Yet, the Weissert CIE is consistently >1.5 ‰ in carbonate 
(δ13Ccarb) records (Price et al., 2016 and references therein), and 
amplified to c. 4–5 ‰ in δ13Corg records (Gröcke et al., 2005; Jelby et al., 
2020a). Going by carbon isotope stratigraphic correlation with Spits-
bergen of the large excursion (> 3 ‰; Jelby et al., 2020a), the Weissert 
Event interval may start just after the peak negative of the VOICE 
(Fig. 3). A linear time-calibrated correlation based on carbon-isotope 
stratigraphy for the Arctic successions is presented in Fig. 8, yet this 
must be considered as a best estimate in the absence of stronger age 
constraints. 

The Hg records from lower latitudes do not necessarily show similar 
trends. In the Vocontian Basin (France; Charbonnier et al., 2017, 2018) 
Hg/TOC ratios peak sharply just prior to the peak of the Weissert Event, 
but this peak is of much shorter duration and indeed is only defined by a 
few data points (Fig. 8). Yet other Tethyan localities show a peak in Hg/ 
TOC at the climbing limb of the Weissert Event (e.g. Polish Basin, 
Charbonnier et al., 2017; Fig. 8). A recent study of the Hg record across 
the Argo Abyssal Plain (Indian Ocean; Charbonnier et al., 2020b), shows 
a similar trend to that seen in the Boreal and Tethyan basins, although it 
is of much smaller magnitude (Fig. 8). Mercury peaks occur at the onset 
of the Weissert Event CIE and drop to near zero at the CIE peak (Char-
bonnier et al., 2020b). Such findings are consistent with increased flux 
of mercury to the Earth’s surface synchronous with the start of the 
Weissert Event, which may be related to subaerial Paraná-Etendeka 
volcanism, as recent geochronological studies suggest (e.g. Gomes and 
Vasconcelos, 2021). However, some of the Paraná-Etendeka volcanics 
are dated as occurring later (Rocha et al., 2020) or earlier (Dodd et al., 
2015) than the onset of the Weissert Event. Consequently, further work 
is needed to resolve uncertainties in the timescales of both the Paraná- 
Etendeka volcanism and Valanginian stratigraphic record (particularly 
outside of the Tethys) in order to confirm the link between these two 
phenomena (Gradstein et al., 2020). 

The OAE1a CIE is unequivocally expressed in the organic carbon 
record at multiple localities across Spitsbergen (Fig. 8; Vickers et al., 
2016, 2019; Midtkandal et al., 2016), and it is also recorded in the Ca-
nadian Arctic (Herrle et al., 2015; Dummann et al., 2021). As previously 
mentioned, this CIE is associated with the emplacement of two LIPs – the 
largely subaerial and intrusive HALIP (Dockman et al., 2018; Galloway 
et al., 2022) and the submarine Greater Ontong-Java plateau (Kasbohm 

et al., 2021) (Figs. 1and8). Any volcanically-driven Hg perturbations 
observed in the Boreal Realm would be expected to arise from the 
nearby HALIP rather than the distal, submarine Greater Ontong-Java 
Plateau (Fig. 1; Percival et al., 2021a). 

In the three Spitsbergen sections measured (Festningen and Kval-
vågen, this study; and the DH-1 borehole, Percival et al., 2021a), Hg/ 
TOC is slightly raised at the onset of the OAE1a CIE, although the shape 
of the Hg/TOC curves varies between these sites, and the Hg/TOC spike 
is much clearer in the DH-1 borehole record (Percival et al., 2021a) than 
in the two sites presented here. This may be due, in part, to differential 
thermal overprinting, and partial Hg sequestration into S at the Kval-
vågen locality (See section 5.1.2). 

The variability in Hg/TOC records from across the globe lead Per-
cival et al., 2021a to conclude that the Greater Ontong-Java Plateau was 
most likely the dominating LIP at the onset of OAE1a, and that the 
smaller disturbances in the Boreal and Tethyan records may have been 
linked to pulses of HALIP volcanism. Since both HALIP and Greater 
Ontong-Java Plateau volcanism are dated radiometrically as having 
peaked simultaneously at around 122 Ma (Dockman et al., 2018; Kas-
bohm et al., 2021), it would be expected that Hg/TOC records from both 
the Boreal Realm and Pacific might show correlative peaks. However, a 
spore spike is documented in a succession of Isachsen Formation 
exposed at Glacier Fiord immediately prior to OAE1a is believed to be 
related to landscape disturbance associated with extrusive volcanism of 
the HALIP and interpreted to occur in the latest Barremian, indicating 
HALIP activity prior to OAE1a (Galloway et al., 2022). The peak in Hg/ 
TOC observed prior to the negative peak of the OAE1a in the DH-1 
borehole and Kvalvågen records from Spitsbergen supports this 
finding. The raised Hg/TOC across the negative peak of the CIE in all 
three Spitsbergen localities is consistent with continued HALIP activity 
coincident with the OAE1a (and Greater Ontong-Java Plateau volca-
nism) (Fig. 8). 

6. Conclusions 

This study set out to examine the Boreal Realm sedimentary Hg re-
cord across three carbon isotope excursions (CIEs) in the Upper Jurassic 
and Lower Cretaceous, from modern-day Arctic localities, in order to 
assess the possible link between the CIEs and particular large-scale 
volcanic events. Parts of the records show some correlation with 
elemental and sequential pyrolysis parameters, indicating some influ-
ence from changing redox conditions and carbon sources across the 
Jurassic-Cretaceous boundary interval. Nevertheless, we can still inter-
pret the following: 1) The Upper Jurassic – lowermost Cretaceous Vol-
gian Isotopic Carbon Excursion (VOICE) is not associated with any 
significant perturbations in the Hg records in either the Axel Heiberg or 
Spitsbergen records, suggesting that the VOICE did not result from 
localised Arctic volcanic eruptions. However, these data do not discount 
the possibility of distal submarine volcanism, such as the emplacement 
of the Shatsky Rise. 2) There are elevated Hg and Hg/TOC ratios 
correlative with the proposed stratigraphic position of the Weissert 
Event CIE in both Axel Heiberg and Spitsbergen, which may have been 
sourced from the Paraná-Etendeka subaerial volcanism. Yet, this in-
crease in Hg is also correlative with a change in lithology and a possible 
hiatus on Spitsbergen, leaving other possible explanations for the Hg 
increase, particularly given the potential uncertainties in the strati-
graphic model. 3) Two of the three Hg records from Spitsbergen across 
OAE1a show increased Hg/TOC just prior onset of the OAE1a CIE. This 
is consistent with recent work which suggests that HALIP activity began 
in the Late Barremian, preceding that of the Greater Ontong-Java 
Plateau. The shapes of the Hg/TOC curves across this interval vary 
spatially across Spitsbergen, and this is believed to be due to a combi-
nation of factors, such as variable proximity and perhaps thermal 
maturity. The much higher thermal maturity at the Kvalvågen site 
compared to the other localities may have partially overprinted the Hg/ 
TOC at this locality. 

M.L. Vickers et al.                                                                                                                                                                                                                              



Palaeogeography, Palaeoclimatology, Palaeoecology 613 (2023) 111412

14

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

I have shared the data as excel files in the Attach Files stage. 

Acknowledgements 

Funding for fieldwork for this study was provided by a Ph.D. schol-
arship from the University of Plymouth, U.K. with additional funding to 
MLV for field campaigns to sample the Lower Cretaceous of Festningen 
from the Geological Society, London, UK (Gloyne Outdoor Geological 
Research fund, 2014); to MLV, MEJ and IM from the National 
Geographic Society’s Committee for Research and Exploration grant 
number CP-038R-17; and to MLV from The British Sedimentological 
Research Group Gill Harwood Memorial Fund (2015), and an American 
Association of Petroleum Geologists grant-in-aid (William E. Gipson 
Named Grant, 2015). We kindly thank Trude Hohle for invaluable field 
assistance for MLV, MEJ and KKS in the 2018 campaign at Kvalvågen, 
Spitsbergen, and Dr. Meriel FitzPatrick for field assistance during the 
2014 field campaign. Field work to collect samples from the uppermost 
Jurassic-lowermost Cretaceous portion of the Festningen section was 
supported by Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) 
[Federal Institute for Geosciences and Natural Resources] under the 
Circum-Arctic Structural Events (CASE) program in 2015 (lead Dr. 
Karsten Piepjohn). Collections were made by JMG with assistance from 
SG and LR. Canadian field work was supported by the GeoMapping for 
Energy and Minerals (GEM) Program (Natural Resources Canada, 
Geological Survey of Canada) with funding to JMG. Collections were 
made by JMG with support from Dr. Lisa Neville (GSC Calgary), Kyle 
Sulphur (GSC Calgary), and Pilipoosie Iqaluk (Hamlet of Resolute Bay, 
NU) in 2015. Dr. Keith Dewing is thanked for HALIP project activity 
management. Logsitics support for this work was provided by the Polar 
Continental Shelf Program (NRCan) and UHL Helicopters (Pilot Lorne 
Pike). We are grateful for the staff of the Environment and Climate 
Change Canada Eureka Weather Station and, in particular, Station 
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Nejbert, K., Krajewski, K.P., Dubińska, E., Pécskay, Z., 2011. Dolerites of Svalbard, north- 
West Barents Sea Shelf: age, tectonic setting and significance for geotectonic 
interpretation of the High-Arctic large Igneous Province. Polar Res. 30, 7306. 

Nunn, E.V., 2007. Late Jurassic to early cretaceous stable isotope and geochemical 
records from the northern high latitudes: implications for palaeoclimate. University 
of Plymouth. PhD thesis.  

Olaussen, S., Grundvåg, S.A., Senger, K., Anell, I., Betlem, P., Birchall, T., Braathen, A., 
Dallmann, W., Jochmann, M., Johannessen, E.P., Lord, G., 2022. The Svalbard 
Carboniferous to Cenozoic Composite Tectono-stratigraphic element. Geol. Soc. 
Lond. Mem. 57 (1), M57–M2021. 

Parkinson, I.J., Schaefer, B.F., Arculus, R.J., 2002. A lower mantle origin for the world’s 
biggest LIP? A high precision Os isotope isochron from Ontong Java Plateau basalts 
drilled on ODP Leg 192. Geochim. Cosmochim. Acta 66 (15A), A580. 

Peate, D.W., 1997. The parana-etendeka province. In: Geophysical Monograph-American 
Geophysical Union, 100, pp. 217–246. 

Percival, L.M., Bergquist, B.A., Mather, T.A., Sanei, H., 2021b. Sedimentary mercury 
enrichments as a tracer of Large Igneous Province volcanism. In: Large Igneous 
Provinces: A Driver of Global Environmental and Biotic Changes, pp. 247–262. 

Percival, L.M., Jenkyns, H.C., Mather, T.A., Dickson, A.J., Batenburg, S.J., Ruhl, M., 
Hesselbo, S.P., Barclay, R., Jarvis, I., Robinson, S.A., Woelders, L., 2018. Does large 
igneous province volcanism always perturb the mercury cycle? Comparing the 
records of Oceanic Anoxic event 2 and the end-cretaceous to other Mesozoic events. 
Am. J. Sci. 318 (8), 799–860. 

Percival, L.M., Ruhl, M., Hesselbo, S.P., Jenkyns, H.C., Mather, T.A., Whiteside, J.H., 
2017. Mercury evidence for pulsed volcanism during the end-Triassic mass 
extinction. Proc. Natl. Acad. Sci. 114 (30), 7929–7934. 

Percival, L.M.E., Tedeschi, L.R., Creaser, R.A., Bottini, C., Erba, E., Giraud, F., 
Svensen, H., Savian, J., Trindade, R., Coccioni, R., Frontalini, F., 2021a. Determining 
the style and provenance of magmatic activity during the Early Aptian Oceanic 
Anoxic Event (OAE 1a). Global and Planetary Change 200, 103461. 

Polteau, S., Hendriks, B.W., Planke, S., Ganerød, M., Corfu, F., Faleide, J.I., 
Midtkandal, I., Svensen, H.S., Myklebust, R., 2016. The early cretaceous Barents Sea 
Sill complex: distribution, 40Ar/39Ar geochronology, and implications for carbon 
gas formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 83–95. 

Price, G.D., Főzy, I., Pálfy, J., 2016. Carbon cycle history through the Jurassic-cretaceous 
boundary: a new global δ13C stack. Palaeogeogr. Palaeoclimatol. Palaeoecol. 451, 
46–61. 

Price, G.D., 2003. New constraints upon isotope variation during the early cretaceous 
(Barremian–Cenomanian) from the Pacific Ocean. Geol. Mag. 140 (05), 513–522. 

Robinson, S.A., Heimhofer, U., Hesselbo, S.P., Petrizzo, M.R., 2017. Mesozoic climates 
and oceans–a tribute to Hugh Jenkyns and Helmut Weissert. Sedimentology 64 (1), 
1–15. 

Price, G.D., Passey, B.H., 2013. Dynamic polar climates in a greenhouse world: Evidence 
from clumped isotope thermometry of Early Cretaceous belemnites. Geology 41 (8), 
923–926. 

Robinson, S.A., Clarke, L.J., Nederbragt, A., Wood, I.G., 2008. Mid-cretaceous oceanic 
anoxic events in the Pacific Ocean revealed by carbon-isotope stratigraphy of the 
Calera Limestone, California, USA. Geol. Soc. Am. Bull. 120 (11–12), 1416–1426. 

Rocha, B.C., Davies, J.H., Janasi, V.A., Schaltegger, U., Nardy, A.J., Greber, N.D., 
Lucchetti, A.C.F., Polo, L.A., 2020. Rapid eruption of silicic magmas from the Paraná 
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