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Quantum electrodynamics predicts that the quantum vacuum is birefringent, but due to the very small
cross-section this is yet to be confirmed by experiment. Vacuum birefringence arises as the elastic part of
photon-photon scattering; the inelastic part is Breit-Wheeler pair production. We outline how measure-
ments of the photon-polarized nonlinear Breit-Wheeler process can be used to infer a measurement of
all-order, nonlinear vacuum birefringence. As an example scenario, we calculate the accuracy of such a
measurement for parameters anticipated at upcoming laser-particle experiments.
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I. INTRODUCTION

The quantum vacuum, exposed to strong electromagnetic
fields, can behave as a refractive medium. The propagation
of probe photons then becomes polarization-dependent, a
phenomenon named vacuum birefringence. Here “vacuum”
emphasizes that it is virtual electron-positron pairs which
affect birefringence, as opposed to distributions of real
matter in e.g. optics. Vacuum birefringence is a manifestion
of polarized photon-photon scattering first predicted in the
1930s [1], but remaining unobserved. Linear, unpolarised
scattering has been observed in ultraperipheral heavy-ion
collisions at ATLAS [2,3] and CMS [4], and higher-order
effects observed in unpolarized Delbrück scattering [5,6].
There have been many suggestions for how to measure
polarized scattering via collisions of intense laser pulses
[7,8], and for how to measure vacuum birefringence using
X-ray photons to probe intense optical lasers [9,10], which is
the focus of the planned HIBEF experiment [11]. Such
experiments require sensitive X-ray polarimetry and face a
significant challenge in separating signal from background.
Suggestions for how to counter this, using e.g. shaped beams
[12], has seenmuch attention in recent years. At similar field
strengths but higher photon energies, vacuum birefringence

becomes nonlinear, including all orders of interaction
between the virtual pair and the intense background.
Although there are suggestions for how to measure this
directly [13–15], direct approaches must also address the
difficulty of measuring the polarization of high-energy
photons.
Here we propose a way to overcome these challenges

and measure vacuum birefringence indirectly, via experi-
ments on the, at first sight, very different process of pair
production from polarized photons colliding with an
intense laser, or “nonlinear Breit-Wheeler” (NBW) [16].
NBW is the target of several upcoming experiments
[17,18]; the unpolarized process has so far only been
observed in the E144 experiment [19,20] as part of the
two-step trident process, while the polarised linear process
was recently measured by the STAR Collaboration in
ultraperipheral heavy-ion collisions [21]. (See also
[22,23] for discussions of vacuum birefringence in the
emissions of strongly magnetized neutron stars.) Specifi-
cally, we will show how the (already planned) LUXE
experiment [17] can be simply modified to provide an
indirect measurement of all-order, nonlinear vacuum bire-
fringence i.e. probing photon-photon scattering beyond the
linear regime previously investigated [21]. As we will see,
this can be achieved by swapping the planned amorphous
bremsstrahlung target with a diamond crystal radiator target
to produce coherent bremsstrahlung (CB) as the source of
photons (as has been demonstrated at similar photon
energies in e.g. GlueX [24]).
Our proposal exploits two fundamental properties of

quantum field theory. First, unitarity (the optical theorem)
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relates the number of produced pairs to the imaginary part
of the photon forward scattering amplitude. Second,
analyticity (Kramers-Kronig relations, routinely used in
nonlinear optics [25]) dictates the real part of the amplitude
given the imaginary part. Thus, as we make precise below, a
measurement of pair yield in polarized NBW implies a
measurement of polarized photon-photon scattering, and
thereby nonlinear vacuum birefringence. There are several
advantages of such a scheme over matterless vacuum
birefringence experiments; in high-energy laser-particle
experiments, the pair production cross-section is orders
of magnitude larger than that for elastic photon-photon
scattering, and positrons are easier to measure than photons
within a photon background, circumventing the “signal/
noise” problem.

II. THEORY

Consider the collision of a high-energy photon and an
intense laser pulse. The probability of pair creation by the
photon is related, via the optical theorem, to the imaginary
part of the photon forward scattering amplitude. Working to
leading order in the fine-structure constant, α, but treating
the interaction with the intense laser exactly, the optical
theorem can be expressed as

ð1Þ

in which j represents the state of the photon and the double
line represents “dressed” electrons/positrons interacting
with the intense laser. Now, for every complex function
FðzÞ (analytic in the upper-half z-plane and vanishing
faster than 1=jzj as jzj → ∞) its real Fr and imaginary Fi

parts are related by FrðzÞ ¼ H½Fi; z� in which H½Fi; z� ¼
π−1PV

R
dz0Fiðz0Þ=ðz0 − zÞ is the Hilbert transform. Thus,

if z represents some appropriate variable in the NBW
probability, then the transform w.r.t. z gives the real part of
the photon forward scattering amplitude as, schematically

ð2Þ

Combining (1) and (2), we obtain the full one-loop
amplitude from tree-level NBW. This is related to work
by Toll [26], who applied Kramers-Kronig to the vacuum
“refractive indices” (see below); however, we need to
extend these formal ideas to make them experimentally
relevant. In particular we need to identify suitable F and z,
and we need to know how to perform the Hilbert trans-
formation in z given some experimental data on F. To
achieve this we exploit the behavior of physical observables
in the parameter regime of interest.
To produce a detectable number of pairs via NBW, one

ideally requires the strong-field parameter of the photon χ,

to satisfy χ ≳ 1 where χ ¼ jej
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðk · F Þ2

p
=m3 (m and

e < 0 are the electron mass and charge, k is the photon
momentum, F μν the Faraday tensor of the laser and we set
ℏ ¼ c ¼ 1). We also work in the intensity regime for which
the locally constant field approximation applies [27,28]—
this means the NBW probability in a focused laser pulse
can be obtained by integrating a local rate, calculated in a
constant crossed field, with the pulse profile [29,30]. This
requires that the laser intensity parameter ξ satisfies ξ ≫ 1

where ξ ≔ χ=η and η ¼ k · ϰ=m2 with ϰ the characteristic
wavevector of the laser. In this regime, the polarized NBW
rate depends nontrivially only on the strong-field parameter
χ: our goal therefore is to apply the Hilbert transform in χ.
(Indeed it has been shown that NBW at small χ can be
Hilbert transformed to yield a resummation of the small-χ
expansion of the real part of the vacuum refractive
index [31].)
Now, let Mij be the amplitude for a photon to scatter

from polarization state jii to jji. If j ¼ 1; 2 represent a basis
of linear polarizations transverse to the laser propagation
direction, then the optical theorem relates the amplitudes
Mjj to the probability Pj of NBW from a photon in
polarization state jji. Furthermore in the regime of interest
the helicity flip amplitude Mþ− (where j�i ¼ ðj1i�
ij2iÞ= ffiffiffi

2
p

) obeys

2Mþ− ¼ M11 −M22 ð3Þ

since j1i and j2i are polarization eigenstates and
M12 ¼ M21 ¼ 0. Thus, the optical theorem applied to
P1 − P2 is proportional to the imaginary part of Mþ−,
while the Hilbert transform is proportional to the real part:

Thus our Hilbert transform scheme gives access to “flip”
and “no-flip” scattering amplitudes. (The kinematics of
forward scattering yields a simple relationship between
amplitudes and probabilities Pij for the photon to change
state from jii to jji, namely Pij ¼ ðα=ηÞ2jMijj2.)

III. TOWARD EXPERIMENT

Now, probe photon distributions in experiment are
typically broadband, implying many different values of χ
impact the pair yield. Therefore, the Hilbert transform will
be over the maximum value of χ, which we denote χ0 i.e.
χ ∈ ½0; χ0�. We note in particular that it is generally easier to
repeat the experiment at different χ0 than at e.g. probe
photon energy, because the former can be achieved simply
by defocusing the laser, while the latter is determined by the
photon source. Performing the Hilbert transform in χ0 thus
allows it to be evaluated with more experimental data
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points, providing a more accurate inference of vacuum
birefringence.
The optical theorem and Kramers-Kronig relations

described above feature dressed propagators, including
all orders of interaction between the field and the polarized
virtual pair. This is easily made explicit: the scattering
amplitude can be expanded in powers of (within the locally
constant field approximation) χ2n for n ≥ 1, and successive
terms correspond to vacuum polarization involving 2n
photons from the background, as illustrated in Eq. (4).
When χ≪1, all orders of this interaction must be taken into
account: in this regime vacuum polarization effects are
nonlinear. This is to be contrasted with the weak-field
Heisenberg-Euler result, corresponding to only the leading-
order term of (4), which is insufficient to describe χ > 1
vacuum polarization.

ð4Þ

We now make these ideas precise, beginning with an
estimate for the number of pairs Nj, produced when a
distribution of photons, ρj, in polarization state jji, collides
with a focused laser pulse. Treating the pulse as, locally, a
plane wave, one integrates the plane wave NBW proba-
bility with the photon distribution, over the transverse
structure of the pulse [32,33], which yields

Nj ¼
2α

η

Z
d2x⊥

Z
1

0

ds ρjðsÞ
Z

dφ
∂Mi

jj½χðφÞ�
∂φ

;

where x⊥ are the transverse coordinates, φ ¼ ϰ · x the laser
phase, and s ∈ ½0; 1� is the photon lightfront momentum
fraction—the ratio of energies η=η0, for η0 the maximum
value of η. (It is assumed that the photon distribution does
not vary greatly over the focus of the laser pulse.) Finally,
Mi

jj is the imaginary part of the photon forward scattering
amplitude, which is, explicitly [34],

∂Mjj

∂φ
¼ 2

3

Z
∞

4

dv
iπ

1

z
v − 4þ 3j

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðv − 4Þp

Z
dt teizðχÞtþit3=3; ð5Þ

for j ¼ 1; 2 and where zðχÞ ¼ ðv=χÞ2=3.
Writing χ0 ¼ η0ξ0, where ξ0 is the maximum value of ξ,

so that χðs;φ;x⊥Þ ¼ sη0ξðφ;x⊥Þ ¼ χ0sfðφ;x⊥Þ (where f
describes the spacetime dependence of the laser), we see
that χ0 is the single nontrivial input parameter for calculat-
ing the total number of pairs N ¼ N1 þ N2. To make this
explicit, we define Fðχ0Þ ¼ N=η0ξ20 which depends solely
on χ0. This is the function which we will Hilbert transform.
(Note that this choice of F assists convergence of the

numerical Hilbert transform as Fðχ0Þ → 0 quicker than
1=jχ0j as χ0 → ∞.) Then suppose, for a range of χ0 values,
the number of pairs has been experimentally measured to
produce a dataset for the pair yield, equivalently Fiðχ0Þ.
This dataset is then linearly interpolated to acquire a curve
F i, on which one can perform a numerical Hilbert trans-
form to obtain the estimate Frðχ0Þ ≔ H½F i; χ0� of the
actual real part Frðχ0Þ of the elastic photon-scattering
process. The accuracy of Frðχ0Þ as an approximation to
Frðχ0Þ naturally depends on how much of the curve FiðχÞ
is known; this means the range of χ that Fi is measured over
in experiment, as well as the accuracy of the individual
measurements. We illustrate this with an idealized example
before moving on to the actual setup of experimental
interest.
Suppose the distribution of photons is monoenergetic

and completely polarized in one state, and suppose the laser
is modeled as a constant crossed field (a zero frequency
plane wave). We construct the vacuum polarization Fr and
pair yield Fi quantities in this setup. We pick a range of χ0
starting at ξ0 ¼ 2.5 (χ0 ¼ 0.5), within the region of validity
of the locally constant field approximation [30] which we
also use for our main results, below. A maximum value of
χ0 ¼ 10 is chosen. Performing the Hilbert transform of the
pair data results in the approximation Fr to the vacuum
polarization effect plotted in Fig. 1 (see Appendix A for
details of this step). There is overall good agreement, even
though the numerical Hilbert transform slightly under-
predicts the true value of Fr. This is due to the fact that the
parts of Fi lying outside the measured region are missing

FIG. 1. A toy model. The real and imaginary parts of F1 (solid
curves) normalized to its weak-field limit, assuming monoener-
getic, completely polarized photons propagating in a constant
crossed field. (The curves for F2 are similar up to an overall
constant scale factor.) The blue/filled circles sample the imagi-
nary part, representing the measured pair yield, which is input
data for the numerical Hilbert transform. The red crosses are the
output data Fr

1, which estimates the real part Fr
1. The bands model

a 10% (systematic) uncertainty in the pair yield measurement.
The leading-order Heisenberg-Euler approximation to F1 yields
the horizontal dashed line, included to emphasize that we work
beyond the weak-field regime.
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from the transform—however, their contribution is small.
We also see that if there is an uncertainty in the measured
pair yield on the order of 10%, a comparable level of
uncertainty is transferred to the prediction of the vacuum
polarization effect. The curves in Fig. 1 are normalized to
their weak-field limit (which is purely real since pair
creation is suppressed in the limit). In fact the weak-field
approximations to F are straight lines, hence Fig. 1
emphasizes that, both here and below, we go beyond the
weak-field approximation.

IV. SETUP

To assess our scheme in a realistic case, we turn to a
setup similar to the planned LUXE experiment [17], in
which electron-positron pairs will be generated via the
nonlinear Breit-Wheeler process. This will be achieved by
colliding a 16.5 GeVmonoenergetic beam of electrons with
a fixed amorphous target to produce a source of brems-
strahlung photons that will collide with a weakly focused
laser pulse. (More details about how an experimental error
of 10% can be achieved are given in the LUXE Conceptual
Design Report [17].) Here we consider how a minimal
modification of this setup can allow for an indirect
measurement of nonlinear vacuum birefringence. Instead
of the amorphous target, we suggest using a thin-target
diamond radiator, which produces partially polarized CB.
The bremsstrahlung photons then collide at a fixed angle
with a focused laser pulse, and the overlap with the focal
spot provides natural collimation of the photons. A specific
collimation is assumed in calculation of the CB spectrum;
details of this, and how the yield for partially polarized
photons is inverted to acquire the yield from photons in
state jji, are given in Appendices B and C respectively.
The scenario is sketched in Fig. 2. We now present three
example results.

V. LEADING-ORDER VACUUM BIREFRINGENCE

The envisaged setup using CB photons colliding with a
focused Gaussian laser pulse, combined with a Hilbert
transform of the measured pair yield, allows us to infer the

full amplitude for photon helicity flip using (3). Define the
fraction R ¼ 2Mr

�=ðMr
11 þMr

22Þ which corresponds, in
the low-χ limit, to the ratio of flip to average no-flip
amplitude. These are inferred from the experiment and
Hilbert transform, which yields an estimate R to be
compared with the theoretical prediction R. This ratio is
particularly convenient to investigate as it connects directly
to vacuum birefringence, which is the macroscopic result of
photon helicity flip. To see this we note that in the (low-
energy) regime χ, η ≪ 1, pair creation is suppressed and the
photon-scattering amplitudes are well approximated by the
replacement Mjj → Mr

jj i.e. using just the real part. This
allows one to describe vacuum polarization effects using a
semiclassical approach, based upon a real “vacuum refrac-
tive index,” nj ¼ 1þ δnj [26,35]. For photons with energy
ω in polarization eigenstate jji, the leading-order weak-
field Heisenberg-Euler result for δnj is

δnj ¼ −αm2Mr0
jj=ω

2 ≃ cj χ2m2=ðk0Þ2; ð6Þ

in which the well-known low-energy constants of QED are
cj ¼ αð1þ 3jÞ=90π. Photons in different polarization
states thus experience different dispersion relations in the
quantum vacuum, and, from (3), the helicity flip probability
is supported on the difference of the refractive indices,
which is birefringence. In the low-energy, low-χ regime, all
volumetric factors entering R cancel, giving the approxi-
mation R ≈ RðwfÞ where

RðwfÞ ¼ c1 − c2
c1 þ c2

: ð7Þ

For QED, RðwfÞ ¼ 3=11 ≈ 0.273. We calculate R for our
setup and compare with the exact value in Fig. 3. The larger
the maximum value of χ0 for which the pair yield is

FIG. 2. A partially polarized source of coherent bremsstrahlung
photons, ρjðsÞ collides with a focused laser pulse with intensity
parameter ξðx⊥Þ and the overlap with the focal spot provides a
natural collimation.
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FIG. 3. Results for the birefringence measure R in the “low-
energy” region for the collision of photons generated via coherent
bremsstrahlung with a focused laser pulse as described in the text.
The results RðχmaxÞ correspond to using measurements of the
number of pairs for χ values up to χmax, which are to be compared
to the exact value, given byR. The gray region indicates�10% of
the true value, and the relative error to the true value of each curve
is given in the inset.
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measured, the more accurate the prediction of vacuum
birefringence. We find that for the range 0.5 < χ0 < 3, the
prediction is accurate to within 10%. By comparison, in
stage 1 of the LUXE experiment, χ0 can be varied up to
around χ0 ¼ 4.5 [17], which would improve the accuracy
of the result. We note that the small-χ limit in Fig. 3
compares well with the theoretical approximation (7).

VI. DEVIATION FROM LOW-ENERGY SCALING

Pair creation from photons in a given polarization state
relates directly to “no-flip” observables [see Eq. (2)] and to
the corresponding vacuum refractive index along an eigen-
polarization. Thus an advantage of our approach is that it
gives us access to both of the individual low-energy
constants of QED. This is in contrast to measuring vacuum
birefringence directly, such as via the induced ellipticity in
a linearly polarized probe, which is only sensitive to the
difference of the refractive indices. (See also [36,37] for
other approaches to the determination of the individual
constants.) A second advantage is that we are sensitive to
the changes in vacuum polarization effects which occur as
one increases the strong-field parameter χ. To see this, we
calculate Rj ¼ 2Mr

jj=ðMr
11 þMr

22Þ for our considered
setup. The results are presented in Fig. 4. We highlight,
in the plot, the low-energy/weak-field approximations
Rj ∼ cj=ðc1 þ c2Þ. We match these to a good approxima-
tion at low χ. Indeed the weak-field approximation would
be a horizontal line on the plot; the deviation from this

low-energy scaling, as we increase χ, is clearly visible in
the plot.

VII. NONLINEAR (ALL-ORDER) VACUUM
BIREFRINGENCE

When χ≪1, vacuum birefringence cannot be described
by the Heisenberg-Euler weak-field result. As χ is
increased, the refractive indices reach a maximum,
decrease, and even change sign [26,38,39]—none of which
is captured by the weak-field approximation. One advan-
tage of the method outlined here, of using the yield of pairs
created by photons in different polarization eigenstates, is
that it can be used when χ≪1, in the regime of nonlinear
vacuum birefringence where all orders of interaction
between the virtual pair and the background must be taken
into account. In fact, as χ increases, more pairs are created,
so the method should in principle require less statistics, i.e.
fewer collisions. In order to test the QED prediction of
nonlinear vacuum birefringence, the same measure R can
be used. As shown in Fig. 5, the dependence of R on χ at
higher χ is very different compared to the weak-field,
leading-order Heisenberg-Euler result, which would be a
straight line. Similar levels of accuracy are achieved as for
the weak-field case, depending on the range of χ that
measurements can be performed over.

VIII. CONCLUSION

We have shown how photon-photon scattering effects
in QED can be indirectly measured from experimental
observation of pair production in intense laser fields.
Complementary to direct searches for vacuum birefrin-
gence, our method avoids signal/noise problems associated
with measuring signal photons in laser backgrounds, and it
also works with linearly polarized laser light. Our methods
give access to both vacuum refractive indices, not just the
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FIG. 4. Plot of Rj, the ratio of “no-flip” amplitude in state jji to
average “no-flip” amplitude, for j ¼ 1 (left) and j ¼ 2 (right).
The solid black lines are the exact results. The curves with data
points are example projections from Hilbert transforming the
yield of pairs created by photons in the two polarization
eigenstates. The low-energy region of χ < 1 is shaded in gray

and the low-energy approximation RðwfÞ
j (the leading-order term

in a weak-field expansion of the Heisenberg-Euler result) is also
shown. The black dashed line corresponds to the coarse approxi-
mation of just using the low-energy constants, i.e. the idealized
situation assuming photons completely polarized in an eigenstate,
giving R1 ≈ 4=11 ≈ 0.363 and R2 ≈ 7=11 ≈ 0.636.

FIG. 5. The birefringence measure R in the “high-energy”
region for the collision of photons generated via coherent
bremsstrahlung with a focused laser pulse as described in the
text. When χ ≳ 1, the perturbative, low-energy limit given by the
leading-order Heisenberg-Euler result is no longer valid and
instead, the result depends on all orders of interaction between the
virtual pair and the background.
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difference. A requirement that the procedure be accurate is
that the pair yield must be measured over a sufficiently
broad range of χ. Being based, fundamentally, on unitarity
and analyticity, our ideas can in principle be extended to
other processes and to higher loops. Measurements of
pair yield in a parameter regime where a significant fraction
of pairs are “second generation” could potentially yield
insight into the Ritus-Narozhny conjecture on the higher-
loop behavior of strong-field QED at high χ [8,40]. We also
note that for future direct searches of new physics using
photon-photon scattering (e.g. signs of other particles
“running in the loop”), a good understanding of the
Standard Model signal will be essential, and our indirect
measurement adds to the available methods by which this
signal can be determined.
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APPENDIX A: HILBERT TRANSFORM
OF PAIR DATA

Denote the number of pairs measured with maximum
photon strong-field parameter χ0 ¼ ξ0η as Njðχ0Þ, as
defined in Eq. (C1), and the corresponding value
of the function to Hilbert transform as Fiðχ0Þ ¼ Nj=ηeξ20.
Then supposing a set of M measurements fFiðχ0;1Þ;…
; Fiðχ0;MÞg are made, one can perform a Hilbert transform
using these points for an indirect “measurement,” denoted
Frðχ̃0Þ, (χ̃0 ∉ fχ0;1;…; χ0;Mg) which encodes, e.g. the
vacuum refractive indices. The Hilbert transform of a
function FiðχÞ is

H½Fi; χ� ¼
1

π
PV

Z
dχ0

Fiðχ0Þ
χ0 − χ

; ðA1Þ

and here, Frðχ̃0Þ ¼ H½Fi; χ̃0�. Since physical values of the
χ parameter always fulfill χ ≥ 0, the integral must be
analytically continued to negative values of χ. This is
achieved using the prescription

FiðχÞ ≔ sgnðχÞFiðjχjÞ; ðA2Þ

which allows us to use all measured data points twice in the
same numerical Hilbert transform. The total set of points
used is

fFið−χ0;MÞ; � � �Fið−χ0;1Þ; Fiðχ0;1Þ;…; Fiðχ0;MÞg:

The principal value is taken numerically by splitting the
data points into a lower set: S< ¼ fFið−χe;MÞ; � � �Fiðχe;jÞg
and an upper set: S> ¼ fFiðχe;jþ1Þ;…; Fiðχe;MÞg, and
integrating over both sets independently, after which
the values are combined: PV

R
dχ0 ¼ R

S<
dχ0 þ R

S>
dχ0.

A suitable set of χ̃0 values on which to evaluate the
Hilbert transform is given by the midpoints of the χ0
values of the measurements, so fχ̃0;1;…; χ̃0;M−1g where
χ̃0;j ¼ ðχ0;j þ χ0;jþ1Þ=2. The χ0;j values are assumed to be
uniformly distributed, which helps to prevent spurious
effects from arising in the numerical Hilbert transform.
The accuracy of the transform, in comparison to the

target function, can be further increased by extrapolating
beyond the range of measured values, assuming an asymp-
totic scaling. This is achieved by taking the measured value
at maximum χ, i.e. Fiðχ0;MÞ and assuming that for larger χ0,
Fi follows the asymptotic behavior Fiðχ0Þ ∼ χ−4=30 implied
by the (locally) constant crossed field approximation.
[The probability Pccf for pair creation at large χ scales
as Pccf ∼ χ2=3=η [41], and FiðχÞ ¼ Pccf=ηξ2]. In the text,
we applied this asymptotic scaling from χ0;M to χ0 ¼ 103.

APPENDIX B: COHERENT BREMSSTRAHLUNG

Here we describe the model used for bremsstrahlung. As
pointed out in the main text, the energy spectrum and
polarization degree of coherent bremsstrahlung depend on
the extent of the collimation. Here we assume an “effective
collimation” to be provided by the position and dimension
of the laser focal spot that the bremsstrahlung collides
with. Specifically, the coherent bremsstrahlung spectrum
was calculated for collision with a laser pulse of waist
w0 ¼ 25 μm and a focal spot at a distance of 3 m from the
target. (These figures correspond to ξ ¼ 1 in stage 0 of the
LUXE experiment [17].) For calculations involving brems-
strahlung at different intensity parameters ξ0, we scale the
number of photons by the ratio of areas, i.e. ðξ=ξ0Þ2. This is
an approximation because it assumes the same bremsstrah-
lung spectral content, even though the collimation angle is
reduced.
Although our main interest is in coherent bremsstrah-

lung, we also calculate the distribution of (collimated)
incoherent thin-target bremsstrahlung ρðbÞ from an amor-
phous target, as a test case to compare our analytical
approach with the results of full numerical simulations in
[17]. The ρðbÞ distribution is modelled as

ρðbÞ ¼ Ne
X
X0

�
1 − exp

�
−
ψ2
col:

2σ2tot:

���
4

3s
ð1 − sÞ þ s

�
; ðB1Þ

whereNe is the number of electrons,X0 the radiation length,
X the target thickness, ψcol: the effective collimation angle
and σtot: the total angular divergence of the bremsstrahlung
photon pulse. The angular divergence of the bremsstrahlung
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photons can be written σtot: ¼ ðσ2e þ σ20Þ1=2, where σe is the
electron beam angular divergence due to multiple scattering
in the target, and σ0 is the intrinsic divergence of
bremsstrahlung photons. The intrinsic divergence of the
bremsstrahlung photons is given by σ0 ¼ 0.52=γe, where γe
is the Lorentz gamma factor of the initial 16.5GeVelectrons,
which we assume does not depend on the initial photon
energy.
In the calculation of the CB distribution, ρðcbÞ, we have

chosen the orientation of the diamond target such as to
provide the first CB peak at around 12 GeV (corresponding
to a lightfront fraction of s ¼ 0.725). This contribution
arises from the single reciprocal lattice vector (2, 2, 0). The
collimation factor of the coherent bremsstrahlung was
assumed to have the same form as the incoherent brems-
strahlung distribution [first square bracket in Eq. (B1)].
The coherent component of bremsstrahlung was cal-
culated taking into account the electron beam divergence
σe and the collimation angle ψcol: using the standard
method [42,43].
From a full calculation of CB from a diamond target

with thickness X ¼ 0.005X0 (X0 ¼ 0.6 mm), we find
the first two peaks of the CB distribution can be approxi-
mated as

ρðcbÞ ¼NeCX

�
Cð0Þ
s

s
ð1−sÞþCð1Þ

s sþ
X2
i¼1

AðiÞe
−ðs−siÞ2

2σ2
i

�
ðB2Þ

where CX ¼ 0.000276, Cð0Þ
s ¼ 0.105, Cð1Þ

s ¼ 0.066, Að1Þ ¼
0.4,Að2Þ ¼ 0.076. σ1 ¼ 0.004, σ2 ¼ 0.003with CB peaks at
s1 ¼ 0.72 s2 ¼ 0.84 corresponding to 11.92 and 13.84 GeV
respectively. Due to a “hard” collimation (ψcol: ≪ 1=γ) the
spectral width of the CB peaks becomes especially narrow,
even though the conventional condition ψcol: > σe is not
fulfilled. The spectra ρðbÞ and ρðcbÞ are plotted and compared
in Fig. 6.
The polarization of the CB peaks was calculated and the

following parametrization found:

Γ3 ¼ AΓ
1 exp

�
−
ðs − s1Þ4
2ðσΓ1Þ4

�
þ AΓ

2 exp

�
−
ðs − s2Þ4
2ðσΓ2Þ4

�
; ðB3Þ

where AΓ
1 ¼ 0.5, AΓ

2 ¼ 0.284, σΓ1 ¼ 0.012, σΓ2 ¼ 0.0073,
where the Stokes parameter Γ3 remains practically constant
in the narrow range near the CB peaks (Γ3 ¼ AΓ

n , for
n ¼ 1; 2) and vanishes outside. The Stokes parameter is the
asymmetry in polarizations, which we write as

Γ3 ¼
ρðcbÞ1 − ρðcbÞ2

ρðcbÞ1 þ ρðcbÞ2

: ðB4Þ

In the setup we consider, the Stokes parameters are
defined in the coordinate system which aligns with the
crystallographic plane (2, 2, 0), to an accuracy of 1=γ,
where γ is the Lorentz factor of the electrons generating the
coherent bremsstrahlung. (For 16.5 GeV electrons,
γ−1 ≈ 3 × 10−5.)
In Appendix C, a test of the distributions in Eqs. (B1)

and (B2) is made, in which the yield of pairs is calculated
for LUXE parameters and compared to the simulation
results. We find good qualitative agreement and approxi-
mate quantitative agreement between the results for the full
simulational approach, and the analytical results pre-
sented here.

APPENDIX C: CALCULATION OF NUMBER
OF PAIRS

The number of pairs is calculated using the formula

Nj¼
2α

η

Z
d2x⊥

Z
dφ

Z
1

0

dsρjðsÞMi
jj½ξðφ;x⊥Þ;s�: ðC1Þ

We model the focused pulse using the infinite Rayleigh
length approximation [44,45] as ξðφ;x⊥Þ ¼ ξ0fðφ;x⊥Þ,
where

fðφ;x⊥Þ ¼ e
−jx⊥ j2

w2
0 gðφÞ cosðφÞ;

FIG. 6. A comparison of the energy spectrum of the incoherent
bremstrahlung photons from an amorphous target ρðbÞ, and the
spectrum of coherent bremsstrahlung photons ρðcbÞ from a
diamond CVD target.

FIG. 7. The Stokes parameter Γ3 of the CB photons can be as
large as 0.5.
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with gðφÞ ¼ ∂½sin2ðφ=2NÞ�=∂φ for 0 < φ < 2πN and
N ¼ 16 is the number of cycles, gðφÞ ¼ 0 otherwise and
w0 the Gaussian waist.
In Fig. 8, we compare the prediction of Eq. (C1) using

parameters of the LUXE experiment with the results of
[17], generated by using the code PTARMIGAN [30] to
simulate the creation of pairs at the interaction point from
bremsstrahlung calculated by GEANT4 [46]. To compare
the results in [17], which are for a circularly-polarized
pulse, to the current work, which uses a linearly polarized
pulse, we multiply them by a factor of 2. (This assumes
that at the same ξ, the area of overlap between the
bremsstrahlung and laser pulse can be doubled, but does
not take into account any effect due to a different
collimation angle.) The collimation of the bremsstrahlung
and CB spectra described in Appendix B used parameters
in stage 0 of LUXE; in order to compare with stage 1, we
multiply these results by a factor equal to the ratio of
powers of stage 0 and stage 1, i.e. 35=4, to take into
account a larger interaction area at constant ξ. (Since our
aim is to verify that the order of magnitude of pairs is
correct, rather than perform a high-precision comparison,
also here, we do not recalculate the bremsstrahlung
spectra for a new collimation angle.) As can be seen in
Fig. 8, we find good agreement with the order of
magnitude of the simulated results and our theory
calculations.
In order to calculate the number of pairs from the

partially polarized coherent bremsstrahlung, we must
combine results from the previous and current sections.
We consider two configurations of the CB target: “k,”
where the dominant CB polarization direction is parallel to
the laser polarization and “⊥,” where the dominant CB
polarization direction is perpendicular to the laser polari-
zation (both definitions assuming a head-on collision
of photons with the laser pulse). The differential number
of pairs produced in the two configurations is
Nk;⊥ ¼ R ðdNk;⊥=dsÞds, where

dNk

ds
¼ PðsÞ dN1

ds
þ ½1 − PðsÞ� dN2

ds
dN⊥
ds

¼ ½1 − PðsÞ� dN1

ds
þ PðsÞ dN2

ds
ðC2Þ

where PðsÞ ¼ ½1þ Γ3ðsÞ�=2, and Γ3ðsÞ is defined in
Eq. (B3) above: the function PðsÞ then denotes the fraction
of CB photons with energy fraction s in polarization state
j1i. It is then assumed that although the dependency on the
photon energy of the created pairs may not be measurable
in fine resolution, at least the pairs created by the first CB
peak at s ¼ s1 can be identified, using e.g. a gamma
spectrometer concept such as described in [47]. Then the
inversion to find the number of pairs created by photons in
eigenstates jji, can be written as

N1 ¼
PNk − ð1 − PÞN⊥

2P − 1

N2 ¼
PN⊥ − ð1 − PÞNk

2P − 1
; ðC3Þ

where P is a constant polarization degree that represents the
polarization of photons in the CB peak. We determined P
by calculating the mean polarization contributing value to
pair creation. For the peak between 11.92� 0.25 GeV
corresponding to 0.707 < s < 0.738, this was P ¼ 0.722
(recall from Fig. 7 that there is a plateau of Γ3 ¼ 0.5 at the
center of the peak, equivalently: P ¼ 0.75). That this is a
physically relevant choice is evidenced by the good agree-
ment in the low-χ limit of the results for predicted
birefringence in Fig. 3, with the low-χ limit of the helicity
flipping amplitude.
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