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Abstract 

The importance of the growth, proliferation and longevity of reef-forming cold-water corals is 

paramount as they support various complex bio-diverse habitats and provide many essential 

ecosystem services. These cold-water coral reefs consist of layers of living coral tissue that 

grow on top of large masses of coral skeleton. Here, the Goldilocks Principle is used to simulate 

growth in optimal conditions and model how cold-water corals engineer their habitat to survive 

and prosper. A computational fluid dynamics model is created based on the Smoothed Particle 

Hydrodynamics method, a mesh-free Lagrangian numerical method. The SPH solver is written 

in the C++ programming language and parallelised with OpenMP to improve its efficiency and 

reduce the execution times.  The solver is validated against analytical and numerical solutions 

and the growth model is then validated against in situ data of real cold-water coral colonies. 

The numerical results suggest that the longevity of cold-water corals depends on how well they 

can manage their energetic reserves when exposed to sub-optimal prey-catching conditions. 

Keywords: Smoothed Particle Hydrodynamics, Cold-Water Corals, Coral Growth Model, 

Coral Energetic Reserves 

1. Introduction 

Lophelia pertusa (see, Figure 1) is one of the most common species of framework forming 

cold-water corals (Roberts, 2006) that grows predominantly in the North Atlantic Ocean and 

has been found to form reefs world-wide. Typical L. pertusa reefs consist of live coral sitting 

on top of several layers of dead coral skeletons (Vad et al., 2017). Previous studies from 

(Pichon, 2011) and (Orejas et al., 2016) have demonstrated local flow hydrodynamics govern 

prey capture efficiency of coral tentacles; in low velocity environments food (including 

zooplankton) can evade capture, while in faster flow conditions coral tentacles are unable to 

capture food, as they are swept back by the flow (Purser et al., 2010; Orejas et al., 2016). Cold-

water corals mainly satisfy their energetic demands by prey capture which for L. pertusa has 

been experimentally shown to be optimum when the local current velocity is between 2-6 cm/s 

(Tsounis et al., 2009; Purser et al., 2010). However, these corals typically exist in habitats with 

high current velocities that sometimes can be an order of magnitude higher than the 

experimentally found optimal velocity range. This leads to the question of how corals with 

such an optimal range can survive and thrive in the high flow conditions that they are found 

within. It has been assumed that cold-water corals build up lipid reserves during periods of 

high food availability (Dodds et al., 2009). They can then use these energetic reserves in 

periods that food availability is reduced, and Maier et al. (2019) demonstrated how L. pertusa 

can maintain their metabolic rate in periods of food deprivation.  
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Hennige et. al. (2021) explored the hypothesis that L. pertusa reefs are engineered according 

to the Goldilocks Principle (Figure 2). This assumes that coral polyps will survive and prosper 

if they surpass an energetic ‘survival threshold’ by capturing prey when conditions are optimal. 

This rule assumes that polyps can also survive in sub-optimal conditions if over time they 

capture enough prey to surpass the ‘survival threshold’ and cover their energetic demands.  

Presently, an in-house developed Smoothed Particle Hydrodynamics (SPH) solver is used to 

evaluate coral growth based on the Goldilocks Principle. SPH is a mesh-free method, that uses 

particles to discretise the numerical domain. Traditionally in numerical simulations, a mesh of 

the domain must be created in order to create a discrete number of volumes, where 

mathematical governing equations that describe the physics of the flow can be solved to obtain 

the solution to a problem. This can create problems in simulations where the examined object 

is growing during the simulation. When this happens, the domain would have to be re-meshed, 

something that depending on the method can be complicated and time consuming, especially 

when mesh refinement algorithms need to be deployed. Conversely, this is not necessary in 

SPH, as all solids, fluids, and boundaries are represented by particles and the simulation can 

continue unaffected by changes in the boundary conditions due to evolution of an object (i.e., 

coral). SPH has its shortcomings too, as typically large resolutions are needed to capture a 

realistic representation of the flow field, which can increase execution times. For the coral 

growth model presented here, its benefits outweighed the disadvantages and is preferred to 

other mesh-based methods. 

Figure 1: A picture of Lophelia pertusa framework illustrating live (white) and dead (grey) coral (Fox et al., 2016) 
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The growth and death rules that were firstly introduced in (Hennige et al., 2021) have been re-

written and optimised to include the effects of dynamic coral energetic reserves, while the 

parallelised SPH solver allowed for higher resolution simulations. The work presented here has 

two objectives: 

 Firstly, to validate the SPH solver against other numerical and analytical solutions. This 

is necessary to prove that it can solve the SPH governing equations accurately and 

provide information about the resolution that is needed to achieve the required 

accuracy. 

 Secondly, to introduce the newly developed coral growth model, validate it, and 

examine different cases of coral growth. 
 

 

2. Methods 

2.1 Smoothed Particle Hydrodynamics 

Smoothed Particle Hydrodynamics is a Lagrangian computational method that can be used to 

simulate the flow of viscous fluids. SPH guarantees conservation of mass without the need for 

extra computation (Liu and Liu, 2010). Its meshless nature allows natural tracking of fluid-

solid interfaces. In the current work, this was fully exploited as the dynamically growing coral 

colonies imposed new boundary conditions after each growth step. SPH is an interpolation 

method so in order to update the properties of the particles the governing equations are 

expressed as summations of interpolants that use a kernel function, W, with smoothing length, 

h (Morris et al., 1997). 

Figure 2: The Goldilocks Principle for Lophelia pertusa, showing cumulative prey capture over time, compared to local 
current velocity conditions. The bisecting layer indicates a ’survival threshold’ that is based upon prey capture. Not 

surpassing this threshold would lead to polyp mortality, leaving exposed ’dead’ framework. Individual polyps can surpass 
the threshold by either capturing prey in optimal conditions or sub-optimal conditions given adequate time. Jo
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Several conditions need to be met in order for a function to be considered appropriate as a 

kernel: 

 The function has to offer compact support, therefore: 

𝑊(𝑟𝑖𝑗 , ℎ) = 0 when |𝑟𝑖𝑗| > 𝑘ℎ 

where k is a factor that defines and constrains the function’s spread. This is necessary 

in order to reduce the computational cost of the kernel function. 

 The function must meet the normalization condition: 

∫𝑊 (𝑟𝑖𝑗 , ℎ) 𝑑𝑟′ = 1 

 In order to avoid numerical instabilities, inaccuracies and unrealistic properties (for 

example negative density) the function has to be positive within its domain. 

 The function has to offer symmetry, meaning that particles in equal distances to a 

reference particle should have the same contribution to its properties. 

 Finally, the function has to ensure that the contribution of a particle to the properties of 

another particle reduces with increasing distances. 

In the current work, the SPH solver uses a Wendland kernel function (Wendland, 1996) that 

can be more efficient than most cubic or quintic spline kernels (Macia et al., 2011) It was also 

shown that the dissipation mechanisms in Wendland kernels can be more accurate than those 

of re-normalised Gaussian kernels. The Wendland kernel function is defined as: 

𝑊(𝑞, ℎ) =  𝛼 (1 −
𝑞

2
)
4(1+2𝑞)

        if    0 <=  𝑞 <=  2                 

( 1) 

𝑊(𝑞, ℎ) =  0                                 if            𝑞 >  2 

( 2) 

where 𝑞 =
|𝑟|

ℎ
 is the kernel smoothing length ratio and 𝛼 =

7

4𝜋
 for two-dimensional or 𝛼 =

21

16𝜋
 

for three-dimensional domains. 

The SPH solver presented in (Hennige et al., 2021) was further optimised using OpenMP. The 

newly parallelised solver run up to 7 times faster and allowed for higher resolution simulations 

with reasonable execution times. Here, it solves the mass and momentum conservation 

equations; their discretised SPH forms are respectively: 

𝑑𝜌𝑖

𝑑𝑡
=   ∑𝑚𝑗𝑣𝑖𝑗∇𝑊𝑖𝑗

𝑗

 

( 3) 

𝑑𝑣𝑖

𝑑𝑡
= −∑𝑚𝑗 (

𝑝𝑖

ρ𝑖
2 +

𝑝𝑗

ρ𝑗
2)∇𝑖𝑊𝑖𝑗  + 

𝑗

∑
𝑚𝑗(𝜇𝑖 + 𝜇𝑗)𝑣𝑖𝑗

𝜌𝑖𝜌𝑗
(

1

𝑟𝑖𝑗

𝜕𝑊𝑖𝑗

𝜕𝑟𝑖
)

𝑗

 +  
𝐹𝑖

ρ𝑖
 

( 4) 

where ρi is the density of a particle i, mj is the mass of a neighbouring particle j, vij is the 

velocity difference between the two particles, ▽iWij is the gradient of the kernel function, pi is 
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the pressure of particle i, µ is the dynamic viscosity of the particles and Fi is an external force 

per unit mass. 

Monaghan’s method (Monaghan, 1994) of approximating the rate of change of density is being 

used in the current work for the computation of the particles’ density. According to this method 

the particles are initially set to a reference value and their density evolves by solving the 

continuity equation (3). After the density computations, a density correction algorithm is 

applied (Ozbulut et al., 2014). In weakly-compressible SPH the pressure of particle is 

calculated using an artificial equation of state and it is directly connected to the particle’s 

density. Therefore, a density correction algorithm helps to avoid large density variations in the 

domain that can lead to numerical instabilities and inaccuracies. The density is being smoothed 

using: 

ρ𝑖̅ = ρ𝑖 − ϵ∑
𝑚𝑗(ρ𝑖 − ρ𝑗)𝑊𝑖𝑗

0.5(ρ𝑖 + ρ𝑗)

𝑁

𝑗=1

 

( 5) 

The current work includes relatively small velocities, and the particles fill all available space, 

therefore a realistic form of viscosity was adopted as suggested by Morris (1997) and seen in 

the Navier-Stokes momentum equation (4).  

In SPH, pressure is a function of density, and the movement of the particles is driven by density 

fluctuations and consequently an artificial equation of state has to be used. The equation of 

state for water (Ree, 1976) could be used as well, but that would require incredibly small time-

steps (Morris et al.,1997) making the simulations inefficient. Here, the Tait equation was used: 

𝑝 = 𝑝0 ((
ρ

ρ0
)
γ

− 1) 

( 6) 

The value of the polytrophic constant γ must be chosen carefully in order to ensure the accuracy 

of the solution; for water, γ = 7 The initial pressure, 𝑝0, depends on the reference speed of 

sound for the fluid according to: 

𝑝0 = 𝜌0

𝑐2

𝛾
 

( 7) 

In this work, suggestions by Monaghan (1994) and Violeau (2000) have been used to define 

the speed of sound, c, which should be at least 10 times greater than the maximum velocity in 

the domain. This can reduce density fluctuations in the domain to within 1% of the reference 

density of a particle (Monaghan, 1994). 

A particle shifting algorithm is used to avoid stability issues caused by anisotropic particle 

spacing. This algorithm moves particles to areas with lower particle concentration in order to 

avoid the creation of voids and maintain a uniform distribution throughout the domain. Here, 

the algorithm proposed by Skillen and Lind (Skillen et al., 2013) is used. In this algorithm, the 

shifting distance, δr, is given by: 
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𝛿𝑟 =  −𝐷 ▽ 𝐶𝑖 

( 8) 

where C is a concentration coefficient and D is a diffusion coefficient and that can be calculated 

by: 

D =  2h|v|𝑖dt 

( 9) 

where dt is the time-step of the simulations, |v|i is the velocity magnitude of a fluid particle and 

h is the smoothing length. Finally, the gradient of the concentration coefficient in equation (8) 

can be calculated using: 

∇𝐶𝑖 = ∑
𝑚𝑗

ρ𝑗
∇

𝑗

𝑊𝑖𝑗  

( 10) 

The algorithm can struggle in simulations with free surfaces, where a correction is needed 

(Skillen, 2013) but since the current work involves only internal flows this is unnecessary. 

A Verlet scheme (Verlet, 1967) coupled with a Euler step (Jameson et al., 1981) every 50 

iterations has been used to perform time integration. The Euler step is necessary to ensure that 

the equations remain coupled for odd and even time-steps and time-integration divergence is 

avoided. In order to ensure the stability of the simulations, the time-step is calculated using the 

Courant–Fredrichs–Lewy (CFL) condition (Liu and Liu, 2010) and two additional restrictions 

to account for viscous dissipation and body forces (Monaghan, 1994). 

The seabed and coral solid surfaces are simulated using dynamic boundary particles (Crespo, 

2007). The positions and velocities of these particles remain fixed over time. The motion in the 

numerical domain is driven by the moving upper boundary that consists of three layers of 

dynamic boundary particles with their velocity fixed at 0.5 m/s to simulate the typically fast-

flow environment that cold-water corals grow in. In total, 80,000 particles are used with initial 

particle spacing equal to ∆𝑥= 0.025m. 

2.2 Basic Growth Principles 

This novel long time-scale growth model was created in order to investigate how cold-water 

corals would grow according to the Goldilocks Principle. During a growth cycle, the average 

local steady-state flow velocities of fluid particles that are in close proximity (∆𝑥 < 1.5𝑟, 

where r is the initial particle distance) to any coral particle are analysed. If the velocity of any 

fluid particle adjoining a coral particle lay inside the Goldilocks zone, then that fluid particle 

is converted into a coral particle. No additional particles are inserted or deleted from the 

numerical domain. Essentially, the model is looking for zones of optimal velocity around a 

coral colony to identify the direction of growth of the colony. No additional rule is applied to 

control branching; it occurs spontaneously where the flow is optimal. 

The introduction of a death rule in the model was a significant step to simulating coral growth. 

In previous work (Hennige, 2021), the death rule was fixed at initialisation, and it could not be 

altered or affected by any other aspect of the live simulations. The current proposed model 

alters the way that the growth and death rules affect the coral particles. 
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Each coral particle’s energetic reserves receive a finite value of energy units when initialised. 

One unit of energy is assumed to be equal to the energy that a coral particle would need to 

survive between two growth steps in sub-optimal conditions. The energetic reserves decrease 

or increase dynamically according to the flow conditions around the coral particles. For 

example, in sub-optimal conditions a coral particle is not able to ‘catch enough prey’ and get 

the energy it needs; therefore, it has to use a portion of its energetic reserves in order to survive. 

If the conditions around the coral particle do not improve over time and the value of its 

energetic reserves drops below zero, then the coral particle was considered to be dead. This can 

be shown in the following equations: 

𝐸𝑅𝑡𝑠 =  𝐸𝑅𝑡𝑠−1  −  1 

( 11) 

𝑖𝑓 𝐸𝑅𝑡𝑠 ≤  0 →  𝑐𝑜𝑟𝑎𝑙 𝑑𝑒𝑎𝑡ℎ 

( 12) 

where ER is the energetic reserves, ts the current time step and ts-1 the previous time step. 

Conversely, if the flow conditions are right then the coral particles are able to get enough 

energy to survive and grow and could potentially be able to increase their energetic reserves 

according to: 

𝐸𝑅𝑡𝑠 =  𝐸𝑅𝑡𝑠−1 + 𝜃 

( 13) 

The quantity θ ranges between 0 and 1 units of energy. A value θ equal to 0 units of energy 

means that all energy that is generated by capturing prey between two growth steps is used by 

the coral particle to satisfy its energetic demands and no additional energy can be stored. 

Similarly, a value of 1 means that all generated energy can been stored to the energetic reserves 

of the coral particle. 

2.3 SPH Coupling with coral growth model 

A typical SPH coral growth simulation would involve the following: 

 Initially the geometry, boundary conditions, and input conditions are provided. 

 A particle neighbour list is obtained, for every fluid, boundary, or coral particle in the 

domain. 

 The solver can then solve the Navier-Stokes equations and update the properties of all 

particles, as explained in Section 2.1 above. 

 Next is an important step for coupling the SPH solver with the coral growth model. The 

solver will determine whether the flow in the numerical domain is in steady-state 

conditions or not. If this is true, it will proceed to instigate the coral growth and death 

functions, as explained in Section 2.2 above. The solver will determine flow conditions 

around live coral particles, and where appropriate it will simulate coral growth towards 

directions of optimal flow velocity. Additionally, the energetic reserves of every coral 

particle will be re-calculated and if a particle in sub-optimal flow conditions has no 

energetic reserves left will be considered dead. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 The modelled coral will grow, providing thus new boundary conditions for the 

numerical domain. 

 The solver will then proceed to the next time-step, obtaining a new particle neighbour 

list, solving the Navier-Stokes equations, and when the flow is again in steady-state 

conditions, the growth functions will once again be instigated. 

This procedure can also be seen in the following algorithm in the form of pseudo-code. 
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3. Results and Discussion 

Before presenting the results of the coral growth model, a few validation cases are provided to 

ensure that the presented methodology can provide accurate solutions when compared against 

other known numerical or analytical methods. In all of them, particle convergence tests were 

performed to identify the needed resolution to achieve the required accuracy.  

3.1 Poiseuille Flow 

The first validation case considered a Poiseuille flow problem, where the flow in the domain 

was driven by a pressure gradient force. The fluid (water) in the domain was placed between 

two stationary plates with infinite length. The testing setup proposed by Morris (1997) was 

used for this case, the properties and initial conditions are shown in Table 1. 

Table 1: Initial properties of the SPH particles in the Poiseuille flow validation case 

Property Units Value 

Separation between plates m 0.001 

Density kg/m3 1000 

Dynamic Viscosity Pa s 0.001 

Pressure gradient acceleration m/s2 0.0001 

Speed of sound m/s 0.00125 

Kernel function  Wendland 

Smoothing length (h) m 1.3 x dx 

The two stationary plates were initialised with a distance of 0.001m between them and 

consisted of three layers of dynamic boundary particles. For this problem a Wendland kernel 

was used, and the speed of sound was chosen to be 100 times larger than the maximum velocity 

in the domain. Periodic boundary conditions have been applied on the left and right boundaries 

in order to simulate an infinite domain. The initial separation between the SPH particles was 

dx=dy and it depended on how many particles were spanning the channel between the two 

stationary particles. It can be calculated according to: 

𝑑𝑥 =  𝑑𝑦 =
𝐿

𝑁
 

( 14) 

where L is the distance between the two plates and N is the number of particles in the y 

direction. 

The analytical solution for the Poiseuille flow was obtained by using the equation (Morris, 

1997): 

𝑣𝑥(𝑦, 𝑡) =
𝐹

2𝑣
𝑦(𝑦 − 𝐿) − ∑

4𝐹𝐿2

𝜈𝜋3(2𝑛 + 1)3

{∞}

{𝑛=0}

sin (
𝜋𝑦

𝐿
(2𝑛 + 1)) exp(−

(2𝑛 + 1)2𝜋2𝑣

𝐿2
𝑡) 

( 15) 

where  𝑣𝑥 is the velocity of the water in the x-axis, ν is the kinematic viscosity of water, ρ is 

the density, t is the elapsed time and n is the number of terms to include in the summation. 
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Figure 3 compares the numerical and analytical solutions. Good agreement was found between 

them, with the maximum error in the numerical solution being close to 1.1% when 100 particles 

were spanning the channel. The error in the simulations with various number of particles 

spanning the channel between the two stationary plates can be seen in Table 2. As it can be 

seen 100 particles in the y-direction were enough to achieve particle convergence as the error 

in the simulations did not decrease significantly after that, while the computational cost was 

increasing with more particles in the domain. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Particle convergence test for the Poiseuille flow, showing the number of particles spanning the channel 

between the two stationary plates and the corresponding error between the numerical and analytical solutions 

Number of particles (y-direction) Error (%) 

20 2.7 

50 1.5 

100 1.1 

125 1.05 

150 1.01 

200 0.99 

3.2 Couette Flow 

The next validation case was a two-dimensional Couette flow, which is a flow between two 

infinitely long plates where the bottom plate is stationary, while the top plate has constant 

velocity. It was an interesting case for a system where viscous dissipation was important, a 

similar system to what the coral model simulations would use. The test case was developed 

using the setup proposed by Morris (1997). The initial conditions are shown in Table 3 below. 

 

 

Figure 3: Comparison between the SPH numerical solution (spheres) and the analytical 

solution obtained with Equation 15 (solid lines) at different time-steps 
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Table 3: Initial properties of the SPH particles in the Couette flow validation case 

Property Units Value 

Separation between plates m 0.001 

Density kg/m3 1000 

Dynamic Viscosity Pa s 0.001 

Top plate velocity m/s 0.0000125 

Speed of sound m/s 0.00125 

Kernel function  Wendland 

Smoothing length (h) m 1.3 x dx 

The two plates where again placed at distance equal to L = 0.001m apart, but in this case only 

the bottom plate was stationary. Throughout the simulation the top plate had constant velocity 

equal to 1.25x10-5m/s. Both plates were simulated using three layers of dynamic boundary 

particles. The analytical solution for the simulated two-dimensional Couette flow was obtained 

by using the equation: 

𝑣𝑥(𝑦, 𝑡) =
𝑉0

𝐿
𝑦 + ∑

2𝑉0

𝑛𝜋

{∞}

{𝑛=1}

(−1)𝑛 sin (
𝑛𝜋𝑦

𝐿
) exp(−𝜈

𝑛2𝜋2

𝐿2
𝑡) 

( 16) 

where 𝑉0 is the velocity of the moving top plate. 

Figure 4 shows a comparison with the analytical solution. The maximum error in the numerical 

solution was less than 0.7% in simulations with 100 particles spanning the channel between 

the plates, showing good agreement with the theoretical results. A particle convergence test 

was conducted again and showed that 100 particles in the y-direction were enough to consider 

that the simulations had converged (Table 4). 

Table 4: Particle convergence test for the Couette flow, showing the number of particles spanning the channel between the 
two stationary plates and the corresponding error between the numerical and analytical solutions 

Number of particles (y-direction) Error (%) 

20 2.2 

50 1.2 

100 0.7 

125 0.69 

150 0.69 

200 0.68 

3.3 Lid-driven Cavity Flow 

The next validation case showed the capability of SPH to model flows in higher Reynolds 

numbers. This case simulated the flow inside a square cavity that had its lid (top boundary) 

moving with constant velocity, 𝑉0. The fluid inside the cavity was initially at rest and it started 

moving due to viscous forces caused by the movement of the lid. The square cavity consisted 

of four walls of equal length, L, and each wall had three layers of dynamic boundary particles.  

A Wendland kernel was used and the initial distance between the particles depended on the 

resolution of the simulations according to: 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



𝑑𝑥 =  𝑑𝑦 =
𝐿

𝑁
 

( 17) 

where N is the number of fluid particles per direction. For this case, the number of particles per 

direction ranged from 50 to 220 particles. 

 

 

 

 

 

 

 

 

 

 

 

The speed of sound was chosen to be 100 times larger than the maximum velocity in the system 

(the lid's velocity). A schematic of the case can be seen in Figure 5 and all initial properties 

and parameters of the simulations can be seen at Table 5 below. Two different cases were run 

for Reynolds number equal to Re = 1000 and Re = 10000. The Reynolds number in the 

simulations was adjusted by modifying the viscosity of the fluid, while the density of the fluid, 

the characteristic length (L) and the maximum velocity were kept constant. 

 

 

 

 

 

 

 

 

 

Table 5: Initial properties of the SPH particles in the lid-driven cavity flow validation cases 

Property Units Value 

Figure 5: A schematic of the lid-driven cavity flow, showing the moving lid (red) and the 
solid stationary walls (black). The length (L) of each side of the square is equal to 1m 

 

Figure 4: Comparison between the SPH numerical solution (spheres) and the analytical 
solution obtained with equation 15 (solid lines) at different time-steps 
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Length, L m 1 

Lid velocity m/s 1 

Speed of sound m/s 100 

Density kg/m3 1000 

Reynolds Number  1000-10000 

Kernel function  Wendland 

Smoothing length (h) m 1.3 x dx 

The results of the SPH solver are compared against results obtained by Ghia (1982) who used 

a finite volume solver with a 257x257 mesh and results by Adami (2013) who used a weakly-

compressible SPH solver with transport velocity formulation. There is no analytical solution 

available for this case. 

The results for Re = 1000 can be seen in Figures 6-8, while the velocity field obtained by 

Adami (2013) is shown in Figure 9. Similarly, Figures 10-12 show the obtained results for Re 

= 10000 and Figure 13 shows the corresponding velocity field by Adami. The velocity fields 

shown in Figures 8 and 12 are at time-steps that the cases had reached steady-state conditions.  

Adami did not provide a legend for their velocity fields, but it can be assumed that it is similar 

as the one in Figures 8 and 12. It was found that in low resolutions (N<150) the current SPH 

solver struggled and required higher resolutions in order to provide meaningful comparisons. 

Therefore, only results from higher resolution simulations are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Velocity profile Vy(x) at the centre-line y = 0.5m, Re = 1000 
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Figure 7: Velocity profile Vx(y) at the centre-line x = 0.5m, Re = 1000 

 

 

 

 

 

 

 

 

 

The results of the SPH solver showed good agreement with results obtained by the other 

solvers. For Re = 1000 the necessary accuracy was achieved by using 220x220 particles in the 

domain. The same resolution was necessary for Re = 10000, but in this case additional 

boundary particle treatment had to be performed in order to ensure that the particles will not 

escape the numerical domain. This also increased the accuracy of the solution, but at the cost 

of additional execution time.  

An additional repulsive force between the fluid and boundary particles was added, as suggested 

by Monaghan (1988). For this work, this was achieved by adding the following Lennard-Jones 

force term in the Navier-Stokes momentum equation (4): 

𝐹𝐿𝐽𝑖
= 𝐷 ((

𝑑𝑥

|𝑟𝑖𝑗|⃗⃗⃗⃗⃗⃗  ⃗
)

𝑎1

− (
𝑟0

|𝑟𝑖𝑗|⃗⃗⃗⃗⃗⃗  ⃗
)

𝑎2

)
𝑟𝑖𝑗⃗⃗  ⃗

(|𝑟𝑖𝑗|⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)2
 

( 18) 

where 𝑎1 = 12 and 𝑎2 = 6 are constants, dx is the initial particle separation and D is equal to 

120 times the product of the initial particle separation and the acceleration due to gravity.  

Equation (18) prevents fluid particles from penetrating the solid walls. 

Figure 9: Velocity field (only fluid particles), Re =1000 Figure 8: Velocity field by Adami (2013) 
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Figure 10: Velocity profile Vy(x) at the centre-line y = 0.5m, Re = 10000 

Figure 11: Velocity profile Vx(y) at the centre-line x = 0.5m, Re = 10000 

Figure 13: Velocity field (only fluid particles), Re = 10000 Figure 12: Velocity field by Adami (2013) 
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3.4 Coral Growth Model 

The growth model investigated how energetic reserves can affect coral growth and mortality. 

The simulation parameters (Table 6) are based on a mono-directional flow from left to right 

and a simplified growth principle existed; the coral colony would only grow in optimal 

conditions and towards regions with average flow velocities between 2-6 cm/s. It investigated 

and showcased how the Goldilocks Principle can be applied to cold-water coral growth and 

how coral energetic reserves can affect their growth and longevity. These cases were run with 

the value of θ in Equation (13) being kept constant at 0.5. 

Table 6: Coral growth simulation parameters 

Simulation A B C 

Top layer velocity (m/s) 0.5 

Optimal layer velocity (cm/s) 2-6 

Initial Energetic Reserves, ER (units of energy) ∞ 1.1 3.1 

Ratio of live to total coral particles, (at step 120) 100 0 10.7 

Initially, (Figure 14, (A)) a control case was simulated; the model only simulated growth in 

optimal flow conditions with no additional ̀ death' rule applied. In sub-optimal regions the coral 

would not grow but also not die, therefore simulating infinite energetic reserves. The modelled 

coral in this simulation would grow indefinitely and cover the simulated domain. This was a 

direct contradiction to what can be observed in nature where a significant portion of L. pertusa 

reefs consists of calcified dead coral skeleton (Roberts et al., 2009). 

Previous studies (Larsson et al., 2013; Baussant et al., 2017) have shown that L. pertusa reefs 

can survive in sub-optimal conditions for a period of months by using their energetic reserves 

to cover their energetic demands. The next model (Figure 14, (B)) introduced a `death' rule that 

was based on each coral particle's available energetic reserves (Table 6). The amount of the 

initial energetic reserves for a coral particle indicated how many consecutive growth steps this 

particle could survive in sub-optimal conditions. If during a growth step the coral particle was 

in sub-optimal regions and had no available energetic reserves left, then the death rule was 

applied, and the particle was considered ‘dead’. It could no longer branch out and grow but it 

would be part of the coral’s skeleton for the remaining simulated time. When the coral particles 

were initialized to have near-zero or very low energetic reserves (Figure 14, (B)) then 

eventually the entire coral framework died when it was exposed to consecutive non-optimal 

flow conditions. In the simulations with higher initial energetic reserves (Figure 14, (C)) the 

Figure 14: Coral Growth using the Goldilocks Principle in simulations with A) infinite initial energetic reserves, B) low initial 
energetic reserves and C) high initial energetic reserves. Growth is shown between the 20th, 60th and 120th growth steps. 
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resulting coral framework consisted of dead coral skeleton on the inside with branches of live 

coral on the outer edges, similar to what can be observed in real L. pertusa reefs (Figure 1). 

3.5 Replenishing energetic reserves 

The main equation that controlled the growth and death rules in the models (Equation 13) also 

offered the capability of running simulations where the energetic reserves were not static and 

predetermined, but dynamically altering for each individual coral particle. The value of θ in 

Equation (13) controlled the proportion of the energy created during optimal time-steps, that 

was stored to the energetic reserves of the coral particles. For example, a value of θ = 0.5 would 

mean that a coral particle in optimal conditions would use half of the energy it obtained by 

catching prey to meet its energetic demands and store the other half. In the models presented 

in this subsection, coral energetic reserves were tracked individually for each live coral particle 

in the domain. 

The growth model was run again with increasing abilities of replenishing energetic reserves on 

optimal steps, θ, in order to investigate its effects on the longevity of the coral colonies. The 

results are presented on Table 7 below. It demonstrates how the ratio of live coral particles to 

the total coral particles in the domain was affected by the increasing ability of the particles to 

replenish their energetic reserves. The relative average energetic reserves of the live coral 

particles are shown as well. This is calculated as the average energetic reserves of all live coral 

particles at that specific growth-step divided by the initial energetic reserves (ER in equations 

(11)-(13)). This ratio was used to enable direct comparison between simulations that were 

initialized with various values of initial energetic reserves (ER). 

Table 7: Dynamic energetic reserves in 2D simulations. The presented properties of the coral colonies are taken from the 
100th growth-steps of the simulations 

Ability to replenish energetic 

reserves (θ) 

Ratio of live to total coral 

particles (%) 

Relative average 

energetic reserves 

0 9.8 ± 0.11 0.91 ±0.04 

0.1 10.1 ± 0.11 1.22 ±0.04 

0.3 10.6 ± 0.11 1.42 ±0.07 

0.5 11.2 ± 0.11 1.56 ±0.07 

0.7 12.5 ± 0.13 1.78 ±0.09 

0.9 14.1 ± 0.14 1.96 ±0.09 

As expected, when coral particles had higher abilities to replenish their energetic reserves 

(higher values of θ) the resultant coral colonies had higher average energetic reserves. It is also 

notable that being able to stay alive for longer resulted to colonies that had higher number of 

live coral particles compared to the total amount of coral particles in the domain. Table 7 shows 

that this ratio was dropping as the simulations progressed and was higher for simulations that 

allowed the colonies to replenish their energetic reserves faster (simulations with higher θ 

values). 

Cold-water corals are characterised by various processes that require high energetic inputs; 

calcification, tissue and mucus production, reproduction and maintenance (Hennige et al., 

2014). In more acidic conditions, the energetic demands associated with calcification rates 

could be higher, with more energetic reserves used to maintain stable calcification rates 

(Hennige et al., 2014, 2015). The SPH model presented in Table 7 examined how the rate that 

L. pertusa can replenish energy during growth steps with optimal flow conditions can affect 
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coral longevity. The results suggest that when the coral particles were allowed to replenish 

more energy in optimal time-steps (higher θ values), colonies had a higher ratio of live coral 

particles to total coral particles in the domain. As expected, this also meant that in higher θ 

value simulations the average energetic reserves at later stages of simulations were higher and 

these colonies could therefore survive longer in sub-optimal conditions. The long-term 

prosperity and longevity of the coral colonies therefore would depend on their ability to store 

a portion of the energy they create by capturing prey. This could make a significant difference 

in periods that they are exposed to continuous sub-optimal flow conditions or in situations 

where their energetic demands increase due to changes in environmental variables such as in 

more acidic waters (Secretariat of the Convention on Biological Diversity, 2014; Hennige et 

al., 2015).  

Table 8: Ratio of live to total coral particles in the domain at the 50th and 100th growth steps based on the simulated 
ability of the colonies to replenish their energetic reserves 

Ability to replenish energetic reserves (θ) Ratio of live to total coral particles (%) 

At 50 growth steps At 100 growth steps 

0 15.1 ±0.14 9.8 ±0.11 

0.1 15.7 ±0.14 10.1 ±0.11 

0.3 15.9 ±0.14 10.6 ±0.11 

0.5 16.2 ±0.15 11.2 ±0.11 

0.7 16.5 ±0.16 12.5 ±0.13 

0.9 16.9 ±0.16 14.1 ±0.14 

A previous study (Vad et al., 2017) examined various L. pertusa colonies from two different 

sites and showed that the ratio of living coral to the whole colony size was between 0.10 and 

0.27. It was also shown that this ratio is negatively correlated to the whole colony size. Table 

8 shows the ratio of live coral particles to the total coral particles in the domain in simulations 

with various energetic reserve configurations. In the modelled coral colonies, the ratio varied 

between 0.098 and 0.17 between the 50th and the 100th growth step showing the same negative 

correlation with the colony size as well - the ratio drops in value as the simulations progress 

while the total coral particle number can only increase. 

At later stages of the simulations the ratio of live coral particles to the whole coral particles is 

lower than what observed by (Vad et al., 2017). The domain size was chosen initially to be 

large enough that it would not affect the growth of the coral colonies, but also not too large that 

it would make the simulations very computationally expensive. As the coral colonies grow and 

occupy larger parts of the finite numerical domain, it is possible that at later stages the 

dimensions of the domain start to affect growth. The ratio of live coral to total coral particles 

can be used then as a method to end the simulations, when it starts to drop too far below the 

expected values. 

3.6 Coral growth and gravity 

A limitation of the previous SPH model (presented in Figure 14) was that it disregarded the 

effects of gravity in coral growth. The coral would grow in the nearby optimal velocity regions 

and new layers of live particles would be created on top of previous layers. In real colonies it 

would be impossible for a single point to support all this newly created mass of coral structure 

above it and the colonies would start to break-down according to the mechanism suggested by 

(Wilson, 1979). In order to mimic this mechanism and visualize more realistic coral colonies 
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an intermediate ‘gravity’ step has been included in the following model. Here, the coral colony 

would initially grow similarly to the previous model until it reached the 60th growth step. At 

that moment a break-down mechanism was initiated to simulate the effects of gravity to the 

coral colony. After the simulation of this intermediate gravity-step reached steady state, the 

additional gravitational acceleration was again set to zero, the particles of the top boundary 

were re-initialised with the input velocity (0.5 m/s) and the growth model started once again to 

simulate coral growth based on the newly imposed boundary conditions. The results can be 

seen in Figure 15 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 shows the velocity vector 

shortly after the gravity step of the 

growth model (70th growth 

step) while 

Figure 18 

visualizes the velocity profile near the end stages of the  simulation (110th growth step). The 

velocity magnitude of the water in the domain is zero at the bottom boundary where the no-

slip condition is enforced, and it increases with the height of the domain until it reaches its 

maximum value (0.5 m/s) at the top boundary (omitted in the figures). A region of recirculating 

Figure 15: Including the effects of gravity in coral growth. Initially a coral colony grew from a 
single point for 60 growth steps (A). At this point a break-down mechanism was initiated and the 
resultant colony is shown to include gravitational effects (B). Finally, growth in the domain has 
been re-initiated and coral growth at 120 growth steps is shown (C). 
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flow is created downstream of the colony that helps elevate low velocity regions. Its position 

and size depend on the incident velocity and the shape of the dynamically growing coral colony. 

 

 

Figure 17: Velocity profile with streamlines around the coral colony at the 110th growth step. Red particles show live coral 
particles while yellow particles denote dead coral framework 

 

4. Conclusions and future work 

Figure 16: Velocity profile with streamlines around the coral colony at the 70th growth step. Red particles show live coral 
particles while yellow particles denote dead coral framework. 
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A bespoke weakly compressible Smoothed Particle Hydrodynamics (WCSPH) solver was 

developed and parallelised using OpenMP to model cold-water coral growth based on the 

Goldilocks Principle, with validation performed against known analytical and numerical 

solutions. 

The survivability and longevity of cold-water coral colonies depend on how they manage their 

energetic reserves. In growth-steps where they are exposed to sub-optimal flow, they need to 

have enough energy stored to allow for the smaller inflow of resources to prevent mortality. In 

growth-steps within optimal flow regions they need to store enough energy to ensure that their 

reserves are not depleted, and they can survive potential future sequential growth-steps in sub-

optimal conditions. This highlights the importance of coral energetic reserves; they are shown 

to be one of the major factors that can affect coral growth and prosperity. Management of 

energetic reserves is paramount in periods where their energy intake is decreased, or their 

energetic demands are increased due to changes in environmental variables. 

The outputs of the models are in accordance with in situ studies that compare the size of the 

living coral in a colony to the size of the whole colony. The modelled corals show similar 

growth patterns as real cold-water corals and the ratio of living coral to the total colony size is 

negatively correlated with the size of cold-water coral colonies. Furthermore, qualitative 

comparisons against real cold-water coral colonies illustrate similar dense, complex branching 

geometries with high rugosity at the outer edges. They consist of a layer of living coral particles 

surrounding dead coral skeleton. 

The Growth model in this work considered only the effects of hydrodynamics in cold-water 

coral growth, assuming that the available nutrients are infinite. A more realistic approach would 

be needed in order to capture the effects that nutrient availability can have in coral growth, 

where upstream nutrient uptake can affect downstream availability. Decreasing food 

availability could lead to less symmetrical coral growth forms with upstream positions having 

an inherit resource advantage. This would open the way to model competition among multiple 

coral colonies for the finite resources. The development of this SPH model can also lead to 

modelling various future scenarios, including the effects of ocean acidification on coral 

framework and potential coral restoration practices. Additionally, the methodology can be 

extended to model tropical coral growth by introducing sunlight as an input growth variable. 
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 Smoothed Particle Hydrodynamics modelling of cold-water coral growth 

 Using the Goldilocks Principle to predict cold-water coral growth 

 Energetic reserves can be one of the major factors affecting coral prosperity 
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