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Background
RNA sequencing (RNA-seq) technologies are now increasingly considered for whole 
transcriptome gene expression quantification studies as compared to traditional micro-
array technologies due to its high technical reproducibility and greater resolution [1]. 
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Background:  Use of next-generation sequencing technologies to transcriptomics 
(RNA-seq) for gene expression profiling has found widespread application in study-
ing different biological conditions including cancers. However, RNA-seq experiments 
are still small sample size experiments due to the cost. Recently, an increased focus 
has been on meta-analysis methods for integrated differential expression analysis for 
exploration of potential biomarkers. In this study, we propose a p-value combination 
method for meta-analysis of multiple independent but related RNA-seq studies that 
accounts for sample size of a study and direction of expression of genes in individual 
studies.

Results:  The proposed method generalizes the inverse-normal method without an 
increase in statistical or computational complexity and does not pre- or post-hoc 
filter genes that have conflicting direction of expression in different studies. Thus, the 
proposed method, as compared to the inverse-normal, has better potential for the 
discovery of differentially expressed genes (DEGs) with potentially conflicting differen-
tial signals from multiple studies related to disease. We demonstrated the use of the 
proposed method in detection of biologically relevant DEGs in glioblastoma (GBM), 
the most aggressive brain cancer. Our approach notably enabled the identification of 
over-expressed tumour suppressor gene RAD51 in GBM compared to healthy controls, 
which has recently been shown to be a target for inhibition to enhance radiosensitiv-
ity of GBM cells during treatment. Pathway analysis identified multiple aberrant GBM 
related pathways as well as novel regulators such as TCF7L2 and MAPT as important 
upstream regulators in GBM.

Conclusions:  The proposed meta-analysis method generalizes the existing inverse-
normal method by providing a way to establish differential expression status for genes 
with conflicting direction of expression in individual RNA-seq studies. Hence, leading to 
further exploration of them as potential biomarkers for the disease.
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Over the last decade, it has found widespread application in studying different biologi-
cal conditions including cancers. For instance, sequencing data archived on The Cancer 
Genome Atlas (TCGA) (https://​portal.​gdc.​cancer.​gov/) have been used in several stud-
ies to explore potential biomarkers and mechanisms in oncogenesis [2, 3]. Despite its 
advantages and few large RNA-seq datasets [4, 5], RNA-seq experiments are still small 
sample size experiments because of its high cost. This leads to a problem of reduced 
statistical power in studies such as differential expression analysis where thousands of 
genes are studied at a time but only have tens to hundreds of samples. Combination 
of data or results from multiple independent but related studies (referred to as meta-
analysis) have been widely used to increase available sample size and consequently the 
statistical power to obtain a precise estimate of gene expression differentials [6, 7]. In 
the context of differential expression analysis, several different meta-analysis approaches 
have been proposed for integrating microarray studies [8, 9] and some of them have later 
been adapted for RNA-seq data [10, 11].

For microarray gene expression studies, apart from vote-counting and direct merging 
of datasets, meta-analysis methods can mainly be classified into three types based on 
the combined statistic [7]. First are methods based on effect-size combination in which a 
combined effect (for instance, strength of differential expression between two conditions 
for a gene) is obtained based on the calculated effect sizes and its variance. Two possible 
models namely, fixed and random effects model are used to obtain the combined effect 
[12]. Second are approaches based on integration of p-values obtained from per-study 
analysis into a single combined p-value per gene [13]. Lastly, are approaches based on 
rank combination which are non-parametric and allow for integration of studies based 
on a statistic that can be ordered, e.g., fold change of a gene [14]. However, RNA-seq 
data are counts data, i.e., normalized number of sequenced reads within a certain gene 
or transcript, unlike the microarray data which are continuous, e.g., normalized signal 
intensity of image [15]. Hence, the methods initially proposed for microarray data are 
not suited to be applied directly to RNA-seq data in many cases [10].

In case of RNA-seq data, Poisson or Negative-Binomial distributions are typically 
used to model gene counts [16]. Kulinskaya et al. [17] described an effect-size combina-
tion method using an Anscombe transformation of Poisson distributed data. However, 
as highlighted by Rau et al. [10], this effect-size combination approach is not appropri-
ate for RNA-seq data due to over-dispersion among biological replicates and presence 
of zero-inflation. Rau et al. [10] considered two p-value combination methods, namely 
Fisher and inverse normal (IN) or Stouffer’s methods, previously proposed and used 
for meta-analysis of microarray studies [8, 9, 13] and demonstrated how these can be 
adapted in RNA-seq data analysis. Their results illustrated that Fisher and IN methods 
were very similar to each other in terms of performance but were better than the global 
and per-study differential analysis [10]. These two (Fisher and IN) p-value combina-
tion approaches have been implemented in several R packages, e.g., metaRNASeq [10], 
metaseqR [18] and metaSeq [19] and are the most widely used methods due to its sta-
tistical simplicity and ease of direct application for meta-analysis of RNA-seq studies for 
differential expression.

Among all the existing meta-analysis methods for RNA-seq data discussed above, 
only few of the p-value combination methods (e.g., IN and PANDORA p-value [18]) 

https://portal.gdc.cancer.gov/
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allow for incorporation of information regarding the number of replicates in different 
studies to be combined through specification of a set of weights. However, informa-
tion related to the direction of expression (up- or down-regulated) of a gene across 
different studies is not accounted for or included in any of these meta-analysis meth-
ods for RNA-seq data. Under- and over-expressed genes are analysed together and 
genes exhibiting conflicting direction of expression across studies are either removed 
prior to meta-analysis or are suggested to be identified and removed post-hoc [10, 
11]. Hence, no conclusion can be drawn with regards to differential expression for 
the genes that have conflicting direction of expression across different studies. Given 
that a significant proportion of genes may exhibit conflicting direction of expression 
across different gene expression studies [20], particularly when more and more RNA-
seq data are publicly available and included into integration, emphasis is warranted 
on including this important prior information in a meta-analysis setting.

Recently, importance of inclusion of direction of expression information for genes 
in RNA-seq meta-analysis has been recognized leading to a generalization of some 
existing p-value combination methods such as Fisher method and Bayesian Hierar-
chical Model [21–23]. However, these generalizations come at a cost of increased sta-
tistical and computational complexity which discourages their widespread application 
to transcriptomic studies. In this study, we aimed to develop a new approach for inte-
grated differential meta-analysis of RNA-seq data which accounts for both the sample 
size and direction of gene regulation in each study. The proposed approach leads to a 
generalization of the IN method without introducing additional statistical or compu-
tational cost and hence is simple and intuitive for real data application. First, we pro-
pose a modified inverse-normal (MIN) approach for p-value combination and assess 
its performance by comparing it with the IN method based on an extensive simulation 
study. Next, to overcome the limitation of MIN method, we further propose a fused 
inverse normal (FIN) method for p-value combination and assess its performance by 
comparing it to IN and MIN methods in a simulation study. Then an application to a 
set of real glioblastoma (GBM, the most aggressive type of brain cancer) studies has 
been conducted. Moreover, we assessed the relevance of the identified differentially 
expressed genes (DEGs) by FIN method for GBM by using Ingenuity Pathway Anal-
ysis (IPA, www.​qiagen.​com/​ingen​uity) for pathway analysis and upstream regulator 
analysis (URA).

Methods
Let ygcrs be the observed count for gene g  ( g = 1, 2, . . . ,G ) in condition c ( c = 1, 2 ) 
of biological replicate r ( r = 1, 2, . . . ,Rcs) in study s ( s = 1, 2, . . . , S ). For an inte-
grated differential analysis of gene expression across multiple studies, we first con-
ducted the differential expression analysis within a given study s using edgeR package 
(version 3.26.5) in R version 3.6.0 [24] with likelihood ratio test as the test for dif-
ferential expression. Let  pgs be the raw p-value for per-gene and per-study obtained 
using the individual differential expression analysis within a given study s for gene 
g  . The null hypothesis tested in the individual differential analysis is that the gene is 

http://www.qiagen.com/ingenuity
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non-differentially expressed in the particular study. For notational convenience, the 
notations similar to the ones used in Rau et al. (2014) [10] were adopted in this study.

Modified inverse‑normal method

Let Bgs be a Bernoulli random variable which takes values 1 and -1 when a gene g is over- 
and under-expressed respectively in a study s . A gene can be assessed as over- or under-
expressed based on the fold change values (> 1 or < 1) of the gene in a study. Then, for a 
gene g , we define a combined statistic

where ws are a set of study specific weights described by Marot and Mayer [25] as 
follows:

Here, 
∑

cRcs is the total number of biological replicates in a study s for all condition c 
and k cRck indicates the total number of biological replicates in all studies. Moreo-
ver, Ng can be considered as a weighted z-score. An advantage of this weighting criteria 
is that larger weights are attributed to studies with larger sample sizes. � is the standard 
normal cumulative distribution function and pgs is the raw p-value obtained for gene g 
by differential analysis for study s.

It is assumed that pgs are uniformly distributed under the null hypothesis ( H0 ) leading 
to �−1(1− pgs) being standard normal in the above formula (1). However, this assump-
tion of pgs is not automatically satisfied when dealing with RNA-seq data [10]. Filtering 
of very low expressed genes in each study results in p-values which are roughly uniformly 
distributed under the null hypothesis [10]. Similarly, under H0 , Bgs is a Bernoulli random 
variable taking values 1 and -1 with equal probability. This is because under H0 , a gene is 
non-differentially expressed. Hence, the chance of it being over- or under-expressed in a 
study is the same. However, note that since in a particular study we have both differen-
tially and non-differentially expressed genes, the numbers of over-expressed genes in c1 
and c2 are not expected to be the same. Then, we have that Bgs

∣

∣�−1
(

1− pgs
)∣

∣ ∼ N (0, 1) 
(see Theorem 1).

Theorem 1  Let X and Y  be two independent random variables where X ∼ N (0, 1) and 
Y  is a Bernoulli random variable taking values 1 and −1 with equal probability. Then, 
Z = Y |X | is standard normal distributed.

Proof  Using first principle,

Now, if t < 0 , the RHS of  (3) becomes 12P[|X | ≥ −t] . By symmetry of the normal distri-
bution, we have

(1)Ng =

S
∑

s=1

wsBgs|�
−1

(

1− pgs
)

|

(2)ws =

√

∑

c Rcs
∑

k

∑

cRck

(3)
P[Y |X | ≤ t] = P[Y = 1, |X | ≤ t]+P[Y = −1,−|X | ≤ t] =

1

2
P[|X | ≤ t]+

1

2
P[|X | ≥ −t]
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where � is the cumulative distribution function of standard normal.

For t ≥ 0 , the RHS of (3) becomes 12P[|X | ≤ t]+ 1
2 . Hence, by symmetry of the normal 

distribution, we have

Thus, Z ∼ N (0, 1) . ■

Hence, Ng in Eq. (1) is a linear combination of independent standard normal variables. 
Thus, is also standard normal. A two-sided test can then be performed with H0 being 
that the gene g is not differentially expressed between two conditions (case vs control) 
and combined p-value is given by ( pg = P

(

|z| ≥ Ng

)

 , i.e.

A correction for multiple testing to control the false discovery rate (FDR) at a desired 
level α can be done by Benjamini–Hochberg (BH) approach [26].

Fused inverse‑normal method

To address the conservative nature of MIN method (see simulation study results), we 
propose a mixture method which is a mixture of IN and MIN method for integrated dif-
ferential analysis. In contrast to formula (1) we define Ng as follows:

Here, ws , � and Bgs have their usual meaning as described previously. As Ng follows 
a standard normal distribution given the assumption that pgs is uniformly distributed 
under the null hypothesis, a one-sided test on the right-hand tail of the distribution (as 
proposed in [10]) can be performed for genes with same direction of expression across 
studies. For the genes with conflicting direction of expression across studies, a two-sided 
test can be performed. H0 being the same in both the cases. Multiple testing correc-
tion to control the overall FDR can then be carried out using the BH method. A detailed 
interpretation of the FIN method in terms of differential expression of a gene and its 
direction of expression in individual studies can be found in Additional file 1: Supple-
mentary 1 (Interpretations of the FIN method section).

Simulation study

To investigate the performance and compare the MIN and FIN methods with state-of-
the-art p-value combination method (IN with post-hoc filtering), we performed a simu-
lation study. The simulation study has been divided into two parts. In first part of the 
simulation study, we compare MIN with IN to understand the behaviour of MIN in 

P[Y |X | ≤ t] = P[X ≤ t] = �(t)

P[Y |X | ≤ t] = P[X ∈ [0, t]]+
1

2
= P[X ≤ t] = �(t)

pg = 2[1−�
(

|Ng |
)

]

(4)Ng =

{
∑S

s=1 ws�
−1

(

1− pgs
)

, if g has same direction of expression across s
∑S

s=1 wsBgs

∣

∣�−1
(

1− pgs
)∣

∣, otherwise
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comparison to IN and emphasize the need for FIN method. Next, we assess and com-
pare the performance of FIN method to that of IN and MIN methods.

An extensive set of RNA-seq data was generated using the negative binomial distribu-
tion for the counts ygcrs and method described in Rau et al. [10] (see Additional file 1: Sup-
plementary 1, section: Simulation study model). Parameters for the simulation study were 
estimated from a real RNA-seq dataset for Alzheimer’s disease (AD) study downloaded 
from Gene Expression Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/) [27] with 
accession number GSE125583 which contains data for 219 AD patients and 70 normal 
control subjects. The method used for estimation of mean and dispersion parameters from 
GSE125583 were as described in Rau et al. [10] with BH p-value < 0.05 being used to clas-
sify a gene as a DEG. This dataset was chosen as it has considerable number of samples 
for both biological conditions, namely case and control. Simulation settings for inter-study 
variability parameter ( σ) , number of samples per condition and number of studies have 
been detailed in Table 1. The inter-study variability parameter represents the amount of 
variability between the studies considered for meta-analysis. In practice, the observed vari-
ability between human data studies is considerable ( σ ∼ 0.5 ) [10]. We chose two different 
values of σ (0.15 and 0.5) to represent small and large amount of inter-study variability 
respectively. For each setting described in Table 1, 100 independent trials were considered.

For each simulation setting, individual p-values obtained from differential expression 
analysis using edgeR (version 3.26.5) were combined using MIN, FIN and IN methods. A 
gene was considered differentially expressed if the BH adjusted combined p-value (FDR) 
< 0.05 . Next, based on area under the receiver operating characteristic (ROC) curves 
(AUC), the meta-analysis methods were assessed for detection power in identifying 
DEGs under all simulation settings. Furthermore, the characteristics of MIN and FIN 
methods were also assessed in terms of: (a) FDR, (b) the proportion of true-positives 
(TPs) among the unique DEGs identified by each of the two methods as compared to IN 
method and (c) proportion of truly unique DEGs with the observed effective direction of 
expression as the true direction of expression.

Application to brain cancer data

To demonstrate how the MIN and FIN method can be adapted in practice for differen-
tial meta-analysis of RNA-seq data and compare it with IN method, an application to 
real glioblastoma (GBM) studies has been conducted.

Table 1  Simulation settings for inter-study variability parameter ( σ ), number of studies and number 
of replicates per study

Area under the receiver operating characteristic curves (AUC) for inverse-normal (IN), modified inverse-normal (MIN) and 
fused inverse-normal (FIN) methods computed using 100 trials for each simulation setting. Std. dev: Standard deviation

Setting σ No. of 
studies

No. of replicates (case, control) AUC (MIN, IN, FIN) Std. dev (MIN, IN, FIN)

1 0.15 3 (10, 10) (15, 10) (12, 16) 0.886, 0.920, 0.920 0.005, 0.003, 0.003

2 0.15 5 (10, 10) (15, 10) (12, 16) (14, 12) (20, 20) 0.953, 0.970, 0.970 0.005, < 0.001, 0.001

3 0.5 3 (10, 10) (15, 10) (12, 16) 0.950, 0.965, 0.966 0.004, 0.005, 0.005

4 0.5 5 (10, 10) (15, 10) (12, 16) (14, 12) (20, 20) 0.957, 0.977, 0.977 0.005, 0.005, 0.005

https://www.ncbi.nlm.nih.gov/geo/
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Data collection and pre‑processing

GBM RNA-seq datasets were searched in GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) 
and TCGA databases (https://​portal.​gdc.​cancer.​gov/). Datasets were selected based on a 
selection criterion that at least 3 GBM patients and 3 normal tissue samples are available 
for analysis. Three different GBM RNA-seq datasets, two from GEO (with accession ID: 
GSE123892 and GSE151352) and one from TCGA (TCGA-GBM) matched our selection 
criteria and were considered for analysis (for details, see Table 2). Raw gene or transcript 
counts data (where available) was directly downloaded for TCGA-GBM and GSE123892 
datasets. For GSE151352, raw FASTQ files were downloaded and processed using Galaxy 
web platform via the European UseGalaxy server (https://​usega​laxy.​eu/) [28] to obtain 
raw counts. The quality of the raw reads was assessed (using FastQC) and the speci-
fied adapter sequence ATC​ACC​GAC​TGC​CCA​TAG​AGA​GGC​TGA​GAC​ was removed 
with Cutadapt (version 1.16) [29]. The parameters used for this step were the param-
eters provided by the submitter of the dataset on GEO. The adapter trimmed reads were 
aligned to the reference genome (GRCh37.p13) using sequence aligner RNA STAR (Gal-
axy version 2.7.5b) [30] where other parameters used were default settings. Following 
alignment, the generated BAM files were processed using the featureCounts tool (Gal-
axy version 1.6.4 + galaxy2) [31] to get raw counts for each RNA-seq data sample. More 
details of the processing pipeline used for GSE151352 can be found in Additional file 1: 
Figure S1 and processing of raw RNA-seq dataset GSE151352 using GALAXY section.

Per‑study differential expression analysis

The raw counts of each of these datasets (TCGA-GBM, GSE123892 and GSE151352) 
were processed separately for quality control and differential expression analysis using 
edgeR package (version 3.26.5) in R. Raw counts data (transcript) were annotated by 
mapping Ensembl IDs to Entrez Gene IDs and gene symbols (org.Hs.eg.db package, 
version 3.8.2 in R [32]). Ensembl IDs with no Entrez ID mapping were filtered out. For 
those with multiple matchings, the one with highest aggregated count was selected. 
Counts per million (CPM) threshold (0.85 CPM) was carefully selected to reduce the 
number of low expressed transcripts [33]. Although subjective, this choice of thresh-
old seems to work well for the uniform distribution assumption for the p-values under 
H0 . Only genes left after low expression filtering were considered for individual differ-
ential expression analysis in order to satisfy the uniformity assumption on p-values 
under H0 . The remaining transcripts were then normalized using the trimmed mean 
of M-values (TMM) method [34]. Common and tag-wise dispersion were estimated 

Table 2  Information about GBM RNA-seq datasets used for integrated analysis using different 
p-value combination methods in our study

Up and down differentially expressed genes (DEGs) refer to the up and down-regulated DEGs obtained in per-study 
differential analysis

Datasets No. of replicates (cases/
normal)

No. of genes (after 
filtering)

Up DEGs Down DEGs

GSE123892 4/3 15,024 1914 1837

GSE151352 12/12 12,916 670 1545

TCGA-GBM 160/5 17,943 3746 3183

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://usegalaxy.eu/
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and a negative-binomial generalized log-linear model was fitted to the read counts 
using the glmFit function under the edgeR package. Raw p-values were then obtained 
from the differential analysis for case/control conditions.

Meta‑analysis

Once the raw p-values were obtained from the individual differential expression anal-
ysis for each dataset, IN, MIN and FIN methods were applied for p-value combina-
tion. Since the TCGA-GBM dataset (160 GBM vs 5 normal samples) is much larger in 
terms of number of samples as compared to GSE123892 (4 GBM vs 3 normal samples) 
and GSE151352 (12 GBM vs 12 normal samples), we considered two different combi-
nation scenarios. First, all TCGA-GBM samples were used for individual analysis to 
obtain the raw p-values. Second, 20 cases and 5 normal samples randomly selected 
from TCGA-GBM dataset were considered for individual analysis to get raw p-values 
and then considered for meta-analysis with the other two datasets (GSE123892 and 
GSE151352). 10 different random selections were made, and individual differential 
expression analysis were conducted respectively. Second scenario ensured that the 
datasets included in meta-analysis had comparable sample sizes.

For each of the combination methods, we assessed the number of DEGs based on 
average absolute log fold-change  

∑n
i=1

∣

∣log2FCi

∣

∣/n > 1 and FDR p-value < 0.05 cri-
teria. Here, n denotes the number of datasets in which a particular gene was present. 
In case a gene was absent in a dataset, the weights in the combination methods were 
estimated only using the number of replicates in datasets in which the gene was pre-
sent. The three p-value combination methods were then compared based on number 
of DEGs identified and unique DEGs identified by each method.

Pathway analysis and biological significance

DEGs obtained by the FIN method were further explored to assess their biological 
relevance to GBM. QIAGEN’s Ingenuity Pathway Analysis (IPA) (www.​qiagen.​com/​
ingen​uity) tool was used to identify biological pathways in which DEGs were enriched 
and upstream regulator analysis (URA) identified upstream regulators for GBM. We 
performed pathway analysis and URA separately for DEGs that were up-regulated 
and down-regulated and were present in all three datasets.

Results
Both MIN and FIN methods were compared to the IN (with post-hoc filtering) 
method in a simulation study and a real data application.

Simulation study

MIN and IN comparison

Based on AUC (Table  1, Fig.  1), both meta-analysis methods (MIN and IN) per-
formed well in terms of detection power in identifying DEGs (BH adjusted combined 
p-value < 0.05 ) under all simulation settings. For both low ( σ = 0.15 , Fig. 1a-b) and 
high ( σ = 0.5 , Fig. 1c–d) inter-study variability, we observed that the MIN method 
was more conservative for true DEGs (AUC was smaller) than the IN method. 

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
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However, as the inter-study variability and the number of studies to be combined 
increased, both meta-analysis methods were found to have comparable performance 
(Fig.  1c–d). Although slightly conservative in its performance with respect to the 
IN approach, MIN method has the advantage of using direction of expression infor-
mation leading to identification of DEGs among genes with conflicting direction 
of expression across studies. The conservative behaviour of the MIN method can 
be attributed to the fact that a two-sided hypothesis testing is performed as com-
pared to a one-sided test on right-hand tail of the distribution in case of IN method. 
Hence, next we proposed the FIN method as a mixture of IN and MIN methods to 
circumvent the issue of conservativeness of MIN method among true DEGs.

As expected, with increase in inter-study variability and number of studies to be 
combined, the number of genes with mismatched direction of expression was signifi-
cantly higher (see Additional file 1: Table S1). We also note that the FDR for all simu-
lation settings was controlled well below 5% threshold (Fig. 2a). In terms of uniquely 
identified DEGs by the MIN method as compared to IN method, the proportion of 
true positives (TPs) was higher than 80% (Fig. 2b) in all simulation settings. A large 
proportion of TPs among the unique DEGs identified by the MIN method indicates 
that the MIN approach can lead to DEGs that are biologically relevant to a disease in 
a real application. Moreover, as the inter-study variability, number of studies or both 
increased, there was an increase in the number of uniquely identified DEGs by the 
MIN method and proportion of TPs among them (Fig. 2b). More importantly, a high 
percentage of these truly unique DEGs (~ 80% or more in all settings) were observed 
to have the true direction of expression (Fig. 2c) suggesting that a significantly high 
percentage of uniquely identified DEGs by the MIN method in real data applications 

Fig. 1  Performance comparison of modified inverse-normal, inverse-normal and fused inverse-normal 
methods. Plots of receiver operating characteristics (ROC) curves averaged over 100 trials for each 
simulation setting for all three methods. Simulation settings are represented by rows (from top to bottom): 
corresponding to low (σ = 0.15) and high (σ = 0.5) inter-study variability and columns (from left to right): 
corresponding to 3 (S = 3) and 5 studies (S = 5) combined. The black, blue, and red ROC curves represent the 
modified inverse-normal (MIN), inverse-normal (IN) and fused inverse-normal (FIN) methods respectively
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will have true direction of expression as their effective direction of expression. 
The effective observed direction of expression was determined by the sign of Ng as 
defined in Eq. (1).

FIN, IN and MIN comparison

In addition to the simulation study for comparing MIN with IN method, we assess 
and compare the performance of FIN method to that of IN and MIN methods by 
using the same simulated data and settings described in Table  1. Based on AUC 
(Table 1, Fig. 1), FIN performed similar or better than IN method and had better per-
formance than MIN under all simulation settings. As with MIN, FIN method also has 
the advantage of using direction of expression information and hence identified DEGs 
among genes with conflicting direction of expression in contrast with IN method. 
More importantly, we observed that FIN significantly improved detection power for 
true DE genes with concordant differential expression patterns across studies as com-
pared to MIN method and does not lead to increased number of false positive detec-
tions overall (Fig. 3a).

As compared to IN, the proportion of TPs among the uniquely identified DEGs 
by FIN method was higher than 90% (Fig.  3b) indicating that FIN method can lead 
to DEGs that are biologically relevant to a disease in a real application. Similar to 
MIN, as the inter-study variability, number of studies or both increased, there was 
an increase in the number of uniquely identified DEGs by the FIN method as com-
pared to IN method and proportion of TPs among them (Fig. 3b). In addition, a high 
percentage of these truly unique DEGs (> 80% in all settings) were observed to have 

Fig. 2  Characteristics of modified inverse-normal method. a False discovery rates (FDR) for modified 
inverse-normal (MIN) method for all simulation settings. b Proportion of true positives (TPs) among unique 
differentially expressed genes (DEGs) identified by MIN method as compared to inverse-normal (IN) method. 
c Proportion of truly unique DEGs (MIN) with the observed effective direction of expression as the true 
direction of expression
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the true direction of expression (Fig. 3c) suggesting that a significantly high percent-
age of uniquely identified DEGs by the FIN method in real data applications will have 
true direction of expression as their effective direction of expression. The effective 
observed direction of expression was determined by the sign of Ng for genes with 
conflicting direction of expression across studies. In case of same direction of expres-
sion of a gene across studies, the consistent direction of expression was kept as the 
effective direction of expression.

Glioblastoma brain cancer data application

Per‑study differential expression analysis

DEGs were identified in per-study differential analysis based on the criteria 
∣

∣log2FC
∣

∣ > 1 
and FDR p-value < 0.05 and can be found in Table 2. We note that TCGA-GBM dataset 
has a much larger library size (~ 47 million reads, Illumina HiSeq 2000 v2 sequencer) as 
compared to GSE151352 (~ 4 million reads, Ion Torrent S5 sequencer) and GSE123892 
(~ 35 million reads, Illumina HiSeq 2500 sequencer). Hence, we observed a differing 
number of genes left after filtering and consequently a much larger number of DEGs 
being observed for TCGA-GBM dataset as compared to the other two (Table 2) in per-
study differential expression analysis. As the sequencing output gets larger, the smaller 
count differences between samples are declared significant by models for differential 
expression in edgeR. A more detailed treatment of differential expression in RNA-seq 
data and how it is affected by sequencing depth and other factors can be found in Tara-
zona et al. [35].

Fig. 3  Characteristics of fused inverse-normal method. a False discovery rates (FDR) for fused inverse-normal 
(FIN) method for all simulation settings. b Proportion of true-positives (TPs) among unique differentially 
expressed genes (DEGs) identified by FIN method as compared to inverse-normal method. c Proportion of 
truly unique DEGs (FIN) with the observed effective direction of expression as the true direction of expression
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Moreover, we also considered individual differential analysis for TCGA-GBM RNA-
seq data by randomly selecting 20 cases together with available 5 normal samples in 
order to make all three datasets (GSE123892, GSE151352 and TCGA-GBM) comparable 
in terms of number of replicates for the meta-analysis (see Additional file 1: Table S2). 
Hence, we considered two different meta-analysis scenarios.

Meta‑analysis

In scenario one (GSE123892, GSE151352 and TCGA-GBM with all 165 samples), a total 
of 18,315 unique gene pool was considered for meta-analysis which was the combina-
tion of genes identified in each RNA-seq data analysis after quality control and filtering 
(Table 2). 13,056 out of 18,315 genes (~ 71%) were found to have the same direction of 
expression across the studies in which they were present whereas 5259 (~ 29%) of genes 
had conflicting or mismatched direction of expression. The direction of expression for 
a gene in an individual study was determined based on the sign of log2FC obtained for 
that gene in per-study differential analysis. Hence, only 13,056 genes were effectively 
considered for IN method as compared to 18,315 genes for MIN and FIN methods for 
identifying DEGs because of post-hoc removal of DEGs with conflicting direction of 
expression in the IN method. Importantly, the uniform distribution assumption under 
the null hypothesis for the raw p-values of the considered gene pool was found to be 
appropriate (Fig. 4a).

A total of 5918, 5892 and 6138 DEGs were identified by the IN, MIN and FIN methods 
respectively. Of the DEGs detected by all these meta-analysis methods, more than 90% 
of them were in common (Fig. 4b) with FIN method having a higher detection power 
than the other two methods. 261 DEGs were found to be common between the IN and 
FIN methods but were not identified by the MIN method. This subset of 261 DEGs was 
characterized by low values of the combination statistic Ng (largest value of 2.22) and 
consistent direction of expression across studies. In addition, a large number among 
them (177 out of 261 DEGs, ~ 68%) were present in just one of the three studies. 50 and 
34 out of 261 DEGs were present in two and all three considered studies respectively.

MIN and FIN methods identified a total of 233 and 235 DEGs with mismatched direc-
tion of expression across studies by incorporating the direction of expression informa-
tion. All 233 DEGs with mismatched direction of expression across studies identified by 

Fig. 4  Comparison of results from meta-analysis methods. a Histograms of raw p-values obtained from 
per-study differential analysis of GSE123892 and GSE151352 and TCGA-GBM datasets used in real data 
application. b Venn diagram of the differentially expressed genes (DEGs) identified using inverse-normal (IN), 
modified inverse-normal (MIN) and fused inverse-normal (FIN) methods
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MIN were also identified by the FIN method. More importantly, in the subset of DEGs 
which were present in all three datasets, 5.26% of DEGs had conflicting direction of 
expression across studies. Although, small in proportion, this would be of importance in 
case a gene of interest for the disease being studied has conflicting direction of expres-
sion across different studies. Particularly when more datasets are included in meta-anal-
ysis, the number of genes considered in IN approach can be massively reduced.

Given that the FIN method has the highest power of DEG detection, we further 
explore the DEGs obtained using this meta-analysis procedure for biological signifi-
cance. Top 10 up and down-regulated DEGs identified by FIN method are presented 
in Table  3. For full list of DEGs identified by different meta-analysis methods, see 
Additional files 2, 3, 4: Supplementary S2, S3 and S4. In terms of effective direction 
of expression of DEGs, 2914 DEGs with same direction of expression across studies 
and 180 DEGs with mismatched direction of expression were up-regulated. Similarly, 
2989 (same direction) and 55 (mismatched direction) DEGs were down-regulated.

In scenario 2 (GSE123892, GSE151352 and TCGA-GBM with 10 random selec-
tions of 20 cases and 5 normal samples), the identified DEGs were consistent with 

Table 3  Top 10 up- and down-regulated differentially expressed genes (DEGs) identified by the 
fused inverse-normal method

The DEGs have been sorted based on the value of the statistic Ng and the mean of absolute value of the log2FC have been 
reported. Effect signifies the direction of expression of DEGs in the per-study differential analysis. BH p-value: Benjamini 
Hochberg p-value

DEGs
(Up)

Ng Mean
|logFC|

Effect BH
p-value

DEGs
(Down)

Ng Mean
|logFC|

Effect BH
p-value

EIF4EBP1 10.45 3.33 +++ < 1.62× 10−15 SMAD12 11.19 4.32 −−− < 1.62× 10−15

WEE1 10.39 4.04 +++ < 1.62× 10−15 RASGRF2 11.10 4.19 −−− < 1.62× 10−15

VIM 10.39 3.68 +++ < 1.62× 10−15 DNAJC6 11.07 3.71 −−− < 1.62× 10−15

NUSAP1 10.29 4.67 +++ < 1.62× 10−15 SERPINI1 10.99 4.79 −−− < 1.62× 10−15

HJURP 10.24 5.79 +++ < 1.62× 10−15 ATP1B1 10.98 3.35 −−− < 1.62× 10−15

KIF4A 10.15 4.48 +++ < 1.62× 10−15 ATP8A1 10.91 3.95 −−− < 1.62× 10−15

KIF20A 10.12 5.80 +++ < 1.62× 10−15 JAKMIP3 10.91 4.40 −−− < 1.62× 10−15

AURKB 10.09 5.48 +++ < 1.62× 10−15 MFSD6 10.90 2.83 −−− < 1.62× 10−15

UBE2C 10.07 5.95 +++ < 1.62× 10−15 DCTN1-AS1 10.88 5.33 −−− < 1.62× 10−15

CCNB2 10.04 4.63 +++ < 1.62× 10−15 PRKACB 10.85 2.35 −−− < 1.62× 10−15

Table 4  Number of differentially expressed genes (DEGs) found in one, two or all three datasets

Same and mismatched represents if the direction of expression of a DEG was consistent across a study or not respectively. 
IN: Inverse-normal, MIN: Modified inverse-normal, FIN: Fused inverse-normal

Method Expression direction Present in one 
study

Present in two 
studies

Present in three 
studies

Total DEGs

IN Same
Mismatched

1368
0

1085
0

3465
0

5918

MIN Same
Mismatched

1182
0

1035
52

3442
181

5892

FIN Same
Mismatched

1359
0

1083
53

3461
182

6138
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scenario 1. For instance, on average using the FIN method, about 94% of the DEGs 
obtained when randomly selected subset was considered were also found in DEGs 
identified using the full TCGA-GBM dataset (see Additional file 1: Table S3). Hence, 
suggesting that the identification of DEGs was stable across these two settings. 
Results for scenario 2 for random selection have been detailed in Additional file 1: 
Table S4, S5 and S6.

Pathway analysis and biological significance

We performed pathway analysis and URA separately for FIN method DEGs that were 
up-regulated and down-regulated and were present in all three datasets. We also note 
that not all identified DEGs by the meta-analysis methods are present in all three studies 
considered. Number of DEGs present in one, two or all three datasets have been detailed 
in Table 4.

Of 1798 up-regulated DEGs, all of them mapped in the IPA database and 101 canoni-
cal pathways were identified based on BH adjusted p-value (< 0.01). These include Hep-
tatic Fibrosis Signaling Pathway (adj. Pval. = 3.98× 10−13 , ratio = 0.205), Kinetochore 
Metaphase Signaling Pathway (adj. Pval. = 7.94 × 10−15 , ratio = 0.376), Cell Cycle 
Control of Chromosomal Replication (adj. Pval. = 5.89× 10−09 , ratio = 0.393), Role of 
BRCA1 in DNA Damage Response (adj. Pval. = 1.32× 10−08 , ratio = 0.325) and IL-8 
Signaling (adj. Pval. = 4.37× 10−08 , ratio = 0.215) as some of the top dysregulated path-
ways. More importantly, major aberrant pathways shown to be involved in GBM patho-
genesis [36, 37] were also identified and include Glioblastoma Multiforme Signaling 
(adj. Pval. = 2.95× 10−06 , ratio = 0.206), Glioma Signaling (adj. Pval. = 3.63× 10−05 , 
ratio = 0.205), p53 Signaling (adj. Pval. = 5.25× 10−05 , ratio = 0.224), Glioma Inva-
siveness Signaling (adj. Pval. = 0.0008 , ratio = 0.219), PI3K/AKT Signaling (adj. Pval. 
= 0.005 , ratio = 0.146) and mTOR Signaling (adj. Pval. = 0.007 , ratio = 0.138).

Similarly, all 1845 down-regulated DEGs mapped to the IPA database and 88 canoni-
cal pathways were identified as significant (BH adjusted p-value < 0.01). Synaptogenesis 
Signaling Pathway (adj. Pval. = 3.16× 10−25 , ratio = 0.288), Endocannabinoid Neuronal 
Synapse Pathway (adj. Pval. = 1.00× 10−16 , ratio = 0.359), Opioid Signaling Pathway 
(adj. Pval. = 1.00× 10−13 , ratio = 0.247), GNRH Signaling (adj. Pval. = 6.31× 10−11 , 
ratio = 0.260), Calcium Signaling (adj. Pval. = 6.31× 10−11 , ratio = 0.243), G Beta 
Gamma Signaling (adj. Pval. = 9.33× 10−10 , ratio = 0.287) and Dopamine-DARPP32 
Feedback in cAMP Signaling (adj. Pval. = 1.55× 10−09 , ratio = 0.252) were identified as 
some of the top dysregulated pathways. The top 10 pathways identified by the up-regu-
lated and down-regulated DEGs separately are illustrated in Fig. 5. For complete list of 
identified pathways for up- and down-regulated DEGs in our study, see Additional file 1: 
Table S7.

In addition, the URA tool in IPA identified potential upstream regulators (transcrip-
tion factors, genes or other small molecules) that has been experimentally observed to 
affect gene expression. It identifies these regulators by analysing linkage to DEGs through 
coordinated expression [38]. Among the up-regulated DEGs, TGFB1 and TP53, which 
are also DEGs and important in GBM pathogenesis [39, 40] are predicted to be the top 
two upstream regulators. 293 up-regulated DEGs were identified as potential upstream 
regulators of gene upregulation out of a total of 2215 (BH corrected p-value < 0.01, see 
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Additional file 1: Table S8a) predicted upstream regulators. Out of 2215 predicted, 764 
of these significant upstream regulators were activated and 112 were also observed as 
DEGs in our analysis.

On the contrary, for the down-regulated DEGs, IPA identified 32 potential upstream 
regulators (BH corrected p-value < 0.01, see Additional file 1: Table S8b) with TCF7L2 
and MAPT as the top two. 14 of the 32 upstream regulated were predicted to be 

Fig. 5  Significant pathways identified by IPA. The top ten significant pathways based on Benjamini 
Hochberg (BH) p-value among the canonical pathways identified by Ingenuity Pathway Analysis (IPA) for the 
up-regulated differentially expressed genes (DEGs) (orange bar) and down-regulated DEGs (green bar). The 
numbers on the bar plot show the ratio between the numbers of DEGs enriched and total number of genes 
in each of these pathways

Table 5  Top 10 differentially expressed genes (DEGs) with mismatched direction of expression 
across datasets identified by the fused inverse-normal method

The DEGs have been sorted based on the absolute value of the statistic Ng and the mean of absolute value of the log2FC 
have been reported. Effect signifies the direction of expression of DEGs in the per-study differential analysis for GSE123892, 
GSE151352 and TCGA-GBM respectively. BH p-value: Benjamini Hochberg p-value

DEGs Ng Mean |logFC| Effect BH p-value

CMTM6 7.58 1.30 +−+ 3.93× 10−13

RAD51 7.58 2.82 +−+ 4.03× 10−13

NOS1AP − 7.53 1.37 −+− 5.73× 10−13

MSANTD1 − 7.53 1.31 −+− 5.92× 10−13

PGM2 7.52 1.31 +−+ 6.35× 10−13

PSD3 − 7.47 1.67 −+− 8.63× 10−13

GPR82 7.43 4.35 +−+ 1.24× 10−12

SPTBN4 − 7.31 1.91 −+− 2.78× 10−12

TSPAN6 7.18 2.08 +−+ 6.86× 10−12

ARHGEF28 − 7.06 1.23 +−− 1.63× 10−11
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inhibited and two among the inhibited are DEGs. TCF7L2 is a diabetes risk-associated 
gene which plays a key role in the Wnt-signaling pathway and is shown to be frequently 
mutated in colorectal cancer [41] and promote cell proliferation [42]. However, explora-
tion of its role in GBM pathogenesis warrant further studies. Interestingly, MAPT is also 
a DEG observed in our analysis and is one of the two hallmarks of AD [43]. Gargini et al. 
[44] observed a strong correlation of Tau/MAPT expression and indicators of survival in 
glioma patients. Moreover, it has been found to be epigenetically controlled by balance 
between IDH1/2 wild-type and mutation in human gliomas [45]. Thus, providing further 
evidence and reaffirming the involvement of MAPT in central nervous system disorders.

Of the DEGs with conflicting direction of expression across studies, 182 out of 235 
DEGs are present in all three datasets. Among them CMTM6, RAD51, NOS1AP, 
MSANTD1, PGM2, PSD3, GPR82, SPTBN4, TSPAN6 and ARHGEF28 were identified as 
top 10 DEGs based on the absolute value of Ng (see Table 5). Interestingly, RAD51 and 
ARHGEF28 have previously been identified as a tumour suppressor and an oncogene 
respectively [46]. More importantly, RAD51 was found to be effectively over-expressed 
in GBM in our study and have recently been shown as a target for inhibition to enhance 
radiosensitivity of GBM cells during treatment [47, 48]. On the other hand, ARHGEF28 
was found to be effectively down-regulated in our study. It is an intracellular kinase that 
functions either as a Rho guanine exchange factor or a scaffolding protein to initiate 
FAK activation and cell contractibility [49]. Furthermore, the RhoA-FAK pathway has 
been shown to be involved in colon cancer cell proliferation and migration [50]. ARH-
GEF28 mRNA levels have also been found to be elevated in late-stage ovarian cancer 
and associated with decreased progression free and overall survival [51]. However, its 
role in GBM growth and progression is yet to be elucidated and requires exploration in 
future studies.

Discussion
Although the implementation of MIN and FIN p-value combination methods are 
straight forward, they require some additional considerations. First, the used weighting 
criteria leads to a larger weight being given to a study with larger sample sizes. Intui-
tively, this is expected as a study with a larger sample size might be more robust than 
studies with lower sample sizes. However, importance must also be given to the quality 
of the RNA-seq data in each study. It must be assessed in case this information is avail-
able and other weights more appropriate as per the quality of the data may be specified.

Next, the MIN and FIN are adaptive in a sense that they allow for consideration of 
genes that may not be present in all studies that are considered for integrated differential 
expression analysis. In case a gene is not present in some of the studies, the weights ( ws ) 
in the combination method can only be estimated using the number of replicates in the 
datasets in which the gene is present. However, for genes that are just present in one 
study, it would mean that the results from the meta-analysis for these genes would be 
the same as the per-study differential analysis. Hence, a careful consideration about the 
quality of the RNA-seq data and library size is required in case only the genes that are 
common among studies are considered. For datasets of similar quality and library size, 
a large proportion of genes would not be excluded from meta-analysis if only common 
genes are used. However, a large number of genes might be excluded from meta-analysis 
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in case of dissimilar library sizes and quality which could lead to potentially missing out 
on important genes for the disease. For instance, only 12,345 out of 18,315 unique genes 
are present in all 3 studies in our application where the library sizes are not similar. Thus, 
a balanced approach is suggested.

Finally, we used edgeR for per-study differential analysis in our study but other popu-
lar packages such as DESeq2 [52] and NOIseq [35] can be applied. Moreover, the FIN 
model can be extended to multi-group comparisons apart from a two-group compari-
son discussed in this study. The proposed meta-analysis method relies on the fact that 
the same test statistics are used for per-study differential expression analysis to obtain 
individual p-values and all studies under consideration have the same experimental con-
siderations. For instance, in case DESeq2 is used for multi-group differential expression 
analysis in each study, a likelihood ratio test is used rather than Wald statistics being 
used for two group differential expression analysis.

Conclusions
In this study, we proposed MIN and consequently FIN method for meta-analysis of 
RNA-seq data. The developed methods account for both the sample size of study and 
direction of expression of a gene in each study allowing for detection of potentially 
robust biologically significant DEGs even when they have conflicting direction of 
expression across studies. In contrast with the existing IN method, the proposed meth-
ods have the advantage of identifying DEGs among genes with conflicting direction of 
expression across studies. For the genes with concordant differential expression patterns 
across studies the MIN method exhibited a similar DEG detection power and perfor-
mance as compared to IN method particularly when there was high inter-study variabil-
ity and increased number of studies were considered. FIN method exhibited a similar 
or improved DEG detection power as compared to IN method and was significantly 
better in performance as compared to MIN method. More importantly, in a real data 
application, we demonstrated the use of FIN method in detection of biologically relevant 
DEGs to GBM. Hence, this meta-analysis method provides a way to establish differential 
expression status for genes with conflicting direction of expression in individual RNA-
seq studies and further exploration of them as potential biomarkers for the disease. With 
lowering costs and increase in the number of RNA-seq studies being archived on pub-
lic databases, this method might provide a way to integrate a greater number of studies 
without losing much prior information and consequently considering all the genes in the 
analysis irrespective of their direction of expression.
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