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MOTIVATION Genome-scale models of metabolism are effective tools for exploring the behavior of micro-
bial ecosystems and are increasingly used for this purpose. However, current modeling approaches for mi-
crobial communities are limited to considering the functional potential encoded in microbial genomes,
which can often be scarcely indicative of real functional activity. To better guide modeling efforts, we de-
signed an approach for the incorporation of metatranscriptomics data in microbial community models
and implemented it in two alternative pipelines that can be applied in culture-independent settings.
SUMMARY
Multi-omics data integration via mechanistic models of metabolism is a scalable and flexible framework for
exploring biological hypotheses inmicrobial systems. However, althoughmostmicroorganisms are uncultur-
able, such multi-omics modeling is limited to isolate microbes or simple synthetic communities. Here, we
developed an approach for modeling microbial activity and interactions that leverages the reconstruction
of metagenome-assembled genomes and associated genome-centric metatranscriptomes. At its core, we
designed a method for condition-specific metabolic modeling of microbial communities through the integra-
tion of metatranscriptomic data. Using this approach, we explored the behavior of anaerobic digestion con-
sortia driven by hydrogen availability and human gut microbiota dysbiosis associated with Crohn’s disease,
identifying condition-dependent amino acid requirements in archaeal species and a reduced short-chain
fatty acid exchange network associated with disease, respectively. Our approach can be applied to complex
microbial communities, allowing a mechanistic contextualization of multi-omics data on a metagenome
scale.
INTRODUCTION

The vast majority of living microorganisms cannot be easily iso-

lated and cultured in the laboratory. Despite recent notable ef-

forts,1 culture-independent approaches are thus essential to

understand the organization and evolution of microbial ecosys-

tems.2,3 These approaches make possible the investigation of

microbial communities within their natural environment, often

starting from omics information characterizing DNA, RNA, pro-

teins, and metabolites. In particular, de novo assembly and

binning of bulk DNA sequences allows the definition of distinc-

tive functional roles within a community, thus dissecting the bio-

logical potential at the single-species level. This process involves

the reconstruction ofmetagenome-assembled genomes (MAGs)

for individual microbes, whose diversity is starting to emerge at
Cell Rep
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an unprecedented level.4,5 However, while new data-generating

technologies in this area have progressively been adopted and

are now widely used, in silico techniques for contextualizing

and interpreting metagenomics data still lack adequate depth

for pinpointing key biological and ecological processes.

Among the emerging tools, genome-scale metabolic models

(GEMs) represent a scalable formulation for simulating biological

activity over whole cells and cellular communities.6–11 Activity is

here quantified by the flux through metabolic reaction networks

based on the constraints provided by physico-chemical laws,

network structure, and potentially additional biological data

and knowledge. For instance, genome-scale modeling ap-

proaches for microbial communities can often account for vary-

ing microbial abundances.12–15 While GEM application in this

context is a relatively young field, latest progress demonstrated
orts Methods 3, 100383, January 23, 2023 ª 2022 The Author(s). 1
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that these models are becoming mature for exploring complex

microbiomes,12,16 with recent studies beginning to apply GEM

reconstruction and analysis starting from MAGs.17,18 However,

large-scale community modeling remains centered on the func-

tional potential encoded in genomic sequences and lacks effec-

tive guidance over how this translates into biological activity in

different conditions.

To complement metagenomic profiling, other meta-omics

data are necessary. For instance, transcriptomics applied on

metagenomic samples can give insights into microbial commu-

nity activity when mapping transcript abundance profiles

onto MAGs.19–21 Such a genome-centric metatranscriptomics

(GCM) could thus be exploited to inform and contextualize com-

munity GEMs much like traditional transcriptomics is used in the

modeling of single organisms.22–24 Yet, although methods for

transcriptomics data integration in GEMs exist and are widely

adopted, they were developed for single-species models and

are not suited to the specific challenges of GCM. Indeed,

some previous studies combined GEMs with metatranscrip-

tomic data, but either they avoided direct integration25,26 or

they focused on simple synthetic consortia of known spe-

cies.26,27 Particularly, different members of a community often

possess highly heterogeneous distributions in abundance and

activity. GCM profile heterogeneity reflects the underlying vari-

able gene regulation associated with a continuous adaptation

and the inter-species interaction network. This leads to highly

unbalanced representation in terms of functional activity, which

is only partly correlated with MAG abundance. Moreover, inter-

sample RNA abundance heterogeneity often translates into a

varying ability in quantifying real gene expression changes. Ulti-

mately, a valid approach for the integration of GCM into commu-

nity-scale GEMs is currently missing, preventing the exploration

of complex microbiomes through multi-omics mechanistic

models.

Here, we present an approach for the integration of GCM pro-

files in community GEMs that explicitly accounts for a wide range

of gene expression across MAGs. Our approach thus produces

condition-specific community GEMs (CoCo-GEMs), hence we

refer to it as CoCo. To demonstrate the use of the proposed

approach, we applied it to investigate the reconstruction and

analysis of genome-scale microbial community metabolism in

two widely studied ecosystems: anaerobic digestion reactors

and human gut microbiota. We show that CoCo can improve

community-level phenotypic predictions and detect key meta-

bolic adaptation responses in such complex communities. In

anaerobic digestion consortia, our results suggest syntrophic

mechanisms linked to hydrogen availability and identify specific

amino acid requirements for species using alternative trophic

pathways. In the gut microbiota of Crohn’s disease patients,

our findings are consistent with an impaired short-chain fatty

acid cross-feeding network.

Our work thus expands the investigation of complex microbial

communities by means of omics data, with a 3-fold contribution:

(1) the design of a computational methodology – CoCo – for con-

dition-specific genome-scale modeling over microbial commu-

nities; (2) the introduction of end-to-end workflows for probing

metabolic interactions in culture-independent microbial systems

based both on their functional potential and transcriptional activ-
2 Cell Reports Methods 3, 100383, January 23, 2023
ity; and (3) the genome-scale model verification of crucial cross-

feedings within real complex communities. The developed tools

can be applied in genomics studies of microbial consortia

and provide a step forward in culture-independent ecosystem

modeling.

RESULTS

Modeling transcriptional regulation over microbial
communities
The first considered biological systemwas constituted by anaer-

obic reactors operating in a continuous mode, whose microbial

communities originate from a biogas plant and have been previ-

ously characterized.28 The core biological process for this type

of community is the anaerobic digestion of organic substrates,

ultimately converging on methanogenesis.29 Known methano-

genic organisms mainly belong to the Euryarchaeota phylum

and largely exploit acetate or hydrogen and carbon dioxide as

fueling compounds via acetoclastic or hydrogenotrophic path-

ways, respectively. These organisms thrive also thanks to syn-

trophic interactions with bacterial species that benefit from the

disposal of these compounds.30 In this work, the microbes

were subject to two feeding regimens: simple medium with ace-

tate as the sole carbon source, temporally followed by the same

medium with the addition of exogenous hydrogen (Figure 1A).

The low environmental complexity allowed the simplification of

the microbiome while retaining the most critical species, yet

complex interactions remained.

Such ecosystem served as a primary test-bed for the pro-

posed multi-omics workflow, which was conceived to be appli-

cable in any scenario where culture-independent strategies are

required. Briefly, the first step involves shotgun metagenomics

followed by metagenome assembly and MAG reconstruction

for comprehensively characterizing the functional potential of

the microbiome. To increase MAG quality, here we performed

long-read DNA sequencing and devised a multi-assembly-and-

binning strategy combining long and short reads with multiple

tools at each analysis stage (for details consult STAR Methods).

The second step is GCM analysis to profile the condition-spe-

cific functional activity of individual species by mapping RNA

reads on the MAGs. MAG sequences are then used for the

reconstruction of GEMs, which are assembled within a shared

virtual environment, thereby generating a community GEM

(Co-GEM) for each individual sample. Finally, to explicitly model

a varying activity in the communities, we introduced an

approach, named CoCo, to convert Co-GEMs into CoCo-

GEMs. Specifically, CoCo accounts for variation in both gene

transcript abundance and whole-transcriptome abundance of

individual MAGs. The former is used to shape the biochemical

reaction bounds like traditional condition-specific GEM building

methods,23,24 and in particular analogously to Metabolic and

Transcriptomics Adaptation Estimator (METRADE), which uses

a logarithmic map to connect enzyme abundance and flux con-

straints.31 The use of the latter is instead 2-fold: on one hand, the

base bounds of individual GEMs are re-scaled depending on the

associated transcriptome abundance to model the global activ-

ity heterogeneity in different community members. Second,

lowly active species suffer from sparse expression count
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Figure 1. Overview of the proposed approach and the considered anaerobic digestion ecosystem

(A) Schematic representation of the proposed workflow. The systemwas composed of three continuous bioreactors fed on basal anaerobic mediumwith acetate

as the sole carbon source, subject to exogenous hydrogen injection. Sampling of biological material was performed before, shortly after, and after the start of

hydrogen injection (BH, SAH, and AH, respectively). MAG sequences were used to reconstruct GEMs of microbial species, and their abundance was used to

define community GEMs (Co-GEMs) for each sample together with biochemical measurements for key compounds. The newly introduced approach CoCo was

then applied to build condition-specific community GEMs (CoCo-GEMs) starting from GCM profiles.

(B) Relative abundance and total GCMcounts for the consideredMAGs over the samples, which comprise 24 bacteria and four archaea. Overall, these organisms

account for over 90% of functional potential and activity. On the right, number of genes for each reconstructed GEM and their fraction having expression in-

formation. See also Figure S1.
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distributions, which can affect the reliability of detected activity

changes. Thus, the magnitude of gene-level bound modulation

is tuned depending on transcriptome abundance, attenuating

gene expression changes supported by less reliable count distri-

butions. CoCo therefore generalizes METRADE to microbial

communities. The whole workflow is depicted in Figure 1A,

and details are described in the STAR Methods.

Continuousbioreactors operate at a constant feeding inflowand

microbial matter dilution, similarly to the human gut. Thus, we

chose the cooperative trade-off approach as a framework for our

simulations.12 In its original form, thismethodusesmicrobial abun-

dancesasan input toestimate theirgrowth ratewhilebalancingbe-

tween the growth of the entire community and that of individual

species. Cooperation and competition can thus be explicitly taken

into account. The resultingmetabolic fluxes are tailored to specific

conditions solely based onmicrobial abundance profiles. Through

CoCo,we thus introducedgene expression to better estimate con-

dition-specific metabolic activity. Moreover, in our case study,

external model boundaries were defined based on the medium

composition and on biochemical measurements describing the

net consumption and production of key compounds.

As a result of the hybrid short- and long-read shotgun

sequencing analysis, we obtained a total of 44 high-quality and

25medium-quality MAGs, as defined by the Genomic Standards

Consortium.32 Compared with a previous analysis of the same

metagenomes, the improvement was a 25% increase in high-

quality MAGs and the complete elimination of low-quality ones

(Figure S1A and Data S1).28 Throughout the following steps,

we considered all the MAGs having comprehensive ‘‘multi-

omic abundance’’ above 1% in at least one condition, for a total

of 28MAGs (for details see STARMethods). Figure 1B shows the

relative abundance of these MAGs and their corresponding frac-

tion of RNA counts detected, whose total in each sample was

around 90% for both data types. Archaeal members of the com-

munities comprise three hydrogenotrophic organisms (Methano-

thermobacter, Methanobacterium, and Methanoculleus) and a

generalistic species capable of using both the acetotrophic, hy-

drogenotrophic, and methylotrophic pathways (Methanosar-

cina). While Methanosarcina is initially the most active member,

Methanoculleus has a strong increase in both abundance and

activity in the second phase. Among bacteria, Bacteroidales,

Limnochordia, and Acetomicrobium species characterize the

first phase of the process, with a shift in favor of Coprothermo-

bacter proteolyticus following exogenous hydrogen addition.

Hypotheses have previously been advanced over the microbial

adaptations and interactions underlying these shifts,21,28 but

were lacking a quantitative framework to test them. In the pre-

sent study, CoCo was applied to gain quantitative insights on

the metabolic shift occurring upon hydrogen addition.

CoCo improves community-scale metabolic phenotype
predictions
Starting from the MAG sequences, we reconstructed GEMs for

the 28 species under consideration. In this stage, we sought to

maximize the detail of physiological capabilities for each organ-

ism while utilizing the least strict assumptions. We thus used two

different strategies for gap-filling bacterial and archaeal GEMs.

Given the key role of archaea in anaerobic digestion, we specif-
4 Cell Reports Methods 3, 100383, January 23, 2023
ically required them to be able to carry out methanogenesis

starting from appropriate substrates, which include carbon diox-

ide and hydrogen for the hydrogenotrophic organisms and alter-

natively acetate or methanol for the generalist Methanosarcina.

Bacteria cover instead more diversified roles, therefore we only

imposed the ability to grow anaerobically on a medium repre-

senting the environment of origin (for details see STARMethods).

The quality of all the GEMs was assessed, verifying their general

soundness and the absence of structural issues.33 Validation

reports are available as Supplemental Material (see also

Figure S1B). As a result of the high metagenome and metatran-

scriptome relative abundance associatedwith the selected com-

munities, the percentage of genes captured by the GEMs having

successfully detected GCM data was above 90% for most spe-

cies (Figure 1B).

We then simulated microbial growth in each of the bioreactors

at every time point, where 13 to 17 species were simultaneously

present over a 1% abundance threshold, comparing the results

of Co-GEMs and CoCo-GEMs. In this validation stage, both

model types were constrained by biochemical data regarding

acetate and hydrogen consumption rates and volatile fatty acids

(VFA) non-accumulation in the medium and without the biogas

production data (STAR Methods). CoCo parameters were

selected based on the Pearson’s correlation with independently

estimated microbial proliferation rates via analysis of coverage

differences across genomic regions with an approach called

CoPTR (STAR Methods).34 Moreover, different cooperative

trade-off values a were explored for both Co-GEMs and CoCo-

GEMs, examining the degree of cooperation among community

members. While this can generally vary depending on the envi-

ronment,16 anaerobic digestion communities are postulated to

be governed by syntrophies between bacterial acetate oxidizers

and archaeal methanogens.28,29

Figure 2A shows individual species growth rates obtained

through cooperative trade-off with and without gene expression

integration in the models. Compared with Co-GEMs, CoCo-

GEMs gained a marked and statistically significant improvement

in the Pearson correlation between predicted growth rates and

independently estimated replication rates (Steiger test p =

1:8$10� 4). These results were obtained with a = 0:5 for base

models and a = 0:9 for CoCo-GEMs, supporting the idea that

such communities thrive on key cross-feedings and showing

that transcriptional information can affect our ability to determine

the cooperation degree of a community. To test whether CoCo’s

MAG-level bound modulation contributed to identifying more

meaningful solutions, we performed the same analysis by using

METRADE. In this case, flux bounds were affected to the same

extent across all the MAGs. The growth rate predictions show

indeed a partial redistribution, but without an overall correlation

with replication rates. Correcting for inter-species RNA abun-

dance heterogeneity and uncertainty in expression fold changes

is thus beneficial to the identification of biologically meaningful

growth rates.

Having optimized CoCo-GEMs according to the growth rate,

we next sought to test whether they could predict trends inmeta-

bolic activity that were not specifically targeted during model

optimization. We thus verified the models’ ability to predict the

community-level production rates of the main anaerobic
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Figure 2. Validation of CoCo in an anaerobic digestion ecosystem

(A) Relationship between themicrobial replication rate estimated by CoPTR and the growth rate predicted via the cooperative trade-off approach using Co-GEMs

(left) CoCo-GEMs (center), and Co-GEMs constrained byGCM throughMETRADE. On the top of each panel, the Pearson’s correlation coefficient and associated

p value are indicated. Improvement p values were obtained by the Steiger test for dependent groups.

(B) Comparison between experimentally measured and predicted gas production rates in the three process stages. Statistical comparison between the con-

ditions was performed by two-sided t tests for dependent samples. CoCo-GEMs are able to more precisely estimate methane production rates both in terms of

scale and trends, compared with other models. Data are represented as mean, and error bars represent 95% confidence intervals.

(C) Methane production rates predicted for individual archaeal species when constraining the models with ecosystem-level gas measurements. Data are rep-

resented as mean and error bars represent 95% confidence intervals.
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digestion products, namely methane and carbon dioxide, as

shown in Figure 2B. Experimental data display a consistent in-

crease in methane production upon hydrogen injection, with a

concomitant decrease in net carbon dioxide levels. In Co-

GEMs, these trends were not clearly identifiable, with predicted

production rates one or two orders of magnitude larger than

observed. In spite of a large variation among the reactors,

CoCo-GEMs instead precisely predicted methane production

in the initial feeding regimen, followed by a significant rise in

the second phase. Although the production of carbon dioxide re-

sults over-estimated by CoCo-GEMs, its decrease along pro-

cess stages was correctly predicted. METRADE also repro-

duced the observed trends, yet at a non-significant level and
retaining a large absolute error in export fluxes. Further, when

integrating the measured community-level gas production rates

in the models, Co-GEMs predicted a methanogenic activity

essentially driven by Methanosarcina, at odds with the

increasing abundance of the other archaea. On the contrary,

CoCo-GEMs correctly captured the emergence of hydrogeno-

trophic species (Figure 2C). Overall, these results demonstrate

the benefit of GCM integration for identifying key metabolic

activities.

CoCo enables probing metabolic niche flexibility
Upon verifying the predictive ability of CoCo-GEMs, we inte-

grated within them the biogas production data that were
Cell Reports Methods 3, 100383, January 23, 2023 5
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(A) Principal component representation of ecosystem metabolic input/outputs expressed by community-level exchange fluxes. Lines depict the trajectory of

individual reactors in such metabolic rate space.

(B) Silhouette distributions for fluxome clusters defined by the MAG of origin. CoCo-GEMs capture significantly lower silhouette values, reflecting a higher
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MAGs cluster less evidently than Co-GEMs’. See also Figure S2.
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previously excluded for an in-full evaluation of microbial meta-

bolic activity. Figure 3A shows the dynamics of community-level

metabolism over the three time points, which was quantified in

terms of the total imports and exports into and from the

ecosystem. As expected, both in Co-GEMs and CoCo-GEMs,

hydrogen injection is themain driver of the global metabolic state

of the microbiome; however, only in the latter models the final

states are clearly distinguishable from the initial ones, in agree-

ment with the permanent modification of the environmental con-

ditions. In the metabolic exchange space, the system trajectory

follows the first principal component upon perturbation, while it

adjusts on the final steady state by moving along the second

principal component. At the same time, differences distinguish-

ing the individual reactors emerge. Reactor R1 displays a mark-

edly different final state from the other two, which was observed

experimentally by a diverging gas production. Reactor R3 has

instead a short-term perturbed state more similar to its final

state, anticipating the end-point activity and microbial represen-

tation (Figure 1B). CoCo-GEMs thus better identify the new

metabolic steady states associated with a high hydrogen avail-

ability and which are biologically distinct from the initial states

both in terms of microbial composition and activity. Microbial
6 Cell Reports Methods 3, 100383, January 23, 2023
growth is in general sustained by a net uptake of sulfite and iron(-

III), with corresponding production of hydrogen sulfate and

iron(II). Sulfite is consumed by a few organisms including Bacter-

oidales and Methanosarcina, the latter of which exploits it for

converting NADH into NAD. By considering the overall trends

of global metabolic inputs/outputs, we could thus show that

CoCo-GEMs correctly recapitulate ecosystem-level experi-

mental evidence.

We next focused on the intracellular activity of the individual

MAGs, exploring how the metabolic niche of different taxonomic

groups is affected by accounting for transcriptional information.

To this end, we quantified niche flexibility through the silhouette

coefficient, a measure used in clustering analysis to estimate the

separation between clusters (for details see STAR Methods). In

our case, clusters identify the MAGs and the higher their silhou-

ette and the more they belong in restricted specialist niches.

Silhouette distributions for Co-GEMs and CoCo-GEMs are

shown in Figure 3B, where it is possible to see that the latter

have significantly lower mean silhouette (Wilcoxon signed-rank

test p = 2:5$10� 20), mirroring an elevated niche flexibility.

This indicates that modeling transcript abundance correctly cap-

tures metabolic adaptation over variable environmental and
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compositional conditions. The higher niche specialization pre-

dicted by Co-GEMs is displayed in Figures 3C and S2, where in-

dividual MAGs form well-distinguished bulks. In contrast, CoCo-

GEM metabolic phenotypes present more variable distributions

according to the species to which they belong, better reflecting

metabolic adaptations throughout the environmental conditions

and the corresponding microbial interaction variations.

CoCo reveals the plasticity of key cross-feedings
underlying methanogenesis
Upon verifying the soundness of CoCo-GEMs, we sought to use

these models for studying which metabolic processes sustain

microbial growth and biogas production in the ecosystem.

Figure 4A shows the redistribution of acetate and hydrogen

within the communities in the two steady states along with the

associated methane and carbon dioxide output. While major ac-

etate consumers are Methanosarcina, Bacteroidales sp. 1, Ace-

tomicrobium sp. 1, Firmicutes sp. 2, and Tepidiphilus, acetate is

also shared among numerous other community members in var-

iable amounts. This confirms that, despite the simplicity of the

growth medium, this carbon source can sustain the vast majority

of this relatively complex community. Concomitantly, carbon

dioxide is exchanged in consistent amounts within the

ecosystem, with the experimentally measured accumulation in

the medium being only a fraction of the total amount produced

and consumed. Carbon dioxide is largely produced byMethano-

sarcina and Limnochordia in the lack of exogenous hydrogen,

although the abundance decrease of Limnochordia, consequent

to the external introduction of this gas, determined a concomi-
tant decrease in carbon dioxide export by this organism. Just

like for acetate, carbon dioxide is also absorbed by numerous

taxa and contributes to shaping community composition.

Further, Acetomicrobium sp. 1 was found to produce hydrogen

when external supplementation was not active. As expected, in

the first steady state endogenous hydrogen production feeds

hydrogenotrophic activity, yet various bacterial taxa appear to

exploit it as well. For example, hydrogen fuels ferredoxin

NADPH-linked hydrogenase in Bacteroidales sp. 1.

In contrast, metabolic cross-feeding estimated without the

use of GCM predicted a disproportionately large activity within

the community compared with the net exchanges with the envi-

ronment (Figure S3A). In this case,Methanosarcina resulted as a

major acetate producer, which is unlikely due to the dominance

of this species in terms of abundance. Moreover, Methanosar-

cina and Acetomicrobium spp. Release hydrogen even during

the external supplementation. Overall, Co-GEMs predictions

display evident differences with CoCo-GEMs’, some of which

can hardly be reconciled with biological knowledge.

Among themostabundantbacteria,multiplemetabolicpatterns

reminiscent of syntrophic behavior with archaea were observed

(Figure 4A). Before exogenous hydrogen addition, Limnochordia

sp. 1 emerges as the main carbon dioxide producer, while Aceto-

microbium sp. 1 displays the largest export of hydrogen, which is

predominantly used by Methanosarcina. Besides archaea, Bac-

teroidales sp. 1 appears to thrive on the availability of these gases

aswell as of acetate in both steady states. During hydrogen injec-

tion,C. proteolyticus becomes the most abundant bacterium dis-

playing an activity shift frombeing a carbondioxide consumer to a
Cell Reports Methods 3, 100383, January 23, 2023 7
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producer. This trend may support a niche swap between Limno-

chordia sp. 1 andC. proteolyticus as themain archaeal syntrophic

partner. A syntrophic relationship between C. proteolyticus and

thehydrogenotrophicMethanothermobacterwolfeiihasbeenpre-

viously hypothesized based on GCM patterns of microbial com-

munities in two-phase reactors,35 and has been tested in silico in

pairwise community models.17 Yet, these computational results

accounted for the interactionbetween the two species in isolation,

overlooking the global metabolic context. Our results support the

establishment of positive interactions between C. proteolyticus

and hydrogenotrophic archaea showing that this bacterium can

provide substrates fueling hydrogenotrophic methanogenesis

and also revealing that such substrates can change depending

on the environmental conditions.

Next, given the relevance of amino acid auxotrophies in anaer-

obic digestion communities,17 we inspected the associated ex-

change fluxes obtained by CoCo-GEMs. Figure 4B shows the

amino acid exchange distribution in the absence and presence

of external hydrogen supplementation. Here, major amino acid

producers were identified to populate a cluster of taxa belonging

to the Acetomicrobium genus, Tepidiphilus sp., and Firmicutes

sp. 3. Alanine and aspartate are consistently secreted by all

the taxa in the cluster. At the same time, Methanosarcina dis-

plays a strong uptake of alanine in both nutritional conditions.

Members of Synergistaceae, such as Acetomicrobium, are

known for their ability to degrade amino acids to VFAs. Here

the reverse process is suggested to support a beneficial relation-

ships between them and archaea. This finding is consistent with

a syntrophic cross-feeding previously identified between Desul-

fovibrio vulgaris andMethanococcus maripaludis.36 In such syn-

trophy, alanine was hypothesized to be used by M. maripaludis

as a nitrogen source and to reduce the energy cost in the auto-

trophic synthesis of pyruvate, while the advantage for D. vulgaris

is less clear. Further, the emergence of C. proteolyticus in the

community and its shift to carbon dioxide production is associ-

ated with an increased amino acid demand, which expands to

including aspartate, glutamate, leucine, and lysine.

Alsoon the levelof aminoacidexchanges,GCM integrationpro-

videsamarkedly different picturecomparedwithbasecommunity

models (Figure S3B). While Acetomicrobium spp. Are still among

the major amino acid producers, the importance of alanine for

Methanosarcina is less clear andMethanoculleus results as a pro-

line producer. Although specific metabolic exchanges are chal-

lenging tobeexperimentally validated, suchdifferencescombined

with theaboveCoCoevaluation results suggest thatGCMintegra-

tion in a genome-scale modeling framework can substantially

improve the detection of key activity and cross-feeding patterns.

CoCo supports the characterization of personal gut
microbiota metabolism
As a second validation setting, we considered the human gut mi-

crobiome of subjects monitored over multiple omic levels. The
(B) Relationship between themicrobial replication rate estimated by CoPTR and th

(left) CoCo-GEMs (center), and Co-GEMs constrained byGCM throughMETRADE

p value are indicated. See also Figure S5.

(C) Relationship between the sum of individual microbes’ export rate of butyrate a

correlations are found for all model types, CoCo-GEMs and METRADE return a
selected cohort consists of a group of five patients diagnosed

with Crohn’s disease (CD) displaying an altered microbiota and

five control subjects.37 Such a microbial ecosystem represents

a more problematic scenario than the one considered above,

as human microbiota is highly personal and often presents

numerous lowly abundant species, with a globally high diver-

sity.3,37,38 In addition, diet is heterogeneous across individuals

and represents a source of uncertainty for metabolic modeling,

requiring some approximations (details in STAR Methods).

Given the wide availability of high-quality MAGs and genomes

for such microbial ecosystems, it can be advantageous to use

these directly rather than reconstructing MAGs de novo. As an

alternative workflow, we thus started from one such genome

collection38 and followed the rest of the process described in

the section ‘‘Modeling transcriptional regulation over microbial

communities,’’ as depicted in Figure 5A, thus generating

CoCo-GEMs for each individual’s microbiota. Using a 0.1%

abundance threshold, considered microbial communities

comprised from 22 up to 91 taxa, depending on the individual,

for a total relative abundance between 90% and 97% and 289

species. In this case, MAGs captured a fraction of GCM counts

between 15% and 47%, with an extremely large variation in

model genes coverage, reflecting the dynamics of the system

and the large number of lowly abundant microorganisms (Fig-

ure S4). Despite that, CoCo could be applied, as it was designed

with these difficulties in mind (details in STAR Methods).

Again, we explored the relation between model-predicted

growth rates and corresponding species replication rates. In

this case, base community models achieved a positive correla-

tion, a sign that diet was approximated at an acceptable level.

The removal of dietary constraints in fact almost completely

eliminated such trend (Figure S5A). Also here, improvements

were found upon introducing transcriptional information, albeit

milder (Figure 5B). Of note is that even without dietary con-

straints, CoCo is able to comparably recover significant microbi-

al growth trends (Figure S5A). The best cooperation trade-off

decreased from 0.9 to 0.6 when comparing Co-GEMs with

CoCo-GEMs, indicative of a microbiota more balanced between

cooperation and competition.

Short-chain fatty acids (SCFA) are among the main fermenta-

tion products in the gut, resulting from the catabolism of carbo-

hydrates and proteins.39 Specifically, butyrate and propionate

were identified and tracked in the considered cohort via untar-

geted metabolomics.38 For these reasons, we analyzed

genome-scale model predictions over these metabolites to

verify whether they match experimental observations. We

assumed that detectable metabolite concentration is directly

proportional to global microbial secretion flux and determined

the correlation between cumulative production over all commu-

nity members and metabolomics abundance. Figure 5B shows

that positive Pearson’s correlations are found both for Co-

GEMs and CoCo-GEMs, yet it can be noticed that Co-GEMs
e growth rate predicted via the cooperative trade-off approach using Co-GEMs

. On the top of each panel, the Pearson’s correlation coefficient and associated

nd propionate and their abundance detected by metabolomics. While positive

lower number of null total exports, consistent with the experimental data.

Cell Reports Methods 3, 100383, January 23, 2023 9
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Figure 6. Charting SCFA cross-feeding in the gut microbiota

(A) Cross-species exchange of butyrate and propionate across the considered samples. Line width and box height represent exchange intensity by and to any

depicted taxonomic group, while numbers in brackets denote the number of species of each group. Broken-contour boxes were re-scaled by the indicated

factors. See also Figure S5.

(B) Silhouette distributions for fluxome clusters defined by the MAG of origin. CoCo-GEMs capture significantly lower silhouette values, reflecting a higher

metabolic flexibility in individual MAGs. The p value was obtained by a two-tailed Wilcoxon signed-rank test.
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tend to be dominated by a small number of super exchangers

that produce and consumemost of the SCFA (Figure S5B), while

in CoCo-GEMs this pattern is less pronounced (Figure 6A).

Moreover, butyrate production was estimated as markedly

more intense compared with propionate’s, coherently with its

higher experimental abundance and with independent estimates

in other cohorts.40

A large number of species participate in butyrate and propi-

onate cross-feeding across individual communities, as dis-

played in Figure 6A. Overall, consumers outnumber producers

in both subject groups, with a decrease in producers (68 non-

CD versus 27 CD) and consumers (145 non-CD versus 80 CD)

associated with disease. Some of these organisms belong in

taxa known to be involved in butyrate metabolism, such as

Faecalibacterium, Roseburia, Ruminococcus, Bacteroides,

and Clostridium.39,40 Among these, species of the order Rick-

ettsiales and the genera Clostridium, Lachnobacterium, and

Azospirillum emerge as the principal butyrate producers, while

several Clostridium and Rickettsiales species are the main

butyrate users. Thus, while microbial functional potential and

activity are highly variable across subjects, CoCo-GEMs sug-

gest a reduction of SCFA cross-feeding in CD individuals
10 Cell Reports Methods 3, 100383, January 23, 2023
both in terms of number of participating microbes and overall

flux. Finally, we calculated fluxome silhouette coefficients for

these communities, finding an even larger separation between

Co-GEMs and CoCo-GEMs silhouette distributions than in

anaerobic digestion communities (Figure 6B). Such a divide is

in line with the highly personal features of the gut microbiota

and once again highlights the importance of accounting for

functional activity in metabolic models rather than just species

co-occurrence and abundance.

DISCUSSION

Computational models of metabolism are invaluable tools for

shedding light on complex biological processes occurring on a

biochemical reaction scale. Among them, genome-scale models

are widely adopted as scaffolds for omics data contextualization

and interpretation, both implicitly and explicitly. Yet, upgrading

such tools to the metagenome scale remains a largely unex-

plored area.7–9While previous studies have advanced our under-

standing of microbial interactions,16,41 such interactions change

in response to both dynamic environmental stimuli and biological

adaptation.26,27 In this context, our work takes a step forward
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into integrating multi-omics data and knowledge on a metage-

nome scale in real microbial ecosystems.

Our results provide two alternative use cases where CoCo can

be applied: with de novoMAG reconstruction or, alternatively, ex-

ploiting existing genomes. Both these scenarios have specific ad-

vantages and can be evaluated depending on the application. In

general, the formerstrategy isexpected tobetter capturegenomic

features associated with the presence of specific strains. On the

other hand, if an appropriate genome collection is available, the

latter solution may be more readily applicable and could be

preferred in the cases where a sufficient high-quality MAG repre-

sentation may not be attained. Clearly, with a decreasing fraction

of relevant microbial genomes available, the transcript mapping

ratewill alsodiminish. This situation isexpected tohaveamorese-

vere impact where microbiome complexity is high and, crucially,

limits the application of GCM and CoCo in extremely complex

metagenomes. Nevertheless, large-scale studies are contributing

to deciphering such complexity and invest more andmoremicro-

bial ecosystems, thus supporting the investigation even of com-

plex communities such as host-associated microbiota.42–44 In

this context, it is worth noting that hybrid sequencing can help

improve MAG reconstruction,45 with downstream benefits for

GEM building.

Given themomentum in these research areas, new tools could

be adopted in any step of the workflow. For instance, CarveMe

was selected for its speed, customizability, and ability to

generate draft models close to curated ones in terms of reaction

andmetabolite content.46 These features allowGEM reconstruc-

tion for complex microbial communities while keeping the

computation time within reasonable limits, but other tools could

alternatively be adopted. As a part of GEM reconstruction, gap-

filling is a necessary step that requires some assumptions. In this

work, we used general knowledge on archaeal growth capabil-

ities and a minimal amount of expert knowledge. Without such

knowledge available, data on the biochemical composition of

the environment can be used, or alternatively it is possible to

relax nutritional assumptions.18,47

Similarly, challenges in modeling RNA abundance in mixed

microbial populations add up to recognized uncertainties in

defining expression thresholds.24 Thus, we focused on an

approach based on the continuous modulation of expression

fold change rather than hard thresholds, using a data-driven

approach to fine-tune CoCo-GEMs based on orthogonal obser-

vations. Although even this procedure may not be universally

optimal, we argue that it can grant flexibility independently

from the complexity and the completeness of the metatran-

scriptome. Ultimately, this allowed us to keep the number of

parameters low and simultaneously minimize the computational

cost. Moreover, genome-scale modeling of microbial commu-

nities is in early development, with new approaches that will

likely be developed in the future. One of the main uncertainties

is the metabolic objective(s) pursued by a given system, if any.

A number of alternatives have been proposed for different sce-

narios, including community-level and individual-member-level

objectives.7,8 Although here we focused on cooperative

trade-off, by acting on the bounds in an objective-agnostic

manner, our approach can be used in conjunction with other

microbial community modeling approaches. In addition, this
strategy does not affect the computational cost, which can

be non-negligible with increasing community size.12 As this

field progress and grasps more effective ways to determine

biologically meaningful flux states, CoCo can be applied to nar-

row down the space of feasible solutions and thereby readily

support the new tools.

As shown, the proposed approach enables an improved iden-

tification of inter-species interactions, and particularly positive

ones. Among them, microbial syntrophies are fundamental for

the survival of microorganisms in virtually any environment on

Earth, including extreme habitats with limited resources or in

harsh physical conditions. Such phenomena invest the ex-

change of nutrients as well the removal of toxic substances.48

The syntrophy between bacterial fermenters and archaeal

methanogens involves the exchange of electron carriers and is

one of the most studied paradigmatic examples.29 In this sense,

our first case study functioned as a model for cross-feeding,

which is implicated in numerous ecosystems.16 The recurrent

picture of acetoclastic and hydrogenotrophic methanogenesis

in a large number of studies on full-scale biogas plants suggests

the existence of a delicate balance between the two functional

modes whose mechanistic underpinnings are still elusive.29,49

Here, we investigated the transition from one mode to the other

through an approach that provided multi-omic grounds for ex-

plaining microbial community adaptation. For instance, in the

absence of external hydrogen, Acetomicrobium was found to

feedMethanosarcinawith this gas, a phenomenon that was sup-

pressed by its artificial introduction into the system. On the other

hand, a consistent flux of alanine was found from all the mem-

bers of Acetomicrobium intoMethanosarcina in both conditions.

These patterns exemplify how the proposed approach can

pinpoint both condition-dependent and -independent interac-

tions.Moreover, our results also fall within the records of relevant

functional role by rare taxa, which is emerging as a common

thread to an increasing number of habitats.50

Altogether, this work contributes to the systematic investiga-

tion of microbial ecosystems by bridging metagenomics and

genome-scale modeling. Given the unculturability of most mi-

croorganisms, we believe that this path could be one of the

keys to unlocking the principles underlying their organization

and evolution.

Limitations of the study
Extending the proposed pipeline to other microbial systems

could require some precautions. Primarily, ecosystem

complexity determines the number of MAGs that can be recon-

structed with a sufficient quality, the fraction of metatranscrip-

tome that maps on them, and in turn the metabolic activity that

community models can account for. Final results should be care-

fully evaluated in light of these factors. Despite that, there are

several countermeasures that can be implemented on each indi-

vidual step, as outlined above. Replication rates estimates, along

with other phenotypic measurements such as metabolite accu-

mulation rates, should be used to evaluate the quality of obtained

CoCo-GEMs. Ultimately, the proposed methodology is intended

to guide the conception of new hypotheses over microbial sys-

tem functioning and requires support by experimental or inde-

pendent evidence.
Cell Reports Methods 3, 100383, January 23, 2023 11
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw long-readDNA sequences generated in this study have been deposited at Sequence ReadArchive (https://www.ncbi.nlm.

nih.gov/sra/) under accession code SRA: PRJNA814623 and are publicly available as of the date of publication.

d All original code and the main associated processed data files have been deposited on GitHub (https://github.com/gzampieri/

coco_paper) and are publicly available as of the date of publication. The DOI can be found in the key resources table.

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Anaerobic digestion biological system
The system was composed of three 1.8 L continuous stirred-tank reactors inoculated with digestate from biogas plants fed with 70-

90% animal manure and 10–30% food industrial organic waste.28 Reactors were fed with basal anaerobic medium (BA), with acetic

acid as the only carbon source.

The process was divided into two stages. First, BA was the only feed until biogas production reached a steady state. At that point,

hydrogen injection was activated, triggering a biological response that eventually adjusted on a new steady state. Liquid samples

were taken during the two steady states and shortly after the hydrogen shock. Details over sample collection and sequencing

were described by Zhu et al.28

METHOD DETAILS

DNA extraction and sequencing
Liquid samples were acquired from the triplicate reactors before, 18 h after, and 36 days after initiating hydrogen addition. For all the

samples, the genomic DNA was extracted with PowerSoil ª DNA Isolation Kit (Mo Bio Laboratories, Inc., Carlsbad, USA) with addi-

tional phenol cleaning steps to improve the extraction quality. Nanodrop 2000 (ThermoFisher Scientific, Waltham, MA) was used to

evaluate the quality of the extracted DNA. Library preparation was performed using the SQK rapid sequencing kit (Oxford Nanopore

Technologies, Oxford, UK) and the libraries were sequenced with a paired-end FLO-MIN106D R9 flow cell on a MinION device (Ox-

ford Nanopore Technologies, Oxford, UK) at the CRIBI Biotechnology Center sequencing facility (University of Padova, Italy). Oxford

Nanopore Technologies base-calling for translating raw electrical signals to nucleotide sequences was performed using Guppy

(v2.3.7 + e041753).68 Generated DNA sequences amount to 3090807660452 total bases and were deposited at Sequence Read

Archive under accession code SRA: PRJNA814623.

Human gut microbiota data
Quality- and host-filtered DNA and RNA reads were downloaded from the Inflammatory Bowel Disease Multi’omics Database web-

site (https://ibdmdb.org) along with untargeted metabolomics data. A total of five subjects diagnosed with Crohn’s disease (CD) and

five control subjects were selected based on their dysbiosis profile, so that CD patients presented a dysbiotic gut microbiome. The

definition of dysbiosis is based on the similarity with a core set of microbiomes in terms of species abundance profile and is described

in detail in the original publication.37 Samples were taken from those having both metagenomics, metatranscriptomics, and metab-

olomics data available and such that they were a representative subset in terms of SCFA distributions. Metabolomic abundances
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were centred-log-ratio transformed with scikit-bio v0.5.6 (https://github.com/biocore/scikit-bio) to eliminate compositionality

effects.69

Genome-centric metagenomics
Long DNA reads obtained from the anaerobic reactors were co-assembled together with short reads previously generated with an

Illumina platform as described before,28 with the aim of increasing metagenome-assembled genome (MAG) quality. Low-quality

short DNA reads were filtered out by Trimmomatic v0.3951 and those passing the filter were assembled with multiple tools to further

support MAG reconstruction. Metagenome assembly was thus performed in parallel with metaSPAdes v3.13.0,52 OPERA-MS,53 and

Unicycler v0.4.8.54 MetaSPAdes was executed specifying -k 21,29,39,49,59,69,79,89,99,109,119,127, while OPERA-

MS and Unicycler (in bold mode) were run with a contig threshold length of 1 kb. All other arguments were left as default.

Starting from each of the three assemblies, DNA contig binning was executed throughMetaWRAP,56 includingMetaBAT v2.12.157

and Maxbin v2.2.658 and discarding the contigs below 1 kb in length. Next, bin refinement was performed with parameters -c 50 -x

10 so as to get a consolidated bin set for each assembly. Final MAG were obtained by dereplicating together the three MAG groups

so as to remove redundant genomes while retaining those with the highest quality. In this process, the most complete and uncon-

taminated MAGs were selected based on a 95% average nucleotide identity threshold as estimated by dRep v2.3.2 using the

following parameters: -comp 50 -con 25 -sa 0.95 -nc 0.5.55 As a result, the final MAG set comprised 32 MAGs generated by

metaSPAdes, 29 by OPERA-MS, and 8 by Unicycler. Their taxonomical classification was performed via GTDB-Tk v0.1.3,60 while

quality and completeness were estimated through CheckM v1.1.2 with default parameters.59 To determine MAG coverage, short

reads were first aligned on the concatenated genome sequences with Bowtie2 v2.2.6,61 and the alignment results were processed

by CheckM.

As regards the human gut microbiota, a collection of 1,952 high-quality MAGs and 553 reference genomes was collected from a

previous study38 where genomes from several studies were unified and dereplicated into representative species.70,71 The presence

and coverage of these 2,505 genomes in the considered samples was estimated as described above.

SAMtools v1.9/10 was used for all sam and bam file processing, including the procedures reported below.72 DNA mapping rates

for all the samples are provided in Table S1.

Genome-centric metatranscriptomics
RNA sequencing of anaerobic reactor samples was performed and described previously,28 while human gut microbiota metatran-

scriptomes were retrieved along with the associated omic data. In both datasets, reads were aligned against concatenated gene

sequences for all the genomes with Bowtie2 v2.2.6,61 which were identified using Prodigal v2.6.3.63 Alignment counts were summar-

ised by SAMtools’ idxstats command and later normalised with respect to library size with the poscounts estimator in DESeq2.62

In this process, genes having total counts over all the samples equal to or less than 5 were excluded and normalised counts were

transformed into a log2 scale. Moreover, count normalisation was independently performed for each taxon, as appropriate for meta-

transcriptomic data.28,73 In contrast to whole-metatranscriptome normalisation, such an approach eliminates the variation associ-

ated with changing taxonomic abundances and better retains gene expression differences reflecting functional variation in individual

taxa.

Microbial replication rate estimation
Microbial replication rate in each condition was obtained through CoPTR v1.0.0 utilising short reads.34 Such tool allows an accurate

peak-to-trough (PTR) estimation even with very low coverage. Compared to previous methods, CoPTR achieves a better accuracy

and has more robust theoretical bases. CoPTR was run with default parameters in the case of anaerobic digestion genomes and by

lowering the minimum number of samples required for each genome to 3 in the case of human gut genomes, in order to compensate

for the higher compositional heterogeneity and estimate more values per sample.

Genome-scale metabolic model reconstruction
Starting from MAGs, draft genome-scale metabolic models (GEMs) were built with CarveMe v0.14.1.64 We filtered poorly repre-

sented MAGs based both on their DNA and RNA abundance so as to select those community members that sensibly contribute

to the overall activity. Specifically, we defined a multi-omic abundance as am$cm, where am is the relative abundance of MAG m

and cm is the fraction of its gene expression counts, log-scaled. A multi-omic abundance threshold was applied to select community

members in each condition, while less abundant MAGs were excluded. Threshold values of 1 and 0.1% yielded a total of 28 and 289

unique taxa in anaerobic digestion and human gut communities, respectively, for which GEMs were built.

To obtain biologically meaningful GEMs, draft models were gap-filled so as to allow growth on relevant media based on MAG tax-

onomy. Following previous observations, archaeal MAGs were imposed growth on BA via hydrogenotrophic methanogenesis.28 For

Methanosarcina, we also required it to grow on BAwith acetate and BAwith methanol as carbon sources, in order to reflect its gener-

alist metabolism.28 Bacterial GEMswere instead gap-filled to prevent oxygen dependency under less strict assumptions. In the case

of anaerobic digestion taxa, as bacterial MAGs comprised awide range ofmetabolic capabilities, they were required to grow on a rich

pool of metabolites representing a mix of animal manure and food waste, which correspond to the feed if the source biogas plant of

the inoculum. Food waste was modeled by using the metabolites listed on the Virtual Metabolic Human (VMH) portal in the Nutrition
Cell Reports Methods 3, 100383, January 23, 2023 e3
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section.74 Animal manure was assembled by taking all the metabolites provided by the Livestock Metabolome Database that were

either identified or quantified in feces and urine.75 The union of these compounds was used to represent such biogas plant feedstock

for the gap-filling. For human gut taxa, an average western diet composition was assumed as compiled previously,12,74 based on

broad-level food intake questionnaire information collected for the considered subjects.37 The composition of all growth media uti-

lised is provided along with the code.

Further, we integrated themodel of the Limnochordia species with transport and exchange reactions for acetate along with glycine

reductase and serine dehydratase using COBRApy v0.20.0.65 These integrations are supported by previous evidence of this taxon’s

acetate utilisation.76

All GEMs were benchmarked with MEMOTE v0.13.0, a test suite to identify gaps and inconsistencies in annotations andmetabolic

networks,33 as shown in Figures S1 and S5.

Microbial community modeling
Microbial community metabolic modeling was based on MICOM v0.21.3, a recent approach that explicitly accounts for a varying

degree of microbial cooperation.12 Traditional flux balance analysis applied to multi-species models can be biased toward a few

fast-growing members of a community, and it can be difficult to balance a priori individual growth rates. MICOM works around

this issue by explicitly parametrising the level of cooperation through a user-defined parameter. The approach entails solving two

sequential optimisation problems that jointly define the cooperative trade-off algorithm. First, the community growth rate is maxi-

mised, thus obtaining mc
max. Second, the following quadratic minimisation problem is solved:

minimise
X
i

m2
i

such that mc Rammax
c

and community constraints;

(Equation 1)

where a is a parameter controlling the degree of cooperation among species. Community constraints include the following:

S v = 0

mi Rmmin
i

vlbi % vi % vubi

vlb;tri % vtri % vub;tri

vlb;exi % aiv
ex
i % vub;exi :

(Equation 2)

In these equations, ai represents the relative abundance of the community member i, mmin
i is a user-specified lower bound on mi,

while vi, v
lb
i , and vubi are the fluxes and the respective lower and upper bounds. The superscripts m and ex flag exchange fluxes of

community member i with the reactor and the external environment, respectively. Thus, relative abundance, which is commonly

estimated in metagenomics analysis, can be directly used to rescale member-specific fluxes within the model, which were here

calculated by setting pFBA=True.

On top of the stoichiometric constraints defined above, reactor working parameters and biochemical measurements were used

to set community-level bounds for key compounds in anaerobic digestion models, thus well defining the boundary conditions for

microbial community metabolism. For the two main steady states, acetate and hydrogen uptake rates were obtained by taking the

set feeding rates and subtracting undigested amounts that were measured inside the bioreactors, whose concentration was veri-

fied to be constant over time. Similarly, biogas measurements were used to set methane and carbon dioxide production rates. The

obtained rates were converted in mmol/gDW/h units by dividing by the total amount of volatile soluble solids in each process phase

and their SD was used to define the exchange lower and upper bounds around mean values. In the case of SAH samples,

biochemical and gas measurements immediately after the start of hydrogen injection were used. Additionally, a set of other me-

tabolites were monitored over the process, including volatile fatty acids and ethanol, with no detected accumulation in the me-

dium. We thus blocked the overall production of these compounds by setting the corresponding community-level exchange upper

bound to 0.

Secondly, we set all the remaining uptake bounds so as to represent the nutritional conditions given by the BA composition in an

anaerobic environment. Assuming that hydrogen was the compound with the most rapid consumption, we used its minimum uptake

rate as a lower bound for all the BA components. Given that the bioreactors were fed alsowith small amounts of yeast extract and that

cell death makes available a range of molecules, we allowed a minimal uptake rate for non-BA compounds with a lower bound of

1/100 the value for BA components. Oxygen, carbon dioxide and methane were excluded from this evaluation, and their net con-

sumption was blocked.

As regards gut community models, only average western diet composition was used to impose community-level nutritional con-

straints. Associated boundswere taken froma previous study on gutmetagenomemodeling upon conversion and homogenisation of

compound identifiers.12 In the homogenisation process, we replaced unmappable compounds with equal molar amounts of the cor-

responding monomers where possible by using VMH metabolite definitions.74
e4 Cell Reports Methods 3, 100383, January 23, 2023
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All the simulations were performed in Python 3.6 with the CPLEX 12.8 solver (https://cplex.org). Obtained flux values lower than the

numerical tolerance of the solver ð10� 6Þ were set to zero.

Genome-centric metatranscriptomic data integration
Transcriptomics data are commonly used for creating condition-specific models (also referred to as context-specific models), where

the condition may be defined by varying external stresses, genetic engineering modifications or given cell types.23,24 In GEMs, gene-

protein-reaction (GPR) rules define the relationship between metabolic reactions and their enzymes’ activity, which in turn depends

on gene expression. Here, GCM counts were used to quantify gene expression levels and, taking the mean expression over all the

samples as a reference, to estimate the corresponding expression fold changes. Following previous work,31 GPR expressions were

evaluated as minimum/maximum operations as follows:

Q
�
gi;1^gi;2

�
= min

�
q
�
gi;1

�
; q
�
gi;2

� �
Q
�
gi;1ngi;2

�
= max

�
q
�
gi;1

�
; q
�
gi;2

� �
;

(Equation 3)

where qðgi;1Þ represents the expression fold change of gene gi;1 in community member i and Qðgi;1^gi;2Þ, Qðgi;1ngi;2Þ identify the

effective expression fold change of gene set fgi;1;gi;2g. These expressions were recursively evaluated until a single value Qi;r was

obtained, representing an effective gene-set expression fold change for reaction r in community member i, which was used to alter

the respective flux bounds. For any genes undetected by GCM, a fold change equal to 1 was employed so as to avoid regulatory

assumptions altogether.

Tomap gene-set expression changes onto flux bounds, we generalised a previousmethod calledMETRADE (MEtabolic and TRan-

scriptomics ADaptation Estimator).31 METRADE considers expression fold-changes to adjust flux bounds according to the following

non-linear map:

hðQi;rÞ = ð1+g
��logðQi;rÞ

��ÞsignðQi;r � 1Þ; (Equation 4)

where g is a user-specified parameter that controls the impact of gene-set expression changes on the flux bounds. This map ac-

counts for saturation phenomena at high levels of expression, dampening the effect of elevate up-regulation.77 However, metatran-

scriptomics profiles generally have highly variable count distributions, which only partially reflect species abundance and in general

impairs the reliability of such profiles.

Starting from Equation 4, we thus introduced amodifiedmap that takes into account coverage heterogeneity across different GCM

profiles. Specifically, we assumed that the more uniform expression coverage is across MAGs, and the more gene expression

changes should have even an impact across community members. On the contrary, the less uniform the coverage, the less should

low-coverage members be affected by gene expression changes, because of the uncertainty bound to estimating such changes at

low coverage. To model this effect, we calculated the ratio between each member’s transcript count sum ci and the maximum tran-

script count sum over all community members cmax, hereby denoted as n = ci=cmax. Such a ratio was used to weigh the impact of

gene-set expression changes across members as by the following relation:

hðQi;rÞ = nið1+g ni
��logðQi;rÞ

�� ÞsignðQi;r � 1Þ + ð1 � niÞ: (Equation 5)

In this way, we limited the flux bound interval reachable by reactions in low-coverage members while also tuning the effect of g in a

MAG-specific manner. Additionally, given that the magnitude of transcriptional activity can vary even between equally-abundant

community members, in principle more active species should be able to achieve larger fluxes and vice versa. Therefore, we intro-

duced MAG-specific reference bounds that are modulated by a scaling factor d based on the transcript count sums ci, as follows:

dlb
i;r =

�� d logðci + 1Þ if r has GPR;

� 1000 otherwise:

dub
i;r =

�
d logðci + 1Þ if r has GPR;

1000 otherwise:

(Equation 6)

By considering the combined effect of the gene-level map hðQi;rÞ (Equation 5) and of the MAG-level coefficients dlb
i;r ;d

ub
i;r (Equation

6), the resulting flux bounds for any community member i were thus obtained as follows:

vlbi = dlb
i 1hi

vubi = dub
i 1hi;

(Equation 7)

where 1 identifies the Hadamart product between any pair of arrays dlb
i , d

ub
i , and hi including the coefficients for all the member’s

reactions.

In general, parameters g and d can be varied and optionally fine-tuned with the use of independent measurements, such as repli-

cation rates for individual microbial species.34 Here, we explored ranges of values by grid search, studying the Pearson’s correlation

between predicted growth rates and reference replication rates, obtained as described above. In anaerobic digestion communities,

for dwe explored the values f1;2;.;10g, while for gwe considered the values f1; 2;.;7g. In the human gut communities, we instead
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tested the range ½0:001;1� and the values f1; 1:5;2g, respectively. In practice, we found that g = 1 tends to generally work well,

whereas d has a more severe impact on the results. Such a tuning strategy also has the advantage of allowing a better harmonisation

with absolute flux measurements, like community-level metabolite exchange rates, if available.

Multivariate flux analysis
PCA was used to visualise the temporal trajectory of the microbial communities in terms of their net metabolite consumption and

production rates, while t-SNE was utilised to represent microbial metabolic activity across conditions. These methods were applied

via scikit-learn v0.24.1 (https://github.com/scikit-learn/scikit-learn).67 Amino acid exchanges were clustered by using hierarchical

clustering with the complete method and Euclidean distance as implemented in SciPy v1.5.2 (https://github.com/scipy/scipy).66,78

QUANTIFICATION AND STATISTICAL ANALYSIS

The concordance between microbial proliferation rates and predicted growth rates was evaluated by Pearson’s correlation, as well

as the agreement between microbial export rates and metabolomic abundances in the human gut. In the latter case, the underlying

assumption was that increasing export rates across a community would increase the likelihood of detecting an extracellular metab-

olite in larger abundance. This assumption is essentially analogous to the flux sum approach.79 The separation between fluxomic

profiles belonging to individual species were quantified in terms of the silhouette coefficient, which considers the mean intra-cluster

distance and the mean nearest-cluster distance for any given sample.80 The differences between silhouette coefficient distributions

were evaluated by two-tailedWilcoxon signed-rank tests, while the differences between gas production rates were assessed by two-

tailed t-tests for dependent samples. All these metrics and tests were applied as implemented in SciPy v1.5.2 (https://github.com/

scipy/scipy)66 and scikit-learn v0.24.1 (https://github.com/scikit-learn/scikit-learn).67 We assessed the significance of the difference

between Pearson’s correlations by using a custom Python implementation of the Steiger method for dependent groups,81 available

along with the rest of the code.
e6 Cell Reports Methods 3, 100383, January 23, 2023
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