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Abstract 

Decarbonizing the Electricity Sector in Qatar 

Ibraheam Ali Y M Al-Aali 

 

Limiting global warming to 1.5℃ requires transitioning to low-carbon electricity grids. In 

Qatar, high and predictable insolation synergetic with demand makes exploiting solar energy 

particularly attractive to decarbonize the electricity sector. With a hot desert climate, space-

cooling drives demand, accounting for nearly half of annual electricity use. This dissertation 

analyzes a decarbonization pathway by exploiting solar PV generation combined with ice storage 

for cooling load shifting and battery storage for electric load shifting in a top-down approach by 

(i) assessing the potential for large-scale deployment, (ii) examining the subsequent problem of 

distributed energy resources capacity sizing, and (iii) proposing a solution to the arising demand 

side management problem. A carbon tax is examined to oppose cheap and plentiful natural gas. 

The analysis outcomes using a linear program show a strong potential for decarbonizing 

using PV-enabled solutions. While they cannot displace gas generations, their role is reduced to 

aid in meeting summer demands. Although buildings are well suited for distributed PV, Qatar is 

a better fit for utility-scale implementation because of reduced costs and higher output from solar 

tracking technology, and accessibility for cleaning as soiling on PV is a concern. 

Under the current gas price of $3.3/MMBtu, PV with ice storage could reduce emissions 

by 43% while cutting annual costs by 20%. Carbon pricing at $60/ton of CO2 reduces emissions 

by 60%. Further reduction is difficult due to the misalignment of the summer electricity demand 

peak with the solar insolation peak, and ice storage cannot outcompete existing gas generation 

for a seasonal cooling load. Ice storage is fit to utilize the large idle chiller capacity in the 

shoulder season, particularly in less efficient systems, because an equal tank volume corresponds 



 

 

to a greater electric load shifting. Battery storage becomes economical with a carbon tax above 

$100/ton of CO2 to manage non-cooling loads and is unsuitable for seasonal loads. Without a 

feed-in tariff, battery storage is better suited for utility-scale applications due to a reliable 

aggregate non-cooling load. Supported by battery storage, emissions could be reduced by 92% at 

$140/ton of CO2 carbon tax. However, peak gas generation demand was only lowered by 66%. 

Linear models are useful to describe large systems, but they cannot be applied to an 

individual system. Instead, hybrid models combining models from first principles with data-

driven parameters are developed. The distributed-scale capacity sizing problem is formulated in 

a bi-level optimization. The upper-level decided equipment capacities using particle swarm are 

passed down to solve the scheduling problem to estimate electricity charges in a mixed-integer 

linear program with piecewise linearization. The distributed-scale analysis affirmed the 

suitability of the decarbonization pathway. Buildings with dominant day-time demand, such as 

commercial buildings, are well positioned to benefit from exploiting distributed PV generation. 

Demand-side management for cooling systems becomes essential in transitioning to low-

carbon power grids since intermittent renewable generations cannot be dispatched or perfectly 

predicted. An optimization strategy is developed to schedule and dispatch chiller systems with 

ice storage. The strategy decomposes the problem into a bi-level formulation solved using the 

genetic algorithm. The upper level decides the storage dispatch amount, and the lower level 

solves the scheduling problem at each time step. The penalty function method handles the 

scheduling problem's constraints, and with penalty factor tuning, premature convergence is 

eliminated. Compared to commonly used heuristic strategies, optimal control reduced cost by 11-

33%. The gains are augmented with a more complex tariff structure like demand charge. 
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scenario 𝑝, dimensionless 
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and scenario 𝑝, dimensionless  
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dimensionless 

𝐶𝑂𝑃𝑝,𝑡
𝑤𝑐,𝑑𝑒𝑠

 Water-cooled systems design coefficient of performance at time 𝑡 and scenario 𝑝, 

dimensionless  

𝑐𝐵𝐸𝑆𝑆  Capital cost of installed battery capacity, [$/MWh] 

𝑐𝑠
𝑃𝑉,𝐶

  Capital cost of installed PV capacity with solar tracking technology 𝑠, [$/MWp,dc] 

𝑐𝐼𝑇𝐸𝑆 Capital cost of installed ice storage capacity, [$/MWhth] 

𝑐𝐼𝑐𝑒𝐶ℎ𝑙,𝐶 Capital cost of additionally installed ice chillers capacity, [$/MWth] 

𝑐𝑠
𝑃𝑉,𝑂

  Operating cost of installed PV capacity with solar tracking technology 𝑠, 

[$/MWp,dc/yr.] 

𝑐𝐼𝑐𝑒𝐶ℎ𝑙,𝑂  Operating cost of additionally installed ice chillers, [$/MWth/yr.] 

𝑐𝐺𝑇 Cost of electricity produced by gas-fired generations, [$/MWh] 

𝑐𝑃𝐺𝑇 Peak gas-fired generations demand price, [$/MWp] 

𝒟𝑝,𝑡  Hourly aggregate total electric demand at time 𝑡 and scenario 𝑝, [MW] 
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𝒟𝑝,𝑡
𝒩  Hourly aggregate non-cooling electric demand at time 𝑡 and scenario 𝑝, [MW] 

𝒟𝑝,𝑡
𝒞   Hourly aggregate total electric cooling load at time 𝑡 and scenario p, [MW] 

𝒟𝑝,𝑡
𝐷𝑋  Hourly aggregate electric cooling load from direct expansion systems at time 𝑡 

and scenario 𝑝, [MW] 

𝒟𝑝,𝑡
𝐴𝐶   Hourly aggregate electric cooling load from air-cooled chilled water systems at 

time 𝑡 and scenario 𝑝, [MW] 

𝒟𝑝,𝑡
𝑊𝐶   Hourly aggregate electric cooling load from water-cooled chilled water systems at 

time 𝑡 and scenario 𝑝, [MW] 

𝐸𝐷𝑋 Maximum aggregate electric load from direct expansion cooling systems, [MW] 

𝐸𝐴𝐶 Maximum aggregate electric load from air-cooled chilled water systems, [MW] 

𝐸𝑊𝐶 Maximum aggregate electric load from water-cooled chilled water systems, [MW] 

𝑓𝐼𝑇𝐸𝑆,𝑐ℎ𝑠  Ice storage maximum charge power to energy ratio, [h-1] 

𝑓𝐼𝑇𝐸𝑆,𝑑𝑖𝑠  Ice storage maximum discharge power to energy ratio, [h-1] 

𝐻𝐼𝑝,𝑡
0  Logistic curve heat index midpoint at time t and scenario 𝑝, [℃] 

𝐻𝐼𝑝,𝑡 Heat index at time t and scenario 𝑝, [℃] 

𝐼𝑝,𝑡,𝑠 Hourly solar insolation with a solar tracking technology 𝑠 at time 𝑡 and scenario 

𝑝, dimensionless by peak sun hour, [MW/MWp] 

𝑖𝑟  Interest rate, dimensionless 

𝑘𝑝,𝑡 Logistic curve slope at time t and scenario 𝑝, [℃-1] 

𝑃𝑝,𝑡 Logistic curve peak demand at time 𝑡 and scenario 𝑝, [MW] 

𝑇𝑝,𝑡
𝑑𝑏 Ambient dry-bulb temperature at time t and scenario 𝑝, [℃] 

𝑇𝑝,𝑡
𝑤𝑏 Ambient wet-bulb temperature at time t and scenario 𝑝, [℃] 
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𝑦𝑟  Service life of PV, ice chillers, and ice storage, [yrs.] 

𝑦𝑟𝑏  Battery service life, [yrs.] 

𝜂𝐼𝑇𝐸𝑆,𝑠𝑑𝑖𝑠 Ice storage self-discharge efficiency, dimensionless 

𝜂𝐵𝐸𝑆𝑆,𝑐ℎ𝑠 Battery charge efficiency, dimensionless 

𝜂𝐵𝐸𝑆𝑆,𝑑𝑖𝑠 Battery discharge efficiency, dimensionless 

𝜂𝐵𝐸𝑆𝑆,𝑠𝑑𝑖𝑠 Battery self-discharge efficiency, dimensionless 

𝜂𝐼 Inverter efficiency, dimensionless 

𝜓𝑖𝑐𝑒  Depressed chiller capacity factor in ice-making mode, dimensionless 

𝜑𝑖𝑐𝑒 Depressed chiller performance factor in ice-making mode, dimensionless 

Decision variables 

Symbol Meaning 

ℬ𝑝,𝑡
𝑑𝑖𝑠 Battery discharge rate at time 𝑡 and scenario 𝑝, [MW] 

ℬ𝑝,𝑡
𝑐ℎ𝑠 Battery charge rate at time 𝑡 and scenario 𝑝, [MW] 

ℬ𝑝,𝑡
𝑠  Stored electric energy at time 𝑡 and scenario 𝑝, [MWh] 

𝐶𝐵𝐸𝑆𝑆  Installed electric battery capacity, [MWh] 

𝐶𝑠
𝑃𝑉  Installed PV capacity with solar tracking technology 𝑠, [MWp,dc] 

𝐶𝑖
𝐼𝑇𝐸𝑆 Installed ice storage thermal capacity for cooling system 𝑖, [MWhth] 

𝐶𝑖
𝐼𝑐𝑒𝐶ℎ𝑙 Additionally installed ice chiller capacity for cooling system 𝑖, [MWth] 

𝐺𝑇𝑝,𝑡 Electricity generated from gas at time 𝑡 and scenario 𝑝, [MW] 

𝐺𝑇𝑃 Peak gas generation demand, [MW] 

𝑃𝑉𝑝,𝑡
𝑐𝑢𝑟𝑡 Curtailed PV generation at time 𝑡 and scenario p, [MW] 

𝑆𝑝,𝑡,𝑖
𝑑𝑖𝑠    Ice storage discharge rate for cooling system 𝑖 at time 𝑡 and scenario 𝑝, [MWth] 
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𝑆𝑝,𝑡,𝑖
𝑎𝑐,𝑐ℎ𝑠

 Ice storage charge rate using air-cooled chillers for cooling system 𝑖 at time 𝑡 and 

scenario 𝑝, [MWth] 

𝑆𝑝,𝑡,𝑖
𝑤𝑐,𝑐ℎ𝑠

 Ice storage charge rate using water-cooled chillers for cooling system 𝑖 at time 𝑡 

and scenario 𝑝, [MWth] 

𝑆𝑝,𝑡
𝑠    Stored thermal energy in ice storage for cooling system 𝑖 at time 𝑡 and scenario 𝑝, 

[MWhth] 

Index sets 

Symbol Meaning 

𝑖 Cooling system type index set {1, 2, 3} denoted by ℐ 

𝑝 Scenario index set {1, 2, 3, 4} denoted by 𝒫 

𝑠 PV orientation and tracking technology index set {1, 2, 3} denoted by 𝒮 

𝑡 Time step index set {1, 2, 3, …, 8760} denoted by 𝒯 

Chapter 3 

Parameters 

Symbol Meaning 

𝐴 Area, [m2] 

𝑐𝑝 Specific heat, [kJ/kg ∙ K] 

𝐶𝑂𝑃 Coefficient of Performance, dimensionless 

�̇� Rate of change of energy, [kW] 

𝑓 Fraction, dimensionless  

�̇� Rate of change of enthalpy, [kW] 

ℎ Specific enthalpy, [kJ/kg] 
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𝑘 Pumps/fans constant, [kW] 

�̇�  Flowrate, [kg/s] 

𝑁𝑟𝑜𝑤
 Number of rows in coils, dimensionless  

𝑁𝑇𝑈 Number of transfer units, dimensionless 

𝑃 Power, [kW] 

𝑝 Pressure, [kPa] 

𝑃𝐿𝑅 Part-load ratio, dimensionless 

�̇� Heat transfer rate, [kW] 

𝑅 Chiller effective thermal resistance, [K/kW] 

∆�̇� Entropy generation rate, [kW/K] 

𝑆𝑜𝐶 State of charge, dimensionless 

𝑇 Temperature, [℃] 

𝑉 Fluid face velocity, [m/s] 

𝑉𝑆𝐷 Angular speed, [% of maximum speed] 

𝑥 Evaporator refrigerant quality, dimensionless 

𝑌  Cooling tower height, [m] 

휀 Effectiveness, dimensionless 

𝜂 Efficiency, dimensionless 

𝜌 Density, [kg/m3] 

Superscripts 

Symbol Meaning 

𝑎 Air 

𝑎𝑒 Coil leaving air 
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𝑎𝑖 Coil entering air 

𝑎𝑡𝑤𝑟 Cooling tower air 

𝑐ℎ𝑙 Chiller 

𝑐𝑐 Cooling coil 

𝑐𝑐𝑎 Cooling coil air 

𝑐𝑐𝑤 Cooling coil water 

𝑐𝑐𝑟𝑤 Cooling coil return water 

𝑐𝑐𝑠𝑤 Cooling coil supply water 

𝑐𝑓 Coil fan 

𝑐𝑜𝑚𝑝 Compressor 

𝑐𝑜𝑛𝑑 Condenser 

𝑐𝑝 Condenser pump 

𝑐𝑟𝑤 Leaving condenser water 

𝑐𝑠𝑤 Entering condenser water 

𝑐𝑤 Chiller condenser water 

𝑑𝑒𝑠 Design conditions 

𝑑𝑝 Dew-point 

𝑑𝑟𝑦 Dry section of the coil 

𝑒𝑣𝑎𝑝 Evaporator 

𝑒𝑥𝑡 External 

𝑓𝑔 Latent heat of evaporation 

𝑖𝑐𝑒 Ice 

𝑖𝑛𝑡 Internal 
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𝑖𝑤 Ice storage water 

𝑖𝑟𝑤 Ice storage return water 

𝑖𝑠𝑤 Ice storage supply water 

𝐼𝑇𝐸𝑆 Ice storage 

𝑙𝑒𝑎𝑘 Leak 

𝑙𝑖𝑚 Limit 

𝑚 Motor 

𝑚𝑎𝑥 Maximum 

𝑝𝑝 Primary pump 

𝑟𝑒𝑓 Reference 

𝑟𝑒𝑓𝑔 Refrigerant 

𝑟𝑤 Return water 

𝑠 Saturated 

𝓈 Sensible  

𝑠𝑓 Latent heat of fusion 

𝑠𝑝 Secondary pump 

𝑠𝑤 Chiller evaporator leaving water 

𝑡𝑤𝑟 Cooling Tower 

𝑉𝑆𝐷 Variable speed drive 

𝑤 Water 

𝑤𝑏 Ambient air wet-bulb 

𝑤𝑒𝑡 Wet section of the coil 

𝑤𝑡𝑤𝑟 Cooling tower water 
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Chapter 4 

Parameters 

Symbol Meaning 

𝑎𝑓,𝑚
𝑆  Storage heat rate curve slope for piecewise linear segment 𝑓 and mode of 

operation 𝑚, [kWth] 

𝑎𝑥,𝑗,𝑚,𝑒
𝑐ℎ𝑙  Chiller power curve slope for piecewise linear segment 𝑓 and mode of operation 

𝑚, [kWth] 

𝑏𝑓,𝑚
𝑆  Storage heat rate curve y-intercept for piecewise linear segment 𝑓 and mode of 

operation 𝑚, [kWth] 

𝑏𝑥,𝑗,𝑚,𝑒
𝑐ℎ𝑙  Chiller power curve y-intercept for piecewise linear segment 𝑓 and mode of 

operation 𝑚, [kWth] 

𝑐𝐵𝐸𝑆𝑆  Capital cost of installed battery capacity, [$/kWh] 

𝑐𝑃𝑉,𝐶  Capital cost of installed fixed-tilt PV capacity, [$/kWp,dc] 

𝑐𝐼𝑇𝐸𝑆 Capital cost of installed ice storage capacity, [$/kWhth] 

𝑐𝑥
𝑐ℎ𝑙 Capital cost of installed chiller capacity with compressor technology 𝑥, [$/kWth] 

𝑐𝑃,𝐹𝑆 Capital cost of installed chiller pumps, [$/kW] 

𝑐𝑃,𝑉𝑆𝐷 Capital cost of installed secondary pump, [$/kW] 

𝑐𝑡𝑤𝑟 Capital cost of installed cooling tower, [$/kWth] 

𝑐𝑠
𝑃𝑉,𝑂

  Operating cost of installed fixed-tilt PV capacity, [$/kWp,dc/yr.] 

𝑐𝑒 Cost of electricity from the power grid, [$/kWh] 

𝑐𝑃 Demand charge, [$/kWp] 

𝐶𝐶𝑎𝑙𝑚𝑎𝑐 Usable capacity of modular ice storage tank (83-TR-hr nominal), [kWhth] 
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ℒ𝐸𝑙𝑒𝑐 Hourly electric load, [kW] 

�̇�  Flowrate, [kg/s] 

𝑀 Arbitrarily large number (Big M) 

𝑁𝑐ℎ𝑙 Number of chillers, dimensionless 

𝑁𝐼𝑇𝐸𝑆 Number of modular ice tanks, dimensionless 

𝑁𝑝
𝑑𝑎𝑦𝑠

  Number of days represented by scenario 𝑝, dimensionless 

𝑁𝑝
𝑚𝑜𝑠   Number of months represented by scenario 𝑝, dimensionless 

𝑃 Power, [kW] 

𝑃𝐿𝑅 Part-load ratio, dimensionless 

�̇�𝑝,𝑡
𝒟  Building cooling demand at time 𝑡 and scenario 𝑝, [kWth] 

𝑄𝑐ℎ𝑙,𝑑𝑒𝑠 Upper limit for design chiller cooling capacity, [kWth]   

𝑄𝑐ℎ𝑙,𝑑𝑒𝑠 Lower limit for design chiller cooling capacity, [kWth] 

𝑆𝑜𝐶  State of charge, dimensionless 

𝑦𝑟  Service life of PV, ice chillers, and ice storage, [yrs.] 

𝑦𝑟𝑏  Battery service life, [yrs.] 

𝜂𝐵𝐸𝑆𝑆,𝑐ℎ𝑠 Battery charge efficiency, dimensionless 

𝜂𝐵𝐸𝑆𝑆,𝑑𝑖𝑠 Battery discharge efficiency, dimensionless 

𝜂𝐵𝐸𝑆𝑆,𝑠𝑑𝑖𝑠 Battery self-discharge efficiency, dimensionless 

𝜂𝐼 Inverter efficiency, dimensionless 

Superscripts 

Symbol Meaning 

𝑎𝑑𝑗 Adjusted 
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Aux Auxiliary 

𝑏𝑎𝑠𝑒 Base 

𝑐ℎ𝑙 Chiller 

𝑐𝑓 Coil fan 

𝑐𝑝 Condenser pump  

𝑐𝑠𝑤 Entering condenser water 

𝑐𝑤 Condenser water 

𝒟 Demand 

𝑑𝑒𝑠 Design conditions 

𝑒𝑣𝑎𝑝 Evaporator 

𝑖𝑐𝑒 Ice-making 

𝐼𝑇𝐸𝑆 Ice storage 

𝑖𝑤 Ice storage water 

𝑙𝑖𝑚 Limit 

𝑙𝑙 Lower-limit 

𝑚𝑎𝑥 Maximum 

𝑝𝑝 Primary pump 

𝑟𝑒𝑓 Reference 

𝑟𝑒𝑓𝑔 Refrigerant 

𝑟𝑤 Return water 

𝑠𝑝 Secondary pump 

𝑠𝑤 Supply water 

𝑡𝑤𝑟 Cooling Tower 
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𝑢𝑙 Upper-limit 

𝑉𝑆𝐷 Variable speed drive 

Decision variables  

Symbol  Meaning 

ℬ𝑝,𝑡
𝑐ℎ𝑠 Battery charging rate at time 𝑡 and scenario 𝑝, [kW] 

ℬ𝑝,𝑡
𝑑𝑖𝑠 Battery discharging rate at time 𝑡 and scenario 𝑝, [kW] 

ℬ𝑝,𝑡
𝑠  Stored electric energy at time 𝑡 and scenario 𝑝, [kWh] 

𝐵𝑝,𝑡,𝑥,𝑗,𝑚,𝑒
𝑐ℎ𝑙  Binary variable to toggle on chiller power curve piecewise linear segment 𝑒 in 

operation mode 𝑚 for chiller 𝑗 with compressor technology 𝑥 at time 𝑡 and 

scenario 𝑝, binary 

𝐵𝑝,𝑡
𝑖𝑐𝑒 Binary variable to activate ice-making mode at time 𝑡 and scenario 𝑝, binary 

𝐵𝑝,𝑡,𝑚,𝑓
𝐼𝑇𝐸𝑆  Binary variable to toggle on ice storage heat rate curve piecewise linear segment 

𝑓 in operation mode 𝑚 at time 𝑡 and scenario 𝑝, binary 

𝐶𝐵𝐸𝑆𝑆 Installed BESS capacity, [kWh] 

𝐶𝑃𝑉 Installed on-site fixed-tilt PV capacity, [kWp,dc] 

𝐶𝑝 Installed chiller pumps capacity, [kW] 

𝐶𝑠𝑝 Installed secondary pump capacity, [kW] 

𝐶𝑡𝑤𝑟 Installed cooling tower capacity, [kWth] 

𝑄𝑥,𝑗
𝑐ℎ𝑙,𝑑𝑒𝑠

 Installed nominal cooling capacity of chiller 𝑗 with compressor technology 𝑥, 

[kWth] 

𝐺𝑇𝑃 Peak gas generation demand, [kW] 

𝐺𝑇𝑝,𝑡 Power delivered by the electricity grid at time 𝑡 and scenario 𝑝, [kW] 
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𝑁𝐼𝑇𝐸𝑆 Number of modular ice storage tanks, 𝑁𝐼𝑇𝐸𝑆 ∈ ℝ 

�̇�𝑝,𝑡,𝑥,𝑗
𝑐ℎ𝑙  Load for chiller 𝑗 with compressor technology 𝑥 at time 𝑡 and scenario 𝑝, [kWth] 

𝑆𝑝,𝑡
𝑐ℎ𝑠 Ice storage charge rate at time 𝑡 and scenario 𝑝, [kWth] 

𝑆𝑝,𝑡
𝑑𝑖𝑠   Ice storage discharge rate at time 𝑡 and scenario 𝑝, [kWth] 

𝑆𝑝,𝑡
𝑠    Stored thermal energy at time 𝑡 and scenario 𝑝, [kWhth] 

𝑂𝑁𝑝,𝑡,𝑥,𝑗
𝑐ℎ𝑙  Power switch for chiller 𝑗 with compressor technology 𝑥 at time 𝑡 and scenario 𝑝,    

binary  

𝑃𝑉𝑝,𝑡
𝑐𝑢𝑟𝑡 Curtailed PV generation at time 𝑡 and scenario p, [kW] 

∆𝑇𝑐𝑤,𝑑𝑒𝑠 Design chillers condenser temperature differential, [℃] 

∆𝑇𝑠𝑤,𝑑𝑒𝑠 Design chillers evaporator temperature differential, [℃] 

Index sets 

Symbol  Meaning 

e Chiller piecewise linear segment index set {1, 2} denoted by ℰ 

f Storage piecewise linear segment index set {1, 2, 3, 4} denoted by ℱ 

𝑗 Chiller index set {1, 2, 3, …} such that 𝑗 ∈ ℕ  

m Operation mode index set {1, 2} denoted by ℳ 

𝑝 Scenario index set {1, 2, 3, 4, 5} denoted by 𝒫 

𝑡 Time step index set {1, 2, 3, 4, …, 24} denoted by 𝒯 

𝑥 Chiller compressor technology index set {1, 2, 3} denoted by 𝒳 
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Chapter 5 

Parameters 

Symbol Meaning 

𝑐𝑒 Time-of-use electricity rates 

𝑓 Fraction, dimensionless  

ℎ Specific enthalpy, [kJ/kg] 

�̇�  Flowrate, [kg/s] 

𝑚 Mass, [kg] 

𝑃  Power, [kW] 

𝑃𝐿𝑅 Part-load ratio, dimensionless 

𝑆𝑜𝐶 State of charge, dimensionless 

𝑇 Temperature, [℃] 

�̇� Heat transfer rate, [kWth] 

𝑉𝑆𝐷 Angular speed normalized to maximum speed, dimensionless 

Superscripts 

Symbol Meaning 

𝑎𝑒 Coil exit air 

𝑎𝑖 Coil inlet air 

𝑎𝑡𝑤𝑟 Cooling tower air 

𝑏𝑐𝑤 Blended chillers condenser water  

𝑏𝑠𝑤 Blended chillers evaporator water 

𝑐ℎ𝑙 Chiller 

𝑐𝑐𝑎 Cooling coil air 
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𝑐𝑐𝑟𝑤 Cooling coil return water 

𝑐𝑐𝑠𝑤 Cooling coil supply water 

𝑐𝑐𝑤 Cooling coil water 

𝑐𝑓 Coil fan 

𝑐𝑝 Condenser pump  

𝑐𝑟𝑤 Blended leaving chillers condenser water 

𝑐𝑠𝑤 Blended entering chillers condenser water  

𝑐𝑤 Chiller condenser water 

𝒟 Demand 

𝑑𝑒𝑠 Design conditions 

𝑑𝑟𝑦 Dry section of the coil 

𝐼𝑇𝐸𝑆 Ice storage 

𝑖𝑠𝑤 Ice storage supply water 

𝑖𝑟𝑤 Ice storage return water 

𝑖𝑤 Ice storage water 

ℓ Latent 

𝑚𝑎𝑥 Maximum 

𝑚𝑖𝑛 Minimum 

𝑝𝑝 Primary pump 

𝑟𝑤 Blended chillers evaporator returning water 

𝑠 Saturated 

𝓈 Sensible 

𝑠𝑝 Secondary pump 
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𝑠𝑤 Chiller evaporator water 

𝑆𝑦𝑠 System 

𝑡𝑤𝑟 Cooling Tower 

𝑉𝑆𝐷 Variable speed drive 

𝑤𝑡𝑤𝑟 Cooling tower water 

Decision variables  

Symbol  Meaning 

�̇�𝑡 
𝑖𝑤 Storage water flowrate at time 𝑡, [kg/s] 

𝑇𝑡,𝑗
𝑠𝑤 Leaving chilled water temperature setpoint for chiller 𝑗 at time t, [℃] 

𝑇𝑡
𝑐𝑤𝑠 Entering condenser water temperature for chillers at time t, [℃] 

∆𝑆𝑜𝐶𝑡 Ice thermal storage dispatch amount at time 𝑡, dimensionless  

𝑂𝑁𝑡,𝑗
𝑐ℎ𝑙 Power switch for chiller 𝑗 at time t, binary 

𝑂𝑁𝑡,𝑛
𝑡𝑤𝑟 Power switch for cooling tower 𝑛 at time t, binary 

𝑉𝑆𝐷𝑡
𝑐𝑓

 Cooling coil fan motor speed normalized to the maximum speed at time t, 

dimensionless 

𝑉𝑆𝐷𝑡
𝑠𝑝

 Secondary pump motor speed normalized to the maximum speed at time t, 

dimensionless 

𝑉𝑆𝐷𝑡
𝑡𝑤𝑟 Cooling tower fan motor speed normalized to the maximum speed at time t, 

dimensionless 
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Index sets 

Symbol  Meaning 

𝑔 Secondary pump index set {1, 2} denoted by 𝒢 

𝑗 Chiller index set {1, 2, 3} denoted by 𝒥 

𝑛 Cooling tower index set {1, 2} denoted by 𝒩 

𝑡 Time step index set {1, 2, 3, 4, …, 24} denoted by 𝒯 

𝑧 Training data index set {1, 2, 3, 4, …, 237} denoted by 𝒵 
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Chapter 1: Introduction 

The world's use of fossil fuels as an on-demand energy source is increasing the 

concentration of greenhouse gas emissions in our atmosphere [1], [2] that continues to accelerate 

as many parts of the world develop and industrialize [3], [4]. It became evident that 

anthropogenic greenhouse gas emissions, primarily CO2 (carbon dioxide), drive climate change 

by trapping heat in the atmosphere and increasing the global temperature [5]–[8]. If not 

mitigated, climate change threatens rising sea levels, coastal flooding, food and fresh water 

shortages, and higher frequency and intensity of extreme weather events [9]–[11]. The 

International Panel on Climate Change's special report finds that the risk of irreversible 

ecological damages can be reduced by limiting global warming to 1.5℃ above the pre-industrial 

era [12]. World energy use is responsible for two-thirds of yearly anthropogenic carbon 

emissions [13], which can be classified into three end-use sectors: transportation, industrial, and 

buildings. Building energy use accounts for 30% of total energy end-use and 55% of electricity 

use worldwide [14], dominated by space-cooling and heating and domestic hot water needs [15]–

[17]. 

Qatar is a small country along the Arabian Gulf with a population of 2.7 million and a 

total land area of 11,600 km2. The climate can be described as dry-arid with mild winter months 

(average daily temperature of 20-25℃) and hot summer months (average daily temperature of 

35-40℃). Qatar ranks highest for per capita carbon emissions [18]. Although largely propelled 

by carbon emissions from producing and exporting liquefied natural gas, it displaces dirtier and 

more emission-producing fuels elsewhere. Still, the electricity sector is responsible for one-

fourth of total carbon emissions, of which buildings account for 60% of total electricity use [18], 
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[19]. The high electricity demands in buildings are dominated by near year-round energy-

intensive space-cooling [20], [21]. 

Qatar’s electricity and water demands are met by gas-fired integrated water and power 

plants, combining electricity production and water desalination. In 2016, the total electricity and 

desalinated water consumption were 42 TWh and 560 million m3, respectively, produced using 

452 million MMBtu of natural gas at an average thermal efficiency of 31%, emitting 24 Mt of 

CO2 [19].  

Electricity is subsidized based on sector and consumption bracket [22]. For non-bulk 

consumers with a peak demand of less than 5 MW and a monthly consumption bracket of less 

than 4 MWh, the rate is flat at $36/MWh. For bulk customers with a peak demand greater than 5 

MW, the tariff is $58/MWh during the low-demand seasons and rises to $93/MWh during peak 

hours in the hotter months (May to October) from 12 to 6 PM [22]. The on-peak pricing is 

motivated by the growing peak demand, which grew at an average rate of 6% per year since 

2010 to 7.33 GW in 2016. This led to expanding gas generation capacity only to supplement the 

yearly marginal increase in demand in the hotter summer months. Also, the high ambient 

temperatures in the summer significantly depress their power capacity and thermal efficiency 

relative to their design condition, leading to further upsizing them.  

Figure 1.1 shows Qatar's 2016 daily electricity demand and ambient temperatures for 

three days in the winter (Jan 5-7), spring (April 10-12), and summer (Sept 2-4), where Hour 0 

corresponds to 12 AM in all subsequent figures. Meteorological and solar insolation data were 

collected from a station in Doha, where most of the population lives. Daily demand variations 

are minor relative to seasonal variations driven by high electricity demand from space cooling. In 

the summer, diurnal demand from space-cooling is synergetic with dry-bulb temperatures, and in 
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the winter, the electricity demand is largely from non-cooling loads. Average daily dry-bulb 

temperature variations can be as high as 10℃ compared to 5℃ for wet-bulb temperature. 

 
 

 

Figure 1.1: Qatar’s 2016 electricity demand in the winter, spring, and summer for 

three days on the left y-axis and the ambient conditions, dry and wet-bulb temperatures, on 

the right y-axis. 

Threatened by rising sea levels and extreme inhospitable temperatures due to climate 

change [23], Qatar, alongside the world, needs to adopt more sustainable approaches to meet 

increasing energy and cooling demand. While considerations are made for renewable-based 
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energy sources and demand-side management [24]–[28], which could reduce emissions by 20-

25% by 2035, Qatar does not have a net zero or a deep decarbonization plan. Pathways to 

decarbonizing the electricity sector in Qatar have been investigated by scholars for large-scale 

renewables deployment [29]–[33] and from a distributed building-scale perspective with an 

emphasis on demand side management [34]–[41].  

In a comprehensive examination of renewable energy sources in Qatar, Okonkwo et al. 

[32] explored wind turbines, PV (photovoltaic), concentrated solar power, and biofuels combined 

with energy storage technologies, including thermal and pump-hydro storage. Okonkwo 

identified several potential decarbonization pathways with PV and wind generation. However, 

energy storage systems such as pump hydro were determined to be essential for deep 

decarbonization, but Qatar's geography lacks favorable topography. Bohra and Shah [30] and 

Martinez-Plaza et al. [31] analyzed the long-term potential of solar energy in Qatar. The studies 

agree on the large potential for grid-scale PV generation. Martinez-Plaza also identified 

concentrated solar power with large thermal storage as an alternative solution. An investigation 

of wind turbine potential by Marafia and Ashour [33] reveals promising wind speeds reaching 

6.5 m/s at 10 m above ground. The research finds off-shore wind energy suitable for off-grid 

connection for islands in Qatar and promising for a grid-connected generation. However, unlike 

solar insolation, wind speed is highly spatially sensitive. Furthermore, obtained meteorological 

data demonstrate correlated wind speed with intra-annual and diurnal PV generation, which 

makes wind turbines less able to reduce the required energy storage capacity. 

Alrawi et al. [36] and Elbeheiry et al. [35] examined the economic viability of 

distributed-scale rooftop PV generation with battery energy storage systems in Qatar. The studies 

find the examined system economically infeasible, constrained by subsidized tariffs and a lack of 
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economic incentives. In another work, Alrawi et al. [36] investigated factors influencing 

residential rooftop PV adoption using surveys. They establish subsidized electricity tariffs as a 

challenge to PV adoption and propose lifting subsidies and promoting energy conservation 

awareness. Teshnizi et al. [37] analyzed grid-connected household-scale wind turbines in Qatar, 

and their analysis found limited suitability and emissions reduction potential in certain areas.  

Demand-side management can be categorized into energy efficiency and demand 

response. Energy efficiency reduces energy use from higher efficiency building standards, 

appliances, and cooling technologies. Conversely, demand response exploits electricity tariffs to 

motivate demand adjustments to match supply, which is essential for intermittent renewable 

generation. Bayram and Koc [38] investigated demand-side management practices in Qatar. The 

study finds energy efficiency to be most explored. Although the demand response is gaining 

attention, the current tariff structure does not motivate demand adjustment. They propose 

adjusting the air-conditioning set point for unoccupied buildings to reduce peak electricity 

demand in summer through demand load control programs. Krarti et al. [39] analyzed the 

macroeconomic benefit of large-scale building energy efficiency programs in Qatar. They find 

that higher buildings' energy efficiency standards can significantly reduce energy consumption 

and peak energy demand even when retroactively implemented. Kamal et al. [41] recommend a 

policy pathway of building codes and standards to reduce building energy consumption with 

special emphasis on new constructions considering Qatar's unique rapid urban development 

pace. However, the analysis determines that subsidized electricity tariffs do not encourage 

energy savings.  

Prior works in the literature identified that the subsidized electricity sector is challenging 

to decarbonize but affirm Qatar's particular attractiveness for exploiting solar PV. Qatar has a 
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high and predictable solar insolation with a global horizontal irradiance of 2200 kWh/m2/yr. with 

few rainy or cloudy days that are synergetic with electricity demand. This is further 

complemented by access to low-interest capital and abundant suitable land area. Figure 1.2 

illustrates the synergistic relationship between the weekly average electric load, solar output, 

mean heat index, and ambient dry-bulb temperature in degrees Celsius. The heat index is a 

metric for the human perception of the ambient temperature combining the ambient dry-bulb 

temperature and the humidity level. High humidity between July and September is responsible 

for the increased electricity demand from space cooling.  

  

Figure 1.2: Qatar 2016’s weekly mean electric demand and solar output over 19 km2 

in MW on the left y-axis, and the weekly mean heat index and dry-bulb temperature in 

degrees Celsius on the right y-axis. Yearly solar output over 19 km2 is equivalent to 2016’s 

total electricity use of 42 TWh. 
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In the past, a high fraction of airborne dust hindered large-scale PV deployment in Qatar. 

However, ongoing research investigates procedures to evaluate and reduce the degradation due 

to soiling. Abdallah et al. [42] found that fouling can drop panels yield by 15% if not cleaned 

monthly. A study by Martinez-Plaza et al. [43] determined anti-soiling coating to be ineffective 

in limiting yield drop but allowed for easier cleaning of the panels. Tahir et al. [44] theoretically 

analyzed the impact of climate change on mono and bi-facial PV panels in Qatar. The study 

predicts rising air temp in the years 2050 and 2080 with a reduction in solar insolation by 5-8%. 

Bi-facial panels are determined to be better suited due to their high energy output and reduced 

cell temperature. In early 2020, a deal was signed to build an 800 MW solar PV plant in Qatar 

with a record levelized cost of electricity of $15/MWh [45], which was commissioned in October 

2022. Another deal was signed in August 2022 to build two additional solar PV plants with a 

combined capacity of 875 MW [46]. 

Still, cooling demand that continues through the night cannot be met with diurnal solar 

PV generation. I-TES (ice thermal energy storage) is examined as a low-cost means, as opposed 

to current BESS (battery energy storage system) technologies, to store excess PV generation for 

subsequent cooling. I-TES requires a chiller to produce cooling to convert liquid water into ice. 

It allows as much as 0.4 MJ/kg of cooling compared to 0.04 MJ/kg for cold water storage since it 

takes advantage of both the sensible and latent heat from the phase change of liquid water to ice.  

Carbon pricing is examined as a state policy tool to accelerate the adoption of energy 

storage and renewable energy resources as a viable competitor with cheap natural gas in Qatar. 

Carbon pricing is an instrument to increase the cost of generations from carbon-based energy 

sources to reflect better the environmental damage caused by CO2 emissions. By shifting the 

burden back to the energy consumers, carbon pricing enables renewable energy to compete with 
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carbon-based energy sources and mobilize investments [47], [48]. While there are many forms of 

carbon pricing, the examined carbon pricing tool is the carbon tax, which adds a cost to gas 

generation per ton of CO2 emitted. 

Moving to low-carbon electricity grids while satisfying the world's growing energy needs 

remains humanity's greatest challenge. This work is a subset of a large body of literature that 

attempts to examine, analyze, and develop alternative decarbonization pathways. This 

dissertation aims to examine and analyze a decarbonization pathway for the cooling-driven 

electricity sector in Qatar using PV generation combined with I-TES for cooling load shifting 

and BESS for electric load shifting from multiple perspectives in a top-down approach. The 

dissertation is organized into the following chapters:   

Chapter 2: Assessing large-scale deployment from a utility-scale perspective 

PV generation already out-competes gas generation at current prices. However, large-

scale deployment of PV generation cannot be supported without the widespread adoption of 

costly energy storage. This chapter assesses the potential of utility-scale PV generation combined 

with I-TES and BESS. The problem is formulated in a two-stage stochastic linear program 

solved at a given gas price. Linear programming is extensively used for large-scale energy 

problems when describing aggregate systems' performance and behavior. Statistical tools are 

applied to estimate electric demand from space cooling. To combat low energy prices in Qatar, 

carbon pricing is examined as a policy tool in order to boost the adoption of energy storage and 

facilitate the transition to sustainable renewable energy sources.  

Chapter 3: Modeling of WC CWS with I-TES 

The conventional way to cool medium to large buildings in Qatar is using a WC CWS 

(water-cooled chilled water system). Using water to transport heat over large distances reduces 
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energy losses in air distribution and refrigeration systems. However, the behavior and control of 

CWSs (chilled water systems) tend to be more complex than cooling systems used in smaller 

buildings. While simpler models can describe the aggregate behavior of the systems, as done in 

Chapter 2, they cannot be applied to individual systems. This chapter develops hybrid models 

combining first principles with data-driven parameters to capture the complex behavior of the 

major power-consuming components in CWS with I-TES used for building-scale analysis in 

Chapters 4 and 5.  

Chapter 4: Design of an integrated WC CWS with I-TES, BESS, and on-site PV  

The decarbonization pathway examined for large-scale deployment in Chapter 2 must 

eventually be applied to individual buildings with distinct envelope construction and electricity 

and cooling needs. This chapter examines the design and equipment capacity sizing problem of 

CWS with I-TES and BESS for better integration with on-site PV generation. A problem 

confronted when deciding equipment capacity is estimating their energy, which requires solving 

the scheduling and dispatch problem that is highly non-linear and involves many decision 

variables at each time step. A bi-level optimization formulation is developed to decouple the 

capacity sizing from the scheduling and dispatch problem. The upper level minimizes yearly 

total system costs and decides the installed capacities and design parameters using particle 

swarm optimization. The decided parameters are passed down to solve the scheduling and 

dispatch problem in a mixed-integer linear program with piece-wise linearization and return the 

estimated yearly electricity charges. Two buildings are examined with dissimilar demand 

profiles: a residential building with dominant night-time electricity needs and a commercial 

building with diurnal cooling and electricity needs. This chapter restresses the role of carbon 

pricing in adopting energy storage and highlights the impact of demand-side management. 
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Chapter 5: Optimal equipment scheduling and dispatch of WC CWS with I-TES 

Intermittent renewable generations cannot be dispatched or perfectly predicted. A low-

carbon power grid must be accompanied by demand-side management through load shifting 

using energy storage and demand adjustments communicated by the central grid via a pricing 

signal. Cooling is responsible for nearly half of the electricity demand in Qatar, thereby making 

cooling systems a crucial target for demand-side management. However, operating CWS to 

maximize savings can be challenging. This challenge arises from operating the system outside its 

design conditions, which requires careful consideration of chillers' part-load performances and 

the performances of associated auxiliary equipment. This chapter develops an optimization 

strategy for optimal scheduling and dispatch of WC CWS with I-TES to reduce operating costs. 

A bi-level optimization formulation is developed that minimizes the daily electricity charge, 

which is solved using the genetic algorithm at both levels. The upper level decides the I-TES 

dispatch amount fed to the lower-level optimizer to solve the WC CWS equipment scheduling 

problem sequentially at each hour and returns the corresponding system power consumption to 

update the guess for the next iteration. This approach negates the need for simplistic system 

models for complex space cooling and heating applications. The developed strategy is contrasted 

against two commonly used heuristic strategies: chiller priority and storage priority control.  

Chapter 6: Conclusions and recommendations for future works 

The proposed decarbonization pathway is analyzed from different perspectives in a top-

down approach in the earlier chapters. This chapter ties in the different perspectives to build a 

complete picture of the challenges and prospects of the considered pathway. Recommendations 

are made to address current and future urban development needs. Last, future research questions 

are provided to expand the scope of the study.  
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Chapter 2: Assessing large-scale deployment from a utility-scale 

perspective  

2.1 Introduction 
 

The solution to sustainably meet the world's growing energy demand will not be 

universal. Instead, each region must tailor a plan specific to its energy needs, climate, and 

geology. Nevertheless, any approach will combine renewable energy sources with energy storage 

technologies and demand-side management. Individuals' actions to reduce energy consumption 

or consider alternative energy sources can only have a limited impact on the overall electricity 

sector's carbon emissions, and any far-reaching impact requires government intervention via 

direct actions or policy enactments.  

This chapter assesses the potential for large-scale deployment of utility-scale PV 

generation combined with I-TES and BESS for decarbonizing cooling and electric loads. The 

planning problem is solved to estimate the required aggregate capacities and annual system cost. 

In addition to the literature, more sophisticated models are developed to examine I-TES for 

cooling load shifting. The developed models account for the impact of ambient conditions on the 

performance of cooling systems and evaluate existing idle chillers' cooling capacity that could be 

used for I-TES charging.  

The utility-scale perspective provides insight into the renewable penetration potential, 

overall emissions reduction, and the impact on power grid operation. Linear programming is 

extensively employed in utility-scale analyses because it can solve large problems with 

thousands of continuous and binary variables commonly confronted in large-scale deployment of 

renewables with energy storage [49]–[51]. It is also useful for describing the aggregate behavior 

and performance of its constituent systems, which tend to exhibit simpler behavior. 
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In the literature, thermal energy storage has been examined to increase the flexibility of 

the power grid by responding to the electricity demand and intermittent renewables generations 

[52]–[55]. More commonly, in regions with variable electricity rates or demand charges, thermal 

storage is examined to reduce the required chiller cooling capacity, demand charges, and 

electricity use charges from load shifting [56]–[59]. For that mode of operation, the storage is 

charged during the off-peak period, typically at night, and discharged during the on-peak period, 

typically in the afternoon, making it suitable for use in schools, offices, and other buildings with 

dominant diurnal cooling needs. Deetjen et al. [60] considered thermal storage for grid-wide 

efficiency improvements by taking advantage of the higher cooling efficiency achieved when 

running chillers at capacity, countering the narrative of thermal storage as net energy consumers. 

Ruan et al. [56] performed a linear programming analysis to improve the efficiency and 

economics of building combined cooling, heating, and power using I-TES. They found that gas 

and electricity charges are the main factors in determining the economic feasibility of I-TES.  

The roles and use of BESS in decarbonization are extensively studied [61]–[69]. Unlike 

I-TES, BESS can be used to decarbonize all electric loads, but it suffers from capacity 

degradation, high cost of capacity, and shorter service life. However, the rate at which the cost is 

falling [70] enables BESS to be cost-competitive with other energy storage technologies. Several 

studies have stressed the role of utility-scale BESS with PV in reducing carbon emissions and 

carbon abatement costs compared to PV alone [62]–[64]. Arbabzadeh et al. [65] examined 

various energy technologies to reduce the curtailment of variable renewable energy sources and 

carbon emissions in California and Texas. The results showed that BESSs have a limited role at 

the current capacity cost. However, a modest decrease in capacity cost can make BESS 

economically viable. 
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Chapter 2 is organized as follows: the methodology is presented in Section 2.2. First, the 

performance of cooling systems as a function of the ambient temperatures is estimated from 

generic chillers' performance data; second, statistical tools are applied to determine the aggregate 

cooling load from hourly electric demand; third, the problem formulation is laid out. Section 2.3 

first presents and discusses the cost-optimal system under current cost structures and then 

examines the role of carbon pricing as a state policy to reduce carbon emissions. Next, a deeply 

decarbonized system realized with a carbon pricing policy is analyzed in more detail. Last, the 

impact of declining BESS costs on the cost-optimal system is investigated. The chapter is 

concluded in Section 2.4.  

2.2 Methodology 
 

The overall framework utilizes central grid PV and gas generation to distribute electricity 

via the grid, which can be used for all loads, including BESS charging. The centralized BESS 

delivers power to the electric grid when needed. I-TES is installed on the customer side as an 

addition to an already existing cooling system and can be charged using existing idle chillers 

and/or additional ice chillers for a cost. Additional ice chillers are particularly important due to 

the overlap of solar insolation with daytime cooling loads, reducing idle chillers’ capacity that 

could be used for storage charging. Solutions are sought that minimize overall annual system 

costs from Capex (capital expenditures) and OpEx (operation expenditures) at a given gas price. 

In accounting for emissions reduction from cooling, the electric cooling load is assumed to be 

met in the following order using: (i) PV generation, (ii) BESS, and (iii) gas generation. 

Cooling systems can be classified into three types: DXS (direct expansion system), AC 

CWS (air-cooled chilled water system), and WC CWS. DXS, which includes rooftop units, split 

and ductless mini-split systems, and window units, provide cooling directly from the expansion 
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of the refrigerant. In CWS (chilled water system), water is used as an intermediary fluid to 

transport heat over larger distances and in large buildings. An illustration of the analyzed 

problem is shown below in Figure 2.1. 

 

Figure 2.1: An illustration of the considered power grid. Central grid PV and gas 

generation can be used for all loads, including BESS charging. Buildings are classified 

based on their cooling system type: DXS, AC CWS, and WC CWS. To account for 

emissions reduction from cooling, the cooling load is assumed to be met in the following 

order using: (i) PV generation, (ii) BESS, and (iii) gas generation. 

I-TES stores thermal energy mainly in the form of latent heat. The considered I-TES type 

in this study is internal melt, a modularized tank favored for its predictable charge and discharge 

rates. Inside the tank, multiple parallel loops of tubes are submerged in water, and a secondary 

water-glycol mixture is circulated through the inner loops to freeze or melt the water inside the 

tank. The heat rate of internal melt I-TES is a function of the SoC (State of Charge) and inlet 

water-glycol mixture temperature and flowrate [71]–[73]. The charge rate is highest during 
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sensible charging due to a greater temperature difference between the entering water-glycol 

mixture and the tank water temperature. Once the tank is brought to freezing temperature, the 

charge rate reduces as the thermal resistance increases due to ice formations. Similarly, 

discharging of I-TES is initially higher when the water in the tank is completely frozen, and the 

rate reduces as the ice around the tube melts.  

DXS and AC CWS are AC (air-cooled) systems, and their COP (coefficient of 

performance) is associated with the ambient dry-bulb temperature. WC CWS utilizes WC 

(water-cooled) condensers, and their COP is associated with the wet-bulb temperature as heat is 

ultimately rejected using evaporative cooling in a cooling tower. WC systems run more 

efficiently, benefiting from lower condensing temperatures, especially in dry seasons. The 

current approach to meet the cooling demand in Qatar, which lacks thermal storage, uses a mix 

of DXS, AC CWS, and WC CWS. The considered pathway of load shifting using I-TES for each 

cooling system type is illustrated in Figure 2.2.  

 

   

Figure 2.2: Pathways to satisfying the cooling demand in the three cooling systems 

types. While AC and WC CWS can make ice, additional AC ice chillers can be installed. 

Additional ice chillers must be installed with the I-TES for the DXS. 
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The DXS’ I-TES can only be charged using additionally installed ice chillers as currently 

installed standard systems are incompatible with ice-making. For AC and WC CWS, I-TES can 

be charged using idle and additionally installed chillers capacities. All additional ice chillers are 

lower-cost AC chillers, provided they utilize low-cost excess generation for I-TES charging. 

The analysis is performed with four scenarios, each with one year of hourly solar 

insolation (private station in Doha), electric demand, and meteorological data (collected from 

Doha International Airport Station) from 2013 to 2016. However, as the demand has been 

growing yearly, the demands from 2013 to 2015 are normalized to the peak demand of 2016. The 

aggregate cooling load is determined using the normalized hourly electric demand and its 

respective year’s meteorological data set. The 2016 scenario was taken as the reference scenario 

in all produced figures. 

2.2.1 Cooling systems performance estimation 
 

The COP of cooling systems is affected by the refrigerant condensing temperatures 

influenced by the ambient conditions. The dry-bulb temperature influences AC systems 

condensing temperature as they depend on dry cooling to reject heat to the ambient. The 

condensing temperature of WC systems is influenced by the wet-bulb temperature as they rely on 

evaporative cooling. The fundamentally lower wet-bulb temperature reduces the condensing 

temperature and improves system performance.  

The COP of AC and WC systems as a function of ambient conditions is derived from the 

behavior of generic system performance analogous to Deetjen et al. work [60], [74]. Although 

less significant, the performance of cooling systems is also a function of their loading. Chillers’ 

performance data are taken from the library of chillers in EnergyPlus at the typical design water 

supply temperature of 7℃ and the ideal part-load ratio of 80%. The data are extracted and used 
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with Gordon-Ng model to predict chiller performance across a broader range of ambient 

temperatures than permitted by the DOE-2 model in EnergyPlus. Details of the methodology 

used are explained in Section 3.2.1 in Chapter 3.  

 Two AC chillers with typical performance are selected: Carrier 19XA and McQuay AGZ, 

and two WC chillers: Trane RTHB and Carrier 19XR. Auxiliary equipment, such as water pumps 

and tower fans, consumes on the order of 10% of total system energy in AC CWS and about 20% 

in WC CWS [75]. The entering condenser temperature for WC CWS is taken at a standard 3℃ 

above the wet-bulb temperature. A power curve is fitted to the estimated system COP for AC 

systems in refrigeration and ice-making (I-TES charging) mode, which are given by: 

 

 

𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐 = 14.44(𝑇𝑝,𝑡

𝑑𝑏)
−0.5

,             [℃]  (𝑇𝑝,𝑡
𝑑𝑏 > 0℃)  (2.1) 

 

 

𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐,𝑖𝑐𝑒 = 𝐶𝑂𝑃𝑝,𝑡

𝑎𝑐  × 𝜑𝑖𝑐𝑒, [℃] (𝑇𝑝,𝑡
𝑑𝑏 > 0℃) (2.2) 

 

 

and for WC systems: 

 

 

𝐶𝑂𝑃𝑝,𝑡
𝑤𝑐 = 25.25(𝑇𝑝,𝑡

𝑤𝑏)
−0.56

, [℃] (𝑇𝑝,𝑡
𝑤𝑏 > 0℃) (2.3) 

 

 

𝐶𝑂𝑃𝑝,𝑡
𝑤𝑐,𝑖𝑐𝑒 = 𝐶𝑂𝑃𝑝,𝑡

𝑤𝑐  × 𝜑𝑖𝑐𝑒, [℃] (𝑇𝑝,𝑡
𝑤𝑏 > 0℃) (2.4) 

 

 

where the subscripts 𝑝 is the scenario index set {1, 2, 3, 4} denoted by 𝒫 and refers to years 

2013-2016, and 𝑡 is the time step index set {1, 2, 3, … , 8760} denoted by 𝒯 that refers to the hour 

of the year, 𝜑𝑖𝑐𝑒 is the depressed chiller performance factor in ice-making mode and is 0.8, and 

𝑇𝑝,𝑡
𝑑𝑏 and 𝑇𝑝,𝑡

𝑤𝑏 are the dry and wet-bulb temperatures, respectively, in degrees celsius. Running the 



18 

 

chillers in ice-making mode reduces the COP due to decreased refrigerant vapor quality [76]–

[78]. Figure 2.3 visualizes the developed relation between system COP and the wet-bulb 

temperature for WC systems and dry-bulb temperatures for the AC systems in refrigeration and 

ice-making mode. 

 

 
 

 

Figure 2.3: System COP for (a) WC systems v. wet-bulb temperature and (b) AC 

CWS v. dry-bulb temperature in refrigeration and ice-making modes. AC systems include 

AC CWS and DXS. 

An exponential improvement in COP is realized with reduced temperatures. Design 

system COP, which dictates the installed nominal cooling capacities and performance, for WC 

systems of 4.2 is evaluated at the standard design wet-bulb temperature of 25℃, and for the AC 

system of 2.4 is evaluated at the standard design dry-bulb temperature of 35℃ in refrigeration 

mode. The developed COP relation allows for the conversion between electric and thermal loads 

necessary for thermal energy storage analysis.  
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Ambient conditions also impact the cooling capacity of cooling systems. The cooling 

capacity of a cooling system in refrigeration mode is associated with the COP. In ice-making 

mode, the cooling capacity is associated with both the COP and evaporator refrigerant saturation 

density captured in the depressed chiller capacity factor, 𝜓𝑖𝑐𝑒 . The factor accounts for the loss in 

refrigerant thermal capacity in the evaporator due to a reduced refrigerant vapor saturation, and 

is 0.75. Running the chillers in ice-making mode can depress their cooling capacity by 30-40% 

relative to their nominal capacities [79]. For AC chillers, the cooling capacity relation in both 

modes is given by: 

 

 

𝐶𝐴𝐶 ∝ 𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐  (Refrigeration mode) (2.5) 

 

 

𝐶𝐴𝐶,𝑖𝑐𝑒 ∝ 𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐,𝑖𝑐𝑒𝜓𝑖𝑐𝑒  (Ice-making mode) (2.6) 

 
 

and for WC chillers: 

 
 

𝐶𝑊𝐶 ∝ 𝐶𝑂𝑃𝑝,𝑡
𝑤𝑐 (Refrigeration mode) (2.7) 

 
 

𝐶𝑊𝐶,𝑖𝑐𝑒 ∝ 𝐶𝑂𝑃𝑝,𝑡
𝑤𝑐,𝑖𝑐𝑒𝜓𝑖𝑐𝑒  (Ice-making mode) (2.8) 

 
 

2.2.2 Cooling load estimation 
 

Qatar’s electric demand varies with meteorological conditions and the time of day, 

influenced by daily social routines and building occupancy. There are several methods to 

estimate the aggregate electric demand from space cooling. The methods can be classified into 

bottom-up and top-down approaches [80]. In the bottom-up approach, simulation tools are used 



20 

 

to predict the cooling demand of building stock; they require knowledge of building 

construction, orientation, and use and are computationally demanding. Statistical analysis 

aggregates the estimated cooling demand for the entire building stock. In top-down approaches, 

statistical methods are used to isolate demand from space cooling from the total electric demand. 

A way to isolate the cooling load is by subtracting the total electric demand from the base load 

(days with no cooling needs). This method assumes that all intra-annual variations in electric 

demand from the reference base load are due to space cooling. Bayram et al. [21] employed this 

method to estimate Qatar's cooling load. Another top-down approach estimates the electric 

demand based on correlation with meteorological parameters, such as linear regression of 

demand with ambient temperature. This method was used by Saffouri et al. [20] to estimate 

Qatar's cooling load, which produced a similar estimate to the former approach used by Bayram.  

A slightly more sophisticated method is considered in this work. The cooling load is 

estimated as the change in electric demand due to the change in ambient conditions at every hour 

of the day using least-squares regression. In Qatar, the time of the day and ambient conditions 

are found to be excellent predictors of electric demand. In contrast, wind speed was poorly 

correlated with electric demand, with a correlation coefficient of 4%. Furthermore, the day of the 

week had an insignificant effect on the estimated cooling load and was not considered. Three 

ambient conditions metrics were considered: dry-bulb temperature, wet-bulb temperature, and 

heat index. The heat index, which is the human perception of ambient conditions, was found to 

be a better indicator of demand, with a correlation coefficient of 96% compared to 93% with dry-

bulb temperature and 83% with wet-bulb temperature. A plot of the metrics against the electric 

demand is in Figure 2.4.  
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Figure 2.4: Qatar’s 2016 electric demand vs. (a) dry-bulb temperature, (b) wet-bulb 

temperature, and (c) heat index. Data points highlighted in red are warm and humid hours 

with a humidity ratio (𝑯𝑹𝒑,𝒕) ≥ 0.02, and in yellow are warm and dry hours with 𝑯𝑹𝒑,𝒕 ≤

 0.02 and 𝑻𝒑,𝒕
𝒅𝒃 ≥ 40℃. 

The use of dry-bulb temperature as a metric underpredicts the load on warm and humid 

days with a humidity ratio (𝐻𝑅𝑝,𝑡) greater than 0.02 in July-August, whereas the use of wet-bulb 

temperatures underpredicts the load on dry and warm days (𝐻𝑅𝑝,𝑡 < 0.02 and 𝑇𝑝,𝑡
𝑑𝑏 > 40℃) in 

June-July. On the other hand, using the heat index well-predicted the demand under both dry and 

humid conditions. This can be observed with higher electric demands associated with a higher 

heat index compared to lower dry and wet-bulb temperatures. The higher prediction power is 

attributed to the compounding effect of humidity level and dry-bulb temperature on the heat 

index, which drives cooling loads. A sigmoid function is fitted to the exhibited sigmoid relation 

between electricity demand and the heat index at each hour of the day, as illustrated in Figure 

2.5. The aggregate electric cooling load from the sigmoid function fit is as follows: 

 
 

𝒟𝑝,𝑡
𝒞 =

𝑃𝑝,𝑡−𝐵𝑝,𝑡

1+𝑒
−𝑘𝑝,𝑡(𝐻𝐼−𝐻𝐼𝑝,𝑡

0 )
 (2.9) 
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where 𝑘𝑝,𝑡 is the slope, 𝐵𝑝,𝑡 is the non-cooling load, 𝑃𝑝,𝑡 is the peak load, and 𝐻𝐼𝑝,𝑡
0  is the heat 

index midpoint, all shown in Figure 2.6 at each hour. 𝐵𝑝,𝑡 peaks in the evening and troughs in the 

morning suggestive of correlation with buildings occupancy; 𝑃𝑝,𝑡 peaks midday and is driven by 

cooling needs; 𝑘𝑝,𝑡 is the slope (curve’s steepness) and is time-insensitive; 𝐻𝐼𝑝,𝑡
0  is influenced by 

the yearly temperature range at each hour of the day. The non-cooling portion of the electric 

demand is determined by deducting the estimated electric cooling load from the total electric 

demand, 𝒟𝑝,𝑡, as follows: 

 

 

𝒟𝑝,𝑡
𝒩 = 𝒟𝑝,𝑡 − 𝒟𝑝,𝑡

𝒞   (2.10) 
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Figure 2.5: Qatar 2016 electric demand v. heat index at every hour of the day 

starting from 00:00 (12 AM) to 23:00 (11 PM). A sigmoid function is fitted with 4 data 

points: peak and base demand, slope, and heat index mid-point. 
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Figure 2.6: The four fitted parameters: (a) base load 𝑩𝒑,𝒕, (b) peak demand 𝑷𝒑,𝒕, (c) 

slope 𝒌𝒑,𝒕, and (d) heat index midpoint 𝑯𝑰𝒑,𝒕
𝟎  at the hour of the day for the 2016 scenario. 

Ambient condition-insensitive cooling demand in large buildings such as malls and 

airports cannot be distinguished from the non-cooling baseload using statistical methods and thus 

was not unaccounted for in the cooling load. This method estimates that space-cooling in Qatar 

was responsible for 42% of electric demand in 2016, slightly higher than Saffouri et al. [20] and 

Bayram et al. [21] estimate of approximately 35%. The difference is credited to a more accurate 

estimate of the cooling load in the low cooling periods. The estimated aggregate cooling load is 

divided proportionally to the installed cooling capacities of DXS, AC CWS, and WC CWS and 
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is converted to thermal cooling demand using the developed COP relation in Section 2.2.1 as 

follows: 

 

 

𝒞𝑝,𝑡
𝐷𝑋 =

𝒟𝑝,𝑡
𝒞

𝑚𝑎𝑥
𝑝∈𝒫,𝑡∈𝒯

[𝒟𝑝,𝑡
𝒞 ]

 𝐸𝐷𝑋 𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐 (2.11) 

 

 

𝒞𝑝,𝑡
𝐴𝐶 =

𝒟𝑝,𝑡
𝒞

𝑚𝑎𝑥
𝑝∈𝒫,𝑡∈𝒯

[𝒟𝑝,𝑡
𝒞 ]

 𝐸𝐴𝐶  𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐   (2.12) 

 

 

𝒞𝑝,𝑡
𝑊𝐶 =

𝒟𝑝,𝑡
𝒞

𝑚𝑎𝑥
𝑝∈𝒫,𝑡∈𝒯

[𝒟𝑝,𝑡
𝒞 ]

 𝐸𝑊𝐶  𝐶𝑂𝑃𝑝,𝑡
𝑤𝑐   (2.13) 

 

 

where 𝐸𝐷𝑋, 𝐸𝐴𝐶, and 𝐸𝑊𝐶 are the maximum electric load of existing DXS, AC CWS, and WC 

CWS, respectively. As reported by the utility, the maximum electric loads from AC CWS and 

WC CWS were 2 and 1.1 GW in 2016, respectively [81]. DXS is responsible for the remaining 

cooling loads with an estimated maximum aggregate electric load of 1.3 GW. Because of data 

deficiency, it is reasonably assumed that the three cooling systems are similarly represented in 

different sectors. It should be noted that WC and AC cooling systems’ electric loads are unlikely 

to be perfectly correlated, as the estimated aggregate cooling demand suggests, since their 

performance is affected by two different atmospheric parameters: the wet and dry-bulb 

temperatures. Nevertheless, the ambient dry-bulb and wet-bulb temperatures are generally well-

correlated with correlation coefficients of 0.72, 0.81, and 0.85 for average hourly, daily, and 

weekly temperatures, respectively, which are unlikely to produce significant errors.  
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The electric demand, 𝒟𝑝,𝑡, estimated electric demand from non-cooling and cooling loads, 𝐵𝑝,𝑡 +

𝒟𝑝,𝑡
𝒞 , and the hourly estimated aggregate cooling load, 𝒟𝑝,𝑡

𝒞 , are shown in Figure 2.7 for three 

consecutive days in the winter, spring, and summer. 

 

 
 

 
 

Figure 2.7: Actual electric load 𝓓𝒑,𝒕, estimated electric load 𝑩𝒑,𝒕 + 𝓒𝒑,𝒕 on the left y-

axis and electric cooling load 𝓒𝒑,𝒕 on the right y-axis from the logistic curve regression for 

the 2016 scenario. The estimated load generally agrees with the actual load, with an 

average percent difference of 3.5%. 
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The estimated demand generally agrees with the actual electric demand with an average percent 

difference of 3.5%. In the warmer seasons, the cooling load peaks in the afternoon between 11 AM 

and 3 PM, and troughs in the early morning between 3 and 6 AM, as expected, are well-correlated 

with the electric demand and ambient heat index. During the peak cooling demand season, the 

contribution to electric load from space cooling can be as high as two-thirds of the electric demand. 

In the winter, counter to expected trends, there is a higher cooling load in the evening, mostly 

attributed to higher building occupancy and cooling footprint. 

2.2.3 Problem formulation 

The problem is modeled in a two-stage stochastic linear programming that minimizes the 

expected annual system cost across four scenarios of demand, ambient dry and wet-bulb 

temperatures, and solar insolation. The intention is to account for annual variations in the 

ambient conditions, which influence the electric demand due to space cooling and PV generation 

power output. The first stage decision variables are the capacities, and the second stage decision 

variable is the consumed gas. The objective function that is to be minimized is as follows:  

 

 

𝑚𝑖𝑛 𝐶𝑜𝑠𝑡 = (∑ 𝑐𝑠
𝑃𝑉,𝐶𝐶𝑠

𝑃𝑉
𝑠∈𝒮 + ∑ [𝑐𝐼𝑇𝐸𝑆𝐶𝑖

𝐼𝑇𝐸𝑆 + 𝑐𝐼𝑐𝑒𝐶ℎ𝑙,𝐶𝐶𝑖
𝐼𝑐𝑒𝐶ℎ𝑙]𝑖∈ℐ )

𝑖𝑟(𝑖𝑟+1)𝑦𝑟

(1+𝑖𝑟)𝑦𝑟−1
+

𝑐𝐵𝐸𝑆𝑆𝐶𝐵𝐸𝑆𝑆 𝑖𝑟(𝑖𝑟+1)𝑦𝑟𝑏

(1+𝑖𝑟)𝑦𝑟𝑏−1
+ ∑ 𝑐𝑠

𝑃𝑉,𝑂𝐶𝑠
𝑃𝑉

𝑠∈𝒮 + ∑ [𝑐𝐼𝑐𝑒𝐶ℎ𝑙,𝑂𝐶𝑖
𝐼𝑐𝑒𝐶ℎ𝑙]𝑖∈ℐ + 𝔼𝑝∈𝒫[𝑐𝐺𝑇 ∑ 𝐺𝑇𝑝,𝑡𝑡∈𝒯 ] +

𝑐𝑃𝐺𝑇𝐺𝑇𝑃   (2.14) 

 

 

The objective function contains the annualized Capex and associated annual OpEx from installed 

capacities of PV, I-TES, BESS, and additional ice chillers and the expected annual OpEx of 

existing gas generation from gas use. The subscript 𝑖 is the cooling system technology index set 

{1, 2, 3} denoted by ℐ that corresponds to 1) DXS, 2) AC CWS, and 3) WC CWS, 𝑠 is PV 
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orientation and tracking technology index set {1, 2, 3} denoted by 𝒮 that corresponds to 1) 

optimal fixed-tilt angle at Qatar latitude of 25° [82], 2) single-axis tracking, and 3) dual-axis 

tracking PV systems. 𝐶𝑠
𝑃𝑉, 𝐶𝑖

𝐼𝑇𝐸𝑆, 𝐶𝑖
𝐼𝑐𝑒𝐶ℎ𝑙, and 𝐶𝐵𝐸𝑆𝑆 are installed capacities of PV, I-TES, ice 

chillers, and BESS, respectively. 𝑐𝑠
𝑃𝑉,𝐶

and 𝑐𝑠
𝑃𝑉,𝑂

 are installed PV Capex and OpEx. 𝑐𝐼𝑐𝑒𝐶ℎ𝑙,𝐶  and 

𝑐𝐼𝑐𝑒𝐶ℎ𝑙,𝑂 are installed ice chillers Capex and OpEx. 𝑐𝐼𝑇𝐸𝑆 and 𝑐𝐵𝐸𝑆𝑆 are the installed I-TES and 

BESS Capex, respectively. 𝑖𝑟 is the interest rate, 𝑦𝑟 is the service life for PV, I-TES, and ice 

chillers, and 𝑦𝑟𝑏 is the BESS service life. 𝑐𝐺𝑇 is the yearly average cost of produced energy 

using gas-fired generation, 𝐺𝑇𝑡,𝑝 is power delivered from gas generation, and 𝐺𝑇𝑃 is peak gas 

generation demand. 𝑐𝑃𝐺𝑇 is a small cost of $5/MWp that is assigned to the peak gas generation 

demand to find a unique solution that minimizes peak gas generation demand without impacting 

the cost-optimal system. The term 𝔼𝑝∈𝒫[𝑐𝐺𝑇 ∑ 𝐺𝑇𝑝,𝑡𝑡∈𝒯 ] is the expected annual cost from gas use 

across 4 scenarios (2012-2016), each with an assumed equal likelihood of occurrence (25%). 

The first constraint balances the supply and demand of power in the grid as follows:  

 

 

𝐺𝑇𝑝,𝑡 + ℬ𝑝,𝑡
𝑑𝑖𝑠 − ℬ𝑝,𝑡

𝑐ℎ𝑠 + 𝜂𝐼 ∑ 𝐼𝑝,𝑡,𝑠𝐶𝑠
𝑃𝑉

𝑠∈𝒮 − 𝑃𝑉𝑝,𝑡
𝑐𝑢𝑟𝑡 = 𝒟𝑝,𝑡

𝒩 + 𝒟𝑝,𝑡
𝐷𝑋 + 𝒟𝑝,𝑡

𝐴𝐶 + 𝒟𝑝,𝑡
𝑊𝐶, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (2.15) 

 

 

The right-hand side of the equation is the electric demand, which comprises the non-cooling, 

𝒟𝑝,𝑡
𝒩 , and the aggregate electric cooling loads: 𝒟𝑝,𝑡

𝐷𝑋 from the DXS, 𝒟𝑝,𝑡
𝐴𝐶  from AC CWS, and 

𝒟𝑝,𝑡
𝑊𝐶  from WC CWS. ℬ𝑝,𝑡

𝑐ℎ𝑠 and ℬ𝑝,𝑡
𝑑𝑖𝑠 are BESS charge and discharge rates, respectively. 𝐼𝑝,𝑡,𝑗 is 

solar insolation normalized by peak sun hour, and 𝜂𝐼 is the inverter efficiency. The terms 

𝜂𝐼 ∑ 𝐼𝑝,𝑡,𝑠𝐶𝑠
𝑃𝑉

𝑠∈𝒮  and 𝑃𝑉𝑝,𝑡
𝑐𝑢𝑟𝑡 are the supplied and curtailed power from PV generation, 

respectively. Only excess PV generation can be used for energy storage charging in a cost-

optimal system. Other uses are sub-optimal due to the performance loss associated with the 
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charging and dispatch processes. Gas-fired generations were modeled as a single equivalent 

power generation plant, and minimum part load and up/down-times for the individual generation 

were not considered. Since gas-fired generations can ramp up to capacity in less than an hour and 

the analysis was done hourly, ramping constraints were disregarded. Peak gas generation demand 

in all scenarios is captured in the following constraint and penalized by the objective function: 

 

 

𝐺𝑇𝑃 − 𝐺𝑇𝑝,𝑡 ≥ 0, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯  (2.16) 

2.2.3.1 I-TES model 

While the behavior of individual I-TES tanks is a non-linear function of the SoC, inlet 

temperature, and flowrate, the aggregate behavior of thousands of I-TES tanks is approximated 

by a simple linear function of chiller loading. As seen by the electricity grid, the electric cooling 

load is altered because of load shifting from using I-TES. The electric load increases when 

forming ice and decreases when I-TES is dispatched. The dispatch of I-TES reduces the load on 

cooling systems proportional to the dispatched amounts and systems COP. The cooling load 

balance for each system is described by: 

 

 

𝒟𝑝,𝑡
𝐷𝑋 = (

1

𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐) [𝒞𝑝,𝑡

𝐷𝑋 − 𝑆𝑝,𝑡,𝑖
𝑑𝑖𝑠 ] + (

𝑆𝑝,𝑡,𝑖
𝑎𝑐,𝑐ℎ𝑠

𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐,𝑖𝑐𝑒) , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, 𝑖 = 1 (2.17) 

 

 

𝒟𝑝,𝑡
𝐴𝐶 = (

1

𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐) [𝒞𝑝,𝑡

𝐴𝐶 − 𝑆𝑝,𝑡,𝑖
𝑑𝑖𝑠 ] + (

𝑆𝑝,𝑡,𝑖
𝑎𝑐,𝑐ℎ𝑠

𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐,𝑖𝑐𝑒) , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, 𝑖 = 2 (2.18) 

 

 

𝒟𝑝,𝑡
𝑊𝐶 = (

1

𝐶𝑂𝑃𝑝,𝑡
𝑤𝑐) [𝒞𝑝,𝑡

𝑊𝐶 − 𝑆𝑝,𝑡,𝑖
𝑑𝑖𝑠 ] + (

𝑆𝑝,𝑡,𝑖
𝑎𝑐,𝑐ℎ𝑠

𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐,𝑖𝑐𝑒) + (

𝑆𝑝,𝑡,𝑖
𝑤𝑐,𝑐ℎ𝑠

𝐶𝑂𝑃𝑝,𝑡,𝑖
𝑤𝑐,𝑖𝑐𝑒) , ∀𝑝 ∈ 𝒫,   ∀𝑡 ∈ 𝒯, 𝑖 = 3 (2.19) 
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where 𝒞𝑝,𝑡
𝐷𝑋, 𝒞𝑝,𝑡

𝐴𝐶, and 𝒞𝑝,𝑡
𝑊𝐶 is the aggregate thermal cooling demand for the DXS, AC CWS, and 

WC CWS, as estimated in Section 2.2.2. The COP of AC and WC systems is 𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐 and 𝐶𝑂𝑃𝑝,𝑡

𝑤𝑐 

in refrigeration mode, and 𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐,𝑖𝑐𝑒

 and 𝐶𝑂𝑃𝑝,𝑡,𝑖
𝑤𝑐,𝑖𝑐𝑒

 in ice-making mode, respectively, as 

estimated in Section 2.2.1. 𝑆𝑝,𝑡,𝑖
𝑎𝑐,𝑐ℎ𝑠

 and 𝑆𝑝,𝑡,𝑖
𝑤𝑐,𝑐ℎ𝑠

 are I-TES charging rates using AC and WC 

chillers, respectively, and 𝑆𝑝,𝑡,𝑖
𝑑𝑖𝑠  is the ice melt rate of I-TES. The stored thermal energy in the ice 

is balanced via the following two constraints:  

 
 

𝑆𝑝,𝑡,𝑖
𝑠 − 𝜂𝐼𝑇𝐸𝑆,𝑠𝑑𝑖𝑠𝑆𝑝,𝑡−1,𝑖

𝑠 = 𝑆𝑝,𝑡,𝑖
𝑎𝑐,𝑐ℎ𝑠 + 𝑆𝑝,𝑡,𝑖

𝑤𝑐,𝑐ℎ𝑠 − 𝑆𝑝,𝑡,𝑖
𝑑𝑖𝑠 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, ∀𝑖 ∈ ℐ (2.20) 

 
 

𝑆𝑝,𝑡,𝑖
𝑠 ≤ 𝐶𝑖

𝐼𝑇𝐸𝑆, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, ∀𝑖 ∈ ℐ (2.21) 

 
 

where 𝑆𝑝,𝑡,𝑖
𝑠  is the amount of thermal energy stored in ice and 𝜂𝐼𝑇𝐸𝑆,𝑠𝑑𝑖𝑠 is the self-discharge 

efficiency from thermal losses. The amount of dispatchable stored thermal energy is restricted to 

the available thermal cooling demands: 

 
 

𝑆𝑝,𝑡,𝑖
𝑑𝑖𝑠 ≤ 𝒞𝑝,𝑡

𝐷𝑋 , ∀𝑝 ∈ 𝒫,   ∀𝑡 ∈ 𝒯, 𝑖 = 1 (2.22) 

 

 

𝑆𝑝,𝑡,𝑖
𝑑𝑖𝑠 ≤ 𝒞𝑝,𝑡

𝐴𝐶 , ∀𝑝 ∈ 𝒫,   ∀𝑡 ∈ 𝒯, 𝑖 = 2 (2.23) 

 
 

𝑆𝑝,𝑡,𝑖
𝑑𝑖𝑠 ≤ 𝒞𝑝,𝑡

𝑊𝐶 , ∀𝑝 ∈ 𝒫,   ∀𝑡 ∈ 𝒯, 𝑖 = 3  (2.24) 

 
 

and due to physical limitations associated with the maximum melt rate: 

 
 

𝑆𝑝,𝑡,𝑖
𝑑𝑖𝑠 ≤ 𝑓𝐼𝑇𝐸𝑆,𝑑𝑖𝑠𝐶𝑖

𝐼𝑇𝐸𝑆, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, ∀𝑖 ∈ ℐ (2.25) 
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where 𝑓𝐼𝑇𝐸𝑆,𝑑𝑖𝑠 is the maximum discharge rate per unit capacity in h-1. Similarly, I-TES charge 

rate is bounded by physical limitations associated with the maximum ice build rate as follows:  

 

 

𝑆𝑝,𝑡,𝑖
𝑤𝑐,𝑐ℎ𝑠 + 𝑆𝑝,𝑡,𝑖

𝑎𝑐,𝑐ℎ𝑠 ≤ 𝑓𝐼𝑇𝐸𝑆,𝑐ℎ𝑠𝐶𝑖
𝐼𝑇𝐸𝑆, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, ∀𝑖 ∈ ℐ (2.26) 

 

 

and to available chillers cooling capacities in the respective cooling system: 

 

 

𝑆𝑝,𝑡,𝑖
𝑎𝑐,𝑐ℎ𝑠 ≤ 𝐶𝑖

𝐼𝑐𝑒𝐶ℎ𝑙  
𝐶𝑂𝑃𝑝,𝑡

𝑎𝑐,𝑖𝑐𝑒

𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐,𝑑𝑒𝑠 𝜓

𝑖𝑐𝑒 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, ∀𝑖 ∈ {1, 3} (2.27) 

 

 

𝑆𝑝,𝑡,𝑖 
𝑎𝑐,𝑐ℎ𝑠 ≤ [𝐶𝐴𝐶 − 𝒞𝑝,𝑡

𝐴𝐶]
𝐶𝑂𝑃𝑝,𝑡

𝑎𝑐,𝑖𝑐𝑒

𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐 𝜓𝑖𝑐𝑒 + 𝐶𝑖

𝐼𝑐𝑒𝐶ℎ𝑙 𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐,𝑖𝑐𝑒

𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐,𝑑𝑒𝑠 𝜓

𝑖𝑐𝑒 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, 𝑖 = 2  (2.28) 

 

 

𝑆𝑝,𝑡,𝑖
𝑤𝑐,𝑐ℎ𝑠 ≤ [𝐶𝑊𝐶 − 𝒞𝑝,𝑡

𝑊𝐶]
𝐶𝑂𝑃𝑝,𝑡

𝑤𝑐,𝑖𝑐𝑒

𝐶𝑂𝑃𝑝,𝑡
𝑤𝑐 𝜓𝑖𝑐𝑒𝜓𝑖𝑐𝑒 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, 𝑖 = 3  (2.29) 

 

 

where 𝑓𝐼𝑇𝐸𝑆,𝑐ℎ𝑠 is the maximum charge rate per unity capacity in h-1, 𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐,𝑑𝑒𝑠

 and 𝐶𝑂𝑃𝑝,𝑡
𝑤𝑐,𝑑𝑒𝑠

 

are design COP of AC and WC systems, and 𝜓𝑖𝑐𝑒 is the depressed chiller capacity factor, which 

accounts for the loss in chiller cooling capacities from the reduced refrigerant saturation density 

in ice-making mode. The DXS charge rate is limited by the additionally installed ice chiller 

capacity. For AC and WC CWS, the charge rate is limited by the combined cooling capacity of 

idle and additional ice chillers. The first term in Equations (2.28) and (2.29) is the aggregate 

cooling capacities of the existing AC and WC chiller, respectively, which are given by: 

 

 

 𝐶𝐴𝐶 = 𝐶𝐴𝐶,𝑑𝑒𝑠𝐶𝑂𝑃𝑝,𝑡
𝑎𝑐/𝐶𝑂𝑃𝑝,𝑡

𝑎𝑐,𝑑𝑒𝑠
  (2.30)  
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𝐶𝑊𝐶 = 𝐶𝑊𝐶,𝑑𝑒𝑠𝐶𝑂𝑃𝑝,𝑡
𝑤𝑐/𝐶𝑂𝑃𝑝,𝑡

𝑤𝑐,𝑑𝑒𝑠
 (2.31) 

 

 

where 𝐶𝐴𝐶,𝑑𝑒𝑠 and 𝐶𝑊𝐶,𝑑𝑒𝑠 are the nominal aggregate existing capacities of AC and WC chillers. 

The two terms in Equations (2.28) and (2.29) thus determine the idle chillers' capacity that could 

be utilized to make ice. 

2.2.3.2 BESS model 

 

 Modeling of BESS is less complex than I-TES due to both storing electric energy and the 

nature of their performance. No consideration is made for the depth of discharge as 𝐶𝐵𝐸𝑆𝑆 is 

taken to represent the usable capacity. Charge and discharge rates are limited to a 4-hour electric 

battery (power-to-energy capacity ratio of ¼), a standard market product. The following 

constraints balance the stored energy and restrict charge and discharge rates: 

 

 

ℬ𝑝,𝑡
𝑠 − 𝜂𝐵𝐸𝑆𝑆,𝑠𝑑𝑖𝑠ℬ𝑝,𝑡−1

𝑠 = 𝜂𝐵𝐸𝑆𝑆,𝑐ℎ𝑠ℬ𝑝,𝑡
𝑐ℎ𝑠 −

1

𝜂𝐵𝐸𝑆𝑆,𝑑𝑖𝑠 ℬ𝑝,𝑡
𝑑𝑖𝑠, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (2.32) 

 

 

ℬ𝑝,𝑡
𝑠 ≤ 𝐶𝐵𝐸𝑆𝑆 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯  (2.33) 

 

 

ℬ𝑝,𝑡
𝑑𝑖𝑠 + ℬ𝑝,𝑡

𝑐ℎ𝑠 ≤ (
1

4
) × 𝐶𝐵𝐸𝑆𝑆 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯  (2.34) 

 

 

where ℬ𝑝,𝑡
𝑠  is the stored electric energy and 𝜂𝐵𝐸𝑆𝑆,𝑠𝑑𝑖𝑠, 𝜂𝐵𝐸𝑆𝑆,𝑐ℎ𝑠, and 𝜂𝐵𝐸𝑆𝑆,𝑑𝑖𝑠 are the self-

discharge, charge, and discharge efficiencies, respectively. To eliminate solutions with 

simultaneous BESS charging and discharging without the use of a more complex and 

computationally intensive mixed integer linear programming, a negligibly small cost in the order 
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of 10-3 $/MW is applied to ℬ𝑝,𝑡
𝑐ℎ𝑠 in the objective function, which does not impact the cost-

optimal system. 

2.2.3.3 Model parameters 

The considered characteristics parameters in the model are tabulated in Table 2.1. An 

efficient inverter with 98% efficiency was assumed for the PV system [83]. A 4-hour BESS was 

considered with charging and discharging efficiencies of 92% and a self-discharge efficiency of 

99.9% [84], [85]. The charge and discharge efficiencies also account for inverter losses. The 

modeled I-TES is an internal melt type with a maximum charge rate of 1/6 h-1 and discharge rate 

of 1/3 h-1 from performance data taken from CALMAC, a prominent internal melt I-TES 

manufacturer. Measurements taken from I-TES demonstrate a high self-discharge efficiency of 

99.9% [86].  

Peak electric loads from existing AC CWS and WC CWS of 2 and 1.1 GW are utility 

estimates [81] used to predict the corresponding existing cooling systems’ capacities. The design 

cooling capacities are conservatively assumed to be oversized by 20% above the utility’s peak 

load estimate; this corresponds to AC CWS and WC CWS’s maximum electric load of 2.5 and 

1.4 GW, respectively. DXS are responsible for the remaining cooling loads with an estimated 

maximum aggregate load of 1.3 GW. At design WC and AC systems COP of 4.2 and 2.4, 

respectively, the estimated aggregate nominal cooling capacities are 3.1 GWth for DXS, 6.1 GWth 

for AC CWS, and 5.7 GWth for WC CWS. The subscript “th” is used to differentiate thermal and 

electric capacities. I-TES and BESS are assumed to be initially fully charged at the first hour of 

each scenario (January 1st at midnight) in order not to impede the minimization of peak gas 

generation demand. 
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Table 2.1: Characteristics parameters in the model 

Item Parameter Symbol Value 

PV Inverter efficiency 𝜂𝐼 98% 

BESS 

Initially charge ℬ𝑝,𝑡=0
𝑠  100% 

Charge efficiency 𝜂𝐵𝐸𝑆𝑆,𝑐ℎ𝑠 92% 

Discharge efficiency 𝜂𝐵𝐸𝑆𝑆,𝑑𝑖𝑠 92% 

Self-discharge efficiency 𝜂𝐵𝐸𝑆𝑆,𝑠𝑑𝑖𝑠 99.9% 

I-TES 

Charge capacity 𝑓𝐼𝑇𝐸𝑆,𝑐ℎ𝑠 1/6 hr-1 

Discharge capacity 𝑓𝐼𝑇𝐸𝑆,𝑑𝑖𝑠 1/3 hr-1 

Initially charge 𝑆𝑝,𝑡=0,𝑖
𝑠  100% 

Self-discharge efficiency 𝜂𝐼𝑇𝐸𝑆,𝑠𝑑𝑖𝑠 99.9% 

Chiller 

Existing DXS cooling capacity 𝐶𝐷𝑋,𝑑𝑒𝑠 3100 MWth 

Existing AC CWS cooling capacity 𝐶𝐴𝐶,𝑑𝑒𝑠 6100 MWth 

Existing WC CWS cooling capacity 𝐶𝑊𝐶,𝑑𝑒𝑠 5700 MWth 

Depressed chiller capacity factor 𝜓𝑖𝑐𝑒  0.75 

Design WC systems COP 𝐶𝑂𝑃𝑤𝑐,𝑑𝑒𝑠 4.2 

Designed AC systems COP 𝐶𝑂𝑃𝑎𝑐,𝑑𝑒𝑠 2.4 

 

The assumed financial parameters in the model are tabulated in Table 2.2. All capital 

costs are installed costs and are taken on the lower side [45], [77], [85], [87]–[91], benefiting 

from the economy of scale. OpEx was valued per unit capacity per year and not based on 

consumption [92]–[94]. Based on utility-scale prices in Qatar [45], installed PV is at $450/kWp,dc 

for fixed-tilt, $550/kWp,dc for single-axis tracking, and $700/kWp,dc for dual-axis tracking. OpEx 

for installed PV was at $10/kWp,dc/yr. for fixed-tilt, $15/kWp,dc/yr. for single-axis tracking, and 

$20/kWp,dc/yr. for dual-axis tracking. The cost of I-TES was taken to be $50/TR-hr ($14/kWhth) 

[87] and ice chillers at $200/TR ($57/kWth) [88], [89].  4-hour BESS was taken at $250/kWh, of 

which is $200/kW for power and $200/kWh for energy components [85], [91]. The yearly 

average gas generation cost of $37/MWh covers all OpEx. Benefiting from access to cheap 
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capital in the region, finances are done at a 3.5% interest rate. A service life of 25 years was 

assumed for I-TES, ice chillers, and PV and 10 years for the BESS [90], [95], [96].  

Table 2.2: Financial parameters in the model 

 

Item Unit Expense Symbol Value 

PV Fixed-tilt Capex 𝑐1
𝑃𝑉,𝐶

 $450/kWp,dc 

OpEx 𝑐1
𝑃𝑉,𝑂

 $10/kWp,dc/yr. 

Single-axis tracking Capex 𝑐2
𝑃𝑉,𝐶

 $550/kWp,dc 

OpEx 𝑐2
𝑃𝑉,𝑂

 $15/kWp,dc/yr. 

Dual-axis tracking Capex 𝑐3
𝑃𝑉,𝐶

 $700/kWp,dc 

OpEx 𝑐3
𝑃𝑉,𝑂

 $20/kWp,dc/yr. 

I-TES Internal melt Capex 𝑐𝐼𝑇𝐸𝑆 $14/kWhth 

($50/TR-hr) 

BESS 4-Hour Li-ion  Capex 𝑐𝐵𝐸𝑆𝑆 $250/kWh 

Chiller Ice chillers for charging Capex 𝑐𝐼𝑐𝑒𝐶ℎ𝑙,𝐶 $57/kWth 

($200/TR) 

OpEx 𝑐𝐼𝑐𝑒𝐶ℎ𝑙,𝑂 $3/kWth/yr. 

($20/TR) 

Misc. Gas generation cost OpEx 𝑐𝐺𝑇 $37/MWh 

Gas price OpEx - $3.33/MMBtu 

Capital Interest rate 𝑖𝑟 3.5% 

Service life 𝑦𝑟 25 years 

BESS service life 𝑦𝑟𝑏 10 years 

Peak gas generation cost OpEx 𝑐𝑃𝐺𝑇 $5/MWp 
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2.3 Results and discussion 

First, the formulated problem is solved at the current cost structure to determine the 

penetration of PV, I-TES, and BESS. Second, the impact of the carbon pricing policy on the 

decarbonization pathway is examined. Third, a deeply decarbonized system supported by carbon 

pricing is analyzed in detail. Last, the impact of the continual decline in the cost of BESS on the 

cost-optimal system is investigated. For all considered cases, dual-axis tracking PV was not 

economically feasible and was omitted from the results.   

2.3.1 Current cost structure 

The formulated problem is solved at the current cost structure tabulated in Table 2.2. The 

results suggest that BESS is not cost-effective under current conditions. The cost-optimal system, 

as tabulated in Table 2.3, comprises 8.1 GWp,dc of PV capacity (5.9 GWp,dc for fixed-tilt and 2.2 

GWp,dc for single-axis tracking), 28 GWhth of aggregate I-TES capacity (3 GWhth for DXS, 15 

GWhth for AC CWS, and 10 GWhth for WC CWS), and 0.7 GWth of aggregate ice chillers 

capacity for the DXS. For AC CWS and WC CWS, I-TES is charged using the existing idle 

chillers' capacity. Benefiting from optimized load shifting using I-TES during the summer 

months, peak gas generation demand is reduced by 18% (7.33 to 6.0 GW). 

The cost-optimal system stipulates investing $326 million/yr. in PV capacity, $25 

million/yr. in I-TES capacity, and $4 million/yr. in additional ice chillers capacity. This 

investment brings about a 20% reduction in both the average cost of produced energy ($37/MWh 

to $29/MWh) and total annual system expenditures ($1.5 billion/yr. to $1.2 billion/yr.) relative to 

the current approach of all gas-fired generations by utilizing low-cost energy produced by PV 

generation.  
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Table 2.3: Cost-optimal system capacities under the current cost structure 

Parameter Value Notes 

Solar PV capacity 
8.1 

GWp,dc 

5.9 GWp,dc fixed-tilt 

2.2 GWp,dc single-axis tracking 

I-TES thermal capacity 28 GWhth 

3 GWhth DXS 

15 GWhth AC CWS 

10 GWhth WC CWS  

Additional ice chiller capacity 0.7 GWth DXS 

Peak gas generation demand 6.0 GW Across all scenarios 

 

A PV capacity of 8.1 GWp,dc is slightly higher than the current peak electricity demand of 

7.33 GW, producing low-cost electricity to displace gas generation during the day and year-

round excess generation for I-TES use. About half of the excess generation is used to store ice, 

and the remaining half is curtailed. The mismatch between PV generation, which peaks in June, 

and the cooling load, which peaks in August, is the primary reason for curtailment. The cost-

optimal system’s preference for fixed-tilt PV generation is due to its lower costs and the lack of 

energy storage capacity to utilize the higher surplus generation generated with solar tracking 

technology.  

The cost-optimal system characteristics averaged over the four scenarios (2013-2016) are 

tabulated in Table 2.4. 38% of the electric demand was directly met by PV generation, and 5% 

in-directly from load shifting using I-TES. Since power generations in Qatar exclusively use gas 

generation with collective CO2 emissions of 24 Mt/yr., the electric demand met by PV and load 

shifted by I-TES is directly proportional to gas consumption and CO2 emissions reduction. Gas 

generation use and CO2 emissions are reduced by 43%, of which PV alone contributes almost 

90% of these emissions reductions.  

 

  



39 

 

Table 2.4: Cost-optimal system characteristics under the current cost structure 

 

Parameter Value Notes 

Cost $1239 million/yr. 
Annual cost from Capex and 

OpEx 

Average power generation cost $29/MWh From gas and PV generation 

Demand met by gas generation 57% - 

Demand met by PV generation 38% Directly 

Electric load shifted by I-TES 5% All cooling systems 

Cooling demand met by PV 

generation 
41% Directly 

Cooling demand met by I-TES 13% All cooling systems 

Solar capacity factor 25% After curtailment 

Curtailment 10% Of total PV generation 

I-TES average charge residency 17 hrs Based on first-in, first-out 

I-TES average capacity utilization 70% Equivalent full cycles per day 

 

 

Figure 2.8 shows the weekly average percent contribution of the I-TES, PV, and gas 

generation in meeting the electric demand in (a) and the electric cooling load in (b). Note that the 

load met by I-TES corresponds to the electric load shifted. The highest utilization of I-TES is in 

the low cooling demand season is enabled by a higher amount of surplus PV generation and idle 

chillers capacity. It reduces the nighttime cooling load by 40-60%, which equates to about load 

shifting 10% of the nighttime electric demand. Higher electricity and cooling demand in the 

warmer season produces less surplus PV generation coupled with a lack of idle chillers capacity 

constrained and diminished I-TES use. Nonetheless, sole PV generation consistently and reliably 

met 40% of the cooling load and electric demand. This system decarbonizes 54% of the electric 

cooling load, of which PV directly contributes 41%, and I-TES contributes 13% from load 

shifting.  
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Figure 2.8: 2016 scenario cost-optimal system under current cost structure with a 

breakdown of contribution to supplying (a) electric demand and (b) electric cooling load 

with percent load shifted by I-TES (% met by I-TES), directly met by PV (%D met by PV), 

and met by gas (% met by Gas) on the left y-axis and the average weekly load on the right 

y-axis. 
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The load profile for three consecutive days in the winter, spring, and summer are shown 

in Figure 2.9 for the 2016 scenario, with DD (demand directly) met from PV and D (demand) 

met by I-TES. In the winter, I-TES is continuously dispatched, restricted by the absence of 

cooling demand. When the cooling demand has increased in the spring, I-TES is dispatched to 

displace cooling systems operating at reduced efficiency due to relatively higher dry-bulb 

temperatures in the AC systems or wet-bulb temperatures in WC CWS. This can be seen from 

the correlation between the I-TES dispatch amount and higher ambient temperatures. In the 

summer, I-TES use was limited due to multiple adverse factors: (i) limited idle chillers’ capacity 

for charging due to higher cooling demand, (ii) chillers’ cooling capacities degradation from 

higher ambient temperatures, and (iii) limited amount and duration of surplus PV generation. 

Still, a smaller amount of stored ice is dispatched in the early evening hours to reduce the peak 

gas-fired generation demand. 

Gas generation, which has to cover intermittent PV generation and lack of storage, sees a 

high ramp rate of 3.5-5 GW/hr (50-70% of the current peak electricity demand) for less than 100 

hours of the year caused by the early evening peak in the summer. The ramp rates do not exceed 

2.5 GW/hr for the remaining time. On average, 70% of I-TES capacity is utilized daily, with an 

average charge residency of 17 hours, counterintuitively depressed by lower utilization in the 

high cooling demand season. Storage is charged in 2500 hours, restricted by the narrow charging 

window, equivalent to the number of hours PV produces surplus power. I-TES is dispatched over 

4450 hours to reduce gas generation use and peak demand.  
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Figure 2.9:  Cost-optimal system hourly load profile with D (demand) met by I-TES, 

DD (demand directly) met from PV, D (demand) met by gas, and on the left y-axis and the 

ambient temperatures on the right y-axis for three days in winter, spring, and summer. I-

TES charge rate is shown in negative. 
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2.3.2 Effects of carbon pricing  

Plentiful and easily accessible natural gas provided low-cost fuel to gas generation in 

Qatar, instigating a cost structure that lacks the appropriate economic incentives to reduce carbon 

emissions. This section assesses carbon pricing policy to promote energy and environmental 

sustainability. The cost-optimal system with a carbon pricing from 0 to $200/ton of CO2 is 

shown in Figure 2.10 with capacities of power generators in (a), BESS in (b), I-TES in (c), (e), 

and (g), and ice chillers in (d), (f). and (h) for DXS, AC CWS, and WC CWS, respectively.  

Figure 2.11 (a)-(d) shows the corresponding cost-optimal system characteristics.  

The cost-optimal system with carbon pricing below $20/ton of CO2 is dominated by PV 

generation and limited I-TES. That is because I-TES cannot outcompete already existing gas 

generation for highly seasonal cooling needs. This system nearly displaces all daytime gas 

generation directly using lower-cost PV generation and exploits surplus generation to reduce the 

nighttime cooling load in the shoulder seasons using I-TES for load shifting. While fixed-tilt PV 

generation is initially preferred, fixed-tilt is swapped for single-axis tracking with a net positive 

gain as the carbon price increases, accompanied by an increase in additional ice chillers and I-

TES capacity. PV generation with I-TES for electric and cooling loads decarbonization reaches a 

plateau at carbon pricing of $100/ton of CO2. For this system, about 88% of cooling needs are 

met using PV generation during the daytime and I-TES during the nighttime. The remaining 12% 

is in days with reduced solar output and during the high cooling load season between July and 

September. Optimized I-TES dispatch could reduce peak demand from gas generation by 35% 

(7.33 to 4.8 GW); further decrease is limited by the non-cooling portion of the electric demand 

and challenges of using I-TES in the high cooling load season. 
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Figure 2.10: Cost-optimal system as carbon price increases. Power generations and BESS 

capacities are normalized to the 2016 yearly average electric demand of 4.7 GW. I-TES capacity is 

normalized to the average aggregate cooling demand of 1.4 GWth for DXS, 2.3 GWth for AC CWS, 

and 2.2 GWth for WC CWS. Ice chiller capacity is normalized to the aggregate cooling system 

capacity of 3.1 GWth for DXS, 6.1 GWth for AC CWS, and 5.7 GWth for WC CWS. 
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Figure 2.11: As carbon price increases: (a) overall system characteristics, (b) cooling 

system characteristics, (c) average generation cost and total CO2 emissions, and (d) annual 

system cost, Capex, and revenue from the carbon tax (carbon pricing). 

 

Different cooling system technologies respond differently to carbon pricing. AC systems 

are favored over WC CWS for I-TES use due to a lower system COP; this means an equal 

amount of thermal energy corresponds to a greater electric load shifting in AC systems. An 

additional advantage for AC CWS is utilizing the idle capacity to make ice, allowing for greater 

penetration of I-TES at reduced costs compared to DXS. To decarbonize nighttime cooling 

needs, the additional installed ice chillers' capacity is 2, 1.4, and 0.5 times the existing nominal 

capacities of DXS, AC CWS, and WC CWS, respectively. This large additional capacity is 

needed because of the capacity loss in ice-making mode and the necessity to store nighttime 
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cooling needs during daylight hours of no more than 6-8 hours. Less additional ice chillers are 

needed in CWS by utilizing the existing idle capacity to make ice. Furthermore, the pronounced 

difference between AC and WC CWS is due to more minor intra-annual and diurnal variations in 

ambient wet-bulb than dry-bulb temperatures, corresponding to less capacity degradation and a 

more consistent cooling system performance. 

Curtailment remains modest, between 10 to 20% of total PV generation. Unless long-

duration energy storage is considered, surplus PV generation produced from the mismatch 

between electric and cooling loads, which peaks in August, and PV generation, which peaks in 

June, is curtailed. As carbon pricing increases from 0 to $200/ton of CO2, the average cost of 

power generation increases by about a factor of 2 in the cost-optimal systems. Simultaneously, 

emissions sharply declined by a factor of 7 relative to the cost-optimal system and 12 relative to 

the current system structure. Furthermore, the higher annual system cost is increasingly from 

Capex, driven by installed PV generation and BESS, as opposed to OpEx from carbon tax 

revenue. 

BESS becomes cost-effective above carbon pricing of $100/ton of CO2. The analysis 

suggests that BESS does not displace I-TES for cooling load shifting and is primarily used to 

manage the diurnal behavior of non-cooling loads. BESS requires a high daily average capacity 

utilization rate of around 90% to be economical, which is unsuitable for a seasonal cooling load. 

The model suggests a rapid increase in installed BESS capacity with carbon prices up to 

$140/ton of CO2. This system achieves a decarbonization rate exceeding 90%, which vastly 

diminishes the role of gas generation. With a net positive increase in PV generation capacity, the 

cost-optimal system shifts to a preference for fixed-tilt PV generation over single-axis tracking 

enabled by BESS's naturally higher charging rate, which reduces system cost and curtailment.  
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The carbon abatement cost, defined as the yearly cost of mitigating carbon emissions 

from gas generation, for the cost-optimal system as carbon pricing increases is shown in Figure 

2.12. The negative abatement cost at low carbon pricing indicates that a more sustainable 

solution can be achieved at a reduced annual cost. Otherwise, the abatement cost does not exceed 

$55 per ton of CO2 up to a decarbonization rate of nearly 95%, supported by low-cost PV 

generation and I-TES and reliable non-cooling load for BESS.  

 

Figure 2.12: As carbon price increases, carbon abatement costs on the left y-axis 

and abated CO2 emissions on the right y-axis, relative to the current system of all gas-based 

generations. 
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2.3.3 Decarbonized system with $140/ton of CO2 carbon tax 

This section examines a deeply decarbonized system supported by carbon pricing at 

$140/ton of CO2 at the current BESS capacity cost of $250/kWh. Limited carbon emissions 

reduction can be realized beyond a carbon price of $140/ton of CO2 using the examined pathway, 

as shown in Figure 2.12. PV generation combined with BESS and I-TES cannot compete with 

existing gas generation for highly seasonal cooling between mid-July and mid-September. This 

deeply decarbonized system utilizes PV generation for daytime electric loads, I-TES for 

nighttime cooling, and BESS for non-cooling electricity needs, achieving a 92% percent 

reduction in emissions from the current approach of all gas generation. As tabulated in Table 2.5, 

the cost-optimal system comprises 21 GWp,dc of PV (15 GWp,dc for fixed-tilt and 6 GWp,dc for 

single-axis tracking), 107 GWhth of I-TES (27 GWhth for DXS, 48 GWhth for AC CWS, and 32 

GWhth for WC CWS), 17 GWth of additional ice chillers (6 GWth for DXS, 8 GWth for AC CWS, 

and 3 GWth for WC CWS), and 35 GWh of usable BESS capacity. In AC CWS and WC CWS, I-

TES also benefits from utilizing existing idle chillers' capacity for ice-making. Since PV with 

BESS and I-TES cannot displace gas generation during the peak demand season between mid-

July to mid-September, peak demand from gas generation was only reduced by 66% to 2.5 GW. 

Table 2.5:  Cost-optimal system at $140/ton of CO2 carbon price 

 

Parameter Value Notes 

Solar PV capacity 21 GWp,dc 
15 GWp,dc fixed-tilt 

6 GWp,dc single-axis tracking 

I-TES capacity 107 GWhth 

27 GWhth DXS 

48 GWhth AC CWS 

32 GWhth WC CWS  

Additional ice chiller capacity 17 GWth 

6 GWth DX systems 

8 GWth AC CWS 

3 GWth WC CWS 

BESS capacity 35 GWh Net usable capacity  

Peak gas generation demand 2.5 GW Across all scenarios 
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The cost-optimal system characteristics averaged over the four scenarios are tabulated in 

Table 2.6. 40% of the electric demand was directly met by PV generation, and 23% and 29% in-

directly from load shifting using I-TES and BESS, respectively. The remaining 8% of the electric 

demand is met using gas generation with less than 1300 hrs of operation on days with reduced 

solar output and during the peak cooling season. Further decarbonization using PV generation 

might require long-duration energy storage. Furthermore, due to reliable nighttime cooling and 

electricity demands, the required PV capacity to decarbonize the system is about three times the 

current peak electricity demand. Governed by the seasonality of cooling demand, I-TES average 

daily capacity utilization rate remains around 70%. On the other hand, the capacity factor for 

BESS is higher at 92%, suggesting continual year-round use for managing the non-cooling loads.  

Table 2.6: Cost-optimal system characteristics at $140/ton of CO2 carbon price 

 
 

Parameter Value Notes 

Cost 
$2487 

million/yr. 

Annual cost from Capex and 

OpEx 

Average power generation cost $52/MWh From gas and PV generation 

Demand met by gas generation 8% Mostly In the high-demand season 

Demand met by PV generation 40% Directly 

Load shifted by I-TES 23% All cooling systems 

Load met by the BESS 29% Primarily non-cooling loads 

Cooling demand met by PV 

generation 

34% Directly 

Cooling demand met by I-TES 57% All cooling systems 

Cooling demand met by BESS 9% Mostly In the high-demand season 

Solar capacity factor 20% After curtailment 

Curtailment 16% Of total PV generation 

I-TES average capacity utilization  73% Equivalent full cycle per day 

BESS average capacity utilization  92% Equivalent full cycle per day 
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The cost-optimal system increases the average cost of produced energy by 41% 

($37/MWh to $52/MWh) and total annual system cost by 65% ($1.5 billion/yr. to $2.5 

billion/yr.) relative to the current approach of all gas-fired generation. The cost-optimal system 

incurs $845 million/yr. from installed PV, $92 million/yr. from installed I-TES, $107 million/yr. 

from additional ice chillers, and $1047 million/yr. from installed BESS capacity. Annual gas 

generation expenditure was reduced to $383 million/yr.  

Figure 2.13 shows the percent contribution of PV, I-TES, BESS, and gas generation to 

meet the electric demand in (a) and the electric cooling load in (b). I-TES became a prominent 

year-round contributor to meeting the electric demand, especially during the high cooling season. 

BESS, on the other hand, contributes to meeting cooling loads in the high-demand season. 

However, BESS contributes a steady amount of energy to the electricity grid year-round to meet 

the baseload. 
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Figure 2.13: Cost-optimal system with a carbon price at $140/ton of CO2 and BESS 

capacity cost at $250/kWh with a breakdown of contribution to supplying (a) the electric 

demand and (b) the electric cooling load. The electric cooling load is assumed to be met 

first by PV generation before BESS is used, and the remaining load is met using gas 

generation. 
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Hourly system loads for three consecutive days in the winter, spring, and summer are 

shown in Figure 2.14. BESS is dispatched overnight to manage the non-cooling load. In the peak 

season, I-TES and BESS are dispatched to minimize gas generation use and peak demand. The 

sole use of PV generation for energy storage charging in the deeply decarbonized system soars 

the daytime electric load to 15-20 GW compared to the current daytime load of 5-7 GW. 

 

 

 

 

Figure 2.14: Cost-optimal system hourly load profile with a carbon price at $140/ton 

of CO2 and BESS capacity cost at $250/kWh with contributions from PV generation and 

load shifting using I-TES and BESS to meet the electric demand for three days in winter, 

spring, and summer. I-TES and BESS charge rates are shown as negative loads. 
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2.3.4 Impact of BESS capacity cost  

BESS remains cost-prohibitive at the capacity cost of $250/kWh without economic 

incentives. The continual decline in the capacity cost can enable BESS to be cost-effective at a 

reduced carbon price. This section investigates the impact of the BESS capacity cost and carbon 

pricing on the cost-optimal system. The cost-optimal system for a BESS capacity cost ranging 

from $100/kWh to $300/kWh and carbon pricing between 0 and $200/ton of CO2 is shown in 

Figure 2.15 with (a) emissions reduction, (b) generation cost, (c) total PV capacity, and (d) BESS 

capacity. Cooling systems characteristics are shown in Figure 2.16 with I-TES and chillers 

capacities for DXS, AC CWS, and WC CWS, respectively. 

Similar to the outcome from the analysis with carbon pricing, the model suggests that a 

declining BESS capacity cost will not displace the use of I-TES for cooling load shifting even as 

the capacity cost is considerably dropped to $100/kWh but will increasingly utilize BESS to 

supplement seasonal cooling needs. This is seen as a drop in I-TES and chillers capacities in 

Figure 2.16 and is necessary to maintain a cost-effective BESS with a larger capacity. In CWS, 

more idle chiller capacities are utilized for I-TES charging in the shoulder season, supported by 

the higher availability of surplus PV generation without additional ice chiller capacities. As 

BESS cost declines, WC CWS sees a more significant drop in I-TES and chillers capacity than 

AC CWS and DXS. As indicated earlier, stored thermal energy corresponds to less electric load 

shifting in WC systems due to a higher system COP, enabling BESS to be more cost-

competitive.  
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Figure 2.15:  Impact of BESS capacity cost and carbon pricing on the cost-optimal 

system with (a) emissions reduction, (b) average generation cost, (c) total PV capacity 

(fixed-tilt and single-axis tracking), and (d) BESS capacity. PV and BESS capacity is 

normalized to the 2016 yearly average electric demand of 4.7 GW. 

 

Reducing BESS capacity costs promotes using more BESS with a limited need for an 

additional PV capacity. The BESS partly substitutes I-TES in the high-demand season with a 

higher round trip efficiency of about 85% compared to 60-70% in I-TES. Furthermore, as the 

capacity cost is reduced to $100/kWh, the average cost of produced energy in a deeply 

decarbonized system could approach that of the current cost of gas generation of $37/MWh. 

However, the annual cost remains moderately higher at $1.8 billion/yr. due to round-trip losses 

compared to the current system cost of $1.5 billion/yr.   
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Figure 2.16:  Impact of BESS capacity cost and carbon pricing on the cost-optimal 

system. I-TES capacity is normalized to the average aggregate cooling demand of 1.4 GWth 

for DXS, 2.3 GWth for AC CWS, and 2.2 GWth for WC CWS. Ice chillers’ capacity is 

normalized to the aggregate cooling capacity of 3.1 GWth for DXS, 6.1 GWth for AC CWS, 

and 5.7 GWth for WC CWS. 
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2.4 Conclusion 

The examination of the utility-scale perspective demonstrates strong potential for using 

PV generation with I-TES and BESS for load shifting. However, BESS is cost-prohibitive under 

the current gas price of $3.3/MMBtu and capacity cost of $250/kWh. Nevertheless, the analysis 

suggests that 8 GW of PV and 28 GWhth of I-TES capacity can reduce CO2 emissions and peak 

gas generation demand by 43% and 18%, respectively, and cut annual system costs by 20%. For 

this system, I-TES is counterintuitively primarily used in low cooling demand seasons 

constrained by the availability of surplus PV generation and idle chiller capacity for ice-making.  

Carbon pricing is determined to be an effective tool to boost energy storage adoption and 

reduce emissions. However, challenges arise due to (i) electric demands peak in August, whereas 

PV generation peaks in June, producing less surplus generation when needed, (ii) I-TES and 

BESS for seasonal loads cannot cost-effectively outcompete already existing gas generation, (iii) 

reduced idle chiller capacity in the peak cooling demand season, and (iii) chiller cooling capacity 

degradation due to higher ambient temperatures. Nevertheless, using PV and I-TES, the cost-

optimal system with carbon pricing at $60/ton of CO2, could reduce emissions by 60%. 

BESS becomes cost-effective above carbon pricing at $100/ton of CO2 at the current 

capacity cost of $250/kWh. The analysis suggests that BESS does not displace I-TES at higher 

carbon pricing or a lower capacity cost for cooling load shifting but primarily manages the non-

cooling loads. That is because BESS requires a high average daily capacity utilization rate of 

about 90% to be cost-effective. A system with carbon pricing at $140/ton of CO2 could fully 

decarbonize the cooling load and reduce gas generation use and peak demand by 92% and 66%, 

respectively. Limited further emissions reduction can be realized with higher carbon pricing 

using the considered energy storage technologies.  
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Several simplifications and estimations were made that can impact the estimated optimal 

PV and energy storage capacities and limit the calculated decarbonization rate, including the 

estimated cooling loads and COPs and the simplified linear I-TES model. Greater penetration of 

AC systems, lower COPs, and higher charge/discharges will favor slightly larger I-TES and PV 

capacities. Otherwise, the cost-optimal system was only minorly sensitive to the assumed PV, I-

TES, and ice chiller costs, partly due to their ability to compete with gas generation at the current 

cost structure. Furthermore, BESS degradation, which was not accounted for, will make BESS 

slightly less favorable. Lastly, the hourly analysis does not permit an extensive examination of 

the impact of high penetration of PV capacity on the stability of the national electricity grid. 
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Chapter 3: Modeling of WC CWS with I-TES 

3.1 Introduction 

Because of their simpler design and lower installed cost, DXS is the preferred method of 

cooling small buildings such as homes, offices, schools, and small shopping centers. In DXS, 

warm air directly exchanges heat with the expanding refrigerant in the evaporator. Using DXS in 

larger buildings is less favorable due to increased pressure losses in the refrigeration pipeline and 

air distribution side. For these buildings, water is used as an intermediate fluid to transport heat 

over a larger distance exchanging heat between the air in the conditioned space and the 

refrigerant inside the chillers. Chillers can either be AC or WC. WC chillers utilize a cooling 

tower to reject heat to the ambient and deliver more efficient cooling and are often considered for 

building with over 20,000 m2 of cooled space [88]. The improved efficiency is enabled by the 

reduced compressor lift (pressure differential) in exchange for a higher initial cost compared to 

AC chillers.  

Although WC CWS are far more complex than DXS used in small buildings, they deliver 

more efficient cooling at a reduced life cycle cost. WC CWS comprises several components: 

chillers, pumps, valves, cooling towers, and cooling and dehumidification coils. The simplest 

system configuration, shown in Figure 3.1, is a constant flow system and contains chillers in a 

single loop that combines chilled water production and distribution. The total chilled water 

flowrate is dictated by the number of operating chillers. Air temperature in the coil is regulated 

using a three-way valve by diverting excess flow back to the chillers. A limitation of this 

configuration is maintaining the air temperature setpoint during off-peak hours, especially in 

buildings with uneven cooling needs. This limitation arises from the three-way valve's inability 

to modulate the flowrate it receives, only diverting excess flow, which can starve heavily loaded 
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coils. This forces CWS operators to sub-optimally operate additional chillers with a reduced 

temperature differential (commonly referred to as delta T) to satisfy the building's load.  

 

Figure 3.1: CWS in a simple constant-flow configuration. Each chiller operates with 

its fixed-speed pumps. Excess water is diverted back using a three-way valve 

 

A primary-secondary flow configuration is commonly implemented to mitigate the 

problem of poor chiller sequencing in constant flow systems. The primary-secondary flow 

configuration, shown in Figure 3.2, is a well-established CWS configuration used on small to large 

buildings [75], [97], [98]. This configuration decouples the secondary (distribution) loop from the 

primary (production) loop. The chillers operate with their respective fixed-speed pumps to 

maintain design flow. In conjunction with two-way valves, variable-speed pumps modulate the 

water supply to the coil to satisfy the building's load. Surplus chilled water flows back to the 

chillers through the decoupler and blends with the coils’ return water. Although pump energy use 

for operating chillers is constant, the secondary pumps' energy use is reduced with the building 

load.  
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Figure 3.2: CWS in a primary-secondary flow configuration. Chillers operate with 

their fixed-speed pumps in the primary loop, and two-way valves and variable-

speed pumps regulate the flowrate received by the building's coils in the secondary 

loop. Excess water returns to the chiller in the bypass blending with the coils’ return 

water. 

A variable chiller flow configuration that does away with the secondary loop has been 

gaining popularity and attention in recent years due to advancements in control technology [99], 

[100]. Shown in Figure 3.3, this configuration reduces the initial cost and footprint by 

eliminating the secondary pumps and associated fittings. This configuration allows for reduced 

pump energy use and improved overall plant efficiency at the expense of a more complex 

operation to maintain proper chiller flow and satisfy the building load. The minimum and 

maximum flowrate of chillers is regulated by modulating a two-way valve in the bypass. An 

additional advantage for variable primary flow is its resistance to the low temperature differential 

problem (also known as low delta T syndrome) generally confronted when the building coils are 

not adequately maintained.  
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Figure 3.3: CWS in a variable primary flow configuration. A bypass control valve is 

required to maintain proper chiller flow. 

CWS components’ models in the literature are developed with varying complexity and 

motivations. Dynamic models are often developed for control and diagnostic problems, detailed 

models for design and analysis problems, and simpler models for process control and 

optimization problems. The models considered in this chapter are used to solve optimization 

problems developed in Chapters 4 and 5. CWS models developed for optimization problems can 

be classified into physic-based, regression-based or data-driven, and hybrid models [101]. While 

physics-based models can offer physical insight, they are computationally intensive and suffer 

from accuracy problems. Regression-based and other machine-learning models are among the 

most popular models in the literature; they simplify the complex behavior CWS components into 

a regression model with several input parameters. They are computationally efficient but cannot 

be generalized and lack the physical insight to explain components' performance characteristics. 

On the other hand, hybrid models combine the efficiency of data-driven models with the physical 

insight of physics-based models in a simpler formulation. This simpler formulation is 
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accomplished with empirically obtained parameters that capture complex behavior that would 

otherwise be difficult to model physically. 

In this chapter, hybrid steady-state models are developed for the major devices in CWS in 

a primary-secondary configuration illustrated in Figure 3.4. The developed models are laid out in 

Section 3.2 in the following order: (i) electric chillers, (ii) water pumps, (iii) cooling towers, (iv) 

cooling and dehumidification coils, and (v) I-TES model. This system can be operated in three 

modes: charging, discharging, and idle storage while simultaneously satisfying the building 

cooling requirements. The I-TES is located downstream of the chillers, allowing chillers to 

receive warmer return water and operate more efficiently.  

 

 

Figure 3.4: Considered CWS in a primary-secondary configuration with multiple 

WC chillers, two shared cooling towers, and an I-TES downstream of the chillers. 

The building is represented in a single coil with the respective building aggregate 

cooling load.  
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3.2 Components modeling  
 

3.2.1 Electric chillers 
 

Electric chillers are the dominant power-consuming component in CWS. They run on a 

vapor compression cycle, best described as a reverse heat engine transferring heat from a lower 

temperature reservoir in the evaporator to a higher temperature reservoir in the condenser. The 

coefficient of performance of an ideal vapor-compression cycle is only dependent on evaporator 

and condenser temperatures. A schematic for the internal of an electric chiller running on a vapor 

compression cycle is shown in Figure 3.5 below. A water-glycol mixture is used in the 

evaporator to prevent freezing when operating near or at sub-freezing temperatures needed to 

store ice, which depresses the thermal capacity of the mixture by 10%. 

 

 

Figure 3.5: A schematic of the internals of an electric chiller running on a vapor-

compression cycle. Water-glycol mixture is used in the evaporator to prevent 

freezing when operating near or at sub-freezing temperatures.  
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In reality, the performance of chillers is a strong function of their loading in addition to 

evaporator and condenser temperatures influenced by the compressor efficiency. The chiller 

model described below is a widely used simple model first developed by Gordon-Ng [102]–

[105] to predict electric chillers' coefficient of performance using the first and second laws of 

thermodynamics. Applying the first law of thermodynamics, conservation of energy, to a vapor-

compression cycle yields the following expression: 

 
 

∆�̇� = 0 = �̇�𝑐𝑜𝑛𝑑 + �̇�𝑙𝑒𝑎𝑘,𝑐𝑜𝑛𝑑 − �̇�𝑐ℎ𝑙 − �̇�𝑙𝑒𝑎𝑘,𝑒𝑣𝑎𝑝 + �̇�𝑙𝑒𝑎𝑘,𝑐𝑜𝑚𝑝 − 𝑃𝑐ℎ𝑙 (3.1) 

 
 

where �̇�𝑐𝑜𝑛𝑑 is the heat rejected from the condenser, �̇�𝑐ℎ𝑙 is the chiller cooling rate, �̇�𝑙𝑒𝑎𝑘,𝑐𝑜𝑛𝑑, 

�̇�𝑙𝑒𝑎𝑘,𝑒𝑣𝑎𝑝, and �̇�𝑙𝑒𝑎𝑘,𝑐𝑜𝑚𝑝 are the heat leaks into the evaporator, out of the condenser, and out of 

the compressor, respectively, and 𝑃𝑐ℎ𝑙 is the electric power consumed by the chiller. Similarly, 

applying the second law of thermodynamics, entropy balance, yields the following expression: 

 

 

∆�̇� = 0 =
�̇�𝑐𝑜𝑛𝑑+�̇�𝑙𝑒𝑎𝑘,𝑐𝑜𝑛𝑑

𝑇𝑐𝑜𝑛𝑑 −
�̇�𝑐ℎ𝑙+�̇�𝑙𝑒𝑎𝑘,𝑒𝑣𝑎𝑝

𝑇𝑒𝑣𝑎𝑝 − ∆�̇�𝑖𝑛𝑡 (3.2) 

 

 

where all energy flows are defined as positive. 𝑇𝑐𝑜𝑛𝑑 and 𝑇𝑒𝑣𝑎𝑝 are the refrigerant saturation 

temperatures in the condenser and evaporator, respectively, and ∆�̇�𝑖𝑛𝑡 is the internal entropy 

generation rate. Heat leak from the condenser into the ambient is negligible due to comparatively 

minor temperature differences between the condenser and the ambient temperatures and hence is 

ignored. Performing energy balance across the evaporator and condenser heat exchangers yields 

the following two relations: 

 
 

�̇�𝑐𝑜𝑛𝑑 = �̇�𝑐𝑤𝑐𝑝,𝑐𝑤휀𝑐𝑜𝑛𝑑(𝑇𝑐𝑜𝑛𝑑 − 𝑇𝑐𝑠𝑤) = (
𝜀𝑐𝑜𝑛𝑑

1−𝜀𝑐𝑜𝑛𝑑
) �̇�𝑐𝑤𝑐𝑝,𝑐𝑤(𝑇𝑐𝑜𝑛𝑑 − 𝑇𝑐𝑟𝑤) (3.3) 
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and, 

 

 

�̇�𝑐ℎ𝑙 = �̇�𝑠𝑤𝑐𝑝,𝑠𝑤휀𝑒𝑣𝑎𝑝(𝑇𝑟𝑤 − 𝑇𝑒𝑣𝑎𝑝) = (
𝜀𝑒𝑣𝑎𝑝

1−𝜀𝑒𝑣𝑎𝑝
) �̇�𝑠𝑤𝑐𝑝,𝑠𝑤(𝑇𝑠𝑤 − 𝑇𝑒𝑣𝑎𝑝) (3.4) 

 

 

where 휀𝑒𝑣𝑎𝑝, �̇�𝑠𝑤 and 𝑐𝑝,𝑠𝑤 are the evaporator heat exchanger effectiveness, water mass 

flowrate, and water-glycol mixture specific heat, and 휀𝑐𝑜𝑛𝑑, �̇�𝑐𝑤 and 𝑐𝑝,𝑐𝑤 are the condenser 

heat exchanger's effectiveness, water mass flowrate, and specific heat, respectively. 

𝑇𝑐𝑠𝑤 and 𝑇𝑐𝑟𝑤 are entering and leaving condenser water temperature, and 𝑇𝑠𝑤 and 𝑇𝑟𝑤 are the 

evaporator leaving (or supply) and entering water-glycol mixture temperature, respectively. 

Plugging Equation (3.2) to (3.4) back into Equation (3.1) and using the definition of 𝐶𝑂𝑃 

(𝐶𝑂𝑃 = �̇�𝑐ℎ𝑙/𝑃𝑐ℎ𝑙) has been experimentally shown by Ng et al. [106] to simplify to the Gordon-

Ng general model for electric chillers as follows: 

 

 
𝑇𝑠𝑤

𝑇𝑐𝑠𝑤 [1 +
1

𝐶𝑂𝑃
] = 1 +

𝑇𝑠𝑤 ∆�̇�𝑖𝑛𝑡

�̇�𝑐ℎ𝑙 +
�̇�𝑙𝑒𝑎𝑘,𝑒𝑞𝑣(𝑇𝑐𝑠𝑤−𝑇𝑠𝑤)

𝑇𝑐𝑠𝑤�̇�𝑐ℎ𝑙 +
𝑅�̇�𝑐ℎ𝑙

𝑇𝑐𝑠𝑤 [1 +
1

𝐶𝑂𝑃
] (3.5) 

 

 

where the chiller load is described by the following equation: 

 

 

�̇�𝑐ℎ𝑙 = �̇�𝑠𝑤𝑐𝑝,𝑠𝑤(𝑇𝑟𝑤 − 𝑇𝑠𝑤) = 𝑃𝐿𝑅 �̇�𝑐ℎ𝑙,𝑑𝑒𝑠 (3.6) 

 

�̇�𝑐ℎ𝑙,𝑑𝑒𝑠 is the design (nominal) chiller cooling capacity, and 𝑃𝐿𝑅 is the chiller loading defined 

as �̇�𝑐ℎ𝑙/�̇�𝑐ℎ𝑙,𝑑𝑒𝑠. Parameters in Gordon model: �̇�𝑙𝑒𝑎𝑘,𝑒𝑞𝑣 is the equivalent heat leak into the 

evaporator from the ambient and out of the compressor into the ambient; 𝑅 is the effective 

thermal resistance for the evaporator and condenser heat exchangers and dominates the chiller 
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performance at high chiller loading; ∆�̇�𝑖𝑛𝑡 is internal entropy generation rate and dominates 

performance at low loading conditions. ∆�̇�𝑖𝑛𝑡, 𝑅 and �̇�𝑙𝑒𝑎𝑘,𝑒𝑞𝑣 are obtained from known chiller 

performance data using linear regression. 

Jian and Reddy [107] proposed a modification to include a term representing the entropy 

generation rate due to irreversibility that is dependent on loading (∆�̇�𝑖𝑛𝑡𝑄�̇�𝑐ℎ𝑙/�̇�𝑐ℎ𝑙,𝑑𝑒𝑠) in 

addition to a constant entropy generation rate term (∆�̇�𝑖𝑛𝑡) which slightly improves the model 

predictions. The modified Gordon-Ng electric chiller model is described by: 

 

 

𝑇𝑠𝑤

𝑇𝑐𝑠𝑤 [1 +
1

𝐶𝑂𝑃
] = 1 +

𝑇𝑠𝑤(∆�̇�𝑖𝑛𝑡+∆�̇�𝑖𝑛𝑡𝑄 �̇�𝑐ℎ𝑙

�̇�𝑐ℎ𝑙,𝑑𝑒𝑠)

�̇�𝑐ℎ𝑙 +
�̇�𝑙𝑒𝑎𝑘,𝑒𝑞𝑣(𝑇𝑐𝑠𝑤−𝑇𝑠𝑤)

𝑇𝑐𝑠𝑤�̇�𝑐ℎ𝑙 +
𝑅�̇�𝑐ℎ𝑙

𝑇𝑐𝑠𝑤 [1 +
1

𝐶𝑂𝑃
] (3.7)  

 

 

It is advantageous to reformulate Gordon-Ng model as a function of the leaving 

condenser water temperature instead of the condenser water entering temperature to decouple the 

impact of the condenser water flowrate from the chiller performance curves. The leaving 

condenser and evaporator temperatures serve as a proxy for the refrigerant temperatures, 

enabling the investigation of reduced condenser water flowrate. The reformulated Gordon-Ng 

chiller model is given by: 

 

 

𝑇𝑠𝑤

𝑇𝑐𝑟𝑤 [1 +
1

𝐶𝑂𝑃
] = 1 +

𝑇𝑠𝑤(∆�̇�𝑖𝑛𝑡+∆�̇�𝑖
𝑖𝑛𝑡𝑄 �̇�𝑐ℎ𝑙

�̇�𝑐ℎ𝑙,𝑑𝑒𝑠
)

�̇�𝑐ℎ𝑙 +
�̇�𝑖

𝑙𝑒𝑎𝑘,𝑒𝑞𝑣(𝑇𝑐𝑟𝑤−𝑇𝑠𝑤)

𝑇𝑐𝑟𝑤�̇�𝑐ℎ𝑙 +
𝑅�̇�𝑐ℎ𝑙

𝑇𝑐𝑟𝑤 [1 +
1

𝐶𝑂𝑃
] (3.8)  

 

 

The reformulation of Gordon-Ng’s model in terms of condenser leaving temperature introduces 

challenges as the leaving temperature is generally unknown that relates to the ambient conditions 

and the respective chiller loading. However, the condenser return temperature can be expressed 
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as a function of other controlled parameters, including the entering condenser water temperature 

and water flowrate as follows: 

 

 

𝑇𝑐𝑟𝑤 = 𝑇𝑐𝑠𝑤 +
�̇�𝑐ℎ𝑙

�̇�𝑐𝑤𝑐𝑝,𝑐𝑤 (1 +
1

𝐶𝑂𝑃
) (3.9) 

 

 

Plugging Equation (3.9) back into Equation (3.8) yields the desired expression for electric 

chillers' performance as a function of condenser water flowrate: 

 

 

1

𝐶𝑂𝑃
=

�̇�𝑐ℎ𝑙(�̇�𝑐ℎ𝑙+�̇�𝑙𝑒𝑎𝑘,𝑒𝑞𝑣+�̇�𝑐𝑤𝑐𝑝,𝑐𝑤[𝑅 �̇�𝑐ℎ𝑙−𝑇𝑠𝑤]+𝑇𝑠𝑤[∆�̇�𝑖𝑛𝑡+∆�̇�𝑖𝑛𝑡𝑄𝑃𝐿𝑅]

�̇�𝑐𝑤𝑐𝑝,𝑐𝑤(�̇�𝑐ℎ𝑙 𝑇𝑐𝑠𝑤+�̇�𝑙𝑒𝑎𝑘,𝑒𝑞𝑣[𝑇𝑐𝑠𝑤−𝑇𝑠𝑤]+𝑇𝑐𝑠𝑤𝑇𝑠𝑤[∆�̇�𝑖𝑛𝑡+∆�̇�𝑖𝑛𝑡𝑄𝑃𝐿𝑅])
  (3.10) 

 

 

The chiller power consumption can then be calculated from the definition of COP as follows: 

 

 

𝑃𝑐ℎ𝑙 =
�̇�𝑐ℎ𝑙

𝐶𝑂𝑃
  (3.11) 

 

 

 Chillers data are extracted from the chillers data library in EnergyPlus given in a 

regression-based model with three polynomial curves using the DOE-2 model [108], [109]. The 

first curve (called CAPFT in EnergyPlus) describes the influence of entering evaporator and 

condenser temperatures on the cooling capacity. The second curve (called EIRFT in EnergyPlus) 

describes the influence of entering evaporator and condenser temperatures on electric power 

consumption. The third curve (called EIRFPLR in EnergyPlus) describes the influence of the 

chiller loading on electric power consumption. However, the given three polynomial curves are 

only valid within narrow ranges of supply and condenser temperatures. They cannot be used to 

predict chiller performance at low supply water temperatures associated with thermal energy 
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storage charging nor at high condenser water temperatures typical in warm climates. The 

extracted performance chiller data are used to fit the parameters in the Gordon-Ng model to 

predict chillers' performance outside the given temperature ranges.    

EnergyPlus WC chillers data library contains chillers data with three distinct compressor 

types: centrifugal compressor with guide vanes, centrifugal compressor with variable speed drive 

(VSD), and screw compressor with slide valve. The performance of the centrifugal chiller with 

guide vanes (without VSD) strongly depends on chiller loading and is less sensitive to the 

condenser temperature. Centrifugal chillers generally offer the best full-load performance, while 

screw chillers tend to have a better part-load performance without using VSD. A centrifugal 

chiller can be equipped with a VSD for a considerable cost for optimized part-load performance. 

However, since a centrifugal compressor's pressure head is proportional to the square of the 

speed and flowrate, the chiller performance tends to be highest when both the condenser 

temperature and refrigerant flowrate (linearly correlated with loading) are reduced.  

 The COP, as determined by the three polynomial curves, is sampled within the given 

range of condenser and water supply temperatures and loading conditions. Least-square linear 

regression is then applied between the model’s predicted COP and sampled COP from 

EnergyPlus to determine the parameters in Gordon’s model: ∆�̇�𝑖𝑛𝑡, ∆�̇�𝑖𝑛𝑡𝑄 , 𝑅 and 𝑄𝑙𝑒𝑎𝑘,𝑒𝑞𝑣. A 

comparison of the COP as predicted by the reformulated and modified Gordon-Ng model and as 

given in the DOE-2 model in EnergyPlus is shown in Figure 3.6 for 383-tons Carrier 19XR with 

VSD equipped centrifugal compressor. The model produces a minor error difference of less than 

5%. 
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Figure 3.6: The COP as predicted using the reformulated Gordon-Ng model 

compared to the COP from EnergyPlus given in a DOE-2 model for 383-tons 

Carrier 19XR with VSD-equipped centrifugal compressor. 

Operating conditions also influence the refrigerant thermal capacity, which impacts the 

chillers' cooling capacity. The evaporator refrigerant saturation density and vapor quality affect 

the refrigerant thermal capacity. Deviations in evaporator and condenser temperature from 

design conditions impact the refrigerant vapor quality in the evaporator, as illustrated in Figure 

3.7 in a pressure-enthalpy diagram of the vapor compression cycle.  

 

 



70 

 

 

 

Figure 3.7: Pressure-enthalpy diagram of vapor compression cycle demonstrating 

the impact of evaporator and condenser temperatures on refrigerant evaporator 

thermal capacity. An increase in condenser temperature or a decrease in evaporator 

temperature reduces the refrigerant evaporator vapor quality, reducing the heat 

capacity (∆𝒉 > ∆𝒉∗ and ∆𝒉 > ∆𝒉𝟎). 

A reduction in supply temperature or an increase in condenser temperature depresses the 

refrigerant's thermal capacity. On the contrary, re-setting the supply temperature or reducing the 

condensing temperature enhances the refrigerant thermal capacity. However, the utility of the 

increase in evaporator heat transfer capacity is ultimately diminished by the compressor’s ability 

to support the required flow and pressure head. Centrifugal compressors are constant pressure 

variable flow machines and do not experience significant gain or loss in capacity when the 

pressure differential is varied. On the other hand, positive displacement compressors are constant 

flow variable pressure machines and experience dramatic gain or loss in capacity when the 

pressure differential is varied [110], [111]. 
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The evaporator saturation density, which reduces with the evaporator temperature and 

affects the mass flowrate, becomes the dominant factor in depressing the chiller cooling capacity 

in ice-making mode. Modern chillers can lose as much as 30-40% of their nominal cooling 

capacity when operating in ice-making mode [79]. A simple yet effective approach to estimating 

the chiller cooling capacity is from the refrigerant thermal capacity under the specified 

conditions, and the approach is useful when data is unavailable, as is the case here. Otherwise, 

CAPFT from EnergyPlus better predicts the capacity by accounting for changes to refrigerant 

thermal capacity and turbomachinery limitations. The cooling capacity is expressed as the ratio 

of available to design (nominal) cooling capacity as follows: 

 

 

�̇�𝑐ℎ𝑙,𝑚𝑎𝑥

�̇�𝑐ℎ𝑙,𝑑𝑒𝑠 =
ℎ𝑟𝑒𝑓𝑔,𝑓𝑔

ℎ𝑟𝑒𝑓𝑔,𝑓𝑔,𝑑𝑒𝑠

1−𝑥𝑟𝑒𝑓𝑔

1−𝑥𝑟𝑒𝑓𝑔,𝑑𝑒𝑠  
𝜌𝑟𝑒𝑓𝑔 

𝜌𝑟𝑒𝑓𝑔,𝑑𝑒𝑠 
  (3.12) 

 

 

where ℎ𝑟𝑒𝑓𝑔,𝑓𝑔 is the refrigerant enthalpy of vaporization, 𝜌𝑟𝑒𝑓𝑔 is saturated vapor density, and 

𝑥𝑟𝑒𝑓𝑔 is the quality of the refrigerant vapor mixture in the evaporator. The superscript 𝑟𝑒𝑓 

indicates values at reference conditions (reference refrigerant temperatures here). The refrigerant 

and water temperatures are related by the approach temperature, which is the difference between 

leaving water and refrigerant temperatures in the evaporator and condenser. It is in the order of 

0.5-2℃ for modern chillers [112], [113]. While the approach temperatures depend on the load, 

the variations are too small to significantly impact the chiller cooling capacity. The estimated 

cooling capacity ratio must not exceed the chiller’s compressor capacity, which yields the 

following expression for the maximum chiller loading: 

 

 

�̇�𝑐ℎ𝑙,𝑚𝑎𝑥

�̇�𝑐ℎ𝑙,𝑑𝑒𝑠 = 𝑚𝑖𝑛 [
�̇�𝑐ℎ𝑙,𝑙𝑖𝑚

�̇�𝑐ℎ𝑙,𝑑𝑒𝑠 ,   
ℎ𝑟𝑒𝑓𝑔,𝑓𝑔

ℎ𝑟𝑒𝑓𝑔,𝑓𝑔,𝑑𝑒𝑠

1−𝑥𝑟𝑒𝑓𝑔

1−𝑥𝑟𝑒𝑓𝑔,𝑑𝑒𝑠  
𝜌𝑟𝑒𝑓𝑔 

𝜌𝑟𝑒𝑓𝑔,𝑑𝑒𝑠 
] (3.13) 
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�̇�𝑐ℎ𝑙,𝑙𝑖𝑚 is the maximum chiller cooling rate the compressor allows under the given supply and 

condenser water temperature range from CAPFT in EnergyPlus. A comparison of predicted 

cooling capacity ratios and capacity ratios from EnergyPlus is in Figure 3.8 for 383-tons Carrier 

19XR with a VSD-equipped centrifugal compressor. A slight absolute difference in the order of 

3% is observed between the estimated and given cooling capacity ratios.  

 

 
 

Figure 3.8: Estimated cooling capacity ratio from refrigerant thermal capacity 

versus EnergyPlus for 383-tons Carrier 19XR with VSD-equipped centrifugal 

compressor at water supply temperature setpoints of 5 and 8℃. 
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3.2.2 Pumps 
 

 Pumps continuously transport water to absorb and reject heat to maintain indoor comfort. 

Chiller pumps (primary and condenser) are fixed-speed pumps controlled to maintain the design 

water flowrates and only operate with their associated chiller. Conversely, secondary pumps are 

speed controlled to deliver the required flowrate to satisfy the building cooling load. The power 

consumed by pumps is a function of the flowrate and the required pressure head; the two 

parameters are related by affinity laws. The affinity laws express the relation between flowrate, 

pressure head, and power as follows: 

 

 

(
�̇�

�̇�𝑟𝑒𝑓)
3

= (
∆𝑇𝑟𝑒𝑓

∆𝑇
)
3

= (
𝑃

𝑃𝑟𝑒𝑓) (3.14) 

 

 

(
�̇�

�̇�𝑟𝑒𝑓)
2

= (
∆𝑇𝑟𝑒𝑓

∆𝑇
)
2

= (
∆𝑝

∆𝑝𝑟𝑒𝑓) (3.15) 

 

 

where �̇� is flowrate, ∆𝑝 is the pressure head, 𝑃 is the power use, and ∆𝑇 is the temperature 

differential which inversely correlates with flowrate. As noted from the affinity laws, a more 

efficient pumping configuration can be achieved by reducing the flowrate, which has a cubic 

relation with the power. However, the reduction of flowrates increases the temperature 

differential, which comes at the expense of increased chiller power as the supply temperature 

must be reduced to offset reduced flowrates. An analysis by chillers manufacturer Trane finds 

that reducing pumping power often offsets and compensates for increased chiller energy use 

[75]. The chiller's primary pump power as a function of temperature differential is given by: 

 

 

𝑃𝑝𝑝 = 𝑘𝑝𝑝,𝑟𝑒𝑓 (
∆𝑇𝑒𝑣𝑎𝑝,𝑟𝑒𝑓

∆𝑇𝑒𝑣𝑎𝑝,𝑑𝑒𝑠)
3

 (3.16) 
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and condenser pumps power use: 

 

 

𝑃𝑐𝑝 = 𝑘𝑐𝑝,𝑟𝑒𝑓 (
∆𝑇𝑐𝑜𝑛𝑑,𝑟𝑒𝑓

∆𝑇𝑐𝑜𝑛𝑑,𝑑𝑒𝑠)
3

 (3.17) 

 

 

Superscripts 𝑝𝑝 and 𝑐𝑝 refer to primary and condenser pumps, respectively, and 𝑑𝑒𝑠 refers to 

parameters at design conditions, and 𝑘 is the pump constant at the reference temperature 

differential. (
∆𝑇𝑒𝑣𝑎𝑝,𝑟𝑒𝑓

∆𝑇𝑒𝑣𝑎𝑝,𝑑𝑒𝑠
)
3

and (
∆𝑇𝑐𝑜𝑛𝑑,𝑟𝑒𝑓

∆𝑇𝑐𝑜𝑛𝑑,𝑑𝑒𝑠
)
3

 adjust the evaporator and condenser pumping power 

for changes in flowrate from reference conditions per the affinity laws, respectively.  

The power consumed by the variable speed pumps in the secondary loop is a function of 

the rotational speed per the affinity laws and the motor and VSD efficiencies: 

 

 

𝑃𝑠𝑝 = 𝑘𝑠𝑝,𝑟𝑒𝑓 (
∆𝑇𝑒𝑣𝑎𝑝,𝑟𝑒𝑓

∆𝑇𝑒𝑣𝑎𝑝,𝑑𝑒𝑠)
3

(𝑉𝑆𝐷𝑠𝑝)3

𝜂𝑚,𝑠𝑝𝜂𝑉𝑆𝐷,𝑠𝑝  (3.18) 

 

 

Superscript 𝑠𝑝 refers to the secondary pump, and 𝑉𝑆𝐷 is the non-dimensional rotational speed 

defined as the actual angular speed normalized by the maximum angular speed. Speed 

adjustment linearly correlates with the flow and quadratically with the pressure head. Similarly, 

(
∆𝑇𝑒𝑣𝑎𝑝,𝑟𝑒𝑓

∆𝑇𝑒𝑣𝑎𝑝,𝑑𝑒𝑠)
3

 adjust the power for changes in design flowrate. The motor and variable speed drive 

efficiencies as a function of their speed are from correlations by Bernier and Bernard [114]: 

 

 

𝜂𝑚(𝑉𝑆𝐷) = 0.94187[1 − 𝑒𝑥𝑝(−9.04 𝑉𝑆𝐷)] (3.19) 

 

 

𝜂𝑉𝑆𝐷(𝑉𝑆𝐷) =
1

100
[50.87 + 128.3 𝑉𝑆𝐷 − 142 𝑉𝑆𝐷2 + 58.34 𝑉𝑆𝐷3] (3.20) 
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Using a water-glycol mixture in the supply loop to prevent freezing increases pumping power by 

15% relative to pure water [115] due to increased viscosity.  

3.2.3 Cooling towers 
 

Cooling towers reject the heat from the condenser into the atmosphere primarily by 

evaporative cooling. The first counter-flow cooling tower model in the literature was developed 

by Merkel [116] using mass and heat transfer balance equations. Merkel simplifies the model 

into enthalpy balance equations by setting the enthalpy difference as the driving force, neglecting 

mass transfer, and assuming a Lewis number of unity. The model developed by Merkel for the 

water and air sides is given by: 

 

 
𝑑ℎ𝑎

𝑑𝑦
= −

𝑁𝑇𝑈

𝑌
(ℎ𝑎 − ℎ𝑠,𝑤) (3.21) 

 

 

𝑑𝑇𝑤

𝑑𝑦
=

�̇�𝑎𝑡𝑤𝑟(
𝑑ℎ𝑎

𝑑𝑦
)

�̇�𝑤𝑡𝑤𝑟𝑐𝑝,𝑐𝑤 (3.22)  

 

 

where 𝑁𝑇𝑈 is the number of transfer units, y is the height, Y is the total height of the tower, ℎ𝑎 

is the enthalpy of moist air and ℎ𝑠,𝑤 is the saturated enthalpy of the air, �̇�𝑎𝑡𝑤𝑟 and �̇�𝑤𝑡𝑤𝑟 are the 

air and water mass flowrate, respectively, and 𝑇𝑤 is the tower water temperature. 

Braun et al. [117] developed a simple and widely used model based on the assumption of 

linear air saturation enthalpy with respect to the temperature applied to Merkel’s model. An 

exaggerated illustration of the impact of linear saturation assumptions is shown in Figure 3.9. 
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Figure 3.9: Exaggerated illustration of the assumption of linear saturation enthalpy 

line with respect to temperature. ∆𝑻𝒘 is the tower water temperature difference, 

∆𝒉𝒔 is the tower air enthalpy difference, 𝒉𝒔 is air saturation enthalpy, and 𝑻𝒘𝒃 is the 

wet-bulb temperature.  

The slope of the saturation line with respect to temperature is defined as the saturation specific 

heat as follows: 

 

 

𝑐𝑠 = [
𝑑ℎ𝑠

𝑑𝑇
]
𝑇=𝑇𝑤

=
ℎ𝑠,𝑐𝑟𝑤−ℎ𝑠,𝑐𝑠𝑤

𝑇𝑐𝑟𝑤−𝑇𝑐𝑠𝑤   (3.23)  

 

 

where 𝑇𝑐𝑠𝑤 and 𝑇𝑐𝑟𝑤 are tower leaving (entering chiller condenser water) and tower entering 

(leaving chiller condenser water), and ℎ𝑠,𝑐𝑠𝑤 and ℎ𝑠,𝑐𝑟𝑤 are the enthalpy of saturated air at 

leaving and entering tower water temperatures, respectively. Plugging Equation (3.23) in 

Merkel’s model in Equation (3.22) allows for an analytical solution to be obtained. Braun derives 

an effectiveness relationship in terms of saturation specific heat, defined as the ratio of actual to 
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maximum possible air-side heat transfer that occurs if air leaves saturated at the inlet water 

temperature. The model uses the NTU-effectiveness approach to predict the heat rejected given 

inlet air and water mass flowrates and temperatures. The actual heat rejected is given by: 

 

 

�̇�𝑡𝑤𝑟 = �̇�𝑎𝑡𝑤𝑟휀𝑡𝑤𝑟(ℎ𝑠,𝑐𝑟𝑤 − ℎ𝑠,𝑤𝑏)  (3.24) 

 

 

ℎ𝑠,𝑤𝑏 is the enthalpy of saturated air at the wet-bulb temperature and 휀𝑡𝑤𝑟 is the tower's air-side 

effectiveness. The effectiveness is determined analogously to a dry counter-flow heat exchanger: 

 

 

휀𝑡𝑤𝑟 =
1−𝑒𝑥𝑝 (−𝑁𝑇𝑈(1−𝐶𝑟))

1−𝐶𝑟𝑒𝑥𝑝 (−𝑁𝑇𝑈(1−𝐶𝑟))
  (3.25) 

 

 

where, 

 

 

𝐶𝑟 =
�̇�𝑎𝑡𝑤𝑟

�̇�𝑤𝑡𝑤𝑟(
𝑐𝑝,𝑐𝑤

𝑐𝑠 )
 (3.26) 

 

 

The NTU correlation for the cooling tower: 

 

 

𝑁𝑇𝑈 = 𝑐 (
�̇�𝑤𝑡𝑤𝑟

�̇�𝑎𝑡𝑤𝑟)
1+𝓃

 (3.27) 

 

 

where 𝑐 and 𝓃 are constants for a given cooling tower type. Similar to water pumps, the air 

flowrate varies linearly with the speed of the fan per the affinity laws, which are given by: 

 

 

�̇�𝑎𝑡𝑤𝑟 = 𝑉𝑆𝐷𝑡𝑤𝑟�̇�𝑎𝑡𝑤𝑟,𝑑𝑒𝑠 (3.28) 
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The tower fan is the sole power-consuming device controlled to maintain the condenser water 

temperature setpoint. The power consumed by the VSD-equipped tower fan is as follows: 

 

 

𝑃𝑡𝑤𝑟 = 𝑘𝑡𝑤𝑟 (𝑉𝑆𝐷𝑡𝑤𝑟)
3

𝜂𝑚,𝑡𝑤𝑟𝜂𝑉𝑆𝐷,𝑡𝑤𝑟
  (3.29) 

 

 

where 𝑘𝑡𝑤𝑟 is the tower fan constant and 𝑉𝑆𝐷𝑡𝑤𝑟 is the fan's non-dimensional rotational speed.  

3.2.4 Cooling and dehumidifying coils  
 

Sensible and latent heat from the cooled space is transferred by air to the chilled water in 

the coils. The developed coil model employs Wang et al. [118] expressions for the overall 

internal and external heat transfer coefficients. The expressions are converted into an external 

and internal NTU expression, respectively, as follows: 

 

 

𝑁𝑇𝑈𝑒𝑥𝑡 =
1

�̇�𝑐𝑐𝑎 𝑐𝑝,𝑎

𝑁𝑟𝑜𝑤𝐴𝑓𝑎𝑐𝑒

𝑎1
𝑐𝑐(𝑉𝑎)−0.8+𝑎3

𝑐𝑐 (3.30) 

 

 

𝑁𝑇𝑈𝑖𝑛𝑡 =
1

�̇�𝑐𝑐𝑤 𝑐𝑝,𝑠𝑤

𝑁𝑟𝑜𝑤𝐴𝑓𝑎𝑐𝑒

𝑎2
𝑐𝑐( 𝑉𝑤)−0.8 (3.31) 

 

 

The denominators of the two expressions are based on Holmes coil’s thermal resistance model as 

a function of air and water face velocities [119]. 𝑎1
𝑐𝑐, 𝑎2

𝑐𝑐, and 𝑎3
𝑐𝑐 are experimentally obtained 

set of coefficients in Holmes’s model, �̇�𝑐𝑐𝑎 and �̇�𝑐𝑐𝑤 are the coil air and water flowrate, 

𝑉𝑎 and  𝑉𝑤 are the coil air and water face velocities, respectively, 𝑐𝑝,𝑎 is air specific heat 

capacity, 𝐴𝑓𝑎𝑐𝑒  is the coil face area, and 𝑁𝑟𝑜𝑤 are the number of coils rows or passes.  
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Coils maintain the cooled-space humidity and temperature by regulating air and water 

flowrates using a VSD and a two-way valve. Per the affinity laws, the air and water mass 

flowrates, respectively, are as follows:  

 

 

�̇�𝑐𝑐𝑎 = 𝑉𝑆𝐷𝑐𝑓�̇�𝑐𝑐𝑎,𝑑𝑒𝑠 (3.32) 

 

 

�̇�𝑐𝑐𝑤 = 𝑉𝑆𝐷𝑠𝑝�̇�𝑐𝑐𝑤,𝑑𝑒𝑠 (3.33) 

 

 

Similarly, for face air and water velocities, respectively: 

 

 

𝑉𝑎 = 𝑉𝑆𝐷𝑐𝑓𝑉𝑎,𝑑𝑒𝑠 (3.34) 

 

 

𝑉𝑤 = 𝑉𝑆𝐷𝑠𝑝𝑉𝑤,𝑑𝑒𝑠 (3.35) 

 

 

where 𝑉𝑆𝐷𝑐𝑓 and 𝑉𝑆𝐷𝑠𝑝 are the non-dimensional rotational speed for coil fan and secondary 

pumps, respectively. The air inlet enthalpy and temperature can then be calculated from the 

known exit conditions and the cooling load:  

 

 

ℎ𝑎𝑖 = 𝑚𝑖𝑛 [ℎ𝑎𝑒,𝑑𝑒𝑠 +
�̇�𝒟

�̇�𝑐𝑐𝑎
, ℎ𝑎𝑖,𝑑𝑒𝑠] (3.36) 

 

 

𝑇𝑎𝑖 = 𝑇𝑎𝑒,𝑑𝑒𝑠 +
�̇�𝓈

�̇�𝑐𝑐𝑎 (3.37) 

 

 

�̇�𝒟 is the building cooling load, �̇�𝓈 is the sensible cooling load, ℎ𝑎𝑖,𝑑𝑒𝑠 is the enthalpy of air at 

the coil inlet under design conditions, and ℎ𝑎𝑒,𝑑𝑒𝑠 and 𝑇𝑎𝑒,𝑑𝑒𝑠 are the design exit air enthalpy and 
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temperature, respectively. The conditions at the dry-to-wet transition point can be calculated 

from the known air and water boundary conditions: 

 

 

ℎ𝑥 = ℎ𝑎𝑖 − 𝑐𝑝,𝑎(𝑇𝑎𝑖 − 𝑇𝑑𝑝) (3.38) 

 

 

𝑇𝑤,𝑥 =
�̇�𝑐𝑐𝑎

�̇�𝑐𝑐𝑤 𝑐𝑝,𝑠𝑤 [ℎ𝑎𝑖 − ℎ𝑎𝑒,𝑑𝑒𝑠 − 𝑐𝑝,𝑎(𝑇𝑎𝑖 − 𝑇𝑑𝑝)] + 𝑇𝑐𝑐𝑠𝑤 (3.39) 

 

 

where 𝑇𝑐𝑐𝑠𝑤 is the coil entering water temperature and 𝑇𝑑𝑝 is the dew-point temperature. The 

superscript x represents the point of intersection between dry and wet sections. The air 

temperature at the dry-to-wet transition is the dew point temperature and is calculated from 

known parameters.  

 Models developed by Braun et al. [85] for fully dry and fully wet coils based on the 

NTU-effectiveness approach are used for the dry and wet section analysis. They utilize a similar 

approach to the modeling of the cooling tower with the modification of including an additional 

thermal resistance from the absence of direct contact between air and water streams. The coil is 

modeled as a counter-flow heat exchanger since the performance of a cross-flow heat exchanger 

approaches that of a counter-flow when the number of passes increases beyond approximately 

four. The NTU and effectiveness for the dry section are described by the following two 

expressions: 

 

 

𝑁𝑇𝑈𝑑𝑟𝑦 =
1

𝐶−1
𝑙𝑛 (

𝜀𝑑𝑟𝑦−1

𝐶𝜀𝑑𝑟𝑦−1
) (3.40) 

 

 

휀𝑑𝑟𝑦 =
𝑇𝑎𝑖−𝑇𝑑𝑝

𝑇𝑎𝑖−𝑇𝑤,𝑥 (3.41) 
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where, 

 

 

𝐶 =
�̇�𝑐𝑐𝑎𝑐𝑝,𝑎

�̇�𝑐𝑐𝑤 𝑐𝑝,𝑠𝑤 (3.42) 

 

 

Exit water temperature and the fraction of the coil length in the dry section are as follows: 

 

 

𝑇𝑐𝑐𝑟𝑤 = 𝑇𝑤,𝑥 + 𝐶(𝑇𝑎𝑖 − 𝑇𝑑𝑝) (3.43) 

 

 

𝑓𝑑𝑟𝑦 =
𝑁𝑇𝑈𝑑𝑟𝑦

𝑁𝑇𝑈𝑒𝑥𝑡 (1 + 𝐶
𝑁𝑇𝑈𝑒𝑥𝑡

𝑁𝑇𝑈𝑖𝑛𝑡) (3.44) 

 

 

The NTU and effectiveness for the wet section are as follows: 

 

 

𝑁𝑇𝑈𝑤𝑒𝑡 =
𝑁𝑇𝑈𝑒𝑥𝑡

1+𝑚(
𝑁𝑇𝑈𝑒𝑥𝑡

𝑁𝑇𝑈𝑖𝑛𝑡)
(1 − 𝑓𝑑𝑟𝑦) (3.45) 

 

 

휀𝑤𝑒𝑡 =
1−𝑒𝑥𝑝(−𝑁𝑇𝑈𝑤𝑒𝑡(1−𝑚))

1−𝑚 𝑒𝑥𝑝(−𝑁𝑇𝑈𝑤𝑒𝑡(1−𝑚))
 (3.46) 

 

 

where,  

 

 

𝑚 =
�̇�𝑐𝑐𝑎

�̇�𝑐𝑐𝑤𝑐𝑝,𝑠𝑤 (
ℎ𝑥−ℎ𝑠,𝑐𝑐𝑠𝑤

𝑇𝑤,𝑥−𝑇𝑐𝑐𝑠𝑤) (3.47) 

 
 

ℎ𝑠,𝑐𝑐𝑠𝑤 is the enthalpy of saturated air at coil supply water temperatures. The actual exit air 

enthalpy can then be calculated as follows:  

 

 

ℎ𝑎𝑒 = ℎ𝑥 − 휀𝑤𝑒𝑡(ℎ𝑥 − ℎ𝑠,𝑐𝑐𝑠𝑤) (3.48) 
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A feasible solution necessitates the air leaves at design conditions such that ℎ𝑎𝑒 ≡ ℎ𝑎𝑒,𝑑𝑒𝑠. The 

power required by the VSD-equipped cooling coil fan is given by: 

 

 

𝑃𝑐𝑓 = 𝑘𝑐𝑓 (𝑉𝑆𝐷𝑐𝑓)
3

𝜂𝑚,𝑐𝑓𝜂𝑉𝑆𝐷,𝑐𝑓
  (3.49) 

 

 

where 𝑘𝑐𝑓 is the cooling coil fan constant. 

3.2.5 I-TES 
 

I-TES stores thermal energy mainly in the form of latent heat. The two main types of I-

TES are internal and external melt [87]. In external melt, ice comes into direct contact with 

supply water delivering a rapid discharge rate suitable for specific applications such as providing 

contingency and for high and short-lasting cooling demands. On the other hand, internal melt I-

TES is modularized and prefabricated with predictable charge and discharge behavior. In internal 

melt, a secondary water-glycol mixture is circulated through inner circuits to freeze or melt the 

water inside the tank. An illustration of a modular internal melt I-TES is shown in Figure 3.10.  

 
 

Figure 3.10: An illustration of a modular internal-melt I-TES. Multiple parallel 

spiral circuits are submerged in water inside the tank, and a water-glycol mixture is 

circulated through the circuits to build and melt the ice around the tubes.  
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As shown in the figure, multiple parallel spiral circuits are submerged in water inside the tank. 

Internal melt I-TES can have either fewer circuits with longer tubes or more circuits with shorter 

ones. I-TES with longer tubes is designed for systems with reduced flowrate to maximize heat 

transfer, whereas shorter tubes is used for systems with high available flowrate to maximize 

charge and discharge rates without overburdening the pumps. 

The work in this dissertation utilizes the more commonly used internal melt I-TES with 

fewer circuits and longer tubes. The earliest internal melt I-TES model appears to be developed 

by Jekel [71] and was later improved by Drees [72], [73]. The work in this dissertation employs 

the model improved by Drees with specifications based on a product of CALMAC with 83 TR-

hr of nominal capacity. Multiple tanks can be balanced and joined in parallel to act as a single 

tank with an equivalent combined thermal capacity. Control of the ice bank is accomplished by 

regulating the inlet temperature and flowrate as described by the heat balance equation below: 

 

 

�̇�𝑖𝑤𝑐𝑝,𝑠𝑤(𝑇𝑖𝑟𝑤 − 𝑇𝑖𝑠𝑤) = �̇� = ℎ𝑠𝑓�̇�𝐼𝑇𝐸𝑆,𝑖𝑐𝑒 − 𝑚𝐼𝑇𝐸𝑆𝑐𝑝,𝑤�̇�𝐼𝑇𝐸𝑆 (3.50) 

 

 

where �̇�𝑖𝑤 is the circulating water-glycol mix flowrate, 𝑇𝑖𝑠𝑤 and 𝑇𝑖𝑟𝑤 is the water-glycol 

mixture temperature at the inlet and outlet of the storage tank, respectively, ℎ𝑠𝑓 is the enthalpy of 

fusion of ice, �̇�𝐼𝑇𝐸𝑆,𝑖𝑐𝑒 is the rate of ice formation, �̇�𝐼𝑇𝐸𝑆 is the rate of change of water 

temperature in the tank, 𝑚𝐼𝑇𝐸𝑆 is the total mass of water in the tank, and 𝑐𝑝,𝑤 is the specific heat 

of tank water.  The terms �̇�𝑖𝑤𝑐𝑝,𝑠𝑤(𝑇𝑖𝑟𝑤 − 𝑇𝑖𝑠𝑤) is the heat transfer rate to the circulating 

water-glycol mixture, 𝑚𝐼𝑇𝐸𝑆,𝑤𝑐𝑝,𝑤�̇�𝐼𝑇𝐸𝑆 is the sensible heat rate, and ℎ𝑠𝑓�̇�𝐼𝑇𝐸𝑆,𝑖𝑐𝑒 is the latent 

heat rate. Sensible heat change of ice can be neglected because of the reduced thermal capacity 

relative to water and the minor temperature difference between ice and the freezing point of 
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water. The rate of change of enthalpy, �̇�, can also be obtained from the LMTD method as 

follows: 

 
 

�̇� = (
1

𝑅𝑖𝑛𝑡+𝑅𝑒𝑥𝑡) [
𝑇𝑖𝑟𝑤−𝑇𝑖𝑠𝑤

𝑙𝑛(
𝑇𝐼𝑇𝐸𝑆−𝑇𝑖𝑟𝑤

𝑇𝐼𝑇𝐸𝑆−𝑇𝑖𝑠𝑤
)
] (3.51) 

 

 

𝑇𝐼𝑇𝐸𝑆 is the average storage water temperature, 𝑅𝑖𝑛𝑡 and 𝑅𝑒𝑥𝑡 are tubes' internal and external 

thermal resistance. 𝑅𝑒𝑥𝑡 depends on both the mode of operation, charging or discharging, and 

SoC; both 𝑅𝑖𝑛𝑡 and 𝑅𝑒𝑥𝑡 are obtained from Drees’s model [72], [73].  

The charging of I-TES is divided into three stages, which are shown in Figure 3.11: 

sensible, unconstrained latent, and area-constrained latent. In sensible charging, the water 

temperature in the tank is brought down to freezing temperature without ice formation and 

constitutes about 10% of capacity. Upon reaching freezing temperature, the unconstrained latent 

stage initiates with uniform cylindrical ice formation around the tubes up to an SoC of 45%. 

Once the ice formations intersect, heat transfer becomes increasingly area constrained until all 

the water around the tubes is frozen. Charging of I-TES terminates once the areas around the 

tubes are fully frozen, which constitutes about 90% of the total water mass. 

Similarly, discharging of I-TES is divided into three stages, also shown in Figure 3.11: 

unconstrained latent, area-constrained latent, and sensible. In the first stage, the ice closest to the 

tube is melted. The water-glycol mixture passing through the tubes is cooled down at the expense 

of (i) warming a layer of liquid water between the outer surface of the tube and the water-ice 

interface and (ii) a receding liquid water-ice interface. When the ice-liquid water interfaces 

intersect at an SoC of 60%, heat transfer reduces due to the reduced surface area of ice 

formations. Once all ice has melted, the storage water temperature is gradually brought to the 
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circulating water temperature constituting only 5% of the thermal capacity, which ends the 

discharging process.  

 

 

Figure 3.11: An illustration of the charging and discharging process along the heat 

rate curve is shown in a cross-sectional view of the parallel tubes inside the 83-TR-

hr internal melt I-TES tank. The intersection of ice formations in charging and 

water formations in discharging reduces the heat transfer area. Charging is at -6℃ 

and 4 kg/s, and discharging is at 8℃ and 4 kg/s. 

Drees shows that the effectiveness defined as the ratio of actual to the maximum 

temperature difference is insensitive to inlet temperature but is a strong function of flowrate and 

SoC. This is used to reduce the storage model to a function of flowrate and stage of charge. The 

storage effectiveness is defined as:  

 

 

휀𝐼𝑇𝐸𝑆 =
𝑇𝑖𝑠𝑤−𝑇𝑖𝑟𝑤

𝑇𝑖𝑠𝑤−𝑇𝐼𝑇𝐸𝑆  (3.52) 
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where 𝑇𝐼𝑇𝐸𝑆 is the average storage water temperature in sensible charging mode, otherwise, 

𝑇𝐼𝑇𝐸𝑆 is the freezing temperature of water for all other stages. An effectiveness surface is 

generated from the simulation of full charge and discharge cycles at multiple increments of 

flowrates to obtain a function of the form: 

 

 

휀𝐼𝑇𝐸𝑆 = 𝑓 (𝑆𝑜𝐶, �̇�𝑖𝑤, 𝑠𝑔𝑛(∆𝑆𝑜𝐶)) (3.53) 

 

 

where 𝑠𝑔𝑛(∆𝑆𝑜𝐶) is the storage operation mode. The effectiveness for all flowrates in-between 

the increments is linearly interpolated. Three parameters index the generated surface: the SoC, 

the inlet water-glycol mixture flowrate, and the mode (charging/discharging). Simulation of I-

TES charge and discharge cycles under different water-glycol mixture flowrates and inlet 

temperatures are shown in Figure 3.12 (a) and (b) for charging and Figure 3.12 (c) and (d) for 

discharging. Note that the difference in effectiveness due to inlet temperature is negligible. 

Furthermore, daily storage use requires an inlet temperature close to -6℃, which can 

significantly depress chiller performance by 20-35% and cooling capacity by 30-40% relative to 

refrigeration mode. 
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Figure 3.12: Simulation of I-TES operation under different inlet conditions for 

charge mode with (a) charging rate and (b) charging effectiveness, and discharge 

mode with (c) discharge rate and (d) discharging effectiveness. I-TES is fully 

charged at an SoC of 1 and fully discharged at 0. 

3.3 Conclusion 
 

This chapter develops hybrid steady-state models for the major components in CWS in a 

primary-secondary configuration with WC chillers, cooling towers, and internal melt I-TES. 

Hybrid models combine the efficiency of data-driven models with the physical insight of 

physics-based models in a simpler formulation. This simpler formulation is achieved with 

empirically attained parameters that capture complex behavior that would otherwise be difficult 

to model physically accurately. A reformulated Gordon-Ng model was used to predict chillers' 
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performance, and their cooling capacity is estimated from the evaporator refrigerant thermal 

capacity. Analogous to the analysis of heat exchangers, the effectiveness approach is used for 

cooling coils, cooling towers, and I-TES. Fan and pumps are modeled using the simple fan and 

pump power law equations with pressure and flowrate modulation per the affinity laws. The 

models thus developed are applied to the equipment capacity sizing and design problem analyzed 

in Chapter 4 and dispatch and scheduling problems analyzed in Chapter 5. 
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Chapter 4: Design of an integrated WC CWS with I-TES, BESS, 

and on-site PV 

4.1 Introduction 

The decarbonization pathway analyzed in Chapter 2 from a utility-scale perspective must 

eventually be implemented on buildings with distinct energy needs, either as a part of the large-

scale deployment or building-scale solution to reduce emissions and electricity charges. This 

chapter examines the design problem of an integrated WC CWS with I-TES and BESS for better 

integration with on-site PV generation for cost and emissions reduction. The objective is to 

develop an optimization strategy for optimal equipment capacity sizing with greater 

consideration of the complex behavior and performance of CWS with I-TES than given in the 

literature, which includes deciding chillers' quantities, capacities, as well as compressor 

technology. The site analysis also provides insight into the distributed-scale renewable 

penetration and building emission reduction potential and examines how I-TES and BESS 

behave on a building scale. The role of carbon pricing policy instrument is re-examined to 

combat low electricity rates in Qatar. 

Two large generic buildings are examined for the optimization problem with dissimilar 

demand profiles: a residential building with dominant night-time electricity needs and a 

commercial building with diurnal cooling and electricity needs. These two buildings represent 

the two most common types of buildings in Qatar. The examination of large buildings serves two 

purposes, (i) large buildings in Qatar utilize WC CWS, which enables exploring the more 

complex version of the problem due to additional equipment such as cooling towers; (ii) large 

systems achieve higher returns and emissions reduction and are a primary target for 

decarbonization.  
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The standard approach for designing a cooling system is based on peak cooling demand 

day (design day) and energy standards [120]. More sophisticated approaches consider the intra-

annual variation of cooling load using energy simulation tools [121] and the uncertainty of peak 

load from internal generation [122]. A more careful examination of part-load performance, intra-

annual ambient temperature variations, and pump energy use can significantly reduce CWS's 

yearly energy consumption [123], [124]. That is partly because CWS are often operated away 

from the design point due to reduced cooling demands, leading to sub-optimal operations that 

conventional design methods do not adequately address. This issue can be further propagated 

when cooling systems are oversized due to parasitic loads.  

With hot summer and mild winter, the cooling load in Qatar is highly seasonal. Highly 

seasonal space-cooling accounts for most energy consumption in buildings in Qatar [20], [21]. 

Although the high seasonality naturally leads to a large sum of idle chiller capacity in the low 

cooling demand season, which could be used to store ice, the potential has not been investigated 

in the literature prior to this work. However, the capacity sizing problem of on-site PV 

generation with BESS has been examined [34], [35]. The studies find BESS economically 

unfavorable at the current subsidized electricity tariffs. 

 Otherwise, the analysis of building-scale PV with BESS and thermal energy storage falls 

under the smart building energy management systems problem, which is broadly investigated in 

the literature with varying degrees of complexity [74], [125]–[129]. Many studies recognize the 

potential of using I-TES for cost reduction but find BESS cost prohibitive. Deetjen et al. [74] 

developed a mixed-integer linear programming model for optimal dispatch and sizing of a 

residential central utility plant with a rooftop PV generation, shared I-TES, and BESS. The 

model accounts for chillers' performance degradation from ambient conditions and in ice-making 
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mode. Although the study finds cost reduction potential from the examined system, BESS was 

still determined to be economically unfavorable. Baraa et al. [129] analyzed micro-grid design 

with BESS and I-TES applied to a commercial building in the UAE, which shares a similar 

climate as Qatar, using a heuristically developed optimization strategy. The I-TES model was 

extracted from EnergyPlus, with linearized charge/discharge limits with respect to the storage 

SoC. Baraa concludes that I-TES further reduces the cost compared to BESS alone. Zhu et al. 

[130] proposed a bi-level optimization strategy to optimize electric and thermal energy storage 

capacity in buildings with a chilled water system. The upper level decides the capacities fed to a 

lower level to solve the dispatch problem and returns the operation cost. The optimization 

strategy utilizes the genetic algorithm for the upper level and mixed-integer linear programming 

with a piecewise linearized chiller model for the lower level. The study suggests that energy 

storage can significantly reduce cost and increase renewable penetration in the grid from load 

shifting. Xu et al. [131] developed a two-stage stochastic linear model for capacity and dispatch 

optimization of building-scale PV combined with BESS, I-TES, and heat storage. They consider 

a simple linear I-TES model with a single chiller. Xu finds TES to be economically favorable 

whereas BESS is not always feasible due to its higher cost and short life span.  

This chapter is structured as follows: Section 4.2 describes the methodology. First, 

cooling and electric loads are simulated for two generic buildings with dissimilar energy demand 

profiles. Next, the optimization strategy is developed, followed by the problem formulation. 

Section 4.3 presents and discusses the model results for the two buildings exposed to a range of 

carbon pricing. The chapter is summarized and concluded in Section 4.4.  
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4.2 Methodology  
 

The main framework is to design a WC CWS with I-TES and BESS for a building to 

allow for better integration of on-site PV generation. The on-site PV generation is utilized to 

meet daytime electricity and cooling needs. Excess generation can be stored in I-TES and BESS 

to supplement nighttime electricity and cooling needs; unutilized excess generation is curtailed 

and cannot be sold to the power grid. Figure 4.1 shows a simplified schematic of the design 

problem. As modeled in Chapter 3, the WC CWS is in a primary-secondary configuration. Due 

to the overlap of cooling needs with the solar insolation, chillers' cumulative cooling capacity 

can exceed the building's peak cooling load to allow for ice-making during the day. 

 

 

 

Figure 4.1: A schematic of an integrated WC CWS with I-TES, BESS, and on-site 

PV generation.  
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4.2.1 Simulation of building cooling and electric loads 
 

A Building’s cooling load is influenced by the interaction of weather with the building 

envelope, occupancy and occupants' activity level, and electric loads. The estimated cooling load 

in Chapter 2 is an aggregate load from all buildings with various uses, occupancy levels, and 

envelope constructions. Individual building cooling needs can radically deviate from the 

behavior of the aggregate load.  

In the literature, simulation methods of building cooling load can be classified into three 

categories [132]: (i) energy simulation models, (ii) data-driven models, and (iii) hybrid models. 

Energy simulation models are performed using software tools such as EnergyPlus, TRANSYS, 

and eQuest. They require complete knowledge of building envelope construction, orientation, 

and materials [133], [134]. They are often used for more sophisticated estimations of cooling 

loads that are not required for the analysis in this chapter. Data-driven models drive patterns 

from historical data using meteorological and occupancy data [135], [136], which Qatar lacks. 

Hybrid models, on the other hand, simplify the building description in heat models and are used 

for optimization problems [137], [138]. The simplification is achieved using (i) parameters that 

simplify the building description, such as thermal resistance, and (ii) general assumptions are 

made for building orientation and geometry. The hybrid model approach is used in this 

dissertation to simulate buildings cooling load profiles. The intention is to capture diurnal and 

interannual demand profiles for generic buildings in Qatar without explicit knowledge of 

building interior zoning, orientation, and construction details that would be required with energy 

simulation software. Nevertheless, the simulated load was validated using EnergyPlus building 

simulation software with arbitrarily decided building orientation and geometry, producing a 

comparable estimate. 
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In this chapter, the cooling load for a high rise (30-stories; gross floor area of 60,000 m2) 

is simulated using heat balance equations for two cases: (i) residential buildings with dominant 

nighttime electricity needs and (ii) commercial buildings with diurnal cooling and electricity 

needs. Details of the performed cooling load simulation and electric load estimation can be found 

in Appendix A. The building's electric load is estimated from the assumed occupancy level for 

different hours of the day with the typical energy use from appliances and devices. Both 

simulated residential and commercial buildings have a yearly cooling need of 19.5 GWhth (325 

kWhth/m
2) using the 2016 meteorological data and electricity use of 4.5 GWh (75 kWh/m2). 

Although meteorological conditions still drive seasonal variations, daily variations can be anti-

correlated as people move between the two spaces, from their residences to their places of work 

and later back to their residences. These daily differences in cooling and electricity needs can 

influence the storage needed for load shifting. Buildings with more dominant diurnal electricity 

and cooling needs can benefit from better alignment with PV generation and require less storage 

capacity. The resultant estimated cooling intensity (cooling load normalized by floor area) agrees 

with the reported data in the literature when assuming a nominal AC system COP of 2.5-3. 

Household electricity consumption in Qatar has only been reported in the literature a few 

times [20], [139], and they combine electric loads from all appliances and devices. Nevertheless, 

the electric load from space-cooling can be crudely estimated by deducting the electric load on 

non-cooling days or days with minimal cooling needs. Driven by space-cooling, about a 5-fold 

increase in electricity load is observed between winter and summer. Furthermore, demand spikes 

are observed in the morning between 5 and 7 AM, late afternoon between 3 and 5 PM, and 

evening between 6 and 9 PM, which correlates with building occupancy. These reported data and 

demand profiles are used in constructing the building's electric load. Simulated cooling loads for 
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three days in winter, spring, and summer are shown in Figure 4.2 for the residential building and 

Figure 4.3 for the commercial building.  

 

 

 

Figure 4.2: Simulated residential building cooling load for three days in winter, 

spring, and summer using the 2016 meteorological data. Electric and thermal loads 

are correlated with higher building occupancy in the evening.   
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Figure 4.3: Simulated commercial building cooling load for three days in winter, 

spring, and summer using the 2016 meteorological data. Electric and thermal loads 

are correlated with higher building occupancy during the day. 
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4.2.2 Optimization strategy 
 

The equipment capacity sizing problem entails evaluating equipment performance and 

estimating their energy use, which requires solving the scheduling and dispatch problem. The 

scheduling and dispatch problem is highly non-linear, stemming from the interaction of multiple 

decision variables, and involves many decision variables at each time step. For example, WC 

chiller power use is a function of 4 parameters at each time step: supply temperature setpoint 

(𝑇𝑠𝑤), entering condenser temperature (𝑇𝑐𝑠𝑤), loading (𝑃𝐿𝑅), and the on/off switch (𝑂𝑁𝑐ℎ𝑙), in 

addition to the chiller capacity decision variable (𝑄𝑐ℎ𝑙,𝑑𝑒𝑠). Likewise, I-TES charge and 

discharge rates are a function of 3 parameters at each time step: the inlet temperature (𝑇𝑖𝑠𝑤), 

supply flowrate (�̇�𝑖𝑤), and the state of charge (𝑆𝑜𝐶), in addition to the storage capacity decision 

variable represented as the number of modular tanks (𝑁𝐼𝑇𝐸𝑆).  

A problem with this level of complexity is extremely computationally demanding to be 

solved using traditional gradient-based non-linear optimization strategies or more tolerant meta-

heuristics optimization algorithms. The approach is to decompose the problem into a bi-level 

formulation to reduce the problem's complexity and simplify the components model, particularly 

the chiller and I-TES models. The decomposition of the problem into bi-level formulation 

enables decoupling the capacity sizing problem from the scheduling and dispatch problem. The 

scheduling and dispatch problem, used to estimate electricity charges, can be simplified in a 

mixed-integer linear program with piecewise linearized performance curves. Mixed-integer 

linear programs are a more complex form of linear programming, and they retain some of their 

desirable advantages, such as the ability to solve large problems with many variables and the 

guaranteed optimality.  
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A flowchart of the developed bi-objective optimization strategy is shown in Figure 4.4. 

The upper level minimizes annual system expenditures and decides the installed capacities of 

chillers, BESS, I-TES, and on-site PV using a non-linear optimizer. Piece-wise linearization is 

applied to the simulated components' performance curves to obtain each segment's slopes and 

intercepts. The slopes and intercepts of the piece-wise linear segments are then fed to the mixed-

integer linear program in the lower level to solve the equipment scheduling and dispatch problem 

and return electricity charges. The returned electricity charges to the upper-level optimizer are 

used to update the capacities decision variables for the next iteration.  

 

 

Figure 4.4: Bi-level optimization formulation. The upper level minimizes annual 

system costs and decides the installed capacities, and the lower level solves the 

equipment scheduling and dispatch problem in a mixed-integer linear programming 

formulation and returns the electricity charges. 
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Meta-heuristic algorithms are commonly used for non-convex and non-linear problems 

like the confronted equipment capacity sizing problem in the upper level. Meta-heuristic 

algorithms are broad and work well for many applications. They tend to prop the search space 

using a population of potential solutions. Examples are particle swarm optimization and genetic 

algorithm. Particle swarm optimization is better suited for upper-level due to its more efficient 

use of computational resources [140], [141]. Particle swarm optimization is a search heuristic 

evolutionary algorithm that relies on a swarm of randomly guessed solutions, termed particles 

[142]. The location of each particle is guided toward the best-known global positions. Over many 

iterations, this tends to move the swarm toward the global minimum. Evolutionary algorithms 

are widely used in air conditioning problems [123], [130] as these problems tend to involve 

complex models that cannot be reliably solved using traditional gradient-based optimization 

strategies without over-simplifications. 

4.2.2.1 Simplified chiller model 

The derived Gordon-Ng chiller's model in Chapter 3 can be simplified to a function of 

two decision variables: loading and the on/off switch when the supply and entering condenser 

temperatures are pre-determined, which is often done in the literature in optimal chiller loading 

problems [143]–[145]. The entering condenser temperature is related to the wet-bulb 

temperature; a reasonable approximation is to use the design tower approach temperature to infer 

their relationship, as described below: 

 

 

𝑇𝑝,𝑡
𝑐𝑠𝑤 = 𝑇𝑝,𝑡

𝑤𝑏 + ∆𝑇𝑎𝑝𝑝,𝑑𝑒𝑠 (4.1) 

 

where subscripts 𝑝 is the scenario index set {1, 2, 3, 4, 5} denoted by 𝒫 that corresponds to 

representative days of the year and 𝑡 is the time step index set {1, 2, 3, … , 24} denoted by 𝒯 and 
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represents hours of the day, and ∆𝑇𝑎𝑝𝑝,𝑑𝑒𝑠 is the tower design approach temperature for the 

cooling tower, typically in the order of 3℃. On the other hand, the supply temperature is set 

based on the operating mode of the chillers: ice-making or refrigeration. In ice-making, the 

temperature setpoint is assumed to be at the standard ice-making temperature of -6℃. On the 

other hand, in refrigeration mode, the temperature depends on the decided evaporator 

temperature differential and design return temperature. The temperature setpoint in refrigeration 

mode is as follows: 

 

 

𝑇𝑠𝑤 = 𝑇𝑟𝑤,𝑑𝑒𝑠 − ∆𝑇𝑒𝑣𝑎𝑝,𝑑𝑒𝑠, (Refrigeration mode)  (4.2) 

 

 

where 𝑇𝑟𝑤,𝑑𝑒𝑠 is the design return temperature established from building requirements and 

selected coil and ∆𝑇𝑒𝑣𝑎𝑝,𝑑𝑒𝑠 is the decided design evaporator temperature differential. As 

described by the affinity law, the decided temperature differential is inversely related to the 

evaporator water flowrate, which impacts pump energy use.  

 A piecewise linearization is then applied to the simplified model to predict chillers' 

performance under different loading conditions. For chillers equipped with a VSD, the 

performance curve is captured by two piecewise segments, whereas for chillers without VSD, a 

single segment was sufficient. Figure 4.5 shows the performance curves obtained for a 383-tons 

Carrier 19XR chiller with a VSD-equipped centrifugal compressor using the Gordon-Ng model 

at different ambient wet-bulb temperatures in both ice-making and refrigeration modes, 

overlayed with piecewise linear segments. Illustrations of the piece-wise linearization for non-

VSD-equipped chillers can be found in Appendix B.   
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Figure 4.5: Illustration of piece-wise linearization for the 383-tons Carrier 19XR 

chiller with VSD-equipped centrifugal compressor in (a) ice-making mode with a 

setpoint temperature of -6℃ and (b) refrigeration mode with a setpoint temperature 

of 7℃, at three ambient wet-bulb temperatures. 
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The power consumed by chillers is determined from the piecewise linear slopes and 

intercepts subject to operating mode as follows:  

 

 

𝑃𝑝,𝑡
𝑐ℎ𝑙 = ∑ [𝑎𝑝,𝑡,𝑥,𝑗,𝑚,𝑒

𝑐ℎ𝑙 �̇�𝑝,𝑡,𝑥,𝑗,𝑚,𝑒
𝑐ℎ𝑙 + 𝑏𝑝,𝑡,𝑥,𝑗,𝑚,𝑒

𝑐ℎ𝑙 𝐵𝑝,𝑡,𝑥,𝑗,𝑚,𝑒
𝑐ℎ𝑙 ]𝑥∈𝒳,𝑗∈ℕ,𝑚∈ℳ,𝑒∈ℰ , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (4.3) 

 

 

where subscripts 𝑥 is the chiller compressor type index set {1, 2, 3} denoted by 𝒳 that 

corresponds to 1) centrifugal without VSD, 2) centrifugal with VSD, and 3) screw without VSD, 

and 𝑗 is the chiller index set {1, 2, 3, 4,….} such that 𝑗 ∈ ℕ, 𝑚 is the operating mode index set 

{1, 2} denoted by ℳ and corresponds to 1) refrigeration mode and 2) ice-making mode, and 𝑒 is 

the segment index set {1, 2} denoted by ℰ. �̇�𝑝,𝑡,𝑥,𝑗,𝑚,𝑒
𝑐ℎ𝑙  is the chiller load, 𝑎𝑥,𝑗,𝑚,𝑒

𝑐ℎ𝑙  and 𝑏𝑥,𝑗,𝑚,𝑒
𝑐ℎ𝑙  are 

the piecewise linearization segment slope and intercept, respectively, and 𝐵𝑝,𝑡,𝑥,𝑗,𝑚,𝑒
chl  is a binary 

decision variable to toggle on the intercept for the corresponding activated segment. The 

following constraint restricts the number of activated segments for operating chillers: 

 

 
 

∑ 𝐵𝑝,𝑡,x,𝑗,𝑚,𝑒
𝑐ℎ𝑙

𝑚∈ℳ,𝑒∈ℰ ≤ 𝑂𝑁𝑝,𝑡,𝑥,𝑗
𝑐ℎ𝑙 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, ∀𝑥 ∈ 𝒳, 𝑗 ∈ ℕ (4.4) 

 

 

The segment is activated by the decided chiller load, which is constrained within the segment's 

upper and lower loading bounds as follows: 

 

 

𝑄𝑝,𝑡,𝑥,𝑗,𝑚,𝑒
𝑐ℎ𝑙 ≤ 𝑃𝐿𝑅𝑝,𝑡,𝑥,𝑗,𝑚,𝑒

𝑢𝑙  𝑄𝑥,𝑗,𝑚,𝑒
𝑐ℎ𝑙,𝑑𝑒𝑠 𝐵𝑝,𝑡,𝑥,𝑗,𝑚,𝑒

𝑐ℎ𝑙 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, ∀𝑥 ∈ 𝒳, 𝑗 ∈ ℕ, 𝑚 ∈ ℳ, 𝑒 ∈ ℰ (4.5) 

 

 

𝑄𝑝,𝑡,𝑥,𝑗,𝑚,𝑒
𝑐ℎ𝑙 ≥ 𝑃𝐿𝑅𝑝,𝑡,𝑥,𝑗,𝑚,𝑒

𝑙𝑙  𝑄𝑥,𝑗,𝑚,𝑒
𝑐ℎ𝑙,𝑑𝑒𝑠 𝐵𝑝,𝑡,𝑥,𝑗,𝑚,𝑒

𝑐ℎ𝑙 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, ∀𝑥 ∈ 𝒳, 𝑗 ∈ ℕ, 𝑚 ∈ ℳ, 𝑒 ∈ ℰ (4.6) 
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𝑃𝐿𝑅𝑝,𝑡,𝑥,𝑗,𝑚,𝑒
𝑢𝑙  and 𝑃𝐿𝑅𝑝,𝑡,𝑥,𝑗,𝑚,𝑒

𝑙𝑙  are the upper and lower part-load ratio limit for each piecewise 

linear segment. For the last segment, 𝑃𝐿𝑅𝑝,𝑡,𝑥,𝑗,𝑚,𝑒
𝑙𝑙  is the chiller maximum loading estimated 

from Equation (3.13). 

Chillers are restricted to operating in ice-making mode when storing ice and in 

refrigeration mode otherwise, as described by the following two constraints: 

 

 

∑ 𝐵𝑝,𝑡,x,𝑗,𝑚,𝑒
𝑐ℎ𝑙

𝑥∈𝒳,𝑗∈ℕ,𝑒∈ℰ ≤ 𝑁𝑐ℎ𝑙(1 − 𝐵𝑝,𝑡
𝑖𝑐𝑒), ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, 𝑚 = 1 (4.7)  

 

 

∑ 𝐵𝑝,𝑡,x,𝑗,𝑚,𝑒
𝑐ℎ𝑙

𝑥∈𝒳,𝑗∈ℕ,𝑒∈ℰ ≤ 𝑁𝑐ℎ𝑙𝐵𝑝,𝑡
𝑖𝑐𝑒 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯,𝑚 = 2  (4.8) 

 

 

𝑁𝑐ℎ𝑙 is the number of chillers and 𝐵𝑝,𝑡
𝑖𝑐𝑒 is a binary variable that toggles the ice-making mode. 

The total cooling provided by operating chillers is a simple summation of all segments and 

modes as follows:  

 

 

�̇�𝑝,𝑡
𝑐ℎ𝑙 = ∑ �̇�𝑝,𝑡,𝑥,𝑗,𝑚,𝑒

𝑐ℎ𝑙
𝑥∈𝒳,𝑗∈ℕ,𝑚∈ℳ,𝑒∈ℰ , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (4.9) 

 
 

4.2.2.2 Simplified I-TES model 

 

I-TES charge and discharge rates can be simplified to a function of the SoC when the 

inlet temperature and flowrates are pre-determined. The chiller operating mode (ice-

making/refrigeration) determines the temperature of the water-glycol mixture received by the 

storage. On the other hand, the flowrate is set to the maximum flowrate. The resultant I-TES 

charge and discharge rates curves represent the maximum possible heat rates, which are used to 

constrain decided storage charge and discharge rates. The maximum flowrate is the total flowrate 
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when all chillers are operating, restricted to the flowrates the storage tank is designed to tolerate, 

which are given by: 

 

 

�̇�𝑝,𝑡
𝑖𝑤 = min[�̇�𝑖𝑤,𝑚𝑎𝑥, ∑ �̇�𝑝,𝑡,𝑥,𝑗

𝑠𝑤
𝑥∈𝒳,𝑗∈ℕ ], ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (4.10) 

 

 

�̇�𝑖𝑤,𝑚𝑎𝑥 is the maximum flowrate the I-TES tank is designed to tolerate. Similar to the 

simplified chiller model, piecewise linearization is applied to the yielded performance curve, 

which is given by:  

 

 

𝑆𝑝,𝑡,𝑓,𝑚
𝑙𝑖𝑚 ≤ 𝑎𝑓,𝑚

𝑆 (
𝑆𝑡

𝐶𝐼𝑇𝐸𝑆) + 𝑏𝑓,𝑚
𝑆 𝐵𝑝,𝑡,𝑓,𝑚

𝐼𝑇𝐸𝑆 + 𝑀(1 − 𝐵𝑝,𝑡,𝑓,𝑚
𝐼𝑇𝐸𝑆 ), ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, 𝑓 ∈ ℱ,𝑚 ∈ ℳ  (4.11) 

 

 

𝑆𝑝,𝑡,𝑓,𝑚
𝑙𝑖𝑚 ≤ 𝑀𝐵𝑝,𝑡,𝑓,𝑚

𝐼𝑇𝐸𝑆 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, 𝑓 ∈ ℱ,𝑚 ∈ ℳ (4.12) 

 

  

where subscripts 𝑓 is the segment index set {1, 2} denoted by ℱ, 𝑎𝑓,𝑚
𝑆  and 𝑏𝑓,𝑚

𝑆  are the piecewise 

linear slope and intercept, respectively, 𝑀 is an arbitrarily large number (commonly termed Big 

M), and 𝐶𝐼𝑇𝐸𝑆 is the installed net usable I-TES capacity. The supply setpoint temperature in 

refrigeration mode dictates the I-TES sensible stage capacity. The net usable I-TES capacity is 

thus determined from the number of  modular ice tanks and their net usable capacity as follows: 

 

 

𝐶𝐼𝑇𝐸𝑆 = 𝑁𝐼𝑇𝐸𝑆 × 𝐶𝐶𝑎𝑙𝑚𝑎𝑐 (4.13)  

 

 

where 𝑁𝐼𝑇𝐸𝑆 is the number of tanks and is not restricted to a whole number and 𝐶𝐶𝑎𝑙𝑚𝑎𝑐 is the 

net usable capacity of each tank (83-TR-hr nominal). 𝐵𝑝,𝑡,𝑓,𝑚
𝐼𝑇𝐸𝑆  is a binary decision variable to 
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toggle between the activated relevant segments in each mode depending on the SoC, as described 

by the following two expressions: 

 

 

𝑆𝑝,𝑡 ≤ 𝑆𝑜𝐶𝑓,𝑚
𝑢𝑙  𝐶𝐼𝑇𝐸𝑆 𝐵𝑝,𝑡,𝑓,𝑚

𝐼𝑇𝐸𝑆 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, 𝑓 ∈ ℱ,𝑚 ∈ ℳ (4.14)   

 

 

𝑆𝑝,𝑡 ≥ 𝑆𝑜𝐶𝑓,𝑚
𝑙𝑙  𝐶𝐼𝑇𝐸𝑆 𝐵𝑝,𝑡,𝑓,𝑚

𝐼𝑇𝐸𝑆 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, 𝑓 ∈ ℱ,𝑚 ∈ ℳ (4.15)  

 

 

where 𝑆𝑜𝐶𝑓,𝑚
𝑢𝑙  and 𝑆𝑜𝐶𝑓,𝑚

𝑙𝑙  are the upper and lower limits SoC for each segment. Only one 

segment can be activated at any given time, as described by the following constraint: 

 

 

∑ 𝐵𝑝,𝑡,𝑓,𝑚
𝐼𝑇𝐸𝑆

𝑓∈ℱ = 1, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯,𝑚 ∈ ℳ (4.16)  

 

 

The decided storage charge and discharge rates are limited to the computed maximum charge 

and discharge rates. However, since the analysis is done on an hourly basis in which the storage 

charge and discharge rates can change considerably, the decided charge and discharge rates are 

restricted based on the SoC at the current and next time step as follows: 

 

 

𝑆𝑝,𝑡
𝑐ℎ𝑠 ≤ ∑ [

1

2
(𝑆𝑝,𝑡,𝑓,𝑚

𝑙𝑖𝑚 + 𝑆𝑝,𝑡+1,𝑓,𝑚
𝑙𝑖𝑚 )]𝑓∈ℱ , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯,𝑚 = 1 (4.17) 

 

 

𝑆𝑝,𝑡
𝑑𝑖𝑠 ≤ ∑ [

1

2
(𝑆𝑝,𝑡,𝑓,𝑚

𝑙𝑖𝑚 + 𝑆𝑝,𝑡+1,𝑓,𝑚
𝑙𝑖𝑚 )]𝑓∈ℱ , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯,𝑚 = 2 (4.18) 

 

  

𝑆𝑝,𝑡
𝑐ℎ𝑠 and 𝑆𝑝,𝑡

𝑑𝑖𝑠 are the I-TES decided charge and discharge rates, respectively. I-TES is 

constrained to follow the operating mode of the chillers. The storage receives a sub-freezing inlet 
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water-glycol mixture when charging and the standard supply water temperature when either 

discharging or idling as follows: 

 

 

𝑆𝑝,𝑡
𝑐ℎ𝑠 ≤ 𝑀𝐵𝑝,𝑡

𝑖𝑐𝑒, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (4.19) 

 

 

𝑆𝑝,𝑡
𝑑𝑖𝑠 ≤ 𝑀(1 − 𝐵𝑝,𝑡

𝑖𝑐𝑒), ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (4.20) 

 

 

Figure 4.6 shows the I-TES charge rate curve in (a) and the discharge rate curve in (b) 

overlayed with piecewise linear segments. The discharge rate curve is well captured with three 

segments compared to the four segments required by the charge rate curve. The segments 

overlap with the previously discussed three stages of charging and discharging in Chapter 3. The 

amount of stored thermal energy in I-TES is balanced in the following constraint:  

 

 

𝑆𝑝,𝑡 − 𝜂𝐼𝑇𝐸𝑆,𝑠𝑑𝑖𝑠𝑆𝑝,𝑡−1 = 𝑆𝑝,𝑡
𝑐ℎ𝑠  − 𝑆𝑝,𝑡

𝑑𝑖𝑠, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (4.21)  

 

 

where 𝜂𝐼𝑇𝐸𝑆,𝑠𝑑𝑖𝑠 is the I-TES self-discharge efficiency. 
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Figure 4.6: Piece-wise linearization applied to I-TES maximum charge and 

discharge rates. 
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4.2.2.3 Simplified auxiliary components models 

 

 Other simplifications can be made to estimate the power use of auxiliary equipment such 

as cooling towers, cooling coils, and pumps. The power consumed by the cooling tower fan can 

be assumed to vary with the chiller load analogous to fixed-speed tower fans and is given by: 

 

 

𝑃𝑝,𝑡
𝑡𝑤𝑟 = 𝑃𝑡𝑤𝑟,𝑑𝑒𝑠 �̇�𝑝,𝑡

𝑐ℎ𝑙

�̇�𝑡𝑤𝑟,𝑑𝑒𝑠  , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (4.22) 

 

 

𝑝𝑡𝑤𝑟,𝑑𝑒𝑠 is the power consumed by the tower when running at maximum speed (𝑉𝑆𝐷𝑡𝑤𝑟 = 1) in 

Equation (3.29) in Chapter 3, and 𝑄𝑡𝑤𝑟,𝑑𝑒𝑠 is the nominal thermal capacity of the tower. 

Although the power consumed by the cooling tower varies cubically with the flowrate, as 

described by the affinity laws, a simplification of this variability is expected only to produce a 

small error, given that the cooling power consumption is minor relative to that of the chillers and 

other auxiliary equipment. The cooling coil and second pumps power use vary with the cooling 

demand per the affinity laws, which are as follows: 

 

 

𝑃𝑝,𝑡
𝑑𝑖𝑠𝑡 = (

�̇�𝑝,𝑡
𝒟

max
𝑝∈𝒫,𝑡∈𝒯

[�̇�𝑝,𝑡
𝒟 ]

)

3

[𝑃𝑠𝑝,𝑑𝑒𝑠 + 𝑃𝑐𝑓,𝑑𝑒𝑠], ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (4.23) 

 

 

�̇�𝑝,𝑡
𝒟  is the cooling demand, 𝑃𝑠𝑝,𝑑𝑒𝑠 and 𝑃𝑐𝑓,𝑑𝑒𝑠 are the rated coil and secondary pump power in 

Equations (3.18) and (3.49) when running at maximum speed (𝑉𝑆𝐷𝑠𝑝 = 1 and  𝑉𝑆𝐷𝑐𝑓 = 1), 

respectively.  

The decided design evaporator and condenser temperature differential adjust the pumps’ 

power use per the affinity laws, as discussed in Section 3.2.2 in Chapter 3. The required power 
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by the chillers’ pumps is a linear function of their constant, as described by the following 

equation: 

 

 

𝑃𝑝,𝑡
𝑝 = ∑ [𝑃𝑝,𝑡,𝑥,𝑗 

𝑝𝑝,𝑑𝑒𝑠 + 𝑃𝑝,𝑡,𝑥,𝑗 
𝑐𝑝,𝑑𝑒𝑠] ∙ 𝑂𝑁𝑝,𝑡,𝑗,𝑥 

𝑐ℎ𝑙
𝑥∈𝒳,𝑗∈ℕ , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (4.24) 

 

 

𝑃𝑝,𝑡,𝑥,𝑗 
𝑝𝑝,𝑑𝑒𝑠

 and 𝑃𝑝,𝑡,𝑥,𝑗 
𝑐𝑝,𝑑𝑒𝑠

 are the primary and condenser pump power consumption for each chiller, 

which are computed from Equations (3.16) and (3.17), respectively, and they only operate with 

their associated chillers. The following equation computes the total power consumed by auxiliary 

equipment as follows: 

 

 

𝑃𝑝,𝑡
𝐴𝑢𝑥 = 𝑃𝑝,𝑡

𝑝 + 𝑃𝑝,𝑡
𝑑𝑖𝑠𝑡 + 𝑃𝑝,𝑡

𝑡𝑤𝑟 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (4.25) 

 

4.2.2.4 BESS model 

 

Similar to the utility-scale analysis in Chapter 2, a linear BESS model is developed. 

Although BESS charge and discharge rates are a function of the SoC and are impacted by 

degradation, the performance can be well captured in a linear model with fixed charge and 

discharge efficiencies [74]. No consideration is made for depth of discharge as BESS capacity 

(𝐶𝐵𝐸𝑆𝑆) is taken to represent the net usable capacity. Charge and discharge rates are restricted to 

that of a 4 hours battery (power-to-energy capacity ratio of 1/4). Stored energy in BESS is 

balanced in the following constraints: 

 

 

ℬ𝑝,𝑡
𝑠 − 𝜂𝐵𝐸𝑆𝑆,𝑠𝑑𝑖𝑠ℬ𝑝,𝑡−1

𝑠 = 𝜂𝐵𝐸𝑆𝑆,𝑐ℎ𝑠ℬ𝑝,𝑡
𝑐ℎ𝑠 −

1

𝜂𝐵𝐸𝑆𝑆,𝑑𝑖𝑠 ℬ𝑝,𝑡
𝑑𝑖𝑠, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯  (4.26)  
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where ℬ𝑝,𝑡
𝑠  is the stored electric energy and 𝜂𝐵𝐸𝑆𝑆,𝑠𝑑𝑖𝑠, 𝜂𝐵𝐸𝑆𝑆,𝑐ℎ𝑠, and 𝜂𝐵𝐸𝑆𝑆,𝑑𝑖𝑠 are the self-

discharge, charge, and discharge efficiencies, respectively. The maximum charge and discharge 

rate are restricted by the following two constraints:  

 

 

ℬ𝑝,𝑡
𝑠 ≤ 𝐶𝐵𝐸𝑆𝑆 , ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯 (4.27)  

 

 

ℬ𝑝,𝑡
𝑐ℎ𝑠 + ℬ𝑝,𝑡

𝑑𝑖𝑠 ≤ (
1

4
) × 𝐶𝐵𝐸𝑆𝑆 , ∀𝑝, ∀𝑡 (4.28) 

 

 

where ℬ𝑝,𝑡
𝑐ℎ𝑠 and ℬ𝑝,𝑡

𝑑𝑖𝑠 are BESS charge and discharge rates, respectively. To disregard solutions 

with concurrent charging and discharging, a small cost of 10-3 $/MW is applied to the BESS 

charge rate, ℬ𝑝,𝑡
𝑐ℎ𝑠, in objective function in the lower level, which does not influence the cost-

optimal system. 

4.2.3 Problem formulation 
 

The objective of the optimization is to minimize annual system costs from Capex and 

OpEx by utilizing lower-cost PV generation for carbon emissions reduction. The cost function 

that is to be minimized by the upper-level optimizer:  

 

 

𝑚𝑖𝑛 𝐶𝑜𝑠𝑡 = 𝑐𝐵𝐸𝑆𝑆𝐶𝐵𝐸𝑆𝑆 𝑖𝑟(𝑖𝑟+1)𝑦𝑟𝑏

(1+𝑖𝑟)𝑦𝑟𝑏−1
+ [𝑐𝑃𝑉𝐶𝑃𝑉 + 𝑐𝐼𝑇𝐸𝑆𝐶𝐼𝑇𝐸𝑆 + ∑ 𝑐𝑥

𝑐ℎ𝑙𝑄𝑥,𝑗
𝑐ℎ𝑙,𝑑𝑒𝑠

𝑥∈𝒳,𝑗∈ℕ +

∑ 𝑐𝑃,𝐹𝑆𝐶𝑗
𝑝

𝑗∈ℕ + 𝑐𝑃,𝑉𝑆𝐷𝐶𝑠𝑝 + 𝑐𝑡𝑤𝑟𝐶𝑡𝑤𝑟]
𝑖𝑟(𝑖𝑟+1)𝑦𝑟

(1+𝑖𝑟)𝑦𝑟−1
+ 𝑐𝑃𝑉,𝑂𝐶𝑃𝑉 + 𝑂𝑝𝐸𝑥 (4.29) 

 

 

where 𝑐𝑥
𝑐ℎ𝑙 , 𝑐𝑃𝑉, 𝑐𝐵𝐸𝑆𝑆, 𝑐𝐼𝑇𝐸𝑆, 𝑐𝑃,𝐹𝑆, 𝑐𝑃,𝑉𝑆𝐷, 𝑐𝑡𝑤𝑟 are installed chillers, PV, BESS, I-TES, chiller 

pumps, secondary pumps, and cooling towers Capex, respectively, and 𝐶𝑃𝑉, 𝐶𝑗
𝑝

, 𝐶𝑠𝑝, 𝐶𝑡𝑤𝑟 are 
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the installed PV, chiller pumps, secondary pumps, and cooling towers capacities, respectively, 

𝑐𝑃𝑉,𝑂 is the yearly OpEx for installed PV, 𝑖𝑟 is the interest rate, 𝑦𝑟𝑏 is the BESS's service life, 

and 𝑦𝑟 is the service life of the remaining equipment. OpEx is the estimated yearly electricity 

charge determined by solving the scheduling and dispatch problem, which are given by:  

 

 

𝑚𝑖𝑛 𝑂𝑝𝐸𝑥 = 𝑐𝑒 ∑ 𝐺𝑇𝑝,𝑡𝑁𝑝
𝑑𝑎𝑦𝑠

𝑝∈𝒫,𝑡∈𝒯 + 𝑐𝑃 ∑ 𝐺𝑇𝑝
𝑃 𝑁𝑝

𝑚𝑜𝑠
𝑝∈𝒫  (4.30) 

 

 

𝑐𝑒 ∑ 𝐺𝑇𝑝,𝑡𝑁𝑝
𝑑𝑎𝑦𝑠

𝑝∈𝒫,𝑡∈𝒯  and 𝑐𝑃 ∑ 𝐺𝑇𝑝,𝑡𝑁𝑝
𝑚𝑜𝑠

𝑝∈𝒫,𝑡∈𝒯  are the electricity charges from energy use 

and demand charges, respectively, 𝐺𝑇𝑝,𝑡 is the electricity consumed from the grid, 𝐺𝑇𝑝
𝑃 is peak 

electricity demand, 𝑁𝑝
𝑑𝑎𝑦𝑠

 and 𝑁𝑝
𝑚𝑜𝑠 are the number of days and months represented by scenario 

𝑝, respectively, 𝑐𝑒 and 𝑐𝑃 are electricity price and peak demand charge, respectively,  

The pump's installed capacity in Equation (4.29) is the rated power calculated in Section 

4.2.2.3. For fixed-speed pumps, the capacities are their rated power as obtained from Equations 

(3.16) and (3.17), which are given by: 

 
 

𝐶𝑗
𝑝 = 𝑃𝑗

𝑐𝑝,𝑑𝑒𝑠 + 𝑃𝑗
𝑝𝑝,𝑑𝑒𝑠

 (4.31) 

 

 

For variable speed pumps, the rated power is the power when running at the maximum speed 

(𝑉𝑆𝐷𝑠𝑝 = 1) as follows: 

 

 

𝐶𝑠𝑝 = 𝑃𝑠𝑝,𝑑𝑒𝑠 (4.32) 
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The cooling towers are sized to reject the heat given when all chillers are operating at 

their designed capacity: 

 

 

𝐶𝑡𝑤𝑟 =
∆𝑇𝑐𝑜𝑛𝑑,𝑟𝑒𝑓

∆𝑇𝑐𝑜𝑛𝑑,𝑑𝑒𝑠
∑ 𝑄𝑥,𝑗

𝑐ℎ𝑙,𝑑𝑒𝑠
𝑥∈𝒳,𝑗∈ℕ (1 +

1

𝐶𝑂𝑃
𝑥,𝑗
𝑟𝑒𝑓) (4.33) 

 

 

where ∆𝑇𝑐𝑤,𝑑𝑒𝑠 is the chiller design condenser temperature differential. The cooling tower's 

physical size is assumed to vary linearly with the design condenser temperature differential, 

which correlates with the condenser water flowrate. 

The upper-level optimization is only constrained by a minimum and maximum chiller 

capacity: 

 

 

𝑄𝑐ℎ𝑙,𝑑𝑒𝑠 ≤ 𝑄𝑥,𝑗
𝑐ℎ𝑙,𝑑𝑒𝑠 ≤ 𝑄𝑐ℎ𝑙,𝑑𝑒𝑠 (4.34) 

 

 

where 𝑄𝑐ℎ𝑙,𝑑𝑒𝑠 and 𝑄𝑐ℎ𝑙,𝑑𝑒𝑠 are the lower and upper nominal chiller capacity limits and are taken 

to be 350 and 900 tons for the examined problem, respectively. The lower limit is based on the 

current market offering for WC chillers, and the upper limit is set to reduce the risk of loss of 

service due to downtime and maintenance.  

For the lower-level problem, three constraints were applied. The first lower-level 

constraint balances the building electricity demand with generation as follows: 

 

 

𝑃𝑝,𝑡
𝑐ℎ𝑙 + 𝑃𝑝,𝑡

𝐴𝑢𝑥 + ℬ𝑝,𝑡
𝑐ℎ𝑠 + 𝑃𝑉𝑝,𝑡

𝑐𝑢𝑟𝑡 + ℒ𝐸𝑙𝑒𝑐 = 𝜂𝐼 𝐼𝑝,𝑡 𝐶
𝑃𝑉 + ℬ𝑝,𝑡

𝑑𝑖𝑠 + 𝐺𝑇𝑝,𝑡, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯  (4.35) 
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where 𝑃𝑉𝑝,𝑡
𝑐𝑢𝑟𝑡 is the curtailed PV generation, ℒ𝐸𝑙𝑒𝑐 is the building's non-cooling load, and 𝐼𝑝,𝑡 is 

the incident solar insolation on an inclined surface at the optimal fixed-tilt angle at Qatar latitude 

of 25°. The second constraint balances chiller loading with building demand and I-TES dispatch 

amount and is described by: 

 

 

�̇�𝑝,𝑡
𝑐ℎ𝑙 + 𝑆𝑝,𝑡

𝑑𝑖𝑠 = �̇�𝑝,𝑡
𝒟 + 𝑆𝑝,𝑡

𝑐ℎ𝑠, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯  (4.36) 

 

 

Since the first hour of the day is an arbitrary decision, the storage can have a non-zero initial SoC 

as long as it returns to it at the end of the day in each scenario, which is given by: 

 

 

𝑆𝑝,𝑡=1 = 𝑆𝑝,𝑡=24, ∀𝑝 ∈ 𝒫 (4.37) 

 

4.2.4 Model parameters 
 

The considered characteristics parameters in the model are tabulated in Table 4.1. Similar 

to the utility-scale analysis, a high-efficiency inverter with 98% efficiency is assumed for on-site 

PV generation [83]. A 4-hour BESS was considered with charge and discharge efficiencies of 

92% and a self-discharge efficiency of 99.9% [84], [85]. The charge and discharge efficiencies 

also account for BESS inverter losses. 

Table 4.1: Assumed characteristics parameters 

 

Item Parameter Symbol Value 

PV Inverter efficiency 𝜂𝐼 98% 

BESS 

Charge efficiency 𝜂𝐵𝐸𝑆𝑆,𝑐ℎ𝑠 92% 

Discharge efficiency 𝜂𝐵𝐸𝑆𝑆,𝑑𝑖𝑠 92% 

Self-discharge efficiency 𝜂𝐵𝐸𝑆𝑆,𝑠𝑑𝑖𝑠 99.9% 

I-TES Self-discharge efficiency 𝜂𝐼𝑇𝐸𝑆,𝑠𝑑𝑖𝑠 99.9% 
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The considered financial parameters in the model are tabulated in Table 4.2. Installed PV 

Capex was assumed to be higher than in the utility-scale at $600/kWp,dc, and OpEx to be 

$10/kWp,dc/yr. for fixed-tilt. Based on current market prices, small-scale 4-hour BESS was taken 

at $300/kWh. Benefiting from access to affordable capital, the system was assumed to be 

financed at a 3.5% interest rate. Service life was taken to be 25 years for I-TES, ice chillers, and 

PV and 10 years for the BESS. Similarly, based on current market offerings and published 

figures [85], [88], [91], the cost of I-TES is $80/TR-hr ($14/kWhth). Centrifugal chillers were at 

$400/TR with an additional $50/TR for a VSD drive. Screw chillers are cheaper but generally 

less efficient at $350/TR. The cost for water pumps was $150/kW and an additional $50/kW for 

a VSD. Last, the cost of cooling towers was $57/kWth ($200/TR) at the standard design 6℃ 

water temperature differential; a larger temperature differential reduces the tower size and cost. 

Table 4.2: Assumed financial parameters 

 

Item Unit Expense Symbol Value 

PV Fixed-tilt 
Capex 𝑐𝑃𝑉,𝐶 $600/kWp,dc 

OpEx 𝑐𝑃𝑉,𝑂 $10/kWp,dc/yr. 

I-TES Internal melt Capex 𝑐𝐼𝑇𝐸𝑆 
$23/kWhth ($80/TR-

hr) 

BESS 4-hour Li-ion Capex 𝑐𝐵𝐸𝑆𝑆 $300/kWh 

Chiller 

Centrifugal w/o VSD Capex 𝑐1
𝑐ℎ𝑙 $115/kWth  ($400/TR) 

Centrifugal w/ VSD Capex 𝑐2
𝑐ℎ𝑙 $130/kWth  ($450/TR) 

Screw w/o VSD Capex 𝑐3
𝑐ℎ𝑙 $100/kWth  ($350/TR) 

Auxiliary 

Equipment 

Fixed Speed Pumps Capex 𝑐𝑃,𝐹𝑆 $150/kW 

Variable Speed 

Pumps 
Capex 𝑐𝑃,𝑉𝑆𝐷 $200/kW 

Cooling Tower Capex 𝑐𝑡𝑤𝑟 $57/kWth ($200/TR) 

Misc. Capital 

Interest Rate 𝑖𝑟 3.5% 

Service Life 𝑦𝑟 25 years 

BESS Service 

Life 
𝑦𝑟𝑏 10 years 
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The electricity rates for non-bulk consumers (peak load less than 5 MW) are subsidized 

and unsuitable for carbon pricing analysis. Instead, unsubsidized bulk customer electricity rates 

are used, even though the modeled buildings do not meet the criteria for bulk customers. The 

tariff structure for bulk customers is tabulated in Table 4.3. The rate is flat during the winter 

months at $58/MWh. In the summer month, the rate is $66/MWh during the off-peak period and 

raises to $93/MWh during the on-peak period between 12 and 6 PM. No demand charges are 

currently implemented in Qatar (𝑐𝑃 = $0/MWp). 

Table 4.3: Qatar electricity tariffs for bulk customers 

 

Period Electricity Tariff 

May 1 – October 31 

12:00 PM – 6:00 PM $93/MWh 

6:00 PM – 12:00 PM $66/MWh 

November 1 – April 30 

All day $58/MWh 

 

4.2.5 Chillers performance data 
 

Three chillers with a performance representative of the compressor technology are 

selected from the EnergyPlus WC chillers library. The selected chillers are: 365-tons Carrier 

19XR with centrifugal compressor, 383-tons Carrier 19XR with VSD equipped centrifugal 

compressor, and 340-tons Carrier 23XL with slide valve equipped screw compressor. Details of 

selected chillers' characteristics can be found in Appendix B. To predict the performance of 

chillers with different capacities and condenser flowrates needed for the capacity sizing problem, 

the COP, as described by reformulated Gordon-Ng model in Equation (3.10), is expressed as a 

function of normalized parameters: chiller loading (𝑃𝐿𝑅) and temperature differential ratio 

(
∆𝑇𝑥

𝑐𝑤,𝑟𝑒𝑓

∆𝑇𝑐𝑤,𝑑𝑒𝑠
) as follows: 
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1

𝐶𝑂𝑃𝑥,𝑗
𝑏𝑎𝑠𝑒 =

�̇�𝑥,𝑗
𝑐ℎ𝑙(�̇�𝑥,𝑗

𝑐ℎ𝑙+�̇�𝑥,𝑗
𝑙𝑒𝑎𝑘,𝑒𝑞𝑣

+𝑚𝑥,𝑗
𝑐𝑤,𝑎𝑑𝑗

𝑐𝑝,𝑐𝑤[𝑅𝑥,𝑗 �̇�𝑥,𝑗
𝑐ℎ𝑙−𝑇𝑠𝑤]+𝑇𝑠𝑤[∆𝑆𝑥,𝑗

𝑖𝑛𝑡+∆𝑆𝑥,𝑗
𝑖𝑛𝑡𝑄

𝑃𝐿𝑅𝑥,𝑗]

𝑚
𝑥,𝑗
𝑐𝑤,𝑎𝑑𝑗

𝑐𝑝,𝑐𝑤(�̇�𝑥,𝑗
𝑐ℎ𝑙 𝑇𝑐𝑠𝑤+�̇�

𝑥,𝑗
𝑙𝑒𝑎𝑘,𝑒𝑞𝑣

[𝑇𝑐𝑠𝑤−𝑇𝑠𝑤]+𝑇𝑐𝑠𝑤𝑇𝑠𝑤[∆𝑆𝑥,𝑗
𝑖𝑛𝑡+∆𝑆

𝑥,𝑗
𝑖𝑛𝑡𝑄

𝑃𝐿𝑅𝑥,𝑗])
  (4.38) 

 

 

where, 

 

 

�̇�𝑥,𝑗
𝑐ℎ𝑙 = 𝑃𝐿𝑅𝑥,𝑗 �̇�𝑥

𝑟𝑒𝑓
 (4.39) 

 

 

𝑚𝑥,𝑗
𝑐𝑤,𝑎𝑑𝑗

= �̇�𝑥
𝑐𝑤,𝑟𝑒𝑓 (

∆𝑇𝑥
𝑐𝑤,𝑟𝑒𝑓

∆𝑇𝑐𝑤,𝑑𝑒𝑠
) (4.40) 

 

 

where �̇�𝑥
𝑟𝑒𝑓

, �̇�𝑥
𝑐𝑤,𝑟𝑒𝑓

 and ∆𝑇𝑥
𝑐𝑤,𝑟𝑒𝑓

 are the nominal capacity, condenser mass flowrate, and 

condenser temperature differential of the reference chiller from EnergyPlus, respectively, and 

𝑚𝑥,𝑗
𝑐𝑤,𝑎𝑑𝑗

 is the adjusted flowrate based on the decided design chiller temperature differential, 

which linearly correlates with flowrate. To account for the improvement in cooling performance 

observed in chillers with larger capacities, the effective chiller COP is linearly adjusted with the 

capacity relative to the reference chiller COP:   

 

 

𝐶𝑂𝑃𝑥,𝑗 = 𝐶𝑂𝑃𝑥,𝑗
𝑏𝑎𝑠𝑒 + 𝛿(�̇�𝑥,𝑗

𝑐ℎ𝑙,𝑑𝑒𝑠 − �̇�𝑥
𝑟𝑒𝑓

), ∀𝑥 ∈ 𝒳, 𝑗 ∈ 𝕎  (4.41) 

 

 

𝛿 is the improvement in chiller performance per increase in cooling capacity and is 

approximately 10−3 TR-1, based on Australia's Department of Climate Change, Energy, the 

Environment, and Water minimum energy performance standard for chiller efficiency [146], 

which agrees with the market offering. Piecewise linearization is applied to the predicted COP, 

computed for the pre-determined condenser water temperature in refrigeration and ice-making 

mode under a range of chiller loading.  
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4.2.6 Scenarios selection 

Five days are selected from the simulated cooling demand for the commercial and 

residential building. One day represents the peak demand day (design day) and four days capture 

intra-annual demand and weather variations in each season. 

4.2.6.1 Commercial building 

The selected five scenarios and the number of days of the year they represent are 

tabulated in Table 4.4. The five scenarios are arbitrarily labeled from 1 to 5. Scenario 1 

represents the peak demand or design day, occurring only ten days out of the year. This scenario 

dictates the minimum installed cumulative chiller and I-TES capacities. Scenario 2 represents the 

high cooling demand period between mid-July and mid-September, which lasts for two months 

and is driven by the high ambient humidity levels. Scenario 3 exemplifies the longest period of 

the year with a moderate cooling load, and it lasts 148 days, from late April to mid-July and from 

mid-September to mid-November. This period is dominated by high peak daytime temperatures 

between 35 and 45℃, which drives the building cooling load. Scenario 4 exemplifies the 

shoulder season, characterized by moderately warm days with afternoon temperatures between 

30 and 35℃. and lasts for about three months in late fall and early spring. Scenario 5 exemplifies 

the low cooling season in the winter and is described by mild daytime temperatures between 20 

and 25℃. The cooling load in this period is driven by occupancy and electric load. 

Table 4.4: Scenarios for the commercial building 

 

Scenario Date Number of Represented Days 

1 Design day August 15 10 

2 High cooling July 28 57 

3 Moderate cooling July 11 148 

4 Shoulder Season March 13 83 

5 Low Cooling January 30 67 
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Figure 4.7 below shows the five scenarios' hourly cooling demand, non-cooling load, 

solar insolation, and ambient wet-bulb temperature.  

 

Figure 4.7: The five scenarios for the commercial building with (a) building thermal 

cooling demand, (b) solar insolation, (c) non-cooling load, and (d) ambient wet-bulb 

temperature. 

 The non-cooling load is assumed to be fixed year-round and is predominantly during the 

daytime from assumed higher daytime building occupancy. The building peak cooling demand 

increases by about a factor of 4 from around 1700 kWth in the low cooling demand season to 

7200 kWth in the peak cooling load day. A small variation in solar insolation with notably 

extended sunshine hours during the summer is observed. On the other hand, ambient wet-bulb 
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temperatures drastically increase from an average of 7℃ in the low-cooling season to the low 30s 

in the high-demand season. While intra-daily variations are small, the seasonal variations are 

large enough for speed modulation in chillers with VSD-equipped compressors. 

4.2.6.2 Residential building 

The selected five scenarios and the number of days they represent for the residential 

building are tabulated in Table 4.5. Scenario 1 represents the peak cooling demand day and 

similarly dictates the required cumulative chillers and I-TES capacities. Scenario 2 is the high 

cooling demand period between mid-July and mid-September. Scenario 3 is the moderate 

cooling season and persists for 109 days a year. This scenario has the longest period of the year, 

from mid-May to mid-July and mid-September to mid-October. Scenario 4 is the second longest 

period representing 101 days of the year in late fall and early spring. Scenario 5 is the low 

cooling season in the winter; in this period, the load is driven by occupancy and electric load.  

Table 4.5: Scenario for the residential building 

 

Scenario Date Number of Represented Days 

1 Design day August 15 10 

2 High cooling July 28 76 

3 Moderate cooling July 11 109 

4 Shoulder Season March 13 101 

5 Low Cooling January 30 69 

 

Figure 4.8 shows the five scenarios’ hourly cooling demand, electric demand, solar 

insolation, and ambient wet-bulb temperature for the residential building. The non-cooling load 

is assumed to be fixed year-round and is characterized by a morning spike and a generally higher 

load in the evening correlated with assumed building occupancy. The building peak cooling 

demand increases by more than a factor of 4 from 1500 kWth in the low cooling demand season 
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to 6550 kWth in the peak cooling load day. The daily demand variations are smaller in the 

residential building than in the commercial building, especially in the cooling seasons.   

 
 

 

Figure 4.8: The five representative days for the residential building with (a) building 

thermal cooling demand, (b) solar insolation, (c) non-cooling load, and (d) ambient 

wet-bulb temperature. 

  



121 

 

4.3 Results and discussion 
 

The formulated problem is first solved at the current system structure, where all 

electricity is from the grid, which was established as the reference case. The model was then 

exposed to a range of carbon pricing from 0 to $150/ton of CO2 to examine the impact of 

economic incentives on decarbonization efforts. 

4.3.1 Commercial building 

The effects of carbon pricing on the cost-optimal system installed capacities are shown in 

Figure 4.9, and the corresponding system characteristics are shown in Figure 4.10. The optimal 

on-site PV capacity is near the building’s peak electricity demand of 3000 kW. Higher carbon 

pricing promotes the installation of an additional 1000 kW of PV for energy storage charging. 

However, installed I-TES and BESS capacities remain small even as the carbon price increases. 

Nevertheless, the results show that the excellent alignment of building cooling and electricity 

need with solar insolation reduces the required energy storage capacity and curtailment. PV 

generation alone could reduce emissions by about 65%, minimally impacted by carbon pricing. 

I-TES supplements nighttime cooling needs in the low-demand season, which reduces emissions 

by a mere 3%. As the carbon price increases, I-TES is increasingly used to meet more of the 

increased cooling demand in the shoulder season, reducing emissions by 8% from load shifting 

with an average daily capacity utilization factor of about 70%. 
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Figure 4.9: Effect of carbon pricing on the cost-optimal system installed capacities 

of (a) PV, (b) BESS, (c) I-TES, and (d) chillers for the commercial building. PV and 

BESS are normalized to the average electric demand of 515 kW, I-TES is 

normalized to the average cooling load of 2213 kWth, and the total capacity of 

chillers is normalized to the peak cooling demand of 7160 kWth. Peak electricity 

demand is the maximum power drawn from the electricity grid.  

Due to the high seasonality of cooling demand and capacity degradation in ice-making 

mode, I-TES is not feasible for load shifting in the high-demand season, even as the carbon price 

is considerably increased, limiting the potential of I-TES for emissions reduction. Furthermore, 

the optimal chiller capacity was only 30% higher than the peak cooling need because I-TES is 

not used in the high cooling season and relies on utilizing idle chiller capacity in the lower 

demand season. This result suggests that buildings with conservatively oversized chillers are 
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suited for exploiting I-TES for load shifting without additional cooling capacity. BESS becomes 

cost-effective above a carbon pricing of $75/ton of CO2 and is only used to meet the near year-

round constant baseload with an average daily capacity utilization rate of 90%. A deep 

decarbonization rate of about 90% can be achieved in a system with a carbon price above 

$100/ton of CO2, of which direct PV utilization is responsible for about 70% of emissions 

reduction.  

 

   

 

Figure 4.10: Effect of the carbon price increases on (a) contribution to meeting the 

electric demand and (b) breakdown of annual system cost for the commercial 

building. 

Annual system cost in the cost-optimal system with a carbon price below $100/ton of 

CO2 is dominated by OpEx and Capex from installed PV. Once BESS is economical, half of the 

annual system cost is from BESS and PV. The increase in annual costs is justified to mitigate 

carbon tax. Despite the increase in the carbon tax, OpEx monotonically decreases above a carbon 

tax of $100/ton CO2 as an increasing amount of demand is met by BESS and I-TES.  

The carbon abatement cost for the cost-optimal system as carbon price increases is shown 

in Figure 4.11. Carbon abatement cost is defined as the yearly cost of mitigating carbon 
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emissions from carbon-based electricity from the grid. The negative abatement cost indicates that 

a more sustainable solution can be achieved at a reduced annual system cost compared to the 

conventional approach of solely using electricity from the grid. The observed negative abatement 

cost is enabled by well-matched PV generation with building cooling and electricity needs. 

 

 

Figure 4.11: Carbon abatement cost and abated CO2 for the commercial building. 

Despite the suitability of on-site PV generation for buildings with daytime electricity 

needs, challenges arise from (i) the required land area, which far exceeds the building-built floor 

area, (ii) challenges with cleaning the panels to limit soiling on PV, and (iii) unsubsidized 

electricity tariff for bulk customers do not reflect electricity tariffs for the majority of building 

stock in Qatar. Using current technology, energy generated by rooftop PV generation can support 

decarbonizing energy demands in buildings up to three-story high. 

Decided chiller capacities and compressor technology types are tabulated in Table 4.6. 

The base scenario is when all electricity demand is met from the electricity grid, representing 
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nearly all of Qatar’s building stock. The cost-optimal system consists of two chillers with VSD- 

equipped centrifugal compressors for optimized part load performance. This selection is partly 

promoted by the large intra-annual variations in wet-bulb temperatures, which permits speed 

modulations when accompanied by reduced building loads. The unequal capacities of centrifugal 

chillers with VSD allow for more efficient chiller sequencing and reduced pump power use. This 

configuration is especially important since chillers are often part-loaded, whereas their associated 

pumps' power use is constant. The lower-cost screw chiller supports I-TES charging and 

supplements cooling during the short-lived high-cooling demand season. 

The decided design temperature differential in the evaporator for all scenarios is about 

8℃, sufficiently high enough to reduce pump power use but not large enough to over-burden the 

chillers with a reduced supply water temperature setpoint. The decided temperature differential 

on the condenser side is higher at 10℃, which reduces condenser pump power use and the size of 

the cooling tower. Although it degrades the chillers’ cooling capacity, the oversized cooling 

capacity compensates for the degradation.  

Table 4.6: Optimal-cost cooling system capacities for the commercial building 

Carbon 

Price 

[$/ton of 

CO2] 

CWS 

Cost 

[$/yr.] 

I-TES 

Capacity 

[kWhth] 

Chiller 1 (VSD 

Centrifugal) 

[kWth] 

Chiller 2 (VSD 

Centrifugal) 

[kWth] 

Chiller 3 

(Fixed Speed 

Screw) 

[kWth] 

Total 

Chiller 

Capacity 

[kWth] 

Base 74 0 3,165 2,637 1,441 7,243 

0 72 7,955 3,165 1,567 2,468 7,200 

25 75 9,543 3,165 1,881 2,492 7,538 

50 75 9,677 3,165 1,552 2,892 7,609 

75 80 10,791 3,165 2,374 2,399 7,939 

100 88 17,679 3,165 2,632 3,020 8,818 

125 90 19,695 3,165 3,165 2,664 8,994 

150 94 21,554 3,165 3,165 3,067 9,398 
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Hourly chillers loading and load profile for Scenarios 2-4 (high cooling to shoulder 

season) for a system without carbon pricing are shown in Figure 4.12, and for a system with a 

carbon pricing at $100/ton of CO2 are shown in Figure 4.13. I-TES was not used in the high 

cooling demand constrained by the lack of idle chillers capacity. In the shoulder season, 

sufficient idle capacity allows I-TES to meet all nighttime cooling demands. The additional 

chillers' cooling capacity in the system with carbon pricing permitted a larger capacity and higher 

utilization of I-TES in the moderate demand season with little to no impact on the high cooling 

demand season. BESS utilizes most of the remaining excess PV generation to meet the year-

round nighttime baseload of about 150 kW.   
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Figure 4.12:  Cost-optimal system with (a) chillers loading and (b) hourly load 

profile for the commercial building without carbon pricing. 
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Figure 4.13: Cost-optimal system with (a) chillers loading and (b) hourly load 

profile for the commercial building with carbon pricing at $100/ton of CO2. 
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4.3.2 Residential building 
 

The effect of carbon pricing on the cost-optimal system installed capacities are shown in 

Figure 4.14, and the corresponding system characteristics are shown in Figure 4.15. Unlike the 

commercial building, on-site PV capacity is below the building’s peak electricity demand of 

2300 kW due to multiple reasons: (i) misalignment of building demand peak with solar 

insolation peak; (ii) without a feed-in tariff, the highly seasonal load leads to low utilization and 

large curtailments; and (iii) low carbon pricing does not support the use of energy storage.  

 

      

 
 

 

      

Figure 4.14: Effect of carbon pricing on the cost-optimal system installed capacities 

of (a) PV, (b) BESS, (c) I-TES, and (d) chillers for the residential building. PV and 

BESS are normalized to the average electric demand of 515 kW, I-TES is 

normalized to the average cooling load of 2213 kWth, and the total capacity of 

chillers is normalized to the peak cooling demand of 7160 kWth. 
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Carbon pricing above $75/ton of CO2 promotes using BESS and larger PV and I-TES 

capacities. Supported by a larger night-time load, BESS capacity was three times larger in the 

residential building than in the commercial building. I-TES capacity is nearly identical, primarily 

constrained by the chillers' cooling capacity and the narrow window of charging. A system with 

a carbon price at $100/ton of CO2 reduces emissions by about 87%, of which PV, BESS, and I-

TES contribute 42%, 37%, and 8%, respectively, which matches the commercial building. 

 

    

Figure 4.15: Effect of the carbon price increases on (a) contribution to meeting the 

electric demand and (b) breakdown of annual system cost for the residential 

building. 

Annual system cost in the cost-optimal system with a carbon price below $100/ton of 

CO2 is overwhelmingly dominated by OpEx alone. Once BESS becomes economical, the annual 

system cost becomes predominantly from BESS, accounting for nearly half of the annual system 

cost. For this system, OpEx is reduced by a factor of 2 relatives to a system without carbon 

pricing. Although both buildings reach a decarbonization rate of about 90% with a carbon price 

of $100/ton of CO2, the system cost in the commercial building is 30% less due to better 

integration of PV generation, which reduces the needed costly energy storage capacity. 

Furthermore, investment in BESS and I-TES increases the annual system cost by 25% from $600 
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thousand/yr. to $750 thousand/yr. while abating nearly 3000 tons of CO2/yr. (50% of yearly 

carbon emissions). 

As carbon pricing increases, carbon abatement cost and the abated CO2 for the residential 

building are shown in Figure 4.16. Carbon abatement cost is initially negative due to exploiting 

low-cost PV generation. Unlike the analysis outcome for the commercial building, the mismatch 

between demand and solar insolation requires energy storage which drives carbon abatement 

costs to $40/ton of CO2.  

 

 

Figure 4.16: Carbon abatement cost and abated CO2 for the residential building. 

Decided chiller capacities and compressor technology types are tabulated in Table 4.7. 

Similar to the commercial building analysis, the cost-optimal system consists of two chillers with 

VSD-equipped centrifugal compressors for optimized part load performance. This selection is 

supported by the large intra-annual variations in wet-bulb temperatures, independent of building 

energy use. The lower-cost screw chiller aids I-TES charging and supplements cooling in the 
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high-cooling demand season. However, a relatively larger VSD chiller capacity and a relatively 

smaller screw chiller are selected for the residential building at a low carbon tax. The difference 

in selection is attributed to the more evenly distributed cooling demand, which a larger VSD 

chiller capacity could benefit from for optimized part-load performance. Similarly, the decided 

design temperature differential in the evaporator for all scenarios is about 8℃, which is on par 

with recommendations by chillers manufacturer Trane [75].  

Table 4.7: Optimal-cost cooling system capacities for the residential building 

Carbon 

Price 

($/ton of 

CO2) 

CWS Cost 

(Thousand 

$/yr.) 

I-TES 

Capacity 

(kWhth) 

Chiller 1 

(VSD 

Centrifugal) 

(kWth) 

Chiller 2 

(VSD 

Centrifugal) 

(kWth) 

Chiller 3 

(Fixed Speed 

Screw) 

(kWth) 

Total 

Chiller 

Capacity 

(kWth) 

Base 67 0 3,165 2,269 1,145 6,580 

0 67 7,457 3,165 1,925 1,521 6,612 

25 68 8,441 3,165 2,065 1,391 6,621 

50 70 12,081 3,165 1,963 1,761 6,889 

75 79 15,760 3,165 1,721 3,071 7,956 

100 80 17,165 3,165 2,051 2,751 7,967 

125 86 19,687 3,165 3,127 2,197 8,490 

150 88 22,758 3,165 2,922 2,708 8,796 

 

Hourly chillers loading and load profile for Scenarios 2-4 for a system without carbon 

pricing are shown in Figure 4.17, and for a system with a carbon price at $100/ton of CO2 are 

shown in Figure 4.18. A large amount of PV generation is curtailed, especially in the low cooling 

demand season compared to the commercial building. However, as carbon pricing increases and 

BESS becomes cost-effective, most excess of the generation is utilized to meet nighttime 

electricity needs. Although I-TES’s role is slightly more pronounced in the residential building 

than in the commercial building, the system is dominated by BESS due to a reliable baseload.   
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Figure 4.17: Cost-optimal system with (a) chillers loading and (b) hourly load 

profile for the residential building without carbon pricing. 
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Figure 4.18: Cost-optimal system with (a) chillers loading and (b) hourly load 

profile for the residential building with carbon pricing at $100/ton of CO2. 
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4.4 Conclusion  

This chapter examined the decarbonization pathway from a building scale and proposed a 

solution to the capacity sizing and design problem of an integrated WC CWS with I-TES, BESS, 

and on-site PV generation for cost and emissions reduction. To combat low electricity rates in 

Qatar, the model was exposed to a range of carbon pricing. Energy demand profiles were 

simulated for two buildings that are typical and representative of building stock in Qatar with 

two uses, business-commercial and residential. These two buildings generally have an inversely 

related occupancy rate as people move from their workplaces to their residences.  

A challenge confronted when sizing equipment is estimating their energy, which requires 

solving the highly non-linear and complex scheduling and dispatch problem. The approach was 

to decompose the problem into a bi-level optimization formulation and simplify the components 

model, particularly the chiller and I-TES models. The upper level minimizes yearly total system 

costs and decides the installed capacities and design parameters using particle swarm 

optimization. The decided parameters are passed down to solve the scheduling and dispatch 

problem in a mixed-integer linear program with piece-wise linearization and return the estimated 

yearly electricity charges to adjust the guesses for the next iteration. 

The developed optimization strategy can be applied to newly constructed buildings for 

better integration with PV generation from the ground up or buildings with existing cooling 

systems for energy storage and PV capacity sizing. Furthermore, the strategy can be altered to be 

compatible with other on-site renewable energy sources or applied to improve renewable 

integration in the electricity grid communicated via a pricing signal. While the algorithm is 

applied to buildings in Qatar, the developed strategy can be broadly applied to buildings with 

different cooling technologies and under different climatic conditions. 
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The distributed scale analysis affirmed the suitability of decarbonizing the electricity grid 

using PV-enabled solutions, although at a higher cost than utility-scale. Commercial buildings 

with diurnal demand synergetic with solar insolation are particularly well suited for exploiting 

PV generation and can achieve a decarbonization rate above 60% without carbon pricing. I-TES 

is suitable for utilizing the large idle chiller capacities during the shoulder cooling season for 

cooling load shifting and could reduce building carbon emissions by 5-10%. Carbon pricing does 

not make I-TES suitable for load shifting in the high cooling season because of (i) chiller 

capacity degradation in ice-making mode, (ii) reduced idle chiller capacity from higher cooling 

demands, and (iii) the narrow window of charging of no more than 8 hours a day. The chillers' 

cooling capacity must be extraordinarily oversized for I-TES to be used in the high cooling 

demand season. BESS becomes cost-effective with carbon pricing above $75/ton of CO2 and is 

used to meet the near year-round constant baseload since it requires a high daily capacity 

utilization rate is around 90%. With carbon pricing above $100/ton of CO2, the cost-optimal 

system can yield a decarbonization rate of about 90% for either building. Similar to the utility-

scale analysis, BESS decarbonizes the base load. Without a feed-in tariff, the aggregate non-

cooling load is reliable and steady, which makes the utility-scale implementation of BESS more 

cost-effective. 

Limitations of the outcome of the analysis include (i) the simplified models, which do not 

fully capture the complex behavior of cooling systems, and (ii) the selected representative 

performance curves for compressor technologies may not fully represent the magnitude of 

performances delivered by various manufacturers. Nevertheless, the exploration of additional 

representative curves, including multiple curves for different compressors of the same type, can 

be achieved at the expense of an increase in computational time. 
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Chapter 5:  Optimal equipment scheduling and dispatch of WC 

CWS with I-TES 

5.1 Introduction 
 

Demand side management is an instrument the electric utility uses to adjust demand to 

match the power supply better. Demand-side management is essential in low-carbon power grids 

examined in Chapters 2 and 4 since intermittent renewable generations cannot be dispatched or 

perfectly predicted. Dynamic pricing, such as time-of-use (TOU) and real-time pricing, are well-

explored methods for demand control. They offer cost savings for the utility and the consumers 

through better management and dispatch of power generations with demand. Cooling is 

responsible for about half of the electricity demand in Qatar, thereby making cooling systems a 

crucial target for demand-side management. However, operating CWS to maximize savings from 

demand side management can be challenging. This challenge stems from operating the system 

outside its design conditions, which requires careful consideration of chillers' part-load 

performances and the performances of associated auxiliary equipment.  

The literature is rich with attempts to solve the chilled water system’s scheduling 

problems [147]–[156]. Most of the literature neglects the roles of auxiliary components and only 

considers the problem of loading chillers. They tend to assume a fixed water supply and 

condenser temperatures. This simplifies the chiller model to a cubic or often a quadratic function 

of their loading. Various optimization strategies are used to solve these problems, ranging from 

simple linear to quadratic programming and meta-heuristic optimization strategies like genetic 

algorithm and particle swarm optimization. The most detailed model found in the literature was 

developed by Zhang et al. [157]. The formulation captures the complex behavior of chillers and 

cooling towers using regression-based models and takes supply and condenser water 
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temperatures as decision variables. The considered solution approach is near-optimal using 

sequential quadratic programming. In another work, Zhang et al. [158] consider the effect of 

minimum up/down time constraints on the optimization. Their work suggests that minimum 

up/down-time significantly increases the complexity of the problem with little return in cost 

minimization, and it is best-handled post-computation heuristically. Trautman et al. [159] 

formulated a detailed CWS model to optimize the condenser water pump and tower fan speed. 

Their model results suggest that optimal tower fan speed can achieve 12-15% energy savings, 

while condenser pump control has negligible energy savings. 

Much attention has been given to the scheduling problem with thermal energy storage 

[55], [130], [160]–[167]. A more sophisticated model and optimization strategy are often used in 

these problems. Lee et al. [160] used meta-heuristic particle swarm optimization to minimize the 

I-TES life cycle cost for a single chiller WC CWS. Chen et al. [162] utilized the dynamic 

programming method to optimize a CWS with I-TES. Kamal et al. [167] used an evolutionary 

algorithm to optimize a multi-chiller CWS with I-TES and chilled water storage for load shifting 

and cost reduction. Storage was found to reduce cost and equipment size.  

This chapter proposes a solution to the scheduling and dispatch problem of CWS with I-

TES to reduce operating costs. The proposed solution provides a reasonably scalable and robust 

approach that can be used on highly non-linear space cooling and heating problems, thereby 

negating the need for simplistic models developed in the literature. CWS operators can use the 

output of the optimization problem to optimize plant operation. 

This chapter is organized as follows: the methodology is presented in Section 5.2. The 

problem formulation and assumptions are laid out, followed by the optimization strategy. Section 

5.3 presents the results with three scenarios of cooling demand under TOU electricity pricing. 
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The proposed approach is compared to two commonly used heuristic strategies for storage use: 

chiller and storage priority control. Lastly, the chapter is concluded in Section 5.4. 

5.2 Methodology 
 

5.2.1 Problem formulation  
 

The overall framework is to determine the scheduling of equipment, setpoints, and 

storage dispatch amount such that the cooling load is met with the least cost, influenced by the 

cooling load, storage capacity and utilization, and TOU rates. The hybrid steady-state models 

developed in Chapter 3 for I-TES and the key power-consuming components, including the 

chillers, cooling towers, water pumps, and cooling coil fans, are used in this chapter with the 

addition of several operational and balancing constraints derived from mass and energy balance. 

An illustration of the analyzed system is shown in Figure 5.1 below.  

 
 

Figure 5.1: The considered CWS in a primary-secondary configuration with three 

WC chillers (two 212-tons Carrier 19XR chillers with VSD and one 153-tons Trane 

RTHB chiller), two shared cooling towers (360 tons each), and I-TES (1600 TR-hr). 

The building is represented in a single coil with the respective aggregate cooling 

load.  
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The system is comprised of three chillers that were selected from the chillers data library 

in EnergyPlus: two 212-tons Carrier 19XR with VSD-equipped centrifugal compressor chillers 

and one 153-tons Trane RTHB screw chiller without VSD, at their reference performance with a 

cumulative cooling capacity of 570 tons, two 360 tons cooling towers, and 1600 TR-hr internal 

melt I-TES for a design building cooling demand of 730 tons. The considered model parameters 

can be found in Appendix C. The plant operating cost, which is to be minimized, is given by 

∑ 𝑐𝑡
𝑒𝑃𝑡

𝑆𝑦𝑠
𝑡 , where: 

 

 

𝑃𝑡
𝑆𝑦𝑠

= ∑ (𝑃𝑡,𝑗
𝑐ℎ𝑙 + 𝑃𝑡,𝑗

𝑝𝑝 + 𝑃𝑡,𝑗
𝑐𝑝)𝑗∈𝒥 + ∑ 𝑃𝑡,𝑛

𝑡𝑤𝑟
𝑛∈𝒩 + ∑ 𝑃𝑡,𝑔

𝑠𝑝
𝑔∈𝒢 + 𝑃𝑡

𝑐𝑓
, ∀𝑡 ∈ 𝒯   (5.1) 

 

 

where the subscripts j is the chiller index set {1, 2, 3} denoted by 𝒥, t is the time-step index set 

{1, 2, 3, … , 24} denoted by 𝒯 that refers to the hours of the day, 𝑛 is the cooling tower index set 

{1, 2} denoted by 𝒩, and g is the secondary pump index set {1, 2} denoted by 𝒢. 𝑐𝑡
𝑒 is TOU 

electricity rates, 𝑃 is the power consumed of which superscripts 𝑝𝑝 refers to primary pumps, 𝑐𝑝 

to condenser pumps, 𝑡𝑤𝑟 to cooling tower fans, 𝑠𝑝 to secondary pumps, 𝑐𝑓 to the cooling coil 

fan, and 𝑆𝑦𝑠 to the total system power use.  

The decision variables are: chillers and tower scheduling (𝑂𝑁𝑡,𝑗
𝑐ℎ𝑙 and 𝑂𝑁𝑡,𝑛

𝑡𝑤𝑟), chillers 

temperatures setpoints (𝑇𝑡,𝑗
𝑠𝑤), cooling towers temperature setpoints and speed (𝑇𝑡

𝑐𝑠𝑤 and 

𝑉𝑆𝐷𝑡
𝑡𝑤𝑟), coil fan and pump speeds (𝑉𝑆𝐷𝑡

𝑠𝑝 and 𝑉𝑆𝐷𝑡
𝑐𝑓

), and flowrate to storage (�̇�𝑡 
𝑖𝑤). 

Designated temperatures and flowrates symbols at various system nodes that appear in the 

problem formulation are shown in Figure 5.2. 
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Figure 5.2: The considered CWS with decision variables highlighted in orange and 

variables in black are consequences of the decision variables. 

The first constraint bounds operating chillers to within permitted part-load ratios and is given by:  

 

 

𝑃𝐿𝑅𝑗
𝑚𝑖𝑛 ≤ 𝑃𝐿𝑅𝑡,𝑗 ≤ 𝑃𝐿𝑅𝑡,𝑗

𝑚𝑎𝑥 , ∀𝑡 ∈ 𝒯, ∀𝑗 ∈ 𝒥   (5.2) 

 

 

where 𝑃𝐿𝑅𝑗
𝑚𝑖𝑛 is the minimum chiller part-load ratio obtained from EnergyPlus, 𝑃𝐿𝑅𝑡,𝑗 =

�̇�𝑡,𝑗
𝑐ℎ𝑙/�̇�𝑗

𝑐ℎ𝑙,𝑑𝑒𝑠
, and 𝑃𝐿𝑅𝑡,𝑗

𝑚𝑎𝑥 = �̇�𝑡,𝑗
𝑐ℎ𝑙,𝑚𝑎𝑥/�̇�𝑗

𝑐ℎ𝑙,𝑑𝑒𝑠
 from the estimated chillers’ cooling capacity in 

Equation (3.13). The second and third constraints bound and set the initial storage SoC as 

follows: 

 

 

0 ≤ 𝑆𝑜𝐶𝑡 ≤ 1, ∀𝑡 ∈ 𝒯      (5.3) 

 

 

𝑆𝑜𝐶0 = 0    (5.4) 
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The storage is assumed to be initially empty. The fourth constraint bounds the fraction of the coil 

in the dry section as follows: 

 

 

0 ≤ 𝑓𝑡
𝑑𝑟𝑦

≤ 1, ∀𝑡 ∈ 𝒯   (5.5) 

 

 

Constraints 5-7 are three load balancing constraints given by: 

 

 

∑ (𝑃𝐿𝑅𝑡,𝑗 �̇�𝑗
𝑐ℎ𝑙,𝑑𝑒𝑠)𝑗∈𝒥 − �̇�𝑡

𝑖𝑤𝑐𝑝,𝑠𝑤(𝑇𝑡
𝑖𝑟𝑤 − 𝑇𝑡

𝑏𝑠𝑤) − �̇�𝑡
𝒟 = 0, ∀𝑡 ∈ 𝒯   (5.6)  

 

 

𝑉𝑆𝐷𝑡
𝑠𝑝�̇�𝑡

𝑏𝑠𝑤𝑐𝑝,𝑠𝑤(𝑇𝑡
𝑐𝑐𝑟𝑤 − 𝑇𝑡

𝑐𝑐𝑠𝑤) − �̇�𝑡
𝒟 = 0, ∀𝑡 ∈ 𝒯   (5.7) 

 

 

𝑉𝑆𝐷𝑡
𝑐𝑓

�̇�𝑐𝑐𝑎,𝑑𝑒𝑠(ℎ𝑡
𝑎𝑖 − ℎ𝑡

𝑎𝑒) − �̇�𝑡
𝒟 = 0, ∀𝑡 ∈ 𝒯   (5.8) 

 

 

The constraints ensure the building demand, �̇�𝑡
𝒟, is met by both the chiller and storage in (5.6) 

and delivered to the coil waterside in (5.7) and the air side in (5.8). 𝑇𝑡
𝑏𝑠𝑤 and �̇�𝑡

𝑏𝑠𝑤 are the 

blended supply water temperature and flowrate from mixing streams leaving the chillers, 𝑇𝑡
𝑖𝑟𝑤 

and �̇�𝑡
𝑖𝑤 are I-TES leaving water temperature and flowrate, 𝑇𝑡

𝑐𝑐𝑠𝑤 and 𝑇𝑡
𝑐𝑐𝑟𝑤 are cooling coil 

supply and return water temperatures, respectively, ℎ𝑡
𝑎𝑖 and ℎ𝑡

𝑎𝑒 are cooling coil entering and 

leaving enthalpy of moist air, respectively, 𝑐𝑝,𝑠𝑤 is the water-glycol mixture specific heat, and 

𝑉𝑆𝐷 is the non-dimensional rotational speed defined as the actual angular speed normalized by 

the maximum angular speed. The amount of water delivered to the cooling coils is controlled by 

modulating the secondary pump speed, �̇�𝑡
𝑐𝑐𝑤 = 𝑉𝑆𝐷𝑡

𝑠𝑝�̇�𝑡
𝑏𝑠𝑤. The fourth balancing constraint 

balances mass flowrate to storage and available mass flowrate in the primary loop as follows: 

 

 

�̇�𝑡
𝑏𝑠𝑤 − �̇�𝑡

𝑖𝑤 ≥ 0, ∀𝑡 ∈ 𝒯   (5.9) 
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The fifth and last constraint balances the heat rejected by the chillers and cooling towers as 

follows: 

 

 

�̇�𝑡
𝑏𝑐𝑤𝑐𝑝,𝑐𝑤(𝑇𝑡 

𝑐𝑟𝑤 − 𝑇𝑡 
𝑐𝑠𝑤) − ∑ �̇�𝑡,𝑛

𝑡𝑤𝑟
𝑛∈𝒩 𝑂𝑁𝑡,𝑛

𝑡𝑤𝑟 = 0, ∀𝑡 ∈ 𝒯   (5.10) 

 

 

where �̇�𝑡,𝑛
𝑡𝑤𝑟 is the heat rejected from the tower, �̇�𝑡

𝑏𝑐𝑤 is the condenser blended water flowrate 

from the mixing of streams, 𝑇𝑡 
𝑐𝑠𝑤 and 𝑇𝑡 

𝑐𝑟𝑤 are blended chillers entering and leaving condenser 

water temperatures, respectively, and 𝑐𝑝,𝑐𝑤 is condenser water specific heat. Each operating 

cooling tower receives an equivalent fraction of water mass flowrate such that �̇�𝑡
𝑤𝑡𝑤𝑟 =

�̇�𝑡
𝑏𝑐𝑤/∑ 𝑂𝑁𝑡,𝑛

𝑡𝑤𝑟
𝑛∈𝒩 , and is controlled at the same speed to maintain the condenser water 

temperature setpoint. Similarly, secondary pumps are controlled at the same speed to deliver an 

equal amount of flow. For systems with a more sophisticated secondary pumping configuration, 

their optimal scheduling and speed configuration can be determined beforehand and represented 

as a function of flowrate. The optimal scheduling and speed configuration does not depend on 

chillers' settings upstream.  

The total flowrates in the primary and condenser loops are dictated by the design 

evaporator and condenser flowrates for operating chillers, respectively, which are given by: 

 

 

�̇�𝑡
𝑏𝑠𝑤 = ∑ �̇�𝑗

𝑠𝑤𝑂𝑁𝑡,𝑗
𝑐ℎ𝑙

𝑗∈𝒥 , ∀𝑡 ∈ 𝒯 (5.11) 

 

 

�̇�𝑡
𝑏𝑐𝑤 = ∑ �̇�𝑗

𝑐𝑤𝑂𝑁𝑡,𝑗
𝑐ℎ𝑙

𝑗∈𝒥 , ∀𝑡 ∈ 𝒯  (5.12) 
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Primary loop blended supply and return temperature are computed from the mixing of streams as 

follows: 

 

 

𝑇𝑡
𝑏𝑠𝑤 = ∑

�̇�𝑗
𝑠𝑤

�̇�𝑡
𝑏𝑠𝑤 𝑇𝑡,𝑗

𝑠𝑤𝑂𝑁𝑡,𝑗
𝑐ℎ𝑙

𝑗∈𝒥 , ∀𝑡 ∈ 𝒯 (5.13) 

 

 

𝑇𝑡
𝑟𝑤 = 𝑉𝑆𝐷𝑡

𝑠𝑝 𝑇𝑡
𝑐𝑐𝑟𝑤 + (1 − 𝑉𝑆𝐷𝑡

𝑠𝑝)𝑇𝑡
𝑐𝑐𝑠𝑤 , ∀𝑡 ∈ 𝒯  (5.14) 

 

 

The water-glycol mixture temperature at the coil inlet deviates from the supply water 

temperature based on the storage dispatch amount as described by: 

 

 

𝑇𝑡
𝑐𝑐𝑠𝑤 = (1 −

�̇�𝑡 
𝑖𝑤

�̇�𝑡
𝑏𝑠𝑤) 𝑇𝑡

𝑏𝑠𝑤 +
�̇�𝑡 

𝑖𝑤

�̇�𝑡
𝑏𝑠𝑤 𝑇𝑡

𝑖𝑟𝑤 , ∀𝑡 ∈ 𝒯  (5.15) 

 

 

The I-TES exit temperature is computed by re-arranging Equation (3.52) in Chapter 3 as follows: 

 

 

𝑇𝑡
𝑖𝑟𝑤 = 𝑇𝑡

𝑏𝑠𝑤 − 휀𝑡
𝐼𝑇𝐸𝑆(𝑇𝑡

𝑏𝑠𝑤 − 𝑇𝑡
𝐼𝑇𝐸𝑆), ∀𝑡 ∈ 𝒯 (5.16) 

 

 

The storage effectiveness, 휀𝑡
𝑖𝑠, is updated in increments of 10 minutes to capture any change in 

charge and discharge rates within a time step. The storage temperature is initially 6℃ and 

reaches 0℃ when latent charging mode initiates. For all other modes and in discharging, the 

effectiveness is computed with 𝑇𝑡
𝐼𝑇𝐸𝑆 at a reference temperature of 0℃. The storage temperature 

in sensible charging and the storage SoC are updated as follows: 

 

 

𝑇𝑡+1
𝐼𝑇𝐸𝑆 = 𝑇𝑡

𝐼𝑇𝐸𝑆 −
�̇�𝑡

𝑖𝑤𝑐𝑝,𝑠𝑤(𝑇𝑡
𝑖𝑟𝑤−𝑇𝑡

𝑏𝑠𝑤)

𝑚𝑡
𝐼𝑇𝐸𝑆𝑐𝑝,𝑤 ∆𝑡, ∀𝑡 ∈ 𝒯   (5.17) 
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and, 

 

 

𝑆𝑜𝐶𝑡+1 = 𝑆𝑜𝐶𝑡 +
�̇�𝑡

𝑖𝑤𝑐𝑝,𝑠𝑤(𝑇𝑡
𝑖𝑟𝑤−𝑇𝑡

𝑏𝑠𝑤)

3600 𝐶𝐼𝑇𝐸𝑆 ∆𝑡, ∀𝑡 ∈ 𝒯    (5.18) 

 

 

where 𝐶𝐼𝑇𝐸𝑆 is I-TES capacity, 𝑚𝑡
𝐼𝑇𝐸𝑆 and 𝑐𝑝,𝑤 are the mass and specific heat of the water inside 

the I-TES tanks, and ∆𝑡 is the time step in seconds. The temperature of the returning condenser 

water to the cooling tower is computed from the following expression: 

 

 

𝑇𝑡
𝑐𝑟𝑤 = 𝑇𝑡

𝑐𝑠𝑤 +
∑ (𝑃𝑡,𝑗

𝑐ℎ𝑙+𝑄𝑡,𝑗
𝑐ℎ𝑙)𝑗∈𝒥

�̇�𝑡
𝑏𝑐𝑤𝑐𝑝,𝑐𝑤 , ∀𝑡 ∈ 𝒯 (5.19) 

 

  

5.2.2 Optimization strategy  
 

5.2.2.1 Bi-level formulation 

 

A prevalent solution strategy in the literature is the genetic algorithm, a meta-heuristic 

evolutionary optimization strategy inspired by the theory of evolution. The algorithm can work 

with non-convex and non-continuous problems [168]–[170], typically confronted with 

equipment scheduling problems. They explore the solution space by using a population of 

potential solutions. The algorithm selects the fittest individuals to produce the next generation of 

solutions. Over multiple iterations, the algorithm evolves toward a globally optimal solution. 

 However, because of the nonlinearity and the large number of degrees of freedom, the 

problem described above is too cumbersome to be solved using either traditional gradient-based 

or meta-heuristic optimization strategies. The solution approach, as illustrated in Figure 5.3, is to 

decompose the problem into a bi-level optimization formulation to decouple the equipment 

scheduling problem at each hour from the storage dispatch. This simplifies the scheduling 
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problem sufficiently to allow for the use of the genetic algorithm for both levels. The upper level 

minimizes daily operation costs and decides the storage dispatch amount over the next 24 hours. 

The decided dispatch amount is fed to the lower-level optimizer to solve the equipment 

scheduling problem at each hour sequentially and return the corresponding system power 

consumption over the next 24 hours.  

 

 

 

Figure 5.3: The developed bi-level optimization strategy. The upper-level decided 

dispatch is passed down to the lower-level optimizer to solve the equipment 

scheduling problem sequentially. Infeasible storage dispatch at a given hour is 

rejected and penalized. The upper-level optimizer input is the TOU rates, and 

lower-level optimizer inputs are the sensible and latent cooling load and ambient 

wet-bulb temperature. The genetic algorithm is applied to both levels. 
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Six constraints derived from mass and energy balance constrain the lower-level problem. 

The added sixth constraint ensures that the I-TES dispatched amount in the lower level agrees 

with the decided dispatch amount by the upper-level optimizer. Storage dispatch amounts 

decided by the upper-level optimizer that lead to infeasible solutions are penalized. The 

constraints are handled using the penalty function method, which penalizes constraint violation 

and turns the problem into unconstrained optimization. The bi-level objective formulation is 

given by: 

 

 

𝑚𝑖𝑛 𝑂𝑏𝑗1 = ∑ 𝑐𝑡
𝑒

𝑡∈𝒯 𝑃𝑡
𝑆𝑦𝑠 (5.20) 

 

 

𝑚𝑖𝑛 𝑂𝑏𝑗𝑡
2 = (

𝑃𝑡
𝑆𝑦𝑠

𝑃𝑡
𝑆𝑦𝑠,𝑑𝑒𝑠)

𝛼

+ ∁𝑡, ∀𝑡 ∈ 𝒯 (5.21) 

 

 

where 

 

 

∁𝑡=

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝑎1 |1 −

�̇�𝑡
𝑖𝑤𝑐𝑝,𝑠𝑤(𝑇𝑡

𝑖𝑟𝑤−𝑇𝑡
𝑏𝑠𝑤)+�̇�𝑡

𝒟

∑ (𝑃𝐿𝑅𝑡,𝑗 �̇�𝑗
𝑐ℎ𝑙,𝑑𝑒𝑠)𝑗∈𝒥

|

𝑏1

+𝑎2 |
𝑉𝑆𝐷𝑡

𝑠𝑝
�̇�𝑡

𝑏𝑠𝑤𝑐𝑝,𝑠𝑤(𝑇𝑡
𝑐𝑐𝑟𝑤−𝑇𝑡

𝑐𝑐𝑠𝑤)+∆

�̇�𝑡
𝒟+∆

− 1|
𝑏2

+𝑎3 |
𝑉𝑆𝐷𝑡

𝑐𝑓
�̇�𝑐𝑐𝑎,𝑑𝑒𝑠(ℎ𝑡

𝑎𝑖−ℎ𝑡
𝑎𝑒)+∆

�̇�𝑡
𝒟+∆

− 1|
𝑏3

+𝑎4  |1 −
�̇�𝑡

𝑖𝑤

�̇�𝑡
𝑏𝑠𝑤|

𝑏4

[�̇�𝑡
𝑖𝑤 > �̇�𝑡

𝑏𝑠𝑤]

+𝑎5 |
�̇�𝑡

𝑏𝑐𝑤𝑐𝑝,𝑐𝑤(𝑇𝑡 
𝑐𝑟𝑤−𝑇𝑡 

𝑐𝑠𝑤)

∑ �̇�𝑡,𝑛
𝑡𝑤𝑟

𝑛∈𝒩 𝑂𝑁𝑡,𝑛
𝑡𝑤𝑟 − 1|

𝑏5

+𝑎6|𝑆𝑜𝐶𝑡 − 𝑆𝑜𝐶𝑡
𝑢𝑙𝑜|

𝑏6
]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (5.22) 

 
 

where 𝛼, 𝑎1 to 𝑎6, and 𝑏1 to 𝑏6 are the penalty factors, 𝑆𝑜𝐶𝑡
𝑢𝑙𝑜 is the storage dispatch amount 

decided by the upper level, and ∆ is an arbitrarily small load (<1% of �̇�𝑑𝑒𝑠) with the same unit as 
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�̇�𝑡
𝒟. Bound constraints on chillers' part load ratio and storage SoC in Equations (5.2)-(5.3) are 

enforced by resetting the violating variable to the nearest bound. This inevitably leads to the 

violation of balancing constraints and thus discourages the genetic algorithm from populating 

that search space area. Solutions that violate the length of the dry section bound constraint in 

Equation (5.5) cannot be truncated and are eliminated from the algorithm gene pool.  

 Constraints are relaxed to allow for a violation of no more than 3%, although they largely 

fall below 1%. The system power use over the next 24 hours, as determined by the lower-level 

optimizer, is returned to the upper-level optimizer to update the storage dispatch guess for the 

next iteration. The input of the upper level is the TOU electricity prices, and the inputs for the 

lower level are the cooling load (sensible and latent), ambient wet-bulb temperature, and storage 

current SoC. The decision variable for the upper-level problem is the storage dispatch amount 

(∆𝑆𝑜𝐶𝑡) and the decision variables for the lower-level problem are setpoints 

(𝑇𝑡,𝑗
𝑠𝑤 , 𝑇𝑡

𝑐𝑠𝑤, �̇�𝑡 
𝑖𝑤,  𝑉𝑆𝐷𝑡

𝑐𝑓
, 𝑉𝑆𝐷𝑡

𝑠𝑝
, 𝑉𝑆𝐷𝑡

𝑡𝑤𝑟) and equipment scheduling (𝑂𝑁𝑡,𝑗
𝑐ℎ𝑙, and 𝑂𝑁𝑡,𝑛

𝑡𝑤𝑟). 

Upon meeting the algorithm stop criteria, the converged storage dispatch amount curve (∆𝑆𝑜𝐶 v. 

time) can be used to adjust equipment scheduling and setpoints while continuously re-solving for 

the next 24 hours to factor in deviations from forecasted demand and ambient conditions.  

5.2.2.2 Parameters tuning 
 

Balancing constraints in the lower-level problem are handled using the penalty function 

method. This method makes the objective function subject to influence by both the system power 

use and violations of balancing constraints. This poses a challenge for the genetic algorithm to 

assess the population's fitness effectively. There are 13 penalty factors in Equations (5.21)-

(5.22); manual tuning of the 13 penalty factors is difficult and cumbersome, especially 

considering the impact of the cooling load, ambient wet-bulb temperature, and storage use on the 
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solution space. In addition to penalty factors, genetic algorithm parameters such as population 

size, crossover rate, number of generations, number of stall iterations, and elite count, among 

others, can highly impact the quality of the converged solution. A more systematic and robust 

approach is to tune the penalty factors and genetic algorithm parameters with training data using 

an optimizer such as particle swarm optimization.  

Training data are manufactured by sampling various operating combinations of cooling 

load, ambient wet-bulb temperature, and storage SoC and dispatch amount. Feasible solutions, 

irrespective of optimality, should satisfy the constraints and hence can be used to tune the 

penalty factors. The intention is to allow the genetic algorithm at the lower level to distinguish 

apart the contribution of each variable to the objective function, better assess the population 

fitness and locate a feasible, globally optimal solution. The manufactured training data are shown 

in Figure 5.4. The dataset contains 237 unique combinations of cooling demand, ambient wet-

bulb temperature, storage dispatch amount, and storage SoC. The objective function for the 

penalty factor tuning optimization is as follows: 

 

 

𝑚𝑖𝑛 𝑂𝑏𝑗 = ∑ [𝑃𝑧 + 𝛽∁𝑧]𝑧∈𝒵  (5.23) 

 

 

where, 

 

 

𝑃𝑧 = {𝑃𝑧
𝑆𝑦𝑠

               ∁𝑧≤ 𝑡𝑜𝑙                                                                
𝐹                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                         

 (5.24) 

 

 

subscript 𝑧 is data point index set {1, 2, 3, ..., 237} denoted by 𝒵, 𝛽 is a constant that is manually 

adjusted such that 𝛽∁𝑧 sufficiently reduces constraints violation but not large enough to 

meaningfully impact the objective function, 𝑡𝑜𝑙 is the constraint relaxation tolerance (taken as 
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3% for the analysis), and F penalizes (𝐹 ≫ 𝑃𝑆𝑦𝑠,𝑑𝑒𝑠) infeasible solutions (∁𝑧> 𝑡𝑜𝑙). Tuning of 

the penalty factors eliminated the genetic algorithm problem of premature convergence.  

 

     

 

Figure 5.4: Manufactured Training data with (a) cooling demand v. wet-bulb 

temperature and (b) storage dispatch amount and SoC. This set has 237 unique data 

points, each an independent input condition for the scheduling problem. A sensible 

heat ratio of 0.7 is assumed. 
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The optimal system COP for three modes of storage operation (charging, discharging, 

and idle) generated for the considered system under a range of cooling loads are shown in Figure 

5.5 at a design wet-bulb temperature of 25℃. Despite the problem's high nonlinearity and 

complexity, the tuned penalty factor and genetic algorithm parameters resulted in near-smooth 

and continuous system performance curves. The curve's shape is a consequence of the three-

chillers system. There are two configurations for operating this system when charging at a rate of 

160 tons in Figure 5.5 (a) since the smallest chiller cannot provide sufficient cooling on its own. 

At lower than 300 tons, the system utilizes a more efficient configuration of two centrifugal 

chillers for charging. When discharging or idling, like in Figures 5.5 (b) and (c), the more 

complex shape is caused by the operation of the three chillers. At lower loads, it is sufficient to 

use one chiller to reduce parasitic pump power use. However, as the load increase, more 

thoughtful consideration is necessary to schedule the remaining chillers. At higher loads, the 

system is obligated to use all chillers. 

 

 

Figure 5.5: System COP for a range of cooling loads at a wet-bulb temperature of 

25℃ when (a) charging at a rate of 160 tons, (b) discharging at a rate of 160 tons, 

and (c) idle I-TES. The total load includes the cooling load and the storage charge 

amount. 
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Meta-heuristic algorithms are computationally demanding as they depend on exploring 

the solution space to locate the globally optimal solution, especially with the large population 

needed to solve the examined problem (1000-5000). To tackle the problem of long run time, the 

lower-level problem is pre-solved under a range of cooling loads, storage use and SoC, and 

ambient air wet-bulb temperatures. A standard sensible heat ratio of 0.7 is assumed for the 

cooling load. Tri-linear interpolation is applied between the data points, which reduces the run 

time to 1-2 minutes. 

5.3 Results and discussion 

The proposed optimal control strategy is compared to two commonly used heuristic 

strategies for thermal energy storage dispatch: chiller priority control and storage priority 

control. In chiller priority control, chillers are loaded at capacity, and storage is used to 

supplement additional cooling needs. This strategy aims to maximize the efficiency of the 

chillers. In storage priority control, full storage capacity is utilized, and storage dispatch is 

prioritized over the chillers. Storage supplies a steady cooling rate while the chillers meet the 

residual and fluctuating cooling demand. Storage is charged at the maximum rate the chillers 

allow in both heuristic strategies. For storage and chiller priority controls, the scheduling 

problem is solved heuristically as follows: 

▪ 212-tons centrifugal chillers with VSD are operated first before the 153-tons screw 

chiller is started because of the higher efficiency  

▪ Charging at chillers supply temperature setpoint of -7℃ 

▪ Discharging at chillers design supply temperature setpoint of 6℃; temperature is 

gradually increased if necessary to maintain storage dispatch amount 
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▪ Cooling tower condenser water temperature setpoint based on design approach 

temperature of 3℃ (difference between leaving water and ambient air wet-bulb 

temperatures) 

▪ Operating cooling tower is fully loaded before the second one is started  

The three storage dispatch strategies are compared in three scenarios of cooling loads 

under TOU rates shown in Figure 5.6. I-TES is necessary to satisfy building cooling demand 

when the load exceeds the design chillers' cooling capacity of 570 tons. Scenario 1 has the 

highest total cooling needs; the demand for cooling begins at 8 AM and terminates at 6 PM. The 

load peaks at 600-700 tons and requires 976 TR-hr of stored energy (61% of storage capacity) to 

satisfy building cooling demand. Scenario 2 has intermediate cooling needs and similarly starts 

at 8 AM and terminates at 6 PM. The load peaks at 550-650 tons and require 544 TR-hr of stored 

energy (34% of storage capacity). Scenario 3 has the least cooling needs, starting later at 9 AM 

and ending earlier at 5 PM. This demand scenario peaks at 500-600 tons and requires only 144 

TR-hr of stored energy (9% of storage capacity).  

Simple two levels TOU tariffs are considered with an on-peak period lasting 8 hours 

between 8 AM and 4 PM and an off-peak period otherwise. The TOU tariff doubles from 

$0.1/kWh in the off-peak period to $0.2/kWh in the on-peak period, coinciding with a high 

building cooling load. For all three scenarios, the ambient wet-bulb temperature is lower during 

early morning hours and higher during the evening, which overlaps with the cooling load and 

slightly depresses the chiller cooling capacity.  
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Figure 5.6: Optimization problem input for three scenarios with hourly (a) cooling 

demand, (b) TOU rates, and (c) ambient wet-bulb temperature. A sensible heat ratio 

of 0.7 is assumed. 
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The formulated problem is solved for the three scenarios using each of the three 

considered strategies, and the results are tabulated in Table 5.1. The hourly load contribution 

from each chiller and the storage to meet the cooling demand is shown in Figure 5.7. The hourly 

system characteristics for all scenarios are shown in Figure 5.8 with (a) system operation cost, 

(b) system total energy use, (c) chiller energy use, and (d) auxiliary equipment energy use, and in 

Figure 5.9 with (a) system COP, (b) blended chillers evaporator leaving temperature, (c) storage 

dispatch amount, and (d) flowrate to I-TES.  

Table 5.1: Daily cost, energy use, and storage utilization for all scenarios 

 
 

 
Optimization 

Strategy 

Cost 

($/day) 

Energy 

(kWh/day) 

Storage 

Utilization 

(% of Capacity) 

Cost Difference to 

Optimal Control (%) 

S
ce

n
ar

io
 1

 Chiller Priority 

Control 
1070 6434 61 17 

Storage Priority 

Control 
1045 6610 100 14 

Optimal Control 916 5888 96 - 

S
ce

n
ar

io
 2

 Chiller Priority 

Control 
909 5215 34 19 

Storage Priority 

Control 
852 5485 100 11 

Optimal Control 766 4954 96 - 

S
ce

n
ar

io
 3

 Chiller Priority 

Control 
746 4068 9 23 

Storage Priority 

Control 
675 4470 100 11 

Optimal Control 606 4013 96 - 

 

Optimal dispatch and equipment scheduling reduce operation costs by 17%, 19%, and 

23%, and total energy use by 9%, 5%, and 1% for Scenarios 1, 2, and 3, respectively, relative to 

chiller priority control. Although chiller priority control attempts to maximize chillers' 

efficiency, the missed opportunity cost from load shifting combined with sub-optimal chiller 
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scheduling resulted in a significantly higher system cost. Relative to storage priority control, 

optimal control reduces operation costs by 14%, 11%, and 11%, and total energy use by 12%, 

11%, and 11% for Scenarios 1, 2, and 3, respectively. In addition to the cost reduction, the cost-

optimal control system reduced daily energy use, resulting in reduced carbon emissions. 

Although auxiliary equipment energy use, shown in Figure 5.8 (d), is small and minimally 

impacts the overall system energy use compared to chillers' energy use, shown in Figure 5.8 (c), 

their interaction with the chillers significantly impacts chillers' performance and consequently 

their energy use.  

I-TES is more efficiently charged in optimal control than heuristic strategies; the cost-

optimal control system only utilizes the more efficient 212-tons centrifugal chillers with VSD for 

storage charging. Although it prolongs the charging period by an additional hour compared to 

storage priority control, it evades running the chillers at a reduced part-load ratio and thus 

increases overall efficiency. The deterioration of I-TES effectiveness diminishes the utility of the 

higher flowrate provided by the third chiller. It is worth noting that the storage was not fully 

charged in optimal control under all scenarios to avoid the increased thermal resistance around 

the I-TES coils at the end of the charging cycle. For all strategies, storage was charged at a 

water-glycol mixture inlet supply temperature of -7℃, as shown in Figure 5.9 (b). 

In Scenario 1, the cooling demand far exceeded the design chiller capacity, which 

required using all three chillers. The higher efficiency attained in the optimal control is primarily 

due to the optimal loading of the three chillers. The model results suggested loading the screw 

chiller fully and equally part-loading the 212 tons VSD centrifugal chillers. As the demand is 

reduced in Scenario 2 and further in Scenario 3, the screw chiller is progressively displaced, and 

when operated, it is fully loaded. An exception is in Scenario 3 at 3 PM, where a screw chiller 
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was necessary to provide sufficient water flowrate to discharge the I-TES. Not only that, but the 

model also attempts to operate the VSD centrifugal chillers at their maximum efficiency point 

with a part load ratio between 0.8 and 0.9. This is more easily accomplished in Scenario 3 when 

storage dispatch is less constrained by the cooling demand.  

Figure 5.9 (d) shows the supply water-glycol mixture flow rate to I-TES. The reduced 

flowrate in the optimal control strategy caused by switching off the screw chiller is traded with 

an increased supply temperature during discharge, enhancing system COP. Compared to 

heuristic strategies, discharging of storage largely terminates before the end of on-peak 

electricity pricing, further contributing to cost savings. This was achieved by re-setting the water 

supply temperature at the outlet of the chillers above the design point by 2-3℃, which enhanced 

the chillers' cooling capacity, particularly the 153-tons chiller with a positive displacement screw 

compressor. Other sources of enhanced system COP are lower ambient temperatures combined 

with reduced chillers loading, specifically during the discharging period, which benefited the 

VSD chillers.  
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Figure 5.7: Cooling demand contribution breakdown from each chiller and storage 

for the three considered control strategies. From left to right: chiller priority 

control, storage priority control, and optimal storage control. The system comprises 

two 212-tons chillers with a VSD-equipped centrifugal compressor (Carrier 19XR) 

and one 153-tons screw chiller without VSD (Trane RTHB). 
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Figure 5.8: For the three control strategies, hourly systems profiles with (a) system operation 

cost; (b) total system electric energy use; (c) total energy use by all chillers excluding auxiliary 

equipment; (d) auxiliary equipment energy use which includes primary, secondary and 

condenser pumps, and towers and coil fans. 
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Figure 5.9: For the three control strategies, hourly system: (a) COP, (b) blended 

chillers supply temperature, (c) storage dispatch amount curve, and (d) flowrate to 

I-TES. System COP is the ratio of total chiller loading to the system’s electric load.  
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In addition to TOU pricing, demand charges are often applied to commercial and 

industrial customers as a fee to maintain the reliability and infrastructure of the power grid. They 

are charged based on the highest power used during a billing cycle. The application of demand 

charges promotes storage use not only for load shifting but also for peak shaving. The formulated 

problem was solved with a demand charge of $20/kW applied to Scenario 1, the scenario with 

the highest cooling demand assuming it repeats for a month. The added monthly charge is given 

by $20/kW × max
𝑡∈𝒯

𝑃𝑡
𝑆𝑦𝑠

. The analysis suggests that the cost-optimal system can reduce peak 

electric demand by 75 kW and cost from demand charges by 17% relative to storage priority 

control and by 113 kW and 26% relative to chiller priority control. However, the inclusion of the 

demand charge results in an increase in the daily cost of energy use from $916/day to $928/day. 

Despite the increased thermal resistance around the I-TES coils at the end of the charging cycle, 

the system fully utilizes the storage capacity for load shifting and peak demand reduction. Figure 

5.10 shows the cost-optimal system load contribution breakdown in (a) and energy use in (b) 

when a demand charge of $20/kW is applied to Scenario 1.  

  
 

 
 

Figure 5.10: Applying a demand charge of $20/kW to Scenario 1 with (a) a 

breakdown of cooling contribution from each chiller and storage and (b) system 

electric energy use. 
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As shown in Figure 5.10 (b), the demand charges oriented storage dispatch around 

reducing the peak power use, which produced a near-flat power curve. Unlike the scenarios with 

no demand charge, this system utilized the screw chiller to support a higher I-TES charging rate 

in the first hour (Hour 0). Furthermore, instead of effectively terminating the discharge process at 

the end of on-peak pricing at 4 PM, the storage dispatch continues for two additional hours to 

reduce the peak demand and hence, peak demand charges. 

5.4 Conclusion 

Moving toward a more sustainable power grid based on intermittent renewable energy 

requires demand-side management to maintain the reliability and stability of the power grid. As 

opposed to today’s power grid which relies on dispatchable power generation, a low-carbon grid 

reliant on renewables must adjust the demand to match the supply better. This supply matching 

can be accomplished via demand-side management, which requires energy storage and load 

adjustment. Cooling is responsible for half of the electricity demand in Qatar, thereby making 

cooling systems the primary target for demand-side management. However, the operation of 

CWS tends to be complex from the interaction of its constituent components.  

Hybrid steady-state models developed in Chapter 3 for I-TES and the key power-

consuming components, including the chillers, cooling towers, water pumps, and cooling coil 

fans, were used to formulate the scheduling and dispatch problem. The formulated problem is 

highly non-linear and too cumbersome to solve using traditional optimization methods. The 

solution strategy is to decompose the problem into bi-level optimization to decouple the 

equipment scheduling problem from storage dispatch, which sufficiently simplifies the problem. 

The genetic algorithm is used to solve the simplified problem. The upper level minimizes 

operation costs and decides the storage dispatch amount fed to the lower-level optimizer to solve 
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the equipment scheduling problem sequentially and return the subsequent system power 

consumption to update the guess for the next iteration. Constraints in the lower-level problem are 

handled using the penalty function method. Tuning the penalty factors and genetic algorithm 

parameters using an optimizer and training data diminished and eliminated the premature 

convergence problem. This approach negates the need for simplistic system models for complex 

space cooling and heating applications. While computationally taxing, the run time for the 

proposed approach can be reduced to 1-2 minutes by pre-solving the lower-level problem under a 

range of input conditions and tri-linearly interpolating between them. CWS plant operators can 

use the developed strategy to optimize plant operation. For CWS without I-TES, the lower level 

problem can be solved at each time step to determine optimal chillers loading and sequencing.  

Limitations of the strategy include no considerations for minimum chiller uptime and additional 

energy savings that could be enabled through better modeling of the air distribution side. 

The developed optimal control strategy is compared to two commonly used heuristic 

storage strategies: chiller priority control and storage priority control, in three scenarios of 

cooling demand under TOU tariffs. The model results suggest that the optimal control strategy 

consistently offered cost reduction by 17-23% relative to chiller priority control and 11-12% 

relative to storage priority control. Furthermore, optimal equipment and scheduling dispatch 

reduced energy use by 1-9% relative to chiller priority and 11-12% relative to storage priority 

control. When Scenario 1 is reconsidered with a demand charge of $20/kW, the optimal system 

can reduce peak demand power and cost from demand charge by 75 kW and 17%, respectively, 

relative to storage priority and by 113 kW and 26% relative to chiller priority controls. The 

benefits of the proposed strategy are amplified when a more sophisticated tariff structure is 

present. Lastly, the proposed approach can be used to decide storage dispatch over a more 

extended period than 24 hours at the expense of increased computational time. 
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Chapter 6: Conclusions and recommendations for future works 

6.1 Main Conclusion 

Moving to low-carbon electricity grids is necessary to mitigate climate catastrophe and 

remains humanity's greatest challenge. The pathway to a low-carbon electricity grid will not be 

universal. Instead, each region must tailor a plan specific to its energy needs, climate, and 

geology. Qatar is attractive for utilizing solar PV since it has relatively high and predictable solar 

insolation with a global horizontal irradiance of 2200 kWh/m2/yr. synergetic with electricity 

demand. With a hot desert climate, space cooling drives the electricity demand and is responsible 

for nearly half the electricity consumed. 

The work described in this dissertation aims to examine and analyze a decarbonization 

pathway for the cooling-driven electricity sector in Qatar using PV generation combined with I-

TES and BESS for load shifting from multiple perspectives in a top-down approach, with (i) 

assessing the potential for large-scale deployment from a utility-scale perspective, (ii) examining 

the subsequent distributed energy resources capacity sizing problem, and (iii) proposing a 

solution to the arising demand side management problem. Carbon pricing policy was examined 

in the form of the carbon tax to facilitate the transition to more sustainable renewable energy 

sources that otherwise would be challenging with Qatar's access to plentiful and cheap natural 

gas. Carbon pricing enables renewable energy to compete with carbon-based energy sources and 

mobilize investments in alternative energy sources for carbon abatement. 

The utility-scale perspective in Chapter 2 provided insight into the renewable penetration 

potential, overall emissions reduction, and the impact on power grid operation for large 

deployment of PV generation combined with centralized BESS and decentralized building-scale 

I-TES, which was modeled using a stochastic linear program. Linear programs are also useful for 
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describing the aggregate behavior and performance of the systems, which tend to exhibit simpler 

behavior than their constituents. The analysis suggests that BESS is cost-prohibitive under the 

current gas price of $3.3/MMBtu and capacity cost of $250/kWh. Nevertheless, at the current gas 

price, 8 GW of PV and 28 GWhth of I-TES capacity introduced in the national grid can reduce 

CO2 emissions by 43% while cutting annual system costs by 20%. Emissions can be reduced by 

60% in a system with carbon pricing at $60/ton of CO2 with higher investments in PV and I-

TES. Several hurdles impede further emissions reduction, including (i) misalignment of 

electricity demand, which peaks in August, and solar insolation, which peaks in June, producing 

less when needed, (ii) I-TES cannot outcompete existing gas generation for seasonal cooling 

needs, (iii) reduced idle chiller capacity in the peak cooling season, and (iv) chiller capacity 

degradation due to higher ambient temperatures in the high demand season. However, I-TES is 

well suited to utilize idle chiller capacity that is a consequence of a highly seasonal cooling load 

for load shifting in the shoulder season. More so in less efficient cooling systems, such as AC 

systems, due to an equal tank volume corresponding to greater electric load shifting. 

BESS becomes cost-effective with a carbon price above $100/ton of CO2  at the current 

capacity cost of $250/kWh. While BESS does not displace I-TES for cooling load shifting, either 

at higher carbon pricing or lower capacity cost, it is primarily used to manage non-cooling loads. 

This is because BESS requires a high daily capacity utilization rate of about 90% to become 

cost-effective, making it unsuitable for seasonal cooling demands. A system with a carbon price 

of $140/ton of CO2 can achieve a deep decarbonization rate of 92%, supported by BESS. Further 

emissions reductions realized with higher carbon pricing are limited.  

Naturally, decentralized I-TES must ultimately be adopted by individual buildings. While 

simpler models were used for large-scale deployment analysis, they cannot be applied to 
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individual systems. Chapter 3 developed more sophisticated models for WC CWS, the 

conventional way of cooling large buildings in Qatar. Hybrid steady-state models are developed 

for the major devices in CWS, including chillers, pumps, cooling towers, cooling coils, and I-

TES. Hybrid models combine the physical insight of physics-based models with the efficiency of 

data-driven models in a simpler formulation achieved with empirically obtained parameters. The 

developed models are used for the site analysis in Chapter 4 and the scheduling and dispatch 

problem in Chapter 5. 

The site analysis performed in Chapter 4 encompassed proposing a solution to the 

equipment capacity sizing problem and gaining insight into the integration of distributed-scale 

renewable generation. To overcome the lack of building energy demand profiles in Qatar, 

demand profiles were simulated for two typical buildings with two uses, business-commercial 

and residential, which generally have opposing occupancy rates as people move from home to 

the workplace. The developed strategy formulates the problem into a bi-level optimization with a 

simplified components model. The upper level minimizes and decides the installed design 

parameters using particle swarm optimization, and the lower level solves the scheduling and 

dispatch problem in a mixed-integer linear program with piece-wise linearization. This strategy 

can be broadly applied to new and existing buildings with different cooling system technologies 

under different climatic conditions. 

The site analysis affirmed the suitability of distributed-scale PV generation. Buildings 

with diurnal demand synergetic with solar insolation are particularly well suited for exploiting 

PV generation and can achieve a decarbonization rate above 60% without carbon pricing. I-TES 

is suitable for utilizing the large idle chiller capacities during the shoulder cooling season for 

cooling load shifting and could reduce building carbon emissions by 5-10%. Similar challenges 
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to the utility-scale perspective are confronted when applying carbon pricing to promote I-TES. 

The chillers' cooling capacity must be remarkably oversized for I-TES to be utilized in the high 

cooling demand season. BESS becomes cost-effective with carbon pricing above $75/ton of CO2 

and is used to meet the near year-round constant building baseload. With carbon pricing above 

$100/ton of CO2, the cost-optimal system can yield a decarbonization rate of about 90% for 

either building using distributed-scale solutions.  

Although buildings are well suited for exploiting PV generation, Qatar is bettered suited 

for utility-scale implementation. Utility-scale implementation offers (i) reduced generation cost, 

(ii) reduced curtailment from demand aggregation, (iii) higher output from solar tracking 

technology, and (iv) better accessibility for cleaning since soiling on PV is identified as a major 

challenge in Qatar. BESS, as well, is better suited for utility-scale due to a more reliable 

aggregate non-cooling loads that can permit high daily capacity utilization needed for BESS to 

be cost-effective. 

Since intermittent renewable generations are not dispatchable, nor can they be perfectly 

predicted. High penetration of PV generation combined with I-TES and BESS requires demand-

side management, a tool the electric utility uses to adjust the demand to match the power supply. 

A method to control demand is using dynamic pricing in the form of TOU. Due to the high load 

from space-cooling, cooling systems are a crucial target for demand side management. However, 

operating CWS to maximize savings from demand-side management can be challenging and 

requires careful consideration of chillers' staging and part-load performances, as well as the 

performances of associated auxiliary equipment.  

The solution strategy developed in Chapter 5 was to decompose the problem into bi-level 

optimization to decouple the equipment scheduling problem from storage dispatch, which 
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sufficiently simplifies the problem. The genetic algorithm is used to solve the simplified 

formulation. The upper level decides the storage dispatch amount, and the lower-level optimizer 

solves the equipment scheduling problem at each hour. The constrained optimization in the 

lower-level problem is turned into an unconstrained optimization using the penalty function 

method. The genetic algorithm problem of premature convergence was eliminated by tuning the 

penalty factors and genetic algorithm parameters using an optimizer and training data.  

The proposed approach negated the need for simplistic system models often used in 

complex space cooling and heating applications. Compared to two commonly used heuristic 

storage dispatch strategies, the model suggests optimal control reduces cost and energy by 11-

14% and 10-12%, respectively, relative to storage priority control, and 16-33% and 1-9%, 

respectively, relative to chiller priority control. In an investigation with a demand charge, 

optimized control reduces demand charges by 17% relative to storage priority and 26% relative 

to chiller priority control. The utility of the proposed approach is augmented when a more 

sophisticated tariff structure is present, which is expected with high penetration of intermittent 

renewable generations. 

There are possible approaches to overcome the challenges identified in this work that 

would better address future sustainable urban development needs, which include (i) more 

considerable reliance on WC systems that are more efficient and could reduce the seasonality of 

cooling and electric loads; (ii) DXS capable of ice charging as standards for better future 

integration with I-TES; (iii) more energy-efficient buildings with passive design to reduce peak 

cooling demand; (iv) removing energy subsidies and further promoting energy conservation 

awareness; (v) reducing urban heat island effect, which impact cooling need and cooling systems 

performance, by planting more trees and considering lighter colors for sidewalks and home 
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exterior. Lastly, by using existing decarbonization solutions at current prices, Qatar could 

substantially reduce its carbon footprint and decrease the reliance on gas generation for cooling 

and electric loads using solar PV generation, energy storage, and moderate carbon pricing. 

6.2 Recommendations for future work 
 

The scope of this work could be expanded to explore the limitations identified during this work. 

The recommendations, in no particular order, are as follows: 

6.2.1 Examining the cost of retrofitting DXS 
 

Currently sold and installed DXS are not designed for operation with I-TES. The direct 

expansion cooling systems were charged using additionally installed dedicated ice chillers at a 

cost in the large-scale deployment problem analyzed from the utility-scale perspective in Chapter 

2. Investigating the cost of retrofitting the existing DXS to allow them to be capable of storing 

ice can unlock the potential for a larger amount of I-TES at a reduced carbon tax.  

6.2.2 Alternative energy storage technologies 
 

The low thermal capacity of 0.04 MJ/kg of chilled water storage compared to 0.4 MJ/kg 

for I-TES, combined with a higher initial cost, makes stratified chilled water storage less 

economically favorable. However, producing cooling to store ice substantially lowers the 

chillers' COP and cooling capacity limiting the amount of usable excess energy. Investigating 

alternative thermal energy storage could yield a more promising storage technology. The desired 

storage technology must have: (i) thermal energy density comparable to ice, (ii) a melting point 

higher than ice to reduce the problem of performance and capacity degradation in chillers, and 

(iii) good thermal properties to maintain comparable charge and discharge rates. This largely 

remains a challenge with phase change material storage. In addition to thermal energy storage, 
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long-term energy storage can use a large amount of excess generation from the misalignment of 

the PV generation peak with the electricity demand peak.  

6.2.3 Alternative decarbonization pathway  
 

Excellent climatic conditions in Qatar combined with low-cost PV generation make 

exploiting solar energy exceptionally attractive. However, the sole use of diurnal PV generation 

requires sufficiently large energy storage to store a full night's worth of cooling and electricity 

needs. Energy storage needs can be alleviated by considering alternative energy sources and 

decarbonization pathways, such as carbon capture and sequestration for gas generation, wind 

energy, and energy efficiency. However, historical data in Qatar shows wind to be interannually 

correlated with PV generation, which could limit its benefits. Furthermore, a challenge identified 

when analyzing the decarbonization pathway for electricity in Qatar is the highly seasonal 

cooling needs between mid-July to mid-September. Examining the energy efficiency pathway 

can attenuate the peak cooling demand from better building insulation, higher efficiency cooling 

systems, and tighter building constructions.   

6.2.4 Determining the ideal electricity tariffs structure   
 

 The considered tariff structure in Chapter 4 is from bulk customers with a load exceeding 

5 MW. The tariff, which lacks subsidies, was used to examine the impact of carbon pricing. In 

scenarios with high PV adoption, it is likely for the tariff structure to reverse to charge more for 

nighttime electricity needs. This raises the question of what tariff structure could maximize PV 

generation utilization at a distributed level.   

6.2.5 Incorporate BESS in the I-TES dispatch problem 
 

The CWS equipment scheduling and I-TES dispatch problem examined in Chapter 5 do 

not incorporate the BESS dispatch problem to maximize renewable penetration in the grid. While 
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a simple linear BESS model was considered for utility-scale analysis in Chapter 2 and building-

scale analysis in Chapter 4, an optimal dispatch of BESS should also consider the impact of 

capacity degradation from cycling and charge/discharge rates.  

6.2.6 Inclusion of seawater desalination in the model 
 

 The current approach to meeting Qatar's electricity demand is using gas-powered 

integrated water and power plants that sometimes are sub-optimally operated to sustain 

desalination, especially in the winter when the dispatch is concerned with water demand. While 

other desalination technologies, such as reverse osmosis, are gaining ground due to their higher 

efficiency, a more accurate analysis should include water demand balance considering 

desalination plants' energy use, carbon emissions, and impact on the thermal efficiency of power 

plants.  

6.2.7 Modeling the impact of electrifying the transportation sector 

The transportation sector in Qatar mainly runs on gasoline and diesel-powered internal 

combustion engines and electric-powered subway and light rail systems. This dissertation did not 

address the impact of grid-connected battery electric vehicles expected over the coming decades, 

which could be used to aid decarbonization efforts by contributing to load shifting.  
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Appendix A: Simulation of buildings' cooling and electric loads 

Simulation of building cooling load can be accomplished by summing heat gains from all 

major sources. Heat gains sources in buildings can be classified into heat gains from internal 

sources, including: 

▪ Occupant load 

▪ Electric load from devices, appliances, and lighting 

and heat gain from the building envelope, which includes: 

▪ Infiltration and ventilation 

▪ Solar gain through glazing 

▪ Conduction through the building envelope 

Several assumptions are made to estimate the heat gain from each source. The aim is to capture 

generic and non-specific diurnal and interannual demand profiles for the two most common 

building types in Qatar, residential and commercial buildings, without specific knowledge of 

building interior zoning, orientation, and construction details that would be required with energy 

simulation software. The assumptions, in no particular order, are as follows: 

General: 

▪ The two buildings have identical total daily electric and cooling needs with different 

hourly demand profiles. 

▪ The building interior is maintained at 22℃ and 50% relative humidity at all times. 

▪ Building occupancy is assumed based on typical working hours in Qatar. 

▪ Building electric load is calculated based on assumed occupancy and typical electric 

energy consumption in residential and business-commercial (office) settings. 

 



187 

 

▪ Occupant activity level is based on resting for the residential and light-office work for the 

commercial building. 

Building construction: 

▪ 30% of the building façade is covered with glazing, which is on par with typical high-rise 

buildings worldwide and in Qatar. 

▪ No specific building orientation is supposed; instead, a quarter of the building envelope is 

assumed to be perpendicular to horizontal sun rays at all times when estimating the 

cooling load from admitted solar insolation. 

▪ Building thermal insulation is on par with Qatar’s building code (overall heat transfer 

coefficients of 0.6 W/m2-K for walls, 1.8 W/m2-K for windows, and 0.6 W/m2-K for the 

upper-most roof) with exterior surfaces at the ambient temperature.  

▪ The assumed combined infiltration and ventilation rate for the entire building is on par 

with typical modern construction and Qatar of 1.25 ACH (air change per hour). 

The assumed building characteristics are tabulated in Table A.1 below. The building consists of 

30 floors with a floor height of 3 m and an area of 2000 m2 square in shape. The building's gross 

area is 60,000 m2 with an envelope opaque surface area of 112,700 m2
 and a glazing surface area 

of  48,300 m2, constituting 30% of the building façade.  

Table A.1: Considered building characteristics 

Parameter Value Notes 

Number of Floors 30 - 

Floor Height  3 m - 

Gross Floor Area 60,000 m2 2000 m2 floor, square 

Window-to-Wall Ratio 30% Building Envelope 
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A.1 Occupant load 

Buildings’ occupants contribute to thermal load from human metabolic heat generation 

depending on their activity level [171]. Most metabolic heat generation is sensible in an air-

conditioned environment and under light work activity. As the work and activity load increases, 

more metabolic heat generation is latent from perspiration. The metabolic heat generation rate 

for commercial and residential settings is in Table A.2.  

Table A.2: Occupant heat gain in residential and commercial buildings 

Parameter Residential  Commercial  

Sensible Gain (W/person) 70 75 

Latent Gain (W/person) 45  55 

Total Heat Gain (W/person) 115 130 

Maximum Occupancy Rate (m2/person) 50 40 

 

The heat rate for an office setting with light activity levels is a metabolic heat generation 

rate of 130 W/person, of which 75/W/person is a sensible load and 55 W/person is a latent load. 

In homes with reduced activity levels, the metabolic heat generation rate is 115 W/person, of 

which 70/W/person is sensible load and 45 W/person is latent load. Commercial and residential 

buildings can have an inverse occupancy rate as people transition from their workplace to the 

place of their residence. Figure A.1 shows the assumed occupancy rate representative of 

residential and commercial settings. Occupancy is higher in the evening and at night in 

residential settings and primarily during the day in commercial buildings. The metabolic heat 

generation rate in moderately occupied buildings minimally impacts the overall thermal load.  
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Figure A.1: Assumed occupant load in (a) residential setting and (b) business-

commercial setting. An inverse occupancy relationship is assumed as people move 

from the workplace to residence. 

A.2 Electric load 
 

 Building electric load from using electric devices, appliances, and lighting contributes to 

building heat load as the energy consumed in a closed system is ultimately absorbed as heat. The 

assumed electric load serves two purposes: (i) it measures the contribution to the building's 

thermal load, and (ii) it represents the building's electricity use. The electric load is influenced by 

building use, activities, occupancy, and time of day. The assumed electric load is shown in 

Figure A.2 (a) for the residential setting and (b) for the business-commercial setting. The 

residential setting load is characterized by a pre-work morning spike, a post-work evening spike, 

and a generally higher evening load, as observed in demand data published in the literature. For a 

commercial setting, the load is assumed to be driven by sensible load from electronic devices 

such as personal computers, printers, and screens. Higher latent load in residential buildings is 

from appliances such as dishwasher machines, washers and dryers, and food preparation and 

cooking. The average daily electric load for both buildings is 515 kWh (8.6 W/m2). 
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Figure A.2.: Simulated electric load in (a) residential setting and (b) business-

commercial setting. Energy consumed by the electric load ultimately ends up as 

heat.  

A.3 Infiltration and ventilation 
 

Building infiltration is the unintentional introduction of outside air into the air condition 

spaces through the building envelope, contributing to building thermal load. On the other hand, 

ventilation is the intentional introduction of outside air by mechanical means, such as fans, to 

maintain indoor air quality. Forced ventilation is typically introduced in kitchens and bathrooms 

and in densely occupied office buildings, which are needed to maintain healthy indoor air 

quality. Forced ventilation is typically introduced in kitchens and bathrooms and in densely 

occupied office buildings, which are required to maintain healthy indoor air quality. The 

simulated thermal load from infiltration and ventilation is shown in Figure A.3. The thermal load 

depends on the differences between outdoor and indoor pressure, temperature, and humidity 

level. The combined infiltration and ventilation rate is assumed to be 1.25 ACH (air change per 

hour), typical in modern construction and Qatar [39]. The sensible load is given by: 

 

�̇�𝑡
𝑓𝑟𝑒𝑠ℎ,𝑠𝑒𝑛

= �̇�𝑡
𝐴𝐶𝐻𝑐𝑝,𝑎(𝑇𝑓𝑟𝑒𝑠ℎ − 22)  (A.1) 
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and the latent load is given by: 

 

 

�̇�𝑡
𝑓𝑟𝑒𝑠ℎ,𝑙𝑎𝑡

= ℎ𝑓𝑔�̇�𝑡
𝐴𝐶𝐻(𝜔𝑓𝑟𝑒𝑠ℎ − 0.0087)  (A.2) 

 

 

where �̇�𝑡
𝐴𝐶𝐻 is air change rate per second, 𝑐𝑝,𝑎 is the specific heat of air, 𝑇𝑓𝑟𝑒𝑠ℎ and 𝜔𝑓𝑟𝑒𝑠ℎ are 

supplied fresh (ventilation and infiltration) temperature and humidity ratio, respectively, and ℎ𝑓𝑔 

is the latent heat of the vaporization of water.  

 

        

Figure A.3: Simulated infiltration and ventilation load with (a) average daily load 

and (b) hourly load during peak demand day. A combined infiltration and 

ventilation ACH of 1.25 is assumed for residential and commercial buildings.  

A.4 Solar gain   
 

Solar gain through fenestration provides the occupants with natural lights. Due to the 

greenhouse effect, admitted solar radiation is retained inside the building, increasing the thermal 

load. Windows coating and shading can reduce solar gain. The amount of solar gain is related to 

the solar angles, building orientation, and windows structure and construction. For 

simplification, 25% of the building envelope surface area is assumed to receive incident 

horizontal solar radiation. The solar gain is given by: 
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�̇�𝑡
𝑓𝑟𝑒𝑠ℎ,𝑙𝑎𝑡

= 𝑆𝐻𝐺𝐶 𝐴𝑤𝑖𝑛(𝐼𝑡
𝐵 cos(𝛽)  𝑓 + 𝐼𝑡

𝐷 𝑌)  (A.3) 

 

 

where 𝑆𝐻𝐺𝐶 is the fraction of incident sunlight admitted indoors and is taken to be 0.5, 𝐴𝑤𝑖𝑛 is 

the total glazing surface area, 𝐼𝑡
𝐵 is beam solar irradiance, 𝐼𝑡

𝐷 is the diffused solar irradiance, Y is 

the ratio of diffuse irradiance on a vertical surface to a horizontal surface from reference [172], 𝛽 

is the solar angle, and 𝑓 is the fraction of total building glazing surface area exposed to direct 

sunbeam and is 0.25. Daily and hourly thermal load from solar gains are in Figure A.4. 

 

   

Figure A.4: Thermal load from solar gain with (a) average daily load and (b) hourly 

load during peak demand day. 25% of the building envelope is exposed to the sun at 

each hour of the day. 

A.5 Shell heat gain 
 

The building envelope experiences a diurnal temperature swing caused by solar 

insolation and outside temperature fluctuations. The conductive heat gain through transparent 

and opaque surfaces is proportional to the surface temperature difference between indoor and 

outdoor and building insulation. The assumed building insulation is on par with Qatar’s building 

code (overall heat transfer coefficients of 0.6 W/m2-K for walls, 1.8 W/m2-K for windows, and 

0.6 W/m2-K for the upper-most roof). The heat load from building shell heat gain is given by: 



193 

 

�̇�𝑡
𝑠ℎ𝑒𝑙𝑙 = [𝐴𝑤𝑖𝑛𝑈𝑤𝑖𝑛 + 𝐴𝑟𝑜𝑜𝑓𝑈𝑟𝑜𝑜𝑓 + 𝐴𝑤𝑎𝑙𝑙𝑈𝑤𝑎𝑙𝑙](𝑇𝑡

𝑑𝑏 − 22℃)  (A.4) 

 

 

Where 𝐴𝑤𝑖𝑛, 𝐴𝑟𝑜𝑜𝑓, and 𝐴𝑤𝑎𝑙𝑙 are windows, roof, and walls surface area, respectively, and 𝑈𝑤𝑖𝑛, 

𝑈𝑟𝑜𝑜𝑓, and 𝑈𝑤𝑎𝑙𝑙 are windows, roofs, and walls' overall heat transfer coefficient. Conductive 

thermal gain through the building shell is shown in Figure A.5.  

 

   

Figure A.5: Thermal load from envelope heat gain with (a) average weekly load and 

(b) hourly load during peak demand day. Negative heat gain in the winter was 

omitted from this figure. 

A.6 Total heat gain 
 

The simulated load from individual heat gain sources is combined to form the overall 

building cooling load. The simulated buildings' main heat gain sources are infiltration and 

ventilation, followed by internal generation from electricity use. Loads from internal sources 

drive daily variations, while seasonal variations are driven by infiltration and ventilation heat 

gain, particularly from latent load during the humid period from late July to early September. 

The average weekly thermal load, identical for both buildings, is shown in Figure A.6, along 

with ambient dry and wet-bulb temperatures on the right y-axis. 
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Figure A.6: Normalized average weekly thermal load from all sources on the left y-

axis and ambient temperatures on the right y-axis. While hourly demands differ for 

residential and commercial buildings, the total daily cooling demand is identical.  

The simulated building loads were validated using EnergyPlus building simulation 

software with arbitrarily decided building orientation and geometry, producing a comparable 

estimate. Figure A.7 compares the EnergyPlus model output, which utilizes simulated weather 

data, with the estimated building cooling and electric demand for three consecutive days in 2016 

(March 23-26 and October 5-7) for both buildings.  
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Figure A.7: Normalized thermal load from the simulated load (blue) compared to 

the EnergyPlus software output (orange) for the commercial building (top) and the 

residential building (bottom). EnergyPlus software utilizes simulated weather, 

which does not perfectly align with 2016 meteorological weather data. 
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Appendix B: Chapter 4 Models Parameters 

Table B.1: Selected WC chillers' characteristics  

Item 
WC Chillers 

Carrier 19XR Carrier 19XR Carrier 23XL 

Design cooling capacity 
1284 kWth [365 

tons] 
1347 kWth [383 tons] 

1196 kWth [340 

tons] 

Evaporator temperature 

differential 
8.3℃ 8.3℃ 7.9℃ 

Condenser temperature 

differential 
6.7℃ 6.7℃ 7.7℃ 

Reference COP 6.4* 7.9 6.4 

Compressor type Centrifugal Centrifugal Screw 

Capacity control Guide Vanes VSD Slide Valve 

Evaporator water 

flowrate 
36.84 kg/s 36.84 kg/s 

36.53 kg/s 

Condenser water flowrate 53.37 kg/s 53.37 kg/s 42.71 kg/s 

Refrigerant type R-134a R-134a R-134a 

*Adjusted from 6.2 to better reflect representative centrifugal chiller performance  

 

Table B.2: Fitted parameters in Gordon-Ng model for the selected chillers 

Item 

WC Chillers 

Carrier 19XR (w/o 

VSD) 
Carrier 19XR (w/ VSD) 

Carrier 23XL (w/o 

VSD) 

∆𝑆𝑡
𝑖𝑛𝑡 0.1886 kWth/K 0.2282 kWth/K 0.0540 kWth/K 

∆𝑆𝑡
𝑖𝑛𝑡𝑄

 0.1612 kWth -0.3868 kWth 0.1782 kWth 

𝑅 0 K/kWth 0.0218 K/kWth 0 K/kWth 

�̇�𝑡
𝑙𝑒𝑎𝑘,𝑒𝑞𝑣

 -121.41 kWth -205.7867 kWth 134.6552 kWth 

 

Table B.3: Pumps and fans constants 

Item Chiller Notes 

Primary 0.020 kW/kWth Per cooling capacity 

Condenser 0.015 kW/ kWth Per cooling capacity 

Variable Speed 0.010 kW/ kWth Per cooling capacity 

Tower fan 0.009 kW/ kWth Per heat rejection capacity 

Coil fan 0.045 kW/kWth Per cooling capacity 
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Table B.4: Cooling tower characteristics 

Item Symbol Value Note 

NTU correlation parameters 𝑐 3.76 Cooling towers based on Dallas/Fort 

Worth Airport [117] 𝓃 -0.63 

Design tower approach 

temperature 
𝑇𝑐𝑠𝑤

− 𝑇𝑤𝑏 

3℃ Difference between leaving water 

temperature and wet-bulb temperature 

Design wet-bulb temperature 𝑇𝑤𝑏 25℃ Reference temperature 
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Figure B.1: Illustration of piecewise linearization for the three chiller types at three 

inlet condenser temperatures in refrigeration mode with a supply water 

temperature of 7℃ and ice-making mode with a supply water temperature of -6℃. 

A single segment was sufficient for chillers without VSD.  



199 

 

 
 

 
 

 
 

Figure B.2: Comparison of (a) predicted COP v. COP from EnergyPlus, and (b) 

Chiller capacity as predicted from thermodynamics v. EnergyPlus for the three 

selected representative chillers used in Chapter 4.  
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Appendix C: Chapter 5 Models Parameters  

Table C.1: Selected WC chillers' characteristics 

Item 
WC Chillers 

Trane RTHB Carrier 19XR 

Design cooling capacity 531 kWth [151 tons] 742 kWth [211 tons] 

Evaporator temperature differential 9.3℃ 9.8℃ 

Condenser temperature differential 9.4℃ 10.8℃ 

Design COP 4.6 4.7 

Compressor type Screw Centrifugal 

Capacity control Slide Valve VSD 

Evaporator water flowrate 13.50 kg/s 17.79 kg/s 

Condenser water flowrate 15.77 kg/s 19.56 kg/s 

Refrigerant type R-22 R-134A 

 

Table C.2: Fitted parameters in Gordon-Ng model for the selected chillers 

Item 
WC Chillers 

Trane RTHB Carrier 19XR 

∆𝑆𝑡
𝑖𝑛𝑡 0.0432 kWth/K 0.0749 kWth/K 

∆𝑆𝑡
𝑖𝑛𝑡𝑄

 0.0001 kWth -0.0002 kWth 

𝑅 0.0292 K/kWth 0.0450 K/kWth 

�̇�𝑡
𝑙𝑒𝑎𝑘,𝑒𝑞𝑣

 93.376 kWth 132.946 kWth 

 

Table C.3: Pumps and fans constants  

Item 
Chiller 

Trane RTHB Carrier 19XR 

Primary 5 kW 7 kW 

Condenser 4 kW 5 kW 

Variable Speed 10 kW 

Tower fan 10 kW 

Coil fan 100 kW 
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Table C.4: Cooling tower characteristics 

Item Symbol Value Note 

NTU correlation parameters 𝑐 3.76 Cooling towers based on Dallas/Fort 

Worth Airport [117] 𝓃 -0.63 

Design heat rejection capacity - 1266 kW 

[360 ton] 

Per tower 

Design air flowrate �̇�𝑎𝑡𝑤𝑟 20 kg/s Maximum fan speed 

Design water flowrate �̇�𝑏𝑐𝑤 28 kg/s All chillers are operating (per tower) 

Design tower approach 

temperature 
𝑇𝑐𝑠𝑤

− 𝑇𝑤𝑏 

3℃ Difference between leaving water 

temperature and wet-bulb temperature 

Design wet-bulb temperature 𝑇𝑤𝑏 25℃ Reference temperature 

 

Table C.5: Cooling and dehumidification coil characteristics 

Item Symbol Value Note 

Coil thermal resistance 

coefficient  

𝑎1
𝑐𝑐 0.596× 10−3 K/kg ∙

m
5

2 ∙ s
15

4  

High-performance coils 𝑎2
𝑐𝑐 0.217× 10−3 K/kg ∙

m
5

2 ∙ s
15

4  

𝑎3
𝑐𝑐 0.286 K/kW 

Design air flowrate �̇�𝑐𝑐𝑎,𝑑𝑒𝑠 120 kg/s Maximum fan speed 

Max air inlet enthalpy ℎ𝑎𝑖,𝑑𝑒𝑠 55.6 kJ/kg 27℃ at 50% RH 

Design air outlet enthalpy ℎ𝑎𝑒,𝑑𝑒𝑠 34.1 kJ/kg 12℃ at 100% RH 

Design air-side temperature 

drop 

𝑇𝑎𝑖 −
𝑇𝑎𝑒,𝑑𝑒𝑠  

15℃ 
27℃ → 12℃ 

Design water-side 

temperature differential 

𝑇𝑐𝑐𝑟𝑤

− 𝑇𝑐𝑐𝑠𝑤 
13.5℃ 

3.5℃ → 16℃ 

Coil face area 𝐴𝑓𝑎𝑐𝑒 39 m2 Normal to air-flow direction 

Number of rows 𝑁𝑟𝑜𝑤 5.1 Thickness of the coils 

Design water face velocity 𝑉𝑤,𝑑𝑒𝑠 1 m/s Normal to flow direction 

Design air face velocity 𝑉𝑎,𝑑𝑒𝑠 2.5 m/s Normal to flow direction 
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Figure C.1: Comparison of (a) predicted COP v. COP from EnergyPlus, and (b) 

chiller capacity as predicted from thermodynamics v. EnergyPlus for the two 

selected chillers in Chapter 5.  
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