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Abstract 

Using electronic health records to understand COVID-19 risks 

Vijendra Ramlall 

 

 On December 31, 2019, a new disease, which would in due time would come to be 

identified as COVID-19, was reported to the World Health Organization. During the two and a 

half years since the emergence of COVID-19 and the more than two years since the start of the 

COVID-19 pandemic, which is caused by infection of SARS-CoV-2, more than 500 million 

cases have been reported around the world with more than six million deaths attributed it with 

than 85 million cases and more than one million deaths from the United States of America. This 

novel disease has had profound economic, political, public health and social impact in the United 

States and around the world. Subsequent research, both concurrent and ongoing, throughout the 

pandemic has been necessary to identify population at risk of SARS-CoV-2 infection, severe 

disease, beneficial treatments, death and long-term complications. Clinical data, sourced from 

electronic health records, had been paramount to identifying these risks. 

 The novelty of SARS-CoV-2 and COVID-19 brought uncertainty as to who was at risk of 

infection, who was at risk for death, how should patients be treated and what are the long-term 

effects. At the start of the pandemic, there was a focus on public health measures, such as proper 

hygiene, quarantining when sick and reducing close contacts. As the number of cases continued 



 
 

to rise and hospitals became inundated with patients, researchers set out to identify patients at 

risk for severe disease and death and to identify existing treatment options that may benefit 

patients who were hospitalized and suffering from severe disease. Clinical trials and on-going 

retrospective analysis of patients helped to identify beneficial treatments for patients as well as 

rule out treatments that were not beneficial or associated with negative outcomes. In one of our 

studies were identified patients who had a history of macular degeneration and coagulation 

disorders were at increased risk for severe disease and death as a result of COIVD-19 and 

identified variants in gene underpinning the inflammatory response as associated with altered 

risk. In another study using retrospective analysis, we utilized clinical data to identify patients 

who were intubation and investigated the effect of steroid hormone exposure on the survival of 

these patients. Our analysis indicated that exposure to melatonin between intubation and 

extubation was significantly associated with survival in COVID-19 patients and in mechanically 

ventilated COVID-19 patients. This association was observed when accounting for patient 

demographics and previous clinical history. 

 As multiple vaccines have been developed and distributed and therapeutics have become 

widely available, surges in case counts have not been associated with a proportional rise in 

hospitalizations and death. Research has shifted to trying to understand the long-term impact of 

COVID-19 on the health of patients. While viral infections are not uncommon, some can have 

lasting impacts on patients. With more than 500 million cases reported worldwide long-term 

analysis of COVID-19 patients and their health after COVID-19 will remain important. 

Additionally, the incomplete success of vaccination campaigns also highlights the need to 

monitor any future endemic spikes. While clinical data has been important for conducting 

studies, they are incomplete and lead to challenges as we transition to an endemic state. To that 



 
 

end, we trained a random forest classifier to assign a probability of a patient having had COVID-

19 during each of their visits and utilized these probabilities to identify clinical phenotypes that 

are associated with patients who had COVID-19. Within one year, our analysis identified 

myocardial infarction, urinary tract infection, type 2 diabetes and acute renal failure as being 

associated with higher probabilities of COVID-19.  

 The projects presented here demonstrate how to use electronic health records to identify 

patients at risk for severe disease and death, monitor drug exposure and evaluate its effect on 

survival of patients with severe COVID-19, how to use machine learning to circumvent the 

limitations of using clinical data and sets a foundation for further work in identifying the effects 

of COVID-19. Moreover, these projects also show methods that can be applied to any future 

emerging disease.  
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Chapter 1: Introduction and Data Processing 

1.1 Origins of COVID-19 

The disease, which would become known as COVID-19, was first reported to the World 

Health Organization (WHO) on December 31st, 2019 by public health officials from the 

People’s Republic of China as “cases of pneumonia of unknown etiology” [1]. SARS-CoV-2 was 

first identified as the cause of COVID-19 in January 2020 [2] and the first infection was 

retrospectively estimated to have occurred as early as October 2019 in Wuhan, Hubei Provence 

in China [3]. It was originally reported that the first cases of SARS-CoV-2 were connected to the 

Huanan Seafood market [4,5], though there has been controversy surrounding the source of 

SARS-CoV-2 [6]. A study out of the University of Barcelona, which screened wastewater 

samples for SARS-CoV-2 using realtime quantitative polymerase chain reaction (RT-qPCR) test 

suggested that SARS-CoV-2 was circulating in Barcelona in early 2019 [7]. However, the study 

used an incomplete RT-qPCR test and the results could not be reproduced due to a lack of 

sample. Additionally, political discourse has suggested that SARS-CoV-2 was developed in a 

laboratory [8]. Recent studies have indicated, with high confidence, that SARS-CoV-2 is a 

zoonotic infection, which originated in bats, and either jumped to humans either directly [9,10] 

or via Nyctereutes procyonoides (racoon dogs) [11]. 
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1.2 Molecular Mechanism of SARS-CoV-2 Infection 

SARS-CoV-2 infection of human cells has been identified to occur via two routes, both 

of which require interaction with angiotensin-converting enzyme 2 (ACE2) [12]. In the cell 

surface mechanism of entry, the virus binds to the cell via an interaction between ACE2 and the 

spike protein on the virial capsid. This is followed by a cleavage of the spike protein by 

transmembrane serine protease 2 (TMPRSS2), which leads to fusion between the viral capsid 

and the cellular membrane. This leads to the entry of the viral RNA into the cytoplasm 

In the endosomal mechanism of entry, the virus binds to the cell via an interaction 

between ACE2 and the viral capsid is internalized in an endosome. This is followed by 

endosomal acidification and cleavage of the spike protein by cathepsin L, which leads to the 

fusion between the viral capsid and the endosomal membrane. This leads to the entry of the viral 

RNA into the cytoplasm. 

Both routes lead to the entry of viral RNA into the cytoplasm, where host ribosomes 

translate the replicase polyproteins. These replicase polyproteins protein are processed by viral 

proteins, which in turn form replication and transcription complexes. These complexes replicate 

the genome of SARS-CoV-2 and produce accessory proteins and then co-opt the endogenous 

endoplasmic reticulum to package new viral particles for exocytosis. 

1.3 Spread of SARS-CoV-2 and COVID-19 

Initial identification of cases was principally done based on clinical symptoms in the 

absence of other causes [13]. With the release of the sequence of SARS-CoV-2’s viral genome, 

RT-qPCR tests would be developed to identify infected individuals [2, 14]. The first lab 

confirmed case of COVID-19 outside of the People’s Republic of China was identified in 

Thailand in mid-January 2020 [2]. By the end of January 2020, the first cases were being 
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reported in Europe and in the United States [2, 15]. Initial tracking of the spread of SARS-COV-

2 was hindered by last of tests and test were initially prioritized for patients seeking treatment in 

hospitals [16].    

At the end of January, there were almost 9,927 cases of confirmed COVID-19 around the 

world with the most being identified in the China [17]. Within the next four weeks, the number 

of cases has ballooned to 86,023 with China, Italy and Iran leading the case counts [17]. With 

cases being reported in 114 counties around the world and the evident extensive community 

spread of COVID-19, the WHO official declared a pandemic on March 11th, 2020 [18].  

In the 28 months since the start of the pandemic and the 33 months since the first 

purported infection (through June 2022), more than 500 million cases have been reported around 

the world and more than six million people have died [19]. 

1.4 COVID-19 in the United States 

Following the increase in cases in Asia as well as across Europe, the United States began 

screening passengers entering at major hubs across from Asian countries [2]. By mid-January 

2020, the United States began screening passengers coming from Asian countries at ports of 

entry (New York, Los Angeles, San Francisco) for symptoms [2]. At the time in the United 

States, nasopharyngeal RT-qPCR testing not scaled up enough to test all passengers arriving 

from Asian countries at the these ports of entries, nor passengers arriving from Asian counties at 

other port of entries (e.g. Atlanta, Chicago), not passengers arriving from Europe or other parts 

of the world [20]. Moreover, as there was still a limited understanding of SARS-CoV-2 and 

COVID-19 and there was a reluctance from the People’s Republic of China to acknowledge that 

a large part of their cases was due to transmission between individuals without a connection to 
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the Huanan Seafood Market, testing had not been expanded to the general public who may have 

interacted with symptoms passengers [21]. 

The United Sates reported its first confirmed case of COVID-19 in a 56 year old male 

Washington state resident who had recently returned from Wuhan, PRC [2, 22]. In the weeks that 

followed, the executive branch of the federal government set up a taskforce to combat COVID-

19 with the goal of increasing testing and preparing the public health response [2, 23]. There 

were 1,147 cases of COVID-19 and 33 deaths attributed reported by March 11th, 2020 when the 

WHO declare the situation to be a pandemic [2, 17]. There were 2,219 case of COVID-19 United 

States and 51 deaths reported by March 13th, 2020 when the United States declared a national 

emergency [2, 17, 24].  

Under the guidance of the federal government, air travel was severely curtailed and water 

travel via cruise ships were halted [2]. Flights originating in Asian countries were severely 

limited and priorities were given to national returning back to the United States [25]. Passengers 

arriving were required to quarantine [26]. The United States quarantine requirements were 

enforced based on an honor policy, unlike other counties, such as the PRC and Australia, where 

quarantine was done at specific sites, often hotels, with testing through government labs [27]. 

 In the 28 months since the start of the pandemic and the 33 months since the first 

purported infection, more than 87 million cases have been reported in the United States and more 

than one million people have died [19]. 

1.5 COVID-19 in New York State 

The first confirmed case of COVID-19 in New York City was reported on March 1st, 

2020 [28], though a study from Mount Sinai suggested that SARS-CoV-2 as circulating as early 

as January 2020 [29]. In the three months that followed, New York City was the epicenter of the 
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pandemic [30], though by the summer of 2020 had among the lowest rates in the United States 

[17, 32]. Following weeks of public health guidance for sick individuals to quarantine and for 

individuals to socially distance, public school and private business were ordered closed on March 

16th, 2020 and March 22nd, 2020, respectively [33, 34]. A Pause Order went into effect on 

March 22nd, 2020 for New York State [35]. In the 28 months since the start of the pandemic and 

the 33 months since the first purported infection, more than 2.5 million cases have been reported 

in the New York City and more than 40,000 people have died [19]. 

1.6 Electronic Health Records 

Electronic health records (EHR) capture patient-specific information covering, but not 

limited to, demographics, diagnoses, medications given, procedures orders, etc. Utilizing the 

date- and timestamp that accompanies the non-demographic data allows for a live, dynamic and 

evolving view of how any specific patient is being cared for. With COVID-19 EHR presented 

data that also mirrored the public health response, e.g. testing, treatment and hospitalization, and 

allowed for the public health response to be altered as necessary and for officials to respond to 

new data and studies.  

Using EHR data in live and retrospective research, however, is not without its limitations. 

Borne out of its intended, EHR data is coded for billing purposes often for recoups cost from 

insurance companies or, as was the case with COVID-19, the federal government of the United 

States. While diagnoses are able to capture symptoms and conditions that patients are 

experiencing, they can be limiting when miscellaneous and “not otherwise described" diagnosis 

codes are utilized. Similarly, information on the procedures ordered can be informative of the 

diagnostic path or treatment course being utilized by the physician, however the results of those 

data cannot be readily incorporated into algorithm due to the form of the results, for example 
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images from magnetic resonance imaging or computed tomography scans, and interpretation of 

these images from radiologist require natural language processing of notes. Finally, as EHR data 

is largely entered by a healthcare professional, there is potential human error in the system. For 

example, patients maybe temporarily duplicated in the system or incorrect information may be 

enter and fixed at a later date.  

That said, laboratory measurements are able to provide in-depth quantitative data, for 

example complete blood cell counts or blood lipid concentrations. While it is difficult when 

multiple laboratories are used, internal and external ontologies allow for data to be readily 

utilized in algorithms. Additionally, the date- and timestamp accompanying procedure data 

allows, for oxygen treatment periods of patients to be determined. Combined with flowsheet 

data, it is further possible to identify the method of oxygen treatment, e.g. nasal cannula or 

endotracheal tube.  

The evolving nature of COVID-19 itself was mirrored in the EHR data and the 

limitations of it varied. Early on in the United States, testing was limited and the public health 

infrastructure was unable to readily respond to the increasing need for testing. As such, many 

early studies, including the work presented in Chapter 2, relied on patients being diagnosed with 

COVID-19 without having an accompanying nasopharyngeal PCR test. Additionally, without a 

diagnosis code for COVID-19 early on, COVID-19 patients were being identified based on 

symptoms identified and included in diagnosis date. As the pandemic proceeded and testing 

became for widely available, having been set up at individual institutions and larger laboratories, 

data become more reliable and analysis could utilized nasopharyngeal PCR test results to 

identify patient infected with SARS-CoV-2 (as was done in Chapter 3).  
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In utilizing data from EHR in the United States, we are presented with the additional 

limitations of having institution specific information. Patients are able to seek treatment at non-

affiliated primary care groups, outside hospitals or urgent care facilities and due to the lack of a 

universal healthcare recording system, healthcare professionals and researcher using EHR data 

will only be aware of those encounters if the patient share the details. Sharing of data is 

becoming easier with the adoption of EPIC by most New York City hospitals, however coding 

practices can differ between institutions and the sharing procedure is patient initiated. 

1.7 Ethics Statement 

The work presented in the following three chapters was done using data from patents who 

sought treatment at New York-Presbyterian (NYP) who had at least one interaction with 

Columbia University Irving Medical Center (CUIMC) since February 1st, 2020 and any previous 

data that in our clinical data warehouse (CDW) at NYP/CUIMC. However, these studies were 

conducted at different points during the pandemic and are censored at April 2020 (Chapter 2), 

December 2020 (Chapter 3) and March 2022 (Chapter 4). These studies utilizing data in our 

CDW were approved by the CUIMC Institutional Review Board (IRB# AAAL0601) and the 

requirement for an informed consent was waived. The data for patients seeking treatment since 

February 1st, 2020 was made available by a data request associated with AAAL0601, which was 

submitted to and approved by the Tri-Institutional Request Assessment Committee of New York-

Presbyterian, Columbia and Cornell.  

Additionally. the work presented in Chapter 2 utilized data from volunteers whose 

clinical and genomic data are a part of the UK Biobank. The work presented in Chapter  2 also 

utilized results from SARS-CoV-2 nasopharyngeal RT-qPCR tests for the volunteers in the UK 
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Biobank. The work done using data from the UK Biobank was conducted under application 

number 41039. 

1.8 Data Sources 

 The data within the CDW at NYP/CUIMC, which was clinical data available prior to 

February 1st, 2020, is termed the historical dataset, and the data concurrently available 

throughout the pandemic since February 1st, 2020 is termed the live dataset. While the historical 

data did not change, it was utilized differently in different studies. Additionally, when the same 

information was noted in both historical and live datasets, preference was given to data in the 

live dataset. For example, if a patient declined to identify their race in the historical data set, but 

identified their race as Asian in the live dataset, the patient’s race indicated as Asian for the 

analyses below.  

 The next three subsections will provide a general overview of the data. Any deviations in 

how the data is utilized will be noted in the methods sections of the subsequent chapters.  

1.8.1 Historical Data 

 From the historical dataset, the demographics data, conditions data and measurements 

data were utilized (Table 1.1). The demographics data identified gender, date of birth, date of 

death, if the person had died, race and ethnicity. The conditions data identified conditions 

diagnosed and the date of diagnosis. The measurements data identified the item being analyzed 

(e.g. cholesterol, hemoglobin A1C), the date of the measurement, the results of the analysis and 

the units. The individual was identified using a patient specific unique integer.  
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Table 4.1: Description of fields in historical dataset 

Data Subset Data Field Description 

D
em

og
ra

ph
ic

s 
Person ID Unique identifier to each patient 

Gender Female, Male, Other, Ambiguous, Unknown, 
No matching term 

Date of Birth Date 
Date of Death Only if the patient has died 

Race 

Asian, Black or African American, White, 
Other, Unknown, Native American, Hawaiian 
or Other Pacific Islander, American Indian or 

Alaskan Native, No matching term 

Ethnicity 
Hispanic or Latino or of Spanish origin, Not 
Hispanic or Latino or of Spanish origin, No 

matching term 

C
on

di
tio

ns
 Person ID Unique identifier to each patient 

Condition code 
Using Systematized Nomenclature of Medicine 

- Clinical Terminology (SNOMED-CT) 
ontology 

Date of Diagnosis Date 

M
ea

su
re

m
en

ts
 

Person ID Unique identifier to each patient 

Measurement code Using Logical Observation Identifiers Names 
and Codes (LOINC) ontology 

Date of 
measurement Date 

Value of 
measurement Integer representing result of the measurement 

Source value of 
measurement Text representing result of the measurement 

Units of 
measurement 

Text indicating the units of the value of the 
measurement 
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1.8.2 Live Data 

 From the live dataset, the demographics data, admissions, admissions/discharge/transfer, 

diagnosis, measurements, vitals, medication, medication administration record, orders and 

smoking data were utilized (Table 1.2). The demographics data identified gender, date of birth, 

date of death, if the person had died, race and ethnicity. The admissions data outlined the start 

date of each visit, the status of the visit (at the time of data retrieval) and the discharge date, if 

the visit had finished, and encounter identification number for the visit. The 

admission/discharge/transfer data contained each patient interaction with the visit. The diagnosis 

data identified conditions diagnosed and the date of diagnosis. The measurements data identified 

the item being analyzed (e.g. cholesterol, hemoglobin A1C), the date of the measurement, the 

results of the analysis, the units and a unique order number. The vitals data identified the 

patient’s pulse, respiratory rate, blood pressure, body temperature and blood oxygen saturation. 

The medication data identified the medication being administered, the method of delivery the 

quantity, dose, the start date for the medication, the end date for the medication (if the 

medication was given over a period of time) and a unique order number. The medication 

administration record data identified the medication being administered, the date the medication 

was given and a unique order number. The orders data identified the procedure being ordered, 

the status of the order, the reason for the cancellation of the order (if the order was cancelled), 

the order type, the order date and a unique order number. The smoking data identified whether or 

not the patient used tobacco, cigarettes, pipes, cigars, snuff, chewing tobacco or smokeless 

tobacco products, the start and end dates for use of non-smokeless products, if applicable, and 

the start and end dates for smokeless products, if applicable.  
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Medication names were mapped to RXNorm identification number to facilitate analysis. 

Historical data and live data were able to be used in concert with the other using mappings 

between the person identification number used in the historical data and the patient’s medical 

reference number used in the live data.  

Table 5.2: Description of fields in Live Dataset 

Data Subset Data Field Description 

D
em

og
ra

ph
ic

s 

MRN Medical Record Number unique to each patient 

Gender Female, Male, Unknown, Non-binary, X, 
NULL (not indicated) 

Date of Birth Date 
Date of Death Only if the patient has died 

Race 

Asian, Black or African American, White, 
Other, Unknown, Ashkenazi Jewish, Hawaiian 
or Other Pacific Islander, American Indian or 
Alaskan Native, Sephardic Jewish, Declined, 

NULL (not indicated) 

Ethnicity 
Hispanic or Latino or of Spanish origin, Not 

Hispanic or Latino or of Spanish origin, 
Declined, NULL (not indicated) 

A
dm

is
si

on
s 

MRN Medical Record Number unique to each patient 
Admission date Date of the start of encounter 

Visit Status Current visit stage 
Discharge date Date of the end of encounter, if finished 
Encounter ID Identifier unique to each admission 

A
dm

is
si

on
s/

 
D

is
ch

ar
ge

/T
ra

ns
fe

r  MRN Medical Record Number unique to each patient 
Encounter ID Identifier unique to each admission 

Series number Cardinal number indicating each interaction 
within the encounter 

Event Time Start date and time of interaction 
Effective Time End data and time of interaction 

D
ia

gn
os

is
 MRN Medical Record Number unique to each patient 

Diagnosis code Using International Classification of Diseases 
version 10 (ICD-10) ontology 

Date of Diagnosis Date 
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Table 6.2: Description of fields in Live Dataset (cont.) 

Data Subset Data Field Description 

M
ea

su
re

m
en

ts
 

MRN Medical Record Number unique to each patient 
Order number Unique identifier for each test ordered 

Procedure name Name of test ordered 
Component name Name of each metric analyzed in the test 

Value Integer or text representing the result of each 
component analyzed 

Units Text indicating the units of the value of the 
measurement 

Order date Date test was order 
Result date Date results were obtained 

Measurement code Using Logical Observation Identifiers Names 
and Codes (LOINC) ontology 

V
ita

ls
 

MRN Medical Record Number unique to each patient 
Date Date field 
Pulse Number of heart beats per minute 

Respiratory rate Number of respirations per minute 
Blood pressure Systolic/Diastolic measurements 
Temperature Body temperature 

SpO2  Blood oxygen saturation 
Body mass index Ratio of weight divide by height 

M
ed

ic
at

io
n 

MRN Medical Record Number unique to each patient 
Order number Unique identifier for each medication order 
Description of 

medication Name of medication 

Delivery Method of administration 
Quantity Amount of medication 

Dosage Amount of medication administered per 
interaction 

Start date Date medication first given 
End date Date medication stopped 
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Table 7.2: Description of fields in Live Dataset (cont.) 

Data Subset Data Field Description 
M

ed
ic

at
io

n 
A

dm
in

is
tra

tio
n 

R
ec

or
d 

MRN Medical Record Number unique to each patient 
Order number Unique identifier for each medication order 
Description of 

medication Name of medication 

Date of interaction Date medication given 

O
rd

er
s 

MRN Medical Record Number unique to each patient 
Order number Unique identifier for each procedure order 

Procedure 
description Description of the order 

Order status The current progress of the order 
Reason for 
cancellation If cancelled, why order was cancelled 

Order type Order category 
Order date Date order was entered 

Sm
ok

in
g 

MRN Medical Record Number unique to each patient 
Tobacco Whether or not the patient use tobacco products 

Cigarettes Whether or not the patient use cigarettes 
Pipes Whether or not the patient used a smoke pipe 
Cigars Whether or not the patient used cigars 
Snuff Whether or not the patient used snuff 

Chewing tobacco Whether or not the patient used chewing 
tobacco 

Smokeless tobacco 
products 

Whether or not the patient used smokeless 
tobacco products 

Smoking start date When the patient started using smoking 
products, if applicable 

Smoking end date When the patients stopped using smoking 
products, if applicable 

Smokeless start 
date 

When the patient started using smokeless 
products, if applicable 

Smokeless end 
date 

When the patients stopped using smokeless 
products, if applicable 
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1.8.3 UK Biobank Data 

 From the UK Biobank data, the demographics, SARS-CoV-2 testing data and the clinical 

data were utilized (Table 1.3). The demographics data identified the date of birth and race of 

participants. For privacy purposes, day of birth was not included in the UK Biobank dataset, so 

age was calculated from the 1st day of the month in which the participant was born. Testing data 

identified the date the specimen was collected, the type of specimen collected, the National 

Health Service laboratory that analyzed the specimen, the facility type where the specimen was 

collected (e.g. hospital, general practitioner clinic) and the result. Two testing results data were 

used – the first censored April 18th, 2020 and the second censored May 7th, 2020. The diagnosis 

data identified clinical diagnose identified by ICD-10 code and date of diagnosis. Participants 

were identified using a unique reference number (EID).  

Additionally, the genotyping data for 337, 147 participants of White British decent was 

used for the genetic analysis. From the full UK Biobank data set, approximately 50,000 subjects 

were genotyped on the UK BiLEVE Array by Affymetrix and the remainder were genotyped 

using the Applied Biosystems UK Biobank Axiom Array. The genotype data covers move than 

800,000 variants identified by their GRCh37 (hg19) position. Variants with a minor allele 

frequency greater than 0.005, a R-squared quality shore greater than 0.03 and a Hardy–Weinberg 

equilibrium test mid-P value less than 10-10.  
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Table 8.3: Description of fields in UK Biobank Data 

Data Subset Data Field Description 
D

em
og

-
ra

ph
ic

s  EID Reference number unique to each participant 
Birth date Date of birth (year and month only) 

Race Participant identified race 

Te
st

in
g 

R
es

ul
ts

 
(c

en
so

re
d 

A
pr

il 
18

th
, 2

02
0 

an
d 

M
ay

 7
th

, 2
02

0)
 

EID Reference number unique to each participant 
Specimen date Date sample was obtained 

Specimen type Type of specimen collected 

Laboratory National Health Service (NHS) laboratory that 
tested the specimen 

Sample Origin The type of NHS facility where the sample was 
collected 

Result The SARS-CoV-2 test result for the specimen 

D
ia

gn
os

es
 EID Reference number unique to each participant 

Diagnosis Date Date diagnosis was entered 

Diagnosis Using International Classification of Diseases 
version 10 (ICD-10) ontology 

 

1.9 Thesis Overview 

 Computational analyses have been at the forefront of the response to the COVID-19 

pandemic. At the beginning of the pandemic, the focus was on identifying patients at risk of 

infection, severe disease and death. To that end, I present our work which identified coagulation 

and complement disorders as affecting risk of severe disease and death and identified genetic 

variants associated with these effects (Chapter 2). As the pandemic continued, researchers were 

focused on identifying methods of treating hospitalized patients and developing therapeutics and 

prophylactics. To that end, I present our work which identified melatonin as being significantly 

associated with increase survival of intubated COVID-19 patients (Chapter 3). As the situation 

approaches the endemic state, where spike in disease case counts can be predicted and handled 

without undue burden on the public health system, the focus of research has shifted to understand 
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the long-term effects of SARS-CoV-2 infection and COVID-19. To this end, I present our work 

which developed a novel method to assign a probability of COVID-19 to each patient at each 

visit, which we in turn used to interrogate more than 1,000 phenotypes for associations with 

patients who had COVID-19 (Chapter 4). 
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Chapter 2: Identifying clinical and genetic factors affecting COVID-

19 susceptibility, severity and mortality 

The work in this chapter is adapted in part from the following publication: 

V. Ramlall, P. M. Thangaraj, C. Meydan, J. Foox, D. Butler, J. Kim, B. May, J K. De 

Freitas, B. S. Glickberg, C. E. Mason, N. P. Tatonetti and S. D. Shapira “Immune 

complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 

infection”. Nature Medicine, vol. 26, pp.1609-1615, October 2020. 

DOI: 10.1038/s41591-020-1021-2 

2.1 Introduction 

In the six months since the start of the COVID-19 pandemic, there have been profound 

economic, social and public health effects across the world with over 11 million confirmed cases 

worldwide and over 530,000 deaths [19]. As researchers have been trying to identify patients 

who are most susceptible to infection as disease, age had been shown to be associated with 

disease severity and increased mortality driven in part by viral replication and comorbidities, 

which may influence immune pathology [36,37].  

Virial infections exude their effects on their host directly through the initial infection and 

indirectly through downstream effects caused by interactions between the virus and the host, 

which can affect the regulatory programs controlling the host’s immune pathology [38]. 
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Identifying these interactions have the potential to influence public health measure by identifying 

groups at higher risk, calling attention to specific manifestations that would influence clinical 

care and treatment and suggest targets for therapeutic developments. In a study by the Honig and 

Shapira labs, researchers elucidated that coronavirus proteins structurally mimicked over 140 

cellular proteins – notably, all strains of coronavirus queried mimicked proteins in the 

complement and coagulation pathways [39].  

Among its other functions, the complement system mediates the immune response to 

pathogens, such as bacteria, parasites and viruses [40]. Dysregulation due to genetics, 

environmental stressors or clinical manifestations can alter the ability of the complement system 

to correctly direct the immune response and contribute to downstream pathologies due to 

inflammation [40, 41, 42]. Additionally, the complement system regulates coagulation pathways 

that are triggered by inflammation in a feedback mechanism that is important for controlling 

infection-induced pathogenesis. Based on the study from Honig and Shapira labs, coronavirus 

encodes proteins that mimic complement and coagulation factors may disrupt the endogenous 

response in humans and in turn allow for the development of induced pathologies. For example, 

complement dysfunction, as is present in early-onset and age-related macular degeneration 

(AMD) [41,42,43,44,45], or coagulation dysfunction, as is present in thrombocytopenia, 

thrombosis and hemorrhage) may impact clinical outcome of SARS-CoV-2 infection.  

Based on the mimicry of complement and coagulation proteins by coronaviruses and the 

clinical observations of hypercoagulation in individuals infected with coronavirus [46,47], we 

aim to understand the role of complement and coagulatory function in SARS-CoV-2 infection 

and the effect on clinical outcome. Additionally, we aim to identify genetic variants affecting 
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complement and coagulation genes that may be associated with COVID-19 susceptibility and 

disease severity.  

2.2 Methods 

2.2.1 Software 

 We used PLINK v.2.00a2LM 64-bit Intel (26 August 2019) to run the genetic association 

analysis [48]. We used PLINK v.1.90b6.10 64-bit (17 June 2019) to identify haplotype blocks 

based on linkage disequilibrium. We used Jupyter Notebooks (jupyter-client v.5.3.4 and jupyter-

core v.4.6.1) running Python 3.7, numpy 1.18.1 and scipy 1.4.1 for the permutation analyses. 

2.2.2 Cohort identification 

 Between February 1st, 2020 and April 25th, 2020, 11,116 patients were treated at New 

York-Presbyterian/Columbia University Irving Medical Center (NYP/CUIMC). Of those 

patients, 6,393 patients either tested positive for SARS-CoV-2 infection or were clinically 

diagnosed with COVID-19. From the full set of patients, we identified historical data for 6,927 

patients who had historical data available before September 24, 2019 in our clinical data 

warehouse at NYP/CUIMC. Patients’ sex, age at first encounter on or after February 1st, 2020 

(calculated from date of birth) and smoking status were identified from the live dataset. Patients’ 

race and ethnicity were identified from the historical dataset. Patients who identified sex other 

than male or female were excluded from the analysis 

2.2.3 Defining patient outcome 

 Using the live data set, we identified patients with severe disease as those requiring 

intubation during their encounter with NYP/CUIMC. Additionally, for our mortality analysis, we 

identified patients who died within 28 days of the start of their encounter with NYP/CUIMC 

using the live dataset. 
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2.2.4 Identifying patient comorbidities 

 Using the historical dataset and live dataset, we identified patients with macular 

degeneration, coagulation disorders, complement deficiency, hypertension, type 2 diabetes, 

coronary artery disease and obesity. Thrombocytopenia, thrombosis and hemorrhage were used 

as proxies for coagulation disorders.   

2.2.5 Statistical modeling 

 We used MySQL and Python libraries (pymysql, pandas) to extract and prepare data for 

modeling. We performed survival analysis on the intubation orders and death using a Cox 

proportional-hazards model and visualized the risk using Kaplan–Meier curves using the lifelines 

Python package (v.0.24.4). Error estimates on the Kaplan–Meier curves were estimated using 

Greenwood’s exponential formula. For univariate analysis of age, patients who were at least 65 

years old were coded as 1, while those younger than 65 were coded as 0. For univariate analysis 

of sex, patients who identified as male were coded as 1, while those who identified a female 

were coded as 0. For univariate analysis of diseases history, patients who had a history of a 

disease were coded as 1, while those without were coded as 0. For survival analysis, time to 

event was calculated as time since first encounter to either intubation or death (depending on the 

analysis) and patients for whom the event occurred were coded as1, while patients for whom it 

did not were coded as 0. Analysis was censored at 28 days following the first encounter or the 

last encounter with NYP/CUIMC, whichever occurred first.  

2.2.6 Conducting association studies 

 The UK Biobank contains genotype data for 502,682 participants that profiles 

approximately 805,426 variants. Of these participants, the genotyping data for 337,147 who were 

identified to be of White British ancestry were used in our analysis. Association studies were 
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conducted using PLINK two with filters for minor allele frequency greater than 0.005, a R-

squared quality score greater than 0.03 and a Hardy–Weinberg equilibrium test mid-P value less 

than 10-10. Additionally, analyses were performed using a logistic regression model with additive 

gene dosage and covariates including age at 2018, sex, first ten principal components (UK 

Biobank) and the genotyping array that the sample was carried out on. The α threshold for study-

wide significance using an empirical permutation analysis. Association studies compared 

subjects that who tested positive for a SARS-CoV-2 infection and required hospitalization to the 

entire population of 337,147 subjects 

2.2.7 Identifying haplotype blocks 

 Using the genotype data of the 337,147 participants of White British ancestry, we 

identified haplotype black based on linkage disequilibrium using PLINK1.9 where the lower 

90% confidence interval is greater than 0.70 and the upper 90% confidence interval is at least 

0.98. Haplotype blocks containing any part of the genes of interest were first identified and 

subsequently variants outside of the genes of interest, which were a part of the blocks.  Of the 

full dataset of 805,426 variant profiled in the UK Biobank genotype data, 7,281 variants were 

within the genes of interest. After applying additional quality control filters using PLINK2, 936 

variants remained for analysis. 

2.3 Results 

2.3.1 Identifying patient cohort 

 From the live dataset, we identified 11,116 patients who sought treatment at 

NYP/CUIMC between February 1st, 2020 and April 25th, 2020 (Table 2.1). Among those 

patients, 6,393 patients tested positive for SARS-CoV-2 infection by a RT-qPCR test or were 

clinically diagnosed with COVID-19. The average age of all patients was 52.0, while the average 
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age of COVID-19 patients was 57.1 years. Similar proportions of all patients and COVID-19 

patients identified as Asian, Black or African American, White or Other; a similar proportion of 

both groups declined to identify their race (Table 2.1_. Similar proportions of all patients and 

COVID-19 patients identified as Hispanic or Latino or of Spanish origin and not Hispanic or 

Latino or of Spanish origin; a similar proportion of both groups identified ethnicity as other or 

declined to identify their ethnicity (Table 2.1). A similar proportional of patients in both groups 

were past or current smokers (Table 2.1). There was a higher proportion of all patients who 

required mechanical ventilation than COVID-19 patients (9.2% and 7.6%, respectively) (Table 

2.1) and a similar proportion of patients in both groups died within 28 days (10.2% and 9.7%, 

respectively). A similar proportion of patients with a history of hypertension, type 2 diabetes, 

obesity and coronary artery disease (Table 2.2).  
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Table 2.1: Demographics and outcome frequencies of all patients and COVID-19 patients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 All Patients COVID-19+ 

N 11,116 6,393 

Average Age 
(IQR) 

52.0  
(34.7–69.5) 

57.1  
(41.5–72.0) 

Male 4,980 
44.8% 

3,177 
49.7% 

Hispanic or Latin or 
Spanish origin 

3,535 
31.8% 

2,186 
34.2% 

Not Hispanic or Latin or 
Spanish origin 

4,391 
39.5% 

2,365 
37.0% 

Asian 300 
2.7% 

153 
2.4% 

Black or African 
American 

2,357 
21.2% 

1,419 
22.2% 

White 3,479 
31.3% 

1,816 
28.4% 

Other 2,957 
26.6% 

1,784 
27.9% 

Past or Current Smoker 2,979 
26.8% 

1,643 
25.7% 

Mechanical ventilation 
required 

1,023 
9.2% 

484 
7.6% 

Death within 28 days 1,134 
10.2% 

618 
9.7% 
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From the historical and live dataset, we identified 88 patients with COVID-19 who had a 

history of macular degeneration, 4 who had a history of complement deficiency, 1,239 who had a 

history of coagulation disorders (Table 2.2). The average age of the COVID-19 patients with 

macular degeneration, complement deficiency and coagulation disorders were statistically equal 

to the full COVID-19 data set, though the patients were younger than the other two groups 

(Table 2.3). The proportion of COVID-19 patients with macular degeneration and coagulation 

disorders who identify as male is lower than in the full COVID-19 dataset. The proportion of 

COVID-19 patients with macular degeneration and coagulation disorders who identify as 

Hispanic or Latino or of Spanish origin is lower than in the full data set; the proportion who 

identify as not Hispanic or Latino or of Spanish origin is higher (Table 2.3). The proportion of 

COVID-19 patients with macular degeneration and coagulation disorders who identify as Black 

or African American is lower than in the full dataset; the proportion identifying as White is 

higher (Table 2.3). The proportion of COVID-19 patients with macular degeneration and 

coagulation disorders who required mechanical ventilation is greater than in the full dataset 

(Table 2.3). The mortality rate among COVID-19 patients with macular degeneration and 

coagulation disorders is higher than the mortality rate among the full dataset (Table 2.3). 
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Table 2.2: Past clinical history frequencies of all patients and COVID-19 patients 

 All Patients COVID-19+ 

N 11,116 6,393 

History of hypertension 3,135 
28.2% 

1,988 
31.1% 

History of type 2 diabetes 1,401 
12.6% 

911 
14.2% 

History of obesity 1,334 
12.0% 

831 
13.0% 

History of coronary artery 
disease 

2,979 
26.8% 

1,698 
26.6% 
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Table 2.3: Demographics and outcome frequencies of COVID-19 subsets patients 

 

 Macular 
degeneration 

Complement 
deficiency 

Coagulation 
disorders 

Cough 

N 88 4 1,239 725 

Average Age 
(IQR) 

74.1  
(67.2–84.6) 

57.9  
(49.1–70.9) 

61.8  
(48.2–77.0) 

59.2  
(46.6–72.0) 

Male 37 
42.0% 

2 
50% 

522 
42.1% 

387 
53.4% 

Hispanic or Latin 
or Spanish origin 

22 
25% 

1 
25% 

383 
30.9% 

370 
51.0% 

Not Hispanic or 
Latin or Spanish 

origin 

52 
59.1% 

2 
50% 

607 
49.0% 

183 
25.2% 

Asian 0 
0% 

0 
0% 

24 
1.9% 

12 
1.7% 

Black or African 
American 

15 
17.0% 

1 
25% 

250 
20.2% 

132 
18.2% 

White 32 
36.4% 

0 
0% 

422 
34.1% 

204 
28.1% 

Other 25 
28.4% 

2 
50% 

302 
24.4% 

228 
31.4% 

Past or Current 
Smoker 

26 
29.5% 

2 
50% 

331 
26.7% 

185 
25.5% 

Mechanical 
ventilation 
required 

14 
15.9% 

0 
0% 

126 
10.2% 

80 
11.1% 

Death within 28 
days 

22 
25% 

0 
0% 

212  
17.1% 

110  
15.2% 
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2.3.2 Cox proportional hazards analysis leading to intubation 

 We conducted a Cox proportional hazards analysis of COVID-19 patients to identify 

whether or not a history of macular degermation and coagulation disorder was associated with a 

specific outcome. Additionally we conducted similar analysis for COVID-19 patients to identify 

whether or not hypertension, type 2 diabetes, obesity, coronary artery disease, being over the age 

of 65 and being a current or past smoker was also associated with a specific outcome. Due to the 

small number of patients with a history of complement deficiency, we were unable to investigate 

the outcome associated with those patients. Patients with a cough were used as a reference int eh 

analysis.  

 In univariate analysis, history of macular degeneration (Hazards ratio = 2.16, 95% CI: 

1.30–3.67, p = 4.63E-3 and coagulation disorders (Hazards ratio = 1.50, 95% CI:1.23–1.83, p = 

9.64E-5) were associated with patients being intubated; similar hazards ratios were noted when 

controlling for age and sex (Hazards ratio = 1.83 , 95% CI: 1.07–3.13, p = 2.73E-2 and Hazards 

ratio = 1.47, 95% CI: 1.20–1.82), p = 2.43E-4, respectively). A history of hypertension, type 2 

diabetes, obesity and coronary artery disease were associated with patient needing to be 

intubated in a univariate analysis and when controlling for age and sex (Table 2.4, Figure 2.1). 

Being a past or current smoker was not associated with patients being intubated (Hazards ratio = 

1.13, 95% CI: 0.873–1.46, p = 0.353) in a univariate analysis and when controlling for age and 

sex (Hazards ratio = 0.962, 95% CI: 0.740–1.25, p = 0.775).  
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Table 2.4: Hazards ratios from univariate Cox proportional hazards analysis for 
intubation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Covariate Univariate Hazards 
Ratio 

Age and sex controlled 
Hazards ratios 

History of macular 
degeneration 

2.16 
(1.30–3.67) 
p = 4.63E-3 

1.83  
(1.07–3.13) 
p = 2.73E-2 

History of 
coagulation disorder 

1.50  
(1.23–1.83) 
p = 9.64E-5 

1.47  
(1.20–1.82) 
p = 2.43E-4 

History of 
hypertension 

1.74  
(1.46–2.09) 
p = 1.29E-9 

1.56  
(1.29–1.88) 
p = 4.24E-6 

History of type 2 
diabetes 

1.85  
(1.50–2.29) 
p = 1.23E-8 

1.63  
(1.30–2.02) 
p = 2.32E-5 

History of obesity 
1.30  

(1.02–1.65) 
p = 3.74E-2 

1.46  
(1.14–1.86) 
p = 2.83E-3 

History of coronary 
artery disease 

1.99  
(1.66–2.39) 

p = 8.11E-14 

1.80  
(1.49–2.17) 
p =1.19E-3 

Age ≥ 65 
1.68  

(1.41–2.01) 
p = 1.08E-8 

1.30  
(0.961–1.77) 
p = 8.85E-2 

Past or current 
smoker 

1.13  
(0.873–1.46) 

p = 0.353 

0.962 
(0.740–1.25) 

p = 0.775 

Cough 
1.46  

(1.14–1.86) 
p = 2.54E-3 

1.41 
(1.10–1.80) 
p = 6.47E-3 
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Figure 2.1: (A) Univariate Kaplan-Meier curves (B) Comparison of hazards ratios from 
Cox proportional hazards analysis for intubation 
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2.3.4 Cox proportional hazards analysis leading to death 

 Similar to the analysis of COVID-19 patients to identify the risk associated with needing 

intubation, we investigated the risk associated with death. In univariate analysis, history of 

macular degeneration (Hazards ratio = 2.99, 95% CI: 1.96–4.58, p = 4.39E-7) and coagulation 

disorders (Hazards ratio = 2.33, 95% CI:1.98–2.76, p = 1.85E-23) were associated with increased 

patient mortality. Similar hazards ratios were noted when controlling for age and sex in analysis 

of history of macular degeneration (Hazards ratio = 1.53, 95% CI: 0.998–2.35, p = 5.09E-2) and 

history of coagulation disorder (Hazards ratio = 1.81, 95% CI: 1.53–2.14), p = 3.43E-12) - albeit 

the association was not as significant for history of macular degeneration. A history of 

hypertension, type 2 diabetes, obesity and coronary artery disease were associated with increased 

patient mortality in a univariate analysis and when controlling for age and sex (Table 2.5, Figure 

2.2). Being a past or current smoker was associated with increased patient mortality (Hazards 

ratio = 1.53, 95% CI: 1.21–1.92, p = 3.14E-4) in a univariate analysis and though there was no 

significant risk identified when controlling for age and sex (Hazards ratio = 1.08, 95% CI: 

0.857–1.36, p = 0.512).   
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Table 2.5: Hazards ratios from univariate Cox proportional hazards survival analysis for 
death 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Covariate Univariate Hazards 
Ratio 

Age and sex controlled 
Hazards ratios 

History of macular 
degeneration 

2.99 
(1.96–4.58) 
p = 4.39E-7 

1.53  
(0.998–2.35) 
p = 5.09E-2 

History of 
coagulation disorder 

2.33  
(1.98–2.76) 

p = 1.85E-23 

1.81  
(1.53–2.14) 

p = 3.43E-12 

History of 
hypertension 

3.75  
(3.19–4/41) 

p = 3.90E-58 

2.30  
(1.96–2.71) 

p = 1.02E-23 

History of type 2 
diabetes 

2.93  
(2.47–3.48) 

p = 4.59E-35 

1.98  
(1.67–2.35) 

p = 5.32E-15 

History of obesity 
1.61  

(1.32–1.98) 
p = 3.82E-6 

1.92  
(1.56–1.36) 

p = 7.13E-10 

History of coronary 
artery disease 

3.69  
(3.15–4.33) 

p = 1.46E-58 

2.23  
(1.89–2.62) 
p =3.71E-22 

Age ≥ 65 
8.80  

(7.14.–10.9) 
p = 1.51E-91 

1.68 
(1.23–2.28) 
p = 9.50E-4 

Past or current 
smoker 

1.53  
(1.21–1.92) 
p = 3.14E-4 

1.08 
(0.857–1.36) 

p = 0.512 

Cough 
1.32  

(1.06–1.65) 
p = 1.35E-2 

1.32 
(1.06–1.65) 
p = 1.49E-2 
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Figure 2.2: (A) Univariate Kaplan-Meier curves (B) Comparison of hazards ratios from 
Cox proportional hazards analysis for death 

 



33 
 

2.3.3 Identify genetic variants 

 With the noted associations between complement and coagulation dysfunction in the 

dataset at NYP/CUIMC, we sought to determine if specific genetic variation in the complement 

and coagulation pathways were associated with the adverse outcomes. From the Kyoto 

Encyclopedia of Genes and Genomes we identified 102 genes associated with the regulation of 

the complement and coagulation cascade. From the 805,426 variants profiled in the UK Biobank, 

we identified 2,888 that were within the sequence of those 102 genes or within 60 kbp upstream 

or downstream of the gene.  

 From the UK Biobank release of SARS-CoV-2 RT-qPCR test results in April 2020, we 

identified 388 individuals who tested positive for infection and 332 individuals who tested 

positive for infection and were hospitalized. A targeted association study using these individuals 

identified 11 variants across seven genes (F3, CFH, C4BPB, CR2, F13A1, SERPING1, 

SERPINF2 and CD3) with a significance value less than 0.001 (Table 2.6, Figure 2.3). The eight 

variants across genes F3, CFH, C4BPB, CR2, F13A1, SERPING1 and SERPINF2 have odds 

ratios suggesting the variants are associated with an adverse outcome (Odds ratio > 1), while the 

three variants in gene C3 are associated with less adverse outcomes in SARS-CoV-2 infected 

individuals (Odds ratio <1). 
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Table 2.6: Significant variants from April 2020 association study 

 

 

 

 

 

 

 

Gene Variant Position Odds Ratio Significance 

F3 rs72729504 1:94940206 1.93 4.24E-04 

CFH rs12064775 1:196600605 2.13 3.71E-04 

C4BPA rs45574833 1:207300070 2.65 1.20E-05 

C4BPA rs61821041 1:207352581 2.34 2.74E-04 

CR2 rs61821114 1:207610967 2.40 3.94E-05 

F13A1 rs3024329 6:6316135 1.43 9.88E-04 

SERPING1 rs117284601 11:57425228 1.80 1.06E-04 

SERPINF2 rs9913923 17:1703982 1.48 5.59E-04 

C3 rs2230203 19:6710782 0.660 2.57E-04 

C3 rs1047286 19:6713262 0.657 1.02E-04 

C3 rs2230199 19:6718387 0.684 3.92E-04 
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 Figure 2.3: Manhattan plots of variants from individuals from (A) April 2020 and 
(B) May 2020. 
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From the UK Biobank release of SARS-CoV-2 RT-qPCR test results in May 2020, we 

identified 651 individuals who test positive for infection and 500 intubations who tested positive 

for infection and were hospitalized. A similar targeted association study focused on the data fro 

May 2020 identified 22 variants across 15 genes (C8A, CFH, C4BPA, CR2, TFPI, CFI, C7, 

C4B, SERPING1, A2M, ANO6, C5AR2, SERPINF2, C3, C5AR1) with a significance value less 

than 0.0025 (Table 2.7, Figure 2.3). The variants identified in C8A, CFH, C4BPA, CR2, TFPI, 

CFI, C7, C4B, ANO6, SERPINF2 and C5AR1 have odds ratios suggesting the variants are 

associated with adverse outcomes in SARS-CoV-2 infected individuals (Odds ratio > 1). The 

variant in C5AR2 is associated with less adverse outcomes in SARS-CoV-2 (Odds ratio < 1). 

Variants in SERPING1, A2M and C3 are associated with both adverse and less adverse 

outcomes.  
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Table 2.7: Significant variants from May 2020 association study 

 

  

Gene Variant Position Odds Ratio Significance 

C8A rs7556361 1:57276195 1.31 2.06E-03 

CFH rs12064775 1:196600605 1.84 1.03E-03 

C4BPA rs45574833 1:207300070 1.99 9.25E-04 

CR2 rs61821114 1:207610967 1.85 1.64E-03 

TFPI rs8176612 2:188349145 1.51 3.10E-04 

CFI rs78730002 4:110677014 1.77 1.28E-03 

C7 rs55945585 5:40903166 1.62 1.72E-03 

C4B rs6447 6:32008924 1.83 1.59E-03 

SERPING1 rs78958998 11:57317971 0.655 1.08E-03 

SERPING1 rs117284601 11:57425228 1.62 2.10E-04 

A2M rs669 11:9232268 0.790 6.54E-04 

A2M rs10842898 12:9262289 0.795 8.50E-04 

A2M rs7297589 12:9273449 0.809 1.18E-03 

A2M rs61916033 12:9285480 1.36 1.46E-03 

A2M rs4883215 12:9314207 0.780 4.54E-04 

ANO6 rs117316516 12:45797209 1.78 9.33E-04 

C5AR2 rs74504130 12:47284908 0.549 8.60E-04 

SERPINF2 rs9913923 17:1703982 1.37 1.03E-03 

C3 rs1047286 19:6713262 0.776 2.32E-03 

C5AR1 rs140754743 19:47803469 1.90 2.44E-03 

C5AR1 rs4804049 19:47823484 1.91 1.66E-03 

C5AR1 rs2910425 19:47847760 1.91 1.39E-03 
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Additionally, association studies were conducted for the 936 identified in the haplotype 

blocks.  Using the data form the patients who tested positive for SARS-CoV-2 infection in April 

2020, we identified 16 variants across eight genes (F5, CF, C4BPA, COLEC11, CF1, F13A1, 

ANO6 and C3) with a significance value less than 0.01 (Table 2.8). The variants in CFH, 

C4BPA, COLEC11, CF1, F13A1 and ANO6 have an odds ratios suggesting an association with 

adverse outcome (Odds ratio > 1). The variants in F5 and C3 have odds ratios suggesting an 

association with less adverse outcomes (Odds ratio <1). Using the data form the patients who 

tested positive for SARS-CoV-2 infection in May 2020, we identified 14 variants across ten 

genes (C4BPA, COLEC11, GGCX, TFPI, CF1, F13A1, A2M, ANO6, C3 and C5AR1) with a 

significance value less than 0.0075 (Table 2.9). The variants in C4BPA, COLEC11, TFPI, CF1, 

F13A1, ANO6 and C5AR1 have an odds ratios suggesting an association with adverse outcome 

(Odds ratio > 1). The variants in GGCX, A2M and C3 have odds ratios suggesting an association 

with less adverse outcomes (Odds ratio <1). 
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Table 2.8: Significant variants from April 2020 association study using haplotype blocks 

 

 

 

 

 

 

 

 

Gene Variant Position Odds Ratio Significance 

F5 rs2213866 1:169489512 0.767 4.52E-03 

F5 rs6032 1:169511555 0.758 3.06E-03 

F5 rs4525 1:169511734 0.767 4.50E-03 

F5 rs4524 1:169511755 0.767 4.39E-03 

CFH rs35634602 1:196696857 1.53 7.20E-03 

C4BPA rs45574833 1:207300070 2.65 1.20E-05 

C4BPA rs75202466 1:207303477 1.83 9.12E-03 

COLEC11 rs731034 2:3677022 1.33 3.37E-03 

CFI rs78730002 4:110677014 1.87 3.38E-03 

CFI rs79891491 4:110679456 1.61 6.83E-03 

F13A1 rs3024329 6:6316135 1.43 9.88E-04 

ANO6 rs117316516 12:45797209 1.85 3.19E-03 

C3 rs344548 19:6685817 0.740 8.93E-03 

C3 rs2230203 19:6710782 0.660 2.57E-04 

C3 rs1047286 19:6713262 0.657 1.02E-04 

C3 rs2230199 19:6718387 0.684 3.92E-04 
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Table 2.9: Significant variants from May 2020 association study using haplotype blocks 

 

2.4 Discussion 

 Analysis of viral genomes have identified viral proteins that can mimic the structure of 

endogenous human proteins. In a concurrent study, the Shapira lab at Columbia University 

identified that coronavirus structurally mimicked 140 human proteins a subset of which are 

important in the complement and coagulation pathways [49]. With the role of these proteins 

identified, we wanted to investigate whether or not patients with diseases resultant from 

dysfunction of these pathways were more likely to experience adverse outcomes (severe disease 

or mortality  

Gene Variant Position Odds Ratio Significance 

C4BPA rs45574833 1:207300070 1.99 9.25E-04 

COLEC11 rs731034 2:3677022 1.27 3.55E-03 

GGCX rs12714145 2:85787341 0.826 3.63E-03 

TFPI rs8176612 2:188349145 1.51 3.10E-04 

CFI rs78730002 4:110677014 1.77 1.28E-03 

F13A1 rs3024329 6:6316135 1.30 4.77E-03 

A2M rs669 12:9232268 0.790 6.54E-04 

A2M rs10842898 12:9262289 0.795 8.50E-04 

ANO6 rs117316516 12:45797209 1.78 9.33E-04 

C3 rs2230203 19:6710782 0.790 6.59E-03 

C3 rs1047286 19:6713262 0.776 2.32E-03 

C3 rs2230199 19:6718387 0.799 6.84E-03 

C5AR1 rs4467185 19:47823038 1.85 3.46E-03 

C5AR1 rs4804049 19:47823484 1.91 1.66E-03 
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 Using the data for 11,116 patients who sought treatment at NYP/CUIMC, we identified 

that patients with a history of macular degeneration and coagulation disorders were at increased 

risk of severe disease and death when analyzing the covariate alone and when accounting for the 

age and se of the patient. These results were consistent with our hypothesis that dysfunction of 

pathways involved in the body’s defense from pathogen or coagulation induced by inflation were 

associated with higher risk of adverse outcome. Additionally, the results identifying that history 

of hypertension, type 2 diabetes, obesity and coronary artery disease were all associated with 

increased risk of severe disease and death when analyzing the covariate alone and when 

accounting for the age and sex of the patient were consistent with other studies. Being over the 

age of 65 and identifying as male were also associated with an increased risk of severe disease or 

death.  

Counterintuitively, this study identified that being a current or past smoker was not 

associated with an altered risk to disease severity even when accounting for the age and sex of 

the patients. Being a past or current smoker, was associated with an increased risk of death in 

COVID-19 patients, however the analysis when accounting for age and sex indicated that there 

was no altered risk of death. It was expected that patients who had pulmonary distress as a result 

of smoking would be at increased risk of severe disease or death, however our results suggest 

that is not the case. While researchers are still trying to understand this, it is thought that scarring 

in the interstitial space of the lung is preventing signal transduction to active these pathways.  

 

In a partner study at New York-Presbyterian/Weill-Cornell Medical Center, researchers 

used RNA sequencing to transcriptional profile 650 nasopharyngeal swabs [50]. The results 

suggested that SARS-CoV-2 infection induced genes in pathways that modulate immune 
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function. The data showed that the regulation of the complement and coagulation pathways were 

influenced by SARS-CoV-2 infection. Their results concurred with previous results that showed 

poor clinical outcome in the upregulation of type I interferons and the dysregulation of the 

interleukin-6 inflammatory response [51].  

In a final part to this study, we used SARS-CoV-2 test results and genotyping data from 

the UK Biobank to investigated whether genetic variants in genes associated with the 

complement and coagulation cascade were enriched among individuals who tested positive for 

SARS-CoV-2 and were hospitalized. The analysis using data available in April 2020 identified 

rs72729504 a variant in coagulation factor III, a protein which is associated with fibrin fragment 

D-dimer levels and used as a clinical marker for activated blood coagulation, as being associated 

with increased risk of adverse clinical outcome [52]. Variants (rs1047286, rs2230203 and 

rs2230199 in complement factor 3 are associated with a decreased risk of an adverse outcome 

suggesting a protective effect. Variants rs61821114 and rs61821041, which are known to 

decrease the expression of complement decay-accelerating factor 55 that functions to disrupt the 

inflammatory cascade and preventing immune-mediated damage [53].  

In analysis of data available in May 2020, the association study identified variants 

rs10842898, rs669 and rs4883215 that are associated with decreased expression of α-2-

macroglobulin, which regulates fibrin clot formation and inflammatory cascades [54].  

Additionally, variants rs10842898 and rs669 that affect splice variants in mannose-6-phosphate 

receptor, which is a P-type lectin that regulates lysosomal cargo loading and participates in 

cellular responses to wound healing, cell growth and viral infection [55]. 

Finally, in association studies of variants in haplotype blocks, variant rs45574833 that 

causes a missense variant in complement component 4 binding protein alpha, which negatively 
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regulates the classical complement pathway [56]. Finally, variant rs731034 decreases expression 

of collection subfamily member 11, which binds carbohydrate antigens on microorganism to 

facilitate their recognition and phagocytosis.  
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Chapter 3: Investigating steroid hormone exposure on outcome in 

intubated and mechanically ventilated COVID-19 patients 

The work in this chapter is adapted in part from the following publication: 

V. Ramlall, J. Zucker and N. P. Tatonetti. “Melatonin is significantly associated with 

survival of intubated COVID-19 patients”. medRχiv, October 2020. 

DOI: 10.1101/2020.10.15.20213546 

3.1 Introduction 

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) infection has impacted every country in the world with 

more than 35 million confirmed cases and more than 1 million deaths globally - the United States 

accounts for more than 20% of total cases and deaths [19]. In the ten months since the first 

infections were reported outside of the original epicenter, clinical research remains focused on 

identifying treatments [57,58,59] and preventive measures [60, 61, 62] for SARS-CoV-2 

infection.  

Analyses of healthcare data from infected patients have identified the most frequent 

symptoms, e.g. fever, cough, fatigue, shortness of breath, loss of taste or smell [63], however less 

frequent symptoms influenced by comorbidities are also observed [49,64,65]. Respiratory 

distress remains the most significant and serious symptom of COVID-19 [66], which, in the most 
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severe of cases, can require endotracheal intubation and mechanical ventilation, and even lung 

transplants [67]. At the core of the public health emergency that has ravaged the world, is the 

limited amount of supplies and number of intensive care unit beds [68]. Furthermore, patients 

requiring respiratory support, intubation, oxygen supplementation or invasive mechanical 

ventilation are bearing the brunt of the limited availability of resources [69].  

Among the possible therapies for SARS-CoV-2 infection being researched, hormone 

drugs, such as dexamethasone [69] and methylprednisolone [70], have proved promising. The 

dexamethasone study from the RECOVERY Collaborative Group in the UK found that patients 

overall (22.9%), patients requiring invasive mechanical ventilation (29.3%) and patients 

receiving oxygen without mechanical ventilation (23.3%) treated with dexamethasone had lower 

death rates at 28 days compared to those who were treated with usual care (25.7%, 41.4% and 

26.2%, respectively) [69].  

While steroid hormone drugs all share a common basic ring structure, they are used for 

specific circumstance dictated by ailment, potency, half-life and side effects. Based on the results 

from the RECOVERY trial in the UK, we were interested in understanding whether or not 

exposure to other hormone steroids led to similar effects, which would allow for the 

identification of other steroid hormones that may have similar therapeutic benefit.  

3.2 Methods 

3.2.1 Statistical modeling and software  

 We used Jupyter Notebooks (jupyter-client version 5.3.4 and jupyter-core version 4.6.1) 

running Python 3.7 and all fit models using the python lifelines package (version 0.24.4) [48]. 

We used MySQL and python libraries (pymysql, numpy, pandas and pickle) to extract and 

prepare the data for modeling. 
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3.2.2 Cohort identification  

 The data electronic health records for 189,987 patients who sought care at NYP/CUIMC 

between February 1st, 2020 and August 1st, 2020 were collected. From those patients, we 

identified a cohort of 13,394 patients who tested positive for SARS-CoV-2 infection using a 

nasopharyngeal RT-qPCR test or were clinically diagnosed with COVID-19. From those patients 

we identified 948 oxygen therapy periods for 791 patients who required oxygen therapy (both 

with and without mechanical ventilation). We identified 3,497 periods for 2,981 patients who 

required oxygen therapy (both with and without mechanical ventilation) , but were not diagnosed 

with COVID-19. We also identified 747 oxygen therpay periods for 637 patients, who sought 

care at NYP/CUIMC between February 1st, 2018 and August 1st, 2018, requiring oxygen 

therapy (both with and without mechanical ventilation) from our clinical data warehouse. 

 

3.2.3 Identifying oxygen therapy periods and ventilator use 

 To begin, we used hospital admission and discharge data to identify visits lasting more 

than one day, which eliminated any patient who was admitted for an outpatient procedure. We 

identified the start of oxygen therapy using the display name and description of orders that had 

been completed - we used a similar method to identify the end of oxygen therapy - and filtered 

for visits where the start date and discharge date were not the same to remove any patients who 

were intubated during a surgical procedure. We used the end dates of oxygen therapy to define 

the end of each oxygen therapy period for each patient and identified the start of each oxygen 

therapy period by the first order to start oxygen therapy following any previous extubation order. 

Any periods beginning before February 1st, 2020 (i.e. those with an order to end oxygen therapy, 

but missing an order to begin oxygen therapy), were excluded from the analysis. Periods without 
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an accompanying order to end oxygen therapy censored up to the discharge date or the final date 

of analysis, August 1st, 2020. For patients who died within seven days following an order to end 

oxygen therapy, the periods were censored up to the death date. 

            For the 2018 oxygen therapy periods, patients, who had been started oxygen therapy, 

were identified using procedures identified as ‘Intubation, endotracheal, emergency procedure’, 

‘Insertion of Endotracheal Airway into Trachea, Via Natural or Artificial Opening’, or ‘Insertion 

of Endotracheal Airway into Trachea, Via Natural or Artificial Opening Endoscopic’. We 

identified days on which patients began oxygen therapy using procedures identified as ‘'Unlisted 

procedure, larynx' or ‘Subsequent hospital care, per day, for the evaluation and management’. 

We used the dates of procedures to define the start of each oxygen therapy periods and the 

maximum date of care related to oxygen therapy following the start of oxygen therapy procedure 

as the end of each period.  

For the 2020 oxygen therapy periods, patients requiring the use of a ventilator were 

identified using the display name and description of order that had not been cancelled such that 

the order date occurred during the oxygen therapy period. Oxygen therapy periods for each 

patient with mechanical ventilation order were coded as 1, while those without were coded as 0. 

For the 2018 oxygen therapy periods, patients requiring the use of a ventilator were identified as 

“Respiratory Ventilation, Less than 24 Consecutive Hours”, “Respiratory Ventilation, 24-96 

Consecutive Hours”, and “Respiratory Ventilation, Greater than 96 Consecutive Hours”. 

Similarly, oxygen therapy periods for each patient with a ventilation order were coded as 1, 

while those without were coded as 0.  
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3.2.4 Identifying demographic information 

 For each patient within our cohorts of interest, we identified the patient’s reported birth 

date, death date, if the patient had died, sex, race(s) and ethnicity. We calculated the age of each 

patient on their first admission to the hospital within the observation period. For sex, patients 

identifying their sex as male were identified as 1, while those who did not reported their sex as 

male (e.g. female or unknown) were coded as 0. For ethnicity, patients who reported their 

ethnicity as Hispanic or Latino or Spanish origin were coded as 1, while those who reported their 

ethnicity as Not Hispanic or Latino or Spanish origin or who did not report their ethnicity were 

coded as 0. For each possible racial group: American Indian or Alaskan Native, Native Hawaiian 

or Other Pacific Islander, Ashkenazi Jewish, Black or African American, Asian, and White, 

patients were coded as 1 if they reported identifying as a member of that racial group. 

3.2.5 Identifying patient comorbidities 

 For patients in each cohort, we used the data available in the EHR at NYP/CUIMC and in 

the CDW at NYP/CUIMC to identify whether or not a patient had a history of asthma, 

cardiovascular disease, chronic kidney disease, chronic obstructive lung disease, coronary artery 

disease, delirium, diabetes mellitus, diabetic nephropathy, diabetic neuropathy, diabetic 

retinopathy, diabetic vasculopathy, heart failure, hypertension, insomnia, myocardial infarction, 

obesity, and respiratory disorder using ICD-10 diagnosis codes in the EHR and SNOMED-CT 

codes and relationships in data from the CDW. For each disease in our survival analysis, patients 

with a history were coded as 1, while those without a history were coded as 0.   

3.2.6 Identifying patient drug treatments 

 For the 2020 oxygen therapy periods, we identified the drug names, the associated 

National Library of Medication RXNorm identification code and the time of order from orders 
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that had been completed or time of action from medication administration record. We then 

mapped RXNorm codes to DrugBank codes and utilized the associated DrugBank categories to 

identified drugs classified as hormones. Patients were considered as being treated with a drug 

before oxygen therapy if they had at least one completed order or administration between 

February 1st, 2020 and the start of an oxygen therapy period outside of any other oxygen therapy 

period. Similarly, patients were considered as being treated with a drug during oxygen therapy if 

they had at least one completed order or administration on or after the start of the oxygen therapy 

period through the end of the period.  

 For the oxygen therapy periods from 2018, we identified drug names, the associated RX 

Norm identification code, and the start date and end date of their drug regiment censored 

between February 1st, 2018 and August 1st, 2018. Patients were considered as being treated with 

a drug before oxygen therapy if any part of the treatment period occurred between the visit start 

day and the oxygen therapy start date outside of any other oxygen therapy period. Similarly 

patients were considered as being treated with a drug during oxygen therapy if any part of the 

treatment period occurred between the start of oxygen therapy and the end date or the censoring 

date. 

3.2.7 Identify patient outcomes 

 For patients with a single oxygen therapy period, we identified patients for whom oxygen 

therapy was not beneficial as those who died within the period or within seven days following 

the end of that period. For patients with multiple oxygen therapy periods, we identified patients 

for whom oxygen therapy was not beneficial as those who died within the final oxygen therapy 

period or within seven days following the end of that period. For our survival analysis, oxygen 

therapy periods where the patient did not die within seven days of the end date were coded as 0, 
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while those who died within seven days were coded as 1. For oxygen therapy periods that did not 

result in death within seven days, time to event was equal to the length of the oxygen therapy 

period. For oxygen therapy periods that did not result in death within seven days, time to event 

was equal to the length of time from the start date of oxygen therapy to the death date of the 

patient. 

3.3 Results 

3.3.1 Identify patient outcomes 

 We conducted a retrospective observational study of 189,987 patients who sought care at 

NYP/ CUIMC between February 1st, 2020 and August 1st, 2020. We identified 13,394 patients 

who were diagnosed with COVID-19 or infected with SARS-CoV-2 and 948 oxygen therapy 

periods among the 791 patients who received oxygen therapy. Additionally, we identified 3,497 

oxygen therapy periods among the 2,981 patients who required oxygen therapy and were not 

diagnosed with COVID-19 nor infected with SARS-CoV-2, which served as the controls in this 

study (Table 3.1). From our clinical data warehouse (CDW), we identified 747 oxygen therapy 

periods among the 637 patients who required oxygen therapy between February 1st, 2018 and 

August 1st, 2018 (Table 3.1). Of the oxygen therapy periods for COVID-19 patients, there were 

315 periods where the patient required mechanical ventilation and 276 where the patient died 

within seven days of the end of oxygen therapy (i.e. negative outcome), 242 non-COVID-19 

oxygen therapy periods where the patient required mechanical ventilation and 143 where the 

patient died within seven days of the end of oxygen therapy, 637 oxygen therapy periods from 

2018 where the patient required mechanical ventilation and 174 where the patient died within 

seven days of the end of oxygen therapy (Table 3.1). The median (interquartile range) age of the 

COVID-19, non-COVID-19, and 2018 patients who required oxygen therapy was 56.52 (0 - 
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95.14) years, 46.44 (0-97.72) years and 52.62 (0 - 118.00), respectively, and 60.86%, 50.73% 

and 58.90%, respectively, self-identified as male (Table 3.1).  

Additionally, 1.37% (N=13), 20.57% (N=195) and 28.38% (N=269) of the COVID-19 

oxygen therapy periods, 2.17% (N=76), 15.67% (N=548) and 44.35% (N=1,151) of non-

COVID-19 oxygen therapy periods and 1.47% (N=11), 14.99% (N=112), 35.74% (N=267) of 

oxygen therapy periods in 2018 were for patients who self-identified as Asian, Black or African 

American and White, respectively, and 46.20% (N=438) of the COVID-19 patients for COVID-

19 patients who identified as of Hispanic or Latin or Spanish origin compared to 25.68% 

(N=898) of the non-COVID-19 oxygen therapy periods and 20.21% (N=151) of oxygen therapy 

periods from 2018 (Table 3.1). 
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Table 3.1: Demographics and outcome frequencies of COVID-19, non-COVID-19 and 2018 
oxygen therapy periods’ patients 

 

 

 COVID-19 + COVID-19 - 2018 

N 948 3497 747 

Average Age 
(IQR) 

56.52 
(0.0, 95.14) 

46.44 
(0.0, 97.72) 

52.62 
(0.0, 118.00) 

Age ≥ 65 409 
43.14% 

1125 
32.17% 

315 
42.17% 

Male 577 
60.86% 

1774 
50.73% 

440 
58.90% 

Hispanic or Latin or 
Spanish origin 

438 
46.20% 

898 
25.68% 

151 
20.21% 

American Indian or 
Alaskan Native 

≤10 
≤1.05% 

11 
0.31% 

≤10 
≤1.34% 

Asian 13 
1.37% 

76 
2.17% 

11 
1.47% 

Black or African 
American 

195 
20.57% 

548 
15.67% 

112 
14.99% 

Native Hawaiian or Other 
Pacific Islander 

≤10 
≤1.05% 

≤10 
≤0.27% 

≤10 
≤1.34% 

White 269 
28.38% 

1551 
44.35% 

267 
35.74% 

Mechanical ventilation 
required 

315 
33.23% 

242 
6.92% 

637 
85.27% 

Death within 7 days of end 
of oxygen therapy 

276 
29.11% 

143 
4.09% 

174 
23.29% 
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3.3.2 Identify patient comorbidities  

 More than 50% of the COVID-19, non- COVID-19 and 2018 oxygen therapy periods 

were for patients who had a history of cardiovascular disease and respiratory disease (Table 3.2). 

Additionally, 70.78%, 43.04%, 20.89%, 43.78% and 47.47% of the COVID-19 oxygen therapy 

periods were for patients who had a history of chronic kidney disease, diabetes mellitus, heart 

failure, hypertension and obesity, respectively, compared to 37.36%, 20.65%, 14.81%, 33.77% 

and 35.05% of the non-COVID-19 oxygen therapy periods and 34.67%, 37.88%, 51.81%, 

63.05% and 25.84% of oxygen therapy periods from 2018 (Table 3.2).  
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Table 3.2: Frequency of diseases of COVID-19 +, COVID-19 - and 2018 oxygen therapy 
periods’ patients. 

 COVID-19 + COVID-19 - 2018 

N 948 3497 747 

Asthma 135 
14.24% 

336 
9.61% 

148 
19.81% 

Cardiovascular disease 662 
69.83% 

2149 
61.45% 

723 
96.79% 

Chronic kidney disease 671 
70.78% 

1303 
37.26% 

259 
34.67% 

Chronic obstructive lung 
disease 

85 
8.97% 

244 
6.98% 

187 
25.03% 

Coronary artery disease 145 
15.30% 

539 
15.41% 

265 
35.48% 

Diabetes mellitus 408 
43.04% 

722 
20.65% 

283 
37.88% 

Diabetic nephropathy 56 
5.91% 

107 
3.06% 

64 
8.57% 

Diabetic neuropathy 52 
5.49% 

104 
2.97% 

57 
7.63% 

Diabetic retinopathy 28 
2.95% 

48 
1.37% 

23 
3.08% 

Diabetic vasculopathy 26 
2.74% 

58 
1.66% 

38 
5.09% 

Heart failure 198 
20.89% 

518 
14.81% 

387 
51.81% 

Hypertension 415 
43.78% 

1181 
33.77% 

471 
63.05% 



55 
 

Table 3.2: Frequency of diseases of COVID-19 +, COVID-19 - and 2018 oxygen therapy 
periods’ patients. (cont.) 

 

3.3.3 Univariate analysis of demographics on outcome following oxygen therapy 

 Among oxygen therapy periods for COVID-19 patients, increasing age, as a continuous 

variable (HR: 1.05, 95% CI: 1.04 -1.06, p-value = 4.42E-24) and as a binary variable of age 

greater than or equal to 65 years (HR: 3.25, 95% CI: 2.52 - 4.9, p-value = 1.33E-19), and self-

identifying as (HR: 4.36, 95% CI: 1.08 - 17.6, p-value = 3.80E-02) was significantly associated 

with a negative outcome (Table 3.3 and Figure 3.1). Among the subset of oxygen therapy periods 

where mechanical ventilation was required for COVID-19 patients increasing age, as a 

continuous variable (HR: 1.04, 95% CI: 1.02 -1.06, p-value = 1.39E-5) and as a binary variable 

of age greater than or equal to 65 (HR: 2.85, 95% CI: 1.84 - 4.40, p-value = 2.42E-06) was 

significantly associated with a negative outcome (Table 3.3 and Figure 3.2). Conversely, self-

identifying race as Black or African American (HR: 0.347, 95% CI: 0.175 - 0.689, p-value = 

2.49E-3) was significantly associated with a positive outcome (Table 3.3 and Figure 3.2). 

 

 

 

Disease COVID-19 + COVID-19 - 2018 

Myocardial infarction 80 
8.44% 

216 
6.18% 

160 
21.42% 

Obesity 450 
47.47% 

1225 
35.03% 

193 
25.84% 

Respiratory disease 706 
74.47% 

1819 
52.02% 

746 
99.87% 
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Table 3.3: Demographic and disease univariate Cox proportional hazards ratios for 
COVID-19 + oxygen therapy periods. (± Not Determined) 

Covariates Intubated Patients Mechanically Ventilated 
Patients 

 N 
Hazards Ratio 

(95 % CI) 
P-value 

N 
Hazards Ratio 

(95 % CI) 
P-value 

Age 
(continuous) 948 

1.05 
(1.04-1.06) 
4.42E-24 

315 
1.04 

(1.02-1.06) 
1.39E-05 

Age >= 65 409 
3.25 

(2.52-4.19) 
1.33E-19 

144 
2.85 

(1.84-4.40) 
2.42E-06 

Male 577 
1.09 

(0.848-1.39) 
0.513 

196 
0.980 

(0.639-1.50) 
0.927 

Hispanic or 
Latin or 

Spanish origin 
438 

1.00 
(0.793-1.27) 

0.969 
166 

1.09 
(0.719-1.64) 

0.697 

American 
Indian or 

Alaskan Native 
3 

4.36 
(1.08-17.6) 
3.80E-02 

± 

Asian 13 
1.00 

(0.321-3.13) 
0.995 

± 

Black or 
African 

American 
195 

0.923 
(0.687-1.24) 

0.595 
62 

0.344 
(0.166-0.710) 

3.92E-03 

Native 
Hawaiian or 
Other Pacific 

Islander 

3 
0.602 

(8.44E-02-4.29) 
0.612 

± 

White 269 
0.842 

(0.634-1.12) 
0.232 

77 
1.30 

(0.813-2.07) 
0.275 
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Figure 3.1: Kaplan-Meier curves for demographic covariates for COVID-19 oxygen 
therapy periods. 
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Figure 3.2: Kaplan-Meier curves for demographic covariates for COVID-19 oxygen 
therapy periods requiring mechanical ventilation. 

 

3.3.4 Univariate analysis of comorbidities on outcome following oxygen therapy 

 Among oxygen therapy periods for COVID-19, having a history of chronic kidney 

disease (HR: 5.90, 95% CI: 3.40 - 10.4, p-value = 3.73E-10), chronic obstructive lung disease 

(HR: 1.82, 95% CI: 1.29 - 2.58, p-value = 7.37E-4), coronary artery disease (HR: 1.65, 95% CI: 

1.23 - 2.21, p-value = 8.41E-04), diabetes mellitus (HR: 1.61, 95% CI: 1.27 - 2.04 , p-value 

=8.83E-05), hypertension (HR: 1.62, 95% CI: 1.20 - 1.93 , p-value = 5.20E-04) and myocardial 

infarction (HR: 1.56, 95% CI: 1.07 - 2.27, p-value = 1.96E-02) were associated with a negative 



59 
 

outcome. Having a history of respiratory disease (HR: 0.630, 95% CI: 0.480 - 0.830, p-value = 

1.06E-30) was significantly associated with a positive outcome following oxygen therapy (Table 

3.4 and Figure 3.3).  

Among the subset of oxygen therapy periods where mechanical ventilation was required 

for COVID-19, having a history of chronic kidney disease (HR: 3.63, 95% CI: 1.32 - 9.89, p-

value = 1.17E-02) and chronic obstructive lung disease (HR: 2.06, 95% CI: 1.07 - 3.98, p-value 

= 3.11E-02) were significantly associated with a negative outcome (Table 3.4 and Figure 3.4). 

Conversely, having a history of asthma (HR: 0.299, 95% CI: 9.50E-02 - 0.950, p-value = 4.00E-

2) and respiratory disease (HR: 0.457, 95% CI: 0.273 - 0.766, p-value = 2.98E-3) were 

significantly associated with a positive outcome (Table 3.4 and Figure 3.4). 
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Table 3.4: Disease univariate Cox proportional hazards ratios for COVID-19 oxygen 
therapy periods. ± Not determined. (± Not Determined) 

 

 

 

Covariates Intubated Patients Mechanically Ventilated 
Patients 

 N 
Hazards Ratio 

(95 % CI) 
P-value 

N 
Hazards Ratio 

(95 % CI) 
P-value 

Asthma 135 
0.984 

(0.696-1.39) 
0.929 

32 
0.299 

(9.46E-02-0.945) 
3.98E-02 

Cardiovascular 
disease 662 

0.981 
(0.752-1.28) 

0.891 
240 

0.858 
(0.538-1.37) 

0.521 

Chronic Kidney 
disease 671 

5.94 
(3.40-10.4) 
3.73E-10 

270 
3.63 

(1.33-9.89) 
1.17E-02 

Chronic 
obstructive lung 

disease 
85 

1.82 
(1.29-2.58) 
7.37E-04 

20 
2.06 

(1.07-3.98) 
3.11E-02 

Coronary 
artery disease 145 

1.65 
(1.23-2.21) 
8.41E-04 

32 
1.31 

(0.695-2.46) 
0.407 

Diabetes 
mellitus 408 

1.61 
(1.27-2.04) 
8.83E-05 

138 
1.33 

(0.884-2.01) 
0.171 

Diabetic 
nephropathy 56 

0.723 
(0.414-1.26) 

0.254 
21 

0.710 
(0.260-1.94) 

0.503 

Diabetic 
neuropathy 52 

1.16 
(0.716-1.87) 

0.552 
15 

0.719 
(0.227-2.28) 

0.574 
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Table 3.4: Disease univariate Cox proportional hazards ratios for COVID-19 oxygen 
therapy periods. ± Not determined. (± Not Determined) (cont.) 

 

 

 

 

 

Covariates Intubated Patients Mechanically Ventilated 
Patients 

 N 
Hazards Ratio 

(95 % CI) 
P-value 

N 
Hazards Ratio 

(95 % CI) 
P-value 

Diabetic 
retinopathy 28 

0.966 
(0.478-1.95) 

0.923 
7 

0.492 
(6.85E-02-3.54) 

0.481 

Diabetic 
vasculopathy 26 

0.958 
(0.451-2.03)  

0.910 
± 

Heart failure 198 
1.30 

(0.989-1.70) 
5.98E-02 

60 
1.05 

(0.635-1.74) 
0.843 

Hypertension 415 
1.52 

(1.20-1.93) 
5.20E-04 

138 
1.04 

(0.684-1.57) 
0.864 

Myocardial 
infarction 80 

1.56 
(1.07-2.27) 
1.96E-02 

13 
0.742 

(0.235-2.35) 
0.612 

Obesity 450 
0.810 

(0.639-1.03) 
8.10E-02 

193 
0.691 

(0.457-1.04) 
7.87E-02 
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Figure 3.3: Kaplan-Meier curves for disease covariates for COVID-19 oxygen 
therapy periods. 
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Figure 3.4: Kaplan-Meier curves for disease covariates for COVID-19 oxygen 
therapy periods requiring mechanical ventilation. 
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3.3.5 Identify drug exposure on outcome following oxygen therapy 

 Among the COVID-19 +, COVID-19 – and 2018 oxygen therapy periods’ patients, the 

largest faction of patients were exposed to benzodiazepines prior to oxygen therapy (18.35%, 

15.56%, 69.34%, respectively) (Table 3.5). Among the COVID-19 + oxygen therapy periods’ 

patients, 9.07% of them were exposed to melatonin; comparatively, approximately half the 

fraction of COVID-19 – oxygen therapy periods’ patients were exposed (4.92%), while 

approximately a third larger fraction of 2018 patients were exposed (Table 3.5). 

Among the COVID-19 +, COVID-19 – and 2018 oxygen therapy periods’ patients, the 

largest faction of patients were exposed to benzodiazepines after starting oxygen therapy 

(76.90%, 71.03%, 81.79%), respectively) (Table 3.6). Among the COVID-19 + and 2018 oxygen 

therapy periods’ patients, at least one-fifth were exposed to melatonin after starting oxygen 

therapy (20.68%, 25.03%, respectively); comparatively, approximately half the fraction of 

COVID-19 – oxygen therapy periods’ patients were exposed to melatonin after starting oxygen 

therapy (Table 3.6). 
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Table 3.5: Fraction of oxygen therapy periods where the patient was exposed to the drug 
before oxygen therapy. (± Not Determined)  

Drug COVID-19 + COVID-19 - 2018 

Quetiapine 52 
5.49% 

53 
1.52% 

77 
10.31% 

Trazodone 13 
1.37% 

28 
0.80% 

27 
3.61% 

Benzodiazepines 174 
18.35% 

544 
15.56% 

518 
69.34% 

Insulin glargine 138 
14.56% 

129 
3.69% ± 

Insulin Human 150 
15.82% 

162 
4.63% ± 

Dronabinol ≤10 
≤1.05% 

≤10 
≤0.27% ± 

Hydrocortisone 34 
3.59% 

74 
2.12% ± 

Triamcinolone ≤10 
≤1.05% 

≤10 
≤0.27% ± 

Budesonide 18 
1.90% 

67 
1.92% ± 

Melatonin  86 
9.07% 

172 
4.92% 

93 
12.45% 

Dexamethasone  ≤10 
≤1.05% 

67 
1.92% 

78 
10.44% 

Vasopressin  37 
3.90% 

73 
2.09% ± 
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Table 3.5: Fraction of oxygen therapy periods where the patient was exposed to the drug 
before oxygen therapy. (± Not Determined) (cont.) 

Drug COVID-19 + COVID-19 - 2018 

Prednisone  41 
4.32% 

98 
2.80% ± 

Methylprednisolone 146 
15.40% 

104 
2.97% ± 

Levothyroxine 36 
3.80% 

78 
2.23% ± 

Fludrocortisone ≤10 
≤1.05% 

≤10 
≤0.27% ± 

Insulin Lispro 172 
18.14% 

237 
6.78% ± 
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Table 3.6: Fraction of oxygen therapy periods where the patient was exposed to the drug 
during oxygen therapy periods. (± Not Determined) 

Drug COVID-19 + COVID-19 - 2018 

Quetiapine 252 
26.58% 

119 
3.40% 

217 
29.05% 

Trazodone 20 
2.11% 

55 
1.57% 

49 
6.56% 

Benzodiazepines 729 
76.90% 

2484 
71.03% 

611 
81.79% 

Insulin glargine 341 
35.97% 

273 
7.81% ± 

Insulin Human 486 
51.27% 

432 
12.35% ± 

Dronabinol ≤10 
≤1.05% 

12 
0.34% ± 

Hydrocortisone 196 
20.68% 

198 
5.66% ± 

Triamcinolone 15 
1.58% 

23 
0.66% ± 

Budesonide 33 
3.48% 

108 
3.09% ± 

Melatonin 196 
20.68% 

319 
9.12% 

187 
25.03% 

Dexamethasone 18 
1.90% 

206 
5.89% 

81 
10.84% 

Vasopressin 221 
23.31% 

283 
8.09% ± 
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Table 3.6: Fraction of oxygen therapy periods where the patient was exposed to the drug 
during oxygen therapy periods. (± Not Determined) (cont.) 

Drug COVID-19 + COVID-19 - 2018 

Prednisone 60 
6.33% 

171 
4.89% ± 

Methylprednisolone  286 
30.17% 

315 
9.01% ± 

Levothyroxine 63 
6.65% 

201 
5.75% ± 

Salmon Calcitonin  ≤10 
≤1.05% 

≤10 
≤0.27% ± 

Fludrocortisone  ≤10 
≤1.05% 

15 
0.43% ± 

Insulin Lispro  362 
38.19% 

493 
14.10% ± 

Desmopressin  ≤10 
≤1.05% 

19 
0.54% ± 

Clobetasol  ≤10 
≤1.05% 

≤10 
≤0.27% ± 

 

3.3.6 Univariate analysis of hormone exposure on outcome following oxygen therapy 

 We used univariate analysis of hormone exposure during oxygen therapy to identify 

hypotheses for follow up analysis. Among the subset of periods for COVID-19 patients during 

which the patient required mechanical ventilation, exposure to methylprednisolone (HR: 1.63, 

95% CI: 1.07 - 2.47 p-value = 2.37E-02) and levothyroxine (HR: 2.26, 95% CI: 1.13 - 4.51, p- 
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value = 2.04E-02) prior to the start of the oxygen therapy were significantly associated with a 

negative outcome (Table 3.7, Figure 3.5).  

 Exposure to insulin glargine (HR: 0.665, 95% CI: 0.521 - 0.849 p-value = 1.04E-03), 

budesonide (HR: 0.290, 95% CI: 0.108 - 0.778, p value = 1.40E-02), melatonin (HR: 9.17E-02, 

95% CI: 5.43E-02 - 0.155, p-value = 4.81E-19), prednisone (HR: 0.432, 95% CI: 0.230 - 0.812. 

p-value = 9.11E-03), methylprednisolone (HR: 0.773, 95% CI: 0.603 - 0.991, p-value = 4.25 E-

02) and insulin lispro (HR: 0.731, 95% CI: 0.575 - 0.930, p-value = 1.07E-02) between the start 

day of the oxygen therapy period and the end day were significantly associated with a positive 

outcome in periods of COVID-19 patients (Table 3.8, Figure 3.6). Among the same oxygen 

therapy periods, exposure to hydrocortisone (HR: 1.56, 95% CI: 1.22 - 2.00, p-value = 3.54E-04) 

during the oxygen therapy period was significantly associated with negative outcomes (Table 

3.8, Figure 3.6). 

 Exposure to melatonin (HR: 9.13E-02, 95% CI: 4.40E-02 - 0.189, p-value = 1.32E-10) 

during the oxygen therapy period was significantly associated with a positive outcome in oxygen 

therapy periods for COVID-19 patients requiring mechanical ventilation (Table 3.7, Figure 3.7). 

Conversely, exposure to hydrocortisone (HR: 2.16 95% CI: 1.42 - 3.28, p-value = 2.98E-04), 

methylprednisolone (HR: 1.73, 95% CI: 1.13 - 2.64, p-value = 1.19E-02) and levothyroxine (HR: 

1.89, 95% CI: 1.05 - 3.40, p-value = 3.43E-02) during the oxygen therapy period was 

significantly associated with a negative outcome (Table 3.7, Figure 3.7).  
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Table 3.7: Univariate Cox proportional hazards ratios for hormone exposure prior to start 
of oxygen therapy period for COVID-19 + patients. (± Not Determined)  
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Table 3.7: Univariate Cox proportional hazards ratios for hormone exposure prior to start 
of oxygen therapy period for COVID-19 + patients. (± Not Determined) (cont.) 
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Table 3.8: Univariate Cox proportional hazards ratios for hormone exposure during 
oxygen therapy period for COVID-19 + patients. (± Not Determined)  
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Table 3.8: Univariate Cox proportional hazards ratios for hormone exposure during 
oxygen therapy period for COVID-19 + patients. (± Not Determined) (cont.) 
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Figure 3.5: Kaplan-Meier curves for hormones exposure prior to oxygen therapy 
period for COVID-19 patients. 
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Figure 3.6: Kaplan-Meier curves for hormones exposure during oxygen therapy 
period for COVID-19 patients. 

 



76 
 

 

Figure 3.7: Kaplan-Meier curves for hormones exposure during oxygen therapy for 
COVID-19 oxygen therapy periods requiring mechanical ventilation. 
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3.3.7 Dexamethasone treatment after oxygen therapy is associated with increased 

survival among intubated COVID-19 patients 

 Based on the results of the study from the RECOVERY Collaborative Group in the UK, 

we were interested in the effects of dexamethasone treatment when accounting for other 

significant covariates, following the univariate analysis. We fit a Cox proportional hazards model 

using age (binary for whether the patient was older than 65), whether or not the patient self-

identified as American Indian or Alaskan Native, whether or not the patient had a history of 

chronic kidney disease, chronic obstructive lung disease, coronary artery disease, diabetes 

mellitus, hypertension, myocardial infarction and respiratory disease, and whether or not a 

patient was exposed to dexamethasone after being intubated. Being at least 65 years old (HR: 

2.45, 95% CI: 1.88 - 3.20, p-value = 4.14E-11) and having a history of chronic kidney disease 

(HR: 4.05, 95% CI: 2.28 - 7.18, p-value = 1.82E-06) and a history of chronic obstructive lung 

disease (HR: 1.48, 95% CI: 1.01 - 2.17, p-value = 4.25E-02) were significantly associated with a 

negative outcome during oxygen therapy in periods for COVID-19 patients (Table 3.9). Having a 

history of respiratory disease (HR: 0.470, 95% CI: 0.351 - 0.631, p-value = 4.71E-07) was 

significantly associated with a positive outcome in oxygen therapy periods for COVID-19 

patients (Table 3.5). While not significant in the model, exposure to dexamethasone during 

oxygen therapy period was associated with a positive outcome (HR: 0.235, 95% CI: 3.25E-02 - 

1.69, p-value = 0.151) in oxygen therapy for COVID-19 patients (Table 3.9). 

 In similar model, being at least 65 years old (HR: 1.93, 95% CI: 1.3 4- 2.78, p-value = 

3.84E-04), having a history of chronic kidney disease (HR: 4.45, 95% CI: 2.80 - 7.09, p-value =  

3.12E-10) and a history of myocardial infarction (HR: 2.55, 95% CI: 1.59 - 4.09, p-value = 

1.04E-04) were significantly associated with a negative outcome in oxygen therapy periods for 
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non- COVID-19 patients (Table 3.9). Being at least 65 years old (HR: 2.48, 95% CI: 1.71 - 3.58, 

p- value = 1.41E-06) and having a history of chronic kidney disease (HR: 1.44, 95% CI: 1.03 -  

2.01, p-value = 3.16E-02) were significantly associated with a negative outcome in oxygen 

therapy periods from 2018 (Table 3.9).  

In a follow up analysis of the oxygen therapy periods where the patient required 

mechanical ventilation, we fit a Cox proportional hazards model using age (binary for whether 

the patients was older than 65), whether or not the patient self-identified as Black or African 

American, whether or not the patient had a history of asthma, chronic kidney disease, chronic 

obstructive lung disease and respiratory disease and whether or not a patients was exposed to 

dexamethasone during oxygen therapy. Being at least 65 years old (HR: 2.29, 95% CI: 1.46 - 

3.59, p- value = 3.00E-04) was significantly associated with a negative outcome in oxygen 

therapy periods for COVID-19 patients (Table 3.10). Self-identifying as Black or African 

American (HR: 0.384, 95% CI: 0.185 - 0.797, p-value = 1.02E-02) and having a history of 

respiratory disease (HR: 0.534, 95% CI: 0.314 - 0.910, p-value = 2.11E-02) were significantly 

associated with a positive outcome in oxygen therapy periods for COVID-19 patients (Table 

3.10).  

In a similar model, being at least 65 years old (HR: 3.11, 95% CI: 1.47 - 6.55, p-value = 

2.91E-03) was associated with a negative outcome in oxygen therapy periods for non-COVID-19 

patients (Table 3.10). Being at least 65 years old (HR: 2.77, 95% CI: 1.90 - 4.03, p-value = 

1.11E-07) was associated with a negative outcome in oxygen therapy periods from 2018 (Table 

3.10). 
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Table 3.9: Dexamethasone exposure during oxygen therapy multivariate model Cox 
proportional hazards ratios. (± Not Determined)  
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Table 3.9: Dexamethasone exposure during oxygen therapy multivariate model Cox 
proportional hazards ratios. (± Not Determined) (cont.) 
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Table 3.10: Dexamethasone exposure during oxygen therapy multivariate Cox 
proportional hazards ratios requiring mechanical ventilation. (± Not Determined)  
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3.3.8 Univariate analysis of melatonin, quetiapine, trazodone and benzodiazepines 

on outcome following oxygen therapy 

 Following the significant association between melatonin exposure following oxygen 

therapy and a positive outcome in periods and in oxygen therapy periods requiring mechanical 

ventilation for COVID-19 patients, we conducted a univariate analysis of exposure to quetiapine, 

trazodone and benzodiazepines in COVID-19 and non-COVID-19 patients. Exposure to 

quetiapine (HR: 0.536, 95% CI: 0.293 - 0.980, p-value = 4.28E-02) and benzodiazepines (HR: 

0.477, 95% CI: 0.330 - 0.690, p-value = 8.31E-05) between the visit start day and the start of 

oxygen therapy were significantly associated with a positive outcome following oxygen therapy 

in periods for COVID-19 patients (Table 3.11, Figure 3.8). Exposure to quetiapine (HR: 0.242, 

95% CI: 0.178 - 0.329, p-value = 1.60E-19), trazodone (HR: 8.31E-02, 95% CI: 1.17E-02 - 

0.593, p-value = 1.13E-02) and benzodiazepines (HR: 0.418. 95% CI: 0.318 - 0.550, p-value = 

4.18E-10) during oxygen therapy were significantly associated with a positive outcome in 

oxygen therapy periods for COVID-19 patients (Table 3.12, Figure 3.8). Among oxygen therapy 

periods for non-COVID-19 patients, exposure to benzodiazepines (HR: 0.322. 95% CI: 0.232 - 

0.447, p-value = 1.48E-11) during oxygen therapy were significantly associated with a positive 

outcome for oxygen therapy for non-COVID-19 patients (Table 3.12, Figure 3.8). Exposure to 

quetiapine (HR: 0.471, 95% CI: 0.328 - 0.676, p-value = 4.46E-05) was significantly associated 

with a positive outcome in oxygen therapy periods from 2018 (Table 3.12).  
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Table 3.11: Insomnia and agitation medications (melatonin, quetiapine, trazodone 
and benzodiazepines) univariate Cox proportional hazards ratios for oxygen therapy 

periods before the start of the period 
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Table 3.12: Insomnia and agitation medications (melatonin, quetiapine, trazodone 
and benzodiazepines) univariate Cox proportional hazards ratios for oxygen therapy 

periods during oxygen therapy 
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Figure 3.8: Kaplan-Meier curves for melatonin, quetiapine, trazodone and 
benzodiazepines treatment before and after oxygen therapy for (a) COVID-19 periods, (b) 

non-COVID-19 periods and (c) periods from 2018. 
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3.3.9 Melatonin treatment is associated with increased survival among patients 

receiving oxygen therapy 

In order to further understand the association between melatonin during oxygen therapy 

and survival, we were interested in the effect of melatonin exposure when accounting for other 

factors significant covariates. We fit a Cox proportional hazards model using age (binary for 

whether the patients was older than 65), whether or not the patient self-identified as American 

Indian or Alaskan Native, whether or not the patient had a history of chronic kidney disease, 

chronic obstructive lung disease, coronary artery disease, diabetes mellitus, hypertension, 

myocardial infarction and respiratory disease, and whether or not a patient was treated with 

melatonin, quetiapine, trazodone and benzodiazepines after being intubated. Being at least 65 

years old (HR: 1.78, 95% CI: 1.36 - 2.32, p-value = 2.35E-05), having a history of chronic 

kidney disease (HR: 6.32, 95% CI: 3.54 - 10.3, p-value = 4.32E-10) were significantly associated 

with a negative outcome in oxygen periods for COVID-19 patients (Table 3.13). Having a 

history of respiratory disease (HR: 0.493, 95% CI: 0.367 - 0.663, p-value = 2.78E-06) and 

exposure to quetiapine during oxygen therapy (HR: 0.289, 95% CI: 0.210 - 0.398, p-value = 

2.37E-14), benzodiazepines after during oxygen therapy (HR: 0.585, 95% CI: 0.439 - 0.78, p-

value = 2.30E-04) and melatonin after during oxygen therapy (HR: 0.131, 95% CI: 7.76E-02 - 

0.223, p-value = 8.19E-14) are significantly associated with a positive outcome in during oxygen 

therapy periods for COVID-19 patients (Table 3.13).  

Having a history of chronic kidney disease (HR: 5.14, 95% CI: 3.18 - 8.29, p-value = 

2.08E-11) and myocardial infarction (HR: 3.22, 95% CI: 1.95 - 5.33, p-value = 5.13E-06) were 

significantly associated with a negative outcome following oxygen therapy (Table 3.9). Exposure 

to benzodiazepines during oxygen therapy (HR: 0.358, 95% CI: 0.250 - 0.513, p-value = 1.95E-
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08) and exposure to melatonin during oxygen therapy (HR: 0.278, 95% CI: 0.142 - 0.542, p-

value = 1.72E-04) were significantly associated with a positive outcome for non-COVID-19 

patients (Table 3.13). Being at least 65 years old (HR: 2.55, 95% CI: 1.77 - 3.67, p-value = 

4.84E-07) was significantly associated with a negative outcome in oxygen periods from 2018 

(Table 3.9). Exposure to quetiapine during oxygen therapy (HR: 0.520, 95% CI: 0.358 - 0.756, p-

value = 6.06E-04) and melatonin during oxygen therapy (HR: 0.423, 95% CI: 0.274 - 0.653, p-

value = 1.03E-03) were significantly associated with a positive outcome in oxygen therapy 

periods from 2018 (Table 3.13). 
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Table 3.13: Melatonin exposure during oxygen therapy multivariate model Cox 
proportional hazards ratios for oxygen therapy periods. (± Not Determined)  

Covariates COVID-19 + COVID-19 - 2018 

 N 
Hazards Ratio 

(95 % CI) 
P-value 

N 
Hazards Ratio 

(95 % CI) 
P-value 

N 
Hazards Ratio 

(95 % CI) 
P-value 

Age >= 65 409 
1.78 

(1.36-2.33) 
2.35E-05 

1125 
1.31 

(0.887-1.95) 
0.173 

315 
2.55 

(1.77-3.67) 
4.84E-07 

Melatonin 
exposure during 
oxygen therapy 

196 
0.131 

(7.66E-02-0.223) 
8.19E-14 

319 
0.278 

(0.142-0.542) 
1.72E-04 

187 
0.423 

(0.274-0.653) 
1.03E-04 

American 
Indian or 

Alaskan Native 
3 

1.43 
(0.346-5.93) 

0.621 
± ± 

Chronic kidney 
disease 671 

6.32 
(3.54-11.3) 
4.32E-10 

1303 
6.00 

(3.67-9.81) 
8.45E-13 

259 
1.40 

(0.995-1.96) 
5.38E-02 

Chronic 
obstructive lung 

disease 
85 

1.35 
(0.921-1.97) 

0.125 
244 

0.765 
(0.445-1.31) 

0.332 
187 

1.10 
(0.776-1.55) 

0.603 

Coronary 
artery disease 145 

1.33 
(0.937-1.88) 

0.110 
539 

0.774 
(0.473-1.27) 

0.307 
265 

0.935 
(0.640-1.37) 

0.729 

Diabetes 
mellitus 408 

1.07 
(0.830-1.38) 

0.603 
722 

0.964 
(0.638-1.46) 

0.864 
283 

1.25 
(0.880-1.78) 

0.213 

Hypertension 415 
0.987 

(0.754-1.29) 
0.922 

1181 
1.04 

(0.679-1.58) 
0.867 

471 
1.00 

(0.690-1.44) 
0.991 
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Table 3.13: Melatonin exposure during oxygen therapy multivariate model Cox 
proportional hazards ratios for oxygen therapy periods. (± Not Determined) (cont.) 

Covariates COVID-19 + COVID-19 - 2018 

 N 
Hazards Ratio 

(95 % CI) 
P-value 

N 
Hazards Ratio 

(95 % CI) 
P-value 

N 
Hazards Ratio 

(95 % CI) 
P-value 

Myocardial 
infarction 80 

0.978 
(0.645-1.48) 

0.916 
216 

3.22 
(1.95-5.33) 
5.13E-06 

160 
1.33 

(0.901-1.95) 
0.152 

Respiratory 
Disease 706 

0.493 
(0.367-0.663) 

2.78E-06 
1819 

1.02 
(0.685-1.51) 

0.936 
± 

Quetiapine 
exposure during 
oxygen therapy 

252 
0.289 

(0.210-0.398) 
2.37E-14 

119 
0.557 

(0.293-1.06) 
7.54E-02 

217 
0.520 

(0.358-0.756) 
6.06E-04 

Trazodone 
exposure during 
oxygen therapy 

20 
0.231 

(3.20E-02-1.67) 
0.146 

55 
0.772 

(0.241-2.47) 
0.662 

49 
0.763 

(0.379-1.54) 
0.451 

Benzodiazepines 
exposure during 
oxygen therapy 

729 
0.585 

(0.439-0.778) 
2.3E-04 

2484 
0.358 

(0.250-0.513) 
1.95E-08 

611 
1.17 

(0.762-1.79) 
0.477 

 

3.3.10 Melatonin treatment is associated with increased survival among COVID-19+ 

patients requiring mechanical ventilation 

 In a follow up analysis of the oxygen therapy periods where the patient required 

mechanical ventilation, we fit a Cox proportional hazards model using age (binary for whether 

the patients was older than 65), whether or not the patient self-identified as Black or African 

American, whether or not the patient had a history of asthma, chronic kidney disease, chronic 

obstructive lung disease and respiratory disease and whether or not a patients was treated with 
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melatonin, quetiapine, trazodone and benzodiazepines during oxygen therapy. Having a history 

of chronic kidney disease (HR: 3.00, 95% CI: 1.07 - 8.45, p-value = 3.71E-02) was significantly 

associated with a negative outcome in oxygen therapy periods for COVID-19 patients (Table 

3.14). Self-identifying as Black or African American (HR: 0.403, 95% CI: 0.193 - 0.839, p-value 

- 1.15E-02), having a history of respiratory disease (HR: 0.433, 95% CI: 0.250-0.749, p-value = 

2.80E-03) and exposure to quetiapine during oxygen therapy (HR: 0.404, 95% CI: 0.262 - 0.624, 

p-value = 4.31E-05), benzodiazepines during oxygen therapy (HR: 0.329, 95% CI: 0.187 - 0.580, 

p-value = 1.19E-04) and melatonin during oxygen therapy (HR: 0.127, 95% CI: 6.01E-02 - 

0.269, p-value = 7.15E-08) after oxygen therapy were significantly associated with a positive 

outcome for oxygen therapy periods for COVID-19 patients where mechanical ventilation was 

required (Table 3.14).  

Being at least 65 years old (HR: 3.07, 95% CI: 1.39 - 6.78, p-value = 5.54E-03) was 

significantly associated with a negative outcome in oxygen therapy periods for non-COVID-19 

patients where mechanical ventilation was required (Table 3.14). Being at least 65 years old 

(HR: 3.06, 95% CI: 2.10 - 4.45, p-value = 5.44E-09) and having a history of chronic kidney 

disease (HR: 1.44, 95% CI: 1.02 - 2.04, p-value = 3.86E-02) were significantly associated with a 

negative outcome in oxygen therapy periods from 2018 (Table 3.14). Exposure to quetiapine 

during oxygen therapy (HR: 0.482, 95% CI: 0.322 - 0.722, p-value = 4.04E-04) and melatonin 

during oxygen therapy (HR: 0.492, 95% CI: 0.315 - 0.768, p-value = 1.78E-03) were associated 

with a positive outcome in oxygen therapy periods from 2018 (Table 3.14). 
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Table 3.14: Melatonin exposure during oxygen therapy multivariate model Cox 
proportional hazards ratios for periods requiring mechanical ventilation. 

Covariates COVID-19 + COVID-19 - 2018 

 N 
Hazards Ratio 

(95 % CI) 
P-value 

N 
Hazards Ratio 

(95 % CI) 
P-value 

N 
Hazards Ratio 

(95 % CI) 
P-value 

Age >= 65 144 
1.51 

(0.947-2.40) 
8.33E-02 

90 
3.07 

(1.39-6.78) 
5.54E-03 

273 
3.06 

(2.10-4.45) 
5.44E-09 

Melatonin 
exposure during 
oxygen therapy 

112 
0.127 

(6.01E-02-0.269) 
7.15E-08 

34 
0.689 

(0.275-1.72) 
0.425 

152 
0.492 

(0.315-0.768) 
1.78E-03 

Black or 
African 

American 
62 

0.403 
(0.193-0.839) 

1.15E-02 
30 

0.988 
(0.373-2.61) 

0.980 
96 

0.915 
(0.587-1.43) 

0.696 

Asthma 32 
0.452 

(0.138-1.38) 
0.190 

15 
1.16 

(0.255-5.25) 
0.849 

132 
0.828 

(0.526-1.30) 
0.415 

Chronic kidney 
disease 270 

3.14 
(1.12-8.80) 
2.98E-02 

127 
1.55 

(0.693-3.48) 
0.285 

223 
1.44 

(1.02-2.04) 
3.86E-02 

Chronic 
obstructive lung 

disease 
20 

1.84 
(0.923-3.66) 

8.32E-02 
18 

1.17 
(0.386-3.53) 

0.785 
163 

1.20 
(0.816-1.75) 

0.360 

Respiratory 
Disease 275 

0.433 
(0.250-0.749) 

2.80E-03 
174 

0.891 
(0.414-1.92) 

0.768 
± 

Quetiapine 
exposure during 
oxygen therapy 

175 
0.404 

(0.262-0.624) 
4.31E-05 

39 
0.412 

(0.156-1.09) 
7.42E-02 

181 
0.482 

(0.322-0.722) 
4.04E-04 
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Table 3. 14: Melatonin exposure during oxygen therapy multivariate model Cox 
proportional hazards ratios for periods requiring mechanical ventilation. (cont.) 

Covariates COVID-19 + COVID-19 - 2018 

 N 
Hazards Ratio 

(95 % CI) 
P-value 

N 
Hazards Ratio 

(95 % CI) 
P-value 

N 
Hazards Ratio 

(95 % CI) 
P-value 

Trazodone 
exposure during 
oxygen therapy 

14 
0.334 

(4.48E-02-2.50) 
0.286 

9 
0.766 

(0.163-3.59) 
0.735 

39 
0.871 

(0.414-1.83) 
0.716 

Benzodiazepines 
exposure during 
oxygen therapy 

272 
0.329 

(0.187-0.580) 
1.19E-04 

163 
0.754 

(0.383-1.49) 
0.415 

519 
1.28 

(0.809-2.02) 
0.291 

 

3.3.11 Chart review of COVID-19 patients treated with melatonin 

 Following the consistent significant associations between melatonin exposure following 

the start of oxygen therapy and a positive outcome in oxygen therapy periods and oxygen 

therapy periods requiring mechanical ventilation for COVID-19 patients, we were interested in 

the clinical nature of the melatonin prescription. We conducted a manual chart review of 50 

randomly identified intubated COVID-19 patients to identify the justification, if any, for 

melatonin treatment. Of the 34 patients with justifications accompanying melatonin prescription, 

21 patients’ charts referenced insomnia, sleep wake cycle or difficulty sleeping for melatonin 

being prescribed and 18 patients’ charts referenced anxiety, delirium, agitation or agitation 

delirium (Table 3.15). Additionally, five patients’ charts referenced sedation, three patients’ 

charts referenced derangement, altered mental status or mood, and 1 patient’s chart referenced 

each difficulty waning sedation, adjuvant for presentation of respiratory disorder and pain (Table 

3.15).  
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Table 3.15: Frequency of terms associated with melatonin treatment. 

Term N % (of 34) 

Derangement, Altered mental status, Mood 3 8.82 

Insomnia, Sleep wake cycle, Difficulty sleeping 21 61.8 

Anxiety, Delirium, Agitation, Agitated delirium 18 52.9 

Difficulty weaning sedation 1 2.94 

Sedation 5 14.7 

Adjuvant for presentation of respiratory disorder 1 2.94 

Pain 1 2.94 

 

3.4 Discussion 

In our retrospective analysis of patients who sought care at NYP/CUIMC between 

February 1st, 2020 and August 1st, 2020, we investigated the effects of hormone exposure in 

patients requiring oxygen therapy on mortality. For the 948 oxygen therapy periods among 791 

patients who were diagnosed with COVID-19 or infected with SARS-CoV-2, there was exposure 

data for 14 hormone drugs prior to oxygen therapy: insulin glargine, insulin human, dronabinol, 

hydrocortisone, triamcinolone, budesonide, melatonin, dexamethasone, vasopressin, prednisone, 

methylprednisolone, levothyroxine, fludrocortisone and insulin lispro (Table 3.5). Additionally, 

there was exposure data for 17 hormone drugs during oxygen therapy: insulin glargine, insulin 

human, dronabinol, hydrocortisone, triamcinolone, budesonide, melatonin, dexamethasone, 

vasopressin, prednisone, methylprednisolone, levothyroxine, salmon calcitonin, fludrocortisone, 

insulin lispro, desmopressin and clobetasol (Table 3.6).  
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Univariate survival analysis identified exposure to insulin glargine, budesonide, 

melatonin, prednisone, methylprednisolone and insulin lispro during oxygen therapy as 

significantly associated with a positive outcome after oxygen therapy and exposure to 

hydrocortisone during oxygen therapy is significantly associated with a negative outcome 

following oxygen therapy in periods for COVID-19 patients (Table 3.7). Additionally, exposure 

to methylprednisolone and levothyroxine before oxygen therapy are significantly associated with 

a negative outcome following oxygen therapy in periods requiring mechanical ventilation for 

COVID-19 patients (Table 3.8). Exposure to hydrocortisone, methylprednisolone and 

levothyroxine during oxygen therapy are significantly associated with a negative outcome 

following oxygen therapy in periods requiring mechanical ventilation for COVID-19 patients 

and exposure to melatonin during oxygen therapy is significantly associated with a positive 

outcome (Table 3.7).  

Univariate survival analysis also identified age (as a continuous variable and binary 

variable), self-identifying as American Indian or Alaskan Native and a history of chronic kidney 

disease, chronic obstructive lung disease, coronary artery disease, diabetes mellitus, hypertension 

and myocardial infarction as significantly associated with a negative outcome following oxygen 

therapy in periods for COVID-19 patients (Table 3.8). A history of respiratory disease was 

significantly associated with a positive outcome following oxygen therapy (Table 3.8). Age (as a 

continuous variable and binary variable) and a history of chronic kidney disease and chronic 

obstructive lung disease are significantly associated with a negative outcome following oxygen 

therapy in periods requiring mechanical ventilation for COVID-19 patients (Table 3.8). Having a 

history of asthma and respiratory disease are significantly associated with a positive outcome 

following oxygen therapy (Table 3.8).  
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Treatment with dexamethasone following intubation was associated, though not 

significantly, with a positive outcome in our univariate analysis of oxygen therapy periods for 

COVID-19 patients (Table 3.7). Furthermore, the association, though not significant, was 

observed in oxygen therapy periods for COVID-19 and non-COVID-19 patients when 

accounting for other covariates (Table 3.9). However, our analysis did not indicate an association 

between dexamethasone treatment during oxygen therapy and a positive outcome in periods 

requiring mechanical ventilation unlike the observation from the RECOVERY Collaborative 

Group’s study [69] (Table 3.10). The power of our analysis is most likely limited due to the 

small sample size (N=4)  

Moreover, our results identify exposure to melatonin as significantly associated with a 

positive outcome after oxygen therapy in univariate analyses of periods for COVID-19 patients 

and periods where mechanical ventilation was required for COVID-19 patients (Table 3.7) 

concurring with previous studies on the attenuation of cardiovascular responses following 

anesthesia [71], duration of mechanical ventilation in hemorrhagic stroke patients [72], and 

identification of melatonin acting as a regulator of inflammation [73]. The significant association 

of exposure to melatonin during oxygen therapy with a positive outcome in a multivariate model 

of COVID-19 and non-COVID-19 patients suggests that melatonin exposure is not specifically 

attenuating inflammation due to SARS-CoV-2 infection (Table 3.13). However, the multivariate 

model focusing on oxygen therapy periods where mechanical ventilation was required indicated 

that exposure to melatonin was only associated with a positive outcome in COVID-19 patients 

suggesting that melatonin’s mechanism of action in the most severe cases of COVID-19 may be 

targeted to SARS-CoV-2 induced inflammation (Table 3.14).  
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While steroid hormones can be substituted for each other with adjustments to dosage and 

length of treatment, the dataset used for this retrospective analysis had incomplete data for 

dosage and the amount prescribed. Furthermore, the steroid hormones in the analysis have 

different structures and, as a result different, non-target interacting partners. For example insulin 

lispro, insulin human, and insulin glargine are different preparations with synthetics molecules. 

The results of this study can be validated in a controlled clinical trial where the amount of 

melatonin or any of the other steroid hormones analyzed given to patients is systemically tracked 

and the amount in the blood before and after oxygen therapy is determined to identify whether or 

not certain therapeutics are only beneficial if administered. after the onset of oxygen therapy.  

A manual chart review of a subset of intubated COVID-19 patients did not reveal any 

inflammation specific goals for the treatment (Table 3.15). While melatonin is a popular over-

the- counter sleep aid, our results lend support to the need for further follow-up into the 

mechanism of action of how melatonin may attenuate inflammation and specifically more studies 

into the observed association in severely affected COVID-19 patients.  

The analysis done in this study utilized data from patients over seven months during 

which treatment for COVID-19 changed because of clinical experience with treating the disease. 

While dexamethasone and other steroids are the first that are used to reduce inflammation, there 

are other drugs that have been developed that are not account for which may introduce additional 

bias. Furthermore, melatonin is readily available over the counter to the general public, however 

the cost associated with them do not necessarily make readily accessible to everyone. This study 

focuses on drugs administered during hospitalization, patients who had been using the drug of 

their own fruition may be more likely to ask for it. Covariates, such as socioeconomics and 



97 
 

quality of health insurance, all contribute to confounder biases, which were not explored in the 

study.  
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Chapter 4: Identifying effects of COVID-19 

The work in this chapter is adapted in part from the following publication: 

V. Ramlall, B. May and N. P. Tatonetti. “Using machine learning probabilities to identify 

COVID-19 effects”. medRχiv, Jul 2022. DOI: 10.1101/2022.07.02.22277179 

4.1 Introduction 

The ongoing COVID-19 pandemic, caused by SARS-CoV2 infection, of which there 

have been over 500 million cases worldwide, has resulted in more than 6.2 million deaths 

worldwide [19]. In the more than 30 months since the first infection is purported to have 

occurred [74] and the 26 months since the start of the pandemic as declared by the World Health 

Organization [75], the full impact of SARS-CoV-2 and COVID-19 remains to be seen.  

Research has been paramount in responding to the COVID-19 pandemic from identifying 

patients susceptible to infection and at risk for severe disease [49,76,77] to identifying beneficial 

treatments [69,78,79] and developing prophylactic measures [80,81,82]. While there have been 

investigations into the long-term effects of COVID-19 [83,84,85,86,87] continual retrospective 

analyses will be important to identify all the long-term effects and to understand the full scope of 

the impact of COVID-19. 

The long-term effects of viral infections vary greatly. While some viruses, such as certain 

strains of the seasonal flu and the common cold, have no-to-little impact on the long term health 

of those who are infected, others can have profound long lasting effects [88,89]. Through long 
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term analysis, it was determined that varicella zoster, the virus that causes chicken pox, also 

causes shingles [90], a rash accompanied by pain, itching and tingling, in adults [91]. 

Retrospective analyses in patients infected with certain strains of human papilloma virus (HPV) 

have shown that there is an increased risk of developing anal, cervical [92,93], penile, vaginal 

and vulvar cancers [94]. More recently, researchers have identified that Epstein-Barr virus, 

which causes mononucleosis, also triggers multiple sclerosis [95, 96], a demyelinating disease 

affecting the central nervous system [97].  

Much of the investigations into COVID-19, as well as varicella zoster, HPV, and Epstein-

Barr virus infections, have utilized patients’ data sourced from electronic health records (EHRs). 

While EHRs provide a vast amount of data, such as clinical diagnoses, measurements, and 

procedures, they were not designed with the intention of being used for research and are 

incomplete. Research into COVID-19 has been further complicated by the novelty of the disease 

- the ICD10 code for COVID-19 (U07.1) was not effective until October 2020 [98]. While the 

diagnosis code was indicated for COVID-19 as early as April 2020, it was not used for all 

COVID-19 patients nor universally adapted, which hindering differentiating COVID-19 patients 

from non-COVID-19 visits. To address this, we used a random forest classifier to assign a 

probability of a patient having had COVID-19 during each of their visits (Training Set AUROC 

= 0.9867, Training Set OOB AUROC = 0.8957, Evaluation Set AUROC = 0.8958). 

Furthermore, we used these probabilities to identify conditions associated with a higher 

probability of the patient having had COVID-19 by comparing the distributions of COVID-19 

probability of visits that were followed with the diagnosis of a conditions at 1 week, 2 weeks, 3 

weeks, 4 weeks, 3 months, 6 months, 9 months and 1year using a Mann-Whitney U test. 



100 
 

4.2 Methods 

4.2.1 Data Source 

We collected data from New York-Presbyterian, Columbia University Irving Medical 

Center Weill-Cornell Medical Center between February 1st, 2020 and March 31st, 2022 for 

patients who had at least one interaction with Columbia University Irving Medical Center during 

that period. We sourced historical data from our clinical data warehouse available through 

December 31st, 2020.  

4.2.2 Identifying visits 

We used MySQL 5.7.35 and Python 3.9.10 with numpy 1.19.5, pymysql 1.0.2 and pandas 

1.2.3 libraries to extract and prepare data. From admissions data, we identified patients who had 

a valid admission date, a valid admission discharge date and who were hospitalized on or after 

February 1st, 2020. To remove duplicate entries, incorrect discharge entries and control for 

admittance procedure (e.g. patients who seek treatment at the emergency department and are 

then admitted), we grouped entries by the patients’ medical reference number and the admission 

date and used the latest discharge date for the patient and the admission date as the discharge 

date for our analysis. We identified 1,844,018 visits for 636,063 patients.  

4.2.3 Collecting and processing demographic data 

We used MySQL 5.7.35 and Python 3.9.10 with numpy 1.19.5, pymysql 1.0.2 and pandas 

1.2.3 libraries to extract and prepare data. We identified sex, race (for which there are up to three 

entries), ethnicity and date of birth for the patient associated with each visit and excluded visits 

for patients who were did not have a valid date of birth. We identified 1,573,113 visits for 

434,152 patients where the patient had a valid date of birth. 
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For each visit, we identified the age of the patient at the start of the visit (i.e. admission 

date) as (i) birth to 13 years old, (ii) 13 to 19 years old, (iii) 19 to 60 years old and (iv) over 60 

years old and if the patents indicated their sex as female. For each visit, we identified whether 

the patient indicated their race(s) as (i) American Indian or Alaskan Native, (ii) Asian, (iii) Black 

or African American (iv) Native Hawaiian or Other Pacific Islander or (v) White, and whether 

the patient indicated their ethnicity as of Hispanic or Latino or Spanish Origin. All variables 

were treated as a binary categorical variables with 1 indicating that the patient was a part of the 

age group, or self-identified as female or self-identified as the specific race and 0 indicating the 

inverse. For example, a visit for 27 year old male patient who self identified as Asian and 

indicated that he was not of Hispanic or Latino or Spanish Origin is represented by [0, 0, 1, 0, 0, 

0, 1, 0, 0, 0, 0].  

Note: In our clinical data the possible values for sex are female, male, nonbinary, 

unknown, X and null. The prepared date indicated a 0 for these visits in the sex field, which is 

also used for male, as queried whether or not the patient for that visit identified as female. We 

identified 3,364 visits for 307 patients where the patient did not indicate male or female for their 

sex. 

Note: Patients could indicate that they are of more than one racial background and our 

data was prepared such that it queried whether or not each of the five options were identified in 

any of the patients up to three entries. For example, a patient who self-identified as Asian is 

represented by [0, 0, 1, 0, 0] for the race component of the demographics matrix and a patient 

who self-identified as Asian and White is represented by [0, 0, 1, 0, 1].  
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4.2.4 Collecting and processing temporal data  

We used MySQL 5.7.35 and Python 3.9.10 with numpy 1.19.5, pymysql 1.0.2 and pandas 

1.2.3 libraries to extract and prepare data. We identified the start date for each visit and 

represented it as a categorical variable based on whether the visit started in any of the 26 months 

period from which the data is sourced. All variables were treated as binary categorical variables 

with 1 indicating that a visit started during a specific month and 0 indicating that it did not. For 

example, a visit that started on June 14th, 2020 is represented by:  

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. 

4.2.5 Collecting and processing diagnosis data 

We used MySQL 5.7.35 and Python 3.9.10 with numpy 1.19.5, pymysql 1.0.2 and pandas 

1.2.3 libraries to extract and prepare data. We identified 16,221 distinct ICD10 clinical diagnosis 

codes listed for patients in the 26 month period of the data sourced and mapped those diagnoses 

to specific visits using the start and end dates of the visit. For our modeling, we generalized the 

16,221 ICD10 clinical diagnoses codes to 1,600 distinct category level diagnoses codes. All 

variables were treated as a binary categorical variables with 1 indicating that a specific diagnosis 

code was listed during that visit and 0 indicating that it was not. Our data was prepared such that 

it queried whether each of the 1,600 category level codes were present in the diagnosis codes 

indicated for each visit.  

Note: U07.1, which was indicated for identifying COVID-19 diagnoses, was omitted 

prior and generalized the diagnoses codes to 1,600 distinct category levels codes. 

Note: U07.0, which is in the same category as U07.1, and not omitted prior to diagnosis 

indicates vaping-related disorders.  
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4.2.6 Training and evaluating the random forest classifier  

We used Python 3.9.10 with sklearn 0.24.2 and pickle libraries to fit, evaluate and apply a 

random forest model. For the training and evaluation sets, he input matrix comprised of the 

demographic, temporal and diagnosis data for each visit with the outcome indicated as 1 if the 

visit was in the COVID-19 training or evaluation set and the outcome indicated as 0 if the visit 

was in the non-COVID-19 training or evaluation set. An initial model of 200 estimators and out-

of-bag samples to estimate the generalization score was trained and evaluated. The random forest 

classifier was refined by increasing the number of estimators and the maximum depth to 

maximize AUROC in the independent evaluation set. The final model was applied to the data for 

all of the visits.  

4.2.7 Identifying previous clinical phenotypes 

We used MySQL 5.7.35 and Python 3.9.10 with numpy 1.19.5, pymysql 1.0.2 and pandas 

1.2.3 libraries to extract and prepare data. For the patients with historical data in our clinical data 

warehouse, we mapped SNOMED condition code to PheCodes via ICD10-codes. Additionally, 

from our current clinical data, we mapped ICD-10 diagnoses codes to PheCodes. For each visit 

we identified previous clinical phenotypes as those that were indicated prior to the start of the 

visit.  

Note: For patients who had multiple visits, the previous clinical phenotypes of the second 

visit will account for any new clinical phenotypes identified in the first visit, and the previous 

clinical phenotypes of the third visit will account for any new clinical phenotypes identified in 

the first and second visits, and so on.  
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4.2.8 Identify clinical phenotypes 

We used MySQL 5.7.35 and Python 3.9.10 with numpy 1.19.5, pymysql 1.0.2 and pandas 

1.2.3 libraries to extract and prepare data. From our current clinical data, we mapped ICD-10 

diagnoses codes for each visit to PheCodes to identify clinical phenotypes present at each visit. 

4.2.9 Identifying clinical phenotypes that develop 

We used Python 3.9.10 with numpy 1.19.5, pandas 1.2.3, and scipy 1.6.2 libraries to 

statistically evaluate the distributions. For visits with a follow up within each time interval (i.e. 

within 1 week, 2 weeks, 3 weeks, 4 weeks, 3 months, 6 months, 9 months and 1 year), we 

discerned the visits where the phenotype was observed in the followup and the visits where the 

phenotype was not observed and compared the distributions of COVID-19 probability of the 

initial visit using a Mann-Whitney U test.  

Note: p-values of 0 are presented as p < 2.225E-308 (the minimum value for a float 

object in Python) in the manuscript and tables, while p-values of 0 are recast as half the 

minimum non-zero p-value per test for stylistic purposes in figures.   

4.2.10 Identifying new clinical phenotypes that develop 

We used Python 3.9.10 with numpy 1.19.5, pandas 1.2.3, and scipy 1.6.2 libraries to 

statistically evaluate the distributions. For visits with a follow up within each time interval (i.e. 

within 1 week, 2 weeks, 3 weeks, 4 weeks, 3 months, 6 months, 9 months and 1 year), we 

excluded all visits for which the patient already has the clinical phenotype. Then we discerned 

the visits where the phenotype was observed in the followup and the visits where the phenotype 

was not observed and compared the distributions of COVID-19 probability of the initial visit 

using a Mann-Whitney U test.  
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Note: p-values of 0 are presented as p < 2.225E-308 (the minimum value for a float 

object in Python) in the manuscript and tables, while p-values of 0 are recast as half the 

minimum non-zero p-value per test for stylistic purposes in figures.   

In evaluating instances where the patient was not previously diagnosed with the 

condition, we eliminated all patients who had a previous history of the condition (i.e. had the 

diagnosis prior to the start of the visit).  

4.2.11 Cox Proportional Hazards modeling and Kaplan-Meier curve fitting 

From our cases visits (those visits where the patient returned with the condition within 

one year), we identified the time to event as the time from the end of the preceding visit to the 

first instance of the condition within one year of the visit. In our non-case visits, we censored the 

data at the final interaction with NYP/CUIMC within the time period. We used Python 3.9.10 

with numpy 1.19.5, pandas 1.2.3, and lifelines 0.25.10 libraries to determine and statistically 

evaluate the hazards ratios associated with COVID-19 probability. In order to build Kaplan-

Meier curves, we stratified our data by the COVID-19 probability of the preceding visit (≤ 0.2. > 

0.2 and ≤ 0.4, > 0.4 and ≤ 0.6, > 0.6 and ≤ 0.8, and > 0.8) and fit individual curves to each 

stratified dataset.   
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4.3 Results 

 

Figure 4.1 Data processing flowchart Identification of COVID-19 and non-COVID-19 training 
sets (purple) and evaluation sets (orange). NV indicates the number of visits and NP indicates the 
number of patients in each group. Note: the exclusion criteria used to identify non-COVID-19 
visits are not mutually exclusive. 

 

From the clinical data at New York-Presbyterian, we identified 1,844,018 visits for 

636,063 patients who sought treatment at least once between February 1st, 2020 and March 31st, 
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2022 at /Columbia University Irving Medical Center (NYP/CUIMC). We omitted 270,905 visits 

for 201,911 patients who did not have any demographic data available in our clinical data set 

(Figure 4.1).  From these visits, we identified 9,340 visits (COVID-19 visits) where the patient 

was diagnosed with COVID-19 evidenced by the presence of the COVID-19 ICD-10 diagnosis 

code (U07.1) (Figure 4.1). Additionally, we identified 1,483,397 visits (non-COVID-19 visits) 

where the patient did not test positive for SARS-CoV-2 during that visit nor had a history of 

COVID-19 nor previously tested positive for SARS-CoV-2 infection (Figure 4.1). The set of 

COVID-19 visit was randomly split into distinct testing and evaluation sets, each with 4,670 

visits and from the set of non-COVID-19 visits, we randomly identified distinct testing and 

evaluation non-COVID-19 sets, each with 4,670 unique visits. Among all visits between 

February 2020 and March 2022, as well as the COVID-19 and non-COVID-19 training and 

evaluations sets, more than 50% of the visits were for patients who self-identified as female and 

more than 85% of the visits were for patients who were at least 19 years old (adults and senior 

age groups) (Table 4.1). Across all of the groups, more than 35% of the visits were for patients 

who self-identified as White, more than 15% were for patients who self-identified as Black or 

African American and more than 29% were visits for patients who self-identified as Hispanic or 

of Latino or Spanish origin (Table 4.1). In all groups, less than 5% of visits were for patients  
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Table 4.1 Demographics of patients of visits used for model training, model evaluation and 
all visits between February 2020 and March 2022 
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Table 4.1 Demographics of patients of visits used for model training, model evaluation and 
all visits between February 2020 and March 2022 (cont.) 
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who self-identified as American Indian or Alaskan Native, Asian or Native Hawaiian or Other 

Pacific Islander (Table 4.1). 

Among all visits between February 2020 and March 2022, the largest fraction of visits 

(5.17%) began in March 2021 (Table 4.2). The largest fraction of visits in the COVID-19 

training and evaluation sets began in April 2020 (18.29% and 17.99%, respectively), while the 

smallest fraction of all visits began in April 2020 until March 2022 (1.64%) (Table 4.2). The 

fraction of visits in the non-COVID-19 training and evaluation sets that began in each month 

were similar to the faction of all visits that began in each month (Table 4.2).  
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Table 4.2 The month during which the visits used for model training, model evaluation and 
all visits began between February 2020 and March 2022 
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Table 4.2 The month during which the visits used for model training, model evaluation and 
all visits began between February 2020 and March 2022 (cont.) 
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Table 4.2 The month during which the visits used for model training, model evaluation and 
all visits began between February 2020 and March 2022 (cont.) 
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Among all visits between February 2020 and March 2022, the four diagnoses listed in the 

most visits were encounter for supervision of normal pregnancy (2.38%), transplanted organ and 

tissue status (2.26%), other symptoms and signs involving the circulatory and respiratory system 

(2.18%) and essential (primary) hypertension (2.06%) (Table 4.3). Among the COVID-19 visits 

in the training and evaluation sets, diagnosis of other symptoms and signs involving the 

circulatory and respiratory system (20.75% and 19.21%, respectively), encounter for screening 

for malignant neoplasms (19.46% and 19.08%, respectively), essential (primary) hypertension 

(8.84% and 9.27%, respectively) and transplanted organ and tissue status (8.22% and 8.78%, 

respectively) were frequently diagnosed (Table 4.3). The fraction of non-COVID-19 visits in the 

training and evaluation sets with the diagnoses listed was similar to the fraction of all visits with 

the diagnosis listed (Table 4.3). A complete table of all diagnoses is available at 

https://github.com/vijendra-cuimc/thesis/blob/main/table_4.3_diag_formatted_git.csv.  
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Table 4.3 The ten most frequently observed ICD10 diagnoses for visits used for model 
training, model evaluation and all visits between February 2020 and March 2022 
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Figure 4.2 ROC curves of training set, training set using out-of-bag estimates, and 
evaluation set of the original model (n_estimators = 200, max_depth not constrained) 
 

We collected demographic data for the patient in each visit (date of birth, self-identified 

sex, self-identified race(s) and self-identified ethnicity), temporal data (during what month the 

visit started) and visit specific diagnosis data. In our dataset, there were 16,220 distinct ICD10 

codes used to records diagnoses which we generalized to 1,600 category level ICD10 codes. We 

decided to use a random forest classifier to predict whether or not a patient was diagnosed with 

COVID-19 during their visit using demographic, temporal, and visit-specific clinical diagnoses. 

The diagnosis code for COVID-19 (U07.1) was removed from the data to be used in the training 

the model prior to generalization. Instead of binary outcome (patient having been diagnosed with 

COVID-19 during their visit or not), we used the fraction of estimators identifying the visit as 

one where the patient was diagnosed with COVID-19 as the probability of the patient having 

COVID-19 during the visit. An initial random forest classifier of 200 estimators was fit using the 

COVID-19 and non-COVID-19 training sets with bootstrapped sampling and using out-of-bag 
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sampling (Training AUROC = 0.9923, Training OOB AUROC = 0.8838, Evaluation AUROC = 

0.8838) (Figure 4.2). 

 

Figure 4.3 Model performance optimization (A) AUROC in training set, training set 
using out-of-bag estimates, and evaluation set plotted against number of estimators (dashed 
line indicates maximum AUROC in evaluation set, n_estimators = 190). (B) AUROC in 
training set, training set using out-of-bag estimates, and evaluation set plotted against 
maximum depth (dashed line indicates maximum AUROC in evaluation set, max_depth = 
69). 

  

In order to optimize the performance of the model, we monitored the AUROC of the 

training set, the training set using out-of-bag estimates and the evaluation set while increasing 

the number of estimators from 20 to 200 and achieved a maximum AUROC in the evaluation set 

with 190 estimators (Training Set AUROC = 0.9924, Training Set OOB AUROC = 0.8836, 

Evaluation Set AUROC = 0.8839) (Figure 4.3 A). We further optimized the performance of the 

model by monitoring the AUROC while increasing the maximum depth of the model from 1 to 

100 with 190 estimators and achieved a maximum AUROC in the evaluation set with a depth of 

69 (Training Set AUROC = 0.9867, Training Set OOB AUROC = 0.8957, Evaluation Set 
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AUROC = 0.8958) (Figure 4.3 B). The optimized model trained with 190 estimators with a 

maximum depth of 69 was fit to the data representing all 1,573,113 visits (Figure 4.4 A). The 

distribution of the COVID-19 and non-COVID-19 training sets are skewed to 1 and 0, 

respectively, with minor overlap between 0.3 and 0.5 (Figure 4.4 B). The COVID-19 and non-

COVID-19 evaluation sets are similarly skewed, though with a wider overlap (Figure 4.4 C).  

 
Figure 4.4 (A) ROC curves of training set, training set using out-of-bag estimates, and evaluation 
set based on the optimized model. COVID-19 probabilities COVID-19 (orange) and non-COVID-19 
(blue) visits used in the model training (B) and evaluation (C).  
 

We evaluated the features utilized in the final model using the Gini importance (Table 

4.4). Diagnosis of abnormalities of breathing (R06), other symptoms and signs involving the 

circulatory and respiratory system (R09) and cough (R05) during the visit had the highest 

importance in the final model (Table 4.4). The distribution of the COVID-19 probabilities of the 

visits where the diagnoses were noted were skewed to higher COVID-19 probability than those 

where the diagnosis were not noted in both the training and evaluation sets (Wasserstein distance 

= 0.4602, 4510, 0.4458, respectively in the training set) (Figure 4.5 B-D, Table 4.4). Visits 

starting in April 2020, June 2021 and July 2021 were the temporal features with the highest 

importance in the final model (Table 4.4). The distribution of the COVID-19 probabilities of 

visits that started in April 2020 were skewed to higher COVID-19 probabilities than those that  
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Figure 4.5 Distribution important features in random forest classifier in training and 
evaluation sets (A) Distribution of COVID-19 probability in COVID-19 (yellow) and non-
COVID-19 (blue) training (left) and evaluations (rights) sets (top). Distribution of cases 
(red) and non-cases (purple) for important diagnoses (B-D), temporal (E-G) and 
demographic (H-J) features for training and evaluation sets.  Note: R06 - abnormalities of 
breathing, R09 - other circulatory and respiratory system, R05 - cough. 
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did not start in April 2020 (Wasserstein distance = 0.4353 in the training set) (Figure 4.5 E, 

Table 4.4). Conversely, the distributions of the COVID-19 probabilities of visits that started in 

June 2021 and July 2021 were skewed to lower COVID-19 probabilities than those started at 

other times (Wasserstein distance = 0.3871, 0.3780, respectively in the training set) (Figure 4.5 

F-G, Table 4.4). Patients self-identifying as White, of Hispanic or Latino or Spanish origin, and 

female were the demographic features with the highest importance in the final model (Table 4.4). 

The distributions of COVID-19 probabilities of visits where the patients self-identified as White 

or female were skewed to lower COVID-19 probabilities that those where the patient did not 

(Wasserstein distance = 0.0573, 0.0711, respectively in the training set) (Figure 4.5 H, 4.5 J, 

Table 4.4). The distribution of COVID-19 probabilities of visits where the patients self-identified 

as of Hispanic or Latino or Spanish origin were skewed to higher COVID-19 probabilities that 

those where the patient did not (Wasserstein distance = 0.0920) (Figure 4.5 I, Table 4.4). A 

complete table of all features is available at https://github.com/vijendra-

cuimc/thesis/blob/main/table_4.4_all_features.csv. 
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Table 4.4 Importance for the top 20 important features and Wasserstein distance between 
distribution where the feature is observed and the feature is not observed. Negative 

Wasserstein distance indicates that the average COVID-19 probability in the set of visits 
where the feature was observed is less than the average of the set where the feature was not 

observed. 

Feature Importance 
Wasserstein Distance 

Training Set Evaluation Set All Visits 

Abnormalities of 
breathing diagnosis 

noted during visit (R06) 
0.0650 0.4602 0.4640 0.5074 

Other symptoms and 
signs involving the 

circulatory and 
respiratory system 

diagnosis noted during 
visit (R09) 

0.0628 0.4510 0.4355 0.4718 

Visit started in April 
2020 0.0543 0.4353 0.4371 0.4209 

Cough diagnosis noted 
during visit (R05) 0.0259 0.4458 0.4293 0.5160 

Viral pneumonia, not 
elsewhere classified 

diagnosis noted during 
visit (J12) 

0.0236 0.4979 0.4777 0.6738 

Encounter for other 
special examination 
without complaint, 

suspected or reported 
diagnosis noted during 

visit (Z01) 

0.0234 0.2969 0.3009 0.4270 

Transplanted organ 
and tissue status 

diagnosis noted during 
visit (Z94) 

0.0229 0.3066 0.3145 0.4175 

Fever of other and 
unknown origin 

diagnosis noted during 
visit (R50) 

0.0195 0.4400 0.4169 0.5089 
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Table 4.4 Importance for the top 20 important features and Wasserstein distance between 
distribution where the feature is observed and the feature is not observed. Negative 

Wasserstein distance indicates that the average COVID-19 probability in the set of visits 
where the feature was observed is less than the average of the set where the feature was not 

observed. 

Feature Importance 
Wasserstein Distance 

Training Set Evaluation Set All Visits 

Respiratory failure, not 
elsewhere classified 

diagnosis noted during 
visit (J96) 

0.0176 0.5022 0.4920 0.6076 

Self Identified as White 0.0148 -0.0573 -0.0615 -0.0079 

Visit started in June 
2021 0.0148 -0.3871 -0.3630 -0.2007 

Self identified as of 
Hispanic or Latino or 

Spanish Origin 
0.0141 0.0920 0.0899 0.0287 

Self Identified Sex as 
Female 0.0141 -0.0711 -0.0759 -0.0187 

Visit started in July 
2021 0.0130 -0.3780 -0.3570 -0.1868 

Visit started in August 
2021 0.0126 -0.3432 -0.3643 -0.1722 

Visit started in 
September 2021 0.0117 -0.3439 -0.3266 -0.1826 

Visit started in 
February 2020 0.0115 -0.3903 -0.3221 -0.1221 

Visit started in October 
2021 0.0112 -0.3539 -0.3586 -0.1855 

Type 2 diabetes 
mellitus diagnosis noted 

during visit (E11) 
0.0106 0.4029 0.3949 0.4329 

Acute kidney failure 
diagnosis noted during 

visit (N17) 
0.0104 0.4751 0.4700 0.5350 
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We further evaluated the model by evaluating the distributions of COVID-19 

probabilities for visits within inclusion and exclusion criteria for the training and evaluation sets 

(Figure 1). Compared to the distribution of COVID-19 probabilities for all of the visits between 

February 2020 and March 2022 (Figure 4.6 A), visits where the patient was diagnosed with 

COVID-19 based on the presence of the U07.1 ICD-10 code (N=9,340) during the visits were 

skewed to higher COVID-19 probabilities (Wasserstein distance = 0.4695) (Figure 4.6 B). The 

distribution of COVID-19 probabilities of visits where the patient tested positive for SARS-CoV-

2 infection (N=18,156) was bimodal with a skewed to higher COVID-19 probabilities 

(Wasserstein distance = 0.2319) (Figure 4.6 C). The distribution of COVID-19 probabilities of 

visits where the patient tested negative for SARS-CoV-2 infection (N=238,438) was marginally 

skewed to higher COVID-19 probabilities (Wasserstein distance = 0.0550) (Figure 4.6 D). The 

distribution of COVID-19 probabilities of visits where clinical diagnosis notes indicated that the 

patient did not have COVID-19 (N=168) was skewed to higher COVID-19 probabilities 

(Wasserstein distance = 0.4158) (Figure 4.6 E). The distribution of COVID-19 probabilities of 

visits where the patient had a noted history of COVID-19 (N=899) was skewed to higher 

COVID-19 probabilities (Wasserstein distance = 0.3547) (Figure 4.6 F). 

In order to identify what, if any, conditions are associated with a history COVID-19, we 

identified visits where the patient returned to the hospital within 7 days, 14 days, 21 days, 28 

days, 3 months, 6 months, 9 months and 12 months by comparing the distributions of COVID-19 

probabilities of visits where the patient returned within each time period and then segregated the 

visits into those where a particular condition was observed in the follow-up and those where the 

condition was not. We used a Mann-Whitney U test to compare between the two distributions for 

each conditions irrespective of whether or not the patient was previously diagnosed with the 
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condition (Figures 4.7 left, Table 4.5) and only if the patient was not diagnosed with the 

condition prior to the visit (Figure 4.7 right, Table 4.6). We identified, among other conditions, 

the distribution of COVID-19 probability preceding myocardial infarction was significantly 

different from the distribution of COVID-19 probability not preceding myocardial  

 
Figure 4.6 Distribution of COVID-19 probability for visits different patient groups (A) 
Distribution of COVID-19 probability for all visits. Distribution of visits where patients 
were diagnosed with COVID-19 (B), tested positive for SARS-CoV-2 infection (C), tested 
negative for SARS-CoV-2 infection (D), where clinical diagnosis note indicated the 
“COVID-19 was ruled out” (E) and visits where the patient had a history of COVID-19 (F). 
 

infarction both with and without accounting for previous clinical history in all time periods 

(Mann-Whitney U test statistic = 1.206E8, FDR correct p < 2.225E-308, Mann-Whitney U test 

statistic = 1.339E8, FDR correct p < 2.225E-308, respectively within one year) (Figure 4.5). We 
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observed a similar difference with and without accounting for previous clinical history for 

urinary tract infection (Mann-Whitney U test statistic = 1.968E8, FDR correct p < 2.225E-308, 

Mann-Whitney U test statistic = 2.562E8, FDR correct p < 2.225E-308 within one year), acute 

renal failure (Mann-Whitney U test statistic = 8.969E7, FDR correct p < 2.225E-308, Mann- 

Whitney U test statistic = 1.234E8, FDR correct p < 2.225E-308 within one year), and type 2 

diabetes (Mann-Whitney U test statistic = 2.317E8, FDR correct p < 2.225E-308, Mann-Whitney 

U test statistic = 3.273E8, FDR correct p < 2.225E-308 within one year) (Figure 4.7).  A 

complete table of all 1,042 phenotypes is available at https://github.com/vijendra-

cuimc/thesis/blob/main/table_4.5_4.6_mannwhitney_results_git_formatted.csv. 
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Figure 4.7 Statistical testing of conditions associated with COVID-19 -log10(corrected p-
value) for each phenotype (colored by family) from Mann-Whitney U test between 
distributions of COVID-19 probabilities of cases and non-cases for each phenotype within 
(A) 7 days, (B) 14 days, (C) 21 days, (D) 28 days, (E) 3 months, (F) 6 months, (G) 9 months 
and (H) 1 year irrespective of previous clinical list (left) and when accounting for clinical 
history (right).  
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Table 4.5 Mann-Whitney U test statistic, p-value, FDR corrected p-value (q-value) for the 
diagnosis of myocardial infarction, type 2 diabetes, acute renal failure and urinary tract 
infection within 8 time periods following discharge.  

 Myocardial 
infarction (411.2) 

Type 2 diabetes 
(250.2) 

Acute renal failure 
(585.1) 

Urinary tract 
infection (591) 

U
p 

to
 7

 
da

ys
 Stat =1.084E+07 

p = 1.064E-86 
q = 2.550E-85 

Stat = 3.499E+07 
p = 2.017E-310 

q = < 2.225E-308 

Stat = 1.774E+07 
p = 2.017E-310 

q = < 2.225E-308 

Stat = 2.434E+07 
p = 7.655E-150 
q = 3.135E-148 

U
p 

to
 1

4 
da

ys
 Stat = 2.375E+07 

p = 5.440E-128 
q = 1.361E-126 

Stat = 7.228E+07 
p = 2.497E-308 

q = < 2.225E-308 

Stat = 3.526E+07 
p = 2.497E-308 

q = < 2.225E-308 

Stat = 5.186E+07 
p = 1.474E-231 
q = 6.148E-230 

U
p 

to
 2

1 
da

ys
 Stat = 3.299E+07 

p = 5.824E-159 
q = 1.551E-157 

Stat = 1.007E+08 
p = 2.137E-302 

q = < 2.225E-308 

Stat = 4.718E+07 
p = 2.137E-302 

q = < 2.225E-308 

Stat = 7.445E+07 
p = 6.110E-290 
q = 2.688E-288 

U
p 

to
 2

8 
da

ys
 Stat = 4.288E+07 

p = 4.102E-180 
q = 1.070E-178 

Stat = 1.294E+08 
p = 7.017E-247 

q = < 2.225E-308 

Stat = 5.805E+07 
p = 7.017E-247 

q = < 2.225E-308 

Stat = 9.688E+07 
p = 7.017E-247 

q = < 2.225E-308 

U
p 

to
 3

 
m

on
th

s Stat = 9.049E+07 
p = 9.358E-251 
q = 2.551E-249 

Stat = 2.317E+08 
p = 2.264E-310 

q = < 2.225E-308 

Stat = 9.649E+07 
p = 2.264E-310 

q = < 2.225E-308 

Stat = 1.829E+08 
p = 2.264E-310 

q = < 2.225E-308 

U
p 

to
 6

 
m

on
th

s  Stat = 1.161E+08 
p = 2.472E-291 
q = 7.156E-290 

Stat = 2.914E+08 
p = 1.236E-291 

q = < 2.225E-308 

Stat = 1.137E+08 
p = 1.236E-291 

q = < 2.225E-308 

Stat = 2.289E+08 
p = 1.236E-291 

q = < 2.225E-308 

U
p 

to
 9

 
m

on
th

s Stat = 1.287E+08 
p = 1.595E-307 
q = 4.639E-306 

Stat = 3.158E+08 
p = 7.975E-30 

q = < 2.225E-308 

Stat = 1.205E+08 
p = 7.975E-308 

q = < 2.225E-308 

Stat = 2.481E+08 
p = 7.975E-308 

q = < 2.225E-308 

U
p 

to
 1

 
ye

ar
 Stat = 1.339E+08 

p = 2.944E-299 
q = < 2.225E-308 

Stat = 3.273E+08 
p = 2.944E-299 

q = < 2.225E-308 

Stat = 1.234E+08 
p = 2.944E-299 

q = < 2.225E-308 

Stat = 2.562E+08 
p = 2.944E-299 

q = < 2.225E-308 
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Table 4.6 Mann-Whitney U test statistic, p-value, FDR corrected p-value (q-value) for new 
diagnosis of myocardial infarction, type 2 diabetes, acute renal failue and urinary tract 
infection within 8 time periods following discharge.  
 

 Myocardial 
infarction (411.2) 

Type 2 diabetes 
(250.2) 

Acute renal failure 
(585.1) 

Urinary tract 
infection (591) 

U
p 

to
 7

 
da

ys
 Stat = 9.875E+06 

p = 1.542E-89 
q = 3.789E-88 

Stat = 2.548E+07 
p = 3.976E-272 

q = < 2.225E-308 

Stat = 1.283E+07 
p = 3.976E-272 

q = < 2.225E-308 

Stat = 1.917E+07 
p = 2.816E-157 
q = 1.153E-155 

U
p 

to
 1

4 
da

ys
 Stat = 2.154E+07 

p = 1.099E-132 
q = 2.749E-131 

Stat = 5.174E+07 
p = 1.065E-283 

q = < 2.225E-308 

Stat = 2.522E+07 
p = 1.065E-283 

q = < 2.225E-308 

Stat = 4.045E+07 
p = 6.999E-244 
q = 2.919E-242 

U
p 

to
 2

1 
da

ys
 Stat = 2.984E+07 

p = 6.671E-165 
q = 1.777E-163 

Stat = 7.179E+07 
p = 1.565E-305 

q = < 2.225E-308 

Stat = 3.378E+07 
p = 1.565E-305 

q = < 2.225E-308 

Stat = 5.784E+07 
p = 3.130E-305 
q = 1.377E-303 

U
p 

to
 2

8 
da

ys
 Stat = 3.873E+07 

p = 3.986E-187 
q = 1.014E-185 

Stat = 9.160E+07 
p = 4.561E-301 

q = < 2.225E-308 

Stat = 4.097E+07 
p = 4.561E-301 

q = < 2.225E-308 

Stat = 7.464E+07 
p = 4.561E-301 

q = < 2.225E-308 

U
p 

to
 3

 
m

on
th

s Stat = 8.155E+07 
p = 1.935E-261 
q = 5.276E-260 

Stat = 1.636E+08 
p = 1.831E-298 

q = < 2.225E-308 

Stat = 6.900E+07 
p = 1.831E-298 

q = < 2.225E-308 

Stat = 1.404E+08 
p = 1.831E-298 

q = < 2.225E-308 

U
p 

to
 6

 
m

on
th

s Stat = 1.045E+08 
p = 6.732E-304 
q = 1.949E-302 

Stat = 2.059E+08 
p = 3.366E-304 

q = < 2.225E-308 

Stat = 8.204E+07 
p = 3.366E-304 

q = < 2.225E-308 

Stat = 1.755E+08 
p = 3.366E-304 

q = < 2.225E-308 

U
p 

to
 9

 
m

on
th

s Stat = 1.159E+08 
p = 2.082E-305 

q = < 2.225E-308 

Stat = 2.233E+08 
p = 2.082E-305 

q = < 2.225E-308 

Stat = 8.740E+07 
p = 2.082E-305 

q = < 2.225E-308 

Stat = 1.905E+08 
p = 2.082E-305 

q = < 2.225E-308 

U
p 

to
 1

 
ye

ar
 Stat = 1.206E+08 

p = 1.793E-306 
q = < 2.225E-308 

Stat = 2.317E+08 
p = 1.793E-306 

q = < 2.225E-308 

Stat = 8.969E+07 
p = 1.793E-306 

q = < 2.225E-308 

Stat = 1.968E+08 
p = 1.793E-306 

q = < 2.225E-308 

 
 



131 
 

 
Figure 4.8 Statistical testing of conditions associated with COVID-19 (A)-log10(p-value) for 
each phenotype (colored by family) from Cox Proportional Hazards test for COVID-19 
probability of the previous visit for conditions developed within 1 year irrespective of 
clinical history (left) and when accounting for clinical history (right).  

 

To further investigate the association between COVID-19 probability and the onset of 

conditions, we calculated the hazard ratio using a Cox proportional hazards model for COVID-

19 probability irrespective of previous clinical history (Figure 4.8 A) and respective of previous 

clinical history (Figure 4.8 B). Increasing COVID-19 probability in the preceding visit was 

associated with increases risk of myocardial infarction within one year with and without 

accounting for previous clinical history (Hazards ratio = 93.713 (73.906-118.829), p = 2.199E-

307 and Hazards ratio = 82.557 (65.102-104.693), p = 2.414E-290, respectively) (Table 4.7). A 

similar association was observed within one year with and without accounting for previous 

clinical history for urinary tract infection (Hazards ratio = 75.241 (63.192 -89.587), p  < 2.225E-

308 and Hazards ratio = 62.038 (52.176 -73.765), p < 2.225E-308, respectively), acute renal 

failure (Hazards ratio = 7762.722 (6156.997 - 9787.216), p  < 2.225E-308 and Hazards ratio = 

5488.974 (4345.262 - 6933.722), p < 2.225E-308, respectively) and type 2 diabetes (Hazards 

ratio = 403.553 (350.901 - 464.106), p  < 2.225E-308 and Hazards ratio = 270.035 (235.213 - 
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310.013), p < 2.225E-308, respectively) (Table 4.7). A complete table of all 1,042 phenotypes is 

available at https://github.com/vijendra-

cuimc/thesis/blob/main/table_4.7_coxph_results_git_formatted.csv 

Table 4.7 Univariate hazards ratio, 95% confidence interval and p-value of COVID-19 
probability from Cox proportional hazards tests of myocardial infarction, type 2 diabetes, 
acute renal failure and urinary tract infection.  
 

 Myocardial 
infarction (411.2) 

Type 2 diabetes 
(250.2) 

Acute renal failure 
(585.1) 

Urinary tract 
infection (591) 

A
ll 

co
nd

iti
on

s  

82.557  
(65.102, 104.693) 

2.414E-290 

270.035 
(235.213, 310.013) 

< 2.225E-308 

5488.974 
(4.345E3, 6.934E3) 

< 2.225E-308 

62.038 
(52.176, 73.765) 

< 2.225E-308 

N
ew

 
C

on
di

tio
ns

 

93.713 
(73.906, 118.829) 

2.199E-307 

403.553 
(350.901, 464.106) 

< 2.225E-308 

7762.723 
(6.157E3, 9.787E3) 

< 2.225E-308 

75.241 
(63.192, 89.587) 

< 2.225E-308 

 

Among the visits with a follow-up within one year, the ten most frequently observed 

phenotypes were essential hypertension (401.1), shortness of breath (512.7), hyperlipidemia 

(272.1), other complications of pregnancy NEC (646), cough (512.8), back pain (760), injury, 

NOS (1009), gastroesophageal reflux disease (530.11), other headache syndromes (339), and 

pulmonary collapse; interstitial and compensatory emphysema (508), respectively. When 

accounting for demographics and the ten most frequently observed phenotypes in a multivariate 

Cox proportional hazards model, increasing COVID-19 probability in the preceding visit was 

associated with increased risk of myocardial infarction within one year with and without  

accounting for previous clinical history (Hazards ratio = 121.736 (87.375, 169.611), p = 3.796E-

177 and Hazards ratio = 80.262 (4.134, 4.637), p = 4.543E-256, respectively) (Table 4.8). A 
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similar association was observed within one year with and without accounting for previous 

clinical history for urinary tract infection (Hazards ratio = 72.021 (58.116 - 89.253), p  < 2.225E-

308 and Hazards ratio = 61.380 (51.273 - 73.479), p < 2.225E-308, respectively), acute renal 

failure (Hazards ratio = 1.264E4 (9.278E4 - 1.724E4), p  < 2.225E-308 and Hazards ratio = 

6.333E3 (4.947E3 - 8.108E3), p  < 2.225E-308, respectively) and type 2 diabetes (Hazards ratio 

= 345.730 (283.180 - 422.098), p  < 2.225E-308 and Hazards ratio = 217.271 (187.898 - 

251.235), p = 1.39E-22, respectively) (Table 4.9). 
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Table 4.8 Multivariate hazards ratio, 95% confidence interval and p-value from Cox 
proportional hazards tests myocardial infarction, type 2 diabetes, acute renal failure and 
urinary tract infection.  
 

 
Myocardial 
infarction 

(411.2) 

Type 2 diabetes 
(250.2) 

Acute renal 
failure (585.1) 

Urinary tract 
infection (591) 

Age Adolescent 
(≥ 13 and < 19) 

0.202 
(0.073, 0.559) 

2.084E-03 

4.538 
(1.520, 13.542) 

6.708E-03 

2.805 
(1.956, 4.022) 

2.038E-08 

0.466 
(0.334, 0.651) 

7.132E-06 

Age Adult 
(≥ 19 and < 60) 

0.964 
(0.711, 1.308) 

0.814 

17.850 
(7.396, 43.081) 

1.445E-10 

2.644 
(2.014, 3.470) 

2.514E-12 

0.606 
(0.516, 0.712) 

9.451E-10 

Age Senior 
(≥ 60) 

2.135 
(1.579, 2.888) 

8.485E-07 

33.457 
(13.860, 80.759) 

5.843E-15 

3.809 
(2.900, 5.005) 

7.594E-22 

0.673 
(0.569, 0.796) 

3.834E-06 

Self Identified 
Sex as Female 

0.510 
(0.454, 0.574) 

3.249E-29 

0.797 
(0.735, 0.864) 

4.054E-08 

0.583 
(0.541, 0.629) 

4.651E-45 

1.407 
(1.289, 1.535) 

1.595E-14 

Self Identified as 
American 
Indian or 

Alaskan Native 

3.889 
(2.329, 6.495) 

2.076E-07 

1.007 
(0.479, 2.116) 

0.986 

1.175 
(0.610, 2.264) 

0.629 

1.020 
(0.486, 2.145) 

0.957 

Self Identified as 
Asian 

0.334 
(0.192, 0.582) 

1.068E-04 

1.099 
(0.868, 1.391) 

0.432 

1.750 
(1.452, 2.109) 

4.367E-09 

1.187 
(0.910, 1.547) 

0.206 
Self Identified as 
Black or African 

American 

0.749 
(0.628, 0.895) 

1.447E-03 

0.941 
(0.835, 1.061) 

0.321 

1.331 
(1.198, 1.479) 

1.047E-07 

1.085 
(0.958, 1.228) 

0.199 

Self Identified as 
Native Hawaiian 
or Other Pacific 

Islander 

1.324 
(0.330, 5.312) 

0.692 

1.366 
(0.567, 3.294) 

0.487 

0.642 
(0.160, 2.570) 

0.531 

0.790 
(0.197, 3.164) 

0.739 

Self Identified as 
White 

0.783 
(0.687, 0.891) 

2.136E-04 

0.631 
(0.572, 0.696) 

2.018E-20 

1.029 
(0.939, 1.127) 

0.537 

1.131 
(1.026, 1.247) 

1.304E-02 
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Table 4.8 Multivariate hazards ratio, 95% confidence interval and p-value from Cox 
proportional hazards tests myocardial infarction, type 2 diabetes, acute renal failure and 
urinary tract infection.  (cont). 
 

 
Myocardial 
infarction 

(411.2) 

Type 2 diabetes 
(250.2) 

Acute renal 
failure (585.1) 

Urinary tract 
infection (591) 

Self identified as 
Hispanic or of 

Latino or 
Spanish Origin 

0.766 
(0.667, 0.881) 

1.851E-04 

1.005, 
(0.912, 1.109) 

0.916 

0.726 
(0.662, 0.796) 

7.626E-12 

1.104 
(1.002, 1.216) 

4.493E-02 

COVID-19 
Probability 

80.262 
(62.417, 103.208) 

4.543E-256 

345.730 
(283.180, 
422.098) 

< 2.225E-308 

6333.163 
(4947.052, 
8107.648) 

< 2.225E-308 

61.380 
(51.273, 73.479) 

< 2.225E-308 
 

Hyperlipidemia 
1.423 

(1.235, 1.640) 
1.094E-06 

2.413 
(2.186, 2.662) 

8.284E-69 

0.902 
(0.825, 0.986) 

2.347E-02 

1.043 
(0.936, 1.162) 

0.442 

Other headache 
syndrome 

1.004 
(0.859, 1.173) 

0.963 

0.923 
(0.832, 1.025) 

0.134 

0.798 
(0.722, 0.881) 

8.288E-06 

0.943 
(0.847, 1.051) 

0.289 

Essential 
hypertension 

1.043 
(0.898, 1.211) 

0.585 

1.711 
(1.537, 1.906) 

1.213E-22 

1.166 
(1.061, 1.282) 

1.500E-03 

1.027 
(0.920, 1.146) 

0.638 

Pulmonary 
collapse; 

interstitial and 
compensatory 
emphysema 

1.079 
(0.937, 1.243) 

0.290 

1.056 
(0.959, 1.164) 

0.268 

1.348 
(1.232, 1.475) 

7.775E-11 

1.223 
(1.101, 1.359) 

1.738E-04 

Shortness of 
breath 

0.949 
(0.833, 1.080) 

0.427 

0.967 
(0.884, 1.058) 

0.465 

0.875 
(0.803, 0.953) 

2.130E-03 

0.940 
(0.850, 1.039) 

0.225 

Cough 
0.673 

(0.584, 0.775) 
3.906E-08 

0.880 
(0.801, 0.967) 

7.829E-03 

0.850 
(0.780, 0.927) 

2.357E-04 

0.877 
(0.794, 0.968) 

9.381E-03 

Gastroesophageal 
reflux disease 

0.921 
(0.803, 1.057) 

0.242 

1.091 
(0.996, 1.196) 

6.164E-02 

1.031 
(0.945, 1.125) 

0.487 

1.186 
(1.073, 1.310) 

7.950E-04 
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Table 4.8 Multivariate hazards ratio, 95% confidence interval and p-value from Cox 
proportional hazards tests myocardial infarction, type 2 diabetes, acute renal failure and 
urinary tract infection.  (cont). 
 

 
Myocardial 
infarction 

(411.2) 

Type 2 diabetes 
(250.2) 

Acute renal 
failure (585.1) 

Urinary tract 
infection (591) 

Other 
complication of 
pregnancy NEC 

0.819 
(0.705, 0.952) 

9.230E-03 

0.956 
(0.867, 1.055) 

0.374 

0.872 
(0.796, 0.955) 

3.107E-03 

0.854 
(0.773, 0.943) 

1.869E-03 

Back pain 
0.823 

(0.712, 0.951) 
8.425E-03 

0.964 
(0.876, 1.061) 

0.451 

0.882 
(0.804, 0.966) 

7.121E-03 

1.200 
(1.084, 1.329) 

4.696E-04 

Injury NOS 
1.035 

(0.897, 1.195) 
0.638 

0.990 
(0.897, 1.092) 

0.837 

1.042 
(0.952, 1.141) 

0.370 

0.965 
(0.873, 1.068) 

0.492 
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Table 4.9 Multivariate hazards ratio, 95% confidence interval and p-value from Cox 
proportional hazards tests for new diagnosis of myocardial infarction, type 2 diabetes, 
acute renal failure and urinary tract infection.  
 

 
Myocardial 
infarction 

(411.2) 

Type 2 diabetes 
(250.2) 

Acute renal 
failure (585.1) 

Urinary tract 
infection (591) 

Age Adolescent 
(≥ 13 and < 19) 

0.382 
(0.086, 1.695) 

0.206 

4.538 
(1.520, 13.542) 

6.708E-03 

2.968 
(1.938, 4.547) 

5.690E-07 

0.537 
(0.365, 0.792) 

1.692E-03 

Age Adult 
(≥ 19 and < 60) 

1.944 
(1.100, 3.436) 

2.213E-02 

17.850 
(7.396, 43.081) 

1.445E-10 

2.696 
(1.952, 3.723) 

1.717E-09 

0.652 
(0.535, 0.796) 

2.549E-05 

Age Senior 
(≥ 60) 

4.979 
(2.829, 8.762) 

2.592E-08 

33.457 
(13.860, 80.759) 

5.843E-15 

3.831 
(2.773, 5.293) 

3.877E-16 

0.922 
(0.750, 1.132) 

0.436 

Self Identified 
Sex as Female 

0.466 
(0.401, 0.541) 

2.367E-23 

0.797 
(0.735, 0.864) 

4.054E-08 

0.548 
(0.500, 0.600) 

1.078E-38 

1.629 
(1.470, 1.806) 

1.404E-20 

Self Identified as 
American 
Indian or 

Alaskan Native 

0.445 
(0.062, 3.167) 

0.419 

1.007 
(0.479, 2.116) 

0.986 

1.242 
(0.557, 2.772) 

0.596 

1.296 
(0.581, 2.894) 

0.526 

Self Identified as 
Asian 

0.381 
(0.195, 0.743) 

4.658E-03 

1.099 
(0.868, 1.391) 

0.432 

1.149 
(0.858, 1.540) 

0.351 

1.231 
(0.891, 1.700) 

0.207 
Self Identified as 
Black or African 

American 

0.813 
(0.648, 1.019) 

7.210E-02 

0.941 
(0.835, 1.061) 

0.321 

1.461 
(1.290, 1.655) 

2.627E-09 

1.043 
(0.897, 1.212) 

0.585 

Self Identified as 
Native Hawaiian 
or Other Pacific 

Islander 

2.143 
(0.533, 8.614) 

0.283 

1.366 
(0.567, 3.294) 

0.487 

0.344 
(0.048, 2.446) 

0.286 

0.936 
(0.234, 3.753) 

0.926 

Self Identified as 
White 

0.801 
(0.676, 0.948) 

1.008E-02 

0.631 
(0.572, 0.696) 

2.018E-20 

0.975 
(0.874, 1.086) 

0.643 

1.174 
(1.046, 1.318) 

6.604E-03 
Self identified as 
Hispanic or of 

Latino or 
Spanish Origin 

0.734 
(0.612, 0.881) 

8.753E-04 

1.005 
(0.912, 1.109) 

0.916 

0.749 
(0.672, 0.836) 

2.336E-07 

1.148 
(1.023, 1.288) 

1.855E-02 
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Table 4.9 Multivariate hazards ratio, 95% confidence interval and p-value from Cox 
proportional hazards tests for new diagnosis of myocardial infarction, type 2 diabetes, 
acute renal failure and urinary tract infection. (cont.) 
 

 
Myocardial 
infarction 

(411.2) 

Type 2 diabetes 
(250.2) 

Acute renal 
failure (585.1) 

Urinary tract 
infection (591) 

COVID-19 
Probability 

121.736 
(87.375, 169.611) 

3.796E-177 

345.730 
(283.180, 
422.098) 

< 2.225E-308 

12647.836 
(9277.739, 
17242.105) 

< 2.225E-308 

72.021 
(58.116, 89.253) 

< 2.225E-308 

Hyperlipidemia 
1.746 

(1.462, 2.085) 
7.839E-10 

2.413 
(2.186, 2.662) 

8.284E-69 

1.055 
(0.947, 1.174) 

0.330 

1.046 
(0.920, 1.188) 

0.493 

Other headache 
syndrome 

1.065 
(0.880, 1.290) 

0.517 

0.923 
(0.832, 1.025) 

0.134 

0.806 
(0.715, 0.908) 

3.912E-04 

1.091 
(0.962, 1.237) 

0.173 

Essential 
hypertension 

1.004 
(0.831, 1.213) 

0.967 

1.711 
(1.537, 1.906) 

1.213E-22 

1.310 
(1.170, 1.466) 

2.739E-06 

1.037 
(0.912, 1.180) 

0.577 
Pulmonary 

collapse; 
interstitial and 
compensatory 
emphysema 

1.209 
(1.013, 1.443) 

3.515E-02 

1.056 
(0.959, 1.164) 

0.268 

1.944 
(1.750, 2.161) 

5.218E-35 

1.378 
(1.215, 1.563) 

6.025E-07 

Shortness of 
breath 

1.032 
(0.877, 1.215) 

0.706 

0.967 
(0.884, 1.058) 

0.465 

0.857 
(0.775, 0.947) 

2.544E-03 

0.822 
(0.730, 0.925) 

1.192E-03 

Cough 
0.754 

(0.633, 0.898) 
1.562E-03 

0.880 
(0.801, 0.967) 

7.829E-03 

0.774 
(0.697, 0.859) 

1.593E-06 

1.024 
(0.911, 1.151) 

0.686 

Gastroesophageal 
reflux disease 

1.008 
(0.850, 1.194) 

0.931 

1.091 
(0.996, 1.196) 

6.164E-02 

1.100 
(0.991, 1.222) 

7.417E-02 

1.197 
(1.063, 1.347) 

2.889E-03 

Other 
complication of 
pregnancy NEC 

0.863 
(0.715, 1.041) 

0.124 

0.956 
(0.867, 1.055) 

0.374 

0.956 
(0.856, 1.068) 

0.427 

1.009 
(0.897, 1.136) 

0.878 
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Table 4.9 Multivariate hazards ratio, 95% confidence interval and p-value from Cox 
proportional hazards tests for new diagnosis of myocardial infarction, type 2 diabetes, 
acute renal failure and urinary tract infection. (cont.) 
 

 
Myocardial 
infarction 

(411.2) 

Type 2 diabetes 
(250.2) 

Acute renal 
failure (585.1) 

Urinary tract 
infection (591) 

Back pain 
0.872 

(0.729, 1.043) 
0.133 

0.964 
(0.876, 1.061) 

0.451 

0.910 
(0.815, 1.016) 

9.337E-02 

1.440 
(1.279, 1.622) 

1.697E-09 

Injury NOS 
1.062 

(0.887, 1.272) 
0.510 

0.990 
(0.897, 1.092) 

0.837 

1.111 
(0.997, 1.238) 

5.637E-02 

1.258 
(1.120, 1.414) 

1.076E-04 
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We further stratified the COVID-19 probabilities into quintiles and generated Kaplan-

Meier curves for the data within one year (Figure 6B-E).  The Kaplan-Meier curves stratified by 

COVID-19 probability for myocardial infarction showed three distinct sets, (i) COVID-19 

probability greater than 0.6, (ii) COVID-19 probability greater than 0.4 and less than or equal to 

0.6 and (iii) COVID-19 probability less than or equal to 0.4, with higher incidence observed in 

the sets of higher COVID-19 probability (Figure 4.9 A). The Kaplan-Meier curves for urinary 

tract infection showed three sets, (i) COVID-19 probability greater than 0.8, (ii) COVID-19 

probability greater than 0.4 and less than or equal to 0.8 and (iii) COVID-19 probability less than 

or equal to 0.4, up to 8 months with the higher incidence observed in the sets of higher COVID-

19 probability (Figure 4.9 B). The Kaplan-Meier curves for acute renal failure showed four 

distinct sets, (i) COVID-19 probability greater than 0.8, (ii) COVID-19 probability greater than 

0.6 and less than or equal to 0.8, (iii) COVID-19 probability greater than 0.4 and less than or 

equal to 0.6 and (iii) COVID-19 probability less than or equal to 0.4, with the higher incidence 

observed in the sets of higher COVID-19 probability (Figure 4.9 C). The Kaplan-Meier curves  
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Figure 4.9 Statistical testing of conditions associated with COVID-19 Kaplan-Meier curves 
for (A) myocardial infarction, (B) urinary tract infection, (C) acute renal failure, (D) type 2 
diabetes stratified by COVID-19 probability quintile within 1 year irrespective of clinical 
history (left) and when accounting for clinical history (right). 
 

for the onset of type 2 diabetes showed three distinct sets (i) COVID-19 probability greater than 

0.6, (ii) COVID-19 probability greater than 0.4 and less than or equal to 0.6 and (iii) COVID-19 

probability less than or equal to 0.4, with higher incidence observed in the sets of higher 

COVID-19 probability (Figure 4.9 D). 

4.4 Discussion 

In this study, we collected demographic, temporal and clinical data from 434,152 patients 

who sought treatment at New York-Presbyterian over 1,573,113 visits between February 2020 

and March 2022, who had at least one interaction with Columbia University Irving Medical 

Center, to develop an algorithm to identify conditions that are associated with COVID-19. The 

26 month period from which our data is sourced encompasses the height of the first wave of the 

COVID-19 pandemic (Spring 2020) when New York City was an epicenter in the United States 

as well as the subsequent Delta and Omicron waves. Additionally, our data encompasses periods, 

such as summer 2020 when case counts were at some of their lowest levels throughout the 

pandemic, as well as the period following development of treatments for COVID-19 and 

prophylactics for SARS-CoV-2 infection.  

Using data for patients who had COVID-19 diagnosed (as determined by the presence of 

the U07.1 ICD-10 diagnosis code) and non-COVID-19 patients, we trained an optimized random 

forest classifier with high performance as evaluated in an independent data set, and applied it to 

the full set of 1,573,113 visits. Instead of the binary classification that would result from the 

random forest classifier, we instead treated the fraction of estimators that identified the visit as a 
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COVID-19 visit as a probability of a patient having been diagnosed with COVID-19 during that 

visit. While the random forest classifier is overfitting based on the high AUROC observed in the 

training set, we were comfortable using it because it performed similarly in the training set using 

out-of-bag estimates and the evaluation set. Based on the presence of U07.1 ICD-10 diagnosis 

code, there were only 9,340 where the patient was diagnosed with COVID-19, however our 

model identified 198,562 visits where the patients had a probability of having been diagnosed 

with COVID-19 greater than 0.5. 

When evaluating our model, the most important features represented previously 

identified differences between demographic groups, such as those who identify as Hispanic or 

Latino or of Spanish origin or Black or African American [99,100], (Table 3.4, Figure 3.5). 

Important temporal features represented periods of extreme case counts in New York City, such 

as spring 2020 and summer 2021 [101] (Table 3.4, Figure 3.5). Important clinical diagnoses were 

reflective of known symptoms of COVID-19, such as abnormalities of breathing (R06), other 

symptoms and signs involving the circulatory and respiratory system (R09) and cough (R05) 

(Table 3.4, Figure 3.5).  

Using these visit specific probabilities, we identified conditions that developed within 

different time periods after the visit (up to 7 days, 14 days, 21 days, 28 days, 3 moths, 6 months, 

9 months, and 12 months) and used a Mann-Whitney U test to identify conditions that were 

associated with increased COVID-19 probability. Among others, our analysis identified 

myocardial infarction, urinary tract infection, acute renal failure and type 2 diabetes as being 

associated with COVID-19 (Figure 3.8). In further analysis of the results of our results, we 

estimated the hazards ratio of COVID-19 probability for each of these conditions (Table 3.7). 

Cox proportional hazards model indicated that higher COVID-19 probability in the preceding 
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visit was associated with an increased risk of myocardial infarction, urinary tract infection, acute 

renal failure and type 2 diabetes within one year. Our result for myocardial infarction is 

consistent with those of researchers who identified a higher risk of heart attack and ischemic 

stroke in COVID-19 patients using self-controlled case series [84].  

Results from a retrospective observational study of patients in early 2020 observed that 

severe COVID-19 disease is associate with acute kidney injury [87]. The researchers have 

suggested that the observed inflammation in the kidney is similar to that of the lungs in COVID-

19 patients because of the similar structure of the organs. The alveoli of the lungs are like the 

nephron of the kidney and the interstitium of the lung is like the calyx of the kidney. While not 

directly investigated in this study, genetic variation, drug exposure and past clinical history can 

also influence the risk of developing acute renal failure.  

Other researchers have identified an increased risk of type 2 diabetes in patients who had 

been infected with SARS-CoV-2 compared to patient who had not and compared to a historical 

control [86]. The onset of type 2 diabetes is thought to be the due to increased stress on the 

pancreas. SARS-CoV-2 is known to infect pancreatic cells, however unlike in type 1 diabetes 

where islets cells are target by the immune system preventing the pancreas from producing 

insulin, the pancreas in type 2 diabetes is not producing enough inclusion leading the body to be 

in a prolonger hyperglycemic state.  

There remains a caveat in how to interpret the hazards ratios that range from less than 10 

to more than 1,000 due to how the random forest classifier was fit. The random forest classifier 

assumed a continuous probability between 0 and 1; using proxies for subcategories such as 

between 0 and 4 for quintiles or between 0 and 9 for deciles would result in smaller hazards 

ratios with a similar interpretation to those identified in this study.  
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Furthermore, while the probabilities in this study ae assumed to be continuous, they do 

not necessarily correlate with severity. Because random forest classifiers are dependent on the 

amount of data included when the model is applied, the presence of more COVID-19 symptoms 

diagnosis codes may correlate with a higher probability. As such, while it may be that probability 

is correlated with severity, this study does not assume that in the analyses.  

The main limitation of this method is that it cannot be universally applied – a new 

random forest classifier would have to be trained for each site. The random forest classifier is 

also depended on input data, so in order for the model to predict the probability of a patient 

having had COVID-19 during a visit, they would have need to have diagnoses entered. As such, 

patients who expired on arrival due to severe COVID-19 were not included in the model and the 

model should not be used on data from such patients.   

If the random forest classifier could be expanded from NYP/CUIMC, to a national 

dataset, we expect that important features will remain the same; they will reflect know symptoms 

of COVID-19. However, depending on the coding practices of individual hospitals or healthcare 

sites, the specific diagnosis code that are important will differ and a combined dataset would 

include redundancies. The important temporal covariates would change depending on location as 

case counts and trends differed between cities. The temporal covariates would most likely no 

longer be important in a model that is trained on data combined from multiple sites.  

While this study shows that demographic, temporal and clinical data can be utilized to 

predict the probability of a patient having COVID-19 during their visit, the model and the 

important features are specific to NYP/CUIMC. An implementation this model elsewhere is 

expected to identify important temporal features specific to the site (e.g. periods of extreme case 

counts varied between New York City and London) and demographic variables depending on the 
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patient’s seeking treatment at those sites. However, it would be expected to identify similar 

clinical variables that are representative of known symptoms or comorbidities associated with 

COVID-19. While the results concur with other studies, they are not without their biases as this 

study relied on patients who sought treatment at New York-Presbyterian on multiple occasions 

and was unable to incorporate data from patients who may have also sought outside treatment 

due to the nature of primary care in the United States.  

The method developed here is reliant on clinical diagnosis data, which limits the 

applicability of this model. Based on the coding practices of different physicians or hospitals, 

suspected diagnoses may be entered as a place holder until it can be confirmed or ruled out, as 

with initial diagnoses of multiple sclerosis [97]. Additionally, urinary tract infections can be 

diagnosed based on clinical symptoms, though a laboratory test and culture are important for 

confirming infections.  

The results in here do not identify causality and, while this study attempts to control for a 

number of factors, those that can be controlled for are dependent on the dataset available. It is 

expected that patients who had a vaccine before the onset of COVID-19 might also expect 

different effects than those who had COVID-19 before having a vaccine. Establishment of 

causality would require recruiting patients specifically by their COVID-19 history and follow 

them in the long term with follow-up experiments to establish causality between SARS-CoV-2 

infection and the clinical manifestation, such as scarring in the cardiac muscle or decreased 

insulin production.  Finally, in identifying effects of COVID-19, we are limited by the novelty of 

the disease itself since other effects may take years or decades to develop.  
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Chapter 5: Conclusion 

At the start of the COVID-19 pandemic, it was being touted as a “once in a century” type 

of event due to the time elapsed since the previous global public health situation of this nature, 

the Flu of 1918 [102]. However, as there have been other virus like SARS-CoV-2, such as 

H1N1, SARS, monkeypox, that have the potential of leading to a similar situation, situations of 

this nature might become more frequent. Should a situation like COVID-19 ever arise again, the 

projects in this thesis are an exemplar of how to identify beneficial treatments and how to utilize 

machine learning to identify long-term effects.  

5.1 Identifying clinical and genetic factors affecting COVID-19 susceptibility, 

severity and mortality  

The work presented in chapter 1 identified that patient’s a history of macular 

degeneration and coagulation disorders were at increased risk for severe disease. The results of 

the analysis of the comorbidities concurred with the result from other labs. The genetic analysis 

presented in this study was the first to demonstrate that genetic variants were associated with 

altered risk for severe disease – the analysis identified variants associated with both increased 

and decreased risk.    

5.2 Investigating steroid hormone exposure on outcome in intubated and 

mechanically ventilated COVID-19 patients 

Our study implemented survival analysis to evaluate the effect of steroid hormone 

exposure on patients’ survival following intubation and intubation with mechanical ventilation. 

In our data driven approach, we worked to identify intubation-extubation period visits for 
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patients based on clinical orders and utilized medication administration data to identify whether 

the patient in each intubation-extubation period was exposed to each drug we have data for 

before or after intubation. This method can be extrapolated to look at the effects exposure to 

other classes of drugs for COVID-19 as well as other procedures with a temporal aspect.  

5.3 Identifying effects of COVID-19 

Our study demonstrated a new method to conduct retrospective analyses for identifying 

the effects of COVID-19. By implementing a model trained on clinical data at the visit level and 

using the output from a random forest classifier as a probability instead of a binary outcome, we 

mitigated the need to definitively distinguish cases. Additionally, the results from our study can 

be used to direct further investigations into the effects of COVID-19. As the COVID-19 

pandemic transitions to an endemic situation, our method can be utilized to understand potential 

pathophysiological difference in symptoms associated with COVID-19 spikes. Moreover, as this 

method was designed using concurrent clinical data, it can be adapted to other novel or emerging 

diseases. 
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Appendix A 

Due to the physical size of some of the full tables containing the results for Chapter 4, 

only the data for selected diseases is presented in this thesis. The tables are presented in full in a 

Github repository located at: https://github.com/vijendra-cuimc/thesis. For each table in the 

repository, refer to the below information on understanding the format.  

The file named “table_4.3_diag_formatted_git.csv” contain the full data from which a 

subset is presented in Table 3.3 printed in this thesis. The first non-header row lists the visit 

counts in each category, the second list the number of patients in each category. All subsequent 

rows list the number of visits (N_X) and the percent of visits (%_X) where that ICD10 category 

level diagnosis code was listed. Of note, X indicates a chapter level ICD10 code. The second 

column (negative_training_set) identifies non-COVID-19 visits used in model training, the third 

(positive_training_set ) identifies COVID-19 visits used in model training, the fourth column 

(negative_eval_set) identifies non-COVID-19 visits used in model training, the fifth 

(positive_eval_set) identifies COVID-19 visits used in model training and the sixth (all_visits) 

identifies all visits between February 2020 and March 2022 for which demographics data is 

available.  

 The file name “table_4.4_all_features.csv” contains the full data from which a subset is 

present in Table 3.4 printed in this thesis. The first column (feature) lists all the feature in the 

model, the second column (importance) list the Gini importance as outputted by the function, the 
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third column (wasserstein_distance_training) lists the Wasserstein distance between distributions 

where the feature is observed and where the feature is not observed in the model training set, the 

fourth column (wasserstein_distance_eval)  lists the Wasserstein distance between distributions 

where the feature is observed and feature is not observed in the model evaluation set and the fifth 

column (wasserstein_distance_all_visits) lists the Wasserstein distance between distributions 

where feature is observed and feature is not observed for all visits between February 2020 and 

March 2022 for which demographics data is available. 

The file name “table_4.5_4.6_mannwhitney_results_git_formatted.csv” contains the full 

data from which a subset is present in tables 4.5 and 4.6 printed in this thesis. The first column 

(category) lists the category of the specific phenotype, the second column (phenotype) lists the 

name of the phenotype and the third column (phe_code) list the PheCode used to identify the 

phenotype. The fourth, seventh, tenth, 13th, 16th, 19th, 22nd and 25th columns (all_X_mwu_stat) 

lists the Mann-Whitney U test statistic comparing between distribution of probabilities of visits 

followed by the phenotype and not followed by the phenotype. The fifth, eight, 11th, 14th, 17th, 

20th, 23rd and 26th columns (all_X_pvalue) list the p-value from the Mann-Whitney U test 

comparison listed in the preceding column.  The sixth, ninth, 12th, 15th, 18th, 21st, 24th and 27th 

columns (all_X_c_pvalue) list the corrected p-value from the Mann-Whitney U test comparison 

listed in the two columns present using a false discovery Benjamini-Hochbergs calculation.  The 

28th, 31st, 34th, 37th, 40th, 43rd, 46th and 49th columns (new_X_mwu_stat) lists the Mann-Whitney 

U test statistic comparing between distribution of probabilities of visits followed by the 

phenotype and not followed by the phenotype for new phenotypes. The 29th, 32nd, 35th, 38th, 41st, 

44th, 47th and 50th columns (new_X_pvalue) list the p-value from the Mann-Whitney U test 

comparison listed in the preceding column.  The 30th, 33rd, 36th, 39th, 42nd, 45th, 48th and 51st 
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columns (new_X_c_pvalue) list the corrected p-value from the Mann-Whitney U test 

comparison listed in the two columns present using a false discovery Benjamini-Hochbergs 

calculation.  Of note, X indicates the time period being considered in each test, 7 days, 14 days, 

21 days, 28 days, 3 months, 6 months, 9 months and 1 year respectively.  

The file named “table_4.7_coxph_results_git_formatted.csv” contain the full data from 

which a subset is presented in Table 3.7 printed in this thesis. The first column (category) lists 

the category of the specific phenotype, the second column (phenotype) lists the name of the 

phenotype and the third column (phe_code) list the PheCode used to identify the phenotype. The 

fourth column (all_1_year_case_n) lists the number of cases of the phenotype irrespective of the 

previous health history of the patient occurring within 1 year, the fifth column 

(all_1_year_noncase_n) lists the number of non-cases of the phenotype irrespective of the 

previous health history of the patient occurring within 1 year and the sixth column 

(all_1_year_hazards ratio) lists the Cox Proportional hazards ratio for the phenotype irrespective 

of the previous health history of the patient occurring within 1 year. The seventh and eight 

columns (all_1_year_95% confidence interval (lower), all_1_year_95% confidence interval 

(upper)) list the lower and upper, respectively, 95% confidence interval for the hazard ratio in the 

preceding columns and the ninth column (all_1_year_pvalue) list the p-value of the hazard ratio. 

The tenth column (new_1_year_case_n) lists the number of cases of the phenotype when 

accounting for the previous health history of the patient occurring within 1 year, the 11th column 

(new_1_year_noncase_n) lists the number of non-cases of the phenotype when accounting for 

the previous health history of the patient occurring within 1 year and the 12th column 

(new_1_year_hazards ratio) lists the Cox Proportional hazards ratio for the phenotype when 

accounting for the previous health history of the patient occurring within 1 year. The 13th and 
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14th columns (new_1_year_95% confidence interval (lower), new_1_year_95% confidence 

interval (upper)) list the lower and upper, respectively, 95% confidence interval for the hazard 

ratio in the preceding columns and the 15th column (new_1_year_pvalue) list the p-value of the 

hazard ratio. 

 


