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Abstract

Computational Models of Argument Structure and Argument Quality

for Understanding Misinformation

Tariq Alhindi

With the continuing spread of misinformation and disinformation online, it is of increasing

importance to develop combating mechanisms at scale in the form of automated systems that can

find checkworthy information, detect fallacious argumentation of online content, retrieve relevant

evidence from authoritative sources and analyze the veracity of claims given the retrieved evidence.

The robustness and applicability of these systems depend on the availability of annotated resources

to train machine learning models in a supervised fashion, as well as machine learning models that

capture patterns beyond domain-specific lexical clues or genre-specific stylistic insights. In this

thesis, we investigate the role of models for argument structure and argument quality in improving

tasks relevant to fact-checking and furthering our understanding of misinformation and

disinformation. We contribute to argumentation mining, misinformation detection, and

fact-checking by releasing multiple annotated datasets, developing unified models across datasets

and task formulations, and analyzing the vulnerabilities of such models in adversarial settings.

We start by studying the argument structure’s role in two downstream tasks related to fact-checking.

As it is essential to differentiate factual knowledge from opinionated text, we develop a model for

detecting the type of news articles (factual or opinionated) using highly transferable

argumentation-based features. We also show the potential of argumentation features to predict the



checkworthiness of information in news articles and provide the first multi-layer annotated corpus

for argumentation and fact-checking.

We then study qualitative aspects of arguments through models for fallacy recognition. To

understand the reasoning behind checkworthiness and the relation of argumentative fallacies to fake

content, we develop an annotation scheme of fallacies in fact-checked content and investigate

avenues for automating the detection of such fallacies considering single- and multi-dataset training.

Using instruction-based prompting, we introduce a unified model for recognizing twenty-eight

fallacies across five fallacy datasets. We also use this model to explain the checkworthiness of

statements in two domains.

Next, we show our models for end-to-end fact-checking of statements that include finding the

relevant evidence document and sentence from a collection of documents and then predicting the

veracity of the given statements using the retrieved evidence. We also analyze the robustness of

end-to-end fact extraction and verification by generating adversarial statements and addressing

areas for improvements for models under adversarial attacks. Finally, we show that evidence-based

verification is essential for fine-grained claim verification by modeling the human-provided

justifications with the gold veracity labels.
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Chapter 1

Introduction

In the years 2016 and 2017, the words “Post-Truth” and “Fake News” were named words of the

year by the Oxford1 and Collins2 dictionaries, respectively. In 2020, paired with the urgent calls by

the World Health Organization (WHO) to fight the Covid-19 pandemic, WHO declared with similar

urgency the need to fight the “infodemic”, referring to the (mis-/dis-)information spreading around

Covid-19 at that time (Ghebreyesus, 2020). The consequences of false and misleading information

are significant, including swaying political elections (Wardle, 2016), undermining issues such

as climate change (Adl-Tabatabai, 2016), and even hospitalization during the early stages of the

Covid-19 pandemic (Islam et al., 2020). Thus, with the amount and pace of information spread

online, it is important to develop computational models to help detect fake news, understand its

nature, and ultimately help increase the digital literacy of users online to reduce their vulnerability.

The term “Fake News” is a vague umbrella to describe false, fabricated, and misleading

news, which became a weaponized term to discredit journalists rather than describing the content

(Ireton and Posetti, 2018). It is, therefore, more appropriate to use more precise terms such as

misinformation “misleading information with no intent to harm”, disinformation “false information

with the intent to harm”, and malinformation “true information with the intent to harm” (Ireton

and Posetti, 2018; Wardle, 2020) as shown in Figure 1.1.

In this thesis, we study the linguistic content of (mis-/dis-)information, focusing on modeling

argument structure and quality for the task of detecting (mis-/dis-)information. Intent, malinforma-

tion (e.g., harassment), and multimodal fake content that includes images and videos are beyond the

scope of this thesis. We also do not consider the time a certain claim was made to determine its

1https://languages.oup.com/word-of-the-year/2016/
2https://web.archive.org/web/20171102214325/https://www.collinsdictionary.com/woty

1

https://languages.oup.com/word-of-the-year/2016/
https://web.archive.org/web/20171102214325/https://www.collinsdictionary.com/woty


Figure 1.1: The (Mis-/Dis-/Mal-)information space (Ireton and Posetti, 2018).

veracity. To address the temporal effect on the veracity of information, we retrieve evidence from

the same timeframe of the claim when possible and leave more in-depth handling for future work.

We study the detection of (mis-/dis-)information with a general objective of facilitating the

automation of the fact-checking pipeline, which typically consists of the following four tasks: i)

finding statements to fact-check (checkworthiness prediction which assumes both what to fact-check

and why); ii) deciding whether they have been previously checked (verified claim retrieval), and

if not; iii) retrieving evidence relevant to the target statements; iv) assigning a veracity label to

the target statement given the retrieved evidence (claim verification) (Barrón-Cedeno et al., 2020).

In this thesis, we particularly focus on the role of argument structure and argument quality in

improving the first task and the last task in the fact-checking pipeline.

Consider the example shown in Figure 1.2, where we show part of a news article about climate

change with three layers of interconnected annotations. The first layer (red) displays a sample of the

argument structure in the article with one claim, two premises, one support relation, and one attack

relation. The second layer (blue) highlights three fallacious segments of the article that contain

fallacies such as Red Herring “presenting irrelevant information”, Strawman ”misinterpreting

arguments by others”, and Loaded Language “influencing through phrases with strong emotional

implications”. The third layer (green) shows two checkworthy statements with Wikipedia as a

potential source of evidence to investigate the veracity of these statements. We study all three layers

in this thesis, considering their relation and overlap.
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Figure 1.2: A news article with three layers of tagged fragments: Green (checkworthy statements
fact-checked against Wikipedia), Red (sample from the argument structure with a claim, premises,
a support relation, and an attack relation), and Blue (three types of fallacies).

With the recent progress in deep learning models for Natural Language Processing (NLP),

including large language models (e.g., (Peters et al., 2018; Devlin et al., 2019a; Raffel et al., 2020;

Brown et al., 2020)), we are interested in complementing the knowledge captured by these models

with additional sources in the form of argumentative discourse structure, and instruction-based

prompts. We study a wide range of tasks related to misinformation detection and fact-checking, such

as: distinguishing factual statements from opinions, assessing the checkworthiness of information

in news articles, developing a unified model based on multitask instruction-based prompting for

fallacy recognition, and developing claim verification approaches given automatically retrieved

(or provided) evidence under truth barometers with different levels. In particular, we address the

following research questions:

• Given argumentative discourse structures (through gold annotations or model predictions),

how can we utilize them in tandem with deep learning models for NLP to improve on

tasks relevant to fact-checking such as separating news from opinions and determining the
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checkworthiness of information?

• Can we develop a unified model for fallacy recognition considering variations in the type and

number of fallacy classes across datasets covering multiple domains and genres?

• What sources of knowledge (fallacy, human justification, automatically retrieved evidence)

are most useful for claim verification models under different truth barometers? And how

resilient are these models under adversarial attacks?

The following three sections describe our approaches to answering the three research questions

above, respectively.

1.1 The Role of Argument Structure in Fact-Checking

To develop methods for detecting (mis-/dis-)information that contribute to automating the fact-

checking process, we need to be able to separate factual statements from opinions. In addition,

having a set of factual claims poses the need to determine which of them must be selected for fact-

checking due to their “checkworthiness”, which indicates factual claims that should be checked to

see if they are true. The notion of checkworthiness varies greatly depending on the context (Wright

and Augenstein, 2021), however according to Shaar et al. (2020), the following five elements make

a statement checkworthy: i) contains a verifiable factual claim; ii) likely to be false; iii) of interest

to the general public; iv) harmful to society; v) worth manual fact-checking.

Towards achieving these two goals: separating facts from opinions, and determining the check-

worthiness of statements, we investigate the role of argumentative discourse structures. An argument

consists of argumentative components (e.g., claims, premises) that are connected through relations

(e.g., support, attack) forming a tree or a graph structure (Stede and Schneider, 2018; Lawrence and

Reed, 2020). The ability to mine the argument structure improves on several tasks, such as essay

scoring and writing assistance (Wachsmuth et al., 2016; Zhang and Litman, 2020). We hypothesize

the relevance of the argument structure to the two aforementioned tasks.
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First, as opinionated articles have the ultimate goal of persuasion, we expect their argumentative

structure to differ from factual articles that focus mainly on reporting. Therefore, we hypothesize

that features extracted from the argument structure help separate facts from opinions. Second, the

five elements for checkworthiness mentioned above consider only the target statement with no

regard to its context. When we look at the context around the manually fact-checked segments

by experts in news articles about climate change, we notice patterns related to the argumentative

structure. For example, human fact-checkers tend to fact-check a claim when it is not supported by

evidence (premise) or only supported by another claim (thus showcasing an “evading the burden of

proof ” fallacy), and fact-check a premise when it is used to support a claim (e.g., to challenge the

relevance of that evidence in support for the claim).

Chapter 3 shows the role of argument structure in improving these two tasks.

1.2 Fallacies as Indicators of Misinformation

After considering the role of the structure of the argument in improving tasks relevant to fact-

checking, we focus next on qualitative aspects of arguments through fallacies.

A fallacy is “an argument that seems valid but is not” used to support a position and persuade

an audience about its validity, similar to valid arguments (Hamblin, 1970). It is “a particular kind

of egregious error, one that seriously undermines the power of reason in an argument by diverting

it or screening it in some way. But a more precise definition is difficult to give and depends on

a range of considerations” (Tindale, 2007). However, a fallacy “must have the appearance of

being a better argument than it really is” (Hansen, 2002), and thus it is not easy to detect for both

humans and machines. Fallacies apply to various aspects of argumentation: they can apply to the

structure (e.g., lack of arguments in support of a claim); to the reasoning linking the argument to the

conclusion (e.g., presence of a false cause-effect relation); to language features (e.g., use of vague

terms) as well as factors which lie outside discourse (e.g., personal qualities of the protagonists to

the discussion) (Tindale, 2007).

5



Brennen et al. (2020) show that 59% of fact-checked news are not simply true or false, but

ones with misleading content or false context thus containing fallacious reasoning. For example, a

Cherry-Picking fallacy “presenting information that supports a position and ignoring others that

do not” is based on presenting partial information rather than false information (Musi et al., 2022).

Thus, we hypothesize the relevance of fallacies to fact-checking tasks such as checkworthiness

prediction and claim verification as fallacies can be used as indicators of misinformation.

We collaborate with Musi et al. (2022) to develop an annotation scheme of fallacious moves in

misinformation and use it to annotate two datasets in climate change and Covid-19 that we present

in Chapter 4. In addition, we present a unified model for fallacy recognition through multitask

instruction-based prompting across five datasets considering four different formulations of fallacies.

We finish the chapter by studying the use of fallacies as indicators of checkworthiness, to provide

the reasoning behind why a certain statement should be fact-checked.

1.3 Verification of Statements

In Chapter 5, we present our work for automating the evidence extraction and claim verification

process. We study the case when a model is given a claim to fact-check and tasked with predicting

the veracity of the claim under different levels of truth, and availability of evidence. First, we

present our models for end-to-end fact-checking where a model needs to find relevant evidence

from a knowledge base of facts (e.g., Wikipedia), reason about what can be inferred from the

evidence with respect to the validity of the claim (Section 5.1). Then, we present a set of adversarial

attacks by adding alterations to claims from Wikipedia to resemble naturally occurring claims

and assess the vulnerability of fact-checking systems (Section 5.2). We end our discussion of

verification by developing models for fine-grained claim verification on a six-level truth barometer

(e.g., ‘mostly-false’, ‘half-true’) that better assess the veracity of misinformation (i.e., misleading

statements) and show the importance of evidence for fine-grained claim verification (Section 5.3).
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1.4 Thesis Contributions

• We approach fact-checking with a holistic view by developing models for checkworthiness

(what to fact-check), fallacy recognition (why to fact-check), and veracity prediction (how to

fact-check), in addition to analyzing the relations between these tasks.

• We establish a connection between misinformation and argumentative fallacies by introducing

an annotation scheme, datasets, and models for predicting fallacy types of fact-checked

content and thus consider fallacies as indicators of misinformation.

• We combine language models with contextual information to have more robust models on

multiple tasks such as:

– Argument structure for checkworthiness prediction (Alhindi et al., 2021), and news

articles type prediction (Alhindi et al., 2020).

– A multitask instruction-based prompting framework for fallacy recognition across

domains, genres, and annotation schemes (Alhindi et al., 2022).

– Fallacy as a rationale for checkworthiness.

• We release a number of new datasets:

– A multi-layer annotated corpus for checkworthiness and argumentative discourse struc-

tures for climate change news articles (Alhindi et al., 2021), and a fallacy corpus of

climate change and Covid-19 news articles and social media posts (Alhindi et al., 2022).

– The LIAR-PLUS dataset (Alhindi et al., 2018) of fact-checked claims with justifications

that is used by the community as a benchmark dataset for developing fact-checking

models with generated explanation (Atanasova et al., 2020; Stammbach and Ash, 2020).
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1.5 Publications and Thesis Organization

The thesis consists of the following chapters: In Chapter 2, we present a literature review of

argumentation and fallacy mining, fake news and misinformation detection, and various attempts

to automate part or all of the fact-checking pipeline. Chapter 3 discusses the role of features from

argument structure in improving two fact-checking tasks in news articles: separating facts from

opinions, and checkworthiness of statements. In Chapter 4, we introduce our study of fallacy and

our unified models based on multitask instruction-based prompting for fallacy recognition. Then,

we show our work in building end-to-end fact-checking systems under different truth barometers

(binary and six-way) in Chapter 5. We end with concluding remarks and future work in Chapter 6.

In Table 1.1, we show our contributions and publications for each of the three main chapters.

Chapter Section Contribution Publication
3 Argument

Structure in
News

3.1 Argumentation features for distin-
guishing facts from opinion in news.

Alhindi et al. (2020)

3.2 Multilayer corpus of argument struc-
ture and fact-checked content, and
argumentation context for predicting
checkworthiness

Alhindi et al. (2021)

4 Argument
Quality
through
Fallacy

4.1 A fallacy scheme of fact-checked
statements

–

4.2 Tagging and classification of falla-
cious segments in a single dataset

Alhindi et al. (2019)

4.3 Multitask instruction-based prompt-
ing for classification of fallacy types
across five datasets

Alhindi et al. (2022)

4.4 Fallacy for explaining checkworthi-
ness of statements

TBD

5
Verification
of
Statements

5.1 Fact-checking (binary truth labels,
or NotEnoughInfo)

Chakrabarty et al. (2018)

5.2 Adversarial attacks against fact-
checking systems

Hidey et al. (2020)

5.3 Predicting shades of truth through
human justifications

Alhindi et al. (2018)

Table 1.1: Contributions and publications for each chapter.
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It is important to note that the work described in this thesis was done over the span of five years,

from 2018 to 2022, in which immense progress has happened in the fields of NLP and machine

learning in terms of the approaches used to tackle a new problem and the available models that

offer different opportunities for transfer learning. Table 1.1 shows the year when each section of

the thesis was done, where the most successful method and language model of that year was used.

The thesis is not ordered chronologically but rather in terms of the topic, task, and connection to

other parts of the thesis. For example, our earliest work is the one on the verification of statements

(Sections 5.1 and 5.3). However, it is presented at the end of the thesis after showing more recent

work in the preceding two chapters.
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Chapter 2

Related Work

False and misleading content has been classified into different sub-categories in the literature

from the three types of fake: serious fabrication, hoaxes, and satire (Rubin et al., 2015) to the seven

types of (mis-/dis-)information: satire, misleading content, imposter content, fabricated content,

false connection, false context, and manipulated content (Wardle, 2017). The differences between

these categories depend on many factors such as genre and domain, targeted audience, and deceptive

intent (Rubin et al., 2015; Rashkin et al., 2017a). A study by Vosoughi et al. (2018) found that

false and misleading news spread six times faster than truthful ones on social media. To fight this

spread, a plethora of manual fact-checking organizations have emerged or increased their scale

in recent years such as PolitiFact1, FactCheck.org2, Snopes3, and FullFact4. However, given the

amount and scale of information spread online, a need to automate parts or all of the fact-checking

pipeline became necessary. To automate fact-checking, Vlachos and Riedel (2014) mapped the

process to three natural language processing (NLP) tasks: identifying claims to be checked, finding

appropriate evidence, and producing verdicts, while Barrón-Cedeno et al. (2020) adds a fourth task

of identifying previously checked claims as false claims tend to be repeated online (Nakov et al.,

2021a). More recent work adds a fifth task of producing justifications for the verdict to increase the

trust in the predictions of machine learning models (Kotonya and Toni, 2020; Guo et al., 2022). An

additional task of claim spotting has been argued recently by Reddy et al. (2022), which considers

additional attributes related to checkworthiness such as identifying the claimer, the source of the

claim, the stance of the claim, and the claim object.

1http://www.politifact.com
2http://www.factcheck.org
3http://www.snopes.com/
4http://fullfact.org
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Other work focuses on estimating the credibility of sources by using an external list of bias per

publisher (Baly et al., 2018a) or by modeling conflicting reports on a claim from different sources

(Zhang et al., 2019b). In addition, there is work that studies other phenomena related to credibility

and trustworthiness such as propaganda (Martino et al., 2020), hyperpartisanship (Potthast et al.,

2018; Alabdulkarim and Alhindi, 2019), rumors (Zubiaga et al., 2018), and stance detection for

(mis-/dis-)information (Hardalov et al., 2022).

Another angle to look at the information ecosystem is through Fallacy Theory. Musi and Reed

(2022) considers fallacies as indicators of misinformation and defines a taxonomy of fallacies

about misinformation through analysis of 220 news fact-checked by Snopes about Covid-19. We

collaborate with Musi et al. (2022) to refine and apply this taxonomy on a bigger set of news

around Covid-19 from multiple fact-checkers, and on fact-checked news articles about climate

change (Alhindi et al., 2022). In addition, Goffredo et al. (2022) shows that looking at the argument

structure helps in detecting fallacies in political debates. We investigate the role of using argument

structure for detecting structural fallacies (e.g., Evading the Burden of Proof ), and in facilitating

tasks related to fact-checking such as checkworthiness prediction (Alhindi et al., 2021).

In the remainder of this Chapter, we review the literature on the fact-checking tasks covered

in this thesis starting with identifying claims to be checked (checkworthiness prediction), and

end-to-end fact-checking that includes evidence retrieval and claim verification. Then we briefly

introduce argumentation mining (extracting argument structure) and its applications in general

and to tasks that can inform fact-checking. Finally, we end with a discussion of argument quality,

existing fallacy datasets and previous work on models for fallacy recognition covering different

fallacy schemes that include propaganda techniques.

2.1 Checkworthiness Prediction

Previous work on detecting checkworthy claims focuses on text from the political domain. The first

systems for checkworthy claim detection are ClaimBuster (Hassan et al., 2017) and ClaimRank

(Jaradat et al., 2018). ClaimBuster is trained on sentences from political debates and uses sentence-
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level features such as TF-IDF weights and sentiment. ClaimRank extends this to Arabic (in addition

to English) and uses a richer feature set that includes the context. Other more recent work includes

datasets that are bigger in size and across longer time spans (Arslan et al., 2020) or in other

languages such as Dutch (Berendt et al., 2020). Covering multiple domains (political speeches,

tweets, Wikipedia) and task formulations (checkworthiness, rumor detection, and citation detection),

Wright and Augenstein (2020) use positive unlabelled learning (Bekker and Davis, 2020) to perform

a comparison of datasets across domains where the notion of checkworthiness varies greatly.

Over the past five years, the CLEF check-that lab introduced tasks for detecting checkworthy

political claims from debates and social media (Nakov et al., 2018; Elsayed et al., 2019; Barrón-

Cedeno et al., 2020; Nakov et al., 2021b; Nakov et al., 2022), where the best teams in the 2019

task (Hansen et al., 2019) use syntactic features and word embeddings in an LSTM model. More

recently on the same datasets, Kartal et al. (2020) introduce a logistic regression model using

BERT-based features, the presence of comparative and superlative adjectives, augmented with data

from controversial topics. Finally, Meng et al. (2020) uses adversarial training on transformer neural

network models for detecting checkworthy statements. However, all of these models are trained on

political text from debates, speeches, and tweets, or lists of claims previously checked by various

fact-checking agencies such as FactCheck.org. We on the other hand work on a dataset from a

different genre: news articles, include a new domain: climate change, investigate the question of

whether argumentative discourse structure helps in detecting checkworthy statements, and study the

reasons behind checkworthiness through the analysis of fallacies in checkworthy statements.

2.2 End-to-End Fact-Checking

Starting with a set of claims to fact-check, previous work on predicting the veracity of claims

focused on comparing them against evidence from Wikipedia (Thorne et al., 2018a), trusted news

outlets (Ferreira and Vlachos, 2016; Pomerleau and Rao, 2017a), discussion forums (Joty et al.,

2018), or debate websites (Chen et al., 2019), or by analyzing the linguistic properties of false
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and true claims (Pérez-Rosas et al., 2018a; Rashkin et al., 2017b) in addition to the speaker’s

history (Wang, 2017). These datasets are labeled using three tags (true, false) (Alhindi et al., 2018),

three tags (supported, refuted, not-enough-information) (Thorne et al., 2018b), four tags (agree,

disagree, discuss, unrelated) (Pomerleau and Rao, 2017b), or Politifact’s six tags: pants-on-fire,

false, mostly-false, half-true, mostly-true and true (Rashkin et al., 2017a; Wang, 2017). They vary

in size from 300 claims (Ferreira and Vlachos, 2016) to 185, 000 claims (Thorne et al., 2018b).

Claim verification approaches include stylometric and linguistic analysis of the target content,

and the comparison of such content against trustworthy evidence (Thorne and Vlachos, 2018;

Potthast et al., 2018). We first cover the work on claim verification that analyzes linguistic and

stylometric properties of the claims (stylometry-based verification). Then, we overview the work

that uses evidence to evaluate the veracity of claims (evidence-based verification).

2.2.1 Stylometry-based Verification

Several studies analyzed the language used in the claims to assess their veracity. Rashkin et al.

(2017a) presented an LSTM model with maximum entropy to predict the truthfulness of claims

in news and fact-checked claims from PolitiFact. They found that first-person and second-person

pronouns are used more in less reliable news. Subjective language, superlatives, and modal adverbs

are used more in fake news. Words used to offer concrete figures, comparatives, money, and numbers

appear more in truthful news. Trusted sources are more likely to use assertive words and less likely

to use hedging words. Pérez-Rosas et al. (2018b) show that linguistic properties of deception in one

domain might be structurally different from those in a second domain. However, we empirically

show the importance of evidence-based verification to go beyond language characteristics of claims

that might not be generalizable (Alhindi et al., 2018).

2.2.2 Evidence-based Verification

The verification of claims using evidence either performs evidence retrieval at the document or at

the sentence level or assumes the availability of evidence and models the relationship between the
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claim and the evidence. One of the earlier works was the Fake News Challenge (FNC) (Pomerleau

and Rao, 2017b), which is built by randomly matching claim–article pairs from the Emergent

dataset (Ferreira and Vlachos, 2016), which itself pairs 300 claims to 2,500 articles. The task is to

predict the stance of the article with respect to the claim whether it agrees, disagrees, discusses, or

is unrelated to the claim. There are several approaches attempting to predict the stance on the FNC

dataset using LSTMs, memory networks, and transformers (Hanselowski et al., 2018a; Conforti et

al., 2018; Mohtarami et al., 2018; Zhang et al., 2019a; Schiller et al., 2021; Schütz et al., 2021).

This was followed by work that requires evidence retrieval prior to claim verification after the

introduction of tasks such as the first and second Fact Extraction and VERification (FEVER) shared

tasks (Thorne et al., 2018a; Thorne et al., 2019). Work on end-to-end fact-checking through the

FEVER shared task focused on a pipeline approach of retrieving documents, selecting sentences,

and then using an entailment module (Malon, 2018; Hanselowski et al., 2018b; Tokala et al., 2019);

the winning entry for the first FEVER shared task (Nie et al., 2019a) used three homogeneous neural

models. Other work has jointly learned either evidence extraction and question answering (Nishida

et al., 2019) or sentence selection and relation prediction (Yin and Roth, 2018; Hidey and Diab,

2018).

2.2.3 Adversarial Attacks Related to Fact-Checking

Language-based adversarial attacks have often involved transformations of the input such as phrase

insertion to distract question-answering systems (Jia and Liang, 2017) or to force a model to always

make the same prediction (Wallace et al., 2019). Other research has resulted in adversarial methods

for paraphrasing with universal replacement rules (Ribeiro et al., 2018) or lexical substitution (Ren

et al., 2019). While our strategies include insertion and replacement, we focus specifically on

challenges in fact-checking. The task of natural language inference (Bowman et al., 2015; Williams

et al., 2018) provides similar challenges: examples for numerical reasoning and lexical inference

have been shown to be difficult (Glockner et al., 2018; Nie et al., 2019b) and improved models on

these types are likely to be useful for fact-checking. Finally, (Thorne and Vlachos, 2019) provided a
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baseline for the FEVER 2.0 shared task with entailment-based perturbations. Other participants

generated adversarial claims using implicative phrases such as “not clear” (Kim and Allan, 2019) or

GPT-2 (Niewinski et al., 2019). In comparison, we present a set of attacks motivated by realistic,

challenging categories and we develop models to address those attacks.

2.3 Models of Argument Structure and Applications

Argumentation mining is a field concerned with finding argument structure from unstructured text

that includes argument components (claim, premises) and relations (support, attack) as covered

extensively by surveys such as Stede and Schneider (2018; Lawrence and Reed (2020). A standard

argumentation mining pipeline includes four tasks: separating argumentative components from

non-argumentative ones, classifying the types of argumentative components, extracting relations

between argumentative components, and classifying the types of these relations. We do not introduce

a new model for argumentation mining; however, we release a new dataset of annotated argument

structures in news articles (that also has fact-checking annotations) and we study the use of argument

structures in downstream tasks.

There are many argument mining corpora available on text from multiple genres such as student

essays (Stab and Gurevych, 2014), short-texts (Peldszus and Stede, 2015), social-media threads

(Hidey et al., 2017), and editorials (Al Khatib et al., 2016). Argumentation mining has been

used in applications such as legal decision-making (Moens et al., 2007), document summarization

(Kirschner et al., 2015), writing assistance (Zhang and Litman, 2016) and essay scoring (Persing

and Ng, 2015; Somasundaran et al., 2016), relevance to essay prompts (Persing and Ng, 2014),

opinions and their targets (Farra et al., 2015), and argument strength (Persing and Ng, 2015) among

others. (Beigman Klebanov et al., 2017) and (Persing and Ng, 2015) analyzed writing of university

students and (Stab and Gurevych, 2017a) used data from “essayforum.com”, where college entrance

examination is the largest forum. However, argumentation applications in news have been limited

to analysis of persuasion in editorials (El Baff et al., 2020) and patterns of argumentative strategies
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across topics (Al Khatib et al., 2017). We investigate the predictive power of argumentation-based

features in the news domain such as the classification of article types (factual vs. opinions) and the

prediction of the checkworthiness of statements in news articles.

2.4 Argument Quality and Fallacy

Previous work has empirically studied qualitative aspects of arguments building on theoretical work

on argument quality by evaluating aspects such as persuasion and convincingness of arguments.

Wachsmuth et al. (2017a) found a high correlation between expert and crowdsourced annotations of

argument quality on one argumentation dataset. To enable computational assessment of argument

quality, Wachsmuth et al. (2017b) introduced a holistic view of argument quality by introducing

measures covering three dimensions: logical (sufficiency, acceptability, and relevance of supporting

evidence), rhetorical (clarity, credibility, appropriateness, and emotional appeal), and dialectical

(global assessment of the reasonableness of arguments). On the other hand, another angle of

assessment of argument quality is through the study of argumentative fallacies.

There are various typologies of fallacies that address informal logic traditions or rules of ideal

critical discussion (Hansen, 1996; Van Eemeren et al., 2002; Tindale, 2007; Walton et al., 2008;

Damer, 2012). This intersects with propaganda techniques that focus on faulty reasoning and

emotional appeals to accomplish persuasion (Miller, 1939a; Jowett and O’Donnell, 2012; Torok,

2015; Weston, 2018). Fallacy datasets include ones that occur in dialogue (Habernal et al., 2017;

Sheng et al., 2021), argument sufficiency (Stab and Gurevych, 2017b), name calling on Reddit

(Habernal et al., 2018), non-sequitur fallacy in legal text (Nakpih and Santini, 2020), logical fallacies

(Jin et al., 2022), fallacies in misinformation (Musi et al., 2022; Musi and Reed, 2022), propaganda

techniques in news articles (Da San Martino et al., 2019b) and memes (Dimitrov et al., 2021), and

fallacies in political debates (Goffredo et al., 2022).

Fallacy Recognition Models Previous work on fallacy recognition has tackled one dataset at a

time such as the structure-aware classifier to detect logical fallacies by Jin et al. (2022). More
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relevant to our work on connecting argument structure to fallacy recognition, Goffredo et al. (2022)

proposed a transformer-based model architecture that is fine-tuned on argumentation features and

showed the importance of detecting argument components and relations for fallacy recognition.

Similarly, we look at argument structure for checkworthiness prediction under the hypothesis of its

relevance to detecting the Evading the Burden of Proof fallacy (Alhindi et al., 2021).

The majority of previous work on fallacy recognition falls under propaganda technique detection.

Da San Martino et al. (2019a) introduced a shared task for propaganda detection that consisted of

two subtasks: sentence-level classification (binary classification of sentences into propaganda or

non-propaganda) and fragment-level classification (finding propaganda segments in news articles

and classifying their types into one of eighteen propaganda techniques). The top teams for the

sentence classification use ensemble models of neural networks and logistic regression (Gupta et

al., 2019) and data upsampling techniques (Tayyar Madabushi et al., 2019), while for fragment

classification the top team uses a 20-way word-level classification based on BERT (Yoosuf and Yang,

2019). We participated in this task and were ranked fifth (out of 13) in the fragment classification

(Alhindi et al., 2019). We introduced an LSTM-based tagger with relevant dictionary-based features

that resulted in having the highest precision model among all teams (more in Section 4.2). On

the same dataset, Da San Martino et al. (2019b) introduced a multi-granularity neural network for

finding and classifying propaganda fragments. However, due to the complexity of the task, all

methods perform lower than 0.25 overall F1 score in fragment-level classification.

In the next iteration of the shared task, the fragment-level classification task was further split into

two subtasks: a span identification (SI) task of finding propaganda fragments in news articles, and a

propaganda technique (TC) classification task given a propagandistic fragment (Da San Martino et

al., 2020). This new task formulation was introduced to reduce the complexity of the simultaneous

tagging and classification, and to allow for in-depth exploration of one subtask. The eighteen

propaganda techniques became fourteen with some techniques discarded due to small frequency in

the data or merged with other ones due to their similarity (e.g., Whataboutism, Red Herring, and

Strawman are merged under one technique). The top teams in the SI task have used methods such
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as a heterogeneous multi-layer neural network with part-of-speech (PoS) and named entity (NE)

embeddings into an LSTM tagger (Morio et al., 2020), RoBERTa with self-supervision (Jurkiewicz

et al., 2020). The top teams in Technique Classification used an SI model to generate propaganda

spans that can be used as silver labels for a RoBERTa model (Jurkiewicz et al., 2020) and the

use of RoBERTa with post-processing to handle some propaganda techniques such as Repetition

(Chernyavskiy et al., 2020).

We did not participate in the second iteration of the propaganda detection shared task nor did we

tackle any of the other fallacy datasets in a single dataset setup. Working towards a unified approach

for fallacy recognition, we tackle five fallacy datasets in a multitask fashion and we present a unified

model for fallacy recognition using instruction-based prompts (Alhindi et al., 2022).
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Chapter 3

The Role of Argument Structure in Fact-Checking

Argument Mining is the automatic identification and extraction of argument structures that

mainly consist of argumentative components (e.g., claim, premise) and their relations (e.g., support,

attack). Several approaches have been developed to extract these components and relations from text

(Nguyen and Litman, 2016; Eger et al., 2017; Alhindi and Ghosh, 2021). While we do not propose

new models for extracting argument structures in this thesis, we focus on utilizing knowledge

of argumentative discourse structures into two downstream tasks that can improve fact-checking.

Harnessing argumentation mining in the news domain for applications related to fact-checking is still

underutilized. It is primarily limited to creating corpora and analytical studies (e.g., argumentation

strategies in editorials (Al Khatib et al., 2016)). We show two tasks related to fact-checking that

benefit from argumentation features extracted from news articles: i) distinguishing factual from

opinionated articles (Alhindi et al., 2020); ii) predicting the checkworthiness of sentences in news

articles (Alhindi et al., 2021), as we describe below.

Subjectivity in news reporting has been rising in recent years, especially in online-only publi-

cations (Blake and others, 2019). It was estimated that only 41% of publishers label their type of

articles (e.g., editorial, review, analysis), and among those who label the types, there is a lack of

consistency and clarity (Harris, 2017). A major finding of a 2018 study led by the Media Insight

Project showed that most journalists (nearly 80%) think that their news organizations should clearly

mark what is news reporting and what is opinion/commentary in order to combat fake news and gain

public trust (The-Media-Insight-Project, 2018). Therefore, we develop models for detecting the type

of news articles (news story or opinion piece) by introducing argumentation features as described in

Section 3.1 (Alhindi et al., 2020). These models can flag content to readers or fact-checkers who
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seek to check verifiable factual information, not personal opinions.

The second task is the checkworthiness prediction of sentences in news articles. Most previous

attempts at automating fact-checking focus on the verification of claims against automatically- or

manually-retrieved evidence from (trusted) sources such as Wikipedia or news articles from credible

publishers (Thorne et al., 2018a; Ferreira and Vlachos, 2016; Pomerleau and Rao, 2017a). However,

less attention is given to automatically compiling a list of checkworthy statements that can then be

inspected and fact-checked by a human fact-checker (or by a fact-checking system). Several previous

studies developed datasets and models for identifying checkworthy statements in political news,

debates, and social media (Hassan et al., 2017; Jaradat et al., 2018; Arslan et al., 2020; Nakov et al.,

2021b; Nakov et al., 2022), while we look at news articles. We utilize argumentation in selecting

the proper context for statements to determine their checkworthiness (Section 3.2). In addition,

we release the first multi-layer annotated corpus of fact-checked statements and argumentative

discourse structures in news articles (Alhindi et al., 2021).

Our contributions in this chapter are the following:

1. We demonstrate that sentence-level argumentation features derived from predictive models

are useful in the downstream task of document-level news vs. opinion classification and

transfer well to articles from unseen publishers or domains.

2. We introduce a new dataset of 95 climate change news articles with annotations of fact-

checked segments and argumentative discourse structure and introduce a model that incorpo-

rates information from argumentative discourse structure to predict the checkworthiness of

sentences in those articles.

3.1 Fact vs. Opinion in News Articles

Broadly, there are two types of news articles: 1) opinion articles written to present the opinion of

the editor or board and aimed to persuade the readers with respect to a particular point of view,

and 2) news stories, which aim to report factual news or events. Other less prominent types in the
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mainstream media such as satire are beyond the scope of this study.1 Given that the intent of opinion

articles is persuasion, we hypothesize that one of the key differences between news stories and

opinion articles rests in the discourse structure and, in particular, the argumentative and persuasive

aspects of the article. Figure 3.1 shows an example of a news story and an opinion article with two

coarse-grained types of argumentative components highlighted (i.e., claims “stances relating to the

text’s main issue that needs to be supported” and premises “propositions that express reasons to

believe a given claim”). We can see that claims are more prevalent in the opinion article, while the

news story contains more premises to support a small number of claims.

We study the predictive power of such coarse-grained argumentation features (claims and

premises) for the task of news articles classification into news stories and opinion pieces. For short,

we will refer to this binary task as news vs. opinion classification.

To train our sentence-level argument component classification model (claim, premise, none), we

use the corpus of editorial news labeled with argumentation strategies introduced by Al Khatib

et al. (2016). We compare our approach that uses argumentation features to models using discrete

linguistic features from previous work (Krüger et al., 2017) and to document-level transformer-based

models such as BERT (Devlin et al., 2019a) fine-tuned for the document-level news vs. opinion

classification task. We focus in particular on the transferability of these classifiers, as this task is

particularly sensitive to changes in topic or publishers. Therefore, we train and test our models

under two regimes. First, we train on articles from one publisher and test on articles from another

publisher (including two different domains). For this, we use the dataset introduced by Krüger et al.

(2017). Second, we train on articles from multiple publishers and test on articles from an unseen

publisher.

We demonstrate gains of using argumentation features on both collections and on all modeling

approaches, with a wider margin of improvement in the smaller data scenario (i.e., when data from

a single publisher is used in training).

1Covered in an ongoing shared task at SemEval 2023 task 3, subtask 1, where the task is to classify articles into
news, opinions, or satire. More details in https://propaganda.math.unipd.it/semeval2023task3/index.html
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(a) News Story (b) Opinion Article

Figure 3.1: Sentences tagged as claims or premises in a news story and opinion articles.

3.1.1 Data

In our experiments on news vs. opinion classification, we use two data collections that aim to test

the generalizability of the modeling approaches. Details about sizes, publishers, and dataset splits

in both collections are shown in Table 3.1.

3.1.1.1 WSJ–NYT

For this dataset, we use the setup introduced by Krüger et al. (2017) for their work on news vs.

opinion classification. This consists of data from two different publishers. From the BLIIP Wall

Street Journal (WSJ) dataset (Charniak et al., 2000), we select 3,502 articles to create a balanced

training set from the two classes, 1,751 news and 1,751 opinions (including editorials and letters to

the editor), and a balanced test set of 1,000 articles from the WSJ. We create our datasets from the

original WSJ corpus following the same approach described in Krüger et al. (2017), as the exact

data splits are not publicly available. Finally, we use the New York Times Annotated (NYT) Corpus

of the Linguistic Data Consortium (Sandhaus, 2008) to create two balanced sets of 2,000 articles

each, one from the ‘Armament, Defense and Military Forces’ topic (henceforth NYT-Defense) and

another one from the ‘Medicine and Health’ (henceforth NYT-Medicine) in order to measure the

effect of publisher and topic shifts.

22



Data Collection Type Publisher News Opinion Total
WSJ-NYT train WSJ 1751 1751 3502

test WSJ 500 500 1000
test NYT-Defense 1000 1000 2000
test NYT-Medicine 1000 1000 2000

Multi-Publisher train 10 publishers 3193 3193 6386
test 10 publishers 353 353 706
test The Metro - Winnipeg 418 418 836

Table 3.1: Details of all datasets from the two data collections.

3.1.1.2 Multi-Publisher

In order to understand the effect on this task when a model is trained on a diverse sample of articles,

we create a data collection of 35k articles from multiple publishers. This collection consists of

articles that are tagged as either regular news (90% of the data), or as opinions including op-eds,

editorials, guests, letters, and others (10% of the data). The articles are from publishers in the

US: New York Times, Washington Post, Washington Observer Report, Digital Journal, Enid News,

Californian, Press Democrat, NW Florida Daily, Gazette-Mail, and NJ Spotlight. We split this data

collection to train and test sets based on temporal information with the target of keeping a 90%-10%

train-test split. We choose a date such that 90% of the articles in the data collection are published

prior to that date and we consider those as the training split where the remaining 10% constitute the

test split. Finally, we undersample the data by removing the extra news articles to have a balanced

set of news and opinion articles.

The final training set consists of 6,386 articles and the final test set has 706 articles, all balanced

across the two classes. We also create a balanced blind test set consisting of articles from an unseen

publisher from Canada (The Metro-Winnipeg) totaling 836 articles crawled and undersampled in

the same fashion. The majority of the articles in this data collection were published in 2018 or

2019.2

We perform preprocessing steps on all datasets by removing sentences with phrases such as

2This collection contains articles from publishers covered by LexisNexis at the time the research was done, or which
have no collection restrictions for research purposes. Bloomberg provided the collection of URLs that make up the
dataset.
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“your article” or “your editorial” as they exclusively appear in opinion articles.

3.1.2 Features

We run our experiments on three feature sets testing all possible combinations among them.

3.1.2.1 Linguistic Features

We start with using linguistic features as presented in Krüger et al. (2017), as the claim is these

generalize well across publishers and topics. We re-implement the set of linguistic features that

performed the best in their experiments, namely: average sentence and token length (inverted),

normalized frequencies of (negation, negation-suffix, digits, and interjection), ratios of ending

character per sentence (question marks, exclamation points, commas, and semicolons), the ratio of

quoted text, the ratio of verb tense outside the quoted text (past, present, future:will, modal verbs)

of all verbs in the article, the sentiment of text outside quotes, the sentiment of adjectives outside

quotes. We ignore features that require parsing to simplify feature extraction as they did not show

significant gains in this task. The sentiment is represented by a numerical value that captures the

degree (‘weak-subj’: 0.1, ‘strongsubj’: 1.0) and the polarity of the sentiment that is extracted using

the MPQA Sentiment Clues Lexicon (Wilson et al., 2005). Our reproduction of Krüger et al. (2017)

yields different results which are due to our more strict pre-processing that removes trivial cues

from the data and a difference in how the dataset is sampled and split.

3.1.2.2 Document-level Contextualized Embeddings

We fine-tune bert-base-cased models (Devlin et al., 2019a) on each of the two data collections to

obtain a contextualized representation of the article. We use the top layer of the [CLS] token to

represent the article. We experiment with using each of the top four layers, the sum, and the average

of all four layers to represent the [CLS]. The top layer yields the best results on the single publisher

test sets with a small gain over other layers.
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3.1.2.3 Argumentation Features

Since our target corpora do not have argumentative discourse unit (ADU) segmentation, we train

a model to estimate argumentation features for each sentence in a news article. To this end, we

use the corpus from Al Khatib et al. (2016) that has annotations of ADUs in 300 editorials from

3 publishers. Each ADU consists of one or more propositions and is annotated with one of six

argumentative types:

• Assumption: states an assumption, conclusion, or opinion of the author that usually needs

support by evidence.

• Common-Ground: states common knowledge or self-evident fact

• Testimony: gives evidence by quoting an authority

• Statistics: gives evidence by quoting results or conclusions of quantitative nature.

• Anecdote: gives evidence by stating an example.

• Other: Not argumentative or does not match any of the above types.

When training the model, we ignore sentences in the training data with multiple argumentative types

among their propositions and assume one argumentative type span over a single sentence, similar to

what is done in Daxenberger et al. (2017) where the claim detection task is structured as a sentence

classification task. As our final objective is article-level classification, we expect this choice to have

little effect on the downstream task.

We also group the six argumentative types into three coarser types, as some classes are infrequent

or similar: claim (Assumption), premise (Common-Ground, Testimony, Statistics, Anecdote), and

other (Other). We split the dataset into a training set of 6,316 sentences and a test set of 2,112

sentences. The training and the test sets are not balanced, where they have 65-70% claims, 30-35%

premises, and only about 5% labeled as other. This is an important property of the writing style

in editorials and will prove to be very useful for this task as we show in our results in Table
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3.2. We train a BERT model (Devlin et al., 2019a) for 3 epochs (with the following values of

the hyperparameters: 256 max sequence length, 32 training batch size, and 2e-5 learning rate)

to perform a three-way sentence classification into claim, premise, or other. The classifier has a

macro F1 score of 0.76 on the labeled test set. We experiment with other hyperparameters and other

transformer-based models, such as RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019), but

notice negligible differences with respect to the fine-tuned BERT model.

We split the articles in all the datasets described in Section 3.1.1 into lists of sentences using

the NLTK sentence tokenizer (Bird et al., 2009) and we use our fine-tuned BERT model to classify

each sentence into one of the three argumentative types. We then use the tagged sentences in each

article to generate argumentation features used in the main task of article-level news vs. opinion

classification.

3.1.3 Models

We describe below the three models we use in our experiments, which include a machine learning

model with discrete features, namely an SVM (Cortes and Vapnik, 1995), and two deep learning

models, namely RNN (Rumelhart et al., 1985) and BERT.

SVM. We train a support vector machine (SVM) classifier with a linear kernel using scikit-

learn implementation (Pedregosa et al., 2011). The SVM model can take as input the linguistic

features, similar to the ones introduced by Krüger et al. (2017), the contextualized document

representation generated by the BERT model, the argumentation features, or any combination of

these. Argumentation features are represented as the distribution across the three classes (claims,

premise, none) in a given article since our hypothesis is that editorials tend to have a majority of

claim sentences, while news articles tend to have a majority of premises or other sentence types.

BERT. The BERT model is used to predict the type of article based on the [CLS] token that

represents each article. BERT is implemented using the HuggingFace transformers library (Wolf et

al., 2019). We train for 3 epochs, with a maximum sequence length of 512 tokens, a learning rate of
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Figure 3.2: RNN+BERT model architecture.

2e-5, and a batch size of 16 on the training sets from both data collections.

RNN. We use a recurrent neural network (RNN) to bridge the gap between the sentence-level

predictions for argumentation types and our document-level task of article classification. We

hypothesize that the discourse relationships between the sentence-level predictions can be leveraged

to improve classification when compared to only using the distribution over types.

For the RNN model, we use the argumentative labels of sentences as a sequence input to an

RNN layer of size 128, with 20% dropout and 20% recurrent dropout for regularization. We pass the

output of the RNN model to a softmax dense layer for prediction. The input sequence to the RNN

has a maximum length of 100 sentences, which covers more than 95% of the articles. Since we

have a sequence of a categorical feature that has one of three possible values (claim, premise, none)

as opposed to a full vocabulary, we elected to use a vanilla RNN layer instead of more complex

layers such as a Long Short-Term Memory (LSTM) network (Hochreiter and Schmidhuber, 1997)
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or a Gated Recurrent Unit (GRU) (Cho et al., 2014).

RNN+BERT. In addition to fine-tuning BERT for the document-level task, we also use the fine-

tuned BERT embeddings as input to a dense layer of size 128 with 50% dropout, and we concatenate

the output with the RNN layer, then we pass the concatenated layer to a final softmax layer. We

introduce a dense layer with a dropout after the BERT embeddings, such that the BERT and RNN

output have equal layer sizes before concatenation. We denote this model as RNN+BERT. The

diagram of the model is presented in Figure 3.2.

It is important to note that this work was done in 2020 while this thesis is written in 2022. More

sophisticated language models were released in the past two years that can be used for this task

such as BART (Lewis et al., 2020), DeBERTa (He et al., 2021), T5 (Raffel et al., 2020), T0 (Sanh et

al., 2022), and GPT-3 (Brown et al., 2020). We leave experiments of these models on this task for

future work.

3.1.4 Results

The results of our experiments on the WSJ–NYT collection are shown in Tables 3.2 and 3.4, while

our results on the Multi-publisher collection are shown in Tables 3.3 and 3.5.

3.1.4.1 WSJ–NYT

All models are trained on the WSJ training set of articles that are classified as either news or opinion,

where opinion articles include both editorials and letters to the editor. The results are shown in

Table 3.2. The experiments uncover that using BERT pre-trained models in classification either by

fine-tuning or by using their contextualized embeddings as features in an SVM model yields very

high performance, but only for in-domain classification on the WSJ test set.

On the other hand, argumentation features perform the best on the two cross-publisher and

cross-topic test sets (NYT-Defense, NYT-Medicine). Argumentation features consistently show

good performance on all test sets both when used as aggregate features in the SVM model or as

28



sentence-level features in the RNN model. Using the argumentation features in the RNN model

yields the highest performance on both of the NYT test sets, showing that modeling the discourse

structure, rather than using aggregate distribution, is beneficial.

There is almost no effect from adding linguistic or argumentation features to embeddings. This

could be due to the big difference in size between the 768-long feature vector of embeddings while

other feature types have sizes less than twenty. To remedy the effect of feature sizes, we train an

ensemble SVM model on the prediction probabilities from two SVM models: one with only BERT

embeddings as features and another one with argumentation features only. This model performs

better than embeddings-only; however, the ensemble model does not have the overall highest results

on any of the test sets.

As mentioned in Section 3.1.2.1, we could not reproduce the results of using linguistic features

exactly as described by Krüger et al. (2017) due to more strict pre-processing steps and different data

splits. We notice this drop in performance when using argumentation features as well in our pilot

experiments prior to using our more strict pre-processing steps that aim to remove trivial predictions.

However, argumentation features show a smaller drop in performance caused by pre-processing

(2-3 points in average F1 score), which indicates their resilience to missing sentences from a given

article.

The models using BERT representations have very high predictive performance when the test

set is from the same publisher as the training set but generalize poorly to the other test sets from a

different publisher (NYT) and on other topics (Defense and Medicine). We hypothesize this drop in

performance may be caused by a lack of variety in the training data, which causes the model to learn

representations that do not generalize well. The next set of experiments on the multi-publisher data

collection studies the results of providing the model with data from a more varied set of publishers.

Still, from training on a single publisher, we demonstrate that argumentation features transfer well

to unseen publishers and topics without needing a large amount of task-specific training data.
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Model Features WSJ NYT-Def NYT-Med

SVM Ling. 0.84 0.75 0.70
Emb. 0.99 0.79 0.78
Arg. 0.89 0.88 0.87
Ling. + Emb. 0.99 0.79 0.78
Ling. + Arg. 0.91 0.88 0.87
Emb. + Arg. 0.99 0.79 0.78
ALL 0.99 0.79 0.78

SVM Ensemble
SVM Emb. 0.99 0.83 0.80
SVM Arg

BERT – 0.99 0.79 0.76
RNN Arg. 0.94 0.91 0.88
RNN+BERT Emb. + Arg. 0.99 0.79 0.78

Table 3.2: Average F1 score for classification of articles into News or Opinion. All models are
trained on a single publisher (WSJ). NYT-Def: Defense topic, NYT-Med: Medicine topic. Bold:
highest overall. Underlined: highest in SVM only. All datasets are balanced.

Model Features Multi Publisher Unseen Publisher

SVM Emb 0.93 0.89
Arg 0.84 0.89
Emb+Arg 0.93 0.89

BERT – 0.93 0.90
RNN Arg 0.85 0.86
RNN+BERT Arg+Emb 0.93 0.91

Table 3.3: Average F1 score for classification of articles into News or Opinion. All models are
trained on a the multi-publisher training data. All datasets are balanced.

3.1.4.2 Multi-Publisher

Table 3.3 presents the predictive results when training on the multi-publisher dataset and testing,

separately, on data from the same publishers and the publisher unseen in training. Given that

linguistic features did not do well on any of the test sets in the single-publisher training, we exclude

them from our multi-publisher experiments.

The results show different patterns from the last experiment. In these settings, BERT or

BERT-based features (in the SVM, or concatenated with the RNN) yield the best results on the

multi-publisher test set. BERT is also able to generalize well on the unseen publisher in the test
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set. However, the argumentation features used by the RNN model are still able to improve on the

BERT results by 1 F1 point when used in combination with BERT. This shows that even with a

more robust BERT classifier, the argumentation features can still improve the results on articles

from the unseen publisher. Adding the argumentative feature also does not hurt performance when

tested on the multi-publisher test set.

Remarkably, the argumentation features alone are able to achieve relatively high performance,

despite the fact that they are of very low dimensionality and are trained on a distinct, albeit related

task.

Examining the results from both the WSJ-NYT dataset and the multi-publisher training, we

observe the ability of argumentation features to capture more global trends in the writing styles

in news and opinion articles. Therefore, learning argumentation features from a single publisher

proves to be enough to demonstrate good transferability across other publishers. This indicates that

the global trends captured by the argumentation features are related to the structure of the article

and its argumentative sentence types rather than specific phrases or topics used in the article.

On the other hand, BERT captures distinctive patterns related to the words, phrases, and topics

used in the articles. This explains the large change in performance when trained on single or multiple

publishers. This indicates the ability of BERT-based models to improve in terms of generalizability

as the diversity of the training data increases. However, the argumentation features seem more

suitable in data-scarce scenarios and can still add to rich BERT-based models trained on the task at

hand.

3.1.4.3 Sub-types of Opinion Articles

To investigate the performance of argumentation features on specific types of opinion articles, we

run experiments on two more tasks: news vs. editorial, and news vs. letters to the editor showing

their results in Table 3.4 for the WSJ-NYT dataset and in Table 3.5 for the multi-publisher dataset.

The results in Table 3.4 clearly show the advantage of using argumentation features in the editorial

vs. news task. On the other hand, BERT performs better on the letters vs. news task which could be
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Opinion Class Dataset SVM (Arg. features) BERT RNN

Editorial NYT-Def 0.90 0.63 0.90
NYT-Med 0.88 0.62 0.91

Letters NYT-Def 0.89 0.98 0.87
NYT-Med 0.88 0.85 0.87

Table 3.4: Average F1 score for classification of news vs. editorials (top), and news vs. letters-to-
the-editor (bottom). All models are trained on a single publisher (WSJ). All datasets are balanced.

Opinion Dataset SVM BERT RNN RNN+BERT
Class Emb Arg Emb+Arg – Arg Arg+Emb

Editorial Multi Publisher 0.93 0.90 0.93 0.94 0.89 0.91
Unseen Publisher 0.89 0.88 0.88 0.89 0.87 0.90

Letters Multi Publisher 0.98 0.86 0.98 0.99 0.89 0.95
Unseen Publisher 0.91 0.88 0.91 0.91 0.87 0.87

Table 3.5: Average F1 score for classification of news vs. editorials (top), and news vs. letters-to-
the-editor (bottom). All models are trained on a the multi-publisher training data. All datasets are
balanced.

due to the bigger lexical difference between these two types. Linguistic features from previous work

also do well on classifying letters vs. news particularly due to the use of pronouns in the letters

(Krüger et al., 2017). This is also true for the more resilient BERT model that is trained on multiple

publishers (Table 3.5) where it performs better on the news vs. letters task. Similar to what we saw

in the news vs. opinion task under multi-publisher training, the RNN+BERT model improves the

results slightly over BERT on the news vs. editorial task when tested on the unseen publisher set.

3.1.5 Analysis of Argumentation Features

To further understand the relation between argumentative types of sentences and the discourse

structure of the articles, we study the frequency of claims and premises at each sentence position.

Figure 3.3 shows the number of times a claim (or a premise) is predicted at each sentence position

normalized by the number of articles that have this sentence position, e.g., sentence 30 shows the

number of times it is classified as a claim (or a premise) divided by the number of articles of length

30 or more. These percentages are calculated on the first 40 sentences from the articles in the
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Figure 3.3: Frequencies of claims and premises at each sentence position in news and opinion
articles.

multi-publisher training dataset in order to limit the variability caused by low counts.

Figure 3.3 shows that opinion articles tend to have a majority of claims and news articles tend to

have a majority of premises, which explains the ability of simple features such as the distribution of

sentence types to classify the article type as we show in Section 3.1.4.

In addition, we see a trend in the opinion articles to contain fewer premises, and conversely

slightly more claims, as the article progresses. This trend is much less pronounced in news stories.

These trends indicate that editorial and news stories follow, in aggregate, distinct discourse patterns.

These differences in base rates justify why the SVM model using aggregate counts is able to

predict with good accuracy the type of article with only a few features. In addition, by modeling

more complex discourse dynamics across sentences by including the whole sequence of their

argumentative types, the RNN model is able to further improve the performance when predicting

document-level labels.

Editorials tend to have a majority of claims (assumptions) as mentioned by Al Khatib et al.

(2016), which is consistent with our results. However, we see in our results that news articles tend

to have a majority of premises, which could be the case for some but not all news articles. We think

our model could be overestimating the number of premises in news articles due to being trained

strictly on data annotated from editorials. In addition, some errors are caused by the sentence
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segmentation model, which for example sometimes considers punctuations after abbreviations as

sentence endings. Consider the news article in Figure 3.1a, we can see the sentence fragment “A

new law, signed Thursday by Gov.” is marked as a complete sentence by the sentence segmentation

model and classified as a premise. However, this example is neither a full sentence nor has any

argumentative text. Other examples include tagging sentences as argumentative (claims or premises)

even when the sentence segmentation is error-free. The total predictions of claims and premises

constitute more than 95% of the predictions which is too high for texts that have both argumentative

and non-argumentative discourse. The training data has a very small number of sentences from the

‘non-argumentative’ type and as a result, this class is under-predicted by the sentence-level model.

However, we believe that our predictions of sentence types are good estimates for article-level

and possibly paragraph-level tasks, but more balanced training data from a diverse set of articles

(editorials and news stories) is needed to apply this approach for sentence-level tasks.

3.2 Information Checkworthiness

We have seen how argumentation features help in distinguishing factual language from opinions

in news articles. We now look at the problem of deciding what sentences to fact-check in news

articles and in particular in the climate change domain. We hypothesize that selecting segments

for fact-checking in news articles, particularly for controversial topics, is related to the overall

argumentative structure of the article, more specifically to the argument component type (e.g.,

claim, premise) and to the incoming and outgoing argumentative relations (e.g., support, attack)

from or to the argument components. By looking at some of the fact-checked articles, we notice

that the segments selected for fact-checking by climate scientists sometimes contain a claim, a

premise, or a combination of both a claim and a premise. When we look at the context around

the fact-checked segments, we notice patterns related to the argumentative structure. For example,

human fact-checkers tend to fact-check a claim when it is not supported by evidence (premise) or

only supported by another claim, and fact-check a premise when it is used to support a claim (e.g.,
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Figure 3.4: Fact-checked segments and argument components and relations in one article.

to challenge the relevance of that evidence in support of the claim). Not all fact-checked segments

are chosen on a basis related to the argumentative structure, as we show in our analysis. However,

annotations of fact-checked segments and argument component types allow us to understand and

model this relation. Figure 3.4 shows an excerpt from one article in our dataset with its argument

structure and fact-checked segment annotations.

3.2.1 Multi-Layer Annotated Corpus

We describe below the dataset with the fact-checked segment annotation by climate scientists and

our annotation of the argumentative discourse structure on the same dataset.

3.2.1.1 Fact-Checked Segments Annotation

We introduce a new dataset of 95 climate change news articles fact-checked at the sentence level

by climate scientists at the climatefeedback.org website. The articles are from 40 publishers

mainly in the U.S., UK, and Australia (e.g., The New York Times, The Guardian, The Washington

Post, The Wall Street Journal, The Australian, The Telegraph, Forbes, USA Today, Breitbart,
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Credibility very-low very-low/low low neutral high high/very-high very-high mixed
Count 23 7 10 7 21 8 18 1

Table 3.6: Number of articles per credibility level.

and Mashable).3 Each article is fact-checked by 3 to 5 climate scientists that evaluate scientific

reasoning, add relevant information missed by the article and check for: factual accuracy, scientific

understanding, logical reasoning, precision/clarity, sources quality, and fairness/objectivity4. The

articles are given an article-level credibility assessment from very low to very high by the fact-

checkers in addition to the segment-level annotation. Table 3.6 shows the number of articles in each

of the eight degrees of credibility for news articles. The annotations of fact-checked segments vary

in length from a fragment of a sentence to multiple sentences. We thus map these to binary labels at

the sentence level: fact-checked sentences or non-fact-checked sentences. Each sentence is labeled

as ’fact-checked’ if it is fact-checked, has a fact-checked fragment, or is part of a multi-sentence

fact-checked segment. We use the NLTK sentence segmenter (Loper and Bird, 2002) to split both

the original articles and the fact-checked segments into a list of sentences.

A total of 134 articles were fact-checked by climatefeedback.org at the time of crawling

this data (May 2020). However, we only include articles that have segment-level annotations

and thus the final dataset has a total of 95 articles. We split the dataset into 68 articles in the

training set (4,353 sentences in total, 824 are fact-checked), 7 articles in the development set (249

sentences in total, 55 are fact-checked), and 20 articles in the test set (970 sentences in total, 220

are fact-checked). We consider article credibility, publisher, and the ratio of fact-checked sentences

when doing the split to make sure all data splits have articles from a diverse set of credibility levels,

publishers, and styles. The ratio of fact-checked sentences in all three splits is 20-25% of the total

number of sentences in the data.
3We collect the articles from LexisNexis, which licenses the use of data for research purposes.
4https://climatefeedback.org/process/
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3.2.1.2 Argumentative Discourse Structure Annotation

We also annotate the argumentative discourse structure of the 95 fact-checked articles. Our annota-

tion scheme is a slight modification of the one introduced by Stab and Gurevych (2017a). It has the

following three types of argument components, each consisting of a single proposition:

• Major-Claim: a proposition that expresses the main stance the author takes about the main

issue of the text.

• Claim: a stance relating to the main issue of the text that can support or undermine a major

claim, or another claim.

• Premise: a proposition that expresses reasons to believe a given claim.

Also, our scheme identifies the four types of relations listed below. The relations are directed

connections between components, such that each component may have no more than one outgoing

relation.

• Support: occurs when a premise supports another premise, a claim, or a major-claim, or when

a claim supports a major claim.

• Attack: occurs when a premise attacks another premise, a claim, or a major-claim, or when a

claim attacks a major claim.

• Restate: indicates that two components of the same type (such as two claims) are the same

(e.g., the author introduces a Major Claim and then restates it at the end of the article).

• Joint: occurs only between two adjacent premises and indicates that the two should be taken

as a single argumentative unit. They are distinct propositions, but neither can be considered

argumentative without the other.

Our annotation study consists of six annotators, all undergraduate students. We recruit annotators

from the departments of Linguistics, English, and Comparative Literature. We train them on a
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sample of articles, then assign each a 32-article batch. The articles are distributed such that each

batch has three annotators. We use the Brat web server as our annotation tool.5

We create gold annotations for each article by synthesizing all three of its annotators’ contri-

butions. The text span for each gold component consists of the minimum common span of all

overlapping components from the three annotations. We use majority voting to decide the label

of the new gold component, with the label that occurs most often in the overlapping individual

annotations being chosen as the gold label. In cases with a three-way tie between unlabelled,

Premise, and Claim or Major-Claim, we determine the highest quality annotator of that span, where

annotator quality is an ordinal ranking of all annotators in the study in descending order of their

average pairwise agreement across all articles and use the label of the highest quality annotator.

Once the gold argument components are created, we generate gold relations. First, we collect

all outgoing relations from the individual annotators’ components associated with a given gold

argument component. We then remove any relations which begin or end at a component that was

not included in the creation of a gold component. Then, for each gold argument component, we

determine the gold relation by, in order of priority: adherence to guidelines, annotator quality, and

the frequency with which the given relation type appears in our corpus. Adherence is a binary True

or False depending on whether the proposed relation is consistent with our annotation schemes,

such that an adherent relation is chosen when possible. To assess the quality of the resulting gold

annotations, an expert meta-annotator then examined 18 of the resulting 95 annotated articles and

recorded any instances in which they disagreed with the gold annotation. This comparison resulted

in an agreement with the gold annotations 85.3% of the time.

We calculate inter-annotator agreement using two versions of dkpro-statistic’s open-source 6

implementation of Krippendorff’s alpha, which measures on a scale from -1 (inverse agreement)

to 0 (agreement only by chance) to 1 (perfect agreement) (Bär et al., 2013; Krippendorff, 2011).

When using the coding version, which uses only the labels assigned to each component, we find

an overall inter-annotator agreement of .4368, with category agreements of .1745 for Premises,

5brat.nlplab.org
6dkpro.github.io/dkpro-statistics
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.2175 for Claims, and .3782 for Major-Claims. Using the unitizing version, which takes into

account both the label of each argument component and the span each annotator selected, we find

an overall agreement of .2763, with agreements of .2803 for Premises, .2463 for Claims, and .4312

for Major-Claims. We also use the unitizing version to calculate each annotator’s average pairwise

overall agreement for the purpose of assessing annotator quality, finding a range from .1776 to

.4641. The dataset comes from multiple publishers and countries and includes numerous types of

articles such as editorials, op-eds, news analysis, and news reporting. This increases the complexity

of the annotation task, which could explain the low Krippendorff’s alpha scores for inter-annotator

agreement.

3.2.2 Analysis of Argumentation in Fact-Checked Segments

To further understand the relation between argumentative discourse structure and fact-checked

segments, we analyze the argument component types and relations of the fact-checked segments

in the training data. To see the effect of our strategy in selecting gold argumentative spans and

relations on the overlap with fact-checked segments, we do our analysis using the annotations of the

best annotator for each article (overall highest in pairwise agreement with other annotators), and the

gold annotations. We look at the original fact-checked segments before they are split to sentences

as described in Section 3.2.1.1. This results in 589 fact-checked segments that mostly consist of

multiple sentences (splitting them to sentences increases the number to 824 fact-checked sentences).

Argument Component Types. We first look at the best annotator’s coding. Out of the 589

fact-checked segments, 430 maps to argument components in the articles. Out of argumentative

fact-checked segments, 53% consist of a single argument component: 95 are Claims, 82 are

Premises and 17 are Major-Claims, while the remaining consist of two (25%), three (10%), or four

or more argument components (12%). Table 3.7 shows the most frequent argument component

types of the fact-checked segments. When we use the gold annotations, the number of annotated

segments in most articles decreases due to only including segments that are annotated by two or
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Best Annotator Gold Annotations
AC Type Frequency AC Type Frequency
Claim 110 Claim 91
Premise 100 Premise 76
Premise Premise 40 Major-Claim 22
Claim Claim 26 Premise Premise 20
Claim Premise 25 Claim Premise 17
Major-Claim 21 Claim Claim 12
Premise Claim 13 Premise Claim 9
Premise Premise Premise 10 Premise Claim Claim 4
Claim Claim Claim 8 Premise Premise Claim 4
Premise Claim Premise 7 Claim Premise Claim 4

Table 3.7: The most frequent argument component (AC) types of fact-checked segments.

Arg. Best Annotator Gold Annotations
Comp. Number and Type of Relations Freq. Number and Type of Relations Freq.
Claim 1

sup−−→ Claim 18 1
sup−−→ Claim 12

1
sup−−→Major-Claim 13 1

sup−−→Major-Claim 11

Premise 1
sup−−→ Claim 79 1

sup−−→ Claim 54

2 att−→ Claim 9 1
sup−−→ Premise 4

sup/oth←−−−− Premise

Major ≥5
sup←−− Claim (all) 13 ≥4

sup←−− Claim (all) 10

Claim 1 oth−→Major-Claim 3 1 oth−→Major-Claim 2

Table 3.8: Relation counts for best annotator (left) and gold annotations (right).

more annotators. This reduces the argumentative fact-checked segments from 430 to 307 out of the

589 total fact-checked segments. This reduction cascades to the frequency of argument component

types (Table 3.7) and relations counts (Table 3.8) in fact-checked segments.

Argumentative Relations. When we look at the relations from and to argument components that

are fact-checked (as annotated by the best annotator), we notice that a Premise is fact-checked

when it has one relation (mostly an outgoing support relation) and a Claim is fact-checked when

it has many relations (up to four) with mixed directions (incoming, outgoing) and types (support,

attack). This essentially maps to fact-checking a Premise when it is used as supportive evidence and

fact-checking a Claim when it is central to the overall argument of the article. Also, Claims and

40



Major-Claims are fact-checked when they are only supported by other Claims (which could signal

that the author is not providing evidence, thus showcasing an “evading the burden of proof " fallacy).

An elaborate discussion of the fallacies in misinformation and beyond is provided in Chapter 4. The

most frequent relation counts of fact-checked segments are shown in Table 3.8.

The general patterns found in the annotations of the best annotator still hold in the gold

annotations. The only exception in the gold annotations is that a Major-Claim is fact-checked more

often than segments consisting of two Premises or two Claims, which is mainly due to smaller

overall counts of argument components (and relations) in the gold annotations.

3.2.3 Experimental Setup

We use the climate scientists’ decision to fact-check a sentence as our gold labels for checkworthi-

ness. In order to understand the capability of machine learning models to decide whether a sentence

should be fact-checked, we introduce an experimental setup as follows. In line with previous work,

we formulate this problem in two ways: a) sentence classification task, i.e. determining whether a

given sentence should be fact-checked or not, and b) sentence ranking by checkworthiness. For the

sentence classification task, we use Macro F1 scores as our evaluation metric, while for ranking we

use Mean Average Precision (MAP). We experiment with fine-tuning BERT (Devlin et al., 2019a)

using its implementation in the transformers library by HuggingFace (Wolf et al., 2020) with and

without argumentation context as described below.

Baselines. We fine-tune BERT for 3 epochs (bert-base-uncased, max sequence length 256, batch

size 16, learning rate 2e-5) using three different inputs to establish a baseline for this task. The

first baseline is fine-tuning using only the target sentence for classification as the input (SENT).

The other two configurations utilize the capability of BERT to handle two inputs. Therefore, we

experiment with passing the target sentence with its previous sentence as input (PREV+SENT) and

with its next sentence (SENT+NEXT). These two configurations essentially provide local discourse

context following the natural order of sentences in the article.
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(a) Target Sentence Only

 BERT  BERT  BERT

target 
sentence

target 
sentence

target sentence 
(claim)

next
sentence

premise

support

NCFC NCFC NCFC

(b) Discourse Context (c) Argumentation Context

Figure 3.5: Showcasing three scenarios of fine-tuning BERT: (a) target sentence only, (b) an example
of discourse context, and (c) and example of an argumentation context. The two labels are FC:
Fact-Checked, and NC: Not Checked.

Argumentation Context. One simple way to test our hypothesis on the relation between argumen-

tation and checkworthiness is by selecting a context for the target sentence using the argumentative

discourse structure. We refer to such context as the argumentation context. If the target sentence is

argumentative, we look at its outgoing and incoming argumentative relations. If the sentence has an

incoming relation, then the source of that relation is passed as the first input of BERT and the target

sentence is passed as the second input. If the relation is outgoing from the target sentence, then the

target sentence is passed as the first input and the target of the relation is passed as the second. As

a single sentence could consist of more than one argument component, which in turn could have

many relations, this creates many pairs for the target sentence.

We explore three configurations for using the argument structure to select context. First, we

keep all pairs for each target sentences, thus increasing the number of instances in the data and

maintaining the same gold label for each repeated target sentence in the training data that is matched

with a different argumentation context. We denote such configuration as AC(ALL). The final label

during inference time can be determined in two ways: via majority label of predictions for each

target sentence, and via favoring the minority class, i.e., if one prediction is to fact-check then we

consider that as the final label.

Second, we select some of the argumentation context by keeping the most frequent relations
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in fact-checked segments seen in training as discussed in Section 3.2.2. If the target sentence

has a Claim or Major-Claim, then we only keep incoming support relations from other Claims or

Major-Claims. However, if the target sentence has a Premise, we keep outgoing relations to Claims

or Major-Claims. We also limit the total number by either 3 (AC(3)) or 1 (AC(1)) selecting at

random if the remaining relations exceed the limit. In case the target sentence is not argumentative,

we revert to the discourse context by selecting the previous sentence.

Third, we experiment with prepending the argument component type of the target sentence and

its context to the input text (e.g., if the sentence has a claim, the input will be “_CLAIM_" followed

by the sentence; for non-argumentative sentences we use “_NONE_”). We denote experiments with

such configurations with the letter (T).

3.2.4 Results and Discussion

We show the results of our experiments in Table 3.9 for the development set and Table 3.10 for the

test set. We can see in the baseline experiments in both tables that PREV+SENT condition is better

than SENT+NEXT condition both in terms of Macro F1 score and the Fact-Checked class F1 score

(FCclass F1).

Looking at the results on the dev set, we can see that the argument context of SENT+AC(1) has

the highest FCclass F1 of 0.33, which is 4 points above PREV+SENT and 6 points above SENT+NEXT.

It also has the highest Macro F1 of 0.58, which is 2 points above PREV+SENT and 3 points above

SENT+NEXT. This indicates that providing a context based on argument relations that could be

either before or after and not necessarily adjacent to the target segment is more informative for

checkworthiness than providing local discourse context of the previous or next sentence. The same

holds for the test set where the best argument context of SENT+AC(1)+T has the best FCclass

F1 of 0.33 (4 points above PREV+SENT and 7 points above SENT+NEXT), best Macro F1 of 0.59

(2 points above PREV+SENT and 3 points above SENT+NEXT), and best MAP of 0.420 (2 points

above SENT, which is the highest baseline with MAP score). The test set SENT+AC(1)+T Macro

F1 and MAP results are statistically significant over all three baselines SENT, PREV+SENT, and
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Group Model Input Not-Checked Fact-Checked Macro F1 MAP
SENT 0.83 0.23 0.53 0.296

Baselines PREV+SENT 0.83 0.29 0.56 0.387
SENT+NEXT 0.83 0.27 0.55 0.296
SENT+AC(1) 0.84 0.33 0.58 0.366

Argument SENT+AC(3)v1 0.82 0.31 0.57 0.299
Context SENT+AC(3)v2 0.82 0.32 0.57 0.299

(Text only) SENT+AC(ALL)v1 0.83 0.26 0.54 0.318
SENT+AC(ALL)v2 0.81 0.30 0.56 0.318
SENT+AC(1)+T 0.83 0.29 0.56 0.359

Argument SENT+AC(3)+Tv1 0.84 0.27 0.57 0.305
Context SENT+AC(3)+Tv2 0.85 0.29 0.57 0.305

(Text+Type) SENT+AC(ALL)+Tv1 0.82 0.32 0.57 0.281
SENT+AC(ALL)+Tv2 0.82 0.31 0.57 0.281

Table 3.9: Results on the development set. Per-class F1, macro F1 for sentence classification, and
MAP for sentence ranking. v1Majority prediction to determine the final label. v2Final prediction is
to fact-check if at least one prediction for the target sentence is as such. v1,v2Voting strategies do not
affect MAP as we take the average of the prediction probabilities for each target sentence.

Input NC FC F1 MAP
SENT 0.85 0.28 0.56 0.398
PREV+SENT 0.82 0.29 0.56 0.384
SENT+NEXT 0.84 0.26 0.55 0.385
SENT+AC(1) 0.83 0.30 0.57 0.413
SENT+AC(1)+T 0.84 0.33 0.59† 0.420†

Table 3.10: Per-class F1, macro F1 and MAP on the test set. †significant over the baseline
(PREV+SENT).

SENT+NEXT.

However, providing more than one sentence does not improve the results in the AC(3) and

AC(ALL) experiments as shown in Table 3.9, regardless whether the final prediction at inference

time is decided via majority voting or favoring the FC class. Therefore, we only run AC(1) and

AC(1)+T experiments on the test set. It is worth noting that adding the argumentative type to the

target sentence and its context yields the highest results on the test set but not on the development

set. This could be due to the small size of the development set of 249 sentences from 7 articles,

which could have lead to high variability from the general trend in the data. The sentence type

information has also the highest MAP score for the sentence ranking task. The ranking is done
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based on the prediction probability of the model for all sentences in an article. The MAP value is

computed by taking the mean of all average precision scores on all articles in one data split. This

is a simplified version of the classification task where the model does not need to have correct

prediction for every single sentence in the article as long as it highly ranks most of the fact-checked

sentences in an article.

Argumentative Segments. In order to have a better understanding of the true potential of the

argumentative discourse context for this task, we look at the accuracy of predictions on the argu-

mentative segments of the articles. All non-argumentative segments have no incoming or outgoing

argumentative relations. Therefore, there is no way of providing an argumentative discourse context

for them, and thus they are matched with their previous sentence as mentioned earlier. Thus, the

reported results on all AC conditions is on a mix of pairs where some sentences have an argu-

mentation context while others have a discourse context. Out of the 249 sentences in the dev set,

133 are argumentative of which 37 are Fact-Checked. If we look at the model performance on

this subset of the dev set, we see scores of 0.31 FCclass F1 and 0.53 Macro F1 for PREV+SENT,

while having scores of 0.41 FCclass F1 and 0.60 macro F1 for SENT+AC(1). A gain of 10 F1

points in the FCclass on the argumentative subset of the dev set compared with 4 points difference

in FCclass F1 on the whole set shown in Table 3.9. The same observation holds for the test set

that includes 485 argumentative sentences (out of 970) of which 123 sentences are Fact-Checked.

The results on this subset are 0.33 FCclass and 0.55 macro F1 for PREV+SENT, and 0.38 FCclass

and 0.61 macro F1 for SENT+AC(1)+T. This is again a wider margin of 5 F1 points on FCclass

compared to the 4 points difference in FCclass F1 reported in Table 3.10 on the whole test set. These

numbers show that using argumentation context for determining the checkworthiness of sentences

in an article is more clearly beneficial on the argumentative segments of the article. We leave further

experimentation and modeling for future work that includes complimenting this approach with

other linguistic information to determine the checkworthiness of the non-argumentative parts of the

articles.
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Error Analysis. We closely examine a few examples where the argumentation context has helped

the model in making a correct prediction. One fact-checked "Major-Claim" says: "Updated data

from NASA satellite instruments reveal the Earth’s polar ice caps have not receded at all since the

satellite instruments began measuring the ice caps in 1979." is the first sentence in the article, and

thus it is paired with the title in the PREV+SENT model that does not make a correct prediction.

However, the AC(1)+T model pairs it with another "Major-Claim" (The updated data contradict

one of the most frequently asserted global warming claims ...) that comes 3 sentences later in the

article and has a support relation to the target sentence. Another example is the "Major-Claim"

(The brutal weather has been supercharged by human-induced climate change) that is supported

by a "Claim" (Climate models for three decades have predicted exactly what the world is seeing

this summer). Both of these examples are correctly predicted by the AC(1)+T model, which

indicates the benefit of providing both the argument component type and its argumentation context

to determine its checkworthiness, especially for "Major-Claims". On the other hand, AC(1)+T

makes several wrong predictions to fact-check sentences from the Not-Checked class, which are

predicted correctly by the SENT and the PREV+SENT models. This happens in cases where both

the target and context sentences are Claim/Major-Claim, which indicates that such relations are

providing a strong signal to fact-check. However, the climate scientists might have decided that

those sentences are not checkworthy due to their own knowledge in the field rather than for reasons

related to the argumentation structure.

3.3 Conclusion

Throughout this chapter, we have utilized knowledge from the argumentative discourse structure in

two downstream tasks relevant to fact-checking. In the first task, we used a dataset of editorials

with argument component annotations to train a sentence classifier that we used to extract features

for the main target task of classifying news articles into news stories or opinion articles. In the

second task, we annotated the argument structure in a dataset of fact-checked climate change news
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articles and used these annotations to determine the most relevant context to provide for predicting

the checkworthiness of sentences as determined by the human fact-checkers. Looking at our study

in both tasks, we have the following observations:

• We are able to predict the argument structure to provide useful features for article-level

classification, however, we had to use gold annotations of arguments to improve on sentence-

level classification (and ranking).

• Argumentative discourse structures are able to provide highly transferable features under data

scarce scenarios that are not affected by changes in domain and publisher.

• Preliminary results on studying the relation between argument structure and fact-checking

show statistically significant improvements in utilizing argumentation context for predicting

checkworthiness, especially in the argumentative segment of the target text.

Considering the aforementioned observations, we list two avenues of potential improvements.

• To have more accurate predictions of argument structures, we could train a multitask token

and sentence argument segmentation model on news articles similar to our work on school

student essays (Alhindi and Ghosh, 2021). End-to-End argumentation mining could also be

improved further by incorporating information from boundaries of Elementary Discourse

Units (EDUs) (Saha et al., 2022).

• It seems that argument structure improves checkworthiness prediction on a subset of check-

worthy statements that follow our hypothesis: fact-checking a claim when it is not supported

or only supported by other claims, and fact-checking a premise when it supports a claim.

The first part of the hypothesis (fact-checking a claim) demonstrates the structural fallacy of

“Evading the Burden of Proof”. In the next chapter, we study qualitative aspects of arguments

and how they link to checkworthiness from a comprehensive view of fallacies that covers

multiple types (beyond structural) and diverse datasets.
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Chapter 4

Fallacies as Indicators of Misinformation

In the previous chapter, we showed how features from argument structure can help in downstream

tasks such as the classification of article types, and information checkworthiness in news articles.

In this chapter, we are interested in modeling qualitative aspects of arguments, more specifically

fallacious moves in argumentation, and utilizing such models in deepening our understanding of

misinformation and checkworthiness.

Fallacies are used as seemingly valid arguments to support a position and persuade the audience

about its validity (Englebretsen, 1973). Theoretical work in argumentation has introduced various

typologies of fallacies. For example, Van Eemeren et al. (2002) consider fallacies that occur when

an argument violates the ten rules of a critical discussion (Van Eemeren and Grootendorst, 1987)1,

while Tindale (2007) thinks “a precise definition (of fallacy) is difficult to give and depends on a

range of considerations” and categorizes fallacies into 4 categories: structural fallacies, related to

the number and structure of arguments; fallacies from diversion, drawing from the (un)intentional

diversion of the attention from the issue at hand; logical fallacies, related to the argument scheme

at play and language fallacies, related to vagueness or ambiguity. Fallacious reasoning can bring

misbehavior and be used for manipulation purposes. Thus, having a system that can find and classify

fallacy types is crucial for applications that teach humans how to identify and avoid using fallacies

in their arguments.

Our study of fallacy recognition in this chapter consists of four sections. In Section 4.1, we

present an overview of three existing fallacy schemes (and datasets) that describe fallacy types in

dialogue (Habernal et al., 2017), propaganda techniques in news (Da San Martino et al., 2019b),

1The ten rules and their violations are listed in Appendix A
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and logical fallacies collected from educational websites (Jin et al., 2022). Then in collaboration

with Musi et al. (2022), we introduce a new scheme for annotating fallacies in fact-checked content

as well as release two new datasets built using this scheme.

Then, we introduce our models for fallacy tagging and classification. In Section 4.2, we work on

a single fallacy dataset and introduce a BiLSTM-CRF sequence tagger that finds fallacious segments

in news articles as well as classifies their types (Alhindi et al., 2019). Due to the complexity of the

simultaneous tagging and classification of fallacy, we limit this study to one dataset, propaganda

(Da San Martino et al., 2019b), that has eighteen propaganda techniques with annotation of fragment

boundaries and type of propaganda techniques in news articles. We show the effect of one-hot

encoded features from relevant dictionaries on having a high precision sequence tagger for a high

multi-class classification task in a severely imbalanced dataset. We end Section 4.2 by showing a

model for the classification of fallacy types (propaganda techniques) given propagandistic segments.

In an effort to make progress towards solving the general problem of fallacy recognition beyond

a single dataset, in Section 4.3, we expand the classification aspect of the task by including five

fallacy datasets from four fallacy schemes, but we limit the tagging aspect by providing fallacious

segments only. For this, we propose a unified model based on multitask instruction-based prompting

of the T5 model (Raffel et al., 2020) for generic fallacy type classification of 28 unique types given

any sentence that contains a fallacious segment (Alhindi et al., 2022).

Finally, in Section 4.4, we use our model for fallacy type classification for understanding the

checkworthiness of statements where we model fallacies as rationales that explain the reasons why

certain statements must be prioritized for fact-checking.

Our main contributions in this chapter are as follows:

• We introduce a new scheme for annotating fallacy in misinformation and use that scheme to

annotate fallacies in two domains: climate change, and Covid-19.

• We introduce instruction-based prompts to train a T5 multitask model for fallacy type classifi-

cation across five datasets.
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• We consider fallacy types as indicators of misinformation and use them to explain the

checkworthiness of misinformative content.

4.1 Fallacy Datasets and Schemes

Work in computational models for fallacy detection is still in its infancy, with a limited set of

relatively small datasets such as fallacies in question and answer dialog moves (Habernal et al.,

2017); name-calling in social media debates (Habernal et al., 2018), fallacies as propaganda

techniques in news (Da San Martino et al., 2019b); and logical fallacies from educational websites

(Jin et al., 2022).

We describe in Section 4.1.1 three existing fallacy schemes (and datasets) for dialogue (ARGOTARIO)

(Habernal et al., 2017), PROPAGANDA (Da San Martino et al., 2019b), and logical fallacies (LOGIC)

(Jin et al., 2022) that we use in our experiments. Then, we introduce in Section 4.1.2 a new fallacy

scheme for misinformation (MISINFO) in fact-checked content applied on text from two domains:

climate change and Covid-19 (Musi et al., 2022; Alhindi et al., 2022).

Table 4.1, shows four examples of fallacies from these datasets. The four fallacy schemes

identify different aspects of fallacies, and have different number of fallacy types (ARGOTARIO: 5,

PROPAGANDA: 18, LOGIC: 13, MISINFO: 10).

4.1.1 Existing Fallacy Datasets and Schemes

4.1.1.1 ARGOTARIO

Introduced by Habernal et al. (2017), the Argotario dataset consists of five fallacies that appear in

dialogue between players in game settings. The five fallacy types are: Ad Hominem, Appeal to

Emotion, Red Herring, Hasty Generalization, irrelevant authority, in addition to the No Fallacy

type. The authors selected these types in particular because they are: common in argumentative

discourse, distinguishable from each other, and have different difficulty levels. Players in the game

are presented with a topic (question), which they answer using one of the fallacy types. Other
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Question-Answering dialog moves in ARGOTARIO:
Has anyone been on the moon?
The moon is so far away, we should focus on our society.

Fallacy: Red Herring

Propaganda techniques in news:
The ability to build an untraceable, unregistered gun
is definitely a game changer.

Fallacy: Loaded Language

Educational website on fallacies:
She is the best because she is better than anyone else

Fallacy: Circular Reasoning

Fact-checked news:
Says Joe Biden has said 150 million Americans died
from guns and another 120 million from Covid-19.

Fallacy: Cherry Picking

Table 4.1: Examples of fallacies from multiple datasets.

players then try to predict the fallacy type written by the author of the answer. The final label is

determined when at least four players agree with the author of the answer on the type of fallacy.

Each instance consist of a question-answer pair and one out of five fallacy labels.

4.1.1.2 PROPAGANDA

Propaganda aims at influencing a target audience with a specific group agenda using faulty reasoning

and/or emotional appeals (Miller, 1939b). It is a form of communication that attempts to further

the desired intent of the propagandist by emphasizing positive features and downplaying negative

ones to cast an entity in a favorable light, which differs from persuasion that is interactive and

attempts to satisfy the needs of both persuader and persuadee (Jowett and O’Donnell, 2012).

Automatic detection of propaganda has been studied mainly at the article level (Rashkin et al.,

2017a; Barrón-Cedeño et al., 2019). However, in order to build computational models that can

explain why an article is propagandistic, the model would need to detect specific techniques

present at the sentence or even the token level. Da San Martino et al. (2019b) identified the

following 18 propaganda techniques that appear in news articles: Loaded Language, Name Calling
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Propaganda Technique Frequency
(Fallacy Type)
Loaded Language 2,115
Name Calling,Labeling 1,085
Repetition 571
Doubt 490
Exaggeration,Minimisation 479
Flag-Waving 240
Appeal to Fear/Prejudice 239
Causal Oversimplification 201
Slogans 136
Appeal to Authority 116
Black-and-White Fallacy 109
Thought-terminating Cliches 79
Whataboutism 57
Reductio ad hitlerum 54
Red Herring 33
Bandwagon 13
Straw Men 13
Obfuscation,Intentional Vagueness,Confusion 11
Total 6,041

Table 4.2: Frequency of the eighteen propaganda techniques in the dataset.

or Labeling, Repetition, Exaggeration or Minimization, Doubt, Appeal to Fear/Prejudice, Flag-

Waving, Causal Oversimplification, Slogans, Appeal to Authority, Black-and-White Fallacy, Thought-

Terminating Cliche, Whataboutism, Reductio ad Hitlerum, Red Herring, Strawman, Bandwagon,

and Obfuscation, Intentional Vagueness, Confusion (OIVC).

The data includes 350 articles in the training set, 61 articles in the development set, and 86

articles in the test set. The articles were taken from 48 news outlets; 13 propagandistic and 35

non-propagandistic as labeled by Media Bias/Fact Check2. These articles were annotated at the

fragment level where each annotator was asked to tag the start and end of the propaganda text span

as well as the type of propaganda technique. Table 4.2 lists all eighteen propaganda techniques and

their frequencies in the training data. This is the biggest dataset in our experiments, but it is also the

most unbalanced one, where six out of the 18 propaganda techniques represent more than 80% of

all propagandistic segments. Each training instance consists of a sentence, a fragment, and one out

of fourteen fallacy labels.

2https://mediabiasfactcheck.com/
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4.1.1.3 LOGIC

Jin et al. (2022) collected examples of logical fallacies from educational websites on fallacies

such as Quizziz, study.com and ProProfs. They identified 13 types of fallacies in the dataset

using Wikipedia3 as a reference. The fallacy types are: Faulty Generalization, False Causality,

Circular Claim, Ad Populum, Ad Hominem, Deductive Fallacy, Appeal to Emotion, False Dilemma,

Equivocation, Fallacy of Extension, Fallacy of Relevance, Fallacy of Credibility and Intentional

Fallacy. Each training instance consists of a text segment (e.g., dialogue, sentence) and one of

thirteen fallacy labels. The authors also introduce another challenge dataset: CLIMATELOGIC

that follows the same fallacy scheme. However, it contains text segments that are too long (e.g.,

multiple paragraphs) with no annotations of smaller fallacious fragments like the Propaganda dataset.

Therefore, CLIMATELOGIC is beyond the scope of this study.

4.1.2 A New Fallacy Scheme for Fact-Checked Content

While the three fallacy schemes in the previous section cover important aspects of fallacious

moves in different scenarios, none of them are tailored towards fallacy types that are common in

misinformation. In this section, we introduce a new annotation scheme for fallacy in fact-checked

content that is developed in collaboration with Musi et al. (2022), as well as introduce two new

fallacy datasets in the climate change and Covid-19 domains (Musi et al., 2022; Alhindi et al.,

2022).

4.1.2.1 An Annotation Scheme of Fallacy

We adopt a bottom-up approach for developing the annotation scheme: an expert has analyzed 40

fact-checked articles randomly picked from the dataset and identified which fallacies have been

called out through the comments of the fact-checkers. As an initial taxonomy of fallacies, we

adopted the one proposed by Tindale (2007), which gathers the most common fallacies discussed in

the informal logic tradition.

3https://en.wikipedia.org/wiki/List_of_fallacies
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The resulting annotation schema includes ten types of fallacies related to:

• The argumentation structure:

Evading the Burden of Proof

• The (un)intentional diversion of attention from the issue at hand:

Strawman, False Authority, Red Herring, and Cherry Picking

• The argument schemes at play:

False Analogy, Hasty generalization, Post Hoc, and False Cause

• The language used:

Vagueness

As a reality check, we have analyzed the definitions of different “verdicts”/“labels” used by

main fact-checkers in English (CLIMATEFEEDBACK; SNOPES; HEALTHFEEDBACK; POLITIFACT;

FULLFACT; THEFERRET) to see whether critiques might point to fallacious moves different from

the ones identified. Our set turned out to cover the fact-checkers verdicts: even if not exhaustive

of the fallacy universe, our sub-selection is meant to represent the most frequent fallacious moves

accomplished in online news. The guidelines contain a description of the notion of fallacy and its

relation to fake news. Each fallacy is then defined, associated with an example, and accompanied

by one or more critical questions, which have turned out to be useful means to evaluate arguments

(Song et al., 2014). To offer systematic and economic heuristics, fallacies have been ordered starting

from those having to do with the quantity of information provided (structural fallacies), followed

by those related to aspects external to the issue discussed (fallacies from diversion); logical fallacies

come into place after the other two classes are excluded. This order echoes the one provided by the

pragma-dialectics rules for a critical discussion (Van Eemeren et al., 2002)4, where the violations

of rule 8 (Argument Scheme Rule) follow the violations of rule 2 (Burden-of-Proof Rule), rule 3

(Standpoint Rule) and rule 4 (Relevance Rule). It is, in fact, not worth looking at the argument

4Complete list of rules is provided in Appendix A
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scheme at play if the information conveyed in the arguments is irrelevant to the conclusion. The

vagueness/ambiguity fallacy occupies the last position in the heuristics when all the other options

are excluded. We show below a list of all fallacy types along with their definitions.

• Structural Fallacy EVADING THE BURDEN OF PROOF: A position is advanced without

any arguments supporting it as if it was self-evident

• Fallacies from Diversion

– STRAWMAN: “The straw man fallacy is committed when the arguer misinterprets an

opponent’s argument for the purpose of more easily attacking it” (Hurley 1999, 119)

– FALSE AUTHORITY: An appeal to authority is made where the source lacks credibility

in the discussed matter, or they are attributed a statement which has been tweaked.

– RED HERRING: The argument may be formally valid, but its conclusion is irrelevant

to the issue at stake

– CHERRY PICKING: The act of choosing among competing evidence that supports a

given position, ignoring or dismissing findings that do not support it.

• Logical Fallacies

– FALSE ANALOGY: “because two things [or situations] are alike in one or more respects,

they are necessarily alike in some other respect” (Damer 1980: 49)

– HASTY GENERALIZATION: A generalization is drawn from a numerically insufficient

sample or a sample that is not representative of the population

– POST HOC: It is assumed that because B happens after A, it happens because of A.

In other words, a causal relation is attributed where, instead, a simple correlation is at

stake.

– FALSE CAUSE: X is identified as the cause of Y when another factor Z causes both X

and Y OR X is considered the cause of Y when actually it is the opposite.
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• Language Fallacy AMBIGUITY/VAGUENESS: A word, a concept, or a sentence structure

which are ambiguous is shifted in meaning in the process of arguing or is left vague being

potentially subject to skewed interpretations

We show an example below of a fact-checked segment along with the comment from the fact-checker

followed by our ordered heuristics to annotate the fallacy.

• Example:

– Segment: Why is it that human emissions of carbon dioxide drive global warming yet

natural emissions do not?

– Comment:“Nobody claims this"

• Heuristics:

1. Evading the Burden of Proof :

– CQ1: Does the position express an unassailable fact? No→ CQ2

– CQ2: Are there any arguments in support of the statement apart from personal

guarantee? Yes→ 2

2. Strawman: Has an opponent’s position been misrepresented? Yes→ END

4.1.2.2 Annotation

Using the same aricles mentioned in Section 3.2, we annotate 92 out of the 95 climate change

articles that have a total of 735 fact-checked segments with comments from the fact-checkers. The

annotators look at both the segment and comment when they annotate the fallacy type following the

annotation scheme described in Section 4.1.2.1. The annotations were first done by two non-expert

annotators that had a 0.47 Cohen’s κ (Cohen, 1960), which corresponds to moderate agreement.

The gold labels were then done by an expert annotator (in argumentation theory) that went over

both cases of agreement and disagreement to decide the final label. Following a similar setup, Musi
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Fallacy Class Fallacy Type CLIMATE COVID-19
None No-Fallacy 389 613
Diversion Cherry Picking (CP) 71 106

Red Herring (RH) 46 35
Strawman (S) 33 39
False Authority (FAuth) 34 32

Logical False Cause (FC) 36 17
False Analogy (FA) 19 13
Post-Hoc (PH) 13 20
Hasty Generalization (HG) 7 78

Structural Evading Proof (EBP) 28 105
Language Vagueness (V) 59 77
All All 735 1,135

Table 4.3: Fallacy statistics in the Climate Change and Covid-19 datasets.

et al. (2022) annotate 1,135 Covid-19 fact-checked claims that are found in social media, blogs, and

news articles.5

We show the frequency of gold labels in both datasets of each fallacy type in Table 4.3. We

notice in both datasets that around half of the fact-checked segments contain no fallacy. This

indicates that these segments either present false information (disinformation) with no fallacious

moves or are simply found to be true (information) after performing the manual fact-checking.

When we look at the frequency of the fallacy types in each dataset, we notice some fallacies are

among the most frequent in both domains such as cherry-picking and vagueness. We also see

fallacies that are more frequent in Covid-19 (that come from a majority of social media posts) such

as hasty generalization. The remaining of the diversion fallacies (red herring, strawman, and false

authority) are moderately frequent in both datasets.

4.1.3 Unified Fallacy Types and Definitions

We list in Tables 4.4 and 4.5 all the definitions and fallacy labels used in all datasets. For the multitask

(multi-dataset) model in Section 4.3, we unify the definitions and the labels for fallacies that fully

or partially overlap. Additionally, in the same tables we show the original labels and definitions

for all four fallacy schemes as they are released by (Habernal et al., 2017) for ARGOTARIO,
5Fact-checked by Snopes, HealthFeedback, PolitiFact, FullFact, and TheFerret
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Fallacy Type Definition

(H
ab

er
na

le
ta

l.,
20

17
)

Ad Hominem The opponent attacks a person instead of arguing against the claims that the person
has put forward.

Appeal to Emotion This fallacy tries to arouse non-rational sentiments within the intended audience
(Emotional Language) in order to persuade.
Hasty Generalization The argument uses a sample which is too small, or follows falsely from a sub-part to a

composite or the other way round.
Irrelevant Authority While the use of authorities in argumentative discourse is not fallacious inherently,

appealing to authority can be fallacious if the authority is irrelevant to the discussed
subject.

Red Herring This argument distracts attention to irrelevant issues away from the thesis which is
supposed to be discussed.

(D
a

Sa
n

M
ar

tin
o

et
al

.,
20

19
b)

Black and White Fal-
lacy

Presenting two alternative options as the only possibilities, when in fact more possi-
bilities exist. As an the extreme case, tell the audience exactly what actions to take,
eliminating any other possible choices (Dictatorship).

Causal Oversimplifica-
tion

Assuming a single cause or reason when there are actually multiple causes for an
issue.

Doubt Questioning the credibility of someone or something.
Exaggeration Either representing something in an excessive manner: making things larger,
or Minimization better, worse or making something seem less important than it really is
Appeal to fear/prejudice Seeking to build support for an idea by instilling anxiety and/or panic in the
(Fear or Prejudice) population towards an alternative. In some cases the support is based on precon-

ceived judgements.
Flag-Waving Playing on strong national feeling (or to any group) to justify/promote an ac-

tion/idea.
Appeal to Authority Stating that a claim is true simply because a valid authority or expert on the issue said
(Irrelevant Authority) it was true, without any other supporting evidence offered. We consider the special case

in which the reference is not an authority or an expert in this technique, although it is
referred to as Testimonial in literature.

Loaded Language Using specific words and phrases with strong emotional implications (either posi-
tive or negative) to influence an audience.

Name Calling or Label-
ing

Labeling the object of the propaganda campaign as either something the target
audience fears, hates, finds undesirable or loves, praises.

Red Herring Introducing irrelevant material to the issue being discussed, so that everyone’s attention
is diverted away from the points made.

Reductio Ad Hitlerum Persuading an audience to disapprove an action or idea by suggesting that the idea
is popular with groups hated in contempt by the target audience. It can refer to
any person or concept with a negative connotation.

Slogans A brief and striking phrase that may include labeling and stereotyping. Slogans
tend to act as emotional appeals.

Thought-Terminating Words or phrases that discourage critical thought and meaningful discussion
Cliches about a given topic. They are typically short, generic sentences that offer seemingly

simple answers to complex questions or distract attention away from other lines of
thought.

Whataboutism A technique that attempts to discredit an opponent’s position by charging them
with hypocrisy without directly disproving their argument.

Table 4.4: Fallacy types and definitions (part 1).

58
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in
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.,
20

22
)

Ad Hominem An irrelevant attack towards the person or some aspect of the person who is making the
argument, instead of addressing the argument or position directly.

Ad Populum A fallacious argument which is based on affirming that something is real or better
because the majority thinks so.

False Dilemma A claim presenting only two options or sides when there are many options or sides.
(Black and White Fal-
lacy)
False Causality (Causal A statement that jumps to a conclusion implying a causal relationship without
Oversimplification) supporting evidence
Circular Reasoning A fallacy where the end of an argument comes back to the beginning without having

proven itself.
Deductive Fallacy An error in the logical structure of an argument.
Appeal to Emotion Manipulation of the recipient’s emotions in order to win an argument.
(Emotional Language)
Equivocation An argument which uses a phrase in an ambiguous way, with one meaning in one

portion of the argument and then another meaning in another portion.
Fallacy of Extension An argument that attacks an exaggerated/caricatured version of an opponent’s.
Faulty Generalization An informal fallacy wherein a conclusion is drawn about all or many instances of a
(Hasty Generalization) phenomenon on the basis of one or a few instances of that phenomenon is an example of

jumping to conclusions.
Intentional Fallacy Some intentional/subconscious action/choice to incorrectly support an argument.
Fallacy of Credibility An appeal is made to some form of ethics, authority, or credibility.
(Irrelevant Authority)
Fallacy of Relevance Also known as red herring, this fallacy occurs when the speaker attempts to divert
(Red Herring) attention from the primary argument by offering a point that does not suffice as counter-

point/supporting evidence (even if it is true).

(M
us

ie
ta

l.,
20

22
)

Evading the Burden A position is advanced without any arguments supporting it as if it was
of Proof self-evident.
Cherry Picking The act of choosing among competing evidence that which supports a given posi-

tion, ignoring or dismissing findings which do not support it.
Red Herring The argument supporting the claim diverges the attention to issues which are irrel-

evant for the claim at hand.
Strawman When an opponent’s proposition is substituted with a similar one which is then

refuted in place of the original proposition.
False Authority An appeal to authority is made where the it lacks credibility or knowledge in the
(Irrelevant Authority) discussed matter or the authority is attributed a tweaked statement.
Hasty Generalization A generalization is drawn from a sample which is too small, not representative of

the population or not applicable to the situation if all the variables are taken into
account.

False Cause (Causal X is identified as the cause of Y when another factor Z causes both X and Y
Oversimplification) OR X is considered the cause of Y when actually it is the opposite
Post Hoc (Causal It is assumed that because B happens after A, it happens because of A. In other words
Oversimplification) a causal relation is attributed where, instead, a simple correlation is at stake
False Analogy because two things [or situations] are alike in one or more respects, they are neces-

sarily alike in some other respect.
Vagueness A word/a concept or a sentence structure which are ambiguous are shifted in mean-

ing in the process of arguing or are left vague being potentially subject to skewed
interpretations.

Table 4.5: Fallacy types and definitions (part 2).
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Fallacy
ARGOTARIO PROPAGANDA LOGIC COVID-19 CLIMATE Total Total
train/dev/test train/dev/test train/dev/test train/dev/test train/dev/test train/dev/test All

1 Ad Hominem 102 /26/ 31 –/–/– 406 /64/ 81 –/–/– –/–/– 508 /90/ 112 710
2 Ad Populum –/–/– –/–/– 296 /81/ 62 –/–/– –/–/– 296 /81/ 62 439
3 B&W Fallacy –/–/– 60 /16/ 19 192 /40/ 25 –/–/– –/–/– 252 /56/ 44 352
4 Causal Ov.simp. –/–/– 111 /28/ 34 303 /49/ 36 36 /10/ 10 39 /10/ 11 489 /97/ 91 677
5 Cherry Picking –/–/– –/–/– –/–/– 76 /20/ 23 67 /17/ 21 143 /37/ 44 224
6 Circular Reason. –/–/– –/–/– 238 /40/ 35 –/–/– –/–/– 238 /40/ 35 313
7 Deductive –/–/– –/–/– 205 /28/ 31 –/–/– –/–/– 205 /28/ 31 264
8 Doubt –/–/– 263 /66/ 82 –/–/– –/–/– –/–/– 263 /66/ 82 411
9 Emotional Lang. 150 /38/ 47 –/–/– 230 /38/ 41 –/–/– –/–/– 380 /76/ 88 544
10 Equivocation –/–/– –/–/– 62 /13/ 11 –/–/– –/–/– 62 /13/ 11 86
11 Evad Burd Prf –/–/– –/–/– –/–/– 76 /20/ 23 31 /8/ 9 107 /28/ 32 167
12 Exag/Mini –/–/– 304 /76/ 94 –/–/– –/–/– –/–/– 304 /76/ 94 474
13 Extension –/–/– –/–/– 187 /31/ 46 –/–/– –/–/– 187 /31/ 46 264
14 False Analogy –/–/– –/–/– –/–/– 13 /5/ 3 17 /5/ 5 30 /10/ 8 48
15 Fear/Prejudice –/–/– 131 /33/ 41 –/–/– –/–/– –/–/– 131 /33/ 41 205
16 Flag-Waving –/–/– 145 /37/ 45 –/–/– –/–/– –/–/– 145 /37/ 45 227
17 Hasty General. 104 /26/ 32 –/–/– 561 /128/ 123 54 /15/ 16 4 /2/ 2 723 /171/ 173 1,067
18 Intentional Fal. –/–/– –/–/– 215 /34/ 26 –/–/– –/–/– 215 /34/ 26 275
19 Irrelevant Auth. 92 /24/ 29 57 /15/ 17 196 /18/ 33 26 /8/ 8 32 /8/ 10 403 /73/ 97 573
20 Loaded Lang. –/–/– 1,331/333/416 –/–/– –/–/– –/–/– 1,331/333/416 2,080
21 Name Calling –/–/– 685 /172/ 214 –/–/– –/–/– –/–/– 685 /172/ 214 1,071
22 Red Herring 115 /29/ 35 16 /4/ 10 214 /43/ 46 28 /8/ 8 44 /12/ 13 417 /96/ 112 625
23 Reductio AH. –/–/– 33 /9/ 10 –/–/– –/–/– –/–/– 33 /9/ 10 52
24 Slogans –/–/– 84 /22/ 26 –/–/– –/–/– –/–/– 84 /22/ 26 132
25 Strawman –/–/– 4/1/6 –/–/– 28 /8/ 8 23 /6/ 7 55 /15/ 21 91
26 Thought-Term. –/–/– 48 /12/ 14 –/–/– –/–/– –/–/– 48 /12/ 14 74
27 Vagueness –/–/– –/–/– –/–/– 53 /15/ 23 48 /12/ 14 101 /27/ 37 165
28 Whataboutism –/–/– 33 /9/ 10 –/–/– –/–/– –/–/– 33 /9/ 10 52

Total (tr/de/te) 563 /143/ 174 3,305 /833/ 1,038 3,305 /607/ 596 390 /109/ 122 305 /80/ 92 7,868 /1,772/ 2,022
Total (All) 880 5,176 4,508 621 477 11,662

Table 4.6: Counts of fallacy types in each split across all datasets.

(Da San Martino et al., 2019b) for PROPAGANDA, (Jin et al., 2022) for LOGIC, and (Musi et al.,

2022) for MISINFORMATION that is used for the COVID-19 and CLIMATE datasets.

For the multitask prompting-based generative model (Section 4.3), we unify the labels of similar

fallacies (e.g., False Cause, False Causality, Causal Oversimplification→ Causal Oversimplifica-

tion; False Authority, Appeal to Authority, Fallacy of Credibility, Irrelevant Authority→ Irrelevant

Authority). We also rephrase some fallacy types by removing words such as “Appeal to” (e.g.,

Appeal to Emotion → Emotional Language) that tend to throw off generative models causing

over-prediction of these types as observed in our initial experiments. Some fallacies have partial or

full overlap with others across the four schemes. Therefore, we merge these types and use the label

of the most frequent or the most representative label of the fallacy type (e.g., Fallacy of Relevance→

Red Herring; Post Hoc→ Causal Oversimplification; False Dilemma→ Black-and-White Fallacy).

We also unify the definitions of fallacy types in prompts across datasets. We have a total of 28
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unique fallacy types across five datasets with the following final number of fallacy types per scheme

after merging and filtering out some of the types:

• ARGOTARIO: 5→ 5

• PROPAGANDA: 18→ 14

• LOGIC: 13→ 13

• MISINFORMATION: 10→ 9

The above fallacy types add up to 41 with 13 of them repeated across schemes (e.g., Irrelevant

Authority and Red Herring exist in all four schemes). Therefore, we end up with 28 unique fallacies.

We show counts of fallacy types in training/dev/test splits for all datasets in Table 4.6.

4.2 Single Dataset Case: Sequence Tagging and Fallacy Type Classification

We first consider a single fallacy dataset and start with the problem of simultaneous tagging and

classification of fallacy types in Section 4.2.1 followed by our work on type classification of

fallacious segments in Section 4.2.2.

In Section 4.2.1, a model is given a news article and needs to detect all spans of the text in which

a fallacy occur. In addition, for each span the fallacy type must be identified. Due to the complexity

of this task and the need for token level annotations, we only experiment with one fallacy dataset:

PROPAGANDA. We participated in the 2019 shared task organized by Da San Martino et al. (2019a)

for detecting 18 propaganda techniques at the fragment level (Alhindi et al., 2019). We study the

ability of models to both find a fallacious segment as well as classify its type. This setup mimics

real-life scenarios in which a system is not given a fallacious segment but rather tasked with finding

one from a collection of text and classifying the type of fallacy it has.

The complexity of the task is exacerbated by the severe imbalance nature of fallacy datasets

where a single “No Fallacy” class is more frequent than all 10-18 fallacy types combined (e.g. 70%

of PROPAGANDA and 50% of COVID-19 are labeled as “No Fallacy”). Therefore, we remove the

effect of the “No Fallacy” by only considering propagandistic segments in Section 4.2.2 to study

the ability of models to classify the type of fallacy in a given piece of text. This setup is in line with
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the propaganda technique classification task (Da San Martino et al., 2020) and the logical fallacy

detection task (Jin et al., 2022) that do not include "No Fallacy" class.

4.2.1 Sequence Tagging

We use all 18 propaganda techniques in a joint tagging and classification task of propaganda

techniques in Section 4.2. The model in this task is given a sentence and is asked to tag each word

with (B/I)-propaganda technique or O. We divided the training set (350 articles) into a training set

of 280 articles and a development set of 70 articles to perform ablation studies and error analysis.

4.2.1.1 Method

Our architecture builds on the FLAIR framework (Akbik et al., 2018; Akbik et al., 2019) that

combines character level embeddings with different kinds of word embeddings as input to a

BiLSTM-CRF model (Ma and Hovy, 2016; Lample et al., 2016). Akbik et al. (2018) have shown

that stacking multiple pre-trained embeddings as input to the LSTM improves the performance on

the downstream sequence labeling task. We combine GloVe embeddings (Pennington et al., 2014)

with Urban Dictionary6 embeddings7.

We additionally include one-hot-encoded features based on dictionary look-ups from the UBY

dictionary provided by Gurevych et al. (2012). These features are based on concepts associated

with the specific word such as offensive, vulgar, coarse, or ethnic slur. In total, 30 concept features

were added as additional dimensions to the embedding representations.

We also experimented with stacking BERT embeddings with all or some of the embeddings

mentioned above, but it did not yield better results than the BiLSTM-based model. The best model

used urban-GloVe embeddings with concatenated one-hot encoded UBY features stacked with both

forward and backward FLAIR embeddings. The model was trained for a maximum of 150 epochs

with early stopping using a learning rate of 0.1, a batch size of 32, and a BiLSTM with hidden size

6https://www.urbandictionary.com/
7https://data.world/jaredfern/urban-dictionary-embedding
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Figure 4.1: BiLSTM-CRF model with embeddings and handcrafted features

256. The results of this model are shown in Table 4.7.

4.2.1.2 Task Setup and Evaluation

This task follows a traditional BIO tagging scheme for name entity recognition (NER) that consists

of Beginning of entity (B), Inside-entity (I), and Outside-entity (O) (Ramshaw and Marcus, 1999).

However, propaganda techniques differ from typical NER tasks in the following: (i) techniques

can overlap, and (ii) some techniques have long spans that cover a complete sentence or longer.

Da San Martino et al. (2019b) develop a suitable evaluation metric for this task that is derived from

the NER literature (Nadeau and Sekine, 2007), and other tagging tasks that are more similar to

propaganda techniques such as plagiarism detection (PD) (Potthast et al., 2010).

This task is evaluated based on the prediction of the type of propaganda technique and the

intersection between the gold and the predicted spans. For a document d represented as a sequence

of characters with a set of gold propaganda fragments G that can possibly overlap, then a gold

fragment t = [ti, ..., tj] ⊆ d and a predicted fragment s = [sm, ..., sn] ⊆ d are both associated with

one of the eighteen techniques through a labeling function l(x) = {1, ..., 18}. Then, the precision
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Figure 4.2: Evaluation measure for propaganda tagging (Da San Martino et al., 2019b).

and the recall are calculated as follows

P (S, T ) =
1

|S|
∑

s∈S, t∈T

C(s, t, |s|)

R(S, T ) =
1

|T |
∑

s∈S, t∈T

C(s, t, |t|)

where C(s, t, h) = |s ∩ t|
h

δ(l(s), l(t)), and δ(a, b) = 1 if a = b, and 0 otherwise.

4.2.1.3 Results and Analysis

We only show the results of our best model in Table 4.7 to focus more on the differences be-

tween propaganda techniques. The best model is a BiLSTM-CRF with FLAIR and urban GloVe

embeddings with one hot encoded features as mentioned in Section 4.2.1.1.

As we can see in Table 4.7, we can divide the propaganda techniques into three groups according

to the model’s performance on the development and test sets. The first group includes techniques

with non-zero F1 scores on both datasets: Flag-Waving, Loaded Language, Name Calling,Labeling,

and Slogans. This group has techniques that appear frequently in the data and/or techniques with

strong lexical signals (e.g., "American People" in Flag-Waving) or punctuation signals (e.g., quotes

in Slogans). The second group has the techniques with a non-zero F1 score on only one of the

datasets but not the other, such as Appeal to Authority, Appeal to Fear, Doubt, Reduction, and

Exaggeration,Minimisation. Two out of these five techniques (Appeal to Fear and Doubt) have very

small non-zero F1 on the development set, which indicates that they are generally challenging on
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Propaganda Technique Development Test
(Fallacy Type) P R F F
Appeal to Authority 0 0 0 0.212
Appeal to Fear/Prejudice 0.285 0.006 0.011 0
Bandwagon 0 0 0 0
Black-and-White Fallacy 0 0 0 0
Causal Oversimplification 0 0 0 0
Doubt 0.007 0.001 0.002 0
Exaggeration,Minimisation 0.833 0.085 0.154 0
Flag-Waving 0.534 0.102 0.171 0.195
Loaded Language 0.471 0.160 0.237 0.130
Name Calling,Labeling 0.270 0.112 0.158 0.150
Obfuscation, Intentional Vagueness, Confusion 0 0 0 0
Red Herring 0 0 0 0
Reductio ad hitlerum 0.318 0.069 0.113 0
Repetition 0 0 0 0
Slogans 0.221 0.034 0.059 0.003
Strawman 0 0 0 0
Thought-terminating Cliches 0 0 0 0
Whataboutism 0 0 0 0
Overall 0.365 0.073 0.122 0.131

Table 4.7: Precision, recall and F1 scores of the FLC task on the development and the test sets

our model and were only tagged due to minor differences between the two datasets. However, the

remaining three types show significant drops from the development to the test sets or vice-versa.

This requires further analysis to understand why the model was able to do well on one dataset but

got zero on the other dataset, which we leave for future work. For the remaining nine techniques,

our sequence tagger fails to correctly tag any text span in either dataset. These techniques have the

most infrequent types as well as types that are beyond the ability of our tagger to spot by looking at

the sentence only such as Repetition.

In general, the model manages to detect, with varying levels of accuracy, fallacies that have

emotional manipulations, short spans of texts, and strong lexical cues. However, it misses other

fallacies that tend to be longer in nature and use a logical connection (e.g, Causal Oversimplification)

or diversion (e.g., Strawman). Overall, our model has the highest precision among all teams on both

datasets, which could be due to adding the UBY one-hot encoded features that highlighted some

strong signals for some propaganda types. This also could be the reason for our model to have the
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lowest recall among the top 7 teams on both datasets as having explicit handcrafted signals suffers

from the usual sparseness that accompanies these kinds of representations which could have made

the model more conservative in tagging text spans.

We noticed two types of noise in the data; there were some duplicate articles, and in some

articles, the ads were crawled as part of the article and tagged as non-propaganda. These could have

caused some errors in predictions and therefore investigating ways to further clean the data might

be helpful.

4.2.2 Fallacy Type Classification

Given the complexity of the task, we focus now on the classification aspect of fallacy recognition

where a model is given a fallacious segment and asked to determine the type of fallacy it has. The

data has annotations of the text spans of propaganda techniques (fallacy type) in 451 articles from 48

news outlets allowing multiple labels and partial overlap of text spans. We frame this as a sentence

classification task and a fragment (part of a sentence) classification task.

4.2.2.1 Model and Experimental Setup

We only include propagandistic fragments or their containing sentences following a similar setup of

the propaganda technique classification task introduced by Da San Martino et al. (2020). However,

we remove the Repetition class since it requires a larger context (e.g., the full article) and does

not have an argumentative fallacy. We also ignore propaganda fragments that span across multiple

sentences. Considering the sentence level, the fallacy type becomes the label of the sentence if the

fragment is included within the sentence. For sentences with multiple fragments, we consider the

label of the longer fragment and we do not allow multiple labels for a single sentence. The data has

more than 5k sentences with fallacious (propagandistic) fragments. The training, development, and

test splits are shown in Table 4.6.

We fine-tune BERT for the fallacy type (propaganda technique) classification task under three

conditions. First, sentence classification by providing sentences that contain fallacious fragments.
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Figure 4.3: Fine-tuning BERT for fallacy type (propaganda technique) classification.

Second, fragment classification by only providing the fallacious fragment that varies in length from

a single word to a full sentence. Finally, we utilize the capability of BERT to handle two inputs and

fine-tune the model by providing both the fallacious fragment and its containing sentence. We show

the three conditions for fine-tuning BERT in Figure 4.3.

4.2.2.2 Results and Analysis

We show the results of fine-tuning BERT for the classification of fallacy types in Table 4.8 using the

following hyperparameters: 3 epochs, 2e-5 learning rate, batch size 16, and maximum sequence

length 256.

We can notice the big difference in scores between sentence-only and fragment-only classifica-

tion across all types. This is most likely due to the short fragment lengths for some fallacy types

(e.g., “right-wing Islamophobes” for Name Calling and “America First” for Flag-Waving), and the

long fragments for others (e.g., “Did he know something that X was going to do?” for Doubt),

which provides an important feature for classification. However, providing full sentences with

no fragments increases the complexity of the classification task. The results improve when both

the fragment and the sentence are used as inputs (Sent+Frag) in comparison with sentence-only

classification (Sent), but not as high as fragment-only classification (Frag) as shown in Table 4.8.

The results indicate the capability of BERT to classify fallacy types when fallacious fragments

67



Propaganda Technique Sent Frag Sent
(Fallacy Type) +Frag
Appeal to Authority 0.13 0.29 0.30
Appeal to Fear/Prejudice 0.32 0.45 0.29
Bandwagon 0 0 0
Black-and-White Fallacy 0.07 0.30 0.09
Causal Oversimplification 0.20 0.45 0.42
Doubt 0.43 0.66 0.62
Exaggeration,Minimisation 0.34 0.56 0.54
Flag-Waving 0.49 0.58 0.61
Loaded Language 0.65 0.82 0.82
Name Calling,Labeling 0.51 0.81 0.82
Obfuscation, Intentional Vagueness, Confusion 0 0 0
Red Herring 0 0 0
Reductio ad hitlerum 0.18 0.46 0.37
Slogans 0.13 0.64 0.57
Strawman 0 0 0
Thought-terminating Cliches 0.09 0 0.30
Whataboutism 0 0 0.18
Accuracy 0.50 0.70 0.69
Macro F1 0.21 0.40 0.35

Table 4.8: Fallacy type classification F1 scores using BERT. Sent: sentence containing a propagan-
distic fragment. Frag: propagandistic fragment.

are annotated by having a 70% accuracy and a 40% macro F1 score. However, how can we

improve the results when such fine-grained annotations are not available or when the number of

fallacy types increases to cover ones that exist in different domains and genres? We address these

questions in the next section by developing a unified model for fallacy recognition through multitask

instruction-based prompting.

4.3 Multi Dataset Case: Unified Model for Fallacy Type Classification

Similar to our work in Section 4.2, previous work on fallacy recognition has tackled just one dataset

at a time. For example, work on detecting propaganda techniques use fine-tuning of different pre-

trained transformers with embedding-based or handcrafted features (Da San Martino et al., 2020;

Jurkiewicz et al., 2020) as well as LSTMs and transformers for sequence tagging of propaganda

fragments (Da San Martino et al., 2019a; Yoosuf and Yang, 2019), while Jin et al. (2022) propose a
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structure-aware classifier to detect logical fallacies.

Fallacy recognition is a challenging task for three main reasons: i) the number of classification

labels (fallacies types) and the class imbalance in existing datasets is often very high; ii) existing

datasets cover varying genres and are typically very small in size due to annotation challenges; and

iii) models trained on individual data sets often show poor out of distribution generalization. A

recent line of work (Wei et al., 2022; Sanh et al., 2022) relies on the intuition that most natural

language processing tasks can be described via natural language instructions and models trained on

these instructions in a multitask framework show strong zero-shot performance on new tasks.

Based on this success, we propose a unified model based on multitask instruction-based prompt-

ing using T5 (Raffel et al., 2020) to solve the above challenges for fallacy recognition (Section 4.3.1).

This approach allows us to unify all the existing datasets and a newly introduced dataset (Section

4.1.2) by converting 28 fallacy types across 5 different datasets into natural language instructions.

Experimental evidence shows that our multitask fine-tuned models outperform task-specific models

trained on a single dataset by an average margin of 16% as well as beat strong few-shot and zero-shot

baselines by average margins of 25% and 40%, respectively in macro F1 scores across five datasets

(Section 4.3.2.1). To further deepen our understanding of the task of fallacy recognition, we analyze

the performance of our models for each fallacy type across datasets, model size, and prompt choice

(Section 4.3.3). We further analyze the effect of annotation quality on the model performance and

the feasibility of complementing this approach with external knowledge (Section 4.3.4).

4.3.1 Multitask Instruction-based Prompting

Recently, Wei et al. (2022; Sanh et al. (2022) leverage the intuition that NLP tasks can be described

via natural language instructions, such as “Is the sentiment of this movie review positive or negative?”

or “Translate ‘how are you’ into Chinese.”. They then take a pre-trained language model and

perform instruction tuning — fine-tuning the model on several NLP datasets expressed via natural

language instructions. Such an approach has several benefits, the most important one is being able

to have a unified model for several tasks. Finally, training tasks spanning diverse datasets in a
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Figure 4.4: Model and Prompts. Def: fallacy definitions in the prompt. List: fallacy names listed in
the prompt.

massively multitask fashion improves inference time performance, especially for smaller datasets.

Following the success of multitask instruction-based prompting, we approach different formula-

tions of fallacies across datasets as different tasks with a generic prompting framework in a single

model. We use T5 (Raffel et al., 2020) as the backbone model for training on all five fallacy datasets

that have different numbers and types of fallacies. We hypothesize that when a model is able to

learn to recognize fallacy from multiple datasets, it is more likely able to learn generic traits of

fallacy types rather than learning characteristics specific to a single dataset.

A sample list of instructions for each dataset is shown in Figure 4.4 All instructions start with

an n-gram (e.g., ‘Given a text segment’) followed by a list of fallacy types with or without their

definitions. The final component of the instruction is specific to each dataset (e.g., question-answer

pair for ARGOTARIO, sentence-fragment or sentence only for PROPAGANDA). The generation

target during training and testing is one of the fallacy types that are permissible for each dataset. In
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addition, we ask the model to generate the fragment that contains the fallacy (PROPAGANDA dataset

only) during training to increase the diversity of prompts and instructions during training. Since the

overall objective of this work is to have a generic classifier for fallacy and to compare it with other

classification methods, evaluating the model’s ability to correctly generate the fallacious fragment

is beyond the scope of this paper. During inference time, we use greedy decoding and select the

generated target as the prediction of fallacy type. The evaluation is done using a strict string match

with the gold fallacy.

We use HuggingFace’s implementation (Wolf et al., 2020) of the T5 model (large and 3B)

where we train all models for 5 epochs choosing the epoch with the lowest evaluation loss as the

final model. The models are run with 1e-4 learning rate, Adam optimizer, batch size 2, gradient

accumulation steps 512, maximum source length 1024, and maximum target length 64. At inference

time, the target is generated using greedy decoding (beam search of size 1) with no sampling and

default settings for T5. The generated target is then compared with the fallacies in the given scheme

and the prediction is counted as correct if they are the same using a strict string match.

4.3.2 Evaluation Setup and Results

Given the high imbalance nature of all fallacy datasets, we report both accuracy (equivalent to

micro F1 as we do not include multi-label instances) and Macro F1.

Baselines. We consider the following three models as our baselines: i) zero-shot classification

using UnifiedQA (Khashabi et al., 2020); ii) few-shot instruction-tuning of GPT-3 (Brown et al.,

2020); and iii) full-shot fine-tuning of BERT (Devlin et al., 2019b).

UnifiedQA is a question-answering model that is trained on 20 question-answering datasets in

different formats and showed generalization capability to unseen data. We use its recent version

UnifiedQA-v2 (3B size) (Khashabi et al., 2022) to test the ability of a such a model to detect fallacies

in zero-shot settings. The prompt for UnifiedQA follows the same format of the prompts used to

train the model on the question-answering datasets. The prompt starts with the questions Which

71



ARGOTARIO Which fallacy does the following answer to the question have: “Is television an
effective tool in building the minds of children?” “Yes because the cute children
are our future.”?
(A) Hasty Generalization (B) Red Herring (C) Emotional Language
(D) Irrelevant Authority (E) Ad Hominem

PROPAGANDA Which fallacy does the following sentence have: “But real journalism should
be able to get through the shocking and the surreal and get to the truth.”?
(A) Irrelevant Authority (B) Red Herring (C) Causal Oversimplification
(D) Name Calling or Labeling (E) Black-and-White Fallacy (F) Slogans
(G) Exaggeration or Minimisation (H) Thought-terminating Cliches (I) Doubt
(J) Whataboutism (K) Flag-Waving (L) Loaded Language
(M) Fear or Prejudice (N) Reductio ad hitlerum

Table 4.9: Examples of for zero-shot prompts for UnifiedQA. The first example is from the
ARGOTARIO dataset, which has an emotional language fallacy. The second example is from the
PROPAGANDA dataset, which has a loaded language fallacy.

fallacy does the following sentence have:“sentence”? followed multiple choices of the fallacies

that exist in each dataset. Table 4.9 shows two examples of the zero-shot prompts we use to test

UnifiedQA. The order of the fallacies in the multiple-choice questions is shuffled for each instance

to avoid learning any patterns related to how fallacies are ordered in the question.

We do few-shot instruction-tuning of GPT-3 as many fallacy datasets are of small size, which

poses the need for models that can perform well using few-shot training. We set up the instructions

in a similar fashion to the ones used for T5 (i.e., List prompt in Figure 4.4). Additionally, we set

up instructions with explanations where each few-shot example has a text segment, a fallacy label,

and a sentence explaining why the fallacy label is suitable for the text, which is shown to improve

the results of few-shot learning (Lampinen et al., 2022). Constrained by the length allowed in the

prompt, we use two-shots per the five fallacy types for the ARGOTARIO dataset and one-shot per the

nine-to-fourteen fallacy types for the other datasets. Given the high number of fallacy types, it is

not feasible to instruction-tune GPT-3 on the 28 unique fallacy types that exist in all five datasets

combined. We use the completion API of GPT-3 from OpenAI (Brown et al., 2020) using their

large engine that is trained with instructions (text-davinci-002) with temperature 0, max generated

tokens 150 and other parameters kept at the default value (e.g., top_p=1). The generated target is

considered correct if it has the gold fallacy (even with additional text). Since GPT-3 is trained with
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few shots only, it sometimes generates some generic prefix, repeats the text segment, or generates

more than one fallacy. We do a few-shot instruction-tuning of GPT-3 with and without explanations.

The instructions that do not include explanations follow the same format of the ones shown in Figure

4.4 where it starts “Given a text segment ...” followed by a list of fallacy types and then the few-shot

examples that include a text segment and a fallacy type. Additionally, we write explanations after

each few-shot example in the instruction prompt, which explains why a given text segment is labeled

with the fallacy type. The explanations follow the fallacy type labels as shown in Table 4.10.

For BERT, we fine-tune it for 3 epochs on each dataset separately to test its ability to do fallacy

recognition. We use Huggingface’s implementation of BERT (base-uncased) and fine-tune the

model for 3 epochs with a 1e-5 learning rate, batch size 16, and maximum sequence length of 256.

Finally, we use a T5-large model trained on each dataset separately using the instructions shown

in Figure 4.4 as a baseline to compare with the multitask setup for the same model.

4.3.2.1 Multitask Instruction-based Prompting vs. Baselines

Baseline Results Looking at the results shown in Table 4.11, UnifiedQA struggles to have any

meaningful results and mostly predicts one or two fallacy types for all examples, which shows the

infeasibility for models to perform well in zero-shot settings on a complex task such as fallacy

recognition. GPT-3 is able to perform well on ARGOTARIO, even when trained with one-shot per

class, but struggles to beat any full-shot model on the other datasets, which highlights the difficulty

of this task for few-shot training. Adding the explanations does not improve the performance, which

could have been outweighed by the low number of shots per class and a high number of fallacy

classes. We notice that BERT has an acceptable performance on the ARGOTARIO dataset (Acc. 44%

and F1 38%) that has the lowest number of classes (5 fallacy types), which is also the most balanced

dataset compared to the other ones. However, when the number of fallacy classes increases to 9 or

more, BERT struggles to have a good performance in any of the two evaluation measures.

The T5-large model is also trained on each dataset separately using the instructions shown

in Figure 4.4. It has a surprisingly low performance on the ARGOTARIO dataset (Acc. 25% and
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Given the question and answer pairs below, which of the following fallacies occur in the an-
swers: Emotional Language, Red Herring, Hasty Generalization, Ad Hominem, or Irrelevant
Authority?

—————————————————-
1) Question: Is Christianity a peaceful religion?
Answer: You are the antichrist, you want to destroy our belief in god.
Fallacy: Ad Hominem
Explanation: It is an ad hominem because the speaker is attacked for his bad intentions and
not for the point she is making.

2) Question: Is television an effective tool in building the minds of children?
Answer: All TV-Shows are bad. Look at "the bachelor". Children cannot learn from it.
Fallacy: Hasty Generalization
Explanation: It is a hasty generalization since the evaluation of a whole category is drawn
from the evaluation of a single element of the category.

...

5) Question: Should we allow animal testing for medical purposes?
Answer: No, animals are so cuuuuteeeeeeee!!!
Fallacy: Emotional Language
Explanation: It is a fallacy of emotional language since the argument appels to positive
emotions associated to animals’ appearances.

6) Question: Should gorillas be held in zoos
Answer: No, I don’t like gorillas.

—————————————————-
Fallacy: Red Herring

Table 4.10: Example of GPT-3 few-shot instruction with explanations. The instruction ends with a
Test Example that is followed by the model output containing the Generated Fallacy Type .

F1 14%) that is significantly lower than BERT and GPT-3. However, it is able to learn better for

datasets with a high number of classes (13-14 classes) and large training data (e.g., PROPAGANDA

and LOGIC).

Multitask Instruction-based Prompting Results We train two sizes of the T5 models (large

and 3B) on all datasets combined using the instructions mentioned in Figure 4.4. This increases the

performance significantly on all datasets of the T5-large model compared to its performance when

trained on one dataset at a time as shown in Table 4.11. The numbers further improve when we
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Training Shot Model Argotario Propaganda Logic Covid-19 Climate
Data Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

– Zero UnifiedQA 23 14 04 01 21 08 14 07 08 02
Single Few GPT-3 45 39 19 13 20 22 14 09 11 04

Few+Exp GPT-3 47 39 13 10 19 22 10 08 10 03
Full BERT 44 38 50 25 35 31 25 08 23 04
Full T5-Large 25 14 66 30 56 45 26 09 23 04

Multi Full T5-Large 59 59 70 41 68 62 31 26 27 17
Full T5-3B 64 64 73 56 70 66 29 28 25 20

Table 4.11: Accuracy and macro F1 scores on all datasets. Exp: explanations added to the few-shot
examples. Numbers in Bold represent the best score for each dataset, and underlined numbers are
the second best.

increase the size of the model from T5-large to T5-3B. This shows the benefit of our unified model

based on multitask instruction-based prompting (multi-dataset) for fallacy recognition where we

have limited resources and some very small datasets, and also shows the ability of larger models to

generalize to the five test sets. The two multi-dataset models always have the best or second-best

results on all datasets. Also, the T5-3B model is better than T5-large in all accuracy and F1 scores

for all datasets except accuracy scores for the COVID-19 and CLIMATE, where the T5-large is better,

which could be due to having more correct predictions in the majority classes as the T5-3B is still

better in macro F1 scores. To further understand the effect of the model size and prompt choice, we

discuss in the next section the per-class performance of four different T5 models.

4.3.3 Performance on Fallacy Types

We show the per-class (fallacy type) results of our unified model (multitask instruction-based

prompting) using two model sizes (T5-large and T5-3B) and three prompt choices (Def, List, and

All) in Tables 4.12-a to 4.12-e.

Model Size In general, increasing the model size (from T5-large to T5-3B both trained on all

prompts) improves the overall results (especially macro F1) on all datasets. We notice the importance

of model size in most datasets for fallacies types that have diversion moves (e.g., Red Herring

in all datasets, Strawman in COVID-19 and CLIMATE, Whataboutism in PROPAGANDA) where

additional context is usually needed to make accurate predictions. A model with more parameters is
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Model T5-L T5-3B
Prompt All All Def List
Black-and-White Fallacy 35 32 21 28
Causal Oversimplification 24 48 24 24
Doubt 66 69 61 60
Exaggeration or Minimization 51 61 42 37
Fear or Prejudice 44 56 45 44
Flag-Waving 58 71 73 66
Irrelevant Authority 52 49 26 36
Loaded Language 82 82 80 79
Name Calling or Labeling 83 83 82 82
Red Herring 0 50 18 0
Reductio Ad Hitlerum 0 37 0 0
Slogans 50 51 42 48
Thought-Terminating Cliches 29 44 38 24
Whataboutism 0 44 43 17
Accuracy 70 73 69 67
Macro F1 41 56 43 39

(a) Propaganda

Model T5-L T5-3B
Prompt All All Def List
Ad Hominem 82 89 84 80
Ad Populum 82 86 83 80
Black-and-White Fallacy 88 84 87 89
Causal Oversimplification 70 81 65 79
Circular Reasoning 59 77 73 71
Deductive Fallacy 53 53 42 46
Emotional Language 71 68 60 57
Equivocation 29 29 29 12
Fallacy of Extension 55 51 62 18
Hasty Generalization 74 70 69 68
Intentional Fallacy 26 33 24 12
Irrelevant Authority 60 70 66 58
Red Herring 60 61 56 47
Accuracy 68 70 67 63
Macro F1 62 66 62 55

(b) Logic

Table 4.12: F1 scores for each fallacy type for two T5 model sizes (T5-Large and T5-3Billion), and
for three prompt choices (Def: fallacy definitions in prompt; List: fallacy types listed in prompt;
All: both Def and List prompts) to study the effect of model size and prompt choice. All models are
trained on all five datasets combined.
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Model T5-L T5-3B
Prompt All All Def List
Ad Hominem 68 68 68 59
Emotional Language 67 68 68 67
Hasty Generalization 41 58 45 54
Irrelevant Authority 75 77 78 71
Red Herring 44 52 41 48
Accuracy 59 64 60 59
Macro F1 59 64 60 59

(c) Argotario

Model T5-L T5-3B
Prompt All All Def List
Causal Oversimplification 29 50 44 42
Cherry Picking 31 31 35 36
Evading the Burden of Proof 47 36 27 41
False Analogy 40 33 50 33
Hasty Generalization 21 0 19 19
Irrelevant Authority 57 24 0 15
Red Herring 0 19 0 0
Strawman 0 24 0 0
Vagueness 8 31 21 0
Accuracy 31 29 28 29
Macro F1 26 28 22 21

(d) Covid-19

Model T5-L T5-3B
Prompt All All Def List
Causal Oversimplification 37 29 53 32
Cherry Picking 39 41 43 41
Evading the Burden of Proof 0 0 0 0
False Analogy 25 0 0 25
Hasty Generalization 0 0 0 0
Irrelevant Authority 30 27 25 25
Red Herring 0 6 12 11
Strawman 0 46 0 25
Vagueness 22 34 26 34
Accuracy 27 25 29 28
Macro F1 17 20 18 21

(e) Climate

Table 4.13: F1 scores for each fallacy type for two T5 model sizes (T5-Large and T5-3Billion), and
for three prompt choices (Def: fallacy definitions in prompt; List: fallacy types listed in prompt;
All: both Def and List prompts) to study the effect of model size and prompt choice. All models are
trained on all five datasets combined.
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in principle better at capturing more information during pretraining, which could be more useful

for such fallacies that require more information beyond the provided segment. This however is not

always true where for other fallacies of diversion the results are the same or marginally different for

the two model sizes when the fallacy is among the majority training classes (e.g., Cherry Picking in

COVID-19 and CLIMATE), or inconsistent due to different conceptualizations of a single fallacy

across datasets (e.g., Irrelevant Authority, more discussion at the end of this Section). Interestingly,

the smaller size model (T5-large) has similar performance to the larger model (T5-3B) on some

fallacy types with strong lexical cues contained in the text segment (e.g., Loaded Language, Name

Calling and Slogans in PROPAGANDA; Ad Hominem and Emotional Language in LOGIC and

ARGOTARIO).

Prompt Choice We also fix the model size (T5-3B) but change the prompts used for training to

see which prompt is more useful for this task. We mainly experiment with two prompts that include

either the definitions of all fallacies or only listing the names of all fallacies. In both cases, the

prompt starts with an instruction followed by either definitions or fallacy names and ends with the

segment that has the fallacious text. Including both prompts for each training instance yields the best

results in most cases as we would expect. However, it seems that some fallacies benefit more from

including the definitions in the prompt than others. In general, including the definitions (T5-3B-Def)

rather than just fallacy names (T5-3B-List) has higher accuracy and macro F1 scores in 4 out of 5

datasets as shown in Table 4.12 (exceptions are accuracy in COVID-19 and F1 in CLIMATE). In

particular, it seems that definitions are more useful for fallacies that are closely related to other

fallacies in one scheme where the definition helps in further clarifying the difference between

the two. For example, in PROPAGANDA (Table 4.12-a) Thought-Terminating Cliches are defined

as “words or phrases that offer short, simple and generic solutions to problems” which is mostly

confused with Loaded Language by most models, especially ones not trained with definitions. Also

in PROPAGANDA, T5-3B-Def has a much higher score than T5-3B-List on Whataboutism, which is

“a discrediting technique that accuses others of hypocrisy”, which includes introducing questions
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about other irrelevant matters. This could have caused models to confuse it with the Doubt fallacy.

Fallacy Types Across Datasets There are two fallacies that exist in all five datasets (i.e., Irrel-

evant Authority and Red Herring) and two other fallacies that exist in four datasets (i.e., Causal

Oversimplification and Hasty Generalization). We closely look at these fallacies to understand the

challenges posed by changes in the domain, genre, and annotation guidelines.

Consider the results shown in Tables 4.12 (a-e) for Irrelevant Authority, where we can make three

observations: i) T5-large is the best in PROPAGANDA, COVID-19, and CLIMATE; ii) T5-3B-All is

the best in LOGIC and marginally second best (to T5-3B-Def) in ARGOTARIO; iii) similar to model

size, including the definition in the prompt has inconclusive benefit across datasets. This can be

mainly attributed to inconsistency in how this fallacy is defined in different schemes as for example

it strictly refers to “mention of false authority on a given matter” in COVID-19, while it additionally

includes “referral to a valid authority but without supporting evidence” in PROPAGANDA. Similarly,

no single model is consistently better in detecting Red Herring across all datasets as shown in Tables

4.12 (a-e). This, however, is more likely caused by the different format this particular fallacy has in

different domains and genres as it consists of shorter phrases in PROPAGANDA, asking irrelevant or

misleading questions in CLIMATE, and mentions of irrelevant entities in LOGIC.

Causal Oversimplification has more consistent results as shown in Tables 4.12 (a,b,d,e) where

the T5-3B-All model has the best results in three out of four datasets. This illustrates that while

the notion of this fallacy might differ across datasets, it still strongly shares common generic

features (e.g., the existence of a causal relation) that make it distinguishable by a single model in

different settings. Finally, the results for Hasty Generalization shown in Tables 4.12 (b-e) indicate

that detecting this fallacy becomes more challenging when other similar fallacies exist in a fallacy

scheme (e.g., Cherry Picking in COVID-19 and CLIMATE), and less challenging when other fallacies

in the scheme are further away (e.g., LOGIC and ARGOTARIO).

Nevertheless, this multitask setup provides the model with the opportunity to learn to detect

specific fallacy types as they are expressed differently, and grouped with different fallacies, which
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His opinion is: "She may very well believe everything she’s saying, and that is one of
the signs of lunacy, believing something that isn’t real.” And her lawyer is even loonier

Doubt Name Calling or Labeling Doubt

"Christianity is Europe’s last hope," Orban told an audience of party faithful at the
foot of the Royal Castle in Budapest.

Slogans Flag-Waving Flag-Waving

"Orban is openly Christian and seems to understand something that many do not and
that is you do not allow a wholesale flood of antichrists to pour into your country."

Flag-Waving Name Calling or Labeling Flag-Waving

Table 4.14: Example sentences from PROPAGANDA with gold label , model prediction and
expert annotation . Underlined text highlights the propagandistic fragment.

consistently and significantly improves the overall results of fallacy recognition over single-scheme

(or single dataset) models.

4.3.4 Error Analysis

An expert looked at 70 wrongly predicted examples (5 from each of the 14 classes) from the

PROPAGANDA datasets to better understand model errors and the quality of annotations. First, the

expert looked only at the sentence and the fragment identified by the gold annotation as containing

a fallacy and she independently annotated the propaganda technique at stake. Comparing this

annotation with gold labels and model prediction (T5-3B-All), it turns out that the expert annotator

agreed with the gold label in 75% of the cases, and with the model prediction in 15%, while she

chose a different label in 10% of the cases. Table 4.14 shows three examples along with gold labels,

model predictions, and expert annotations.

Consider the first example in Table 4.14 that has Doubt as the gold label. The expert agrees

that the propaganda technique used rests on questioning the credibility of the lawyer (Doubt), even

though the adjective “lunatic" is a literal instance of Name Calling. Thus, the label predicted by the

model is not wrong but less relevant since the lack of trustworthiness is the most effective feature in

undermining the antagonist’s stance, regardless of whether it is due to lunacy or lack of integrity.

In the second example of Table 4.14, the expert agrees with the model prediction of a Flag-
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Waving fallacy in the underlined segment rather than a Slogan as the gold label. The term “last

hope” can be considered a slogan; however, when we consider the full propagandistic segment

that includes the word “Christianity”, it maps better to Flag-Waving as it has been defined in the

guidelines (and included in the prompt) as “Playing on strong national feeling (or to any group)...”.

The third example highlights, even more, the importance of the selected fragment in the prompt:

without considering the reference to the “antichrist” threat, it is not possible to understand that the

sentence is playing on a religious-based national feeling.

In light of the analysis of the 70 examples in the PROPAGANDA dataset, the following general

observations are found: i) some fallacious segments can map to more than one fallacy, especially

when one of the two is a language fallacy (e.g., Name Calling, Exaggeration, Loaded Language).

In such cases, the model tends to privilege the language fallacy type, even if usually not the most

relevant from an argumentative perspective; ii) for some cases, the expert annotator had to read

more context beyond the sentence; iii) for some cases, the expert agreed with the gold label, but

disagreed with the boundaries of the annotated fragment by choosing a larger or more informative

one. In light of this, improving automatic fallacy identification may entail i) considering additional

context; ii) adopting a fallacy scheme with heuristics that imposes an order into fallacy recognition

(structural fallacy followed by diversion and logical fallacies with language fallacies at last when all

the others are excluded).

4.4 Explaining Checkworthiness Through Fallacy

Now that we have studied fallacy recognition and presented a model that is able to recognize 28

fallacies across multiple domains and genres, we are interested in using this model in explaining

the reasoning behind the checkworthiness of fact-checked statements through fallacy types. As

the MISINFO fallacy scheme (Section 4.1.2) was constructed by investigating statements that were

fact-checked by human fact-checkers in climate change and Covid-19, it is suitable to use this

fallacy scheme to explain the checkworthiness of statements in these two domains. However, as the
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Figure 4.5: Percentage of correct (green) and wrong (red) top three beam outputs per fallacy for
checkworthy statements in climate change.

gold fallacy labels show in both datasets that not all checkworthy statements have fallacies (Table

4.3), it is not expected for fallacy types to explain the checkworthiness of all statements. Therefore,

we do not use fallacies for checkworthiness prediction of all statements, but rather as a way of

understanding the fallacious portion of checkworthy statements.

We use our multitask fallacy recognition model on 92 and 115 fallacious checkworthy statements

from the CLIMATE and COVID-19 test sets, respectively. This includes statements that are fallacious

by having misleading content, false connection, or missing context and thus more likely to fall

under misinformation. Non-fallacious checkworthy statements are not included in this analysis,

which includes statements that are found to be true or simply presenting false information with no

fallacious moves.

To generate a fallacy using our trained fallacy recognition model (T5-3B-All model in Section

4.3), we use beam search of size 3 for decoding and we return the top three predictions of fallacy

for each fallacious checkworthy statement and compare them with the gold fallacy label. We show
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.

Figure 4.6: Percentage of correct (green) and wrong (red) top three beam outputs per fallacy for
checkworthy statements in Covid-19.

the predicted fallacies for CLIMATE and COVID-19 in Figures 4.5 and 4.6, respectively. We see

from both figures that the correct fallacy is predicted among the top three beam predictions in

more than 50% of the cases for all fallacies except Hasty Generalization for CLIMATE, and Red

Herring, Strawman, False Analogy and Vagueness for COVID-19. The Irrelevant Authority fallacy

is correctly predicted among the top three beam outputs in exactly 50% of the examples and missed

in the other 50%, which happens in both CLIMATE and COVID-19 datasets.

In general, the correct fallacy is among the top three beam outputs in 68% and 64% of the

examples in the CLIMATE and COVID-19 datasets, respectively. This shows the possibility of using

fallacies as a way to explain why a certain statement was fact-checked. The fallacy recognition

model suffers from notable limitations such as i) over-prediction of some fallacy classes (e.g.,

Evading the Burden of Proof, and Cherry Picking) as shown in Figure 4.7; and ii) missing fallacies

that might require additional context, especially in social media such as Red Herring and Strawman

in the COVID-19 dataset. Although most diversion fallacies are expected to require additional
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Figure 4.7: Frequencies of top three beam predictions for each fallacy type in CLIMATE and
COVID-19 test sets.

context, some fallacy types (e.g., Cherry Picking) are detected better than others due to their higher

frequency in the training data.

4.5 Conclusion

In this Chapter, we showed models for finding and classifying fallacious fragments trained on

single and multiple fallacy datasets. We have also used fallacy recognition models to explain the

checkworthiness of statements in the climate change and Covid-19 domains.

In a single dataset setup, we presented a sequence tagger using a BiLSTM-CRF architecture

to find propaganda fragments in news articles and to classify the propaganda technique used in

them. We then focused on the classification aspect of the task and fine-tuned BERT models using

various input configurations that include: a fallacious fragment, a fallacious sentence, and a sentence

with an annotated fallacious fragment. We show the ability of BERT to recognize fallacies when
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only fallacious fragments are provided. However, the performance of BERT diminishes when

fine-grained annotations are not available or when trained across multiple schemes of fallacies in a

very high multi-class classification setup. Thus, presenting the need for a more unified approach to

fallacy recognition.

In a multi-dataset setup, we introduced a unified model using instruction-based prompting for

solving the challenges faced by the fallacy recognition task. We could unify all the datasets by

converting twenty-eight fallacy types across five different datasets into natural language instructions.

We showed that our unified model is better than training on a single dataset. We analyzed the

effect of model size and prompt choice on the detection of specific fallacy types that could require

additional knowledge better captured by bigger models (e.g., diversion fallacies such as Red

Herring), and the distinction between similar fallacies better detected by more comprehensive

prompts that include definitions of fallacy types (e.g., Doubt vs. Whataboutism). We analyzed

the differences of fallacy types that appear in multiple fallacy schemes across the five datasets and

showed that one fallacy type could have multiple meanings which further increases the complexity

of this task (e.g., Irrelevant Authority). We conducted a thorough error analysis and released a new

fallacy dataset for fact-checked content in the climate change domain.

Finally, we used a trained fallacy recognition model to explain the checkworthiness of fact-

checked statements in two datasets as a way of using fallacies to provide reasoning for fact-checking

statements. We discussed the current limitations of the model such as over-prediction of some

fallacy types and missing ones that might require additional context.
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Chapter 5

Verification of Statements

We have shown approaches that utilize argument structure in determining what to fact-check

(Chapter 3) and argument quality through fallacy recognition that explain the reasoning behind

checkworthiness (Chapter 4). We now look at the automation of the next stages of the fact-checking

process by assuming we have access to a list of statements to fact-check. This requires identifying

evidence from trusted sources, understanding the context, and reasoning about what can be inferred

from the evidence given a target statement. Several organizations such as FactCheck.org and

PolitiFact.com are devoted to such activities, and the final verdict can reflect varying degrees of

truth (e.g., PolitiFact labels statements as true, mostly true, half true, mostly false, false, and pants

on fire).

We start with end-to-end fact-checking on a binary scale where a system is given a statement

to fact-check and tasked with finding relevant evidence, and judging the veracity of the statement

(True/False) or deciding that the retrieved evidence is not enough and thus producing a Not Enough

Information label. We introduce an approach to retrieve relevant evidence at the sentence level

from Wikipedia as an evidence document collection and predict the veracity of the statement based

on the retrieved evidence (Section 5.1). Then, we examine advancements in end-to-end automatic

fact-checking systems in the literature, develop a series of adversarial attacks on evidence retrieval

and claim verification, and evaluate the resilience of these systems under adversarial attacks (Section

5.2).

Next, we study the ability of machine learning models to perform fine-grained claim verification

on the aforementioned six-degree truth barometer introduced by PolitiFact. We show the benefit of

evidence for fine-grained claim verification by modeling the justifications provided by the human
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fact-checkers (Section 5.3), which is especially crucial for naturally-occuring claims.

Our contributions in this chapter are as follows:

• We introduce an end-to-end fact-checking model that is trained and tested on the FEVER

(Thorne et al., 2018a) dataset that includes claims-evidence pairs from Wikipedia. Given a

claim, the model retrieves the relevant document(s) from Wikipedia, selects the most relevant

evidence sentence(s), and based on the retrieved evidence, it predicts whether the claim is

Supported/True, Refuted/False, or there is Not Enough Information.

• We enhance the FEVER dataset by introducing linguistic challenges that are common in

naturally occurring claims such as multi-hop propositions, temporal reasoning, named entity

ambiguity, and lexical variation. We show that state-of-the-art fact-checking systems are

vulnerable to adversarial attacks from this dataset.

• We address complex claims that cannot be given veracity labels using a binary scale (True/False),

and we show the importance of human justifications for fine-grained claim verification on six

levels of truth.

5.1 Evidence Retrieval and Claim Verification

We developed one of the first end-to-end systems for fact extraction and verification that was

ranked 6th (out of 24) in the first Fact Extraction and VERification (FEVER) shared task in 2018

(Chakrabarty et al., 2018; Thorne et al., 2018c). Our fact-checking system is tasked with both

evidence retrieval and claim verification. Due to the complexity of open-ended evidence retrieval

and continuous change of facts, we limit the source of evidence to one dump of Wikipedia from the

year 2018 as introduced by the FEVER shared task and dataset (Thorne et al., 2018a).

This dataset has enabled the development of end-to-end fact-checking systems, requiring

document retrieval and evidence sentence extraction to corroborate a veracity relation prediction.

The task aims to evaluate the ability of a system to verify information using evidence from Wikipedia.

Given a claim involving one or more entities (mapping to Wikipedia pages), the system must extract
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Figure 5.1: Examples of claims, the extracted evidence from Wikipedia and the verdicts from the
FEVER dataset (Thorne et al., 2018a).

textual evidence (sets of sentences from Wikipedia pages) that supports or refutes the claim and

then using this evidence, it must label the claim as Supported, Refuted or NotEnoughInfo. The

FEVER dataset (Thorne et al., 2018a) was created by extracting sentences from popular Wikipedia

pages and mutating them with paraphrases or other edit operations to create a claim. Then, each

claim was labeled and paired with evidence or the empty set for NEI. Overall, there are 185,445

claims, of which 90,367 are S, 40,107 are R, and 45,971 are NEI. Figure 5.1 shows three instances

from the data set with the claim, the evidence and the verdict.

The baseline system described by Thorne et al. (2018a) uses three major components:

• Document Retrieval: Given a claim, identify relevant documents from Wikipedia which

contain the evidence to verify the claim. Thorne et al. (2018a) used the document retrieval

component from the DrQA system (Chen et al., 2017b), which returns the k nearest documents

for a query using cosine similarity between binned unigram and bigram TF-IDF vectors.
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• Sentence Selection: Given the set of retrieved documents, identify the candidate evidence

sentences. Thorne et al. (2018a) used a modified document retrieval component of DrQA

(Chen et al., 2017b) to select the top most similar sentences w.r.t the claim, using bigram

TF-IDF with binning.

• Textual Entailment: For the entailment task, training is done using labeled claims paired

with evidence (labels are SUPPORTS, REFUTES, NOT ENOUGH INFO). Thorne et al. (2018a)

used the decomposable attention model (Parikh et al., 2016) for this task. For the case where

multiple sentences are required as evidence, the strings were concatenated.

Our system implements changes in all three modules (Section 5.1.1), which leads to significant

improvements both in the development and test sets. On the shared task’s development set, our

document retrieval approach covers 94.4% of the claims requiring evidence, compared to 55.30% in

the baseline. Further, on the development set our evidence recall is improved by 33 points over the

baseline. For entailment, our model improves the baseline by 7.5 points on the development set.

Overall, our end-to-end system shows an improvement of 19.56 in FEVER score compared to the

baseline (50.83 vs. 31.27) on the development set. On the blind test set, we achieve an evidence

recall of 75.89 and an entailment accuracy of 57.45 (9 points above baseline) resulting in a FEVER

score of 49.06 (Section 5.1.2). Together with the results we discuss some lessons learned based on

our error analysis.

5.1.1 Method

5.1.1.1 Document Retrieval

Document retrieval is a crucial step when building an end-to-end system for fact extraction and

verification. Missing a relevant document could lead to missed evidence, while non-relevant

documents would add noise for the subsequent tasks of sentence selection and textual entailment.

We propose a multi-step approach for retrieving documents relevant to the claims.

• Google Custom Search API: Wang et al. (2018) looked at retrieving relevant documents for
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fact-checking articles, looking at generating candidates via search. Inspired by this, we first

use the Custom Search API of Google to retrieve documents having information about the

claim. We add the token wikipedia to the claim and issue a query and collect the top 2

results.

• Named Entity Recognition: Second, we use the AllenNLP (Gardner et al., 2017) pre-trained

bidirectional language model (Peters et al., 2017) for named entity recognition 1. After finding

the named entities in the claim, we use Wikipedia python API 2 to collect the top Wikipedia

document returned by the API for each named entity.

• Dependency Parse: Third, to increase the chance of detecting relevant entities in the claim,

we find the first lowercase verb phrase (VP) in the dependency parse tree and query the

Wikipedia API with all the tokens before the VP. The reason for emphasizing lowercase verb

phrases is to avoid missing entities in claims such as “Finding Dory was directed by X",

where the relevant entity is “Finding Dory".

To deal with entity ambiguity, we also add the token film in our query where the claim

contains keywords such as film, stars, premiered, and directed by. For example,

in Marnie was directed by Whoopi Goldberg., Marnie can refer to both wikipedia pages

Marnie (film) and Marnie. Our point of interest here is Marnie (film). We only

experimented with film to capture the performance gains. One of our future goals is to build

better computational models to handle entity ambiguity or entity linking.

• Combined: We use the union of the documents returned by the three approaches as the final

set of relevant documents to be used by the sentence selection module.

Table 5.1 shows the percentage of claims that can be fully supported or refuted by the retrieved

documents before sentence selection on the development set. We see that our best approach

(combined) achieved a high coverage of 94.4% compared to the baseline (Thorne et al., 2018a) of

1http://demo.allennlp.org/named-entity-recognition
2https://pypi.org/project/wikipedia/
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Method Avg k Coverage
Google API 2 79.5%
NER 2 77.1%
Dependency Parse 1 80.0%
Combined 3 94.4%
(Thorne et al., 2018a) 5 55.3%

Table 5.1: Coverage of claims that can be fully supported or refuted by the retrieved documents
(development set).

55.3%. Because we do not have the gold evidence for the blind test set we cannot report the claim

coverage using our pipeline. Our document retrieval component was the most superior among all

other shared task systems at that time (2018). It was later incorporated in more recent state-of-the-art

systems for fact-checking (e.g., (Hidey et al., 2020))

5.1.1.2 Sentence Selection

For sentence selection, we use the modified document retrieval component of DrQA (Chen et al.,

2017b) to select sentences using bigram TF-IDF with binning as proposed by (Thorne et al., 2018a).

We extract the top 5 most similar sentences from the k most relevant documents using the TF-IDF

vector similarity. Our evidence recall is 78.4 as compared to 45.05 in the development set of FEVER

(Thorne et al., 2018a), which demonstrates the importance of document retrieval in fact extraction

and verification. On the blind test set our sentence selection approach achieves an evidence recall of

75.89.

However, even though TF-IDF proves to be a strong baseline for sentence selection, we notice

on the development set that using all of the five evidence sentences together introduces additional

noise to the entailment model. To solve this, we further filter the top three evidence sentences from

the selected five evidence sentences using distributed semantic representations. Peters et al. (2018)

show how deep contextualized word representations model both complex characteristics of word

use (e.g., syntax and semantics) and usage across various linguistic contexts. Thus, we use the

ELMo embeddings to convert the claim and the evidence to vectors. We then calculate the cosine

similarity between the claim and the evidence vectors and extract the top three sentences based
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on the score. Because there is no penalty involved for poor evidence precision, we return all five

selected sentences as our predicted evidence, but use only the top three sentences for the entailment

model.

5.1.1.3 Claim Verification

The final stage of our pipeline is recognizing textual entailment. Unlike Thorne et al. (2018a), we

do not concatenate the evidence sentences, but train our model for each claim-evidence pair. For

recognizing textual entailment, we use the model introduced by Conneau et al. (2017a) in their

work on supervised learning of universal sentence representations.

The architecture is presented in Figure 1. We use bidirectional LSTMs (Hochreiter and Schmid-

huber, 1997) with max-pooling to encode the claim and the evidence. The text encoder provides a

dense feature representation of an input claim or evidence. Formally, for a sequence of T words

wt=1,..,T , the BiLSTM layer generates a sequence of ht vectors, where ht is the concatenation of a

forward and a backward LSTM output. The hidden vectors ht are then converted into a single vector

using max-pooling, which chooses the maximum value over each dimension of the hidden units.

Overall, the text encoder can be treated as an operator (Text→ Rd) that provides d dimensional

encoding for a given text.

Out-of-vocabulary issues in pre-trained word embeddings are a major bottleneck for sentence

representations. To solve this, we use fastText embeddings (Bojanowski et al., 2017) which rely on

subword information. Also, these embeddings were trained on a Wikipedia corpus making them an

ideal choice for this task.

As shown in Figure 5.2, the shared sentence encoder outputs a representation for the claim u and

the evidence v. Once the sentence vectors are generated, the following three methods are applied to

extract relations between the claim and the evidence: (i) concatenation of the two representations (u,

v); (ii) element-wise product u*v and (iii) absolute element-wise difference |u− v|. The resulting

vector, which captures information from both the claim and the evidence, is fed into a 3-class

classifier consisting of fully connected layers culminating in a softmax layer.
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Figure 5.2: The architecture for recognizing textual entailment (Conneau et al., 2017a).

For the final class label, we experimented first with taking the majority prediction of the three

(claim, evidence) pairs as our entailment label, but this led to lower accuracy on the development

set. So, our final predictions are based on the rule outlined in Algorithm 1, where SUPPORTS = S,

REFUTES = R, NOT ENOUGH INFO = N and C is a count function. Because the selected evidence

sentences are inherently noisy and our pipeline does not concatenate them together, we choose this

rule over majority prediction to mitigate the dominance of prediction of NOT ENOUGH INFO class.

C(S) = 1 & C(N) = 2 label = S C(R) = 1 & C(N) = 2 label = R

label = argmax(C(S), C(R), C(N))

We also experimented with training a classifier that takes confidence scores of all three claim-

evidence pairs along with their positions in the document and trained a boosted tree classifier, but

the accuracy did not improve. Empirically, the rule gave us the best results on the development set

and thus we use it to obtain the final label.
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Table 5.2 shows the three-way classification accuracy using the textual entailment model

described above.

DataSet Accuracy
Shared Task Dev 58.77

Blind Test Set 57.45

Table 5.2: Three way classification results.

DataSet Recall
Shared Task Dev 78.4

Blind Test Set 75.89

Table 5.3: Evidence recall on development and test set.

Our entailment accuracy on the shared task development and test set is 7 and 9 points better

than the baseline, respectively.

Implementation Details. The batch size is kept at 64. The model is trained for 15 epochs using

the Adam optimizer with a learning rate of 0.001. The size of the LSTM hidden units is set to 512

and for the classifier, we use an MLP with one hidden layer of 512 hidden units. The embedding

dimension of the words is set to 300.

5.1.2 End-to-End Results and Error Analysis

Table 5.4 shows the overall FEVER score obtained by our pipeline on the development set and on

the test set. In the provisional ranking, our system is ranked sixth.

Data Pipeline FEVER

DEV
(Thorne et al., 2018a) 31.27

Ours 50.83

TEST
(Thorne et al., 2018a) 27.45

Ours 49.06

Table 5.4: FEVER scores on shared task development and test set.
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On closer investigation, we find that neither TF-IDF nor sentence-embedding-based approaches

are perfect when it comes to sentence selection, although TF-IDF works better.

Fox 2000 Pictures released the film
Soul Food 0.29
Soul Food is a 1997 American comedy-drama
film produced by Kenneth
"Babyface” Edmonds,Tracey
Edmonds and Robert Teitel and released by
Fox 2000 Pictures

Table 5.5: Cosine similarity between claim and supporting evidence.

Table 5.5 goes on to prove that we cannot rely on models that entirely depend on semantics. In

spite of the two sentences being similar, the cosine similarity between them is poor mostly because

the evidence contains a lot of extra information which might not be relevant to the claim and can be

difficult for the model to understand.

At seventeen or eighteen years of age, he joined Plato’s
Academy in Athens and remained there until the age of
thirty-seven (c. 347 BC)
Shortly after Plato died, Aristotle left Athens and at the
request of Philip II of Macedon, tutored Alexander the
Great beginning in 343 BC

Table 5.6: The top evidence is selected by annotators and the bottom evidence by our pipeline.

We also found instances where the predicted evidence is correct, but it does not match the gold

evidence. For the claim “Aristotle spent time in Athens", both pieces of evidence given in Table 5.6

support it, but still our system gets penalized for not being able to match the gold evidence.

We found quite a few annotations to be incorrect and hence the FEVER scores are lower than

expected. Table 5.7 shows two instances where the gold labels for the claims are NOT ENOUGH

INFO, while in fact, they should have been SUPPORTS and REFUTES, respectively.

Table 5.8 reflects the fact that NOT ENOUGH INFO is often hard to predict and that is where our

model needs to improve more.

The lines between SUPPORTS and NOT ENOUGH INFO are often blurred as shown in Table 5.8.
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Claim: Natural Born Killers was directed by Oliver Stone
Evidence: Natural Born Killers is a 1994 American
satirical crime film directed by Oliver Stone and starring
Woody Harrelson , Juliette Lewis , Robert Downey Jr. ,
Tom Sizemore , and Tommy Lee Jones .
Claim:Anne Rice was born in New Jersey
Evidence: Born in New Orleans, Rice spent much of her
early life there before moving to Texas, and later to San
Francisco

Table 5.7: Wrong gold label (NOT ENOUGH INFO).

S N R
S 4635 1345 686
N 2211 3269 1186
R 1348 1470 3848

Table 5.8: Confusion matrix of entailment predictions on the shared task development set.

Our models need a better understanding of semantics to be able to identify these. Table 5.9 shows

one such example where the gospel keyword becomes the discriminative factor.

Claim: Happiness in Slavery is a gospel song
by Nine Inch Nails
Evidence: Happiness in Slavery, is a song by American
industrial rock band Nine Inch Nails from their debut
extended play (EP), Broken(1992)

Table 5.9: Example where our model predicts SUPPORTS for a claim labeled as NOT ENOUGH INFO.

5.2 Fact-Checking Systems Under Adversarial Attacks

Since the claims in FEVER were manually written using information from Wikipedia, the dataset

may lack linguistic challenges that occur in verifying naturally occurring checkworthy claims, such

as temporal reasoning or lexical generalization/specification. Thorne and Vlachos (2019) designed

a second shared task (FEVER 2.0) for participants to create adversarial claims (“attacks”) to break

state-of-the-art systems and then develop systems to overcome those attacks.
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We present a novel dataset of adversarial examples for fact extraction and verification in

three challenging categories: 1) multiple propositions (claims that require multi-hop document or

sentence retrieval); 2) temporal reasoning (date comparisons, ordering of events); and 3) named

entity ambiguity and lexical variation. We show that state-of-the-art systems are vulnerable to

adversarial attacks from this dataset.

5.2.1 Advancement in Automating Fact-Checking

Below we describe the seven fact-checking models we selected for adversarial attacks.

Baseline (Thorne et al., 2018a): Document Retrieval using DrQA system (Chen et al., 2017a),

which returns the k nearest documents for a query using cosine similarity between binned unigram

and TF-IDF vectors. Sentence selection ranks sentences by TF-IDF similarity to the claim. RTE is

done using Parikh et al. (2016)’s model with decomposable attention for entailment.

Papelo (Malon, 2018): develop a high precision entailment classifier based on transformer

networks pretrained with language modeling (Radford et al., 2018), to classify a broad set of

potential evidence. They include the articles best matching the claim text by TF-IDF score, and

additional articles whose titles match named entities and capitalized expressions occurring in the

claim text. The entailment module evaluates potential evidence one statement at a time, together

with the title of the page the evidence came from.

Athene (Hanselowski et al., 2018b): Apply the constituency parser from AllenNLP to extract

noun phrases in the claim and make use of Wikipedia API to search corresponding pages for each

noun phrase, and stemmed the words of their titles and the claim, and then discarded pages whose

stemmed words of the title are not completely included in the set of stemmed words in the claim.

For sentence selection, the hinge loss with negative sampling is applied to train the enhanced LSTM.

For a given positive claim-evidence pair, negative samples are generated by randomly sampling

sentences from the retrieved documents. For RTE, they combine the five sentences from sentence

selection and the claim to form five pairs and then apply enhanced LSTM for each pair. They

combine the resulting representations using average and max pooling and feed the resulting vector
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through an MLP for classification.

UCL (Yoneda et al., 2018): Document retrieval attempts to find the name of a Wikipedia article

in the claim, and then ranks each article based on capitalization, sentence position, and token match

features. A set of sentences are then retrieved from the top-ranked articles, based on token matches

with the claim and position in the article. A natural language inference model is then applied to

each of these sentences paired with the claim, giving a prediction for each potential evidence. These

predictions are then aggregated using a simple MLP, and the sentences are reranked to keep only

the evidence consistent with the final prediction.

UNC (Nie et al., 2019a): The document retriever chooses candidate wiki documents via

matching of keywords between the claims and the wiki-document titles, also using external pageview

frequency statistics for wiki-page ranking. The sentence selector is a sequence-matching neural

network that conducts a further fine-grained selection of evidential sentences by comparing the

given claim with all the sentences in the candidate documents. This module is trained as a binary

classifier that is given the ground truth evidence as positive examples and all the other sentences as

negative examples with an annealing sampling strategy. Finally, the claim verifier (with WordNet

and ELMo features) takes the concatenation of all selected evidence as the premise and the claim

as the hypothesis, and labels each such evidences-claim pair as one of ‘support’, ‘refute’, or ‘not

enough info’. Also, feeding the sentence similarity score (produced by the sentence selector) as an

additional token-level feature to the claim verifier.

Dominik (Stammbach and Neumann, 2019): propose a two-staged sentence selection strategy

to account for examples in the dataset where evidence is not only conditioned on the claim but

also on previously retrieved evidence. They use a publicly available document retrieval module

(Athene’s (Hanselowski et al., 2018b)) and have fine-tuned BERT checkpoints for sentence selection

and as the entailment classifier.

Ours 2.0 (Hidey et al., 2020): We perform document ranking by selecting the top D < M

pages with a pointer network. In order to obtain representations as input to the pointer network
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for document ranking, we leverage the fact that Wikipedia articles all have a title (e.g., [Barack

Obama]), and fine-tune BERT on title and claim pairs, in lieu of examining the entire document

text (which due to its length is not suitable for BERT). Because the title often overlaps lexically

with the claim (e.g., [Michelle Obama]), we can train the model to locate the title in the claim.

Furthermore, the words in the title co-occur with words in the article (e.g., Barack and Michelle),

which the pre-trained BERT language model may be attuned to. We thus fine-tune a classifier on a

dataset created from title and claim pairs (where positive examples are titles of gold evidence pages

and negative are randomly sampled from our candidate set), obtaining 90.0% accuracy.

The sentence selection and relation prediction tasks are closely linked, as predicting the correct

evidence is necessary for predicting Support and Attack and the representation should reflect the

interaction between a claim and evidence set. Conversely, if a claim and evidence set are unrelated,

the model should predict NEI. We thus jointly model this interaction by sharing the parameters of

the pointer network - the hidden state of the decoder is used for both tasks and the models differ

only by a final MLP. In this model, we fine-tune a classifier on claim and evidence sentence pairs to

obtain BERT embeddings on veracity relation prediction. We create a dataset by pairing each claim

with its set of gold evidence sentences.

As gold evidence is not available for NEI relations, we sample sentences from our candidate

documents to maintain a balanced dataset. We then fine-tune a BERT classifier on relation prediction,

obtaining 93% accuracy. In order to closely link veracity relation prediction with evidence prediction,

we re-frame the task as a sequence labeling task. In other words, rather than making a single

prediction given all evidence sentences, we make one prediction at every time-step during decoding

to model the relationship between the claim and all evidence retrieved to that point. This approach

provides three benefits: it allows the model to better handle noise (when an incorrect evidence

sentence is predicted), to handle multi-hop inference (to model the occurrence of switching from

NEI to S/R), and to effectively provide more training data (for k = 5 timesteps we have five times as

many relation labels).
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5.2.2 Adversarial Dataset for Fact-Checking

We describe below the three types of attacks we introduce by performing alterations on the FEVER

dataset: 1) multiple propositions (claims that require multi-hop document or sentence retrieval);

2) temporal reasoning (date comparisons, ordering of events); and 3) named entity ambiguity and

lexical variation. In the discussion below, we refer to the three veracity labels as S for Support, R

for Refute, and NEI for Not Enough Info.

5.2.2.1 Multiple Propositions

Checkworthy claims often consist of multiple propositions (Graves, 2018). In the FEVER task,

checking these claims may require retrieving evidence sequentially after resolving entities and

events, understanding discourse connectives, and evaluating each proposition.

Consider the claim “Janet Leigh was from New York and was an author.”, the Wikipedia page

[Janet Leigh] contains evidence that she was an author, but makes no mention of New York. We

generate new claims of the CONJUNCTION type automatically by mining claims from FEVER and

extracting entities from the subject position. We then combine two claims by replacing the subject

in one sentence with a discourse connective such as “and.” The new label is S if both original claims

are S, R if at least one claim is R, and NEI otherwise.

While CONJUNCTION claims provide a way to evaluate multiple propositions about a single

entity, these claims only require evidence from a single page; hence we create new examples

requiring reasoning over multiple pages. To create MULTI-HOP examples, we select claims from

FEVER whose evidence obtained from a single page P contains at least one other entity having

a valid page Q. We then modify the claim by appending information about the entity, which can

be verified from Q. For example, given the claim “The Nice Guys is a 2016 action comedy film.”,

we make a multi-hop claim by obtaining the page [Shane Black] (the director) and appending the

phrase “directed by a Danish screenwriter known for the film Lethal Weapon.“

While multi-hop retrieval provides a way to evaluate the S and R cases, composition of multiple

propositions may also be necessary for NEI, as the relation between the claim and evidence
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may be changed by more general/specific phrases. We thus add ADDITIONAL UNVERIFIABLE

PROPOSITIONS that change the gold label to NEI. We selected claims from FEVER and added

propositions which have no evidence in Wikipedia (e.g., for the claim “Duff McKagan is an

American citizen,” we can add the reduced relative clause “born in Seattle“).

5.2.2.2 Temporal Reasoning

Many checkworthy claims contain dates or time periods and verifying them requires models that

can handle temporal reasoning (Thorne and Vlachos, 2017).

In order to evaluate the ability of current systems to handle temporal reasoning, we modify

claims from FEVER. More specifically, using claims with the phrase "in <date>" we automatically

generate seven modified claims using simple DATE MANIPULATION heuristics: arithmetic (e.g., “in

2001"→ “4 years before 2005"), range (“in 2001"→ “before 2008"), and verbalization (“in 2001"

→ “in the first decade of the 21st century").

We also create examples requiring MULTI-HOP TEMPORAL REASONING, where the system

must evaluate an event in relation to another. Consider the S claim “The first governor of the Indiana

Territory lived long enough to see it become a state.” A system must resolve entity references

(Indiana Territory and its first governor, William Henry Harrison) and compare dates of events

(the admittance of Indiana in 1816 and the death of Harrison in 1841). While multi-hop retrieval

may resolve references, the model must understand the meaning of “lived long enough to see” and

evaluate the comparative statement. To create claims of this type, we mine Wikipedia by selecting

a page X and extracting sentences with the pattern “is/was/named the A of Y ” (e.g., A is “first

governor”) where Y links to another page. Then we manually create temporal claims by examining

dates on X and Y and describing the relation between the entities and the events.

5.2.2.3 Named Entity Ambiguity and Lexical Variation

As fact-checking systems are sensitive to lexical choice (Nakashole and Mitchell, 2014; Rashkin et

al., 2017a), we consider how variations in entities and words may affect veracity relation prediction.
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Attack Seed Claim Modified Claim

Conjunction (A) Janet Leigh was from New York. Janet Leigh was from New York and
Janet Leigh was an author. was an author.

Multi-hop The Nice Guys is a 2016 action + directed by a Danish screenwriter known
comedy film. for the 1987 action film Lethal Weapon.

Date Manip. (A) in 2001 in the first decade of the 21st century
in 2009 3 years before 2012 (or) in the 2010s

Multi-hop Temp. The first governor of the Indiana The first governor of the Indiana Territory
Territory died in 1841. lived long enough to see it become a state.

Entity Dis. Kate Hudson is an American actress. Kate Hudson is a left wing political activist.
Lexical Subs. (A) The Last Song began filming in 2009. The Last Song began shooting in 2009.

Table 5.10: Examples of adversarial attacks. (A: generated automatically).

ENTITY DISAMBIGUATION has been shown to be important for retrieving the correct page for

an entity among multiple candidates (Hanselowski et al., 2018b). To create examples that contain

ambiguous entities, we selected claims from FEVER where at least one Wikipedia disambiguation

page was returned by the Wikipedia Python API.3 We then created a new claim using one of

the documents returned from the disambiguation list. For example the claim “Patrick Stewart is

someone who does acting for a living.” returns a disambiguation page, which in turn gives a list of

pages such as [Patrick Stewart] and [Patrick Maxwell Stewart].

Finally, as previous work has shown that neural models are vulnerable to LEXICAL SUBSTI-

TUTION (Alzantot et al., 2018), we apply their genetic algorithm approach to replace words via

counter-fitted embeddings. We make a claim adversarial to a model fine-tuned on claims and gold

evidence by replacing synonyms, hypernyms, or hyponyms, e.g., created→ established, leader→

chief. We manually remove ungrammatical claims or incorrect relations.

We show examples of the seed and generated claims from all types in Table 5.10.

5.2.3 Resilience of Fact-Checking Systems

We show the performance of seven fact-checking models (described in Section 5.2.1) under the

aforementioned adversarial attacks in Table 5.11. Our model has the best overall label accuracy of

48% and the second best FEVER score of 43%. The highest model in FEVER score is Papelo, which

fine-tunes a transformer only on claims that require a single evidence and ignores all other claims in

3https://pypi.org/project/wikipedia/
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Conj. MH1 MH2 DM MH-T ED LS Overall*

System LA FS LA FS LA FS LA FS LA FS LA FS LA FS LA FS
Baseline .27 .17 .67 .10 0 0 .44 .20 .60 .10 .83 .54 .51 .21 .41 .17
Athene .41 .41 .34 0 0 0 .23 .21 .07 0 .37 .26 .83 .75 .37 .29
UNC .31 .31 .24 0 .78 .78 .27 .27 .17 0 .75 .67 .40 .36 .43 .38
UCL .58 .58 .26 0 0 0 .47 .39 .07 0 .71 .63 .46 .35 .48 .39
Dominik .37 .37 .50 .28 0 0 .29 .27 .13 .03 .79 .75 .48 .45 .47 .43
Ours .41 .41 .34 .17 0 0 .55 .42 .03 0 .79 .71 .30 .26 .48 .43
Papelo .66 .66 .10 0 .94 .94 .43 .43 .03 .03 .38 .50 .27 .33 .47 .45

Table 5.11: Performance of seven fact-checking models under adversarial attacks ordered by overall
FEVER score. MH1: Multi-hop (S,R) labels, MH2: Multi-hop (NEI) label, DM: Date Manipulation,
MH-T: Multi-hop temporal reasonsing, ED: Entity Disambiguation, LS: Lexical substitution.
Evaluation metrics: LA: Label Accuracy, FS: FEVER Score. *Attack counts are not equal across
types and include other adversarial attacks not shown here.

the training data requiring multiple evidence. They start with an (NEI) label for all instances and

only change it to S, R upon retrieving relevant evidence. Thus, it is not surprising that the model’s

highest performance is on multi-hop attacks that are labeled as NEI (MH2), and the lowest on the

ones labeled S, R (MH1) as it is not doing any multi-hop handling.

Similarly, artificially high scores are found in the baseline model by Thorne et al. (2018a), where

it has the highest label accuracy on both MH1 and MH-T. However, the model has very low FEVER

score (that is a combination of accuracy and evidence recall), which indicates that the model is not

retrieving the correct evidence and simply guessing the labels based on the more frequent S label.

The main challenge by multi-hop attacks is in evidence retrieval, therefore high label accuracy

is not enough on these attacks. In our model, we add a post-processing step to handle temporal

claims. This results in having the highest label accuracy on the date manipulation attack. However,

it seems that combining temporal and multi-hop reasoning results in the most challenging attack

(MH-T) to handle for all systems.

5.3 Human Justifications for Fine-Grained Claim Verification

We have introduced models for end-to-end fact-checking where the statements can be given a

True (supported)/False (Refuted) veracity label on a binary scale, or deciding there is Not Enough

Information. However, some statements could be true in some contexts or time-frames but false in
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other situations. Thus, we study the problem of fine-grained claim verification in this section.

Wang (2017) has introduced a large dataset (LIAR) of claims from POLITIFACT, the associated

metadata for each claim, and the verdict (6 class labels). Most work on the LIAR dataset has

focused on modeling the content of the claim (including hedging, sentiment, and emotion analysis)

and the speaker-related metadata (Wang, 2017; Rashkin et al., 2017a; Long et al., 2017). However,

these approaches do not use the evidence and the justification provided by humans to predict the

label. Extracting evidence from (trusted) sources for fact-checking or for argument mining is a

difficult task (Rinott et al., 2015; Thorne et al., 2018a; Baly et al., 2018b). Initial fact-checking

approaches rely on the fact-checking article associated with the claim. We extend the original LIAR

dataset by automatically extracting the justification given by humans for labeling the claim, from the

fact-checking article (Section 5.3.1) (Alhindi et al., 2018). We release the extended LIAR dataset

(LIAR-PLUS) to the community.4

We show that modeling the extracted justification in conjunction with the claim (and metadata)

provides a significant improvement regardless of the machine learning model used (feature-based or

deep learning) both in a binary classification task (true, false) and in a six-way classification task

(pants on fire, false, mostly false, half-true, mostly true, true) (Section 5.3.3). We provide a detailed

error analysis and per-class results. This work was done in 2018 (Alhindi et al., 2018) and it focuses

on feature-based machine learning models and some of the earlier deep learning models, but more

recent deep learning models such as DeBERTa (He et al., 2021) could also be applied.

Our work complements the other work on providing datasets and models that enable the

development of an end-to-end pipeline for fact-checking such as work by Thorne et al. (2018a) for

English and Baly et al. (2018b) for Arabic. We are primarily concerned with showing the impact of

modeling the human-provided justification for predicting the veracity of a claim on a six-level scale

of truthfulness. We aim in this setup to capture the varying degrees of truth that some claims might

have and that is usually labeled as such by professionals (rather than binary true vs. false labels).

4https://github.com/Tariq60/LIAR-PLUS
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Statement:“Says Rick Scott cut education to pay for even more tax breaks for
big, powerful, well-connected corporations.”
Speaker: Florida Democratic Party
Context: TV Ad
Label: half-true
Extracted Justification: A TV ad by the Florida Democratic Party says
Scott "cut education to pay for even more tax breaks for big, powerful, well-
connected corporations." However, the ad exaggerates when it focuses attention
on tax breaks for "big, powerful, well-connected corporations." Some such
companies benefited, but so did many other types of businesses. And the ques-
tion of whether the tax cuts and the education cuts had any causal relationship
is murkier than the ad lets on.

Table 5.12: Excerpt from the LIAR-PLUS dataset.

5.3.1 Dataset

The LIAR dataset introduced by Wang (2017) consists of 12,836 short statements taken from

POLITIFACT and labeled by humans for truthfulness, subject, context/venue, speaker, state, party,

and prior history. For truthfulness, the LIAR dataset has six labels: pants-on-fire, false, mostly-false,

half-true, mostly-true, and true. These six label sets are relatively balanced in size. The statements

were collected from a variety of broadcasting mediums, like TV interviews, speeches, tweets,

and debates, and they cover a broad range of topics such as the economy, health care, taxes, and

elections.

We extend the LIAR dataset to the LIAR-PLUS dataset by automatically extracting for each

claim the justification that humans have provided in the fact-checking article associated with the

claim. Most of the articles end with a summary that has the headline “our ruling” or “summing up”.

This summary usually has several justification sentences that are related to the statement. We extract

all sentences in these summary sections, or the last five sentences in the fact-checking article when

no summary exists. We filter out the sentence that has the verdict and related words. These extracted

sentences can support or contradict the statement, which is expected to enhance the accuracy of the

classification approaches. An excerpt from the LIAR-PLUS dataset is shown in Table 5.12.
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5.3.2 Methods

Our main goal in this section is to show that modeling the human-provided justification — which

can be seen as summary evidence — improves the assessment of a claim’s degree of truthfulness

when compared to modeling the claim (and metadata) alone, regardless of the machine learning

models (feature-based vs. deep learning models). All our models use four different conditions:

basic claim/statement5 representation using just word representations (S condition), enhanced

claim/statement representation that captures additional information shown to be useful such as

hedging, sentiment strength and emotion (Rashkin et al., 2017a) as well as metadata information

(S+M condition), basic claim/statement and the associated extracted justification (SJ condition)

and finally enhanced claim/statement representation, metadata and justification (S+MJ condition).

Feature-based Machine Learning. We experiment with both Logistic Regression (LR) and Sup-

port Vector Machines (SVM) with a linear kernel. For the basic representation of the claim/statement

(S condition), we experimented with unigram features, TF-IDF unigram features, and GLoVe word

embeddings (Pennington et al., 2014). The best representation proved to be unigrams. For the

enhanced statement representation (S+) we modeled: sentiment strength using SentiStrength, which

measures the negativity and the positivity of a statement on a scale of 1-to-5 (Thelwall et al., 2010);

emotion using the NRC Emotion Lexicon (EmoLex), which associates each word with eight basic

emotions (Mohammad and Turney, 2010), and the Linguistic Inquiry and Word Count (LIWC)

lexicon (Pennebaker et al., 2001). In addition, we include metadata information such as the number

of claims each speaker makes for every truth label (history) (Wang, 2017; Long et al., 2017). Finally,

for representing the justification in the SJ and S+MJ conditions, we just use unigram features.

Deep Learning Models. We use a Bi-Directional Long Short-term Memory (BiLSTM) (Hochre-

iter and Schmidhuber, 1997) architectures that has been shown to be successful for various related

NLP tasks such as textual entailment and argument mining. For the S condition, we use just one

5referred to as statement henceforth in this section.
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Cond. Model Binary Six-way
valid test valid test

S
LR 0.58 0.61 0.23 0.25

SVM 0.56 0.59 0.25 0.23
BiLSTM 0.59 0.60 0.26 0.23

SJ
LR 0.68 0.67 0.37 0.37

SVM 0.65 0.66 0.34 0.34
BiLSTM 0.70 0.68 0.34 0.31

P-BiLSTM 0.69 0.67 0.36 0.35

S+M
LR 0.61 0.61 0.26 0.25

SVM 0.57 0.60 0.26 0.25
BiLSTM 0.62 0.62 0.27 0.25

S+MJ
LR 0.69 0.67 0.38 0.37

SVM 0.66 0.66 0.35 0.35
BiLSTM 0.71 0.68 0.34 0.32

P-BiLSTM 0.70 0.70 0.37 0.36

Table 5.13: Classification results.

BiLSTM to model the statement. We use GLoVe pre-trained word embeddings (Pennington et al.,

2014), a 100-dimensional embedding layer that is followed by a BiLSTM layer of size 32. The

output of the BiLSTM layer is passed to a softmax layer. In the S+M condition, a normalized count

vector of those features (described above) is concatenated with the output of the BiLSTM layer

to form a merged layer before the softmax. We use the categorical cross-entropy loss function

and ADAM optimizer (Kingma and Ba, 2014) and train the model for 10 epochs. For the SJ

and S+MJ conditions, we experiment with two architectures: in the first one, we just concatenate

the justification to the statement and pass it to a single BiLSTM, and in the second one we use

a dual/parallel architecture where one BiLSTM reads the statement and another one reads the

justification (architecture denoted as P-BiLSTM). The outputs of these BiLSTMs are concatenated

and passed to a softmax layer. This latter architecture has been proven to be effective for tasks that

model two inputs such as textual entailment (Conneau et al., 2017b) or sarcasm detection based on

conversation context (Ghosh et al., 2017; Ghosh and Veale, 2017).

107



Class class size S SJ
LR BiLSTM LR BiLSTM P-BiLSTM

pants-fire 116 0.18 0.19 0.37 0.34 0.37
false 263 0.28 0.34 0.33 0.3 0.33

mostly-false 237 0.21 0.13 0.35 0.31 0.32
half-true 248 0.22 0.28 0.39 0.31 0.37

mostly-true 251 0.23 0.33 0.40 0.39 0.39
true 169 0.22 0.18 0.37 0.42 0.39

total/avg 1284 0.23 0.26 0.37 0.34 0.36

Table 5.14: F1 score per class on validation set.

Class class size S SJ
LR BiLSTM LR BiLSTM P-BiLSTM

pants-fire 92 0.12 0.11 0.38 0.33 0.39
false 250 0.31 0.31 0.35 0.32 0.35

mostly-false 214 0.25 0.15 0.35 0.27 0.33
half-true 267 0.24 0.26 0.41 0.27 0.34

mostly-true 249 0.23 0.30 0.35 0.35 0.33
true 211 0.25 0.16 0.37 0.36 0.41

total/avg 1283 0.25 0.23 0.37 0.31 0.35

Table 5.15: F1 score per class on test set.

5.3.3 Results and Error Analysis

Table 5.13 shows the results both for the binary and the six-way classification tasks under all 4

conditions (S, SJ, S+M and S+MJ) for our feature-based machine learning models (LR and SVM)

and the deep learning models (BiLSTM and P-BiLSTM).

For the binary runs, we group pants on fire, false and mostly false as FALSE and true, mostly

true and half true as TRUE. As a reference, Wang (2017) (best models (text and metadata) obtained

0.277 F1 on the validation set and 0.274 F1 on the test set in the six-way classification, showing

relatively similar results with our equivalent S+M condition.

It is clear from the results shown in Table 5.13 that including the justification (SJ and S+MJ

conditions) improves over the conditions that do not use the justification (S and S+M, respectively)

for all models, both in the binary and the six-way classification tasks. For example, for the six-way
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classification, we see that the BiLSTM model for the SJ condition achieves 0.35 F1 compared to

0.23 F1 in the S condition. LR model has a similar behavior with 0.37 F1 for the SJ condition

compared to 0.25 F1 in the S condition. For the S+MJ conditions, the best model (LR) shows an

F1 of 0.38 compared to 0.26 F1 in the S+M condition (similar results for the deep learning). The

dual/parallel BiLSTM architecture yields a small improvement over the single BiLSTM only in the

six-way classification.

We also present the per-class results for the six-way classification for the S and SJ conditions.

Table 5.14 shows the results on the validation set, while Table 5.15 on the test set. In the S condition,

we see a larger degree of variation in performance among the classes, with the worst being the

pants-on-fire for all models, and for the deep learning model also the mostly-false and true classes.

In the SJ condition, we notice a more uniform performance on all classes for all the models. We

notice the biggest improvement for the pants-on-fire class for all models, half-true for LR, and

mostly-false and true for the deep learning models. When comparing the P-BiLSTM and BiLSTM,

we noticed that the biggest improvement comes from the half-true class and the pants-on-fire class.

Error Analysis In order to further understand the cause of the errors made by the models, we

analyze several examples by looking at the statement, the justification, and the predictions by the

logistic regression model when using the S, S+M, SJ, and S+MJ conditions (Table 5.16). Logistic

regression is selected since it performs best for the six-way classification task.

The first example in Table 5.16 is wrongly classified in the S condition but correctly classified in

the S+M, SJ, and S+MJ conditions. The justification text has a sentence saying “Statutory income

tax rates in the U.S. fall around the end of the upper quarter of nations.”, which contradicts the

statement and thus is classified correctly when modeling the justification.

The second and the third examples in Table 5.16 are correctly predicted only when the jus-

tification was modeled (SJ and S+MJ conditions). For statement 2, the justification text has a

sentence “However, the ad exaggerates...” indicates that the statement has some false and some

true information. Therefore, the model predicts the correct label “half-true” when modeling the
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ID Statement Justification label S S+M SJ S+MJ
1 We have the highest tax rate any-

where in the world.
Trump, while lamenting the condition of the middle class, said
the U.S. has "the highest tax rate anywhere in the world."
All sets of data we examined for individual and family taxes
prove him wrong. Statutory income tax rates in the U.S. fall
around the end of the upper quarter of nations. More exhaustive
measures - which compute overall tax burden per person and as
a percentage of GDP - show the U.S. either is in the middle of
the pack or on the lighter end of taxation compared with other
advanced industrialized nations.

false X

2 “Says Rick Scott cut education
to pay for even more tax breaks
for big, powerful, well-connected
corporations.”

A TV ad by the Florida Democratic Party says Scott "cut
education to pay for even more tax breaks for big, powerful,
well-connected corporations." However, the ad exaggerates
when it focuses attention on tax breaks for "big, powerful, well-
connected corporations." Some such companies benefited, but
so did many other types of businesses. And the question of
whether the tax cuts and the education cuts had any causal
relationship is murkier than the ad lets on.

half-true X X

3 Says Donald Trump has given
more money to Democratic can-
didates than Republican candi-
dates.

but public records show that the real estate tycoon has actually
contributed around $350,000 more to Republicans at the state
and federal level than Democrats. That, however, is a recent
development. Ferguson’s statement contains an element of
truth but ignores critical facts.

mostly-false X X

4 Says out-of-state abortion clin-
ics have marketed their services
to minors in states with parental
consent laws.

As Cousins’ clinic in New York told Yellow Page users in
Pennsylvania, "No state consents." This is information the
clinics wanted patients or potential patients to have, and paid
money to help them have it. Whether it was to help persuade
them to come in or not, it provided pertinent facts that could
help them in their decision-making. It fit the definition of
marketing.

true X X X

5 Obamacare provision will allow
forced home inspections by gov-
ernment agents.

But the program they pointed to provides grants for voluntary
help to at-risk families from trained staff like nurses and social
workers. What bloggers describe would be an egregious abuse
of the law — not what’s allowed by it.

pants-fire X X X

6 In the month of January, Canada
created more new jobs than we
did.

In November 2010, the U.S. economy created 93,000 jobs,
compared to 15,200 for Canada. And in December 2010, the
U.S. created 121,000 jobs, compared to 22,000 for Canada.
"But on a per capita basis, in recent months U.S. job creation
exceeded Canada’s only in October." January happened to be
a month when U.S. job creation was especially low and Cana-
dian job creation was especially high, but it is the most recent
month and it reflects the general pattern when you account for
population.

true X X X X

7 There has been $5 trillion in debt
added over the last four years.

number is either slightly high or a little low, depending on
the type of measurement used, and that’s actually for a period
short of a full four years. His implication that Obama and the
Democrats are to blame has some merit, but it ignores the role
Republicans have had.

mostly-true X X X X

Table 5.16: Error analysis of six-way classification (logistic regression).

justification text. Also, the justification for statement 3 was simple enough for the model to predict

the gold label “mostly-false”. It has a phrase like “more to Republicans”, while the statement had

“more to Democratic candidates”, which indicates falsehood in the statement as well as discourse

markers indicating concessive moves (“but” and “however”).

Sometimes justification features alone are not enough to get the correct prediction without using
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the enhanced statement and the metadata features. The justification for statement 4 in Table 5.16 is

complex and no direct connection can be made to the statement. Therefore, the model fails when

using SJ and S+M conditions and only succeeds when using all features (i.e., S+MJ condition).

In addition, consider the fifth statement in Table 5.16 about Obamacare: it seems that metadata

features, which have the history of the speaker, might have helped in predicting its factuality to be

pants on fire, while it is wrongly classified when modeling only the statement and the justification.

For around half of the instances in the validation set, all models had wrong predictions. This is

not surprising since the best model had an average F1 score of less than 0.40. The last two examples

in Table 5.16 are instances where the model makes mistakes under all four conditions. The claim

and the justification refer to temporal information, which is harder to model by the rather simple and

shallow approaches we used. Incorporating temporal and numeric information when modeling the

claim and the justification would be essential for capturing the correct context of a given statement.

Another source of errors for justification-based conditions is the noise in the extraction of the

justification, particularly when the “our ruling” and “summing up” headers are not included and we

resort to extracting the last five sentences from the fact-checking articles. Improving the extraction

methods will be helpful in improving the justification-based classification results.

5.4 Conclusion

In this Chapter, we presented models and attacks for end-to-end fact-checking and discussed the

role of justification and fallacies for fine-grained claim verification.

We presented in Section 5.1 one of the first end-to-end systems for fact extraction and verification

that was ranked sixth (out of 24) in the first FEVER shared task in 2018. The system consists

of three components that include: i) document retrieval using a combined retrieval method over

Google custom search, named entity recognition, and dependency parsing; ii) evidence sentence

selection using TD-IDF and ELMo embeddings. iii) claim verification using the InferSent model

for textual entailment.

111



We then discussed in Section 5.2 advancement in models for automatic fact-checking and

showed the vulnerabilities of those models under three main categories of adversarial attacks that

include: i) multi-hop propositions, ii) temporal reasoning, and iii) lexical variations.

In Subsection 5.3, we studied fine-grained truth labels of six truth levels that are more common

in naturally occurring texts that include misleading statements and ones taken out of context thus

having characteristics of misinformation that increase the complexity of their verification. We

showed that using evidence through human-provided justifications is crucial for this task regardless

of the machine learning model used whether it is a feature-based linear model or a neural network.

This empirically shows the importance of conducting evidence-based verification of naturally

occurring claims.
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Chapter 6

Conclusions

In this thesis, we studied the role of argument structure and argument quality in improving tasks

related to fact-checking and (mis-/dis-)information detection. We covered a wide range of tasks

related to misinformation detection and fact-checking, such as distinguishing factual statements from

opinions, assessing the checkworthiness of information in news articles, studying the connection

between fallacies and misinformation and proposing a unified model for fallacy recognition and

developing claim verification approaches given automatically retrieved (or provided) evidence under

truth barometers with different levels.

We were able to predict whether a news article is a news story or an opinion pieces through

argumentation features based on predicted types of argument components in the articles. We

also showed the role of argument structure for checkworthiness by using gold annotations of the

argument structure to inform the selection of a more useful context for checkworthiness prediction.

We investigated fallacies as indicators of misinformation and developed models for fallacy

recognition in single- and multi-dataset settings. We showed the resilience of multitask instruction-

based prompting for fallacy recognition across four fallacy schemes and five fallacy datasets that

cover multiple domains and genres. This approach still suffers from recognizing fallacies that might

require external knowledge such as diversion fallacies, but it was able to provide useful explanations

for the checkworthiness of statements on climate change and Covid-19 in more than 64% of the

examples.

We then presented our fact extraction and verification models that cover a number of steps,

including evidence document retrieval, evidence sentence selection and claim verification. We also

studied the robustness of fact-checking models under adversarial attacks. Finally, we showed that
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evidence is essential for fine-grained verification of naturally occurring claims by modeling the

human-provided justifications.

6.1 Contributions

We restate our main contributions below.

• We approached fact-checking with a holistic view by developing models for checkworthiness

(what to fact-check), fallacy recognition (why to fact-check), and veracity prediction (how to

fact-check), in addition to analyzing the connections between these tasks.

• We utilized features from the argument structure in two downstream tasks:

– separating facts from opinions in news articles

– predicting the checkworthiness of statements in news articles

• We presented models for fallacy recognition trained under different settings and studied their

role in explaining checkworthiness

– We presented a new scheme for fallacy in fact-checked content in collaboration with

(Musi et al., 2022).

– We introduced a unified model for fallacy recognition using multitask instruction-based

prompting

– We use fallacies as an indicator of checkworthiness in climate change and Covid-19

• We presented models for end-to-end fact-checking using different truth barometers and

evidence scenarios and studied their performance under adversarial attacks as follows:

– We presented one of the first end-to-end models for fact extraction and verification that

include finding relevant evidence to a given claim and assessing the veracity of the claim

compared to the retrieved evidence.
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– We presented a number of adversarial attacks that show the ability of fact-checking

models to handle multiple propositions, temporal reasoning, and lexical variations.

– We showed the importance of evidence for fine-grained claim verification using human-

provided justifications.

• We released a number of new datasets:

– A multi-layer annotated corpus for checkworthiness and argumentative discourse struc-

tures for climate change news articles (Alhindi et al., 2021)

– A fallacy corpus of climate change and Covid-19 news articles and social media posts

(Alhindi et al., 2022).

– The LIAR-PLUS dataset (Alhindi et al., 2018) of fact-checked claims with justification.

6.2 Limitations and Future Work

We discuss below the limitations of our work and potential future work in mining argument

structure and extracting argumentation features, fallacy recognition application to fine-grained claim

verification.

Argument Structure and Argumentation Features Argumentation features are good for document-

level tasks with over-prediction of argumentative components due to the nature and distribution of

the training data. To improve the prediction of argument components and relations, we could use an

argumentation model on news articles similar to our multitask token-based argument segmentation

and argument component type prediction model on essays (Alhindi and Ghosh, 2021). Other models

could be used as well that cover end-to-end argumentation (Eger et al., 2017) or use discourse

to inform argumentation mining (Saha et al., 2022). In addition, to limit the over-prediction of

argumentative components, we can sample non-argumentative sentences in news articles and train

on a more balanced dataset of argumentative and non-argumentative sentences. Also, adding a
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mix of topics to the training is expected to increase the accuracy of the predictions and enable

using them on more fine-grained downstream tasks and not only document-level classification.

Additionally, further research in argument modeling for long-form text is needed to better chapter

relations between components that are further away in the text. This could allow methods such as

ours for checkworthiness prediction using argumentation context to be applied to datasets with no

annotations of argument structures.

Fallacies and Shades of Truth We have shown in Section 5.3 a six-level claim veracity rating

scheme by PolitiFact that does not follow a clear-cut distinction between Supported/True and

Refuted/False as the one introduced in the (synthesized) FEVER dataset. In fact, most fact-checking

organizations use multi-level or multi-facet schemes that capture nuanced relations between the

claim and the evidence. For example, SNOPES1 has labels such as outdated, unproved, and

misattributed, and SCIENCEFEEDBACK2 has ones like lacks-context, and inaccurate. Moreover,

FULLFACT3 refrains from giving any kind of verdict and only provides a summary sentence (or

two) that explains what is wrong with a particular claim. This clearly indicates the complexity

of capturing the relation between a claim and evidence in naturally occurring claims and shows

the need to better understand the difference between these more fine-grained labels. In future

work, we could utilize our fallacy recognition model for the claim veracity prediction task and

study the relation between labels like half-true and fallacy types. This work could be done on the

LIAR/LIAR-PLUS dataset that has the six-degree truth labels. The LIAR dataset is also from the

same genre of our Covid-19 fallacy data that has claims from POLITIFACT as well. Although the

two datasets are on different topics, we hypothesize that argumentative fallacies could provide

informative inputs for nuanced prediction of claim veracity.

1https://www.snopes.com/fact-check-ratings/
2https://sciencefeedback.co/claim-reviews-framework/
3https://fullfact.org/about/frequently-asked-questions/ratings
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Appendix A: Fallacies in Pragma-Dialectical Perspective

Van Eemeren and Grootendorst (1987) consider fallacies as violations of the ten rules of critical

discussion. Below we list the ten rules and their violations that map to fallacious moves.

Rule I Parties must not prevent each other from advancing or casting doubt on standpoints.

Rule I applies to the confrontation stage of a critical discussion, and can be violated by both the

protagonist and the antagonist. Possible violations and the corresponding fallacies are: banning

standpoints, declaring standpoints sacrosanct, putting pressure on the opponent (ad baculum and

ad misericordiam), or performing a personal attack on the opponent (ad hominem)

Rule II Whoever advances a standpoint is obliged to defend it if asked to do so. Rule II applies to

the opening stage, and can be violated by the protagonist: evading the burden of proof by presenting

the standpoint as self-evident, giving a personal guarantee of the rightness of the standpoint, or

immunizing the standpoint against criticism, or by shifting the burden of proof by demanding the

antagonist shows that the standpoint is wrong.

Rule III An attack on a standpoint must relate to the standpoint that has really been advanced

by the protagonist. Rule III applies to all stages of a critical discussion, and can be violated by

the antagonist: Imputing a fictitious standpoint to someone, or distorting someone’s standpoint by

oversimplification or exaggeration.

Rule IV A standpoint may be defended only by advancing argumentation relating to that stand-

point. Rule IV applies to the argumentation stage, and can be violated by the protagonist: ir-

relevant argumentation (ignoratio elenchi), using pathos by playing on the emotions or preju-

dices of the audience (argumentum ad populum) and using ethos by parading one’s own qualities
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(argumentum ad verecundiam).

Rule V A person can be held to the premises he leaves implicit. Rule V applies to the argumen-

tation stage, and can be violated by both the protagonist and the antagonist: reconstructing an

unexpressed premise beyond what the protagonist can be held to (antagonist), denying a commitment

to a correctly reconstructed unexpressed premise (protagonist).

Rule VI A standpoint must be regarded as conclusively defended if the defence takes place by

means of arguments belonging to the common starting point. Rule VI applies to the argumentation

stage and can be violated both by the protagonist and the antagonist: wrapping up a proposition in a

presupposition (protagonist), hiding away a proposition in an unexpressed premise (protagonist),

advancing an argument that amounts to the same thing as the standpoint (protagonist), or casting

doubt on a starting point (antagonist).

Rule VII A standpoint must be regarded as conclusively defended if the defence takes place by

means of arguments in which a commonly accepted scheme of argumentation is correctly applied.

Rule VII applies to the argumentation stage, and can be violated by the protagonist: Applying an

unsuitable scheme of argumentation such as the appeal to irrelevant authority or the bandwagon

fallacy, Inappropriately applying a scheme of argumentation which includes fallacies such as

hasty generalization, false analogy, post hoc, and slippery slope.

Rule VIII The arguments used in a discursive text must be valid or capable of being validated by

the explicitization of one or more unexpressed premises. Rule VIII applies to the argumentation stage,

and can be violated by the protagonist in various ways: (a) Confusion of necessary and sufficient

conditions, (b) Confusion of properties of parts and wholes which includes fallacy of division and

fallacy of composition.

Rule IX A failed defence must result in the protagonist withdrawing his standpoint and a suc-

cessful defence must result in the antagonist withdrawing his doubt about the standpoint. Rule
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IX applies to the concluding stage and can be violated by both the protagonist and the antagonist:

concluding that a standpoint is true because it has been successfully defended against the opposition

of the antagonist (by the protagonist), concluding that a standpoint is true because the opposite has

not been successfully defended (by the antagonist), often combined with an erroneous opposition

showcasing the fallacy of false dilemma.

Rule X Formulations must be neither puzzlingly vague nor confusingly ambiguous and must be

interpreted as accurately as possible. Rule X applies to all the stages of a critical discussion, and

can be violated by both the protagonist and the antagonist. The main types of unclearness and

ambiguity are: structural unclearness (textual level), implicit illocutionary force of a speech act

(sentence level), indefinite reference of a speech act (sentence level), unfamiliar predication of

speech act (sentence level), vague predication of a speech act (sentence level), semantic ambiguity,

and syntactic ambiguity.

More details about the stages and rules of critical discussion and examples for each violation

can be found in Van Eemeren and Grootendorst (1987).
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