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a b s t r a c t

Allergic diseases such as asthma result from inappropriate immunologic responses to common envi-
ronmental allergens in genetically susceptible individuals. Following allergen exposure, interaction of
dendritic cells (DC) with CD4+ T cells leads to the production of Th2 cytokines, which induce B cells to
synthesize IgE molecules (sensitization phase). These IgE molecules bind to their high affinity receptors
(Fc�RI) on the surface of mast cells and basophils and their subsequent cross-linking by allergen results
in the release of preformed and newly synthesized mediators, which cause bronchoconstriction, lung
inflammation and airway hyperresponsiveness (AHR) in asthma (effector phase). The complement com-
ponents C3a and C5a levels are increased in the lungs of patients with asthma and are likely generated
via the actions of both allergen and mast cell proteases. In vivo studies with rodents have shown that
while C3a facilitates allergen sensitization in some models C5a inhibits this response. Despite this differ-
ence, both anaphylatoxins promote lung inflammation and AHR in vivo indicating that cells other than
DC and T cells likely mediate the functional effects of C3a and C5a in asthma. This review focuses on the
contribution of C3a and C5a in the pathogenesis of asthma with a particular emphasis on mast cells and
basophils. It discusses the mechanisms by which anaphylatoxins activate mast cells and basophils and
the associated signaling pathways via which their receptors are regulated by priming and desensitization.

© 2009 Elsevier B.V. All rights reserved.

1. Role of mast cells in asthma

Allergic diseases such as rhinitis and asthma are the most preva-
lent respiratory diseases in industrialized societies affecting ∼20%
and ∼7% of the US population, respectively [1,2]. These diseases
are caused by an overzealous immune response to allergens in
which immunoglobulin E (IgE) and mast cells play critical roles. It is
therefore not surprising that tremendous efforts have been directed
towards developing therapy based on the modulation of IgE and its
receptor, Fc�RI. A recent exciting development in mast cell research
has been the approval by the U.S. Food and Drug Administration of
a humanized monoclonal antibody omalizumab for the treatment
of allergic diseases. Omalizumab binds free IgE molecules and the
resulting complexes are removed from the circulation. Over time,
IgE comes off its receptors on mast cells and they lose their ability
to respond to allergen [3,4]. Omalizumab is difficult to manufac-
ture, is expensive, effective on a subset of allergic patients and may
not be sufficient alone to prevent hyperresponsiveness [5]. Another
approach has been to target the intracellular signaling pathway
via which IgE–Fc�RI activates mast cells. Given that Syk kinase
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plays a central role in Fc�RI signaling, a number of Syk inhibitors
have been developed [6]. One compound, R112, was the first Syk
inhibitor to enter clinical studies [7]. These findings suggest that
other pathways that also activate mast cells could be targeted for
the development of asthma therapeutics.

As discussed in this review, the complement components C3a
and C5a are involved in the pathogenesis of asthma and their effects
have variously been proposed to involve dendritic cells, T cells, air-
way epithelial cells and smooth muscle cells [8–16]. Although a
number of excellent reviews have recently been published on the
roles of C3a and C5a in asthma [17–21], the possible involvement
of mast cells and basophils have not been discussed in detail. It is
noteworthy that murine bone marrow-derived mast cells (BMMC)
and rat basophilic leukemia RBL-2H3 cells, which have been exten-
sively used to study Fc�RI signaling in mast cells, do not express
G protein coupled receptors (GPCRs) for C3a and C5a [22–24].
The purpose of this brief review article is to summarize what is
known about the activation and regulation of human mast cells
and basophils by C3a and C5a. This review is particularly timely as
basophils, which express C3a and C5a receptors, have recently been
shown to have previously unrecognized role in the development
and maintenance of allergic diseases [25–27]. Thus, understanding
the molecular mechanism by which anaphylatoxins activate mast
cells and basophils and delineating the signaling pathway via which
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their functions are regulated may provide a novel therapeutic target
for asthma and other allergic diseases.

2. Roles of complement component C3a in the
pathogenesis of allergic asthma

The complement system forms an important part of innate
immunity against bacteria and other pathogens. As a system of ‘pat-
tern recognition molecules’, foreign surface antigens and immune
complexes initiate a proteolytic pathway leading to the formation
of a lytic membrane attack complex. The anaphylatoxins C3a and
C5a are generated as byproducts of complement activation, and
they interact with cell surface GPCRs in target cells to mediate a
variety of inflammatory responses [28–30]. Recent studies have
shown that C3a and C5a levels are elevated in bronchoalveolar
lavage (BAL) fluid after segmental allergen challenge in asthmatic
but not healthy subjects [9,31,32]. Furthermore, plasma C3a and
C5a levels are elevated in acute exacerbations of asthma [31] and
C3a receptor is unregulated in subjects who died with asthma
compared with subjects who died from other causes [33]. Addition-
ally, single nucleotide polymorphism in C3 or C3a receptor (C3aR)
gene increases susceptibility to asthma [34]. In animal models,
complement activation modulates both AHR and airway inflamma-
tion [35,36]. Furthermore, deletion of C3aR gene or administration
of C3aR inhibitors attenuates both AHR and lung inflammation
[9,37–40]. Collectively, these findings demonstrate an important
role of C3aR in the pathogenesis of asthma.

The mechanism by which C3a regulates AHR and inflammation
in asthma is unknown and has been the subject of consider-
able debate. C3aR is expressed in both antigen-presenting cells
(APCs) and activated T cells indicating that C3a may promote
asthma by inducing Th2 cytokine production and IgE synthesis
[41–44]. Indeed, Drouin et al. [37] reported that in models of
Aspergillus fumigatus and ovalbumin-induced pulmonary allergy,
C3aR-deficiency in mice on C57BL/6 background results in sig-
nificant decrease in Th2 cytokine production and IgE synthesis.
More recently, Zhang et al. [13] showed that in house dust mite
(HDM)-induced allergic asthma C3aR−/− mice produce less Th2
cytokine when compared to wild-type mice. These findings are in
contrast with previous reports, which showed that C3aR-deficiency
in guinea pigs and mice on the BALB/c background are not protected
from serum IgE secretion, Th2 cytokine secretion [9,39]. These dif-
ferences might reflect differences in species and strains of animals,
nature of allergen and methods of sensitization used. Despite this,
C3aR-deficiency protects animals from allergen-induced AHR and
lung inflammation. Furthermore, administration of complement
inhibitor in mice after sensitization but before challenge prevented
the development of AHR and blocked lung inflammation [36].
Additionally, a small molecule antagonist of C3a receptor, when
administered after sensitization but before challenge also signifi-
cantly inhibited airway inflammation [38]. These findings suggest
that although C3a has variable effect on allergen sensitization, its
effect on AHR and lung inflammation in animal models of allergic
asthma is likely mediated via the activation of C3aR in effector cells
such as mast cells and basophils [12,21,36,38].

3. Dual roles of C5a in the pathogenesis of allergic asthma

As described above, development of allergic asthma in animal
models can be modulated either at the level of allergen sensitization
or the effector phase. Administration of C5aR monoclonal antibody
after sensitization but before allergen challenge leads to substantial
improvement of AHR and reduction in airway inflammation [38].
These findings are consistent with the idea that C5a also contributes
the pathogenesis of allergic asthma via the modification of the

effector phase. However, this contention was challenged by Karp
et al. [45], who showed that C5-deficient mice are more suscep-
tible to experimental asthma when compared with C5-sufficient
mice indicating that C5a may instead play a protective role in the
pathogenesis of asthma. Kohl et al. [15] recently utilized three
experimental approaches to resolve this paradox. These included
(a) administration of anti-C5a receptor (C5aR) monoclonal anti-
body to the lung, (b) expression of a lung-inducible mutant form
of C5a (C5aRA A8�71−73) that acts as a C5aR antagonist and (c)
C5aR-deficient mice. They found that blocking or deleting C5aR
prior to initial allergen sensitization in murine model of allergic
asthma either induces or causes a marked enhancement of Th2-
polarized immune responses, airway inflammation, and AHR. These
effects result from an increase in the number of myeloid dendritic
cells and in the production of Th2-selective chemokines. However,
when C5aR was blocked during airway allergen challenge in already
Th2-sensitized mice, AHR and lung inflammation were attenuated.
Based on these findings, it has been proposed that C5a plays a dual
role in allergic asthma; protection from the development of mal-
adaptive Th2 immune responses during allergen sensitization at
the level of myeloid dendritic and the production of Th2 cytokines
but enhancement of airway inflammation and AHR in an estab-
lished inflammatory environment [15]. This suggests that, as for
C3a, the effect of C5a on asthma likely involves the activation of
effector cells such as mast cells and basophils.

3.1. Activation of human mast cells by C3a and C5a

Mast cells are important effector cells that orchestrate the
development of AHR and inflammation via their close interac-
tion with airway smooth muscle (ASM), T cells and leukocytes
[46–50]. In lungs of asthmatic individuals, mast cells are found in
different compartments including bronchoalveolar space beneath
the basement membrane, adjacent to blood vessels and scattered
throughout the ASM bundles [51,52]. The ability of allergen to
cross-link Fc�RI on mast cells to induce mediator release is well
documented [53–55]. In addition to Fc�RI, mast cells express C3a
and C5a receptors [56,57,49,21,58], which have been implicated in
the pathogenesis of asthma.

Two subtypes of human mast cells were initially recognized
based on the composition of their secretory granules. Thus, mast
cell granules that contain both tryptase and chymase are desig-
nated MCTC whereas those that contain only tryptase are known as
MCT [59]. Interestingly, MCT cells predominate in the alveolar wall
and the epithelium of the lung whereas MCTC cells favor bronchial
smooth muscle and glandular regions [60]. Furthermore, MCT cell
number in the respiratory epithelium increases during pollen sea-
son [61,62] and markedly elevated levels of MCTC cells are found in
bronchial smooth muscle cells of patients with asthma [63]. These
findings suggest that different mast cell types may play distinct
roles in the pathogenesis of asthma.

Studies performed in the 1980s indicated that while C3a and C5a
induce mediator release in human skin mast cells, lung mast cells
are unresponsive to these anaphylatoxins [56,64,65]. One possible
reason for the discrepancy might reflect the fact that while MCTC
cells are the predominant cell type present in the skin they are the
minority cell type found in the lung [66,67]. Indeed, Oskeritzian et
al. [60] recently showed that MCT cells in the lung do not express
C5aR whereas MTC cells do and that this is correlated with sub-
stantial C5a-induced degranulation in MCTC cells. It is noteworthy
that RBL-2H3 cells and BMMC, which are thought to be counter-
parts of human MCT mast cells do not express C3aR or C5aR and are
unresponsive to anaphylatoxins for mediator release [23,24,68,69].

Although the effects of C3a on human lung MCTC cells are
unknown, C3aR are expressed in a human mast cell line, HMC-1
cells [70–72], highly differentiated CD34+-derived primary human
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mast cells and a newly characterized MCTC type human mast cell
line, LAD2 [57,58]. Furthermore, C3a is one of the most potent
mast cell chemoattractant known [72,73] and it causes sustained
Ca2+ mobilization, degranulation as well as chemokine production
in primary human mast cells and LAD2 cells [58,71]. In addition,
cell–cell contact between airway smooth muscle (ASM) cells and
MCTC cells enhance C3a-induced mast cell mediator release [49].
Given that MCTC cells favor bronchial smooth muscle and glandu-
lar locations, it supports the idea that effects of C3a and C5a in the
effector phase of asthma are mediated, at least in part, by mast
cells.

3.2. Novel pathway for the generation of C3a and C5a requiring
mast cells

The best known mechanism for the generation of C3a and C5a is
the classic IgG/antigen immune-complex pathway but this path-
way does not appear to play a major role in the pathogenesis
of asthma. The lectin and alternative pathways may participate
in the production of these anaphylatoxins but several proteolytic
enzymes outside of these complement pathways also can gener-
ate anaphylatoxin-like activity, including thrombin, kallikrein, and
house dust mite protease [74–78]. Since C3a and C5a are gener-
ated in the lung of asthmatic but not in normal individuals, this
raises the possibility that mast cells could participate in the gener-
ation of these anaphylatoxins. Indeed, Fukuoka et al. [79] recently
showed that �-tryptase, the major protease of human mast cells,
can directly generate bioactive C3a and C5a in vitro. Furthermore,
activation of human MCTC cells via the cross-linking of Fc�RI results
in the release of tryptase at sufficient concentrations to generate
C3a and C5a from C3 and C5, respectively. Mast cell-derived medi-
ators such as histamine can increase vascular permeability and the
resulting exudation may serve to recruit C3 and C5 at the site of
mast cell activation. The extravascular C3 and C5 are likely to be
targets for mast cell-derived tryptase resulting in the generation of
C3a and C5a. Thus, initial IgE-mediated release of histamine and
tryptase may serve to amplify the allergic reaction through the

generation of C3a and C5a, and additional mediator release via the
subsequent activation of their GPCRs (see Fig. 1).

3.3. GPCR-dependent pathway for the activation of mast cells by
C3a and C5a

C3aR and C5aR belong to a family of seven transmembrane
domain GPCRs that couple to the G�i family of heterotrimeric
G proteins. Under resting conditions, G proteins exist as het-
erotrimeric complexes consisting ��� complex with GDP bound
to the � subunit (G�). Receptor activation leads to a conforma-
tional change in G�, resulting in an exchange of GTP for GDP. This
interaction causes the dissociation of the �� subunit (G��) from
the heterotrimeric complex. G��, of which there are many sub-
types, plays essential roles in mediating diverse functions of GPCRs.
C3a and C5a induce chemotaxis of human mast cell line HMC-1,
human cord blood-derived mast cells (CBMC) and cutaneous mast
cells in vitro and these responses are inhibited by receptor-specific
antibodies and pertussis toxin, inhibitor of G�i family of G pro-
teins [72,73]. Rat basophilic leukemia RBL-2H3 cells have been used
extensively study to the molecular details of Fc�RI signaling in mast
cells. This cell line does not endogenously express receptors for C3a
or C5a and does not respond to the anaphylatoxins for degranula-
tion. However, RBL-2H3 cells ectopically expressing C3aR or C5aR
are responsive to the anaphylatoxins for signaling and mediator
release [22,23,80]. These findings suggest that the effects of C3a and
C5a in mast cells are mediated via the activation of their respective
GPCRs.

In addition to chemotaxis and degranulation, C3a and C5a also
induce chemokine gene expression in mast cells [70,71,81]. The
ability of C3a and C5a to induce early degranulation and delayed
chemokine production release involves the activation of distinct
signaling pathways including phospholipase C� (PLC�)-mediated
Ca2+ mobilization and protein kinase C (PKC) as well as phospho-
inositide 3 kinase (PI3K) and extracellular signal regulated kinase
(ERK) activation. C5a induces degranulation in mast cells via signal-
ing pathways that require PLC� but not PI3K or ERK [49,56,81,82].

Fig. 1. Model for the role of Fc�RI and mast cells on C3a and C5a generation and amplification of mediator release. Mast cell numbers are increased in the lung of allergic
individuals, which are likely to be activated via Fc�RI. The release of mast-derived mediators such as histamine causes increase in vascular permeability and the resulting
exudation likely contains C3 and C5. Tryptase released from activated mast cells acts on C3 and C5 to locally generate C3a and C5a. These anaphylatoxins activate MCTC mast
cells present in bronchial smooth muscle to further exacerbate symptoms associated with asthma. See text and Fukuoka et al. [79] for further details.
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By contrast, C3a promotes cytokine gene expression in mast cells
via signaling pathways that require PLC�, PI3K as well as ERK
[70,81,71].

3.4. GPCR-independent pathway for the activation of mast cells
by C3a

Basic peptides such as compound 48/80, substance P and
mastoparan have been known for many decades to cause degran-
ulation of rat peritoneal mast cells and human skin mast cells
[56,83,84]. High concentrations of these peptides (micromolar
range) are required for mast cell degranulation and their effects are
blocked by neuraminidase, which hydrolyzes sialic acid residues
on the cell surface, decreasing its negative charge. These peptides
also activate purified G�i proteins and treatment of mast cells with
benzalkonium chloride, an inhibitor of G�i, blocks degranulation.
Based on these findings, it has been proposed that basic peptides
utilize negatively charged residue on the surface of mast cells to
induce degranulation by directly activating G proteins. It is note-
worthy that C3a is a basic protein and is one of the few plasma
proteins that can be generated at micromolar levels [85]. Further-
more, C3a (1–30 �M) causes degranulation of rat peritoneal mast
cells and this response is inhibited by neuraminidase, pertussis
toxin and benzalkonium chloride [85,86]. These findings suggest
that C3a activates mast cell by two pathways; one at low concen-
tration via the activation of cell surface GPCR and the other at high
concentration involving the direct activation of G proteins.

4. Role of basophils in allergic diseases

Tissue mast cells and blood basophils share several features
including surface expression of Fc�RI, the presence of basophilic
granules in the cytoplasm and the release of shared important
chemical mediators. While the availability of genetically mast
cell-deficient mice have provided a valuable tool to study the
role of mast cells in allergic diseases, no mutant mice have been
reported that selectively lack basophils. This, together with the
fact that basophils represent a minor component of circulating
blood leukocytes (<1%) and their similarities with mast cells, they
have been neglected as minor and possibly redundant “circulating
mast cells”. However, the recent development of two monoclonal
antibodies that selectively deplete murine basophils have been
instrumental in identifying novel roles for basophils in promot-
ing allergen-induced Th2 cell differentiation, enhancing humoral
memory immune responses [26,87,88], mediating IgG-mediated
systemic anaphylaxis and IgE-mediated chronic allergic inflamma-
tion [89–91]. In most of these situations, complements are likely
activated generating both C3a and C5a. These anaphylatoxins, par-
ticularly C5a, have the capability to release histamine, leukotriene
C4 (LTC4) and the Th2 cytokines IL-4 and IL-13 comparable in mag-
nitude to those induced via Fc�RI cross-linking [92–95]. In the
sections below, I discuss the roles of C3a and C5a in mediator release
in human basophils and the signal transduction pathways involved
in their activation and regulation.

4.1. C3a and C5a-induced histamine and LTC4 release in human
basophils; priming by IL-3

Whether or not leukocytes express C3aR has been the sub-
ject of considerable debate. Zwirner et al. [11] recently utilized
monoclonal antibodies against two different epitopes on the third
extracellular domain of the human C3aR to show that human
basophils express ∼8100 receptors/cells. However, C3a, at concen-
trations that activate RBL-2H3 cells stably expressing human C3aR
[68,96], do not induce mediator release in human basophils [12].

Table 1
Regulation of C3a and C5a receptor function in human basophils by IL-3.

Histamine
release

LTC4 IL-4 IL-13

C3a − − − −
IL-3 − − − −
IL-3 + C3a + + − −
C5a ++ − − −
IL-3 + C5a ++++ ++++ +++ ++++

Human basophils express ∼8100 C3aR and ∼13,500 C5aR on their surface. (−) indi-
cates no or little mediator release. (+) to (++++) low to very high mediator release.
See text for detail.

The reason for this difference is unknown but could reflect dif-
ferences in the expression levels of C3aR in human basophils and
transfected RBL-2H3 cells.

Hematopoietic growth factors such as interleukin-5 (IL-5), gran-
ulocyte/macrophage colony stimulating factor (GM-CSF) and in
particular interleukin-3 (IL-3) profoundly modify the effector func-
tion of mature human basophils. IL-3 is generated in large amounts
from T cells and antigen/IgE-activated human basophils [97]. Inter-
estingly, preincubation of human basophils with concentrations of
IL-3 that are ∼100-fold lower than those required for colony forma-
tion render them responsive to extremely low concentration of C3a
(1 nM) for histamine release and the generation of LTC4 [12]. The
release of these mediators in IL-3-primed cells is very rapid, being
complete within 0.5–2 min. It has been proposed that IL-3 may
induce priming of C3aR-mediated response via the induction of a
high affinity state of the C3aR. However, this contention has yet to
be verified experimentally. Using C3aR−/− mice and a monoclonal
antibody to selectively deplete basophils in mice in vivo, it has
been shown that C3aR expressed in basophils greatly contribute to
peanut extract-induced anaphylaxis [98]. It is, however, unknown
whether C3a induces mediator release in mouse basophils via the
activation of C3aR and if this effect requires priming by IL-3 and
other cytokines.

Human basophils express approximately twice as many C5aR on
their surface as C3aR [11]. Unlike C3a, C5a causes rapid histamine
release in the absence of IL-3 [12,99] (Table 1). Neither C3a nor
C5a causes LTC4 production in human basophils [12,99]. However,
basophils preincubated with low concentrations of IL-3 profoundly
synergize with C3a and C5a to induce large quantities of LTC4 [100].
The magnitude of IL-3/C5a-induced LTC4 synthesis is much larger
than that induced by IL-3 and C3a combination [8,12,94]. The effect
of IL-3 on priming has been investigated in some detail for C5a,
which occurs in two phases. The first phase occurs very rapidly after
exposure to IL-3, starting at 1 min, with optimal effects at 5–15 min
but reduced at 2 h [8,93,99]. The second phase is observed after
18–24 h of IL-3 treatment, and the magnitude of the C5a response
is often greater than that observed after acute IL-3 pretreatment
[101]. It is noteworthy that basophils are known to participate in
the chronic phase of allergic diseases and lipid-derived mediators
accumulate at these sites at amounts exceeding those found during
immediate reaction [94]. It is likely that both C5a and IL-3 are gen-
erated continuously and concomitantly at the site of inflammation
to induce LTC4 generation [94]. It is noteworthy that leukotriene
antagonists have been used in the treatment of chronic allergic
inflammation such as asthma [102]. It is therefore possible that
C5a contributes to allergic diseases via the production of LTC4 in
cytokine-primed basophils.

4.2. C5a, but not C3a, induces IL-4 and IL-13 in IL-3-primed
human basophils

IL-4 and IL-13 are key immunoregulatory cytokines, which
induce and amplify Th2-type immune responses and promote IgE
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synthesis [103,104]. Receptors for IL-4 and IL-13 are also expressed
on airway smooth muscle cells and IL-13 causes smooth mus-
cle contraction, promotes mucous secretion and lung remodeling
[105–107]. Not surprisingly, these cytokines have been targeted for
asthma therapeutics [108,109].

Basophils are a prominent source of IL-4 and IL-13, which
are rapidly produced upon Fc�RI cross-linking [95,97,110]. It is
noteworthy that neither C3a nor C5a induce IL-4 or IL-13 in
human basophils. However, in the presence of IL-3 co-stimulation,
C5a but not C3a, induces large quantities of these cytokines
[92,100,110,111] (Table 1). The magnitude and duration of the IL-
4/IL-13 induction in response to IL-3/C5a are often greater than
that induced via IgE cross-linking. The priming effect of IL-3 on
C5a-induced Th2 cytokine generation does not depend on the
sequence of their addition but requires their sustained presence.
Furthermore, monoclonal C5aR antibody, and pertussis toxin block
IL-3/C5a-induced Th2 cytokine production [92]. In addition, the
effect of C5a on this response can be mimicked by C5a-derived pep-
tides that are known to activate C5aR [92]. These findings, in total,
suggest that basophil-specific modulation of C5aR or its signaling
pathways may modulate both the Th2 response and the effector
phase of asthma.

4.3. Signaling pathways for C3a and C5a-induced mediator
release in human basophils and priming by IL-3

The abilities of C3a (+IL-3) and C5a to induce histamine and LTC4
release in human basophils are likely mediated via the activation
of their respective cell surface GPCRs [11]. Although the mecha-
nism by which IL-3 primes C3a-induced LTC4 generation remains
unknown, the signaling pathway via which IL-3 mediates both
early and late phases of C5aR priming for the LTC4 generation has
been studied in some detail. Elegant work by Miura et al. [112,113]
supports the view that synchronized regulation of cytosolic phos-
pholipase A2 (cPLA2) activity is required for the generation of
arachidonic acid, which acts as a substrate for LTC4 synthesis. For
optimal action, cPLA2 requires Ca2+ for phospholipid binding and
its phosphorylation by extracellular signal regulated kinase (ERK).
It is interesting to note that in the absence of IL-3, C5a causes a tran-
sient increase cytosolic Ca2+ that lasts for about 30–45 s and induces
cPLA2 phosphorylation that is not apparent until after the Ca2+

response returns to basal level [93]. Thus, Ca2+-mediated translo-
cation of cPLA2 may be dissociated from the membrane before
phosphorylation and activation of the enzyme can occur. However,
short-term pretreatment of human basophils with IL-3 causes rapid
cPLA2 phosphorylation but does not alter the characteristics of C5a-
induced Ca2+ response. Thus, it has been proposed that the ability of
IL-3 to allow C5a to promote LTC4 release results from the precon-
ditioning of cPLA2 due to its phosphorylation. Under this condition,
brief transient Ca2+ mobilization that occurs following C5a stimula-
tion overlaps with the pre-existing phosphorylated cPLA2 to allow
its full enzymatic activity.

The ability of IL-3 to prime C5a-induced LTC4 generation after
18 h preincubation also involves synchronization of cPLA2 phos-
phorylation and Ca2+ mobilization but by different mechanisms [8].
In this situation, exposure of basophils to IL-3 has no effect on the
delayed cPLA2 activation by C5a but it converts a transient C5a-
induced Ca2+ response to a sustained one, thus facilitating overlap
of two synergistic signals; cPLA2 phosphorylation and Ca2+ mobi-
lization, which are required for optimal cPLA2 activity and LTC4
generation. An important factor that distinguishes between early
and late priming by IL-3 involves new protein synthesis. Thus,
while treatment of basophils with cycloheximide inhibits both
the sustained phase of the Ca2+ response to C5a and late priming
effect of IL-3, it has no effect on early priming [8]. It is therefore
possible that chronic exposure of basophils to IL-3 increases the

expression of C5aR to induce priming. However, this explanation is
unlikely as IL-3 has a global effect in modulating LTC4 generation
in response to basophil stimulation by other receptor-mediated
pathways [93,100,114,115].

5. Role of receptor phosphorylation on C3aR and C5aR
desensitization in mast cells and basophils

Most, if not all GPCRs undergo desensitization that damp-
ens cellular responses in the presence of continued stimulation.
Importantly, desensitization regulates mediator release and thus
prevents tissue damage [116]. This process involves agonist-
induced receptor phosphorylation and �-arrestin recruitment
[117]. The carboxyl terminus of GPCRs expressed in mast cells and
basophils display low sequence conservation except for a large
number of clustered phosphorylation sites [118]. C3aR possesses
ten potential phosphorylation sites in two distinct clusters. C3a
causes rapid phosphorylation of its receptors in RBL-2H3 cells sta-
bly expressing human C3aR or HMC-1 cells natively expressing
the receptor [68,119]. Phosphopeptide mapping analysis showed
that C3a causes phosphorylation of the receptor at both serine
and threonine residues. Replacing all ten serine and threonine
residues with alanine leads to more robust G protein activation
and greater degranulation when compared to wild-type receptors
[120,22,121–124]. These findings are consistent with the notion
that, as in many other cell types, receptor phosphorylation desen-
sitizes C3aR function in mast cells.

In addition to mast cells and basophils, C5aR is expressed in
human neutrophils. Boulay and co-workers [125–127] have uti-
lized neutrophil-like HL-60 cells and transfected COS-7 cells to
show that although C5aR possesses six serine and five threonine
residues at its carboxyl terminus, C5a causes phosphorylation of
the receptor only at the serine residues with a maximal stoichiom-
etry of 6 mol of PO4/mol of receptor at Ser314, Ser317, Ser327, Ser332,
Ser334, and Ser338. Using a mutagenesis approach they have shown
that C5aR undergoes sequential phosphorylation with Ser334 as
the major initial site followed by residues at positions Ser332 and
Ser338 playing significant roles. Christophe et al. [126], demon-
strated that phosphorylation of either of two serine pairs, namely
Ser332 and Ser334 or Ser334 and Ser338, is critical for the phospho-
rylation of C5aR and its subsequent desensitization. Replacement
of Ser residues at these sites with Ala and their transfection in
undifferentiated HL-60 cells results in a more sustained calcium
mobilization, enhanced ERK phosphorylation and greater super-
oxide generation when compared to cells expressing wild-type
receptors [126]. C5a also causes phosphorylation of its receptor
in HMC-1 cells natively expressing C5aR and RBL-2H3 cells stably
expressing the human receptor [23,119]. Pollok-Kopp et al. [128]
recently showed that when compared to RBL-2H3 cells expressing
wild-type receptor, C5a causes enhanced Ca2+ mobilization in RBL-
2H3 cells expressing a mutant C5aR in which all six serine residues
were replaced with alanine. This enhanced Ca2+ mobilization was
partially reversed in cells expressing C5aR that had intact residues
at positions Ser327, Ser334 and Ser338. This indicates that C5aR phos-
phorylation at multiple sites regulates signaling in mast cells and
presumably in basophils.

5.1. Role of GRKs on C3aR and C5aR phosphorylation and
desensitization

GPCRs are phosphorylated by a family of protein kinases, col-
lectively known as GRKs (G protein coupled receptor kinases).
Of the seven known GRKs, four (GRK2, GRK3, GRK5 and GRK6)
are expressed in peripheral blood leukocytes, myeloid cell lines
[129–133] and human mast cells (Hariharan, S, Guo, Q and Ali;
unpublished data). All GRKs (60–80 kDa) possess a similar struc-
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tural organization consisting of an amino terminal domain (185
amino acids), a catalytic domain (270 amino acids) and a car-
boxyl terminal domain (105–230 amino acids). There are, however,
important differences in the mechanism via which GRK2/GRK3 vs.
GRK5/GRK6 are localized to the proximity of the receptor to induce
receptor phosphorylation [134]. GRK2 and GRK3 are found pri-
marily in the cytoplasm and undergo translocation to the plasma
membrane upon G protein activation, via their interaction with
G�� subunit and membrane phospholipids. By contrast, GRK5 and
GRK6 do not associate with G�� but interact with phospholipids
or require lipid modification for their association with recep-
tors. Overexpression of GRK2, GRK3, GRK5 and GRK6 with C3aR
in COS cells enhanced agonist-induced receptor phosphorylation
[119]. However, only GRK2 and GRK3 caused significant inhibi-
tion C3a-induced G protein activation. Furthermore, introduction
of monoclonal antibodies to GRK2 and GRK3 inhibited agonist-
induced C3aR phosphorylation but antibodies to GRK5 or GRK6
had no effect. These findings suggest that recruitment of GRK2 or
GRK3 following C3aR activation leads to receptor phosphorylation
and desensitization. The role of C3aR phosphorylation by GRK5 and
GRK6 has yet to be determined.

Langkabel et al. [119] showed that as for C3aR, overexpression of
GRK2, GRK3, GRK5 or GRK6 augmented C5a-induced phosphoryla-
tion of its receptors in transfected COS-7 cells. By contrast, Milcent
et al. [135] demonstrated that overexpression of GRK2 or GRK6 has
no effect on agonist-induced C5aR phosphorylation. Despite this
difference, GRK6−/− mice have elevated serum IL-6 in an in vivo
K/BxN model of inflammatory arthritis and enhanced granulocyte
migration towards C5a in vitro [136]. These findings suggest that
GRK6 may desensitize inflammatory responses by regulating gran-
ulocyte trafficking and reducing cytokine generation in response to
C5a in vivo. It remains to be determined which GRK regulates C5aR
phosphorylation in mast cells and basophils to modulate allergic
asthma.

5.2. Role of ˇ-arrestin on the regulation of C3aR and C5aR
signaling in mast cells and basophils

One of the most intensely studied proteins that interact with
phosphorylated GPCRs is �-arrestin. Two isoforms of �-arrestins
(�-arrestin 1 and 2) are expressed in many cell types including
mast cells [137,138]. In transfected RBL-2H3 cells, �-arrestin asso-
ciates with wild-type but not phosphorylation-deficient C3aR [68].
Furthermore, overexpression of �-arrestin with C3aR enhances
receptor internalization [20]. These findings are consistent with
the notion that agonist-induced receptor phosphorylation leads
to �-arrestin recruitment which promotes desensitization and
internalization. However, the specific phosphorylation site in the
carboxyl terminus of C3aR that interacts with �-arrestin and the
GRK which mediates these responses remains unknown. Boulay
and co-workers showed that agonist-induced C5a phosphoryla-
tion in neutrophil-like HL-60 cells, caused �-arrestin recruitment
resulting in desensitization and internalization [125,126].

In addition to its role in receptor desensitization, �-arrestin acts
as an adapter molecule to regulate diverse cellular function inde-
pendent of desensitization [139–141]. For example, �-arrestins
directly interact with several Src family kinases, ubiquitin ligases,
protein phosphatases, microtubules, etc., and serve as scaffolds
facilitating signaling in two MAP kinase cascades, leading to the
activation of ERK1/2 and JNK3 [142–144]. Although the role of
�-arrestin on the activation of downstream signaling pathways
has not been studied in detail in mast cells and basophils, it
does not appear to be required for C3a and C5a-mediated ERK
phosphorylation. For example phosphorylation-deficient C3aR and
C5aR, which do not associate with �-arrestin support greater ERK
phosphorylation [22,126]. This suggests that unlike many GPCRs,
�-arrestin plays inhibitory rather than stimulatory role in C3a
and C5a-induced ERK phosphorylation in mast cells and basophils
(Fig. 3).

Fig. 2. Possible role of basophil-derived IL-3 on the priming of C3a and C5a-induced mediator release. IL-3 generated via the activation of Fc�RI in basophils interacts with
its cell surface receptors on basophils to prime both C3a-induced histamine release and LTC4 generation. IL-3 also enhances C5a-induced histamine release, LTC4 generation
(early phase and later phase) as well as Th2 cytokines IL-4 and IL-13. These basophil-derived mediators are likely to have profound influence on allergen sensitization,
bronchial smooth contraction and delayed inflammation.



42 H. Ali / Immunology Letters 128 (2010) 36–45

Fig. 3. Model for the role of GRKs and �-arrestin on the regulation of C3a and C5a receptors. C3a and C5a bind to their GPCRs on mast cells and basophils to activate PLC�,
cPLA2 and NF-�B to induce release of different mediators. IL-3 enhances C3a and C5a-induced mediator release in human basophils. Effects of IL-3 on enhanced C5a-induced
LTC4 generation involve ERK phosphorylation (early) and greater C5a-induced Ca2+ mobilization (late) (blue dashed lines). Receptor phosphorylation by GRKs serves to
recruit �-arrestin and this complex interacts with G protein to desensitize degranulation and LTC4 generation. Internalized �-arrestin-associated receptor inhibits NF-�B
activation to block delayed cytokine gene expression (red lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of the article.)

NF-�B is a transcription factor that regulates the expression
of a variety genes leading to the formation of chemokine and
cytokines. In resting cells, most of the NF-�B is bound to a potent
inhibitor I�B, thus retaining this complex in the cytoplasm [145].
Upon cell activation I�B is phosphorylated by I�B kinase (IKK) lead-
ing to its proteosomal degradation. NF-�B, once dissociated from
I�B, rapidly translocates to the nucleus where it binds to specific
promoters of the target genes. Although several I�B isoforms are
known, Gao et al. [146] made the surprising observation that �-
arrestin 2 directly interacts with I�B� to inhibit GPCR-mediated
NF-�B activity. Witherow et al. [147], showed that although both �-
arrestin 1 and �-arrestin 2 associate with I�B� as well as upstream
kinases such as IKK�, IKK� and NIK, only �-arrestin 1 inhibits
NF-�B activity and cytokine production. Our recent studies with
platelet activating factor (PAF) showed that �-arrestin inhibits
NF-�B activity and chemokine induction in mast cells [20,148]. Fur-
thermore, overexpression of �-arrestin enhances agonist-induced
C3aR internalization and blocks chemokine CCL2 generation [20].
Also, similar to the situation with PAFR [148], expression of C3aR
in mouse embryonic fibroblasts deficient in both �-arrestin-1
and �-arrestin-2, inhibits agonist-induced C3aR internalization but
enhances NF-�B activity (Ali, unpublished data). These findings, in
total suggest that unlike the situation with many GPCRs, �-arrestin
plays a critical role in inhibition of C3a and C5a-induced degranula-
tion, ERK phosphorylation, NF-�B activation, LTC4 generation and
cytokine synthesis (Fig. 3).

6. Summary and conclusions

This review discusses the role of anaphylatoxins in the patho-
genesis of allergic asthma. Studies with C3aR−/−, C5a−/− mice as
well as receptor-specific antibodies and inhibitors have shown
that although C3a and C5a have opposing effects on allergen sen-
sitization, they promote two important features of asthma, AHR
and lung inflammation. These findings indicate that effects of
C3a and C5a in allergic asthma involve the activation of effec-
tor cells. Given that mast cells are important effector cells in
asthma and that basophils play a critical role in chronic allergy,
this review has focused mainly on the activation of these cells by
C3a and C5a and the regulation of their receptors by priming and
desensitization.

Emerging evidence suggests that tryptase released from Fc�RI-
activated mast cells generate C3a and C5a from C3 and C5,
respectively, and that these anaphylatoxins act on MCTC mast cells
found in bronchial smooth muscles to induce mediator release
causing smooth muscle contraction (Fig. 1). GPCRs for C3a and
C5a are expressed on the surface of human basophils but there
are important differences in the magnitude and diversity of medi-
ators induced by these anaphylatoxins and their synergy with
IL-3 (Table 1 and Fig. 2). It appears that, as for other GPCRs,
agonist-induced receptor phosphorylation plays a critical role in
the desensitization of C3aR and C5aR. In many cell types, �-arrestin
acts as an adapter molecule to activate ERK and other intracellu-
lar signaling pathways. However, studies with transfected cell lines
indicate that �-arrestin is not only involved in the desensitization of
C3a and C5a-induced degranulation, it inhibits both ERK phospho-
rylation and NF-�B activation (Fig. 3). This suggests that �-arrestin
could be targeted in mast cells and basophils for the modulation of
allergic diseases. It must be pointed out that although most of medi-
ator release and signaling studies discussed in this review were
performed with primary human mast cells and basophils, phos-
phorylation and desensitization studies utilized cell lines such as
RBL-2H3 cells, neutrophil-like HL-60 cells and COS-7 cells. Future
studies are therefore required to confirm these findings in pri-
mary mast cells and basophils and ultimately in animal models to
evaluate the potential for the development of novel asthma thera-
peutics by targeting anaphylatoxin signaling in these Fc�RI-bearing
immune cells.
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