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Abstract Abstract 
Oral mucositis (OM), a common debilitating toxicity associated with chemo- and radiation therapies, is a 
significant unmet clinical need for head and neck cancer patients. The biological complexities of 
chemoradiotherapy-induced OM involve interactions among disrupted tissue structures, inflammatory 
infiltrations, and oral microbiome, whereby several master inflammatory pathways constitute the 
complicated regulatory networks. Oral mucosal damages triggered by chemoradiotherapy-induced cell 
apoptosis were further exacerbated by the amplified inflammatory cascades dominantly governed by the 
innate immune responses. The coexistence of microbiome and innate immune components in oral 
mucosal barriers indicates that a signaling hub coordinates the interaction between environmental cues 
and host cells during tissue and immune homeostasis. Dysbiotic shifts in oral microbiota caused by 
cytotoxic cancer therapies may also contribute to the progression and severity of chemoradiotherapy-
induced OM. In this review, we have updated the mechanisms involving innate immunity-governed 
inflammatory cascades in the pathobiology of chemoradiotherapy-induced OM and the development of 
new interventional targets for the management of this severe morbidity in head and neck cancer patients. 
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Introduction
Oral mucositis (OM) is among the most debilitating side effects 
of conventional antineoplastic therapies for cancer patients, 
especially for head and neck cancer patients receiving chemo-
radiotherapies (Villa and Sonis 2015). OM occurs in about 
20% to 40% of cancer patients receiving conventional chemo-
therapy (Jones et al. 2006; Lalla et al. 2014). In head and neck 
cancer patients receiving radiotherapy, approximately 80% to 
90% of them develop OM, among which about 60% to 70% 
were recorded as severe OM (grades 3 to 4 by the World Health 
Organization [WHO] scale) (Elting et al. 2007; Maria et al. 
2017). The severe OM often results in reduction and even ces-
sation of cancer treatment, excessive health care cost, and sig-
nificant negative effects on patient’s quality of life (QOL) due 
to patients’ extended hospitalization, increased demand for 
total parenteral nutrition, narcotic analgesia, and antibiotics 
(Sonis 2004; Bowen and Keefe 2008; Cinausero et al. 2017; 
Maria et al. 2017). Currently, major roadblocks are the lack of 
insights into the cellular and molecular mechanisms underly-
ing the pathobiology of chemoradiotherapy-induced OM and 
few treatment options available for the management of the 
severe OM (Blakaj et al. 2019; Lalla et al. 2019; Villa and 
Sonis 2020).

Accumulating evidence has shown that reactive oxygen 
species (ROS)–mediated inflammatory cascade—in particular, 
the activated innate immune responses—plays a central role in 
pathogenesis of chemoradiotherapy-induced OM (Iglesias-
Bartolome et al. 2012; Yoshino et al. 2013). Mitochondrial 

ROS production activates the NLR family pyrin domain con-
taining 3 (NLRP3) inflammasome in response to various bac-
terial pathogens and tissue damages (Mariathasan and Monack 
2007). Blocking mitochondrial ROS/NLRP3 axis protected 
against radiation-induced OM, suggesting that this pathway 
plays a role in OM development (Ortiz et al. 2015). Nuclear 
factor κB (NF-κB) pathway, the downstream of pattern- 
recognition receptors (PRRs), Toll-like receptors (TLRs), and 
nucleotide-binding oligomerization domain (NOD)–like 
receptors, is highly activated by endogenous cell damage–
induced molecules and exogenous microbial components 
(Lotze et al. 2007) and has been shown to play a critical role in 
pathobiology of OM (Han et al. 2013; Luo et al. 2019). These 
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master inflammatory pathways may synergistically form com-
plex regulatory networks, thus contributing to the complex 
pathobiology of chemoradiotherapy-induced OM (Maria et al. 
2017).

Host–microbe coexistence and interactions play a critical 
role in maintaining tissue and immune homeostasis at the local 
mucosal barriers (Moutsopoulos and Konkel 2018). In the 
healthy oral cavity, the composition and colonization of micro-
biota are found in complex biofilms, among which the most 
rich and diverse are tooth-adherent microbial communities 
(Moutsopoulos and Konkel 2018). In recent years, a growing 
body of evidence has shown that dysbiotic shifts of oral micro-
flora may contribute to the etiology and severity of chemora-
diotherapy-induced OM (Vasconcelos et al. 2016; Hong et al. 
2019; Subramaniam and Muthukrishnan 2019; Vesty et al. 
2019). Therefore, antimicrobial approaches are emerging as 
potential modalities for OM management. Herein, we focus on 
reviewing the progress in studies on the mechanisms underly-
ing the pathobiology of chemoradiotherapy-induced OM and 
the emerging new therapeutic interventions for this severe 
morbidity in head and neck cancer patients. To this purpose, 
we performed a comprehensive search from ClinicalTrials.gov 
and literatures from PubMed and Web of Science on phase I to III 
studies on the treatment of chemoradiotherapy-induced OM.

Pathobiology of Chemoradiotherapy-
Induced Oral Mucositis
Chemoradiotherapy-induced OM is a biologically complex 
process involving amplified inflammatory responses, reduced 
cell proliferation, increased cell senescence/apoptosis, and 
impaired regenerative potentials in both mucosal and submu-
cosal compartments (Elting et al. 2007; Cinausero et al. 2017; 
Maria et al. 2017). According to multiple mechanistic models, 
the complex pathophysiological processes of chemoradiotherapy-
induced OM could be divided into 5 overlapped stages, includ-
ing initiation/primary damage response, message generation, 
signaling and amplification, ulceration, and healing (Sonis 
2004, 2009). The initiation phase occurs immediately after the 
administration of the cytotoxic agents, which induce primary 
tissue damage mediated by elevated intracellular ROS levels 
(Iglesias-Bartolome et al. 2012; Yoshino et al. 2013). The mes-
sage generation stage involves NF-κB activation, which subse-
quently upregulates a variety of inflammatory cytokines, such 
as tumor necrosis factor–α (TNF-α), interleukin (IL)–6, and 
IL-1β, and stress response genes such as cyclooxygenase-2 
(COX-2), inducible NO-synthase, and superoxide dismutase, 
all of which contribute to the perpetuation of mucosal injuries 
(Maria et al. 2017). The proinflammatory cytokines, especially 
TNF-α, further activate NF-κB and then augment the produc-
tion of proinflammatory cytokines by immune cells such as 
macrophages, thus leading to a vicious cycle of signal amplifi-
cation and subsequently the development of epithelial ulcer-
ation (Sonis 2004, 2009). The critical role of cytokines and 
cytokine modulators, stress responders, and cell adhesion mol-
ecules, governed by NF-κB signaling, has been implicated in 
the pathogenesis of chemoradiotherapy-induced OM. In the 

extremely painful ulcerative stage, oral bacteria colonize the 
ulcer and stimulate surrounding cells to release cytokines and 
chemokines for recruitment of inflammatory cells, such as 
macrophages, mast cells, and neutrophils to produce additional 
proinflammatory molecules, further contributing to cell apop-
tosis and tissue damage (Sonis 2009, 2010). The extracellular 
matrix and submucosal mesenchymal cells interact with innate 
immune cells to initiate the healing process of chemoradiother-
apy-induced OM by activating epithelial cell proliferation and 
differentiation and oral microbial flora reestablishment (Sonis 
2004, 2009, 2010; Vasconcelos et al. 2016; Cinausero et al. 
2017). Therefore, such complex interactions between innate 
immune responses and bacterial microbiome might play a piv-
otal role in the etiology of chemoradiotherapy-induced OM.

New Pathways Regulating Initiation  
and Progression of Chemoradiotherapy-
Induced Oral Mucositis

Crosstalk between Transforming Growth  
Factor–β and NF-κB Pathways

Previous studies have identified at least 14 inflammatory and 
cell apoptotic pathways that are important for pathophysiology 
of chemoradiotherapy-induced OM (Sonis 2004). NF-κB sig-
naling pathway serves a master hub of inflammatory responses, 
but it remains largely unknown about the crosstalk among 
NF-κB and other signaling pathways during the progression of 
chemoradiotherapy-induced OM. The transforming growth 
factor–β (TGF-β) family members of cytokines play an impor-
tant role in regulating a variety of cellular functions and are 
implicated in tissue homeostasis/remodeling, pathogenesis, 
and progression of various diseases (Derynck and Budi 2019). 
Most recently, it has been shown that the TGF-β signaling 
pathway is highly activated in radiation-induced OM, which 
leads to inhibition of proliferation and induction of apoptosis 
in keratinocytes and basal epithelial cells, thus significantly 
delaying epithelial tissue regeneration and wound healing (Han 
et al. 2013). Smad7, a signaling antagonist or negative regula-
tor of the TGF-β superfamily, not only blocks TGF-β-mediated 
cell arrest but also reduces inflammation by suppressing 
NF-κB activation (He et al. 2002; Hong et al. 2007). In an 
experimental murine radiation-induced OM model burdened 
with xenografted head and neck tumors, Smad7 specifically 
overexpressed in keratinocytes can resist radiation-induced 
OM through anti-inflammation, promoting epithelial regenera-
tion, and antiapoptosis of keratinocytes (Han et al. 2013; Luo 
et al. 2019). An N-terminal Tat tag with Smad7 recombinant 
protein (Tat-Smad7) has been developed, which allows Smad7 
to rapidly enter cells (Brooks et al. 2005; Kalvala et al. 2010). 
Applying Tat-Smad7 complex to oral mucosa shows both pre-
ventive and therapeutic effects on radiation-induced OM 
through activating keratinocyte migration and proliferation, 
inhibiting cell apoptosis, and blocking TGF-β and NF-κB sig-
naling (Han et al. 2013; Luo et al. 2019). These findings sug-
gest that identification of multiple signaling pathways may 
provide novel molecular candidates not only for diagnosis but 
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also for the development of novel therapeutic approaches for 
targeted therapy of chemoradiotherapy-induced OM.

ROS–Mammalian Target of Rapamycin Signaling  
in Chemoradiotherapy-Induced Oral Mucositis

Increasing evidence suggests that exhaustion of functional 
somatic stem cells is critical in aging and associated with 
degenerative phenotypes (Naik et al. 2018). In oral cavity, resi-
dent stem cell self-renewal governs mucosal epithelial homeo-
stasis in healthy condition and tissue regeneration during injury 
(Iglesias-Bartolome et al. 2012; Lei and Chuong 2016). The 
mammalian target of rapamycin (mTOR) signaling is neces-
sary for cell growth and organ development; however, exces-
sive activation of mTOR cascades can lead to abnormal cell 
differentiation or senescence, implying that tight control of 
mTOR signaling level is critical for tissue/organ homeostasis 
as well as maintenance of cell function by preventing aging 
(Iglesias-Bartolome and Gutkind 2011; Chen et al. 2015; Chen 
et al. 2017). Aberrant activation of mTOR signaling pathway 
plays a pivotal role in oxidative stress or ROS-induced cell 
senescence and apoptosis (Sharlow et al. 2016; Dermit et al. 
2017). A recent study has shown that application of rapamycin, 
a potent and specific mTOR inhibitor, significantly mitigated 
the severity of radiation-induced OM in mice through inhibit-
ing radiation-induced cellular senescence, apoptosis, and the 
loss of proliferative capacity of the oral epithelial stem cell 
compartment, thus further supporting the notion that mucosal 
epithelial senescence induced by ROS-mediated aberrant acti-
vation of mTOR signaling pathway contributes to a prolonged 
ulceration and delayed healing process in chemoradiotherapy-
induced OM (Iglesias-Bartolome et al. 2012).

On the other hand, mTOR inhibitors have been in clinical 
trials as oncological drugs to treat patients with metastatic 
breast cancer, but a variable incidence ranging from 2% to 78% 
of mTOR inhibitor-associated stomatitis (mIAS), including 
oral morbidities, has been reported across multiple mTOR inhib-
itor clinical trials, while grade 3/4 toxicity occurs in up to 9% 
of patients (Peterson et al. 2016; Chambers et al. 2018). 
Therefore, it is plausible to take into consideration mTOR 
inhibitor-associated morbidities in the future development of 
mTOR inhibitors as interventional drugs for the management 
of chemoradiotherapy-induced OM.

Wnt/β-catenin Signaling in the Regulation  
of Cell Cycle in Epithelial Stem Cells

During development of chemoradiotherapy-induced OM, the 
G1/S check point of cell cycle and DNA damage response 
(DDR) are highly activated, which causes p53-upregulated 
modulator of apoptosis-dependent (PUMA-dependent) apop-
tosis in epithelial stem cells (Wei et al. 2016; Leibowitz et al. 
2018). Activation of Wnt/β-catenin by genetic Puma ablation 
or PUMA inhibition enhances cell proliferation and tissue 
regeneration following mucosal injury, suggesting that Wnt 
signaling activators may serve as therapeutic avenue for 

chemoradiotherapy-induced OM (Fabbrizi et al. 2018; 
Leibowitz et al. 2018). Leucine-rich repeat-containing G-protein-
coupled receptor 5 (Lgr5) has been identified as a functional 
epithelial stem cell marker that is involved in modulating stem 
cell self-renewal, proliferation, and homeostasis due to its criti-
cal role as an effector of R-spondins (Rspo)/Wnt signaling cas-
cades (Barker et al. 2012; Metcalfe et al. 2014; Leung et al. 
2018; Raslan and Yoon 2019). It has been reported that the 
radiosensitivity of Lgr5+ epithelial stem cells is CDK4/6 and 
DDR dependent, indicating regulation of cell cycle can pro-
vide another therapeutic target for chemoradiotherapy-induced 
OM (Francis et al. 2017; Leibowitz et al. 2018). Zhao et al. 
(2009) reported that systemic administration of R-Spondin1 
(RSpo1) can directly activate canonical Wnt/β-catenin signal-
ing in oral mucosal tissues, thus protecting mice from chemo-
radiotherapy-induced OM. These findings indicate that 
multimodes of signaling pathways involved in the initiation 
and progression of chemoradiotherapy-induced OM can serve 
as novel therapeutic targets for intervention of this severe anti-
neoplastic therapy-associated morbidity (Fig. 1).

Innate and Adaptive Immune Responses 
in Pathobiology of Chemoradiotherapy-
Induced Oral Mucositis
In the healthy mucosa, the coordination of microbiota with 
innate and adaptive immune responses contributes to the estab-
lishment of immune tolerance and epithelial barrier mainte-
nance/tissue homeostasis (Honda and Littman 2016; Thaiss  
et al. 2016; Brown et al. 2019). On one hand, microbiota are 
involved in regulating the site-specific phenotypes and func-
tions of both innate and adaptive immune cells, thus contribut-
ing to the maintenance of immune tolerance/homeostasis 
(Honda and Littman 2016; Thaiss et al. 2016). On the other 
hand, innate and adaptive immune systems coordinate to main-
tain a balanced microbiota in the mucosa through providing an 
intact epithelial barrier and immune surveillance on those 
harmful microbes (Honda and Littman 2016; Thaiss et al. 
2016; Brown et al. 2019). In contrast, dysregulation of the 2 
interdependent systems can cause miscommunications among 
microbiota and various types of host cells, thus disturbing the 
tightly controlled tissue homeostasis and, consequently, the 
development of different disorders, including chemoradiotherapy-
induced OM. In this section, we aim to discuss important 
immune components that interplay with microbiota to activate 
downstream signals involved in OM development.

Epithelial Cells

Epithelial cells are the primary barrier between the outside 
environment and the host, which extensively express innate 
immune receptors for microbial recognition. As a nonclassical 
type of innate immune cells, epithelial cells are involved in 
innate immune responses through secretion of a panel of cyto-
kines (Pott and Hornef 2012). Epithelial cells detect microbial 
components, pathogen-associated molecular patterns (PAMPs), 
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and endogenous damage-associated molecular patterns (DAMPs), 
such as alarmin high-mobility group box 1 (HMGB1), through 
PRRs/TLRs to activate downstream NLRP cascades, leading 
to inflammasome-dependent release of IL-18 and IL-1β, as 
well as the subsequent production of antimicrobial peptides 
(Thaiss et al. 2016; Vasconcelos et al. 2016). During mucositis 
progression, increased bacterial colonization causes unbal-
anced PAMPs and DAMPs, which trigger PRR/TLR-mediated 
activation of downstream NF-κB signaling pathways, leading 
to augmented inflammatory responses due to the constant 
release of proinflammatory cytokines (Im et al. 2019). Taken 
together, restoration of dysregulated epithelial cell functions 
may serve as a therapeutic approach to mitigate chemoradio-
therapy-induced OM due to their critical role in mucosal 
homeostasis.

Neutrophils

Neutrophils, constituting about 95% of total leukocytes in 
healthy oral mucosa, act as gatekeepers of oral immunity for 
microbial surveillance, immunoregulation, and periodontal 
homeostasis (Moutsopoulos and Konkel 2018). The microbi-
ota influences myelopoiesis from pregnancy to posthematopoi-
esis, drives neutrophil aging, and then contributes to periodontal 
immunopathology (Deshmukh et al. 2014; Zhang et al. 2015; 
Gomez de Aguero et al. 2016). Therefore, a tight control of 
neutrophils is essential for maintaining a healthy status of oral 
mucosa because too few or too many neutrophils may create a 
certain pathophysiological condition that is favorable to the 
development of chemoradiotherapy-induced OM. Several 
studies have linked neutropenia with OM development, and 
neutrophil-based interventions are emerging as a new thera-
peutic approach for chemoradiotherapy-induced OM (Lee  

et al. 2016); however, it is still largely unknown whether neu-
trophils mediate microbial surveillance and perform microbial 
killing through antimicrobial peptide secretion during chemo-
radiotherapy-induced OM. Even though certain growth fac-
tors, such as granulocyte-macrophage colony stimulating 
factor (GM-CSF), have been proposed in clinical trials in the 
treatment of chemoradiotherapy-induced OM through boosting 
neutrophil functions, it is necessary to further elucidate the patho-
physiological roles of neutrophils in chemoradiotherapy-induced 
OM progression, thus providing new insights into mechanism-
directed interventions of this complicated morbidity.

Macrophages

Macrophages are innate immune cells that play key roles in 
coordinating immune response, inflammation, and tissue 
remodeling/homeostasis (Martinez et al. 2009). Indeed, tissue-
resident macrophages are involved in maintaining homeostasis 
of mucosal immunity and antimicrobial function, which bal-
ances innate immunity and microbiome in oral mucosa (Lavin 
et al. 2014; De Schepper et al. 2018). During mucositis pro-
gression, proinflammatory cytokines produced by classically 
activated or type 1 macrophages (M1) were found to accumu-
late in the submucosa of patients following radiation treatment 
for head and neck cancer (Bonan et al. 2007) and in mice 
undergoing fractionated radiotherapy (Jaal et al. 2010), sug-
gesting the essential role of macrophages in the initiation and 
progression of chemoradiotherapy-induced OM. In the late 
inflammatory phase of mucositis, the lesions are healed and 
remodeled with the clearance of dead cell debris and patho-
gens, which is largely attributed to the multiple functions of 
alternatively activated or type 2 macrophages (M2) (Oronsky 
et al. 2018). These studies have shed light on the important role 

Figure 1.  New pathways regulating inflammation and wound healing in mucositis. (A) Smad7 activation inhibits transforming growth factor–β (TGF-β) 
signaling for promoting epithelial tissue regeneration and nuclear factor κB (NF-κB) signaling for inflammation resolution. (B) Reactive oxygen species 
(ROS) induces mammalian target of rapamycin (mTOR) signaling activation in mucositis. Rapamycin, as a specific mTOR inhibitor, promotes wound 
healing and epithelial cell rejuvenation in mucositis. (C) Chemo- and radiotherapy-induced DNA damage response and cell cycle activation cause 
apoptosis in Lgr5+ epithelial stem cells. Cell cycle inhibitors or Wnt activator R-Spondin1 (RSpo1) can increase epithelial stem cell survival and tissue 
regeneration in mucositis. DDR, DNA damage response; PUMA, P53-upregulated modulator of apoptosis; ROS, reactive oxygen species.
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of macrophages in the pathobiology of OM, and skewing 
polarization of macrophages toward a M2 phenotype repre-
sents another avenue to mitigate chemoradiotherapy-induced 
OM.

Innate Lymphoid Cells

Innate lymphoid cells (ILCs), the innate immune cells with 
similar functions and phenotypes of T lymphocytes, play a cru-
cial role in antagonizing pathogens. In the healthy mucosa, 
dendritic cells (DCs) and macrophages activate group 1 innate 
lymphoid cells (ILC1s) against intracellular pathogens through 
secreting IL-12 and IL-18. In response to extracellular bacteria 
and fungi, leukocytes can also release IL-23 and IL-1β to 
induce ILC3 activation. On the other hand, epithelial cells can 
produce prostaglandin D2 (PGD2), IL-33, and IL-25 to induce 
ILC2 activation, which is essential for parasite expulsion. In 
addition, ILC2 and ILC3 can also contribute to tissue mainte-
nance and repair (Geremia and Arancibia-Carcamo 2017). 
During OM progression, radiotherapy stimulates DCs to 

release IL-23 and the subsequent activation of 
ILC3 and IL-22 production, which primes epithe-
lial cells for antimicrobial peptide expression and 
epithelial tissue repair. ILC3 interplays with epi-
thelial cells while ILC2 suppresses proinflamma-
tory T lymphocytes via anti-inflammatory Th2 
cytokines IL-13, IL-4, and IL-5 (Blom et al. 2019; 
Panda and Colonna 2019).

Adaptive Immune Cells

Naive CD4+ T cells can be activated and differenti-
ate into several subsets of effector cells with dis-
tinct biological functions, including T helper type 
1 (Th1), Th2, and Th17; regulatory T (Treg); T fol-
licular helper (Tfh); and most recently identified 
Th9 and Th22 cells (Imam et al. 2018; Loo et al. 
2018). Among these T helper cells, Th17 cells can 
recruit neutrophils to the infectious sites and stim-
ulate various types of cells to protect the host from 
extracellular bacteria and fungi through the pro-
duction of a panel of Th17 cytokines such as 
IL-17A, IL-17F, IL-21, and IL-22. In contrast, 
Treg cells inhibit both Th1- and Th17-mediated 
immune responses through the production of anti-
inflammatory cytokines such as IL-10 and TGF-β, 
thus contributing to immune homeostasis (Imam 
et al. 2018; Loo et al. 2018).

The adaptive immune response, particularly 
that mediated by CD4+ T cells, also plays a critical 
role in maintaining mucosal homeostasis through 
their interaction with microbiota to discriminate 
harmless and harmful microbes (Honda and 
Littman 2016; Imam et al. 2018; Brown et al. 
2019). Accumulating evidence has shown that 

microbiota can influence the induction of both Th17 and Tregs 
in mucosa (Honda and Littman 2016; Brown et al. 2019), while 
a dysbiotic microbiome triggers Th17 cells to mediate oral 
mucosal immunopathology in both mice and humans (Dutzan 
et al. 2018). Even though several lines of evidence have impli-
cated the role of disturbed Th1/Th17/Treg and Th1/Th2 bal-
ances in cancer therapy–related intestinal mucositis (Zuo et al. 
2015; Mi et al. 2017; Fernandes et al. 2018), less is known 
about the role of altered adaptive immune responses in chemo-
radiotherapy-induced OM.

Collectively, these findings have provided evidence that 
interactions among various types of innate and adaptive immune 
cells and microbiome integrate a signaling hub that plays a criti-
cal role in epithelium homeostasis. In the presence of an altered 
bacterial flora in chemoradiotherapy-induced OM, innate 
immune cells dynamically respond to chemo- and radiotherapy 
and cause amplified inflammatory responses, thus leading to 
impaired tissue repair/regeneration. Interfering with such inter-
actions between innate immunity and microbiome represents an 
innovative avenue for OM treatment (Fig. 2).

Figure 2.  Signaling hub coordinates innate immunity and microbiome in mucositis. (A) 
Epithelial cells as the primary barrier between the outside environment and the host 
extensively express innate immune receptors for microbial recognition to maintain 
tissue/organ homeostasis. (B) Macrophage dynamic polarization plays a key role in the 
coordination of immune response, inflammation, and tissue remodeling/homeostasis 
during mucositis progression. (C) Innate lymphoid cells (ILCs) respond to intracellular 
and extracellular pathogens and contribute to tissue maintenance and repair. DAMPs, 
damage-associated molecular patterns; DCs, dendritic cells; HMGB1, high-mobility 
group box 1; IL, interleukin; NLRPs, nucleotide-binding oligomerization domain, leucine 
rich repeat and pyrin domain containing; PAMPs, pathogen-associated molecular 
patterns; TGFβ, transforming growth factor β; TLR, Toll-like receptor; VEGF, vascular 
endothelial growth factor.
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Emerging Interventional Targets  
for Chemoradiotherapy-Induced  
Oral Mucositis
Inflammatory cytokines, specifically IL-1β, IL-6, and TNF-α, 
derived from both epithelial and immune cells, constitute key 
factors in the development of chemoradiotherapy-induced OM 
(Maria et al. 2017). Since NF-κB signaling plays a central role 
in upregulating proinflammatory cytokines, blocking of NF-κB 
pathway is an attractive strategy in clinical application for pre-
vention and treatment of chemoradiotherapy-induced OM 
(Ariyawardana et al. 2019). Herein, we summarized informa-
tion from ClinicalTrials.gov and related publications regarding 
clinical trials on anti-inflammatory targets for oral mucositis.

Currently, there are more than 20 clinical trials on the use of 
anti-inflammatory agents for prevention and treatment of 
chemoradiotherapy-induced OM in cancer patients, even 
though most of the trials are still in early phases (Table). 
Among these agents, benzydamine, Chining decoction, 
dusquetide, GC4419, and dexamethasone are in phase 3 clini-
cal studies on their efficacy in preventing or treating chemora-
diotherapy-induced OM either through mouth rinse or 
intravenous (IV) injection. Of note, mouth rinse with benzyda-
mine hydrochloride has been recommended by the Multinational 
Association of Supportive Care in Cancer/International Society 
of Oral Oncology (MASCC/ISOO) to mitigate moderate radi-
ation-induced OM in head and neck cancer patients without 

receiving concomitant chemotherapy even though it has not 
yet been approved for this use by US Food and Drug 
Administration (FDA) (Lalla et al. 2019). In parallel, around 
20 preclinical and phase 2 early clinical studies are also actively 
ongoing, among which several have received fast-track desig-
nation from the FDA. In addition, favorable results of innate 
immune inhibitors have been reported in several phase 2/3 
clinical studies. Dusquetide, an innate defense regulator that 
can both defend against bacterial infections and dampen the 
inflammation, has demonstrated beneficial results in increased 
tissue-healing activities. Golotimod, a synthetic peptide that 
acts on the TLR pathway for macrocytic phagocytosis and 
immunomodulation, has been shown to promote bacterial 
clearance and tissue but to reduce immune responses. Most 
recently, other inflammatory pathways such as IL6-dependent 
signaling and the innate immune components of TLR path-
ways and leukocyte regulation are emerging as new targets for 
intervening in chemoradiotherapy-induced OM. Collectively, 
these ongoing clinical trials on the management of chemora-
diotherapy-induced OM through targeting specific inflamma-
tory signals, if successful, will contribute to further definition 
of evidence-based clinical practice guidelines for the effective 
management of chemoradiotherapy-induced OM in cancer 
patients.

In addition to these anti-inflammatory agents undergoing 
development, several lines of evidence have shown that sys-
temic application of mesenchymal stromal cells (MSCs) could 

Table.  Clinical Trials of Anti-inflammatory Agents for the Management of Oral Mucositis.

Intervention Phase Purpose Application Results Identifier

Benzydamine III Treatment Mouth wash Inhibiting inflammatory cytokines production NCT00051441
Chining decoction III Prevention Mouth wash Inhibiting proinflammatory cytokines IL-6 and TNF-α NCT02303197
Dusquetide III Treatment IV infusion Innate defense regulator NCT03237325
GC4419 III Treatment IV infusion Superoxide dismutase mimetic NCT03689712
Dexamethasone III Treatment Mouth wash T-cell suppression NCT03839940
Enbrel II Treatment Mouth wash Anti-TNF activity NCT00031551
β-Glucan II Treatment Oral Immunomodulating activities NCT00289003
Celecoxib II Prevention Oral Anti-COX-2 NCT00698204
Amlexanox II Treatment Mouth wash Inhibiting the synthesis of inflammatory mediators NCT01083875
Clonidine II Treatment Oral Inhibiting NF-κB and proinflammatory cytokines NCT01385748
Golotimod II Prevention SC Broad effects on the TLR pathway NCT01247246
IZN-6N4 II Prevention Mouth wash Anti-inflammation NCT01400620
Clazakizumab II Treatment IV infusion A humanized anti-IL-6 antibody  NCT01403064
Lactobacillus CD2 II Prevention Oral Anti-inflammation NCT01480011
Quercetin II Treatment Oral Inhibiting TNF-α expression NCT01732393
Pentoxifylline II Prevention Oral Anti-TNF activity NCT02397486
Brilacidin II Prevention Mouth wash Host defense protein mimetics NCT02324335
Melatonin II Prevention Oral Inhibiting NF-κB and inflammasome pathway NCT02630004
Mosedipimod II Treatment Oral Enhancing NK cells and suppressing TLR4 pathway NCT03200340
Trefoil factor 1  II Prevention Mouth wash Reducing nitric oxide and inflammatory cytokines NCT03234465
EC-18 II Treatment Oral Attenuate the innate immune response NCT03400340
RRx-001 II Treatment IV infusion Polarization of tumor associated macrophages NCT03515538
Chlorine dioxide II Treatment Mouth wash Bactericide, viricide, and fungicide NCT03602066
Canakinumab I Treatment SC Inhibiting IL-1β binding with receptor NCT02775994
Ectoin NA Treatment Mouth wash Antioxidant NCT03932292
CareMin650 NA Treatment Irradiance Photobiomodulation NCT03988556

The information included in this table was summarized from ClinicalTrials.gov, drug company websites, and published literatures. The purpose of 
prevention or treatment in the clinical trials was defined by primary study purpose from ClinicalTrials.gov.
COX-2, cyclooxygenase-2; IL, interleukin; IV, intravenous; NA, not available; NF-κB, nuclear factor κB; NK, natural killer; SC, subcutaneous injection; 
TLR, Toll-like receptor; TNF-α, tumor necrosis factor–α.
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mitigate the severity of chemoradiotherapy-induced OM 
mucositis in preclinical animal models (Zhang et al. 2012; 
Schmidt et al. 2014; Chang et al. 2017; Elsaadany et al. 2017). 
In the past decade, accumulating preclinical and clinical stud-
ies have demonstrated the promising efficacy of MSC-based 
regenerative therapy in treating a wide spectrum of inflamma-
tory and immune-related disorders possibly through multiple 
modes of actions based on their paracrine secretion of a myriad 
of trophic growth factors, anti-inflammatory cytokines, and 
other soluble factors (Zhang et al. 2009; Akiyama et al. 2012; 
Chen et al. 2015; Chen et al. 2017). Through these biological 
active factors, MSCs interact with various types of host cells 
and exert potent immunomodulatory and anti-inflammatory 
effects on various subtypes of both innate and adaptive immune 
cells, thus contributing to the establishment of a proregenera-
tive microenvironment that is favorable to tissue regeneration 
(Fig. 3). Therefore, MSC-based regenerative therapy might be 
another potential approach for the treatment of chemoradio-
therapy-induced OM.

Conclusion and Perspectives
In the past several decades, substantial studies have explored 
the potential molecular mechanisms underlying the pathobiol-
ogy of chemoradiotherapy-induced OM, but there is still lack of 
effective treatment options for this complex morbidity. Palifermin, 
a recombinant human keratinocyte growth factor (KGF) 

(Kepivance), is the only agent approved by the FDA, but its use 
is currently confined to patients with hematologic malignancies 
who undergo myelotoxic therapy and transplantation of hema-
topoietic stem cell (HSCs), whereas the use of palifermin for 
the treatment of chemoradiotherapy-induced OM in patients 
with solid tumors remains controversial because of the potential 
concern of its protumor growth activity and interference with 
clinical outcomes. To date, around 250 clinical trials on the 
management of chemoradiotherapy-induced OM have been 
registered in ClinicalTrials.gov, but clinical outcomes of these 
clinical studies are still uncertain. With the identification of sev-
eral novel mechanistic pathways involved in the pathogenesis 
of chemoradiotherapy-induced OM (Zhao et al. 2009; Han et al. 
2013; Luo et al. 2019), it is anticipated that more and more 
mechanism-based topic and systemic compounds will enter the 
pipeline for preclinical and clinical development. Importantly, 
further characterizing the multilayers of interactions between 
the microbiota and the innate immune system will not only shed 
light on the elucidation of the complex pathobiology but also 
lead to the development of new avenues for the treatment of 
chemoradiotherapy-induced OM.
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