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In contrast to adult and late-gestation fetal skin wounds, which heal with scar, early-gestation fetal
skin wounds display a remarkable capacity to heal scarlessly. Although the underlying mechanism of
this transition from fetal-type scarless healing to adult-type healing with scar has been actively
investigated for decades, in utero restoration of scarless healing in late-gestation fetal wounds has not
been reported. In this study, using loss- and gain-of-function rodent fetal wound models, we identified
that fibromodulin (Fm) is essential for fetal-type scarless wound healing. In particular, we found that
loss of Fm can eliminate the ability of early-gestation fetal rodents to heal without scar. Meanwhile,
administration of fibromodulin protein (FM) alone was capable of restoring scarless healing in late-
gestation rat fetal wounds, which naturally heal with scar, as characterized by dermal appendage
restoration and organized collagen architectures that were virtually indistinguishable from those in
age-matched unwounded skin. High Fm levels correlated with decreased transforming growth factor
(TGF)-b1 expression and scarless repair, while low Fm levels correlated with increased TGF-b1 expression
and scar formation. This study represents the first successful in utero attempt to induce scarless
repair in late-gestation fetal wounds by using a single protein, Fm, and highlights the crucial role that
the FMeTGF-b1 nexus plays in fetal-type scarless skin repair. (Am J Pathol 2016, 186: 2824e2832;
http://dx.doi.org/10.1016/j.ajpath.2016.07.023)

Cutaneous fibrosis (scarring) affects up to 100 million
patients each year.1 It is characterized by disorganized
extracellular matrix and lack of normal dermal appendages
such as hair follicles.2 Interestingly, skin transplantation or
grafting methodologies have shown that fetal skin itself,
rather than the intrauterine environment, possesses the
intrinsic cells and molecular signals to heal scarlessly, with
restoration of normal dermal extracellular matrix architec-
ture and appendages.3e5 For example, 15- to 22-week
human fetal skin grafted s.c. into athymic nude mice
retained the ability to heal without scar, while this ability for
scarless skin repair was lost with increasing gestational
age.3,5 Significant research efforts have demonstrated that
fetal wounds express less profibrotic factors such as trans-
forming growth factor (TGF)-b1, and more antifibrotic
factors such as TGF-b33,6 and IL-107,8 as well as a higher
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ratio of type III to type I collagen.3,9 However, Phase 3 human
clinical trials with recombinant human TGF-b3 (avotermin;
Juvista, Renovo, Manchester, UK)10 and three Phase 2 studies
with IL-10 failed to show efficacy in scar reduction.11,12

In an effort to better identify key factors in scarless fetal-
type repair, we used a fetal rat skin model that transitions
from fetal-type scarless healing to adult-type repair with scar
between embryonic days 16.5 (E16; early gestation) and
18.5 (E18; late gestation) (term, 21.5 days).3,9 We previ-
ously reported a significant decrease of fibromodulin (Fm)
expression associated with the transition from scarless
fetal-type to adult-type repair with scar.13 Fibromodulin
protein (FM) is a small leucine-rich proteoglycan involved
in angiogenesis and fibrillogenesis,14e18 but its role in fetal
and adult cutaneous repair is not fully understood. Our
current study used Fm loss- and gain-of-function wound
models to determine the necessity and sufficiency of FM in
fetal scarless healing.

Materials and Methods

Animal Surgery Procedures

All animal surgeries were performed under the institution-
ally approved protocols provided by the Chancellor’s
Animal Research Committee at the University of California,
Los Angeles (Los Angeles, CA; protocol number
2000-058).

E16 Fetal Rat Model
Three-month-old male and female Sprague-Dawley rats
were purchased from Charles River Laboratories, Inc.
(Wilmington, MA), and housed in a light- and temperature-
controlled animal facility at UCLA. Pregnant rats carrying
fetuses at E16 were anesthetized. Using aseptic technique,
laparotomy was performed via a midline incision to expose
the uterus. A 7-0 Nylon purse-string suture was then placed
in the uterine wall. The myometrium and amniotic sac were
incised at the center of the purse string to expose the fetus as
previously described.13 Using a microinjector (Hamilton
Co., Reno, NV), 10 mL of sterile phosphate-buffered saline
(PBS) solution consisting of permanent dye and 8 mg/mL
rabbit anti-FM antibody19 was injected into the fetus to raise
a skin wheal. A 2-mm-diameter, circular, full-thickness skin
excisional wound was generated at the site of injection. The
wound was then marked with additional permanent dye, and
the hysterotomy was closed by tightening of the purse-string
suture. Two control groups received 10 mL of 20 mg/mL
rabbit immunoglobulin (Santa Cruz Biotechnology, Santa
Cruz, CA) in PBS, or 10 mL of PBS alone. Sterile normal
saline was injected into the amniotic sac to replace lost
amniotic fluid before hysterotomy closure. In a typical litter
of 12 fetuses, 6 littermates were wounded, and the
remaining fetuses were left unwounded. Operations were
performed in 10 maternal rats. On completion of the fetal
surgeries, the maternal rat was given an i.p. normal saline

fluid bolus (30 mL/kg), and the laparotomy incision was
closed. Maternal rats were monitored closely for 6 hours
after surgery and given food and water ad libitum once they
had recovered from anesthesia.13

E18 Fetal Rat Model
Using the same technique, operations were performed on
pregnant rats carrying E18 fetuses. On exposure of the fetus,
10 mL of 0.1 mg/mL sterile recombinant human FM20 in
1 mg/mL Vitrogen (type I collagen, aka PureCol; Advanced
BioMatrix, San Diego, CA; to keep FM localization) was
injected superficially into the dorsum of the fetus to raise a
skin wheal. After the injection, a 2-mm-diameter, circular,
full-thickness skin excisional wound was generated. The
wounds were then marked with permanent dye, and 10 mL
of a half-strength Fm solution was applied topically to the
wound. Two control groups received 10 mL of 1 mg/mL
Vitrogen, or 10 mL PBS alone. Operations were performed
in a total of 13 maternal rats.

E16 Fetal Mouse Model
Using the same hysterotomy technique described for fetal
rat surgery, operations were performed on pregnant maternal
129/sv wild-type and Fm-null (Fmod�/�) mice21 carrying
E16 fetuses (term, 20 to 21 days). A 1-mm-diameter,
circular, full-thickness skin excisional wound was generated
on the dorsum of only one fetus of each litter, and the
remaining littermates were left unwounded. The wounds
were then marked with permanent dye. For rescue experi-
ments, 10 mL of recombinant human FM (0.1 mg/mL)
in Vitrogen (1 mg/mL) was applied topically to the wound.
A separate group treated with Vitrogen alone was used as
control. Operations were performed in 12 mice per group.

Microarray Analysis

Unwounded E16 and E18 fetal rat skin samples were sent
to Miltenyi Biotec GmbH (Cologne, Germany) for micro-
array analysis. Briefly, four E16 and three E18 total RNA
samples were pooled. A total of 1 mg of each RNA sample
was amplified and labeled using the Agilent Low RNA
Input Linear Amp Kit (Agilent Technologies, Santa Clara,
CA) following the manufacturer’s protocol. Then, the hy-
bridization procedure was performed according to the 60-
mer oligo microarray processing protocol using the Gene
Expression Hybridization Kit (Agilent Technologies). A
volume of 825 ng of the corresponding cyanine 3e and
cyanine 5elabeled fragmented cRNA was combined and
hybridized overnight (17 hours, 65�C) to Whole Rat
Genome Oligo Microarray Kit, 4 � 44K (Agilent Tech-
nologies) using the manufacturer’s recommended hybridi-
zation chamber and oven. Fluorescence signals of the
hybridized microarrays were detected using a DNA
microarray scanner (Agilent Technologies). The Feature
Extraction software package version 9.5.1.1 (Agilent
Technologies) was used to read and process the microarray
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image files. For the determination of differential gene
expression, Feature Extraction softwareederived output
data files were further analyzed using the Rosetta Resolver
gene expression data analysis system version 6.0 (Rosetta
Biosoftware, Seattle, WA). The microarray data were
submitted to Gene Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo; accession number GSE74976).

Histologic Examination and Immunohistochemical
Analysis

Animals were sacrificed at 72 hours after injury for sample
harvesting. After fixation in 4% paraformaldehyde at 4�C
overnight, samples were dehydrated, paraffin-embedded,
and sectioned at 5-mm increments for hematoxylin and
eosin staining, or at 10-mm increments for Picrosirius red
staining. To ensure that the histologic sections were
confined to the wound and not the nearby skin, the samples
were sectioned with the index of the permanent dye.
Immunohistochemical staining was performed and analyzed
as previously described.20 Primary antibody against TGF-b1
was purchased from Santa Cruz Biotechnology. Comput-
erized immunolocalization intensity analyses were per-
formed using Image-Pro Plus software version 6.0 (Media
Cybernetics Inc., Rockville, MD). Relative dermal protein
expression was quantified as the Mean optical density of
staining signal � Percentage of area positively
stained � 100.20,22,23

Confocal Laser Scanning Microscopy

After Picrosirius red staining, the dermal collagen deposi-
tion pattern of the upper dermis was evaluated by confocal
microscopy on a Carl Zeiss LSM 510 META Laser scan-
ning confocal microscope (Carl Zeiss, Oberkochen,
Germany) by previously published methods.17 Since fractal
dimension (FD) and lacunarity (L) analyses are more
sensitive than are conventional methods such as polarized
light microscopy, X-ray diffraction, laser scattering, and
Fourier transform analysis, collagen organization architec-
ture was assessed by FD and L analyses to quantify collagen
organizational architecture in scar area as described
previously.17

Real-Time Quantitative RT-PCR

Total RNA of unwounded E16 and E18 fetal rat skin was
isolated using the RNeasy Mini Kit with DNase treatment
(Qiagen, Valencia, CA), while wound tissues were
collected by microdissection from tissue sections.24 Total
RNA was isolated using the RNeasy FFPE Kit (Qiagen).
One microgram of total RNA was reverse-transcribed into
cDNA in a 20-mL reaction mixture with 50 pmol of
oligo(dT)20 primer and 1 mL (200 U) of SuperScript III
Reverse Transcriptase (Invitrogen, Foster City, CA).
Expression of mRNA was measured by real-time

quantitative RT-PCR using TaqMan Gene Expression
Assays on a 7500 Fast Real-Time PCR System (Applied
Biosystems, Foster City, CA). Concurrent expression of
glyceraldehyde-3-phosphate dehydrogenase (Gapdh) was
also assessed in separate tubes for each RT reaction with
TaqMan Rodent Gapdh control reagents (Applied
Biosystems). Three separate sets of real-time quantitative
RT-PCR analysis were performed using different
complementary DNA templates.

Statistical Analysis

All statistical analyses were conducted as per consultation
with the UCLA Statistical Biomathematical Consulting
Clinic. Statistical analysis was performed using
OriginPro software version 8 (Originlab Corp., North-
ampton, MA). Data are generally presented as
means � SD. P < 0.05 was considered statistically
significant. Two-sample t-tests were used to compare
results between two groups.

Results

FM Is Necessary and Sufficient for Fetal-Type Scarless
Wound Healing

Global gene profiling revealed that the expression of Fm
was significantly decreased during the transition from
fetal-type scarless healing to adult-type repair with scar
between E16 to E18 in a fetal rat cutaneous wound model,
while the expression of other small leucine-rich pro-
teoglycans was increased or unchanged (Supplemental
Figure S1A and Supplemental Table S1) and was
further confirmed by real-time quantitative RT-PCR
(Supplemental Figure S1B). Furthermore, in a loss-of
function experiment, injection of anti-FM antibody was
sufficient to induce scar formation in normally scarless
E16 rat wounds, which was not seen in PBS- and IgG-
treated wounds (Figure 1A). The scarring in anti-FM
antibodyetreated E16 wounds resembled scarring in
E18 rat wounds: Both were characterized by absent
dermal appendages (eg, hair follicles) (Figure 1B) and a
denser, more disorderly collagen deposition pattern
(Figure 1A). To quantitate collagen organizational archi-
tecture, we performed FD and L analyses. FD provides a
measure of how completely an object fills space, and it
quantifies an object in terms of shape, regularity, lack of
smoothness, size, and number of self-similarities
(ie, invariance regardless of scale).25 In general, a
higher FD value indicates uniform distribution.25 In
contrast, L permits an analysis of density, packing, or
dispersion through scales. In other words, L is a measure
of the heterogeneity of a structure or the degree of
structural variance within an object, which is related to the
distribution of empty spaces (lacunas) of an image.25

Objects with lower L values are of a finer texture, while
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higher L values indicate that objects are more spatially
unorganized.26 In this study, we showed that anti-Fm
antibody treatment decreased the mean FD value but
increased the mean L value of the E16 rat wounds in
comparison with those in other groups (Figure 1C),
indicating that the collagen fibers in those wounds were
disorganized or less uniform. On the other hand, 72 hours
after injury, PBS- and IgG-treated E16 rat wounds had FD

and L values similar to those of age-matched unwounded
skin (Figure 1C). Additionally, while unwounded
Fmod�/� mice21 showed normal dermal histologic archi-
tecture, E16 Fmod�/� mouse wounds healed with scarring
characterized by a hypertrophic epidermis and absence of
dermal appendages compared with E16 wild-type control
wounds displaying normal scarless healing, which were
partially rescued by application of FM protein in a
Vitrogen vehicle but not by Vitrogen alone (Figure 2).
These findings demonstrated that loss of a single extra-
cellular matrix proteoglycan, Fm, caused normally scar-
less E16 fetal rodent skin wounds to heal with scar.

On the other hand, in a gain-of-function experiment,
we demonstrated that the administration of FM protein
in a Vitrogen collagen vehicle prevented scar formation
in E18 rats; surprisingly, the wounds healed scarlessly,
with hair follicles and a more organized collagen
architecture that were virtually indistinguishable from
those in age-matched unwounded skin (Figure 1, D and
E). However, PBS- and Vitrogen-treated E18 wounds
healed with scar as expected, accompanied by a lower
mean FD value and a higher mean L value at 72 hours
after injury in comparison with unwounded E21 skin
(Figure 1, DeF). Moreover, FM treatment increased
the mean FD value and decreased the mean L value of
E18 wounds at 72 hours after injury to the same levels
as these values in unwounded E21 skin (Figure 1F),
representing more organized collagen fibers. Therefore,
the addition of FM alone was sufficient to regenerate
scarless fetal-type wound healing in late-gestation
animals, which normally exhibit adult-type repair with
scar.

Figure 1 Fibromodulin (Fm) plays a crucial role in rat fetal-type scarless wound healing. A: At 72 hours after injury, phosphate-buffered saline
(PBS)- and IgG-treated embryonic day 16.5 (E16) wounds heal scarlessly and are indistinguishable from age-matched unwounded embryonic day 19.5
(E19) skin. However, anti-FM antibodyetreated E16 wounds heal with scar formation. B and C: Hair follicle densities are analyzed based on hema-
toxylin and eosin (H&E) staining (B), while fractal dimension (FD) and lacunarity (L) are analyzed based on Picrosirius redeconfocal laser scanning
microscopy (PSR-CLSM) imagery (C). DeF: PBS- and Vitrogen-treated embryonic day 18.5 (E18) wounds heal with scarring at 72 hours after injury.
Vitrogen þ Fmetreated E18 wounds heal without scar, and the regenerated tissue resembles unwounded embryonic day 21.5 (E21) skin (D),
accompanied by hair follicle densities analysis (E) and FD and L analyses (F). Blue arrowhead, hair follicle; black arrowhead, surgical dye. Data are
expressed as means � SD. n Z 8 (A, anti-Fm antibody); n Z 9 (A, PBS; DeF, Vitrogen þ Fm); n Z 10 (CeF, PBS); n Z 13 (A, IgG); n Z 15 (CeF,
Vitrogen). *P < 0.05 (two-sample t-test). Scale bar Z 100 mm.
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Taken together, these findings demonstrate that FM
is both necessary and sufficient for fetal scarless repair in
rodents. Importantly, FM application can reverse scarring
in late-gestation fetal rodent wounds.

Fm Levels Inversely Correlate with Tgf-b1 Levels in
Fetal Rodent Wound Models

Because previous studies revealed that fetal-type scarless
wounds express less Tgf-b1 compared with adult-type
scarring wounds,3,6 we next evaluated Tgf-b1 expression
in Fm gain- and loss-of-function fetal wound models to
assess for a possible correlation. The scars formed in E18
rats treated with Vitrogen control presented strong Tgf-b1
immunohistochemical analysis staining throughout the
epidermis and dermis (Figure 3A). Conversely, scarless
wounds in FM-treated E18 rats exhibited markedly less
Tgf-b1 staining in the epidermis and limited Tgf-b1
staining in the dermis (Figure 3, A and B). Accordingly,
real-time quantitative RT-PCR revealed increased Tgf-b1
mRNA levels in collagen controletreated E18 rat wounds
at 72 hours after injury compared with the Fm-treated
wounds, the Tgf-b1 expression of which was reduced to
the level in unwounded skin (Figure 3C). Similarly,
transcription of Tgf-b1 downstream target Col1a1
(encoding a1 chain of type I collagen) was also elevated

in E18 rat wounds treated with Vitrogen control, but
Col3a1 (encoding a1 chain of type III collagen) did not
show an increase (Figure 3D). Thus, it resulted in a
decreased ratio of type III to type I collagen. As
expected, FM application eliminated the injury-induced
increase of Tgf-b1, and Col1a1 increased in E18 rat
wounds (Figure 3, C and D). Meanwhile, E16 Fmod�/�

mouse wounds that healed with scarring showed signifi-
cantly increased Tgf-b1 expression compared with
wild-type wounds accompanied by higher Col1a1
transcription. However, FM administration significantly
reduced Tgf-b1 expression in E16 Fmod�/� wounds and
promoted scarless healing (Figure 4). These data suggest
that FM promotes fetal-type scarless cutaneous wound
repair through, in part, the modulation of TGF-b1
expression and function.

Discussion

In the current study, we demonstrated that Fm is both
necessary and sufficient for fetal scarless skin repair in
rodents and that FM administration significantly alters
Tgf-b1 expression. The application of FM represents the
first successful attempt to use a noncytokine/growth factor,
protein-based approach to restore scarless cutaneous repair
in late-gestation fetal animals in utero.

Figure 2 Fibromodulin (Fm) deficiency leads to scar formation in embryonic day 16.5 (E16) fetal mouse wounds. A: Unwounded embryonic day 19.5
(E19) wild-type (WT) and Fmod�/� mouse skin shows no significant histologic difference. B: At 72 hours after injury, E16 fetal mouse wounds shows
scarless repair, while E16 Fmod�/� fetal mouse wounds present scar formation characterized by the absence of hair follicles and epidermal
hypertrophy. C: Administration of FM with Vitrogen partially restores scarless wound healing in E16 Fmod�/� wounds, while Vitrogen control alone
fails to do so. Hair follicle densities are analyzed based on hematoxylin and eosin (H&E) staining (D), while fractal dimension (FD) and lacunarity
(L) are analyzed based on Picrosirius redeconfocal laser scanning microscopy (PSR-CLSM) imagery (E). Blue arrowhead, hair
follicle; black arrowhead, surgical dye. Data are expressed as means � SD. n Z 6. *P < 0.05 (two-sample t-test). Scale bars: 50 mm (black); 25 mm
(white).
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TGF-b ligands have been implicated in the ontogenetic
transition from fetal-type scarless healing to adult-type
repair with scar.3e5,13,27,28 The three mammalian TGF-b
isoforms (TGF-b1, -b2, and -b3) have nonredundant and
oftentimes opposing effects.27e30 In particular, TGF-b1 is
thought to promote scar since TGF-b1 alone is enough to
induce scar in wounded human fetal skin transplanted onto
athymic adult mice.31 Moreover, neutralization of TGF-b1
reduces scar formation in adult wound models.32e34 Our
previous studies showed that Fm deficiency markedly
altered the levels and spatiotemporal expression patterns of
Tgf-b ligands and receptors during wound healing.20,23 In
addition, adenovirus-mediated FM overexpression
decreased TGF-b1 expression in human dermal fibro-
blasts.35 In this study, we observed an inverse correlation
between FM and Tgf-b1 with its downstream fibrosis
target, type I collagen, in fetal cutaneous wound models:
High FM levels correlated with decreased Tgf-b1

expression and scarless repair, while low FM levels
correlated with increased Tgf-b1 expression and scar for-
mation. Therefore, our current finding strongly suggests
that FM plays crucial regulatory roles in TGF-b signaling
during cutaneous wound repair.

Interestingly, we previously also found FM to be proan-
giogenic14,15 and capable of reprograming somatic cells to a
multipotent state.36,37 This finding, coupled with those from
our current study, support the growing consensus that FM
(and other small leucine-rich proteoglycans) has pleiotropic
functions regulating intracellular signaling, cell fate deter-
mination, and stem cell niches36e40 that extend far beyond
its initially described roles in collagen assembly, organiza-
tion, and degradation for extracellular matrix structural
support.18,41e43

In conclusion, the findings from our study suggest that
FM alone is sufficient to restore scarless fetal repair to
late-gestation animals, which normally heal with

Figure 3 Fibromodulin (Fm) reduces trans-
forming growth factor (Tgf)-b1 expression in em-
bryonic day 18.5 (E18) fetal rat wounds. A:
Compared with Vitrogen alone, Vitrogen þ Fm
significantly reduces Tgf-b1 protein expression in
E18 rat wounds at 72 hours after injury [inset
depicts unwounded embryonic day 21.5 (E21) rat
skin]. B and C: Quantification of protein expres-
sion (B) and real-time quantitative RT-PCR
analyses (C) further reveal that Vitrogen controle
treated E18 rat wounds approximately double
transcription of Tgf-b1 compared with unwounded
E21 rat skin. However, Vitrogen þ FM application
markedly reduces Tgf-b1 expression to the levels
of age-matched unwounded E21 rat skin. A similar
transcription pattern is also observed in Col1a1
(encoding a1 chain of type I collagen) instead of
Col3a1. Real-time quantitative RT-PCR data are
normalized to unwounded E21 rat skin. Data are
expressed as means � SD. n Z 3 pools (3 fetal
wounds per pool, 9 fetuses total; C and D); n Z 9
fetuses (B). *P < 0.05, **P < 0.01 (two-sample t-
test). Scale bar Z 50 mm. IHC, immunohisto-
chemistry.
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Figure 4 Fibromodulin (Fm) deficiency leads to increased transforming growth factor (Tgf-b1) expression in embryonic day 16.5 (E16) fetal
mouse wounds. A: Compared with E16 wild-type (WT) fetal mouse wounds, E16 Fmod�/� fetal mouse wounds exhibit increased Tgf-b1 staining at 72
hours after injury. Furthermore, the increased Tgf-b1 expression in E16 Fmod�/� fetal wounds are not weakened by Vitrogen collagen control but are
decreased by Vitrogen þ FM. B and C: These phenomena are confirmed by quantification of protein expression (B) and real-time quantitative RT-PCR
analyses (C). D: A similar transcription pattern is also observed in Col1a1 (encoding a1 chain of type I collagen) instead of Col3a1. Blue arrowhead,
hair follicle; and black arrowhead, surgical dye. Real-time quantitative RT-PCR data are normalized to unwounded embryonic day 19.5 (E19) mouse
skin. Data are expressed as means � SD. n Z 3 pools (3 fetal wounds per pool, 9 fetuses total; C and D); n Z 6 (B). *P < 0.05, **P < 0.01 (two-
sample t-test). Scale bar Z 50 mm.
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scar, and that loss of Fm alone is sufficient to induce
scar in early-gestation animals, which normally heal
without scar.
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