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Mast Cells
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Abstract

Background: The complement component C3a induces degranulation in human mast cells via the activation of cell surface
G protein coupled receptors (GPCR; C3aR). For most GPCRs, agonist-induced receptor phosphorylation leads to the
recruitment of b-arrestin-1/b-arrestin-2; resulting in receptor desensitization and internalization. Activation of GPCRs also
leads to ERK1/2 phosphorylation via two temporally distinct pathways; an early response that reflects G protein activation
and a delayed response that is G protein independent but requires b-arrestins. The role of b-arrestins on C3aR activation/
regulation in human mast cells, however, remains unknown.

Methodology/Principal Findings: We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of b-
arrestin-1 and b-arrrestin-2 in human mast cell lines, HMC-1 and LAD2 that endogenously expresses C3aR. Silencing b-
arrestin-2 attenuated C3aR desensitization, blocked agonist-induced receptor internalization and rendered the cells
responsive to C3a for enhanced NF-kB activity as well as chemokine generation. By contrast, silencing b-arrestin-1 had no
effect on these responses but resulted in a significant decrease in C3a-induced mast cell degranulation. In shRNA control
cells, C3a caused a transient ERK1/2 phosphorylation, which peaked at 5 min but disappeared by 10 min. Knockdown of b-
arrestin-1, b-arrestin-2 or both enhanced the early response to C3a and rendered the cells responsive for ERK1/2
phosphorylation at later time points (10–30 min). Treatment of cells with pertussis toxin almost completely blocked both
early and delayed C3a-induced ERK1/2 phosphorylation in b-arrestin1/2 knockdown cells.

Conclusion/Significance: This study demonstrates distinct roles for b-arrestins-1 and b-arrestins-2 on C3aR desensitization,
internalization, degranulation, NF-kB activation and chemokine generation in human mast cells. It also shows that both b-
arrestin-1 and b-arrestin-2 play a novel and shared role in inhibiting G protein-dependent ERK1/2 phosphorylation. These
findings reveal a new level of complexity for C3aR regulation by b-arrestins in human mast cells.
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Introduction

The anaphylatoxin C3a is generated following bacterial

infection and from IgE/FceRI stimulated human mast cells [1].

Accordingly, C3a has been proposed to play critical roles in

innate immunity and allergic diseases such as asthma [2,3,4].

C3a activates its cell surface G protein coupled receptor

(GPCR; C3aR) to induce chemotaxis in human mast cell line

(HMC-1) and degranulation in human skin mast cells,

peripheral blood CD34+ cell-derived mast cells and a

differentiated mast cell line, LAD2 [1,5,6,7,8]. C3a induces

mast cell degranulation via the activation of phospholipase Cb
and mobilization of intracellular Ca2+ [7,9]. However, the

mechanism(s) involved in regulation of C3aR signaling in mast

cells remain poorly understood.

It is well established that for most GPCRs, receptor

phosphorylation by G protein coupled receptor kinases (GRKs)

and the subsequent recruitment of b-arrestin provides an

important mechanism for their desensitization and internalization

[10]. Two isoforms of b-arrestins, (b-arrestin-1 and b-arrestin-2)

are known and each can differentially regulate GPCR desensi-

tization and internalization. Thus, for protease activated

receptor-1 (PAR-1) only b-arrestin-1 is capable for receptor

desensitization but receptor internalization is independent of

either b-arrestins [11]. By contrast, both isoforms of b-arrestins

can promote desensitization of b2-adrenergic receptors (bAR2)

and angiotensin II type 1A receptor (AT1AR) [12]. Although,

only b-arrestin-2 promotes internalization of bAR2 both isoforms

are required for the internalization of AT1AR. We have

previously shown that in transfected rat basophilic leukemia

(RBL-2H3) cells, C3aR associates with b-arrestin-2 following

agonist stimulation [9]. However, the roles of b-arrestin-1 and b-

arrestin-2 on C3aR desensitization and internalization have not

been determined.
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Previous studies with transfected RBL-2H3 cells showed that

phosphorylation-deficient chemoattractant/chemokine receptors

that do not associate with b-arrestins respond to ligands for more

sustained Ca2+ mobilization and degranulation when compared with

cells expressing wild-type receptors [9,13,14,15,16]. These findings

are consistent with the view that b-arrestins play an important role in

desensitization. By contrast, activation of the chemokine receptor

CXCR1 in human neutrophils leads to receptor internalization and

complex formation between b-arrestin-2 and Src kinases, (Hck and c-

Fgr) which translocate to secretory granules to promote degranulation

[17]. b-arrestin-2 also forms a complex with Ral-GDP dissociation

stimulator (Ral-GDS) in the cytoplasm of human neutrophils [18].

Furthermore, activation of fMLP receptor results in the translocation

of the complex to the plasma membrane. This is followed by the

release of Ral-GDS from b-arrestin and the activation of Ral resulting

in actin cytoskeleton rearrangement presumably leading to degran-

ulation. The roles of b-arrestins on C3a-induced mast cell

degranulation, however, remain unknown.

In addition to receptor desensitization, internalization and degran-

ulation, b-arrestins modulate the activity of the transcription factor,

NF-kB. Witherow et al., [19], using a yeast two-hybrid screen, first

demonstrated that the inhibitor of NF-kB, IkBa binds to b-arrestin-1.

Furthermore, both b-arrestin-1 and 2 interact with IkBa in transfected

cells. However, siRNA-mediated knockdown studies indicated that b-

arrestin-1 but not b-arrestin-2 inhibits TNF-a-induced NF-kB

activation. By contrast, Gao et al., [20] showed that b-arrestin-2, but

not b-arrestin-1 interacts with IkBa to inhibit NF-kB activation.

Studies with primary leukocytes from b-arrestin-2 knockout mice

showed that this adapter molecule is involved in the internalization of

the chemokine receptor, CXCR2 [21]. Furthermore, in vivo studies

showed that b-arrestin-2 deletion promotes tumor growth and

angiogenesis and these responses are associated with enhanced

chemokine generation [22]. Other studies have shown that both b-

arrestins promote NF-kB activation following the activation GPCRs

[23,24]. The roles of b-arrestins on C3a-induced NF-kB activation and

chemokine production in mast cells have not been determined.

The mitogen-activated protein kinases (MAPKs), extracellular

signal-regulated kinases 1 and 2 (ERK1/2) play important roles in

a variety of cellular responses and have been studied for a variety

of GPCRs. Activation of GPCRs in transfected cell lines induce

ERK1/2 phosphorylation via two temporally distinct pathways;

an early response that reflects G protein activation and an delayed

response that is G protein independent but requires the formation

of signaling complexes involving Src/ERK with b-arrestin [25,26].

Although C3a induces ERK1/2 phosphorylation in mast cells

[7,9,27], whether or not b-arrestin-1 and b-arrestin-2 regulate this

response remains unknown.

The goal of the present study was to determine the roles of b-

arrestins on the regulation of C3aR signaling in human mast cells.

To achieve this goal, we utilized lentivirus shRNA to stably

knockdown the expression of b-arrestin-1 and b-arrestin-2 in

human mast cells (HMC-1 and LAD2). Using these systems, we

report unexpected findings regarding distinct roles of these adapter

molecules on C3aR desensitization, internalization, degranulation,

NF-kB activation and chemokine generation. Furthermore, we

provide first demonstration that both b-arrestins acts as novel

inhibitors of C3a-induced G-protein-mediated ERK1/2 phos-

phorylation in human mast cells.

Results

Stable knockdown of b-arrestin-1 and b-arrestin-2 in a
human mast cell, HMC-1

To determine the role of b-arrestins on the regulation of C3aR

signaling in mast cells, we used the Mission shRNA lentivirus system

to stably knockdown the expression of b-arrestin-1 and b-arrestin-2

in a human mast cell line; HMC-1 cells. Cells were transduced with

5 different shRNA constructs targeting different regions of b-

arrestin-1 and b-arrestin-2. For control, we used a scrambled

shRNA construct. After transduction and selection with puromycin,

quantitative real-time PCR was performed to determine the extent

of b-arrestin knockdown. As shown in Fig. 1A and B, all five b-

arrestin shRNA constructs decreased the expression of b-arrestin-1

and b-arrestin-2 to variable levels. Clone 3 (TRCN0000230149) for

b-arrestin-1 and clone 5 (TRCN0000159482) for b-arrestin-2

showed .80% decrease in mRNA. We therefore, used these clones

to generate double knockdown (both b-arrestin-1 and b-arrestin-2)

in HMC-1 cells. As shown in Fig. 1C, we were able to generate

Figure 1. Stable knockdown of b-arrestin-1 and b-arrestin-2 in human mast cells. HMC-1 cells were stably transduced with scrambled
shRNA control lentivirus or different clones of shRNA lentivirus targeted against b-arrestin-1 and b-arrestin -2 (Panels A and B). For double knockdown
HMC-1 cell were transduced with shRNA lentivirus, Clone 3 of b-arrestin-1 and Clone 5 of b-arrestin-2 (C). Quantitative PCR was employed to assess b-
arrestin-1 or -2 mRNA levels. Results are expressed as a ratio of b-arrestin to GAPDH mRNA levels. Data represent the mean 6 SEM from three
independent experiments. Statistical significance was determined by one way ANOVA. ** indicates p,0.001.
doi:10.1371/journal.pone.0019585.g001

C3a Receptor Regulation by b-arrestin in Mast Cells
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HMC-1 cells with ,80% knockdown of both genes. These cells

were used in subsequent studies described below.

b-arrestin-2, but not b-arrestin-1, is required for C3aR
desensitization and internalization

Intracellular Ca2+ mobilization provides a rapid, sensitive and

real-time assay to measure receptor desensitization [28]. We have

previously shown that receptors that undergo desensitization

respond to agonists with an initial Ca2+ spike, which decays rapidly

and reaches baseline within ,2–3 min [28]. By contrast, phos-

phorylation-deficient receptors that do not associate with b-arrestin

respond to agonist for a similar initial Ca2+ spike, followed by a

sustained response that remains elevated for an extended period of

time [29,30]. We therefore, used Ca2+ mobilization as an assay to

determine the effects of b-arrestin-1 and b-arrestin-2 knockdowns

on C3aR desensitization. As shown in Fig. 2A and B, C3a caused a

rapid increase in Ca2+ mobilization in shRNA control and b-

arrestin-1 knockdown cells. By contrast, in b-arrestin-2 knockdown

C3a caused a similar initial spike but subsequent response was

sustained (Fig. 2C). Furthermore, deletion of both b-arrestins

resulted in a Ca2+ response similar to that observed in b-arrestin-2

knockdown cells (Fig. 2C and D). These findings suggest that b-

arrestin-2, but not b-arrestin-1, mediates desensitization of C3aR.

GPCRs that undergo desensitization display reduced responsive-

ness to a second stimulation with the same agonist [28]. To test

further the effects of b-arrestins on desensitization, shRNA control or

knockdown cells were exposed to C3a and washed twice before re-

exposure to the same concentration of C3a. In shRNA control and b-

arrestin-1 knockdown cells, there was little or no response to second

C3a stimulation. Interestingly, b-arrestin-2 knockdown cells respond-

ed to re-exposure to C3a for Ca2+ mobilization (Fig. 2C). Notably, for

initial Ca2+ mobilization and desensitization, double knockdown cells

responded similarly to b-arrestin-2 knockdown cells (Fig. 2D).

To investigate the role of b-arrestins on agonist-induced C3aR

internalization, shRNA control, b-arrestin-1 and b-arrestin-2

knockdown cells were exposed to buffer or C3a and receptor

Figure 2. Knockdown of b-arrestin-2, but not b-arrestin-1, attenuates C3aR desensitization. (A), shRNA control, (B) b-arrestin-1 KD
(knockdown), (C) b-arrestin-2 KD and (D) double b-arrestin-1 and 2 KD cells were loaded with Indo-1(1 mM), stimulated with C3a (100 nM) for 5 min
and intracellular Ca+2 mobilization was determined (black solid lines). The cells were immediately washed three times with ice-cold buffer,
resuspended in warm buffer and exposed to a second stimulation of C3a (100 nM) and intracellular Ca2+ mobilization was again determined (red
broken lines). Data shown are representative of three similar experiments.
doi:10.1371/journal.pone.0019585.g002

C3a Receptor Regulation by b-arrestin in Mast Cells
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internalization was determined by flow cytometry. In shRNA

control cells, C3a caused a robust internalization of its receptors

(Fig. 3A). In b-arrestin-1 knockdown cells, there was no marked

difference in the extent of receptor internalization (Fig. 3A, B).

Interestingly, internalization of C3aR was substantially reduced in

b-arrestin-2 knockdown cells (Fig. 3C and D). These findings

clearly demonstrate that b-arrestin-2, but not b-arrestin-1, is

involved in C3aR desensitization and internalization in human

mast cell line, HMC-1.

b-arrestin-1, but not b-arrestin-2, promotes C3a-induced
mast cell degranulation

Our next goal was to determine the roles of b-arrestin-1 and b-

arrestin-2 on C3a-induced mast cell degranulation. We could not

use HMC-1 cells for these studies because this immature mast cell

line has little or no capacity to degranulate. LAD2 mast cells

express C3aR and responds to ligand for Ca2+ mobilization and

degranulation [7]. We therefore knocked down the expression of

b-arrestin-1 and b-arrestin-2 in LAD2 cells. As in HMC-1 cells,

lentiviral shRNA induced ,80% knockdown of the b-arrestin-1

and b-arrestin-2 in LAD2 mast cells (Fig. 4A). Furthermore,

consistent with the findings in HMC-1 cells, b-arrestin-1

knockdown in LAD2 cells had little or no effect on C3a-induced

Ca2+ mobilization (Fig. 4B and C) while b-arrestin-2 silencing

resulted in a more sustained Ca2+ mobilization and loss of

desensitization (Fig. 4D). Surprisingly, however, knockdown of b-

arrestin-2 had no effect on C3a-induced mast cell degranulation

but the absence of b-arrestin-1 resulted in a significantly decreased

degranulation response (Fig. 4E).

b-arrestin-2, but not b-arrestin-1, inhibits C3a-induced
NF-kB activation and chemokine CCL4 generation
b-arrestin-1 and b-arrestin-2 bind to IkBa to inhibit GPCR-

induced NF-kB activity in transfected cell lines [19,20]. We

therefore sought to determine the roles of these adapter molecules

on C3a-induced NF-kB luciferase activity in human mast cells. We

used HMC-1 cells for these studies because they are more

amenable to transfection than LAD2 cells. C3a did not induce NF-

Figure 3. Knockdown of b-arrestin-2, but not b-arrestin-1, inhibits agonist-induced C3aR internalization. (A) shRNA control HMC-1 cells
(B) b-arrestin-1 KD and (C) b-arrestin-2 KD cells were exposed to buffer (2C3a) or C3a (100 nM) for 5 min. Cells were washed with ice-cold FACS
buffer, incubated with a mouse anti-C3aR antibody or an isotype control antibody followed by PE-labeled donkey anti-mouse IgG antibody and
analyzed by flow cytometry. Representative histograms showing cell surface C3aR expression in (A) shRNA control, (B) b-arrestin-1 KD and (C) b-
arrestin-2 KD cells are shown. (D) shRNA control, b-arrestin-1 KD and b-arrestin-2 KD cells were exposed to C3a for different time periods and receptor
internalization was determined as described above. Internalization is expressed as the percentage loss of C3aR following exposure to C3a. Data
represent the mean 6 SEM from three experiments. Statistical significance was determined by two way ANOVA with Bonferroni’s post test.
* indicates p,0.05.
doi:10.1371/journal.pone.0019585.g003

C3a Receptor Regulation by b-arrestin in Mast Cells
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kB luciferase activity in shRNA control or b-arrestin-1 silenced

HMC-1 cells (Fig. 5A). By contrast, b-arrestin-2 knockdown cells

showed a significant enhancement in C3a-induced NF-kB

luciferase activity as compared to shRNA control cells. Given

that NF-kB plays an important role in the generation of

proinflammatory cytokines, we tested the effects of b-arrestin-1

and b-arrestin-2 knockdown in C3a-induced chemokine CCL4

production. Consistent with NF-kB activation, C3a induced

CCL4 only in b-arrestin-2 silenced cells (Fig. 5B).

b-arrestin-1 and b-arrestin-2 inhibit C3a-induced ERK1/2
phosphorylation

Activation of GPCRs leads to ERK1/2 phosphorylation via two

temporally distinct pathways; an early response that reflects G

protein activation and a delayed response that is G protein

independent but requires b-arrestins [31]. We therefore investi-

gated the effects of silencing the expression of b-arrestin-1, b-

arrestin-2 or both on the time course of C3a-induced ERK1/2

phosphorylation in HMC-1 cells. In shRNA control cells, C3a

caused a transient ERK1/2 phosphorylation that peaked between

1–5 min and returned to basal thereafter (Fig. 6A). Surprisingly,

silencing b-arrestin-1 or b-arrestin-2 expression enhanced the

magnitude of this early response and rendered the cells responsive

to C3a for ERK1/2 phosphorylation even at later time points (10–

30 min). Furthermore, in double knockdown cells, C3a-induced

ERK1/2 phosphorylation was greater in magnitude than single b-

arrestin knockdown cells (Fig 6A and 6B).

To determine if the delayed C3a-induced ERK1/2 phosphory-

lation in b-arrestin knockdown cells is mediated via a G protein-

dependent pathway, shRNA control and b-arrestin-1 and b-arrestin-

2 double knockdown cells were exposed to pertussis toxin and the

effects of C3a on ERK1/2 phosphorylation was determined. As

shown in Fig. 7A and 7B both early and delayed responses were

almost completely inhibited in pertussis toxin treated cells.

Discussion

b-arrestins are well known for their roles in GPCR desensiti-

zation and internalization. They also modulate downstream

signaling pathways such as those for ERK and NF-kB indepen-

Figure 4. Knockdown of b-arrestin-1, but not b-arrestin-2, inhibits C3a-induced degranulation in LAD2 mast cells. (A) LAD2 cells were
transduced with shRNA control, b-arrestin-1, and b-arrestin-2 lentivirus. After puromycin selection, quantitative PCR was employed to assess the b-
arrestin-1 or b-arrestin-2 mRNA level and results are expressed as a ratio of b-arrestin to GAPDH mRNA levels. (B, C, D) A representative desensitization
experiment in shRNA control, b-arrestin-1 and b-arrestin-2 knockdown LAD2 cells is shown. (E) shRNA control, b-arrestin-1 and -2 KD LAD2 mast cells
were stimulated with different concentrations of C3a and percent degranulation (b-hexosaminidase release) was determined. Data represent the
mean 6 SEM from three independent experiments. Statistical significance was determined by two way ANOVA with Bonferroni’s post test. * indicates
p,0.05 and ** indicates p,0.001.
doi:10.1371/journal.pone.0019585.g004

C3a Receptor Regulation by b-arrestin in Mast Cells
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dent of receptor desensitization. Most previous studies on GPCR

regulation have been performed using mouse embryonic fibro-

blasts (MEFs) derived from b-arrestin null mice [11], transfected

cell lines overexpressing b-arrestins or siRNA-mediated b-arrestin

knockdown in HEK293 cells [32,33,34,35]. For the present study,

we utilized lentivirus shRNA to stably knockdown the expression

of b-arrestin-1 and b-arrestin-2 in human mast cell lines, HMC-1

cells and LAD2 cells that endogenously express C3aR. Using this

approach, we have uncovered distinct roles of b-arrestin-1 and b-

arrestin-2 on C3aR desensitization, internalization, degranulation,

NF-kB activation and chemokine generation. Furthermore, we

provided the first demonstration that b-arrestin-1 and b-arrestin-2

act as novel inhibitors of C3a-induced G protein-dependent

ERK1/2 phosphorylation in human mast cells.

Previous studies indicated that b-arrestin-2 either inhibits or

promotes chemoattractant/chemokine induced degranulation.

Thus, in response to agonist stimulation wild-type chemoattractant

receptors associate with b-arrestin-2 in transfected RBL-2H3 cells

but phosphorylation-deficient mutants do not [9,14,16,30].

Furthermore, agonist-induced Ca2+ mobilization and degranula-

tion are enhanced in cells expressing phosphorylation-deficient

receptors when compared to wild-type receptors. These findings

are consistent with the notion that receptor phosphorylation and

b-arrestin-2 participate in receptor desensitization. By contrast,

Barlic et al., [17] showed that agonist induced phosphorylation of

the chemokine receptor CXCR1 leads to b-arrestin-2-mediated

receptor internalization and the formation of b-arrestin-2-Hck

complex, which migrates to secretory granules initiating the

process of degranulation. The finding in the present study that

enhanced Ca2+ response in the absence of b-arrestin-2 did not

promote greater degranulation provides a possible explanation for

the previously published conflicting data for the role of b-arrestin-

2 on degranulation. It suggests that b-arrestin-2 plays a dual role

on GPCR-induced degranulation; inhibition via desensitization

and activation via its association with Hck. Thus, the inability of

enhanced Ca2+ response to promote greater degranulation in b-

arrestin-2 knockdown cells probably reflects the loss of b-arrestin-

2-mediated Hck signaling (see Model in Fig. 8A).

An interesting finding of the present study was that while

knockdown of b-arrestin-1 had no effect on C3aR desensitization

(as measured by Ca2+ mobilization) or receptor internalization its

absence resulted in a substantial inhibition of C3a-induced mast

cell degranulation. Because b-arrestins 1 does not participate in

C3aR internalization, C3a is unlikely to promote Hck-b-arrestin-1

interaction. Our studies with confocal microscopy in live cells

indicated that C3a causes translocation of b-arrestin-1 to the

plasma membrane (data not shown). Furthermore, b-arrestin 1

forms a complex with Ral-GDS in the cytoplasm of human

neutrophils [18]. This raises the interesting possibility that upon

C3aR activation, b-arrestin-1/Ral GDS complex translocates to

the plasma membrane to promote degranulation and that

knockdown of b-arrestin-1 leads to attenuated response due to

the absence of this complex (see Model in Fig. 8A). Whether this or

other mechanism(s) participate on the effect of b-arrestin-1 on

C3a-induced mast cell degranulation remains to be determined.

b-arrestins have been shown to promote or inhibit NF-kB activity

depending on the cell type and receptors utilized [14,19,20,23,24].

Our results clearly demonstrate that b-arrestin-2, but not b-arrestin-

1, inhibits C3a-induced NF-kB activation and chemokine genera-

tion. Gao et al., [20] recently observed similar differences between

b-arrestin-1 and b-arrestin-2 in cytokine production in Hela cells

and THP-1 monocytes. This difference was thought to reflect a

reduced ability of b-arrestin-1 to form a complex with the inhibitory

IkBa when compared to b-arrestin-2. In the present study, we

showed that while b-arrestin-1 does not participate in agonist-

induced C3aR internalization, b-arrestin-2 is essential for this

response. It is therefore possible that internalized C3aR-b-arrestin-2

complex interacts with IkBa to keep NF-kB inactive and that

depletion of b-arrestin-2 removes this inhibitory constraint to allow

NF-kB activation and chemokine generation (Fig. 8B). It is also

Figure 5. Knockdown of b-arrestin-2, but not b-arrestin-1, enhanced C3a-induced NF-kB activation and chemokine CCL4
generation. shRNA control, b-arrestin-1 KD or b-arrestin-2 KD HMC-1 cells were transiently transfected with NF-kB luciferase reporter gene
construct. (A) Cells were stimulated with C3a (100 nM for 6 hr) and NF-kB-dependent transcriptional activity was determined by luciferase activity
assay. (B) Control or b-arrestin KD cells were stimulated with C3a (100 nM for 6 hr) and CCL4 production was determined from the supernatant by
ELISA. Data shown are mean 6 SEM of three experiments performed in triplicate. Statistical significance was determined by two way ANOVA with
Bonferroni’s post test. ** indicates p,0.001.
doi:10.1371/journal.pone.0019585.g005
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possible that enhanced signaling as manifested by a more sustained

Ca2+ mobilization in b-arrestin-2 knockdown cells results in greater

NF-kB activation and chemokine generation.

An interesting finding of the present study was that silencing b-

arrestin-1 and b-arrestin-2 enhanced early ERK1/2 phosphorylation

in response to C3a and also rendered the cells responsive to C3a at later

time points (15–30 min). This finding is in direct contrast to situations

with many other GPCRs, where b-arrestins are required for delayed

ERK phosphorylation [31]. One possible interpretation of our finding

is that knockdown b-arrestins attenuate C3aR desensitization leading

to more sustained ERK1/2 phosphorylation. This explanation is,

however, unlikely as b-arrestin-1 knockdown, which had no impact on

C3aR desensitization, rendered the cells responsive to C3a for ERK1/

2 phosphorylation. Ahn et al. [33] recently demonstrated that b-

arrestin-2 inhibits angiotensin II type 1A-mediated ERK1/2 activation

in HEK293 cells and silencing b-arrestin-1 expression enhances this

response by blocking b-arrestin-2 mediated inhibition. This type of

reciprocal regulation is unlikely for C3a-induced response in mast cells

as knockdown of both b-arrestins either individually or together

enhanced C3a-induced ERK1/2 phosphorylation.

It is noteworthy that Drosophila genome encodes a single b-arrestin,

Kurtz (Krz), which controls olfaction, behavior, sensitivity to osmotic

stress, and is essential for survival of the fly [36,37,38]. Tipping et al.,

[39] recently showed that Krz directly binds to and sequesters an

inactive form of ERK, thus preventing its activation by the upstream

kinase, MEK. We have shown that pertussis toxin completely blocks

the transient C3a-induced ERK1/2 phosphorylation in shRNA

control cells as well as the sustained response in b-arrestin-1 and b-

arrestin-2 double knockdown cells. This finding suggests that C3a

causes ERK1/2 phosphorylation via a GPCR-mediated pathway

and that arrestins inhibit this response by forming a direct complex

with ERK and preventing it activation by MEK (Fig. 8B).

In summary, we demonstrated distinct roles for b-arrestins-1

and b-arrestins-2 on C3aR desensitization, internalization,

degranulation, NF-kB activation and chemokine generation in

human mast cells. Most importantly, we provided the first

demonstration that both b-arrestin-1 and b-arrestin-2 act as novel

inhibitors of C3a-induced G-protein-mediated ERK1/2 phos-

phorylation in human mast cells. In addition to C3aR, human

mast cells express a large number of other GPCRs, FceRI, toll-like

Figure 6. C3a-induced ERK1/2 phosphorylation is enhanced in b-arrestin-1, b-arrestin-2 and double KD cells. shRNA control or b-
arrestin KD HMC-1 cells (16106/ml) were exposed to C3a (100 nM) for 1, 5 and 10, 15 and 30 min. Cell lysates were separated on SDS-PAGE and blots
were probed with anti-phospho-ERK1/2 antibody followed by anti-rabbit IgG-HRP. The blots were then stripped and reprobed with anti-ERK1/2
antibody followed by anti-rabbit IgG-HRP. Immunoreactive band were visualized by SuperSignal West Femto maximum sensitivity substrate. (A)
Representative immunoblots from three similar experiments are shown. (B) ERK1/2 phosphorylation was quantified using Image J as shown in the
line graph. Data represent the mean 6 SEM from three independent experiments. Statistical significance was determined by two way ANOVA with
Bonferroni’s post test. ** indicates p,0.001.
doi:10.1371/journal.pone.0019585.g006
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receptors and IL-33 receptor T1/ST2 [40,41,42,43,44]. Given

that b-arrestins regulate GPCR and non-GPCR signaling [45,46],

it is likely that they regulate other receptor/signaling pathways in

human mast cells. Our future studies will focus on the receptor

specificity of human mast cell regulation by b-arrestins.

Materials and Methods

Materials
Mission shRNA bacterial glycerol stocks for b-arrestins were

purchased from Sigma Life Sciences (St. Louis, MO). Indo-1 AM

was from Molecular Probes (Eugene, OR). All tissue culture

reagents were purchased from Invitrogen (Gaithersburg, MD). Anti-

human C3aR was obtained from Santa Cruz Biotechnology (Santa

Cruz, CA), PE-labeled donkey anti-mouse IgG was purchased from

eBioscience (San Diego, CA). All recombinant human cytokines

were purchased from Peprotech (Rocky Hill, NJ). Rabbit anti-

ERK1 and anti-phospho-ERK1/2 antibodies were purchased from

Cell Signaling (Beverly, MA). SuperSignalH West Femto Maximum

Sensitivity Substrate and HRP labeled Goat anti-rabbit IgG were

from Thermo Scientific (Rockford, IL). Purified C3a was obtained

from Advanced Research Technologies (San Diego, CA). CCL4

ELISA kit was purchased from R&D Systems (Minneapolis, MN).

Mast cell culture
HMC-1 cells were cultured in Iscove’s modified Dulbecco’s

medium (IMDM) supplemented with 10% FCS, glutamine

(2 mM), penicillin (100 IU/mL) and streptomycin (100 mg/mL)

[47]. LAD2 cells were maintained in complete StemPro-34

medium supplemented with 100 ng/mL rhSCF [48].

Lentivirus and stable transduction of shRNAs in mast
cells

The following b-arrestin-1 and -2 targeted shRNAs in Lentiviral

construct plasmid were purchased from Sigma-Aldrich (St.

Louis, MO): b-arrestin-1 (NM_004041) Clone 1 TRCN000023-

0148, Clone 2 TRCN0000230147, Clone 3 TRCN0000230149,

Figure 7. Enhanced C3a-induced ERK1/2 phosphorylation in b-arrestin KD cells mast is mediated via a G protein-dependent
pathway. shRNA control and double b-arrestin KD cells were pretreated with vehicle or Pertussis toxin (PTx; 100 ng/ml, 16 hr). Cell were then
washed twice in serum free medium and stimulated with C3a (100 nM) for 1, 5 and 10, 15 and 30 min and ERK1/2 phosphorylation were determined.
(A) Representative immunoblots from three similar experiments are shown. (B). ERK1/2 phosphorylation was quantified using Image J as shown in the
bar graph. Data represent the mean 6 SEM from three independent experiments. Statistical significance was determined by two way ANOVA with
Bonferroni’s post test. ** indicates p,0.001.
doi:10.1371/journal.pone.0019585.g007

C3a Receptor Regulation by b-arrestin in Mast Cells

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e19585



Clone 4 TRCN0000230150, Clone 5 TRCN0000219075; b-

arrestin-2 (NM_004313) Clone 1 TRCN0000165387, Clone 2

TRCN0000164794, Clone 3 TRCN0000159332, Clone 4

TRCN0000161834, Clone 5 TRCN0000159482 and control

non-target vector SHC002. Cell transduction was conducted by

mixing 1.5 ml of virus with 3.5 ml of HMC-1 or LAD-2 cells

(56106). For the double knockdown of b-arrestin-1 and -2, 1.5 ml

of each virus of specific clones were transduced in 2 ml of HMC-1

or LAD-2 cells (56106). Eight hr post-infection, medium was

changed to virus-free complete medium, and antibiotic (puromy-

cin; 2 mg/ml Sigma-Aldrich) selection was initiated 16 h later.

Cells were analyzed for b-arrestin knockdown one week after

initiation of puromycin selection.

Real-Time PCR
Total RNA was extracted from 46106 of cells using TRIZOL,

treated with DNase I and subsequently purified for genomic DNA

contamination with RNeasy mini Kit (Qiagen) according to the

manufacture’s instruction. cDNA was synthesized from genomic

DNA-free RNA using the cDNA synthesis kit from GE

Healthcare. Gene expression was analyzed using real time PCR

with TaqmanH Fast Universal PCR Master Mix on a Taqman

7500 Fast Real-Time PCR System (Applied Biosystems, Foster

City, CA). Taqman hGAPDH, b-arrestin-1 and b-arrestin-2

primers were used for real time PCR to analyze the knockdown

efficiency. The amplification conditions were as follows: initial

denaturation at 95uC for 20 sec, followed by 40 cycles of

amplification: 95uC for 3 sec, 60uC for 30 sec. Analysis was

performed according to DD-Ct method. The results were

expressed as b-arrestin-1 or -2/GAPDH ratio.

C3a Receptor desensitization
Receptor desensitization assay based on Ca2+ mobilization was

determined as described previously [49]. Briefly, 16106 HMC-1

or 0.256106 LAD-2 cells were washed twice with buffer (119 mM

NaCl, 5 mM KCl, 25 mM HEPES, 5.6 mM Glucose, 0.4 mM

MgCl2, 1 mM CaCl2) containing 1 mg/ml BSA and incubated

with 1 mM of Indo-1 for 30 min in dark. Cells were then washed

and resuspended in 1.5 ml of the same buffer and time course of

Ca2+ mobilization (0–5 min) was determined using Hitachi F-2500

Fluoro spectrophotometer (San Jose, CA) with an excitation

wavelength of 355 nM and an emission wavelength of 410 nM

[9]. For desensitization assay, cells were removed from the cuvette,

washed twice and Ca2+ mobilization to a subsequent exposure of

C3a (100 nM) was determined.

Degranulation Assay
LAD-2 cells (1.26104) were seeded into 96-well plates in a total

volume of 50 ml of buffer containing 1 mg/ml BSA and exposed to

different concentrations of C3a (1, 10 and 100 nM). For total b-

hexosaminidase release, control cells were lysed in 50 ml of 0.1%

Triton X-100. Aliquots (20 ml) of supernatants or cell lysates were

incubated with 20 ml of 1 mM p-nitrophenyl-N-acetyl-b-D-

glucosamine for 1.5 hour at 37uC. The reaction was stopped by

adding 250 ml of a 0.1 M Na2CO3/0.1 M NaHCO3 buffer and

absorbance measured at 405 nm [49].

Receptor Internalization
ShRNA control and b-arrestin knockdown HMC-1 cells

(2.56105) were stimulated with or without C3a (100 nM) at

37uC. Cells were washed twice and resuspended in 50 ml of ice-

cold FACS buffer (PBS containing 2% FBS). C3aR antibody or

isotype control (2 ml) was added and the cells were incubated on

ice for 1 h. Cells were washed twice and re-suspended in 48.5 ml of

ice-cold FACS buffer. Phycoerythrin (PE)-labeled donkey anti-

mouse (1.5 ml) was added and incubated on ice for 1 h. Cells were

washed twice with cold FACS buffer and fixed in 250 ml of 2%

formaldehyde. Receptor internalization was quantified as the loss

Figure 8. Model for the Regulation of C3aR signaling in human mast cells by b-arrestin-1 and b-arrestin-2. (A): b-arrestin-2 causes
desensitization and internalization of C3aR but both b-arrestins promote G protein-independent signaling for degranulation via the activation of Hck
and/or Ral-GDS-mediated signaling pathways [17,18]. (B) b-arrestin-2 mediates inhibition of C3a-induced NF-kB activity but both b-arrestins block
C3a-induced G-protein-mediated ERK1/2 phosphorylation. Red dotted lines denote inhibition.
doi:10.1371/journal.pone.0019585.g008
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of cell-surface receptors, as analyzed on a BD LSR II flow

cytometer (BD Biosciences).

ERK1/2 Phosphorylation
ShRNA control and b-arrestin knockdown HMC-1 cells were

serum starved overnight. The following day, cells were washed

twice and resuspended in serum free IMDM medium at a

concentration of 16106/ml and stimulated C3a (100 nM ) for

different time points. Three-fold volume of ice-cold PBS

containing 1 mM sodium orthovanadate was added to stop the

reaction. Total cell lysate was prepared with RIPA buffer

(150 mM NaCl, 1.0% NP-40, 0.5% Sodium-deoxycholate,

0.10% SDS, 50 mM Tris [pH 8.0], 5 mM EDTA, 10 mM NaF,

10 mM Na-pyrophosphate and protease inhibitor cocktail) and

subsequently analyzed by Western blot using rabbit polyclonal

antibodies for phospho-p44/42 MAPK (pERK1/2) and p44/42

MAPK (ERK1/2).

NF-kB luciferase reporter activity
ShRNA control and b-arrestin knockdown HMC-1 cells

(36106) were seeded in 12-well plates. The following day, cells

were co-transfected with NF-kB luciferase reporter gene construct

(pNF-kB-LUC and p-Renilla Stratagene, Santaclara, CA) (in a

10:1 ratio) using Lipofectamine 2000 reagent (Invitrogen,

Carlsbad, CA) in serum-free IMDM medium as per manufacturer

protocol. Six hour post-transfection, medium was replaced with

IMDM containing 10% FBS. After 18 hr of incubation in

complete medium, cells were re-plated and stimulated in the

presence or absence of 100 nM C3a for 6 hr. Cells were then

harvested, washed in ice-cold PBS and finally lysed in Promega

passive lysis buffer (Dual Luciferase assay kit; Promega, Madison,

WI). NF-kB luciferase activity was measured using Turner

biosystem 20/20 Luminometer (Promega, Madison, WI). Results

expressed have been normalized to Renilla.

CCL4 chemokine release assay
Chemokine release assay was performed as previously described

[27]. HMC-1 shRNA control, b-arrestin-1 and b-arrestin-2

knockdown cells (0.26106 cells) were stimulated with 100 nM

C3a for 6 hours. CCL4 chemokine levels were quantified by

sandwich ELISA according to the manufacturer’s protocol.

Data analysis
The results are expressed as 6 S.E.M for the values obtained

from experiment. GraphPad Prism software (Graph Pad, Version

5.0 San Diego, CA) was used to analyze data for statistical

significance. The statistical significance was determined by one-

way analysis of variance (ANOVA) with Dunnett’s multiple

comparison post hoc test, and two way ANOVA with Bonferroni’s

post test.
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