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Abstract 

Fundamental knowledge, for understanding establishment and disturbance of gut microbiota 

during both health and disease, is the composition and function of the gut microbiome.  However, 

a healthy gut microbiota has not been defined at any profound taxonomic resolution, and even less 

on a functional level. Previous aims of monogastric microbiome, or comprehensive gut microbial 

membership, relied greatly on marker gene sequencing, which sequenced less than 0.01% of the 

microbial genome, limiting our knowledge on microbial functions and strain-level dynamics. The 

research on understanding the gut microbiota impact on the host is still at a juvenile stage, and 

much still needs to be learned in understanding the microbiota dynamics in healthy hosts and 

disturbances on the short- and long-term. To achieve such goals and understand the implications 

of environmental changes, associated with age development and antibiotic treatment, I utilized two 

distinct monogastric swine populations. With these swine, I evaluated their gut microbiota for 

microbial membership, function, and genetic variation. 

 

In my first study, I elucidated the dynamics of bacteria, archaea and fungi populations in the swine 

gut for the duration of the host lifetime. My objective was to provide a foundational understanding 

of healthy gut microbiome during long-term development. I collected 234 fecal samples, across 

31 time points, from 10 swine from birth through 156 days of age. Samples were collected during 

the three swine development stages (preweaning, nursery, and growth adult). Next, I performed 

bacterial 16S rRNA amplicon sequencing for bacteria and fungal qPCR for the dominating fungus 

of the swine gut, Kazachstania slooffiae. My results demonstrated a highly volatile bacteriome, 

with low K. slooffiae presence, in the young, preweaning host. Following weaning, bacterial 

populations became relatively established with a peak in K. slooffiae abundance. Finally, I 

determined multiple negative, competitive interactions between bacterial and K. slooffiae fungi 



  

during the nursery and growth adult stages. I provided evidence for previously unknown 

competitive interactions which occur throughout the weaned and adult periods. This first study 

indicated a need for future genetic support of microbial functions pertaining to establishment and 

competitive dynamics. 

 

My second objective was a thorough investigation into the functions of methanogenic archaea 

during the host lifetime. Archaea of the monogastric gut are historically understudied relative to 

bacteria. I performed shotgun metagenome sequencing on a subset of the hosts (n=7) and samples 

(n=112) from my first objective. I resolved 1,130 microbial genomes termed metagenome 

assembled genomes (MAGs). Within these genomes were 8 methanogenic archaea MAGs which 

fell into two orders: Methanomassiliicoccales (5) and Methanobacteriales (3). I discovered the 

first US swine MAGs for two archaea, while describing novel evidence of acetoclastic 

methanogenesis. Furthermore, I described age-associated detection and methanogenic functions. 

My second objective provided a comprehensive, gene-supported analysis of monogastric-

associated methanogens which furthered our understanding of microbiome development and 

functions. 

 

The focus of my final objective was to determine genetic variation and function of microbes 

following antibiotic treatments. A distinct swine population, relative to the first study, of 648 

weaned swine were assigned to one of three treatments: control (no antibiotic ever), 

chlortetracycline (CTC) for 14 days, or tiamulin (TMU) for 14 days. Pigs were housed in pens 

where there were 8 pens/treatment and 27 pigs/pen (i.e. 216 pigs/treatment). Fecal samples were 

collected from 5 random swine from each of 2 random pens per treatment every collection. 

Collections occurred 7 days prior to treatment (i.e. day of weaning), and every 7 days until 14 days 



  

past antibiotic treatment with one final collection at 28 days post treatment. Samples were pooled 

according to pen and collection day, followed by gDNA extraction, library preparation, and 

shotgun metagenomic sequencing. I curated 81 MAGs and analyzed genetic variation according 

to pre- and post-treatment.  I found 11 MAGs with no statistical difference in detection and 

statistically consistently high variation in the form of genetic entropy (SDHSE [sustained detection 

and high sustained entropy] MAGs). The SDHSE MAGs were suggested to be multidrug resistant 

(MDR) due to their continued detection throughout CTC and TMU treatments. Even though I 

identified 22 unique antimicrobial resistance genes in SDHSE MAGs, less than a third contained 

genes with TMU resistance. There are likely additional TMU resistance genes contributing to the 

SDHSE MAGs detention throughout TMU treatment. Together, this investigation described how 

MDR microbial populations harbor genetic variation, with potential for additional resistance, and 

highlighted the need for further antimicrobial investigations into gene AMR functions. 

 

In conclusion, this dissertation offers a comprehensive, functional understanding of the many 

microbiome members, including bacteria, archaea and fungi. These studies are critical for 

understanding how monogastric microbes act through the host lifetime and in response to antibiotic 

treatments, which will aid future endeavors for monogastric health as it pertains to the gut 

microbiome. 
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Abstract 

Fundamental knowledge, for understanding establishment and disturbance of gut microbiota 

during both health and disease, is the composition and function of the gut microbiome.  However, 

a healthy gut microbiota has not been defined at any profound taxonomic resolution, and even less 

on a functional level. Previous aims of monogastric microbiome, or comprehensive gut microbial 

membership, relied greatly on marker gene sequencing, which sequenced less than 0.01% of the 

microbial genome, limiting our knowledge on microbial functions and strain-level dynamics. The 

research on understanding the gut microbiota impact on the host is still at a juvenile stage, and 

much still needs to be learned in understanding the microbiota dynamics in healthy hosts and 

disturbances on the short- and long-term. To achieve such goals and understand the implications 

of environmental changes, associated with age development and antibiotic treatment, I utilized two 

distinct monogastric swine populations. With these swine, I evaluated their gut microbiota for 

microbial membership, function, and genetic variation. 

 

In my first study, I elucidated the dynamics of bacteria, archaea and fungi populations in the swine 

gut for the duration of the host lifetime. My objective was to provide a foundational understanding 

of healthy gut microbiome during long-term development. I collected 234 fecal samples, across 

31 time points, from 10 swine from birth through 156 days of age. Samples were collected during 

the three swine development stages (preweaning, nursery, and growth adult). Next, I performed 

bacterial 16S rRNA amplicon sequencing for bacteria and fungal qPCR for the dominating fungus 

of the swine gut, Kazachstania slooffiae. My results demonstrated a highly volatile bacteriome, 

with low K. slooffiae presence, in the young, preweaning host. Following weaning, bacterial 

populations became relatively established with a peak in K. slooffiae abundance. Finally, I 

determined multiple negative, competitive interactions between bacterial and K. slooffiae fungi 



  

during the nursery and growth adult stages. I provided evidence for previously unknown 

competitive interactions which occur throughout the weaned and adult periods. This first study 

indicated a need for future genetic support of microbial functions pertaining to establishment and 

competitive dynamics. 

 

My second objective was a thorough investigation into the functions of methanogenic archaea 

during the host lifetime. Archaea of the monogastric gut are historically understudied relative to 

bacteria. I performed shotgun metagenome sequencing on a subset of the hosts (n=7) and samples 

(n=112) from my first objective. I resolved 1,130 microbial genomes termed metagenome 

assembled genomes (MAGs). Within these genomes were 8 methanogenic archaea MAGs which 

fell into two orders: Methanomassiliicoccales (5) and Methanobacteriales (3). I discovered the 

first US swine MAGs for two archaea, while describing novel evidence of acetoclastic 

methanogenesis. Furthermore, I described age-associated detection and methanogenic functions. 

My second objective provided a comprehensive, gene-supported analysis of monogastric-

associated methanogens which furthered our understanding of microbiome development and 

functions. 

 

The focus of my final objective was to determine genetic variation and function of microbes 

following antibiotic treatments. A distinct swine population, relative to the first study, of 648 

weaned swine were assigned to one of three treatments: control (no antibiotic ever), 

chlortetracycline (CTC) for 14 days, or tiamulin (TMU) for 14 days. Pigs were housed in pens 

where there were 8 pens/treatment and 27 pigs/pen (i.e. 216 pigs/treatment). Fecal samples were 

collected from 5 random swine from each of 2 random pens per treatment every collection. 

Collections occurred 7 days prior to treatment (i.e. day of weaning), and every 7 days until 14 days 



  

past antibiotic treatment with one final collection at 28 days post treatment. Samples were pooled 

according to pen and collection day, followed by gDNA extraction, library preparation, and 

shotgun metagenomic sequencing. I curated 81 MAGs and analyzed genetic variation according 

to pre- and post-treatment.  I found 11 MAGs with no statistical difference in detection and 

statistically consistently high variation in the form of genetic entropy (SDHSE [sustained detection 

and high sustained entropy] MAGs). The SDHSE MAGs were suggested to be multidrug resistant 

(MDR) due to their continued detection throughout CTC and TMU treatments. Even though I 

identified 22 unique antimicrobial resistance genes in SDHSE MAGs, less than a third contained 

genes with TMU resistance. There are likely additional TMU resistance genes contributing to the 

SDHSE MAGs detention throughout TMU treatment. Together, this investigation described how 

MDR microbial populations harbor genetic variation, with potential for additional resistance, and 

highlighted the need for further antimicrobial investigations into gene AMR functions. 

 

In conclusion, this dissertation offers a comprehensive, functional understanding of the many 

microbiome members, including bacteria, archaea and fungi. These studies are critical for 

understanding how monogastric microbes act through the host lifetime and in response to antibiotic 

treatments, which will aid future endeavors for monogastric health as it pertains to the gut 

microbiome. 
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Chapter 1 - Introduction 

Brandi Feehan and Sonny T M Lee 

  

 Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, Kansas, 

66506, United States of America. 

  



2 

Introduction to the monogastric gut microbiome 

The monogastric gut microbiome plays an important role in hosts’ disease and health1–3. My 

dissertation aims to elucidate how the gut microbiome is affected by environmental factors, 

including aging and antibiotics. Before discussing my dissertation studies, it is essential to have a 

foundation of monogastric gut microbiomes, and the importance of studying this topic. 

Microbiome inhabitants come from diverse microbial kingdoms, such as bacteria, fungi, and 

archaea, with similarly diverse functions and roles, ranging from commensalistic to pathogenic4. 

The numerous interactions amongst microbiome members and its associated host perform many 

functions, including assisting the monogastric host by metabolizing dietary nutrients and aiding in 

infection prevention1–3. The term monogastric refers to animals, including humans and swine, 

containing a so-called “simple” digestive system5,6. The monogastric microbiome changes 

according to numerous factors, including: diet7, host development8,9, and antibiotic treatments10,11. 

With the complexities underlying these microbiome changes, determining microbial interactions 

associated with environmental factors is central to understanding the implications of the 

monogastric microbiome in health and disease10,11. 

 

While studies have demonstrated gut microbiome establishment starting in utero12,13, the majority 

of microbiome development occurs following birth in the young host14. For example, in humans, 

the gut microbiome becomes relatively established by three years of age14, whereas development 

is thought to be relatively stable at 28 days of age in swine15. Further microbiome development 

occurs in the adolescent and adult hosts, but generally the gut microbiota maintains a homeostatic 

state through these life stages14,16. Although, a dysbiotic microbiome can result in shifts away from 

gut homeostasis causing disease at any age, from birth17 through geriatrics18. We must understand 
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what constitutes a homeostatic versus dysbiotic gut microbiome during the monogastric host 

lifetime so future research can evaluate dysbiotic microbiome therapeutics accordingly. 

 

Beyond determining how and when the monogastric gut microbiome changes, our very approach 

to gut microbiome studies have recently evolved with shotgun metagenomic sequencing19,20. 

Rather than sequencing a single gene, as in 16S rRNA amplicon sequencing, metagenomic 

sequencing is a comprehensive approach targeting all genetic content19,20. Our scientific 

community is shifting the focus to microbial functions which are key components in elucidating 

the roles of gut microbiota in health and disease21,22. We can potentially determine functions, and 

microbial populations harboring distinct functional variants, with metagenomic sequencing. 

Metagenomic sequencing provides the crucial understanding of functional potential of the gut 

microbiome which underlies microbial interactions21,22. 

 

Significance of the monogastric gut microbiome in health and disease 

The monogastric gut microbiome performs critical roles throughout the host lifetime. Gut microbes 

contribute to nutrient acquisition, host development, and gastrointestinal health, amongst 

numerous additional roles with implications throughout the body1–3. On the contrary, a dysbiotic 

microbiome has been associated with numerous diseases including: inflammatory bowel disease 

(IBD), diarrhea, obesity, and metabolic syndrome (MetS), among other ailments23. Diseases 

arising from the gut microbiome can be due to individual microbial action, such as from pathogens, 

or from the coordinated action of multiple microbes via microbial interactions24. Moreover, these 

interactions can span kingdoms, such as interactions between bacteria and fungi25. Due in part to 

the sheer volume of gut microbe inhabitants and differences in the microbial composition within 

each host, scientists are continually building our understanding of complex microbial interaction 
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networks within the gastrointestinal system24,26. Cleary, understanding the gut microbiome, 

especially as a complex interaction network, is paramount for elucidating the numerous intricacies 

impacting health and disease. Although, in order to better understand the role of the monogastric 

gut microbiome in health and disease, we need to understand factors which influence gut 

microbiome dynamics. 

 

Environmental factors contribute to microbiome dynamics 

The modulation of microbiome homeostasis and dysbiosis is related to the local gut environment 

which changes according to numerous external factors10,11. While there are countless factors 

influencing the monogastric gut microbiota10, the focus in the following studies are on age-

associated developmental factors and antibiotics. Our focus enabled novel insights into lifetime 

longitudinal microbiome development and targeted investigations into microbial genetic variation 

associated with antibiotic treatments. 

 

The gut microbiome develops alongside the host from birth through adolescence and into 

adulthood14,16. Although, as mentioned previously, the majority of development occurs during 

infancy14–16. Age-associated development coincides with multiple factors which influence the gut 

environment including: diet7, host development8,9, and host environment27–29 (i.e. housing with 

other hosts, cleanliness, etc.). By following the same host through aging, from birth through 

adulthood, we can better control individual-host associated influences30 . Altogether, evaluating 

longitudinal gut microbiome dynamics allows us to gain insights into development through age-

associated factors influencing the local gut environment. 
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On the other hand, environmental modification as a result of antibiotic use has been associated 

with drastic changes to the gut microbiomec. Antibiotics can affect both microbiome development 

in young hosts31,32 while also shifting the microbiome to a dysbiotic state in older hosts33. 

Dysbiotic microbiomes resulting from antimicrobial administrations have been associated with: 

infections, diarrhea, and, in severe cases, death34. Antimicrobial resistance (AMR) is a large 

concern arising from antibiotic use34. With antibiotic administration, there is a natural selection 

for  antimicrobial resistant microbes35. Moreover, resistant microbes are typically associated with 

increased mutation rates, termed hypermutable microbes, resulting in higher genetic variation in 

subsequent generations35. Therefore, continued use of antibiotics has resulted in AMR and 

multidrug resistance (MDR). Infections of MDR microbes are typically more difficult to treat36,37 

leading to increased morbidity and mortality38,39. In order to provide therapies to MDR infections, 

we need to understand the genetic variation found in monogastrics and how these populations 

respond to further antibiotic treatments. 

 

I investigated, through separate studies, the influence of environment changes on the gut 

microbiome. Gut microbes interact in various ways, including microbe-microbe interactions, 

microbe-host interactions, and microbe-environment interactions10,11,24,26,32,40,41. By evaluating 

environmental influences, we can build our repertoire of knowledge surrounding the monogastric 

microbiome. My research provides a deeper understanding for future studies aiming to improve 

gut health and manage AMR. 

 

Evaluation of microbiome membership 

In order to evaluate how the gut environment shapes the microbiome, we first need an 

understanding of how to investigate and measure gut microbiota membership. Scientists evaluate 
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microbial membership with identifying who is present, with taxonomic identification, and overall 

diversity measures, such as compositional and alpha (⍺) diversity42. Depending on the 

methodology used, taxonomic identity can be resolved at a relatively high level, from phyla to 

genera, to a low level, including species and genetic variants within species43. Taxonomic 

resolution will be discussed further in the following section (“Movement towards metagenomics 

for advanced genetic analyses including microbial functional potential and functional variation”). 

Within the monogastric microbiome, Firmicutes and Bacteroidetes have consistently been 

accounted for 70-90% of microbes at the phyla level44. On the genus level, there are over 200 

genera associated with Firmicutes including Lactobacillus, Bacillus, Clostridium, Enterococcus, 

and Ruminicoccus44, and 125 genera45 have been identified in Bacteroidetes, such as Bacteroides 

and Prevotella46. Genera are not as consistently identified across hosts due in large part due to 

their smaller individual abundances47 and genera changes due environment factors, like age-factors 

and antibiotics as discussed previously48,49. Moreover, species are even more inconsistent within 

and between hosts in the gut microbiome environment50. Since monogastric microbe taxonomy 

differs between hosts, especially at more resolved classification levels, taxonomic identification is 

a standard initial report for monogastric gut microbiome studies50. Still, evaluation of specific 

microbial members does not depict overall microbial diversity, in the gut microbiome network51, 

which warrants the use of compositional and ⍺ diversity measures. 

 

Traditionally, scientists have evaluated microbial compositional and ⍺ diversity, alongside 

taxonomic identity, to understand gut microbiome development52. Compositional diversity index 

measures the overall taxonomic comparison amongst samples whereas ⍺ diversity quantifies how 

many distinct taxa are present53. Across similar aged hosts, of the same host species, we typically 

find compositional similarity54–57. Although, over time, studies demonstrate a changing 
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composition as the microbes change due to a dynamic gut environment54–57. Contrastingly, ⍺ 

diversity increases in the early lifetime until the gut environment reaches a relatively stable level 

of development amongst hosts2,50. A developed gut is expected to have a relatively higher ⍺ 

diversity, compared to a developing environment in the young host, indicating a diverse microbial 

makeup58,59. By evaluating the microbial composition and ⍺ diversity, scientists gain an 

understanding of how the gut microbiome develops during changes in the gut environment53. 

 

While often described in gut microbiome research, diversity and taxonomy of the monogastric gut 

microbiome offers limited information in terms of gut and host health60,61. A shift has been seen 

in microbiome research towards obtaining microbial functions and microbial population genetic 

variants60–62. With functions and variants, we can begin to decipher the gut microbiome network 

of interactions, and interaction modifications via variants62, with implications on host health60,61. 

 

Movement towards metagenomics for advanced genetic analyses including microbial 

functional potential and functional variation 

Previous monogastric gut microbiome studies mainly performed 16S ribosomal RNA (rRNA) 

amplion sequencing which allowed limited analyses for taxonomic and diversity 

investigations19,20. Still, the taxonomic resolution of amplicon sequencing is lacking compared to 

whole-genome sequencing19,20. Therefore, with the growing need for understanding how the gut 

microbiome influences host health, scientists are turning to enhanced taxonomic and functional 

analyses via shotgun metagenomic sequencing and metagenome assembled genomes (MAGs)21,22. 

Metagenomic sequencing aims to sequence all genetic content to allow for functions and variants 

of genes while improving taxonomic identity resolution21,22. With metagenomic sequencing reads, 

we can obtain MAGs which describe highly genetically similar microbial populations21,22. In order 
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to demonstrate the need for metagenome assembled genomes (MAGs), we will first review 

amplicon sequencing. 

 

Historically, gut microbiome research has predominantly relied on sequencing one conserved 

gene: the 16S ribosomal RNA (rRNA) gene63,64. The 16S rRNA gene is approximately 1,550 

basepairs (bps) long relative to microbial genomes which, on average, are 3 million bps65,66. 

Furthermore, PCR amplification generally targets one to three variable regions of the 16S rRNA67, 

meaning less than 0.1% of the microbial genome is sequenced. Variations harbored in remaining 

genetic regions, including the entire genome residing independent of rRNA, are missed by 

sequencing only a fraction with the rRNA21,22. Moreover, only prokaryotes, including bacteria and 

archaea, contain 16S rRNA, whereas remaining eukaryotes, including fungi and other commensal 

and pathogenic eukaryotes, will not be discovered through 16S rRNA sequencing68. Relying upon 

a small portion of a gene only found in prokaryotes diminishes the applications of 16S rRNA gene 

sequencing. While the upfront cost is relatively lower of 16S rRNA amplicon sequencing 

compared to metagenomic sequencing and the methods to study the microbiome using 16S rRNA 

gene are well-established43, there are numerous limitations in using 16S amplicon sequencing to 

advance gut microbiome research in the current scientific era19,20. 

 

Metagenomic sequencing is a robust alternative which targets the shortcomings of 16S rRNA 

sequencing. In sequencing the entire DNA content, metagenomic sequencing has the ability to 

detect eukaryotes and prokaryotes simultaneously69. Bioinformatic applications can utilize 

sequencing reads to assemble longer sequences, termed contigs22. Then these contigs may be 

clustered together, based on genetic similarity, to form metagenome assembled genomes 
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(MAGs)22. MAGs offer multiple advantages over amplicons including: enhanced taxonomic 

resolution, functional potential, and functional variation22. 

 

With a more comprehensive approach to sequencing genetic material, MAGs offer greater 

resolution, to species and even genetic variations within species, for taxonomy identify of gut 

microbes22. While there are multiple reasons to support enhanced taxonomic resolution, this is 

especially insightful as we identify specific microbes, such as those with detrimental functions, 

and trace their distribution across geography and time, as in phylogenetics and 

epidemiology70.  One of the largest benefits of MAGs is the ability to determine functional 

potential from MAG genes22. With the rise of antibiotic resistance, MAGs have garnered interest 

as antibiotic resistance (AMR) genes are easily identifiable in MAGs71. Just as the strain resolution 

is high within MAGS, we also gain the resolution of functional variants71–73. In terms of AMR, we 

can now decipher distinct AMR variants and identify concerning microbial variants of the 

monogastric gut71,72. On a larger scale, with MAGs, we can also begin to understand the functions 

within the complex interaction network of the gut microbiome74. Studies have demonstrated how 

metabolic pathways differ according to hosts or environmental factors, such as age75 and diet76. 

Metagenomics, and in particular genome-centric  studies, further develop our understanding of the 

functions of the gut microbiome members in health and disease. 

 

In summary, metagenomic sequencing provides further support for the reason underlying the vast 

majority of microbiome research: elucidating intricate microbial interactions as they pertain to host 

health77,78. Moreover, metagenomic sequencing, and particularly resulting MAGs, also offer 

enhanced taxonomic resolution relative to amplicon sequencing. MAGs provide an abundance of 

genetic information to enhance our understanding of the gut microbiome network. 
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Introduction to dissertation studies 

In my studies to uncover intricacies of the monogastric gut microbiome, I evaluated microbiome 

dynamics in distinct investigations of longitudinal development and antibiotic treatments. I formed 

three studies entitled: 

1. Stability and volatility shape the gut bacteriome and Kazachstania slooffiae dynamics in 

preweaning, nursery and adult pigs (Chapter 2) 

2. Novel Complete Methanogenic Pathways in Longitudinal Genomic Study of Monogastric 

Age-Associated Archaea (Chapter 3) 

3. High proportions of single-nucleotide variations associated with multidrug antibiotic 

resistance in gut microbial populations (Chapter 4) 

 

The following studies share a key component in advancing gut microbiome research: investigating 

microbial functions. As discussed previously, microbial functions influence gut microbiome 

interactions and development, in turn impacting gut and host health. I discuss the interactions of 

bacteria, fungi and archaea, demonstrating broad inter-kingdom implications. Moreover, I 

determine functional potential and genetic variants in both age-associated development and 

antibiotic treatments. The following chapters describe novel microbes and functions previously 

unknown. Overall, my research is foundational to building the monogastric gut microbiome 

repertoire for understanding gut health.
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Abstract 

Background: The gut microbiome plays important roles in the maintenance of health and 

pathogenesis of diseases in the growing host. In order to fully comprehend the interplay of the gut 

microbiome and host, a foundational understanding of longitudinal microbiome, including bacteria 

and fungi, development is necessary. In this study, we evaluated enteric microbiome and host 

dynamics throughout the lifetime of commercial swine. We collected a total of 234 fecal samples 

from 10 pigs across 31 time points in 3 developmental stages (5 preweaning, 15 nursery, and 11 

growth adult). We then performed 16S rRNA gene amplicon sequencing for bacterial profiles and 

qPCR for the fungus Kazachstania slooffiae. Results: We identified distinct bacteriome clustering 

according to the host developmental stage, with the preweaning stage exhibiting low bacterial 

diversity and high volatility amongst samples. We further identified clusters of bacteria that were 

considered core, increasing, decreasing or stage-associated throughout the host lifetime. 

Kazachstania slooffiae was absent in the preweaning stage but peaked during the nursery stage of 

the host. We determined that all host growth stages contained negative correlations between K. 

slooffiae and bacterial genera, with only the growth adult stage containing positive correlates. 

Conclusions: Our stage-associated bacteriome results suggested the neonate contained a volatile 

gut microbiome. Upon weaning, the microbiome became relatively established with comparatively 

fewer perturbations in microbiome composition. Differential analysis indicated bacteria might 

play distinct stage-associated roles in metabolism and pathogenesis. The lack of positive correlates 

and shared K. slooffiae-bacteria interactions between stages warranted future research into the 

interactions amongst these kingdoms for host health. This research is foundational for 

understanding how bacteria and fungi develop singularly, as well as within a complex ecosystem 

in the host’s gut environment.  
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Introduction 

Host-associated microbiomes have critical roles in host health, growth and development. The 

digestive system contains microbes with a wide array of functions for hosts, such as aiding in 

nutrient availability, protecting from pathogen invasion and maintaining a healthy gut epithelial 

barrier2,50,79. An imbalance of microorganisms, or their associated functions, in this enteric, or 

digestive, microbiome can lead to a dysbiotic state and diseased host2. Diseases and symptoms 

associated with a dysbiotic enteric microbiome include inflammatory bowel disease (IBD), 

diarrhea, obesity, and metabolic syndrome (MetS), among other ailments23. In order to develop 

therapies for these illnesses, it is paramount to understand the enteric microbiome dynamics 

spanning microbial kingdoms, including bacteria and fungi, throughout the lifetime of swine hosts. 

 

Foundational to evaluating microbial interactions is first determining dynamics of the gut during 

the host lifetime. Traditionally, scientists have evaluated microbial composition and alpha (⍺) 

diversity to understand gut microbial development52. Composition includes the overall taxonomic 

comparison amongst samples whereas ⍺ diversity quantifies how many distinct taxa are present. 

During the host lifetime, we expect to see compositional similarity in similar aged hosts, but 

distinctions over time as microbes change in abundance54–56. Contrastingly, we expect to see ⍺ 

diversity develop in the early lifetime until the gut environment reaches a relatively staple level of 

development amongst hosts2,50. A developed gut is expected to have a relatively higher ⍺ diversity, 

compared to a developing environment, indicating a diverse microbial makeup with similarly 

diverse roles within the microbiome system and for host health58,59. By evaluating the microbial 

composition and ⍺ diversity we will have a foundational understanding of how the gut microbiome 

develops during the host lifetime which aids investigations into bacterial and fungal interactions. 
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As mentioned previously, understanding microbial correlations and interactions between microbial 

kingdoms, including Fungi and Bacteria, are critical to elucidating diseases impacted by these 

microbial kingdoms. Previous research has shown a negative correlation, indicating a competitive 

relationship, between bacterial diversity and fungal abundance80. Still, the microbial mechanisms, 

influencing other microbes and the host alike, underlying these outcomes have not been described. 

We must understand bacterial-fungal interaction intricacies to provide treatments targeting specific 

microbes and mechanisms, especially those of bacterial-fungal dysbiotic gut microbiomes. 

 

Current research lacks an understanding of how the dominant swine enteric fungus, Kazachstania 

slooffiae, changes in the majority of the swine lifetime, and how these changes are influenced by 

the bacterial communities. Kazachstania slooffiae is a member of the Saccharomycetaceae family, 

and the fungus is a proposed commensal in the swine gut microbiome81. Studies indicate K. 

slooffiae dominates the mycobiome from 70% to 90% of total yeasts, especially following 

weaning82,83. The fungus has been demonstrated to significantly alter the gut microbiota during 

weaning, leading to a potentially beneficial increase in short chain fatty acid (SCFA) 

concentration84. Although K. slooffiae is the primary fungus after weaning, we currently lack a 

longitudinal understanding of this fungus. Publications have only evaluated K. slooffiae abundance 

from birth until 39 days of age82,85. The average time to market age is 160 days, so prior 

publications have only evaluated K. slooffiae dynamics in 25% of the swine lifetime to market86. 

Moreover, previous studies have identified eight SparCC correlations between K. slooffiae and 

bacterial genera from nursery-aged hosts87,88. We hypothesized there were more inter-kingdom 

correlations occurring throughout the swine lifetime (including preweaning and growth adult as 

these were not studied previously) which influence microbiome establishment and host health80. 
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Our study aimed to elucidate novel stage-associated bacteriome-K. slooffiae correlations to build 

a foundation for future inter-kingdom interaction studies. 

 

This study highlights development of bacteria, fungi and host, with an investigation into bacterial-

fungal correlations. We followed 10 swine from birth. We first determined the foundational gut 

microbiome development during the host lifetime. Studies have demonstrated various factors from 

biology, such as host diet and housing environment, to methodology, including DNA extraction 

and bioinformatic approaches, impacting resulting identification of microbes and microbial 

diversity89–91. Therefore, we aimed to first provide a baseline understanding of how our gut 

bacteria changed in the lifetime of the 10 swine hosts. With this knowledge, we could then further 

interpret how the microbial composition and ⍺ diversity pertained to microbial inter-kingdom 

interactions and potential implications on host health at various ages. Understanding inter-

kingdom interaction, influenced by gut development, in the swine may provide insights into the 

intricate relationship between the host and the microbiome. Foundation to this longitudinal study, 

swine were grown in three stages which varied according to host development, diet and housing: 

preweaning (milk diet and housed with littermates and dam; birth-21 days of age), nursery (pellet 

diet and co-housed with other litters; 21-80 days) and growth adult (pellet diet and co-housed with 

other litters; 80-122 days). As discussed previously, directly following weaning into the nursery 

stage in swine hosts, one fungus has been consistently identified in the enteric mycobiome: 

Kazachstania slooffiae83,88. For this reason, our study focused on elucidating longitudinal 

dynamics between K. slooffiae and bacteria. 

 
In our study, we determined specific host-age and -dietary stage microbiome development 

characteristics. These included an increasing microbial diversity, decreasing volatility and 

increasing fungus K. slooffiae in the young host (preweaning and nursery developmental stages). 
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The older host (growth adult stage) microbiome was relatively established with a complex 

correlation network amongst bacteria and K. slooffiae. Together, these findings indicated a 

dynamic microbiome development from birth until weaning with an increasing number of inter-

kingdom interactions throughout the host lifetime. 

 

Materials and Methods 

Hosts and study design 

We followed 10 swine over the course of their lifetime, with fecal collections, rectal temperature, 

weights, and general health observations collected from 2 days to 157 days of age, to understand 

successive shifts in microbial populations 

(Ch2_host_and_dam_demographics_diets_samples.xlsx; 

Ch2_general_observations_scoring.pdf). We started the study with 10 swine, but one pig died 

prematurely at 28 days of age. The experimental unit was each individual swine. The hosts were 

housed indoors and fed distinct diets according to their stage of life. Five dams were randomly 

selected from the same farrowing group, and one male and one female were randomly selected per 

dam. Swine were housed with their dam in the preweaning stage, in groups of 5 in the nursery 

stage, and all in one pen during the growth adult stage. Hosts were sampled in three stages: 

preweaning, nursery, and growth adult. The preweaning diet consisted of mother’s milk and 

potentially feed as the hosts grew old enough to reach their mother’s trough. Nursery diet, phase 

1, transitioned from milk to pelleted feed after weaning from the mother and moving into a new 

barn environment. A second pelleted feed was fed during nursery phase 2, while a meal was fed 

for nursery phase 3. The growth adult stage also included three phase diets with an initial move 

into another barn environment accompanying the nursery-growth transition. Hosts did not receive 

antibiotics or antifungals prior to or during the study. Males were castrated during the preweaning 
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stage. Pigs were managed according to the Kansas State University Institutional Animal Care and 

Use Committee (IACUC) approved protocol #4036, and methods are reported according to 

ARRIVE guidelines. Additionally, the authors confirmed that all methods were performed in 

accordance with relevant guidelines and regulations, and all methods were approved by Kansas 

State University. 

 

We performed fecal collection with a fresh set of sterile gloves using the free-catch method, prior 

to contact with the ground. We collected fecal samples every five days during preweaning and 

nursery stages, and every seven days during the growth adult stage. Immediately after collection, 

samples were stored in either a sterile 15mL tube or sterile bag, kept on ice, and then transported 

to the laboratory for subsequent storage at -80℃ until genomic DNA extraction. 

 

DNA extraction and marker gene sequencing 

We used the E.Z.N.A.® Stool DNA Kit (Omega Bio-tek, Inc.; Norcross, GA) to extract the 

microbial DNA from the fecal samples. We used the manufacturer pathogen detection protocol 

without bead beating and utilized only 30μL elution buffer per sample. Extracted DNA was 

quantified with Nanodrop and a Qubit™ dsDNA BR Assay Kit (Thermo Fisher; Waltham, MA) 

for sample DNA quality and concentration. DI water was utilized during quantification as a 

negative control. Extracted microbial DNA was stored at -80℃ until library preparation. Bacterial 

16S rRNA gene V4 region was amplified during library preparation via Illumina’s Nextera XT 

Index Kit v2 (Illumina, Inc.; San Diego, CA) (primers: 515F, GTGCCAGCMGCCGCGGTAA 

and 806R, GGACTACHVGGGTWTCTAAT)92. Library preparation and subsequent sequencing 

also included a no template negative control. Sequencing was done on an Illumina MiSeq which 

generated paired-end 250bp reads. 
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Kazachstania slooffiae qPCR 

We performed the K. slooffiae qPCR, with the SensiMix™ SYBR® Hi-ROX Kit (Bioline, 

Meridian Bioscience; Cincinnati, OH), as previously described (primers: KS-f, 

ATCCGGAGGAATGTGGCTTC and KS-r, AGCATCCTTGACTTGCGTCG)82. Master mix 

components and qPCR conditions are listed in Ch2_Kazachstania_slooffiae_qPCR.xlsx. Each 

qPCR run included at least one PCR-grade water with the master mix as a non-template control 

(NTC), with one K. slooffiae positive sample repeatedly used across plates as the positive control. 

 

Bioinformatic and Statistical Analysis 

We used cutadapt and DADA2 in QIIME2 v2019.7 (https://qiime2.org/) to trim and perform 

quality control for the sequencing reads (Ch2_raw_QIIME2_sequence_analysis.xlsx)93,94. Reads 

in which no primer was found were discarded. The reads were truncated at locations where 25-

percentile of the reads had a quality score below 15. Diversity analysis was carried out at a 

sampling depth of 11,105 reads. The pre-trained classifier offered by QIIME2 using the SILVA 

version132 (https://www.arb-silva.de/documentation/release-132/) database was used for 

taxonomic assignment of bacteria95–97. We used a weighted UniFrac, generated from QIIME2, on 

the rarefied dataset (11,105 reads) to evaluate differential microbial composition among the 

samples in different stages, and we utilized a QIIME2 principal coordinate analysis (PCoA) to 

visualize the microbial composition structure based annotated ASVs (Ch2_scripts.pdf). The 

following applications were utilized in generating the PCoA composition plot with RStudio 

version 1.3.1093 (https://www.rstudio.com/products/rstudio/older-versions/): tidyverse version 

1.3.1 (https://cran.r-project.org/package=tidyverse), qiime2R version 0.99.6 

(https://github.com/jbisanz/qiime2R), plyr version 1.8.7 
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(https://www.rdocumentation.org/packages/plyr/versions/1.8.7), and ggpubr version 0.4.0 

(https://CRAN.R-project.org/package=ggpubr)98–102. We calculated ⍺ diversity to represent the 

species diversity in each sample. We utilized Shannon index, estimated number of species (ENS), 

and Faith’s phylogenetic diversity, all within QIIME2, to measure the number of ASVs and the 

uniformity of ASV abundance for diversity evaluation (Ch2_scripts.pdf)94. Kruskal-Wallis was 

used in QIIME2 to provide overall and stage pairwise statistical analyses for Shannon, ENS, and 

Faith’s phylogenetic diversity94. We calculated Shannon effective number by calculating the 

exponential [exp(H)] of the original Shannon diversity index (H)103. We used PERMANOVA in 

QIIME2 on Bray-Curtis dissimilarity index to test if there were statistically significant differences 

between stages94. Volatility results were analyzed within QIIME2 on the first axis of the PCoA to 

indicate how dispersed samples were at the associated swine age94. 

 

We further used DESeq2 version 1.30.1 (https://github.com/mikelove/DESeq2), in RStudio, to 

mark the statistical differences in the bacterial populations (phyla and genera) predominance 

between the stages and to generate heatmaps with pheatmap version 1.0.12 (https://CRAN.R-

project.org/package=pheatmap)102,104,105. Adjusted p-values were utilized, rather than standard p-

values, as the adjusted values incorporated the Benjamini-Hochberg false discovery rate 

(FDR)104,106. 

 

16S rRNA gene amplicon genera and fungal qPCR Ct values were utilized in a SPIEC-EASI co-

occurrence network analysis as previously performed in RStudio using SpiecEasi version 1.2.4 

(https://github.com/zdk123/SpiecEasi), devtools version 2.4.3 (https://CRAN.R-

project.org/package=devtools), phyloseq version 1.4.0 

(https://bioconductor.org/packages/phyloseq/), and igraph version 1.2.11 (https://CRAN.R-
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project.org/package=igraph)87,107–109. Specific SPIEC-EASI parameters included: Meinhausen–

Bühlmann estimation method, lambda minimum ratio of 0.01, and nlambda of 20107. SPIEC-EASI 

utilized a neighborhood selection method termed Meinshausen and Bühlmann (MB)107,110. The 

MB method has been demonstrated to control FDR111. Correlations were performed for each stage 

(preweaning, nursery, and growth adult) with corresponding and fungal qPCR Ct values, according 

to individual samples (i.e. individual swine and single time point). Correlation plots were 

simplified to only correlations connected to the fungal node in each stage. 

 

All bioinformatic scripts can be found in Ch2_scripts.pdf. 

 

Results and Discussion 

We collected a total of 234 samples across 31 time points (5 preweaning, 15 nursery, and 11 growth 

adult) from 10 pigs (Ch2_host_and_dam_demographics_diets_samples.xlsx). A total of 

10,187,636 sequences resulted from sequencing; we recovered an average of 33,394 ASVs per 

sample following QIIME2 quality control. Out of the recovered ASVs, an average of 80.1% 

(79.7% bacteria and 0.4% archaea) populations were annotated with SILVA version 132 

(Ch2_QIIME2_taxonomy.xlsx). 

 

Volatility in the preweaning stage preceded microbial establishment and stability in later 

growth stages 

As shown in Figure 1.1A, the weighted UniFrac PCoA illustrated a distinct clustering of bacterial 

community composition between the three growth stages as the pig transitioned from young host 

to adult (Ch2_QIIME2_weighted_unifrac_PCoA.qzv; can be uploaded and viewed at 

https://view.qiime2.org/). We further observed convergence amongst dietary clusters of the swine 
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hosts in the nursery stage, with the two latter diet-stages of nursery being more similar to the 

growth adult hosts. We showed in our study that a young host lacked an established, shared 

microbiome, but converged with age and environmental changes such as diet and shared housing. 

The preweaning and first part of the nursery stages had the most divergent microbial composition 

amongst the individual swine. After this first nursery stage, the composition was relatively similar 

amongst the latter two nursery and growth stage swine. These patterns suggest the microbiome 

could be highly influenced by their respective diets during the different stages, and was rather 

stable once the microbial members had established54–56. Previous research has illustrated distinct 

microbial populations in swine hosts according to stage of development54–56. 

 

Our ⍺ diversity results (Shannon index, Faith’s phylogenetic diversity, effective number of species 

(ENS), Shannon effective number, and Bray Curtis dissimilarity index) paralleled the PCoA 

analysis, indicating an establishing microbiome in the young swine (Figures 1B, Figure 1.1C,  

Ch2_QIIME2_taxonomy.xlsx, Ch2_QIIME2_Shannon_diversity_index.qzv, 

Ch2_QIIME2_ENS.qzv, and Ch2_QIIME_Faith’s_phylogenetic_diversity.qzv; each QIIME2 file 

can be uploaded and viewed at https://view.qiime2.org/). We found that ⍺ diversity increased 

throughout the lifetime. We demonstrated the increasing diversity as overall stage comparisons 

(preweaning [P] vs nursery [N]: N vs growth adult [G]: and P vs G) were significantly different (p 

≤ 0.001) for all ⍺ diversity measures according to PERMANOVA and Krustal-Wallis analyses. 

Studies have indicated this increase in microbial diversity during host development is typical 

across many different host species2,50. When we investigated the data longitudinally according to 

sampling day, the preweaning host demonstrated comparatively lower diversity which increased 

until weaning. This developmental diversity increase was followed with a relatively stable period 

during the nursery stage. We found distinctions in ⍺ diversity methods in the growth adult host. 
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Shannon index and Faith’s phylogenetic diversity demonstrated small increases in the growth adult 

⍺ diversity, whereas ENS and Shannon effective number illustrated a greater range of ⍺ diversity 

in the older swine. These distinctions in ⍺ diversity in the older swine should be further evaluated 

for an enhanced understanding of diversity in older swine, and how a wider range of diversity 

across swine could impact swine health. 

 

Volatility results corroborated previous findings of a changing neonate microbiome which 

established in the weaned host (Ch2_QIIME2_volatility.qzv; can be uploaded and viewed at 

https://view.qiime2.org/). Our microbial composition volatility index in the preweaning host 

hovered near -0.5 while approaching 0 in the early nursery stage (Figure 1.1D). These volatility 

findings further suggested that the young preweaning host had a relatively more volatile, 

fluctuating microbiome. Our results were consistent with another mammalian study which 

demonstrated a volatile youth microbiome establishment period in children aged from birth to 

approximately 3 years of age112. 

 

Together, our PCoA, diversity indices and volatility analyses suggested that the preweaning 

neonate host contained a developing gut microbiome which started establishing in the nursery 

stage. We showed that the microbiome was converging in the early nursery host, and there were 

comparatively fewer changes in microbial diversity after the convergence of the microbial 

community in the nursery host. We suggest that the forming and establishment of microbial 

populations during the preweaning and early nursery stages was likely crucial to the well-being of 

the swine host. Previous research demonstrates the importance of early microbiome dynamics as 

abnormal neonate gut microbiome development can result in diabetes, IBD and obesity23,113. 
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Microbial-host stage development suggested metabolic and pathogenic potential associations  

Our study supported previous bacterial establishment dynamics while elucidating novel stage-

associations, highlighting a need for functional determination of the enteric microbiome according 

to host development. We analyzed the host microbial membership and identified 23 phyla (Figure 

1.2, Ch2_DESeq2.xlsx). We demonstrated a core bacterial population consisting of two phyla 

(Bacteroidetes and Firmicutes) which dominated throughout the lifetime of the swine host, 

suggesting these bacterial populations have essential implications to the host’s health and well-

being55,114,115. Our study showed that Bacteroidetes and Firmicutes were the predominating core 

microbes (Figure 1.2A). These results were consistent with findings from previous research 

demonstrating consistent domination of Firmicutes and Bacteroidetes55,114,115. Firmicutes and 

Bacteroidetes are known to metabolize carbohydrates into short chain fatty acids (SCFAs)116,117, 

suggesting that the two core phyla in our results have a wide range of beneficial attributes for the 

swine including acting as a cellular energy source, protecting DNA, and modulating diseases118–

120. Therefore, given the necessity for energy and continual carbohydrate availability throughout 

the host lifetime, it is reasonable to identify Firmicutes and Bacteroidetes throughout the host life. 

 

DESeq2 differential phyla distinctions between stages (adjusted p ≤ 0.05) suggested microbes were 

changing between preweaning and nursery stages but were relatively stable between nursery and 

growth adult swine. Two phyla identified in preweaning swine, compared to nursery swine, 

contained distinct microbes with potentially different metabolic implications: Euryarchaeota 

(log2-fold change: 3.06) and Lentisphaerae (log2-fold change: 4.26) (Figure 1.2B). Euryarchaeota 

is an archaeon which has been associated with improved fiber digestion121,122. We hypothesized 

that microbes within the Euryarchaeota phylum were working alongside and with the bacterial 

community to shape the host microbiome, which can influence overall host health and well-
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being123,124. Alternatively, Lentisphaerae is thought to have a role in SCFA production resulting 

in a crucial source of energy for the swine host125,126. This differential identification of two 

carbohydrate metabolizing phyla, Euryarchaeota and Lentisphaerae, supports the different dietary 

sources of carbohydrates during the preweaning and nursery stages. Compared to the preweaning 

host, we identified three metabolic-associated phyla in the nursery host: Deferribacteres (log2-

fold change: -31.09), Fibrobacteres (log2-fold change: -5.50), and Tenericutes (log2-fold change: 

-4.28). Deferribacteres is associated with diets containing iron127–129; Fibrobacteres is known for 

metabolizing non-soluble polysaccharides or carbohydrates130; and the function of Tenericutes 

remains elusive although the bacteria has been positively correlated with diets high in protein131. 

These three phyla remained unchanged between the nursery and growth adult swine suggesting 

that the microbes might perform similar metabolic roles during both developmental stages. Our 

observations of distinct microbial populations through the different stages of the pig paralleled the 

PCoA, diversity and volatility results, indicating a distinct gut microbiome composition and 

development during preweaning and early nursery. Considering previous research, we surmised 

that alongside bacteria and archaea establishment, microbial metabolic roles contributed to this 

stage-associated development under the influence of host factors, especially diet. 

 

In addition, we also observed that the differential phyla indicated development of stage-dependent 

potential opportunistic pathogens (Figure 1.2B). Preweaning-associated potential opportunistic 

pathogens included (Figure 1.2B): Fusobacteria (log2-fold change: 6.2)132–134, Synergistetes 

(log2-fold change: 5.6)135,136, and Proteobacteria (log2-fold change: 3.8)137,138; nursery: WPS-2 

([P vs N log2-fold change: -25.5][N vs G log2-fold change: 4.5])139, and Spirochaetes ([P vs N 

log2-fold change: -1.4][N vs G log2-fold change: 0.9])140; and growth adult: Fusobacteria (log2-

fold change: -10.4)132–134 and Synergistetes (log2-fold change: -2.7)135,136. Interestingly, 
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Fusobacteria and Synergistetes were found in both the preweaning and growth host. Further 

investigation is needed to evaluate the pathogenicity and determine the developmental significance 

of these phyla in the nursery growth swine. 

 

We identified 25 genera with an average relative abundance greater than 1% amongst the three 

stages (Figure 1.3 and Ch2_DESeq2.xlsx). Unlike the phyla level analysis, we did not observe a 

core genus but instead identified three distinct clusters, based on tree branches and detection 

patterns, throughout the lifetime of the host (Figure 1.3A). The first cluster consisted solely of 

Bacteroides as the bacterial population decreased post-weaning. Succinivibrio and Selenomonas 

appeared sporadically in the mid-nursery host followed by plateau in the growth adult stage. The 

final cluster, with 22 genera, generally appeared at a higher relative abundance earlier, than 

Succinivibrio and Selenomonas, in the preweaning or newly weaned host. Interestingly, although 

Bacteroides, Succinivibrio, and Selenomonas are all heavily reliant on carbohydrate utilization141–

143, our data suggested that these genera were absent during different developmental stages. We 

hypothesized this could be related to these bacteria utilizing distinct carbohydrate sources144–146. 

Future research is necessary to evaluate how these bacterial species were utilizing dietary 

carbohydrates and interacting among the microbes and host. 

 

The majority of stage-associated genera were identified in the nursery host which could indicate a 

need for specialized microbial roles in SCFA productions during this stage. Bacteroides ([P vs N 

log2-fold change: 2.4] [N vs G log2-fold change: 6.2]) was decreasing in relative abundance 

throughout the pig’s life stages (Figures 3A and 3B)141. Conversely, Succinivibrio ([P vs N log2-

fold change: -10.2;][N vs G log2-fold change: -1.8) was increasing through the stages146. The 

remaining potential SCFA-associated genera that were associated with the nursery host were 
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Faecalibacterium ([P vs N log2-fold change: -12.8][N vs G log2-fold change: 4.5])147, Prevotella 

7 ([P vs N log2-fold change: -14.4][N vs G log2-fold change: 1.5])148, Prevotella 1 ([P vs N log2-

fold change: -8.2][N vs G log2-fold change: 2.6])148, Subdoligranulum ([P vs N log2-fold change: 

-7.6][N vs G log2-fold change: 3.1])88, Prevotella 9 ([P vs N log2-fold change: -8.0][N vs G log2-

fold change: 2.4])149, Alloprevotella ([P vs N log2-fold change: -2.4][N vs G log2-fold change: 

2.9])150, Prevotellaceae NK3B31 group ([P vs N log2-fold change: -3.2][N vs G log2-fold change: 

1.6])151, Ruminococcaceae UCG-014 ([P vs N log2-fold change: -2.2][N vs G log2-fold change: 

2.3])152, Ruminococcaceae UCG-005 ([P vs N log2-fold change: -3.1][N vs G log2-fold change: 

0.9])152, and Ruminococcaceae UCG-010 ([P vs N log2-fold change: -1.3][N vs G log2-fold 

change: 0.8])152. The nursery host contained the most genera with SCFA metabolizing potential, 

suggesting that this is related to the microbiome dynamics as the microbes were working towards 

establishing. The bacteria populations within these genera associated with the nursery host could 

have taken advantage of the perturbations during these stages to proliferate. Akin to the SCFA 

potential metabolism findings, potential opportunistic pathogen genera were also only identified 

in nursery swine: Streptococcus ([P vs N log2-fold change: -2.6][N vs G log2-fold change: 1.4])153 

and Terrisporobacter ([P vs N log2-fold change: -2.0][N vs G log2-fold change: 1.6])154. We 

observed that potential opportunistic pathogens were solely in the nursery host, suggesting that a 

turbulent microbiome enhanced the risk of pathogen development59. Although our present study 

provided insights into the microbial shifts during the different life stages of the swine, clearly there 

are complexities during microbiome establishment which warrant increased investigation. Further 

studies should elucidate how microbial metabolic roles and interactions influence microbiome 

establishment and pathogen prevalence. 
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Temporal dynamics of Kazachstania slooffiae and association with bacterial diversity 

Our findings suggested that fungal-bacterial interactions in the swine host could influence both 

bacteriome and mycobiome establishment and dynamics, therefore leading to the decline in K. 

slooffiae abundance in hosts. We performed qPCR and demonstrated varied K. slooffiae abundance 

according to developmental stage (Figure 1.4). We noticed the fungus was absent in the 

preweaning host but its presence peaked in the nursery host from 25-46 days of age, with a steady 

decrease in abundance past 46 days of age. We determined fungal presence was more dispersed in 

the older host, as indicated by a larger 95% confidence interval. Interestingly, we found the 

increase in K. slooffiae coincided with the establishment of the microbiome near weaning. Previous 

studies have indicated an increase of K. slooffiae in the early nursery stage (swine hosts aged 21-

35 days)83,87. Kazachstania slooffiae abundance past 35 days of age were previously unknown. 

Our findings showed that K. slooffiae abundance declined during the late nursery stage and 

plateaued in the growth adult stage, adding to the growing knowledge in the understanding of this 

fungi. Our fungal research suggested that K. slooffiae underwent stage-specific growth patterns, 

similar to that of the bacteriome. The factors which directly influenced K. slooffiae increase and 

decline are not yet known. Prior publications indicate associations between members within the 

microbiome, including between fungi and bacteria, may have implications to the well-being of the 

hosts80. 

 

We performed taxonomic correlation analyses to further investigate fungi-bacteria interactions in 

the gut microbiome. Our increasing correlation network complexity with host age and lack of 

shared K. slooffiae-correlating genera across stages highlighted stage-dependent microbiome 

development. We simplified our correlation models to depict direct correlations between K. 

slooffiae and genera according to developmental stage (Figure 1.5 and Ch2_SPECI-EASI.xlsx). 
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We identified 65 correlations (3 in preweaning, 30 nursery, and 32 growth adult). Previous 

research has indicated increasingly complex fungal-bacteria network correlations as both the 

microbiome and host develop from preweaning to nursery, but growth adult stage correlates were 

previously unknown87. We identified only two shared correlates between the nursery and growth 

adult stages: Rikenellaceae RC9 gut group and Candidatus Gastranaerophilales bacterium Zag. 

The significance of these genera, especially pertaining to K. slooffiae, are not understood and are 

a topic for future research. The lack of shared K. slooffiae correlating taxa may be related to stage-

specific bacteria and stage-specific bacteriome-mycobiome interactions.  

 

Our specific network correlation highlighted novel associations between K. slooffiae and the 

bacteriome throughout the host lifetime, suggesting the changes associated with weaning, 

including dietary change and stress, might have allowed for K. slooffiae expansion while the fungal 

decline may be attributed to competition with bacteria. Previous publications have identified eight 

correlations with K. slooffiae87,88. Our results included three out of the eight prior K. slooffiae 

correlations: Lactobacillus (correlation coefficient -1.2, growth adult), Prevotella 9 (-1.2, growth 

adult), and Prevotella 2 (-1.1, nursery)88. Previous research indicated positive correlations of K. 

slooffiae and Lactobacillus, Prevotella 9, and Prevotella 2, whereas our correlations were 

negative88. We surmised that negative correlation between Lactobacillus and K. slooffiae would 

be analogous to the inhibition of Lactobacillus growth by Candida in humans80. Previous research 

has identified genetic similarity between K. slooffiae and Candida81,155. Previous studies suggested 

that Lactobacillus may work alongside other bacteria to deter Candida growth, such as through 

short chain fatty acid production80. In fact, for our findings, the majority of our network 

correlations between K. slooffiae and genera were negative, with only three positive correlations 

(Rikenellaceae RC9 gut group (0.9), Prevotellaceae NK3B31 group (0.7), and Ruminococcaceae 
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UCG-005 (0.4)) were identified in growth hosts. Inverse abundances between fungi and bacteria 

are indicative of competition or amensalism156, which could explain the sharp decline of K. 

slooffiae populations in the nursery host (Figure 1.4). We further hypothesized that the post-

weaning increase of K. slooffiae might be attributed to the dietary change as K. slooffiae is unable 

to utilize milk galactose81. The dietary transition and host stress from preweaning to nursery might 

have allowed the increase in K. slooffiae populations, even with bacterial establishment relatively 

progressed81,88. Our correlation network results showed numerous (63 novel correlations, Figure 

1.5) novel K. slooffiae correlations which could aid in divulging establishment dynamics within 

the bacteriome and mycobiome. 

 

Conclusions 

We provided a comprehensive evaluation of how bacteria and the fungus, Kazachstania slooffiae, 

developed through the different life stages of swine. The young preweaning host demonstrated 

comparatively low microbial diversity which increased near weaning. The growth adult host had 

a relatively similar microbiome overall compared to the nursery host, yet stage-specific 

associations, such as potential pathogens and fungal development, were noticed. We noticed the 

developing microbiome across hosts, even with differences in dam diet and parity status. Future 

research, with more swine, are crucial to determining the extent to which these dam factors and 

stage-associated characteristics influence microbiome development dynamics. Our findings 

provided a foundation for gut microbiome studies. 

 

While microbial inter-kingdom interactions are known to have implications on host health, the 

intricacies of dynamics between bacteria and fungi are not well understood. We determined that 

distinct microbial taxa, diversity, and bacterial-fungi correlations were associated with different 
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stages of life. These stage-associated attributes indicated there could be further stage-associated 

characteristics such as illness-inducing pathogens and energy providing carbohydrate 

metabolizing microbes. Future research is crucial to understand the interplay amongst microbes, 

especially on the functional level pertaining to carbohydrate utilization and relating these findings 

back to host health. As we evaluated general-swine host stage, additional research is also necessary 

to attribute specific host growth, development, and environmental factors, such as diet and 

housing, to the diversity changes we identified. 
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Figure 2.1: A) Weighted uniFrac PCoA plot98–101 depicting composition; dots represent distinct 

samples. Nursery stage is separated according to the three diets fed during the stage. B) 

Longitudinal Shannon diversity with Kruskal-Wallis statistical analysis99. C) Faith’s phylogenetic 

diversity99 (PD). D) Volatility control chart of the first axis of the PCoA99. Figure was edited in 

Inkscape version 1.0.2 (https://inkscape.org/)157. 
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Figure 2.2: A) Longitudinal heat map of DESeq2 resulting phyla relative abundances; each column 

represents a distinct sample102,104,105. B) DESeq2 differentially identified (p<0.05) phyla102,104. 

Figure was edited in Inkscape version 1.0.2 (https://inkscape.org/)157. 
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Figure 2.3: A) Longitudinal heat map of DESeq2 resulting genera relative abundances; each 

column represents a distinct sample102,104,105. B) DESeq2 differentially identified (p<0.05) 

genera102,104. Figure was edited in Inkscape version 1.0.2 (https://inkscape.org/)157. 
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Figure 2.4: Kazachstania slooffiae qPCR Ct value according to day of age with line of best fit and 

95% confidence interval by stage. Figure was edited in Inkscape version 1.0.2 

(https://inkscape.org/)157. 
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Figure 2.5: SPIEC-EASI correlation results between Kazachstania slooffiae and genera)87,107–109. 

Figure was edited in Inkscape version 1.0.2 (https://inkscape.org/)157. 
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Abstract 

Background: Archaea perform critical roles in the microbiome system, including utilizing 

hydrogen to allow for enhanced microbiome member growth and influencing overall host health. 

With the majority of microbiome research focussing on bacteria, the functions of archaea are 

largely still under investigation. Understanding methanogenic functions during the host lifetime 

will add to the limited knowledge on archaeal influence on gut and host health. In our study, we 

determined lifelong archaea detection and methanogenic functions while assessing global and host 

distribution of our novel archaeal metagenome assembled genomes (MAGs). We followed 7 

monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected 

feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, 

bioinformatic quality and assembly processes, and MAG taxonomic assignment and functional 

annotation. Results: We generated 1,130 non-redundant MAGs with 8 classified as methanogenic 

archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and 

Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and 

Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 

sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were 

identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily 

in the adult host. Moreover, we identified our methanogens in metagenomic sequences from 

Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and 

paleontological humans, indicating that methanogens span different hosts, geography and time. 

We determined complete metabolic pathways for all three methanogenic pathways: 

hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of 

acetoclastic methanogenesis in monogastric archaea which indicated a previously unknown 

capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we 
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hypothesized that the age-associated detection patterns were due to differential substrate 

availability via the host diet and microbial metabolism, and that these methanogenic functions are 

likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric 

investigation of monogastric-associated methanogens which will further our understanding of 

microbiome development and functions.  
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Introduction 

The gastrointestinal system contains countless microorganisms spanning multiple kingdoms 

performing equally diverse functions. Archaea, bacteria, viruses, and fungi work in concert and 

competition to acquire nutrients and space24. The focus of previous gut microbiome research has 

predominantly been on the identification and function of bacteria158,159. However, archaea have 

been demonstrated to be equally important members of the gastrointestinal microbiome160. 

Methanogenic archaea, or archaea which carry out methanogenesis, perform crucial roles in the 

gut160,161. Yet, current research has not indicated how methanogenic gut function changes 

throughout the lifetime of monogastric hosts162,163. With limited research on archaea, and even 

more minimal analysis on methanogenic functions, we are lacking an in-depth understanding of 

gastrointestinal associated methanogens, especially our comprehension of methanogen influence 

on gut and host health throughout host stages of life. By investigating monogastric associated 

methanogens with a longitudinal approach, we are adding essential knowledge to the limited 

understanding of monogastric methanogens. 

 

While some beneficial and detrimental associations of archaea to host health have been reported, 

overall the role of archaea in health and disease is still under investigation161. To date, archaea 

have been associated with a few illnesses including: brain abscesses161,164, sinus abscesses161,165, 

and several gastrointestinal disorders, such as constipation161,166,167 and obesity161,168. Conversely, 

archaea have also been associated with beneficial attributes. For example, archaea metabolize 

trimethylamine (TMA), which is thought to decrease cardiovascular disease160,161, has prompted 

further evaluation of archaea members as a probiotic for cardiovascular health161,169. Moreover, 

archaea allow continued microbial metabolism, growth and action by lowering hydrogen gut 

levels161. Archaea’s role of hydrogen utilization is especially important in the gut where 
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microorganisms work in concert within the shared gut-microbiome system. However with limited 

prior research, there is a critical need to understand the role of gastrointestinal archaea in health 

and sickness via hydrogen metabolism. 

 

Overall, archaea are classified into four superphyla: Euryarchaeota, Asgard, TACK 

(Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota), and DPANN 

(Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota)170. 

To date, Asgard archaea have not been indicated as methanogens170, and TACK and DPANN have 

only been identified in non-host associated environmental sites170–172. Therefore, currently known 

host-associated gut methanogens fall within the seven orders of Euryarchaeota: 

Methanobacteriales, Methanococcales, Methanomicrobiales, Methanosarcinales, 

Methanocellales, Methanopyrales, Methanomassiliicoccales173–176. These Euryarchaeota orders 

are obligate anaerobes which perform methanogenesis to conserve energy for ATP production, 

where methane is a byproduct173,177. Actions immediately following methanogenesis generate an 

ion gradient which is coupled with ATP production178,179. 

 

Given the necessity for ATP production, it is unsurprising that historically, studies have primarily 

relied on the methanogenic gene methyl-coenzyme M reductase A (mcrA) or 16S rRNA for 

identification of gut-associated methanogens163,180–182. McrA has been identified in all 

methanogens to date, as the protein performs a critical role in the final methane production step of 

methanogenesis182,183. While prior research was heavily reliant on targeted PCR methodologies, 

we are missing a functional understanding, from complete genetic sequencing, of gut-associated 

methanogens184. Functional methanogen studies become even more profound when evaluated in a 

longitudinal approach, especially when following the same hosts. In doing so, we can determine 
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lifetime gut methanogen dynamics and host implications. Currently, studies which evaluate 

longitudinal methanogen dynamics typically involve ruminants, such as cows, sheep, goats, and 

deer185. At the time of publication, we could not find a longitudinal study of methanogen genomes 

(i.e. not marker studies such as 16S rRNA or mcrA) following the same monogastrics hosts 

throughout their lifetime, highlighting the crucial need for such metagenomic longitudinal 

evaluations162,163. Without this knowledge, we cannot determine lifetime dynamics of archaea, and 

how their methanogenic function may be related to age-associated factors, such as diet and host 

development. 

 

Our study is the first description of longitudinal monogastric methanogens with genomic analysis 

of methanogenic function. We evaluated methanogen abundance and functions of 7 monogastric 

swine hosts over their lifetime at 22 timepoints from birth through adulthood (ages 1-156 days). 

We described how our methanogen metagenome assembled genomes (MAGs) were identified 

during specific host ages. Furthermore, we determined methanogenic pathways previously 

unknown to monogastric-associated methanogens. This study provided evidence of multiple novel 

methanogen characteristics, which will aid future studies as we build the monogastric methanogen 

repertoire. 

 

Materials and Methods 

Study design, sample collection and DNA extraction 

Our study design and sample collection occurred as previously described186. We collected fecal 

samples from 7 swine over 22 timepoints, ranging in swine age from 1 to 156 days across three 

developmental stages: preweaning (P), nursery (N), and growth adult (G) (Figure 1, 

Ch3_host_and_dam_demographics_diets_samples.xlsx). Swine were born and raised at the 
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Kansas State University Swine Teaching and Research Center. Swine originated from the same 

farrowing group, and were weaned between 18-20 days of age, depending on day of birth. Pigs 

were managed according to the Kansas State University Institutional Animal Care and Use 

Committee (IACUC) approved protocol #4036, and methods are reported according to ARRIVE 

guidelines. The authors also confirmed that all methods were performed in accordance with 

relevant guidelines and regulations, and we affirmed that all methods were approved by Kansas 

State University. 

 

We stored fecal samples at -80°C until DNA extraction. We extracted total genomic DNA from 

fecal samples utilizing the E.Z.N.A.® Stool DNA Kit (Omega Bio-tek Inc.; Norcross, GA), 

following the manufacturer protocols. We then quantified the extracted genomic DNA with a 

Nanodrop and Qubit™ (dsDNA BR Assay Kit [Thermo Fisher; Waltham, MA]) for DNA quality 

and concentration. We stored extracted DNA at -80°C until library preparation and sequencing. 

 
Metagenomic sequencing and ‘omics workflow 

DNA libraries were generated for a total of 112 samples with Nextera DNA Flex (Illumina, Inc.; 

San Diego, CA). Resulting libraries were then visualized on a Tapestation 4200 (Agilent; Santa 

Clara, CA) and size-selected using the BluePippin (Sage Science; Beverly, MA). The final library 

pool of 112 samples was quantified on the Kapa Biosystems (Roche Sequencing; Pleasanton, CA) 

qPCR protocol, and sequenced on the Illumina NovaSeq S1 chip (Illumina, Inc.; San Diego, CA) 

with a 2 x 150 bp paired-end sequencing strategy. 

 

We utilized the ‘anvi-run-workflow’ program to run a combined bioinformatics workflow in 

anvi’o v.7.1 (https://anvio.org/install/)187,188, with a co-assembling strategy. The workflow used 

Snakemake to implement numerous tasks including: short-read quality filtering, assembly, gene 



47 

calling, functional annotation, hidden Markov model search, metagenomic read-recruitment and 

binning189. Briefly, we processed sequencing reads using anvi’o’s ‘iu-filer-quality-minoche’ 

program, which removed low-quality reads following criteria outlined in Minoche et al.190. The 

resulting quality-control reads were termed “metagenome” per sample. We organized the samples 

into 3 metagenomic groups based on the developmental stages (P, N, G), and used anvi’o’s 

MEGAHIT v1.2.9 to co-assemble quality-filtered short reads into longer contiguous sequences 

(contigs)187,191. The following methods were then utilized in anvi’o to further process the contigs: 

(1) ‘anvi-gen-contigs-database’ to compute k-mer frequencies and identify open reading frames 

(ORFs) using Prodigal v2.6.3187,192; (2) ‘anvi-run-hmms’ to annotate bacterial and archaeal single-

copy, core genes using HMMER v.3.2.1187,193; (3) ‘anvi-run-ncbi-cogs’ to annotate ORFs with 

NCBI’s Clusters of Orthologous Groups (COGs; https://www.ncbi.nlm.nih.gov/research/cog)194; 

and (4) ‘anvi-run-kegg-kofams’ to annotate ORFs from KOfam HMM databases of KEGG 

orthologs (https://www.genome.jp/kegg/)195. 

 

We mapped metagenomic short reads to contigs in anvi’o with Bowtie2 v2.3.5196, and we then 

converted mappings to BAM files with samtools v1.9187,197,198. We used the anvi’o ‘anvi-profile’ 

program to profile BAM files with a minimum contig length of 1,000 bp. Next, we combined 

profiles with ‘anvi-merge’ into a single anvi’o profile for downstream analyses. We grouped 

contigs into bins with ‘anvi-cluster-contigs’ and CONCOCT v1.1.0199. We manually processed 

bins with ‘anvi-refine’ using bin tetranucleotide frequency and coverage across samples187,200,201. 

Following manual processing, we labeled bins that had >70% completion and <10% redundancy 

(both based on single-copy core gene annotation) as metagenome-assembled genomes (MAGs). 

Finally, we used ‘anvi-compute-genome-similarity’ to calculate average nucleotide identity (ANI), 

using PyANI v0.2.9187,202, for each MAG to identify non-redundant MAGs. We analyzed MAG 
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occurence in a sample with the “detection” metric. We considered a MAG as detected in a 

metagenome if the detection was >0.25, which is an appropriate cutoff to eliminate false-positive 

signals in read recruitment results. We used ‘anvi-gen-variability-profile’ with ‘--quince-mode’ to 

export single-nucleotide variant (SNV) information on all MAGs after read recruitment, to identify 

subpopulations of the MAGs in the metagenomes187. We used DESMAN v2.1.1 in anvi’o to 

analyze the SNVs and determine the number and distribution of subpopulations in the MAGs203. 

We accounted for non-specific mapping by removing any subpopulations that made up less than 

1% of the entire population that were explained by a single MAG. 

 
Data analyses 

We used the “detection” criteria (>0.25) for downstream statistical analyses. We downloaded 

metagenomes from swine204, humans205,206, mice207, chicken208, and cattle209, and performed 

mapping to the non-redundant archaea-MAGs according to specifications above 

(Ch3_sequencing_and_assembly_results.xlsx). We used RStudio v1.3.1093102 to visualize MAGs 

detection patterns in RStudio (https://www.rstudio.com/products/rstudio/) using: pheatmap (pretty 

heatmaps) v1.0.12105, ggplot2 v3.3.5 (https://ggplot2.tidyverse.org/)210, forcats v0.5.1 

(https://forcats.tidyverse.org/)211, dplyr v1.0.8 (https://dplyr.tidyverse.org/)212, and ggpubr v0.4.0 

(https://CRAN.R-project.org/package=ggpubr)101. 

 

We utilized the RASTtk Genome Annotation Service on PATRIC v3.6.12 (https://patricbrc.org/) 

and anvi’o COG annotations for metabolic function analyses213,214. We used the comparative 

pathway tool in PATRIC to predict the metabolic pathways of our resolved non-redundant MAGs. 

We obtained similar genomes that were deposited in public databases and performed phylogenetic 

analyses of our non-redundant MAGs in PATRIC214. Parameters were set as follows: 100 genes, 

10 max allowed deletions, and 10 max allowed duplications. We constructed phylogenetic trees 
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for our MAGs with 192 closely related genomes, using the amino acid and nucleotide sequences 

from the global protein families database. RAxML program was used to construct the trees based 

on pairwise differences between the aligned protein families of the selected sequences. 

 

Our final figures were edited in Inkscape v1.2.1157. 

 

Results and Discussion 

Host-associated archaeal methanogens have been linked to various conditions of health and 

disease. Most archaea-centric intestinal microbiome studies have been conducted on a single time 

point in the lifetime of the host. Using molecular and cultural approaches, intestinal archaea have 

been identified in many hosts, including: humans, swine, horses, rats, birds, fish, and kangaroos215. 

Overall, these analyses reported that the most common methanogens in the gut are members of the 

Methanobacteriales and Methanomassiliicoccales orders215. However, little is known about the 

presence and distribution of archaea through the lifetime of the swine. There is also a lack of data 

on the functions of the archaea in the swine gut. Overall, this knowledge gap has hindered the 

identification of factors that influence the diversity, abundance and functions of archaea in the 

swine. In this study, we recovered 8 methanogenic archaea metagenome assembled genomes 

(MAGs) that exhibited differential colonization patterns in the host at different ages. While 

distribution of methanogens across multiple hosts has been previously demonstrated, we recovered 

the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii 

MAGs215. Moreover, we attributed methanogenic functions to our age-associated archaea, and 

identified the first evidence of acetoclastic methanogenesis in monogastric archaea, found in our 

Methanomassiliicoccales MAGs, indicating a previously unknown capability of monogastric 

methanogens to utilize acetate in energy acquisition. Alternatively, we attributed hydrogenotrophic 
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methanogenesis, where carbon dioxide (CO2) is utilized, in the Methanobacteriales. We surmised 

that the age-associated detection patterns were due to differential substrate availability, which was 

highly influenced by diet. Altogether, we provided a comprehensive, genome-centric investigation 

of monogastric-associated archaea to further our understanding of microbiome development and 

function. 

 
Taxonomic classification of gut metagenome-assembled genomes 

To broadly sample gut-associated microorganisms of the swine host across different age-

associated growth stages, we obtained 5,840,640,191 paired-end reads from Illumina NovaSeq 

sequencing data of 112 swine fecal samples (Ch3_anvio_results.xlsx). After quality trimming, we 

generated 5,167,665,150 paired-end reads. The resulting 3 co-assemblies contained 9,431,702 

contigs that described approximately ~3.6 x 1010 nucleotides and ~3.7 x 107 genes. Using a 

combination of automatic and manual binning strategies resulted in 4,556 metagenome-assembled 

genomes (MAGs). We further removed redundancy by selecting a single representative for each 

set of genomes that shared an average nucleotide identity (ANI) of greater than 95%, resulting in 

1,130 final non-redundant MAGs (nr-MAGs) (Ch3_anvio_results.xlsx). Among the nr-MAGs, we 

recovered an average of 203 ± 187 contigs, with an average N50 of 32,737 ± 35,205. The resolved 

nr-MAGs had completion values of 87.9% ± 8.6%. The genomic lineages for archaeal and bacterial 

nr-MAGs based on domain-specific single-copy core genes resolved to 20 phyla (2 archaea phyla 

and 18 bacterial phyla). We could also assign 88.4% of the bacterial and archaeal nr-MAGs to 

their genera. 
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Resolved archaeal MAGs phylogenetically similar to diverse hosts and geographic disbursed 

archaea 

Among the 1,130 nr-MAGs that we resolved, our genomic collection also included 8 archaea nr-

MAGs (hereafter known as archaea-MAGs; Ar-1 through Ar-8; Table 1; Ch3_anvio_results.xlsx). 

We observed that our resolved archaea-MAGs harbored genes which encoded for critical methyl-

coenzyme M reductase (mcrABG) proteins required for methanogenesis, including mcrA which is 

typically utilized for methanogen classification216,217 (Ch3_anvio_results.xlsx and 

Ch3_gene_annotations.xlsx). To our best knowledge, these MAGs represent the first genomic 

evidence of putative methanogens differential colonization pattern of the monogastric gut. The 

resolved methanogen MAGs had an average genome size of 1.4 Mbp, 1,573 KEGG gene 

annotations, 1,535 COG gene annotations, and a GC content ranging from 31% to 56% (Table 1; 

Ch3_anvio_results.xlsx). We resolved 7 of the methanogen MAGs to the species level with one 

archaea-MAG resolving to the genus level (Table 1; Ch3_anvio_results.xlsx). Our resolved 

archaea-MAGs were assigned to the following orders: Methanomassiliicoccales (5) and 

Methanobacteriales (3). Moreover, the genera were as follows: UBA71 (3), Methanomethylophilus 

(1), MX-02 (1), and Methanobrevibacter (3).  

 

We downloaded 95 Methanomassiliicoccales and 97 Methanobacteriales genomes to investigate 

the phylogenetic relationship of our resolved archaea-MAGs (Figure 2; 

Ch3_original_phylogenetic_trees.pdf). We showed that our methanogen populations had close 

phylogenetic relationships with archaea from geographically distinct mammalian hosts, suggesting 

high similarities in gene functions in archaea among diverse host species. Given similarities 

amongst such diverse host species with diverse digestive systems, we hypothesize these close 

genetic relatives of our resolved archaea-MAGs might be more ubiquitous in a wider range of 
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hosts than are currently discussed. We noticed Ar-4 clustered, as expected, with 6 

Methanomethylophilus alvus strains: 5 from human gut samples and 1 from swine (MAG221) 

(Figure 2A)218–223. Ar-7 clustered with 4 MX-02 sp006954405. United Kingdom strain 10224 and 

Chinese strain MAG014221 have been identified as swine-originating, whereas B5_69.fa and 

B45_maxbin.030.fa were from humans225. Interestingly, clustering on the same branch (B5_69.fa 

and B45_maxbin.030.fa) are archaea isolated from South African adult humans225. Ar-1 was in the 

same branch with archaea isolated from Tibetan pig MAG098221; Ar-2 with Chinese roe deer 

RGIG3983226 strain; and Ar-3 with Tibetan pig MAG196221. Likewise, we observed Ar-8 was on 

the same phylogenetic branch with an Australian Methanobrevibacter gottschalkii isolate: 

A27227(Figure 2B). Interestingly, Ar-6 formed an outbranch alongside this branch with a further 

outbranch containing two Methanobrevibacter gottschalkii strains228,229. This would suggest that 

our resolved archaea-MAG Ar-6 might be a Methanobrevibacter gottschalkii. Moreover, Ar-5 

clustered amongst Methanobrevibacter smithii strains: Tibetan pig MAG004221, Canadian pig 

SUG1019230, and US Florida human ATCC 35061231. 

 

While many of our methanogen MAGs clustered with swine originating archaea populations, we 

also demonstrated our methanogen MAGs alongside human and deer associated methanogens, 

suggesting similarities in microbial genes and associated functions in the methanogens amongst 

these host species. The roe deer similarity is especially intriguing considering that deer contain a 

ruminant digestive system, with four stomach compartments, compared to the single stomach 

system of monogastric swine and human182,232. Moreover, even though our archaea-MAGs 

originated from the United States (in the state of Kansas) swine, our phylogenetic analyses 

indicated similarities to archaeal populations from Australia, South Africa, Tibet, China, United 

Kingdom and Canada, further supporting the global presence of archaea amongst diverse hosts. 
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We surmise that our resolved methanogen archaea-MAGs and these close genetic relatives might 

be more widespread in more hosts than we expected215. 

 

We recovered from our study novel archaeal genomes that were previously unidentified in US 

swine. We were able to resolve and obtain the genomic information, to the best of our knowledge, 

of the first swine-associated Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter 

gottschalkii MAGs. The methanogenic archaea family Methanobacteriales has been identified in 

many previous swine studies, with the majority of these studies utilizing 16S sequencing and/or 

real-time PCR identification124,221,224,233–241. Still, there is a lack of understanding of the 

Methanobacteriales in terms of genomic studies, and the Methanomassiliicoccales order 

collectively in general. Up to this moment, only three swine Methanomassiliicoccales MAGs 

(Methanomethylophilus alvus, MX-02 sp006954405, and Methanobrevibacter smithii) have been 

identified221,224,241. Thus, adding our highly resolved novel archaea-MAGs to the repertoire of 

swine-associated microbial populations will aid in understanding swine archaea, including 

functions, host associations (such as age, health status, sex, etc.), and global distribution. 

 

Prevalence of archaeal MAGs and variants at distinct host ages 

Assessing the abundance of the methanogens in different growth stages of the swine host provided 

an opportunity to investigate the association between the host-associated methanogens and the 

different conditions faced by the swine as they grow. Our genome-centric metagenome analyses 

revealed two dominant orders of archaea - Methanobacteriales and Methanomassiliicoccales. We 

showed that resolved methanogen MAGs were differentially detected at different growth stages of 

the swine, but does the environment affect the functional niche specificity between these two 

orders of archaea? 
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The heatmap shown in Figure 3A provides a graphical summary of the changes in detection for 

the archaea-MAGs. Hierarchical clustering grouped the archaea-MAGs into three clusters based 

on detection: A (top cluster; Ar-1 through Ar-4), B (middle cluster; Ar-5 and Ar-6), and C (bottom 

cluster; Ar-7 and Ar-8). We observed that Cluster A contained only Methanomassiliicoccales 

MAGs, while Cluster B contained 2 Methanobacteriales MAGs, and Cluster C one of each order. 

Cluster A archaea-MAGs were primarily identified in the final stage of growth adult hosts. 

Conversely, Cluster B methanogens were primarily identified in preweaning hosts. Finally, Cluster 

C archaea were identified throughout the host lifetime. 

 

We noticed the majority of archaea-MAGs detection values increased closely after a stage 

transition (preweaning to nursery and nursery to growth adult), suggesting that stage transition 

changes, including diet, housing, and stress, can lead to changes in microbiome composition89. 

Although, exactly how these changes impact archaea is relatively understudied, as most research 

evaluates bacteria, and therefore archaea-stage dynamics are a topic for future research242,243. 

 

We investigated methanogen variants, and found the majority of variation occurred in periods 

when other archaea were dominating (preweaning and growth adult; Ch3_SNV_results.xlsx). We 

performed single-nucleotide variant (SNV) analysis on our two archaea-MAGs that showed 

continuous detection throughout the host lifetime (Cluster C MAGs: Ar-7 and Ar-8; Figure 3B). 

We attributed the majority of variances to the unweaned host, while fewer variances were 

identified in the growth adult. Interestingly, the variants were highest during times where other 

archaea-MAGs were predominantly identified (Figure 3B). We hypothesized that the variation 

found in the growth adult host could indicate a competitive microbial environment, while fewer 
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variants as compared to the earlier growth stages could be due to a largely already developed gut 

microbiome. In a competitive gut microbiome system, it is beneficial to have genetic diversity 

which translates to increased functional diversity244. A similar competitive environment and SNV 

diversity was demonstrated in the human gut bacterial community244. Comparatively, as the gut 

developed and microbes established with focused functions, the variation decreased when humans 

reached 2 years of age244. Human gut development is similar to the relatively faster development 

of the swine microbiome during preweaning and within 10 day days post weaning245. The 

conditions which encouraged the increased variation in the growth adult in our study could have 

been a change of diet, host stress, or other host-associated and environmental conditions246. 

 

While we demonstrated differing archaea and SNV association with age, we were primarily 

interested in methanogen function. We hypothesized methanogenic function influenced our 

resolved methanogen MAGs’ ability to establish in the microbiome at different host stages through 

energy acquisition via host diet. Phylogenetic similarity in archaea across geography and hosts 

prompted an investigation into whether our archaea-MAGs were identified in other hosts of similar 

developmental ages, and therefore similar archaeal functions. 

 

Methanogens span host species, millennia, and geographic distance  

We wanted to further demonstrate not only global and host distribution, but also temporal 

identification of our methanogens beyond genetic similarity, as illustrated in our phylogenetic 

analyses. We mapped metagenomic sequencing reads from young and aged hosts to our archaea-

MAGs from the following hosts: swine (n=16)204, humans (n=429)205,206, mice (n=60)207, chicken 

(n=71)208, and cattle (n=34)209 (Figure 4; Ch3_metagenome_mapping_metadata.xlsx and 

Ch3_metagenome_mapping_detection.xlsx). Our archaea-MAGs were identified in older humans 
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and varying aged swine metagenomes, but not in the chicken, mice or cattle metagenomes. We 

also demonstrated evidence of our archaea-MAGs in the ancient human gut and global distribution. 

Altogether we determined within a host species, archaeal age-association appeared to be similar, 

but some archaea span multiple host species, and for millennia215. We hypothesized differential 

archaeal function may be essential to the gut microbiome of many modern and ancient monogastric 

hosts. 

 

We determined our swine-associated methanogens were not present in poultry, mice and ruminant 

metagenomes (Ch3_metagenome_mapping_detection.xlsx). Given the drastic differences in the 

ruminant digestive system compared to the monogastric gut, we were not surprised that our swine 

archaea-MAGs were not found in cattle from the United States (US) State of Pennsylvania. 

Although not identified consistently in all cattle, Methanobrevibacter smithii247–250 and 

Methanobrevibacter gottschalkii251–254 have been associated with the cow digestive tract. 

Similarly, UBA71 has been identified in adult chickens previously255. Given that similar taxonomic 

methanogens are present in cattle and chickens, we hypothesized the methanogens of these hosts 

were genetically distinct from the methanogens we identified in swine. Additionally, since the 

methanogens we identified were not consistently detected across our aging hosts, it was very 

probable that other metagenomes from these host populations could contain our methanogens. 

Future research is necessary to evaluate how distinct methanogen members function individually 

and collectively within the microbiome system to influence gut health in different host species. 

 

Interestingly, we could only find a singular example of archaea attributed to the mouse gut: 

Methanomassiliicoccaceae DTU008256. Remaining attempts, encompassing more than 1,000 

metagenomes, proved unsuccessful in identifying mice gut archaea257–260. In fact, an investigation 
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of murine gut composition across 17 rodent species demonstrated, beyond the instance of mouse 

DTU008, only North American porcupine (Erethizon dorsatum), capybara (Hydrochoerus 

hydrochaeris), and guinea pig (Cavia porcellus) contained archaea256. Although murine hosts have 

a monogastric digestive system, there appears to be a lack of understanding if and when archaea 

are present in mouse gut260. 

 

Although from a different continent, Chinese swine demonstrated the closest age-associated 

detection to our US swine methanogens. Even though the Chinese preweaning swine were not 

weaned, the methanogen presence appeared to more closely resemble the US swine weaned, 

nursery gut. The exception to the nursery resemblance being Ar-5, which more closely resembled 

our US swine preweaning gut. Many factors, including breed, weaning age (China at 42 days; US 

at 18-20 days), and housing, are known to influence microbiome development, and therefore could 

have resulted in the different archaeal age-establishment patterns89,261,262. In terms of our earlier 

detection clusters, Cluster A still appeared more prevalent in the growth adult host, and Cluster C 

was similarly prevalent throughout both the preweaning and growth adult stages. Although the 

detections of Ar-5 and Ar-6 (Cluster B) were not shared between the Chinese and US swine, as 

Ar-6 demonstrated relatively low detection in the preweaning stage. Given that the Chinese swine 

dataset was from a single day in preweaning and growth adult, future research should investigate 

longitudinal distribution of methanogens from monogastric swine according to various 

characteristics, such as country of origin, breed, diet, housing environment, etc. This would further 

develop our understanding of global methanogen distribution according to associated variables.  

 

Overall, we demonstrated genetic support for the same, or very closely related, methanogens 

circulating in both US and Chinese swine with similar age-associated detection. This further 
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demonstrates the ubiquity of archaea to the monogastric swine host which we hypothesized are 

distributed with host age according to archaeal function. 

 

Our resolved archaea-MAGs not only appeared in Chinese swine, but we also provided evidence 

of these archaea-MAGs in adult humans from modern age (Mexico and Sweden) and ancient time 

(modern day US and Mexico). In contrast to the swine gut, we identified merely two methanogens 

in the human gut: M. smithii and MX-02 sp006954405. With the exception of one Swedish 12 

month sample demonstrating Ar-5 presence, the infant data illustrated comparatively minimal to 

no archaeal presence of our methanogens. Given that many publications demonstrate identification 

of multiple Methanobacteriales and Methanomassiliicoccales in the human gut160,162,263,264, it is 

possible that there were genetically distinct methanogens present in these human samples beyond 

our M. smithii and MX-02 sp006954405. The modern adult human samples, both the Mexican and 

Swedish datasets, only demonstrated M. smithii presence. Multiple publications have identified 

increasing M. smithii in the human gut with age264,265. Interestingly, we identified MX-02 

sp006954405 and M. smithii in the palaeofaeces from the US and Mexico, suspected to be between 

1,000-2,000 years old205. While many paleobiology studies have investigated ancient methanogens 

of water sediments266–274, we identified merely two human-related paleobiology methanogen 

studies pertaining to: the archaic human gut205 and neanderthal dental plaques275. M. smithii has 

been previously identified in ancient humans205, but the identification of MX-02 sp006954405 

appeared to be the first evidence of human-associated ancient Methanomassiliicoccales. The 

methanogen MX-02 has been identified in the human gut previously174, but we illustrated novel 

evidence for MX-02 sp006954405 in the ancient human gut, suggesting that MX-02 sp006954405, 

or close relatives, were likely present in the modernized human gut, but we did not identify genetic 

resemblance in the 122 modern human metagenomes we evaluated. Future research is necessary 
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to provide further insights into the gut-associated archaea to elucidate genetic phylogeny, evolution 

of archaeal functions, and association with ancient humans. 

 

Given our findings indicating our US-swine associated archaea-MAGs were present in Chinese 

swine, US humans, and Mexican humans, we wanted to further understand the role of these 

methanogens in the monogastric gut. 

 

Critical methane metabolism functions were conserved across methanogens 

Our primary goal was to profile the expressed genomic potential that contributed to the 

methanogenesis of the swine gut. In our study, we constructed and demonstrated the first swine 

complete methanogenic pathways, which is crucial for understanding the role of archaea within 

the microbiome system and to host health. We analyzed methanogenesis pathways of 

Methanobacteriales and Methanomassiliicoccales (Figure 5, Ch3_gene_annotations.xlsx). We 

identified 44 genes in methane metabolism276. 

 

The shared genes represented crucial functions in the final methanogenesis steps of energy and 

methane production. Nine genes were shared across the 8 archaea-MAGs: 3 heterodisulfide 

reductase (hdrA, hdrB, and hdrC), 3 methylviologen-dependent Ni,Fe hydrogenase (mvhA, mvhG, 

and mvhD), and 3 methyl-coenzyme M reductase (mcrA, mcrB, and mcrG). HdrABC, MvhAGD, 

and McrABG are critical to the final steps of methanogenesis. HdrABC and MvhAGD form an 

electron-bifurcating complex to regenerate coenzyme M (HS-CoM) and coenzyme B (HS-CoB) 

from heterodisulfide CoM-S-S-CoB277. An intermediate step, not shared by all archaea-MAGs but 

discussed in the following section, generates methylated cozyme M (CH3-S-CoM)183. McrABG 

then catalyzes the final methanogenesis step where the methyl group of CoM-CH3 is reduced to 
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methane, with HS-CoB utilized as an electron donor183. This formation of methane generates CoM-

S-S-CoB for reduction again by HdrABC/MvhAGD278. The final step in producing methane is 

crucial for methanogens, and our archaea-MAGs supported the roles of HdrABC, MvhAGD, and 

McrABC in these final methanogenesis reactions. 

 

Differential Methanobacteriales and Methanomassiliicoccales methane metabolic pathways 

may relate to age-associated detection 

While we supported the clear ubiquity of hdr, mvh and mcr to methanogens, we were primarily 

interested in how our archaea differed in methanogenic potential since they exhibited differential 

colonization through the swine growth stages. We noticed our taxonomically distinct archaea-

MAGs harbored different genetic components for divergent methane metabolic pathways (Figure 

5). We identified the first genetic support of an acetoclastic Methanomassiliicoccales, and first 

acetoclastic methanogen in a monogastric host. Moreover, Methanomassiliicoccales also 

contained genes for the methylotrophic methanogenic pathway, indicating the potential to utilize 

various substrates from acetate to methylated compounds. Alternatively, Methanobacteriales 

contained genes for the hydrogenotrophic pathway with CO2 as the substrate input. We surmised 

that these alternate pathways played a role in energy acquisition according to differential nutrients 

available during the host lifetime, and therefore growth stage associated diet. 

 

The hydrogenotrophic methanogenic pathway was the key methanogenic pathway identified in all 

of our Methanobacteriales MAGs. During hydrogenotrophic methanogenesis, CO2 is reduced to 

methane (CH4) with four molecules of H2
183,279. Our Methanobacteriales archaea-MAGs 

contained all genes crucial to the hydrogenotrophic methanogenic pathway: formylmethanofuran 

dehydrogenase (fwd; A-H), formylmethanofuran-tetrahydromethanopterin N-formyltransferase 
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(ftr), methenyltetrahydromethanopterin cyclohydrolase (mch), coenzyme F420-dependent 

methylenetetrahydromethanopterin dehydrogenase (mtd), methenyltetrahydromethanopterin 

hydrogenase (hmd), methylenetetrahydromethanopterin reductase (mer), and 

methyltetrahydromethanopterin-coenzyme M methyltransferase (mtr; A-H)217,280. 

 

We identified both mtd and hmd, indicating the methanogens can potentially utilize H2 with or 

without F420 to reduce methenyl-H4MPT, as Mtd requires F420
281. As mentioned previously, we 

believe the CH3-CoM in our Methanobacteriales archaea-MAGs was generated via 

MtrABCDEFGH. This mtr complex has been demonstrated to transfer the methyl group from 

tetrahydromethanopterin (H4MPT) to CoM, therefore coupling the hydrogenotrophic pathway to 

the final methane production steps170,282,283. Methanobacteriales have been associated with the 

hydrogenotrophic pathway previously183. 

 

Our Methanobacteriales archaea-MAGs contained all of the aforementioned genes, with one 

exception: Ar-5 lacked mch. We attribute this to the incompleteness of the metagenome assembled 

genome, as Ar-5 exhibited the lowest completion of our methanogen MAGs at ~72% (Table 1, 

Ch3_anvio_results.xlsx). Interestingly, only two hydrogenotrophic pathway genes (fwdD and 

fwdH) were identified in two Methanomassiliicoccales archaea-MAGs. The lack of a 

hydrogenotrophic pathway clearly indicated the Methanomassiliicoccales utilized a distinct 

methane pathway. 

 

All Methanomassiliicoccales archaea-MAGs, and our M. smithii archaea-MAGs, indicated 

varying ability to metabolize methanol, mono-, di- and trimethylamine through the methylotrophic 

methanogenesis pathway. Genes we identified in our archaea-MAGs included: 
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methanol:coenzyme M methyltransferase (mtaB and mtaC), monomethylamine (MMA) 

methyltransferase (mtmB and mtmC), dimethylamine (DMA) methyltransferase (mtbA, mtbB, and 

mtbC), and trimethylamine (TMA) methyltransferase (mttB and mttC)217. 

Methanomassiliicoccales is known to perform methylotrophic methanogenesis with all of the 

previously discussed substrates284. Conversely, M. smithii was thought to be a hydrogenotrophic 

population285. Given we only identified methylotrophic genes in one Methanobacteriales 

population, future research is necessary to support this genetic potential. 

 

Although all Methanomassiliicoccales methanogens and the M. smithii population contained the 

mtaBC genes for methanol metabolism, we did not identify mtaA in the Methanomassiliicoccales 

genetic content. The MtaABC complex transfers the methyl group from methanol to coenzyme M, 

generating CH3-S-CoM for McrABG reduction286. We identified a candidate mtaA homolog 

through a literature review: uroporphyrinogen III decarboxylase (hemE)287 (designated mta-like in 

Figure 5 and Ch3_gene_annotations.xlsx). This is the first publication identifying the homolog in 

methanogens. As such, future research is critical to analyze how HemE might interact with MtaBC, 

and how the enzyme performs in the methylotrophic pathway. 

 

Only three (Ar-2, Ar-3, and Ar-4) out of the five Methanomassiliicoccales archaea-MAGs 

contained a complete genetic pathway associated with monomethylamine (mtmBC) and 

dimethylamine (mtbBC) utilization217,288. Moreover, only two Methanomassiliicoccales 

populations (Ar-2 and Ar-4) contained mttBC, associated with trimethylamine (TMA) 

utilization217,288. TMA has been associated with increased cardiovascular disease, so TMA 

metabolism is beneficial for the host160,161. Further research is necessary to evaluate if other 

methylated compounds may play roles in cardiovascular disease, and therefore the host aided by 
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archaeal metabolism. Although the majority of our archaea-MAGs appeared to be able to utilize 

methanol in the methylotrophic methanogenesis pathway, fewer were able to use mono-, di- and 

trimethylamine. As noted previously, this might be due to the incompleteness of the archaea-

MAGs, especially since our Methanomassiliicoccales archaea-MAGs completeness ranged from 

~80-99% (Table 1, Ch3_anvio_results.xlsx). Still, there is a possibility that these 

Methanomassiliicoccales archaea-MAGs might have different abilities in utilizing methylated 

sources due to contrasting biological necessity and evolutionary selection289. 

 

To the best of our knowledge, we identified the first complete acetoclastic methanogenic pathway 

in Methanomassiliicoccales290,291. Three Methanomassiliicoccales (Ar-1, Ar-2, and Ar-7) archaea-

MAGs contained genetic support, with two complete pathways (Ar-1 and Ar-7), for the 

acetoclastic, or also called aceticlastic, pathway. Acetate is reduced to acetyl-CoA and then 

H4MPT via acetyl-CoA synthetase (acs) and carbon monoxide dehydrogenase (acsC and 

acsD)217,288,292. Two of our Methanomassiliicoccales archaea-MAGs (Ar-3 and Ar-4) did not have 

acetoclastic genes identified, while acsD was not found in Ar-2.  

 

Acetoclastic methanogenesis is typically performed by aquatic methanogens293–295. The only prior 

identification of acetoclastic archaea in gastrointestinal tracts was in Methanosarcinales of a 

ruminant (cow)160,296. Therefore, we identified the first evidence for acetoclastic methanogenesis 

in monogastrics. Moreover, only Methanosarcinales and Methanococcales were known to perform 

acetoclastic methanogenesis290,296,297. The ability of our Methanomassiliicoccales to perform both 

methylotrophic and acetoclastic methanogenesis parallels Methanosarcinales, since many 

Methanosarcinales also are able to perform both of these pathways291. Conversely, acetoclastic-

able Methanococcales are also able to perform hydrogenotrophic methanogenesis296. Acetoclastic 
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methanogenesis requires an ATP input to convert acetate to acetyl-CoA, which impairs the energy 

efficiency of this methanogenic pathway298. The diminished energy return of acetoclastic 

methanogenesis likely plays a role in the dual acetoclastic-methylotrophic metabolic potential of 

our Methanococcales archaea-MAGs. The ability to utilize different substrates via varying 

methanogenic pathways is beneficial. The methanogen can potentially still metabolize energy as 

their substrate source changes. Changing substrates is common in the gastrointestinal system, as 

the host changes diets and the associated microbiome changes and produces different 

metabolites242. 

 

Although the Methanomassiliicoccales archaea-MAGs contained genes for both methylotrophic 

and acetoclastic methanogenesis, this dynamic substrate capability did not appear to allow 

Methanomassiliicoccales archaea-MAGs to prevail more than their counterparts: 

Methanobacteriales. In fact, the Methanobacteriales populations in general were detected at more 

times during the host life than Methanomassiliicoccales (Figure 3A). This may indicate CO2 is 

more available in the monogastric system during the host lifetime. The exception to this being the 

during the growth stage where Methanomassiliicoccales appear abundantly, therefore mylated 

compounds or acetate could have transitioned to being the dominantly available substrate, 

suggesting that the stage-associated characteristics, such as dietary composition had a high 

influence on the methanogens dynamics. Although diet influences substrate availability, we cannot 

rule out other factors, including host age and other gastrointestinal organisms (including bacteria 

and protist), which alter the gut microbiome system160,242,296,299.  

 

Collectively, with the novel acetoclastic Methanomassiliicoccales and methylotrophic 

Methanobacteriales M. smithii archaea-MAGs, there is a knowledge gap surrounding the 
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functional potential of methanogens. Taken together with the phylogenetic analysis, we are lacking 

a holistic understanding from global and host distribution of methanogens to their methanogenic 

actions. Other publications have also discussed the lack of overall methanogen knowledge, 

especially knowledge surrounding archaeal functions300–302. Archaea are a member of the gut 

microbiome alongside bacteria, fungi and viruses, and without understanding their distribution and 

functions, we will not understand how archaea influence the gut microbiome system and host 

health. 

 

Conclusions 

We performed a longitudinal study of the monogastric microbiome where we produced 1,130 

MAGs, with 8 methanogen archaea-MAGs. The novel archaea-MAGs clustered with 

geographically diverse methanogens from various animal and human hosts, indicating global 

distribution of closely related archaea. We also determined that our archaea-MAGs were detected 

in swine and humans from distinct continents and time. Given the stark distinctions in detection 

and distribution, we wanted to evaluate if energy acquisition associated with methanogenesis could 

be related to these factors, especially age-distribution. Our Methanobacteriales archaea-MAGs 

contained genes for hydrogenotrophic methanogenesis, indicating the ability to metabolize CO2. 

Alternatively, Methanomassiliicoccales archaea-MAGs appeared to have the capability to utilize 

a range of substrates from methylated compounds, including methanol and methylamine, and 

acetate, through the methylotrophic and acetoclastic pathways, respectively. We identified the first 

acetoclastic Methanomassiliicoccales, and also the first acetoclastic methanogens of monogastrics. 

Moreover, we identified a Methanobacteriales population with methylotrophic genes. Previously, 

Methanobacteriales was thought to only perform hydrogenotrophic methanogenesis. We 

hypothesized the distinct diets, given according to age, provided different substrates which 
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influenced archaeal establishment and therefore detection patterns. Still, we know there are 

multiple other growth stage-associated and microbiome dynamics which likely play a role in 

archaeal growth. 

 

In order to continue developing our understanding of archaea, we must continue to evaluate their 

global prevalence across diverse hosts and ecosystems. Moreover, we should evaluate the 

significance of acetoclastic methanogens to monogastrics, including how these methanogens 

influence other microorganisms and host health. Future studies should also investigate how growth 

stage-associated factors influence methanogenic potential and therefore archaeal abundance. In 

pursuing this archaea research, we can better determine how methanogens provide beneficial or 

detrimental consequences to host health, and how we might utilize or deter methanogens in animals 

and humans alike. 
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Figures 

 

Figure 3.1: Study schematics of 7 swine hosts including fecal sampling ages and developmental stages.
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Figure 3.2: Phylogenetic trees of (A) Methanomassiliicoccales218–227 and (B) Methanobacteriales221,227–230,303–308 with bootstrap values 

≥ 70 indicated at nodes. Branches were collapsed for non-immediate phylogenetic relatives of our archaea-MAGs while branches 

containing these 8 MAGs were magnified for clarity. Original non-collapsed trees with statistics are in 

Ch3_original_phylogenetic_trees.pdf .
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Figure 3.3: (A) Detection heatmap of archaea-MAGs (rows) across all individual sample 

metagenomes (columns) with MAG taxonomy and stage annotation (Preweaning [P]; nursery [N]; 
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growth adult [G]). (B) Single-nucleotide variant (SNV) analysis of Ar-7 and Ar-8 where box colors 

indicate competing nucleotides and stage is indicated along the bottom. 
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Figure 3.4: (A) Detection heatmap of previously published swine metagenomes204 mapped to this 

publication’s archaeal MAGs (Preweaning [P]; nursery [N]; growth adult [G]). (B) Detection box 

plots of previously published human metagenomes205,206 mapped to our archaeal MAGs (“Adult” 

from Mexican humans; “Paleo” from present day US and Mexico ; all remaining groups from 

Sweden).
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Figure 3.5: Methane metabolic pathway genes detected in our archaeal MAGs distinguished by pathway217,288,309,310.
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Table 

Table 3.1: Anvi’o results, including taxonomic assignment, of 8 archaea-MAGs. 

MAG 
ID 

Total 
length 

(nucleo-
tides) 

Number 
of 

contigs 
N50 

GC 
content 

Percent 
completion 

Percent 
redun-
dancy 

Domain Phylum Class Order Family Genus Species 

Ar-1 1,634,787 68 46,847 53% 97% 0% Archaea Thermoplasmatota Thermoplasmata Methanomassiliicoccales Methanomethylophilaceae UBA71 UBA71 sp006954425 

Ar-2 2,118,112 250 15,626 54% 95% 1% Archaea Thermoplasmatota Thermoplasmata Methanomassiliicoccales Methanomethylophilaceae UBA71 UBA71 sp006954425 

Ar-3 960,519 435 2,416 56% 80% 9% Archaea Thermoplasmatota Thermoplasmata Methanomassiliicoccales Methanomethylophilaceae UBA71 UBA71 sp006954425 

Ar-4 1,269,388 112 15,439 56% 83% 4% Archaea Thermoplasmatota Thermoplasmata Methanomassiliicoccales Methanomethylophilaceae Methanomethylophilus 
Methanomethylophilus 

alvus 

Ar-5 957,172 18 59,251 32% 72% 0% Archaea Methanobacteriota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter 
Methanobrevibacter 

smithii 

Ar-6 1,724,540 38 68,759 33% 100% 0% Archaea Methanobacteriota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter N/A 

Ar-7 1,341,189 53 49,597 48% 99% 0% Archaea Thermoplasmatota Thermoplasmata Methanomassiliicoccales Methanomethylophilaceae MX-02 MX-02 sp006954405 

Ar-8 1,513,577 47 51,497 31% 100% 1% Archaea Methanobacteriota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter 
Methanobrevibacter 

gottschalkii 
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Abstract 

Background: Antimicrobial resistance (AMR) is a significant global public health concern 

associated with millions of deaths annually. Agriculture has been attributed as a leading factor in 

AMR and multidrug resistance (MDR) associated with swine production is estimated as one of the 

largest agricultural consumers of antibiotics. AMR research has received increased attention in 

recent years. However, we are still building our understanding of genetic variation within a 

complex gut microbiome system that impacts AMR and MDR. In order to evaluate the gut 

resistome, we evaluated genetic variation before, during, and after antibiotic treatments. We 

studied three treatment groups: non-antibiotic controls (C), chlortetracycline (CTC) treated, and 

tiamulin (TMY) treated. We collected fecal samples from each group and performed metagenomic 

sequencing for a longitudinal analysis of genetic variation and functions. Results: We generated 

772,688,506 reads and 81 metagenome assembled genomes (MAGs). Interestingly, we identified 

a subset of 11 MAGs with sustained detection and high sustained entropy (SDHSE). Entropy 

described genetic variation throughout the MAG. Our SDHSE MAGs were considered MDR as 

they were identified prior to, throughout, and after CTC and TMU treatments as well as in the C 

piglets. SDHSE MAGs were especially concerning as they harbored relatively high variation. 

Consistently high variation indicated that these microbial populations may contain hypermutable 

elements which has been associated with increased chance of AMR and MDR acquisition. 

Altogether, our study provides comprehensive genetic support of MDR populations within the gut 

microbiome of swine.  
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Introduction 

Antimicrobial resistance (AMR) is a ubiquitous threat around the world, estimating to be the third 

cause of global human deaths311. Antibiotic resistance was estimated to be associated with 4.95 

million deaths globally in 2019311 and 2.8 million illnesses annually in the US alone312. AMR has 

also burdened medical systems and economies, and scientists see this as a sustained trend 

expecting $100-210 global losses due to AMR by 2050313–315. The burden and repercussions of 

AMR are a one world health concern as antibiotics are utilized for animals in addition to 

humans316. AMR describes bacteria containing genetic components which allow microbes to 

survive through antimicrobial treatment. Particular concern arises when microbes exhibit 

resistance to multiple drugs37,317. These multidrug resistant (MDR) organisms (MDRO) can 

persist, at times, beyond all medicinally utilized antibiotics37,317,318. Moreover, multidrug resistant 

microbes can spread through individuals, and between humans and animals, increasing the 

prevalence of AMR319. With the global burden of AMR, we need an enhanced understanding of 

AMR to combat infections caused by MDRO. 

 

Animal agriculture has been identified as the largest antibiotic consumer320. Antibiotics have been 

used in agricultural animals, much like humans, to treat bacterial infections, but antibiotics are also 

for growth promotion in agriculture321. Swine production was estimated to be the current largest 

agricultural animal antibiotic-use sector in 2017320,322. Moreover, antibiotic resistance rates are 

rising in the swine industry as the proportion of antibiotics, with resistance higher than 50%, 

increased in the swine industry from 0.13 to 0.34 from 2000 to 2018323. Global surveys324–328 and 

smaller-scale studies329–335 have in-large identified high consumption of tetracycline antibiotics in 

the past two decades in animal agriculture and swine. Tetracycline was estimated to account for 

43% of antibiotic usage in agricultural animals from 2015 to 2017328. Unfortunately tetracycline 
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antibiotics are not exclusively utilized in animals. For example, chlortetracycline is used in both 

swine and humans336,337. With continued use of antimicrobial drugs, especially when utilizing the 

same treatments in humans and animals, and increasing resistance to antibiotics, AMR is a global 

concern to agriculture and humanity alike. 

 

Across monogastric organisms, including pigs and humans, the gut microbiota has been identified 

as an AMR reservoir338,339. The gut microbiome has been recognized as a diverse environment in 

terms of antibiotic resistant genes340,341. With oral antibiotic use, the gut has been demonstrated to 

increase in resistant microbes342. Antibiotic treatments decrease the abundance of susceptible 

microbes which allows resistant microbes more resources, such as nutrients and space, to increase 

in abundance343. While the work in AMR is accumulating at a fast pace, we still have limited 

understanding on how genetic variations among the microbial populations contribute to the 

resistome.  

 

Antibiotic use has been associated with microbes containing increased genetic variation and so-

called hypermutable bacteria35,344. Antibiotic usage selects for microbes with genetic variation, or 

those with relatively high mutation rates termed hypermutable bacteria35. As microbes develop 

variation, this leads to an increased chance of developing resistance35,344. Therefore with 

subsequent antimicrobial treatments, we are continually selecting for hypermutable populations 

harboring increased variation in turn having more opportunities for further AMR acquisition and 

MDR35,344. This can lead to MDR bacteria with high mutation rates to evade future antimicrobial 

treatments. However, studies related to the understanding of cumulative genetic variation across 

AMR genes in MDR microbes in response to antibiotic supplementation (in vivo) among piglets 
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are lacking.. In studying microbial variation in these circumstances, we can further evaluate the 

risk of and potential treatments for MDR microbes. 

 

Clearly, we need a deeper understanding of antibiotic resistance and MDR to enhance our approach 

to AMR. Here, we studied gut microbiota through two distinct antibiotic treatments (in-feed 

chlortetracycline [CTC] and in-feed tiamulin [TMU]) in addition to a non-antibiotic control (C). 

We utilized swine, with tetracycline and pleuromutilin class antibiotics, to provide an in vivo 

evaluation of a comparatively high and low utilized antibiotic classes320,322, in the global swine 

industry324–335. As mentioned previously, tetracycline antibiotics accounted for 43% of antibiotic 

usage in animal agriculture during 2015-2017 whereas pleuromutilin only accounted for 3%328. 

For our study, we performed metagenomic sequencing to obtain genes for functional analysis. 

Following our subsequent genome assembly and manual genome refining, we identified a subset 

of 11 metagenome-assembled genomes (MAGs) with high genetic variation prior to and 

throughout both antibiotic treatments and in control swine. We also confirmed consistent detection 

of the 11 MAGs and termed these MAGs: sustained detection and high sustained entropy (SDHSE) 

MAGs. Our SDHSE MAGs are of concern as they contained genetic variation and demonstrated 

MDR to both CTC and TMU. Moreover, we identified 22 distinct AMR genes in our SDHSE 

MAGs. Altogether, we provide evidence of MDR bacteria present in swine with concerningly high 

levels of genetic variation in 11 distinct microbial populations. Our research transcends global 

health with insights into antibiotic resistance, and especially MDR, from a major contributor to 

global AMR. 
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Materials and Methods 

Experimental design 

The swine study was performed as previously described (Figure 1A-C)345–347. Swine (genetic line 

L337×1050, PIC, Hendersonville, TN) were housed in a commercial research nursery facility. 

Diets were fed with formulations as previously described348. All pigs were housed in one room 

with an enclosed, environmentally controlled, and mechanical ventilation system. Pens contained 

slatted floors with deep manure pits. Feed and water were provided ad libitum per pen with a six-

hole stainless steel self-feeder (refilled via a robotic system) and pan waterer. This study utilized 

648 pigs randomly distributed into 24 pens (27 pigs per pen), while working to minimize 

differences in average pen weight during distribution. Three treatments were administered, 

according to average pen weight, 7 days after weaning at 21 days of age, for a total of 14 days, 

each across 8 pens: control (no antibiotic; C), in-feed chlortetracycline (CTC; 22 mg/kg body 

weight; CTC-hydrochloride, Elanco Animal Health, Indianapolis, IN), and in-feed tiamulin (TMU; 

5 mg/kg body weight; Denagard®, Elanco, Animal Health, Indianapolis, IN). 

 

All swine were managed according to protocol #4033 with Kansas State University Institutional 

Animal Care and Use Committee (IACUC). Furthermore, methods are reported according to 

ARRIVE guidelines. The authors also confirmed that all methods were performed in accordance 

with relevant guidelines and regulations, and we affirmed that all methods were approved by 

Kansas State University. 

 

Sample Collection 

For this study, we considered each pig pen as an experimental unit, and there were eight replicate 

pens per antibiotic treatment (Figure 1A-C). Fecal collection occurred every seven days, starting 
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on the day of introduction to the pens. Fecal samples were collected via gentle rectal massage from 

five randomly selected pigs per two random pens per treatment, and each fecal sample was stored 

in individual sterile plastic bags (Whirl-Pak® bags, Nasco, Ft. Atkinson, WI) and kept on ice 

during transportation. Processing occurred within 24 hours of receipt, with intermittent storage at 

4°C, at the Pre-harvest Food Safety laboratory, College of Veterinary Medicine, Kansas State 

University. To reduce research bias, laboratory personnel were blinded to the treatments. 

 

DNA extraction 

We stored fecal samples at -80°C until DNA extraction. For each pen and time-point, the five fecal 

samples were pooled for DNA extraction (Figure 1A-C). Total genomic DNA from fecal samples 

was extracted utilizing the DNeasy PowerSoil Pro Kits (QIAGEN Inc.; Valencia, CA), following 

the manufacturer protocols. We then quantified the extracted genomic DNA with a Nanodrop and 

Qubit™ (dsDNA BR Assay Kit [Thermo Fisher; Waltham, MA]) for DNA quality and 

concentration. Final storage of extracted DNA was at -80°C until library preparation and 

sequencing. 

 

Metagenomic sequencing and ‘omics workflow 

Library preparation was performed on 30 samples with Nextera DNA Flex (Illumina, Inc.; San 

Diego, CA) (Figure 1B; Ch4_sample_metadata.xlsx). A Tapestation 4200 (Agilent; Santa Clara, 

CA) was employed to visualize libraries followed by size-selected via a BluePippin (Sage Science; 

Beverly, MA). The final library pool of 30 samples was quantified with the Kapa Biosystems 

(Roche Sequencing; Pleasanton, CA) qPCR protocol, and sequenced on an Illumina NovaSeq S1 

chip (Illumina, Inc.; San Diego, CA) with a 2 x 150 bp paired-end sequencing strategy. 
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We performed a bioinformatics workflow using anvi’o v.7.1 (https://anvio.org/install/; ‘anvi-run-

workflow’ program)187,188. The workflow utilized Snakemake349 to perform multiple tasks: short-

read quality filtering, assembly, gene calling, functional annotation, hidden Markov model search, 

metagenomic read-recruitment and binning189. Briefly, we processed sequencing reads using 

anvi’o’s ‘iu-filer-quality-minoche’ program removing low-quality reads following criteria 

described in Minoche et al.190. We termed the resulting quality-control reads “metagenome” per 

sample. We co-assembled quality-control short reads from metagenomes into longer contiguous 

sequences (contigs) according to no-treatment (prior to treatment/after) and treatment groups (C, 

CTC, TMU). We utilized MEGAHIT v1.2.9187,191 for co-assembly. The following anvi’o methods 

were then performed to further process contigs: (1) ‘anvi-gen-contigs-database’ to compute k-mer 

frequencies and identify open reading frames (ORFs) using Prodigal v2.6.3187,192; (2) ‘anvi-run-

hmms’ to annotate bacterial and archaeal single-copy, core genes using HMMER v.3.2.1187,193; (3) 

‘anvi-run-ncbi-cogs’ to annotate ORFs with NCBI’s Clusters of Orthologous Groups (COGs; 

https://www.ncbi.nlm.nih.gov/research/cog)194; and (4) ‘anvi-run-kegg-kofams’ to annotate ORFs 

from KOfam HMM databases of KEGG orthologs (https://www.genome.jp/kegg/)195. 

  

We mapped all metagenomes’ short reads to contigs with Bowtie2 v2.3.5196. We converted 

mappings with samtools v1.9187,197,198 into BAM files. We profiled BAM mapping files (‘anvi-

profile’)187 with a minimum length of 1,000 bp. We then combined profiles with ‘anvi-merge’ into 

a single anvi’o profile. Next, we used CONCOCT v1.1.0199 to group contigs into bins. We 

manually refined bins with ‘anvi-refine’ using bin tetranucleotide frequency and coverage across 

sample metagenomes187,200,201. After manual refining, we labeled bins that had ≥70% completion 

and <10% redundancy (both based on single-copy core gene annotation350) as metagenome-

assembled genomes (MAGs). We analyzed MAG occurrences according to the “detection” metric. 

https://anvio.org/install/
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We determined single-nucleotide variants (SNVs) on all MAGs after read mapping with ‘anvi-

gen-variability-profile’ and ‘--quince-mode’187. We used anvi’o’s DESMAN v2.1.1 to analyze 

SNVs to determine the number and distribution of subpopulations in the MAGs203. We accounted 

for non-specific mapping by removing any MAG subpopulations that made up less than 1% of the 

entire population and were explained by a singular MAG. 

 

Data analyses 

We used RStudio v1.3.1093102 to visualize MAGs detection and entropy patterns in RStudio 

(https://www.rstudio.com/products/rstudio/) using: pheatmap (pretty heatmaps) v1.0.12105, 

ggplot2 v3.3.5 (https://ggplot2.tidyverse.org/)210, forcats v0.5.1 (https://forcats.tidyverse.org/)211, 

dplyr v1.0.8 (https://dplyr.tidyverse.org/)212, and ggpubr v0.4.0 (https://CRAN.R-

project.org/package=ggpubr)101. We generated SNVs counts according to individual sample with 

anvi’o, anvi-summarize, and MAG entropies351 were generated with anvi’o’s anvi-gen-variability-

profile187,201. Individual MAG entropy files and individual MAG statistical analysis files were 

combined respectively in RStudio with: tidyverse 1.3.1 (https://cran.r-

project.org/web/packages/tidyverse/citation.html)98 and 1.4.0 (https://stringr.tidyverse.org/)352. 

We performed Welch two sample T-test353 statistical analysis on detection and entropy according 

to pre-treatment versus post-treatment and treatment groups. We used anvi’o COG annotations, as 

described above, for metabolic function analyses187. Our final figures were edited in Inkscape 

v1.2.1157. 

 

Results and Discussion 

Antimicrobial resistance (AMR), and especially multidrug resistance (MDR), are a global concern. 

Agriculture has been identified as the top consumer of antibiotics with the swine industry 
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consuming the most of any agricultural sector320,322. In order to better understand AMR and MDR 

dynamics of the swine gut microbiome, we collected samples prior to, during and after antibiotic 

treatment. We utilized three distinct treatment groups: chlortetracycline, tiamulin, and non-

antibiotic control. These antibiotics were utilized to allow analysis of distinctly utilized microbial 

classes across swine. Tetracyclines, the class chlortetracycline falls within, accounted for 43% of 

antibiotic usage in animal agriculture during 2015-2017 whereas pleuromutilin, including 

tiamulin, accounted for merely 3%328. Interestingly, we identified 11 distinct bacterial populations 

with similar detection levels pre- and post-treatment and between treatments. These microbes were 

especially of concern as they harbored high genetic variation. These 11 microbial populations, 

assembled from our metagenomic data, were termed sustained detection and high sustained 

entropy (SDHSE) metagenome-assembled genomes (MAGs). Already exhibiting MDR, high 

variation in our resolved SDHSE MAGs could result in enhanced multidrug resistance. We further 

identified 22 unique AMR genes with varying detection in SDHSE MAGs. Altogether, we detailed 

AMR of swine microbiota with genetic support of existing MDR prior to antibiotic treatments and 

sustained variation throughout treatments. Our study advances AMR and MDR research by 

providing analysis of a top consumer of antibiotics globally: swine. 

 

Resolved identify of gut metagenome-assembled genomes 

We assembled and analyzed high resolution metagenome-assembled genomes (MAGs) to 

postulate functional distinctions between gut microbiota before and after antibiotic treatment. Each 

MAG represents a “microbial population.” We described a microbial population as an assemblage 

of coexisting microbial genomes in an environment that are similar enough to map metagenomic 

reads to the same reference genomes354. Metagenomic sequencing on an Illumina NovaSeq 

produced 772,688,506 paired-end reads from 30 fecal samples (Figure 1B; 
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Ch4_read_and_assembly_results.xlsx). After quality filtering, 741,143,268 paired reads (96%) 

were utilized in contig co-assembly. We generated 330,769 contigs from assembly which 

described 1,018,536,193 nucleotides and 1,270,711 genes. We performed contig binning to create 

369 bins, and after automatic and manual refinement we resolved 205 MAGs 

(Ch4_anvi’o_results.xlsx). To ensure high quality MAGs in our analysis, we performed 

downstream analysis with MAGs greater than 2M nucleotides (n=81), as these would more 

accurately represent bacterial genomes355. Of these 81 MAGs, each MAG, contained 360 ± 232 

contigs and an N50 value of 18,345 ± 16,569 nucleotides. MAG GC contents ranged from 26% to 

62%. Moreover, the average MAG size was 2,424,923 nucleotides. Our MAGs described 6 

bacterial phyla (Actinobacteriota, n=3; Bacteroidota, n=37; Firmicutes, n=38; Planctomycetota, 

n=1; Proteobacteria, n=1; and Verrucomicrobiota, n=1) with 96% of the MAGs resolved to 48 

distinct genera. 

 

We mapped each sample’s metagenomic reads (i.e. metagenome) to the 81 MAGs to determine 

detection throughout the study (Figure 2 and Ch4_MAG_detections_sample_SNVs.xlsx). We 

confirmed detection of all 81 MAGs and determined general differential detection patterns 

according to detection clustering. The top branches broadly depict MAGs detected in the pre-

treatment hosts. Comparatively, the middle clusters were sparsely detected. Finally, the bottom 

clusters were, in general, detected relatively high, compared to previous clusters, throughout the 

experiment regardless of pre- or post-treatment or treatment group. Altogether, our detection 

analysis suggested that association of microbial populations with our swine hosts was far more 

complex than just what microbes were affected by the use of antibiotics. 
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Previous studies suggested environmental pressures, such as antibiotic administration, increased 

genetic variation in microorganisms356,357. The genetic variation in bacteria results from single 

nucleotide polymorphisms (SNPs), and could lead to generation of novel bacterial strains356. 

Studies further demonstrated that bacteria often used mutations as a mechanism for stress response, 

which is termed as stress-induced mutagenesis358. Since one of the mechanisms for the 

diversification and adaptation of the genomes operates at the single nucleotide level, we proceeded 

to resolve a more complete understanding of the environmental forces that affect adaptive 

strategies of our resolved MAGs to survive in the environment they resided in. Therefore, while 

our MAGs were detected throughout the study, we were particularly interested in how MAG 

variants were changing according to treatment. Our bioinformatic analysis generated single 

nucleotide variants (SNVs) according to sample (Figure 2). We noticed relatively more SNVs 

associated with the post-treatment samples which suggested that our resolved MAGs might 

respond to the antibiotic induced environmental pressure leading to generation of new strains356. 

In light of this discovery, we proceeded to evaluate which MAGs were consistently high variation 

while maintaining detection even with different antibiotic treatments. These MAGs could 

potentially evade antimicrobial treatment with a multitude of variants, as demonstrated through 

sustained detection. Therefore, we next evaluated entropy throughout all 81 MAGs. 

 

MAGs harboring high genetic variation persisted through antimicrobial treatment 

We performed single nucleotide variant (SNV) analysis to calculate entropy on our 81 MAGs to 

investigate genetic variation due antibiotic induced environmental pressure 

(Ch4_entropy_results.xlsx). Entropy describes nucleotide ratios for a given position, and entropy 

is measured from 0 (no variation; A=0, T=0, G=0, C=1) to 1 (complete variation; A=0.25, T=0.25, 

G=0.25, C=0.25)359. We performed statistical analysis to determine which MAGs held high 
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sustained variation in the form of entropy and sustained detection 

(Ch4_detection_and_entropy_stats.xlsx). We discovered 31 MAGs with no statistical difference 

in entropy and detection (Ch4_detection_and_entropy_stats.xlsx). These MAGs represented 

microbial populations that were detected consistently regardless of antibiotic treatment. We further 

narrowed our selection to 11 MAGs with the relatively highest (33%) variation 

(Ch4_detection_and_entropy_stats.xlsx) because we were interested in MAGs harboring high 

variation, with potential multidrug evasion. Previous publications demonstrated the use of relative 

entropy analysis versus discrete entropy thresholds360–362. These 11 MAGs were termed sustained 

detection and high sustained entropy (SDHSE) MAGs (Figure 3; Table 1). Of these SDHSE 

MAGs, 5 (45%) were assigned to the gram negative Bacteroidota phylum, while 6 (55%) were 

annotated to gram positive Firmicutes. While members of both phyla have been associated with 

resistance to CTC and TMU, we identified only 2 (Prevotella363–365 and Ruminococcus366–368) of 9 

genera associated with CTC resistance and 0 with TMU. Of our 11 SDHSE MAGs, 8 (73%) MAGs 

were annotated to 8 distinct species. Akin to the genus level, we provided novel associations of 

bacterial species, within the SDHSE MAG populations, exhibiting MDR. The finding indicated 

there are likely additional genera and species, with CTC and TMU resistance, than are currently 

known. Still, we wanted to investigate how the genetic variation of our SDHSE MAGs was related 

to AMR and MDR. 

 

Our SDHSE MAGs satisfied three important criteria - 1) consistent detention; 2) consistent high 

coverage of MAGs in the metagenomes; 3) consistent high variation of the MAGs in the 

metagenomes. Consistent detection demonstrated MDR, at least encompassing resistance to CTC 

and TMU, of the microbial populations. Consistent high coverage of the MAGs removed biases 

of identifying false variations among metagenomes due to coverage differences. Finally, previous 
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publications have described how microbes harboring variation are a concern for antimicrobial 

resistance35,369,370. When a microbial population contains a relatively high number of SNVs or 

contains a highly variable genetic background, the population contains genetic variation which 

may allow the microbe to persist even with antibiotic treatments. Here we demonstrated that our 

11 SDHSE MAGs showed similar detection prior to and after distinct antibiotic treatments (CTC 

and TMU). The specific variants harbored in these MAGs are of particular interest to antimicrobial 

resistance (AMR) studies, thus, we surmised that the broad variation within these SDHSE MAGs 

likely contributed to the microbes adaptive ability to survive antibiotic induced environments. 

Moreover, harboring continued high variation even after antibiotic treatment suggested many 

variants were able to persist during and after CTC and TMU treatment35,369,370. Previous studies 

highlight the role of antibiotic selection for populations with higher mutations, called 

hypermutable bacteria, which leads to high genetic variation in subsequent generations35,344. 

Hypermutable bacteria, including our SDHSE MAGs harboring numerous variants, are a concern 

to AMR with their MDR potential. 

 

We hypothesized that out 11 SDHSE MAGs likely contained AMR genes contributing to their 

continued detection. Therefore we next evaluated these MAGs for AMR genes within our 

functional potential annotations. 

 

Abundance of antimicrobial resistance (AMR) genes associated with sustained detection and 

high sustained entropy (SDHSE) MAGs 

We hypothesized genetic components associated with antimicrobial resistance (AMR) supported 

the ability for SDHSE MAGs to prevail regardless of CTC and TMU use. We used COG 

annotations to investigate genetic functions for our 11 SDHSE MAGs, and obtained a total of 
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21,025 COG annotations (average 1,911 per MAG). We observed numerous AMR genes within 

the high entropy contigs among the SDHSE MAGs (Ch4_annotations.xlsx). Within the COG 

annotations, we identified 19 unique gene annotations that coded for 18 distinct proteins or protein 

complexes related to AMR with an additional three genes (two complexes: YadH/YadG and RhaT) 

for drug efflux (Figure 4, Table 2, and Ch4_AMR_genes_resistance.xlsx)371–408. We identified 

genes associated with six different drug efflux pump superfamilies (ATP-binding cassette [ABC], 

multidrug and toxic compound extrusion [MATE], drug/metabolite transporter [DMT], major 

facilitator [MFS], resistance-nodulation-division [RND], and small multidrug resistance [SMR]) 

alongside genes coding for: antimicrobial peptides (AMP), 𝛃-lactamases, 𝛃-lactamase regulators, 

and penicillin binding protein (PBP) relatives. Interestingly, of the 11 SDHSE MAGs, the gram 

negative MAGs (n=5) were, on average, annotated with 13 (57%) of the 22 genes, whereas the 

gram positive MAGs (n=6) were annotated on average with 12 (52%) genes. This agrees with 

previous literature indicating AMR is more often associated with gram negative bacteria relative 

to gram positive bacteria409. Still, both gram negative and gram positive bacteria cause significant 

illnesses and mortalities globally409–411. Given the risk MDR bacteria, including our SDHSE 

MAGs, pose to society, we further investigated individual resistome genes and proteins to build 

the knowledge surrounding AMR and MDR. 

 

We noticed all SDHSE MAGs contained a variety of drug efflux pump and other (non-efflux 

pump) genes. Looking further into suspected resistance to antibiotics, based on AMR gene 

annotations, we discovered all SDHSE MAGs harbored AMR genes associated with 5 distinct 

antibiotic classes (Table 2)371–397. Tetracycline resistance, including resistance to CTC, is 

suspected across all SDHSE MAGs due to shared presence of ftsI and mepA, alongside mdlB, 

norB, tetA, acrA-acrB-tolC, emrE, and tetD371–397. The shared presence of multiple AMR genes 
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could explain the consistent identification of these MAGs, regardless of antibiotic use. These 

microbes could have repressed effects of the antibiotics as a result of these, and likely other, AMR 

genes. As expected, our gram negative MAGs contained, on average, a broader antibiotic class 

resistance (n=8.8) compared to gram positive MAGs (n=7.0)409. The physical membrane 

distinctions between gram positive and gram negative bacteria have resulted in greater 

antimicrobial resistance in gram negative bacteria409. Overall, we showed that all SDHSE MAGs 

demonstrated multidrug resistance potential which likely contributed to their continual presence 

even after antibiotic treatment. 

 

We identified tripartite efflux pumps solely in gram negative MAGs. We identified the RND 

tripartite AcrAB-TolC complex genes in nearly all of our SDHSE gram negative genomes; only 

SDHSE-03 lacked AcrAB-TolC identification. RND pumps facilitate efflux across the outer 

membrane406. Gram positive bacteria lack this outer membrane which coincided with the absence 

of acrA-acrB-tolC annotation in our gram positive MAGs406. Moreover, since the majority of 

efflux pumps only facilitate efflux across the first membrane, RND pumps such as acrA-acrB-tolC 

have been described as broader and supports association of acrA-acrB-tolC with CTC and TMU 

resistance (Ch4_AMR_genes_resistance.xlsx)371,391,406. A similar tripartite structure and efflux 

action have been described in the MFS efflux pump EmrAB-TolC, again in gram negative 

bacteria406. Although, EmrAB-TolC, to the best of our knowledge, has not been associated with 

CTC or TMU resistance. In our study, the identification of EmrAB-TolC in the CTC and TMU 

treatments suggested that EmrAB-TolC could have roles in CTC and TMU resistance. Further 

research is crucial to discover the range and action of tripartite efflux pumps in resistance and 

especially MDR. 
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We identified six of seven distinct efflux superfamilies, but we did not identify any proteobacterial 

antimicrobial compound efflux (PACE) annotations412. Although PACE has been demonstrated as 

prevalent in gram negative bacteria, previous literature has lacked identification in gram negative 

Bacteroidota, while PACE has been identified in gram positive Firmicutes413. PACE, the newest 

antibiotic class, was first described in 2015, with the second newest antibiotic class having been 

found in 2000414. Therefore, the breadth of knowledge surrounding PACE is growing and our 

MAGs could contain PACE efflux pump genes which have not been annotated within the COG 

database to date. 

 

Beyond drug efflux pumps, we also identified genes coding for additional AMR proteins. As 

expected, we did not associate CTC or TMU resistance with 𝛃-lactamase or penicillin binding 

protein (PBP) related genes (Ch4_AMR_genes_resistance.xlsx). 𝛃-lactamase inactivates 𝛃-lactam 

antibiotics, including penicillins, carbapenems, and cephalosporins415. We surmised that genes 

coding for these AMR proteins identified in our SDHSE MAGs have not previously been 

associated with CTC and TMU resistance due to their biochemical action, limiting their range of 

resistance415. 

 

We did not identify any genes, outside of drug efflux genes, with suspected pleuromutilin (TMU) 

resistance. The only gene with suspected TMU resistance was the RND pump AcrAB-TolC395, 

which has also been associated with resistance of 5 other antibiotic classes. Only 36% of SDHSE 

MAGs contained genes with resistance to pleuromutilin antibiotics like TMU391. There are likely 

additional genes beyond the COG annotations we evaluated, and perhaps additional resistance 

which has yet to be discovered416. Additionally, we found that the majority of proteins (56%) 

associated with our genes had no previous support for resistance to CTC or TMU. Together, these 



 

95 

results indicated a sizable knowledge gap in understanding the implications of strain level genetic 

variations among bacterial populations. Our SDHSE MAGs are likely harboring MDR to not only 

CTC and TMU, but other drugs, with genetic variations hindering targeted therapeutics417. While 

there has been a call for shifting our antibiotic usage to narrow or even strain-specific antibiotics 

to limit further AMR with application of broad antibiotics418, bacterial populations with high 

genetic variation could minimize the success of such therapies35. Clearly bacterial populations, 

such as SDHSE bacteria, with high genetic variation are concerning as they demonstrate increased 

AMR and threaten further AMR through targeted antimicrobials35. Future research needs to 

investigate similar SDHSE populations to determine their prevalence and risk they pose to global 

health. 

 

Conclusions 

In order to investigate genetic variation pertaining to multidrug resistance (MDR) and 

antimicrobial resistance (AMR), we evaluate the gut microbiome for population dynamics before, 

during and after antimicrobial treatment. Our research is critical to understanding the implications 

of AMR on global health as we evaluated resistance in a sector dominating antibiotic use: 

agricultural swine320,322. We demonstrated evidence of MDR bacterial populations present prior to 

antibiotic administration through 11 distinct bacterial populations we termed sustained detection 

and high sustained entropy (SDHSE) MAGs. Within these MAGs, we indicated novel CTC and 

TMU resistance association with their taxonomic classifications at the genus and species levels. 

As work continues to discover gut-associated microbes, we should evaluate their AMR 

characteristics to combat further resistance. Further highlighting the need for heightened AMR 

research, we found that approximately a third of our SDHSE MAGs contained annotated genes 

associated with TMU resistance. Although given the consistent identification of these MAGs 
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during TMU treatment, there must be TMU resistance genes within the SDHSE genomes resulting 

in TMU resistance. While the number of antibiotic resistance studies published has increased 

substantially since 2010419, the scientific community still has numerous topics to evaluate to better 

target AMR and MDR, all while under the pressure of rising antimicrobial resistance concerns420. 
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Figure 4.1: A) Pig and pen housing* allocation to treatments. B) Timeline of study. C) Fecal 

sample collection and pooling. D) Bioinformatics from sequencing reads to refined MAGs.  

*Image denotes pen treatments in same location for simplification. Note that pens were not all 

located in one region of room, instead pens were dispersed to control for adjoining pen 

interactions345–347. 
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Figure 4.2: MAG detection heatmap (top) and single nucleotide variants (SNVs; bottom) according 

to treatment group and pre-/post-treatment (from left to right is earliest sampling [day -7] to last 

sampling [day 28] per treatment group) per sample. 
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Figure 4.3: Detection boxplot and entropy bar graphs of our 11 sustained detection and high 

sustained entropy (SDHSE) MAGs. 
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Figure 4.4: AMR genes detected in SDHSE MAGs annotated according to presence in our gram 

negative/positive MAGs and according to association with CTC (or tetracycline) or TMU (or 

pleuromutilin) previously371–408. 

 
 
  



 

 104 

Tables 

Table 4.1: Anvi’o results, including taxonomic assignment, of sustained detection and high sustained entropy (SDHSE) MAGs. 

MAG ID 

Total 
length 

(nucleo-
tides) 

Number 
of 

contigs 
N50 

GC 
cont-
ent 

Percent 
comple-

tion 

Percent 
redun-
dancy 

Domain Phylum Class Order Family Genus Species 

SDHSE-03 2,629,111 365 15,755 44% 79% 7% Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Prevotella N/A 

SDHSE-04 2,458,376 727 4,266 48% 93% 8% Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae UBA6382 UBA6382 sp002439755 

SDHSE-01 2,343,180 332 9,899 49% 96% 8% Bacteria Bacteroidota Bacteroidia Bacteroidales Muribaculaceae C941 C941 sp004557565 

SDHSE-02 2,593,352 391 11,592 51% 86% 8% Bacteria Bacteroidota Bacteroidia Bacteroidales UBA932 RC9 RC9 sp000431015 

SDHSE-05 2,812,877 455 10,884 52% 87% 3% Bacteria Bacteroidota Bacteroidia Bacteroidales UBA932 RC9 RC9 sp000433355 

SDHSE-08 2,753,895 203 29,028 41% 90% 6% Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia N/A 

SDHSE-10 2,095,569 581 4,928 42% 94% 7% Bacteria Firmicutes Clostridia Oscillospirales Acutalibacteraceae Ruminococcus N/A 

SDHSE-06 2,196,155 223 21,375 52% 96% 1% Bacteria Firmicutes Clostridia Oscillospirales Acutalibacteraceae Ruminococcus Ruminococcus sp003531055 

SDHSE-07 2,289,369 499 7,653 56% 80% 4% Bacteria Firmicutes Clostridia Oscillospirales Oscillospiraceae CAG-170 CAG-170 sp003516765 

SDHSE-11 2,034,772 145 22,117 61% 87% 1% Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae Gemmiger Gemmiger sp004561545 

SDHSE-09 2,432,201 438 8,763 54% 96% 8% Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae Ruthenibacterium 
Ruthenibacterium 

sp002315015 
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Table 4.2: Antibiotic class resistance, based on previous publications and our annotated AMR and drug efflux genes, for our SDHSE 

MAGs371–408; green filled boxes indicate resistance associated with gene(s) whereas white demonstrates no AMR association. 

Antibiotic Class 
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SDHSE-01 Yes Yes Yes Yes Yes Yes   Yes Yes     8 

8.8 1.7 

SDHSE-02 Yes Yes Yes Yes Yes Yes Yes Yes Yes     9 

SDHSE-03 Yes Yes Yes Yes Yes           Yes 6 

SDHSE-04 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 11 

SDHSE-05 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes   10 

G
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SDHSE-06 Yes Yes Yes Yes Yes Yes Yes         7 

7 0.0 

SDHSE-07 Yes Yes Yes Yes Yes Yes Yes         7 

SDHSE-08 Yes Yes Yes Yes Yes Yes Yes         7 

SDHSE-09 Yes Yes Yes Yes Yes Yes Yes         7 

SDHSE-10 Yes Yes Yes Yes Yes Yes Yes         7 

SDHSE-11 Yes Yes Yes Yes Yes Yes Yes         7 

MAGs with 
Resistance 

Genes 

Count 11 11 11 11 11 10 9 4 4 2 2    

Percent 100% 100% 100% 100% 100% 91% 82% 36% 36% 18% 18%    
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The monogastric gut microbiome plays critical roles in maintaining host health, but it is also known 

to associate with host disease1–3. In order to elucidate the complexities underlying these host 

outcomes, we need to understand microbial membership, functions, and genetic variation in the 

gut under different environmental influences. There are numerous gut environmental variables that 

can impact the host associated microbiome, including age-associated factors and antibiotic 

treatments. To develop our knowledge on effects of environmental factors on gut microbial 

dynamics, I performed three monogastric microbiome studies. 

 

In my second chapter, I described the dynamics and correlations of the bacteriome and the 

dominant swine fungus, Kazachstania slooffiae82,83, through the host developmental stages. The 

stages of swine development are associated with environmental changes to the gut89. I noticed 

distinct differential patterns between bacteria and K. slooffiae. The bacteriome developed primarily 

during the preweaning stage, whereas K. slooffiae underwent an expansion and fall during the 

nursery stage. The implications of K. slooffiae dynamics in the nursery and growth adult host are 

not known and therefore are a topic for future research. I found 63 novel correlations between 

bacteria and K. slooffiae87,88. My correlations demonstrated the monogastric gut bacteria were 

competing with K. slooffiae at all developmental stages. The interactions between bacteria and 

fungi are known to impact host health421. Further studies can build upon my bacteria and 

Kazachstania slooffiae development study to enhance our understanding of gut health throughout 

the host lifetime. While my first study provided insights into microbiome development and 

interactions, I next wanted to determine microbial functional potential during host development. 

 

I focused on methanogenic archaea, known as methanogens, which are under-studied in the 

developing monogastric gut within my third chapter. Following shotgun metagenomic sequencing 
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and bioinformatic applications, I found 8 distinct archaea metagenome assembled genomes 

(MAGs), with the first genetic support of 2 swine methanogens (identified as Methanobrevibacter 

UBA71 sp006954425 and Methanobrevibacter gottschalkii)215. Furthermore, I described similar 

MAGs in paleontological humans and present-day monogastric hosts from around the globe218–

230,303–308. Although, the novelty to my third chapter was my reconstruction of methanogenic 

pathways, central to ATP production173,177–179. I found novel genes for acetoclastic methanogenesis 

which indicated a previously unknown capability for acetate utilization in methanogenesis for 

monogastric methanogens290,291. Further studies are crucial to confirm these novel functions of 

methanogens for additional methanogens and monogastric hosts. This study provided a 

comprehensive evaluation of archaea methanogenic functions and how similar monogastric 

methanogens could be performing these functions, from past to present, worldwide. 

 

In my final study found in my fourth chapter, I looked for microbiome dynamics associated with 

different antibiotic treatments. Swine were either given one of two different antibiotic treatments 

(chlortetracycline [CTC] or tiamulin [TMU]), or no antibiotics in the control group. I found 11 

MAGs with no statistical difference in detection and statistically consistently high variation in the 

form of genetic entropy (SDHSE [sustained detection and high sustained entropy] MAGs). These 

MAGs were concerning given their detection prior to treatments and throughout antimicrobial 

administration which suggested not only antimicrobial resistance (AMR), but also multidrug 

resistance (MDR). Although I identified 22 AMR genes, less than a third of SDHSE MAGs 

contained genes associated with TMU resistance391. Given the resilience of SDHSE MAGs to 

TMU treatment, there are likely genetic functions contributing to TMU resistance which are not 

currently understood. With the threat of AMR and MDR37,311,317,318, this study provided critical 
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insights into monogastric microbiomes harboring MDR organisms supported with gene functions 

and variation. 

 

My studies contributed critical information about the gut microbiome during the host life and 

antibiotic treatments. With this knowledge, we know how microbial membership, functions, and 

genetic variation change alongside the local gut environment. Further research should build upon 

these findings to determine implications on host health. Moreover, these studies can aid clinical 

research in targeting gut diseases since the need for antibiotic alternatives and gut therapies are 

increasing1–3,422. As we strive to understand gut health, we must move beyond microbial 

membership and continue to evaluate microbial function and interaction studies. We need these 

functional approaches as we begin to deconstruct the numerous interactions within the complex 

gut microbiome to reconstruct its implications on host health.  
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