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ABSTRACT

Modeling and Control of a Planar Bounding Quadrupedal Robot

Patrick Ward

Legged robots have the potential to be a valuable technology that provides agile and

adaptive locomotion over complex terrain. To realize legged locomotion’s full abilities

a control design must consider the nonlinear piecewise dynamics of the systems. This

paper aims to develop a controller for the planar bounding of a quadrupedal robot.

The bounding of the quadruped robot is characterized by a simplified hybrid model

that consists of two subsystems for stance and flight phases and the switching laws

between the two states. An additional model, the Multibody model, with fewer

simplifications, is used concurrently to best approximate real-world behavior. The

bounding gait (periodic orbit) of the robot is predicted by an optimization method

based on the numerical integration of the differential equations of subsystems. To sta-

bilize the gait, a switching controller is applied which can be split into two separate

phases: stance-phase and swing-phase control. The stance phase implements reaction

force control utilizing a body state feedback controller and a gait stabilizer, while the

swing phase deploys position control in conjunction with a trajectory planning algo-

rithm to ensure proper footfall. Numerical simulations are carried out for the system

with/without control. The control strategy is further validated by simulations of the

Simscape multibody model. The overall simulated controller results are promising

and demonstrate stable bounding for four system cycles.
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Chapter 1

INTRODUCTION

Wheeled locomotion is power efficient and easy to implement, benefits that have

lead to its importance in the field today. These benefits allow cars and buses to

remain dominant in transit worldwide. Even within the robotics field, companies

like Nuro or Starship Technologies have implemented wheeled robots [1]. Despite

wheeled locomotion’s successes, there is one major caveat to these vehicles and robots.

Wheeled locomotion has the inability to navigate or traverse complex environments.

Fortunately, nature provides a thoroughly tested solution. Animals such as sheep,

canines, or big cats all have the ability to move quickly and with high agility through

treacherous environments. All of these examples rely on legged locomotion for their

fast and dexterous movements. While legged locomotion exhibits this superior ability

to deal with severe terrain, it is far more difficult to design robots and control systems

that can utilize this behavior.

1.1 Background

There are many potential benefits of legged locomotion. Subsection 1.1.1 covers some

of these potential advantages and where they can be applied. Researchers have been

trying to gain access to these abilities through different solution methods for hundreds

of years. Subsection 1.1.2 covers the general trajectory of these legged locomotion

attempts up to current products.
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1.1.1 Legged Locomotion Applications and Advantages

One sector that is in need and has countless applications for quadrupedal robotics

is mining. Inspection robots would be great for viewing and checking infrastructure

to support some stationary equipment and the miners themselves. Miners’ work

hours are limited to 6-hour shifts and are projected to continue to shorten. Since

these mines can often be as large as 3000 [km], there becomes a necessity to have

the ability to send quadrupeds down when and where workers are low. In addition

to inspection, quadrupeds could be useful for search and rescue, main technology

processes, or auxiliary technology processes. Search and rescue could be highly useful

in the case of tunnel collapse. Robots could provide main technology processes such

as drilling, autonomous transport, or fragmentation of oversized lumps especially as

mines become deeper and branch into dangerous locations. For the same reasons just

mentioned mapping and exploration within the auxiliary technology processes could

prove just as fruitful [2].

Generally, the main areas of application are search-and-rescue or last-mile delivery.

For example, a legged robot could be used to traverse the harsh natural terrain of the

mountains to find a fallen hiker or a lost snow skier while wheeled locomotion would

be unable to get past large boulders or thick vegetation. Another great application

would be to use a legged robot for police activity. Instead of putting a person’s life

at risk, a legged robot could be used to search an apartment. Wheeled locomotives

would be unable to get over blocked passageways or furniture while the legged robot

would be able to jump or step over whatever obstructions were in the way.
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1.1.2 Legged Locomotion’s Past and Present

Researchers, engineers, and inventors have been investigating the dynamic and robust

motion of legged locomotion dating back to the late fifteenth century when Leonardo

Da Vinci first designed and potentially created an armored knight [3]. The next step

in legged locomotion was a patent in 1893. This was purely mechanically driven just

as Leonardo Da Vinci’s was. It was a mechanical horse that relied on gear power

transmission from the user’s feet to kinematic linkages. These initial attempts and

those developed up until the first world war were focused on harnessing a single power

source to be transmitted by linkages and/or gears. This limitation required all of the

designs to maintain a fixed gait [3].

Space General Corporation and General Electric are among the first to implement

variable gait legged locomotion during the 1960s. Space General Corporation’s inspi-

ration was rooted in the need to traverse the moon’s complex terrain. Both General

Electric’s and Space General Corporation’s mechanisms were human-controlled. Gen-

eral Electric’s design proved to be adept at dealing with difficult terrain but the con-

trol was too demanding for most people to operate the system [3]. General Electric’s

findings left the field of legged locomotion with the clear realization that a control

system would be necessary to help people realize legged locomotion’s full potential.

Another project during this time, the Phoney Poney, provided a solution to the

human control dilemma. It successfully demonstrated computer control and electrical

actuation for the first time [3]. There was a large loss of complexity and ability to

handle terrain but this project lead the way for computerized control.

Today, researchers at MIT have achieved high-level designs of quadrupedal robots.

MIT has conducted research on a series of robots called the Cheetah. Cheetah 2 has

accomplished robust bounding up to speeds of 6.4 [m/s] [4]. While Cheetah 3 has
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built upon this model allowing for motion outside of the sagittal plane. A notable

achievement in this design is the Cheetah 3’s ability to move over complex and abrupt

obstacles such as stairs without any external sensors. The robot does not have any

external sensors such as a visual system or force transducers. The robot adjusts to

obstacles purely based on proprioception [5]. Much of the work done in this paper

has been inspired by the controller design in the Cheetah 2.

Boston Dynamics has taken one of the giant steps in quadrupedal robotics and has

released a robot for commercial use. The robot is advertised to be capable of dynamic

balancing, 360-degree terrain mapping, mobility across difficult terrain, and capable

of both remote and autonomous control [6].

1.2 Legged locomotion Control Solutions and Research

There is a large amount of research going into developing legged locomotion control

solutions. To gain some perspective on previous ideas proposed, a series of papers

are reviewed below.

Hodgins focuses on how step length acts as a solution for legged locomotion over

rough terrain. The paper examines three methods for controlling step length: modu-

lating the duration of flight, the duration of stance, and the forward running speed.

Modifying the duration of flight and modifying the forward running speed are found

to be the most useful for controlling step length. These methods were utilized to

enable a biped to traverse a staircase [7].

One quadruped control solution posed by Raibert in ”Trotting, Pacing, and Bound-

ing by a Quadruped Robot” considers a quadruped with linearly actuated legs. This

control solution tackles the three, leg pair gaits: trotting, pacing, and bounding. The
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gaits are transformed into a common underlying gait which can be produced by a

single set of control algorithms. The high-level algorithms are inspired by control

schemes commonly used for the one-legged hopping machine. The high-level con-

trol regulates the vertical motion, stabilizes the running speed, and keeps the body

level. The low-level control modulates leg behavior through foot placement, variable

force transduction, and hip torque manipulation. Gait transitions were possible by

considering a special sequence for each specific change of gait [8].

Another quadrupedal control approach that takes a very modern perspective is pro-

posed by Wang, Hu, and Zhu. This controller utilizes a low-level central pattern

generator for establishing a baseline gait but utilizes machine learning to develop

task-oriented abilities. This system was able to learn a variety of skills demonstrated

through experimentation such as velocity tracking, path following, and navigating to

a target [9].

Kalakrishnan et al. present a control architecture for fast quadrupedal locomotion

over rough terrain. This controller utilizes machine learning for foothold selection

based on a terrain template. Additionally, a body trajectory optimizer and a floating-

base inverse dynamics control scheme are implemented. Their overall control design

allows for robust locomotion over unperceived obstacles [10].

1.3 Objectives

While legged robots provide many advantages over traditional locomotive robots,

they require advanced control methods to gain these desired capabilities. While some

early attempts have utilized human control or relied on gear and linkage trains to

accomplish legged locomotion, it is clear from the research being done today and

current products that computer control is currently the most effective way to achieve
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optimal performance with a quadrupedal robot. With this assumption in mind, the

primary objective of this paper is to investigate a computer control algorithm that

can support stable planar bounding.

The controller design process almost always requires a system model for analysis,

control derivation, and control testing. The closer a model is to the real-world the

more likely a control designer is to create a successful control algorithm. When the

system being controlled is highly complex it can make developing an accurate model a

significant challenge. Additionally, generating model simulations can require a strong

background in computer science and a large amount of time. One potential option

is to actually build the system and run experiments. This option can require a large

financial commitment and experiments can be risky. For this reason, a secondary

objective of this paper is to demonstrate Matlab’s Simcape Multibody as an effective

way to model a mechanical system without requiring the same investment or incurring

the same risks.

In summary the objectives include:

• Stable planar bounding control algorithm

• Simscape Multibody Evaluation

1.4 Significance

This thesis utilizes one of MATLAB’s ad-ons, Simscape Multibody, to model the

quadrupedal robot. This environment provides a user-friendly modeling environment

for simulating mechanical systems with limited assumptions and simplifications. This

program is effective because solid-body elements can be created or imported from

computer-aided design (CAD) software. These solid-body blocks can contain complex
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geometries and accurately represent the associated inertial properties. The solid-body

blocks can be connected through various joint types or frame references allowing for

large mechanical systems to be assembled and analyzed. In addition, the environment

has sophisticated ways for implementing torques or forces on the system including

contact between two bodies. Normally testing a controller would require expert-level

programming knowledge for simulation or require real-world experimentation.

The successful use of this modeling environment has major implications for control

designers with limited programming experience. Many controls researchers and de-

velopers come from a mechanical engineering background. It is very common for

students in this field to be exposed to very limited programming experience. This

can make model simulation an extreme barrier to controller design. With a user-

friendly application like Simscape Multibody, engineers across all fields have a better

opportunity to analyze and control dynamic systems. By making controller design

more accessible, new and creative approaches can more commonly be investigated.

Another benefit to using Simscape Multibody is that more accurate models can be

used for controller testing before experimentation. If the control designer is unable to

design their own high-level simulation from scratch, they may move directly to real-

world testing. This can be very dangerous and expensive. Any critical failures during

real-world experimentation can often hurt the researcher or at minimum damage

equipment. Simscape Multibody modeling helps minimize these risks.

1.5 Outline

The thesis is structured into 6 main chapters. In Chapter 1, legged locomotion’s

applications and history are discussed in Section 1.1. In addition, the chapter covers

the structure and importance of the paper in sections 1.3, 1.4, and 1.5.
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Chapter 2 breaks down all of the system modeling. The chapter is split into two

main topics: the hybrid model and the solid-body model. The hybrid modeling is

heavily inspired by the work done by MIT with the Cheetah 2 [4]. The primary goal

of the hybrid model is to simplify the robotic system without losing its fundamental

behavior. These simplifications make it possible to establish the foundational con-

cepts for the controller. Section 2.1 covers the hybrid model in detail. The solid-body

modeling stage utilizes MATLAB’s Simulink toolbox Simscape Multibody to model

solid-bodies and their interactions. This modeling stage’s purpose is to reduce simpli-

fications and introduce behaviors found in real-world implementation. The solid-body

model provides a way to test and add additional controller layers for improved appli-

cation performance. Section 2.2 details the construction of the solid-body model.

Chapter 3 investigates the existence of periodic orbits, their stability, and the neces-

sary system input to sustain them. Section 3.1 defines periodic orbits in the context

of the hybrid model and analyses the stability of these orbits. Section 3.2 details the

nominal reaction force profiles and gait design to achieve the periodic orbits. The

needed torques to generate the desired reaction force profiles are discussed in Section

3.3. This torque-reaction force mapping is heavily based on the work done in Model-

ing and Control of a Vertical Hopping Robot and Controlling Locomotion of a Robotic

Leg [11] [12]. The last section of Chapter 3 is Section 3.4 where the nominal foot tra-

jectory during the swing phase is detailed. This trajectory is critical for maintaining

the periodic orbits during solid-body or real-world implementation.

The following chapter, Chapter 4, details the overall controller design and its individ-

ual components. The design is heavily inspired by MIT’s Cheetah 2. The controller

is broken down into two main modes: the stance phase and the swing phase. Each

of these phases has feedforward profiles based on the work done in Chapter 3. On

top of the feedforward profile, a body state feedback controller is implemented during

8



stance phases to stabilize the hybrid model around the periodic orbits. The body

state feedback controller design is found in Subsection 4.1.2. Using the solid-body

model, additional control layers are designed to improve potential real-world imple-

mentation. The first additional control is the creation of a gate pattern stabilizer

described in Subsection 4.1.3. Subsection 4.2.2 describes another control layer de-

signed around the solid-body model, a Proportional, Integral, and Derivative (PID)

controller. This PID controller allows foot position control and is necessary to follow

the desired foot trajectory. The last control layer is a swing phase trajectory planner

that accurately predicts the time until the next impact. This air time estimate will

be critical for ensuring the complete foot trajectory can occur before impact. See

Subsection 4.2.3 for further details.

Chapter 5 examines some of the results from varying models and varying control

schemes. Finally, Chapter 6 gives my final thoughts on the research and future steps.

9



Chapter 2

SYSTEM MODELING

Before any controller design process begins there needs to be a sufficiently accurate

mathematical model of the system being controlled. This system is a quadrupedal

robot in the planar bounding locomotion mode. The following chapter cover multiple

modeling scenarios and methods. These sections present insight into the system as

a whole while providing the foundation for controller design. The first section, 2.1,

details the modeling process, assumptions, and simplifications for the hybrid bounding

model. This model provides the basis for designing both the feed-forward and state

feedback control during the stance phase. The other section, 2.2, details a solid-

body model. This model best approximates the real-world behavior of a quadrupedal

system providing a way to test the hybrid model controller and improve it.

2.1 Hybrid Bounding Model

The descriptor planar in the context of bounding refers to the system’s constrained

motion to one plane. This plane of motion can be referred to as the sagittal plane,

splitting the quadrupedal robot in half. The robot can move in the horizontal or

vertical direction within this plane. Therefore, all following analyses are done with

the assumption that there are no out of plane forces or non-normal torques. The type

of motion characterized by bounding includes four phases of a periodic cycle: front

stance, flight, back stance, and flight again. During front stance the two front legs

are in contact with the ground. During both flight phases all legs are off the ground.

During back stance the two back legs are in contact with the ground. The hybrid
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model assumes phase transitions on a pre-defined timing schedule. Each state has a

certain dwell time, Tj ∈ R+, that must occur before each transition, j ∈ {0, 1, 2, 3, 4}.

j = 0 denotes a special transition that initializes the system with no preceding dwell

time. T =
∑

j Tj, is the total time to complete a full bounding cycle. Figure 2.1

shows a road map for this phase cycle.

Figure 2.1: The road map for periodic phase switching.

Equation 2.1 illustrates how the system is governed by two sets of ordinary differential

equations (ODEs). There is one set of ODEs for the stance phases and one set of

ODEs for the flight phases denoted by i.

q̇ = fi(q, t), i ∈ {1,2} (2.1)

11



The state variable, q ∈ R6, includes x, y, θ, and their first derivative. x represents

the mass center’s horizontal position. y represents the mass center’s vertical position.

Lastly, θ represents the angular position of the mass center. t ∈ R+, represents the

continuous time of the system.

The inertia of the system is assumed to be symmetrically distributed along the length,

`, of the hybrid model. The sum of this distributed mass is denoted as m. The

centroidal mass moment of inertia is denoted as I. For this model the legs are assumed

to be massless. In addition, system damping due to joint friction or air resistance is

neglected. The feet of the legs are assumed to exhibit no slip while in contact with

the ground. The final assumption is perfect footfall. This assumption is that foot

location is prescribed by a predetermined hip offset, γx, occurring at impact. These

two assumptions make it possible to neglect the non-linearities of the leg kinematics

and body angle. Equation 2.2 displays how the horizontal foot location, xfoot, is reset

after each flight phase on transitions j = 2 and j = 4.

xfoot =


γx + x+ `

2
cos(θ) j = 2

γx + x− `
2
cos(θ) j = 4

(2.2)

The last two terms of each xfoot equation place the horizontal hip location relative to

the global reference frame. Therefore, hip offset determines the foot position relative

to the global reference frame. Figure 2.2 displays the simplified model utilized for

finding the governing equations. xhip and yhip, in the figure, denote the Cartesian

coordinates for the hip of the leg that is in contact with the ground.

Both sets of equations of motion were generated using Newtonian mechanics. The

equations of motion modeling a stance phase, i = 1, are shown below in Equations 2.3,

2.4, and 2.5. These same equations can be applied to both stance phases. This is ac-
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Figure 2.2: The free body diagram of the simplified sagittal plane
quadruped model.

complished by considering the correct foot for reaction force production, information

determined by the preceding j transition.

mẍ = Fx (2.3)

mÿ = −mg + Fy (2.4)

Iθ̈ = Fy(xfoot − x) + Fx(y) (2.5)

Fx is the horizontal reaction force produced by whichever foot is in contact with

the ground. The vertical reaction force produced by this foot is denoted as Fy. g

represents the acceleration due to gravity observed on the surface of earth.

The equations of motion for both flight phases, i = 2, can be found in Equations 2.6,

2.7, and 2.8. These equations are only governed by gravity making the system very

simple during flight.

mẍ = 0 (2.6)

mÿ = −mg (2.7)
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Iθ̈ = 0 (2.8)

2.2 Simscape Multibody

The hybrid model, as discussed in Section 2.1, has phase switching events tied purely

to periodic timing. A more accurate way to model the system is to incorporate ground

contact triggered phase switching. Another modeling improvement is to incorporate

leg inertia and leg joint friction. To achieve this, the system is modeled using MAT-

LAB’s add-on, Simscape Multibody. The Multibody model better simulates real

world bounding, however the system is still restricted to the sagittal plane and the

force production by each set of legs is still assumed to be symmetric. The following

subsection 2.2.1 details the overall system modeling construction and process. The

additional subsection 2.2.2 gives a more in depth look at the Spatial Contact Force

block since it acts as the focal point for reaction force creation and phase transitions.

2.2.1 Multibody Model Overview

The primary modeling difference between the hybrid model and the Multibody model

is the incorporation of leg dynamics. The legs are two member bodies that are linked

together through a knee joint. The overall leg is connected to the robot through a hip

joint. Each individual leg member is modeled as a distributed mass. Torques at the

knee and the hip act as the system input, opposed to the hybrid model where reaction

forces could be directly applied to the system. Additionally the leg joints are modeled

to contain some internal friction giving the system damping. By incorporating the

leg dynamics, footfall is no longer idealized and bounding phase switching is now

based on impact detection. Contact between the ground and the feet is modeled
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using the Spacial Contact Force block further covered in Subsection 2.2.2. The main

assumption this modeling technique eliminates is the no-slip condition.

The Simscape Multibody environment relies on a signal diagram format. The blocks

that are connected by the signal diagram include joint blocks, inertia/geometry blocks,

coordinate transformation blocks, and some unique modeling blocks like the spatial

contact force block. Table 2.1 lists all of the blocks used and their general purpose.

Table 2.2 lists all of the constants and selected parameters for the blocks found in

Table 2.1. It is important to note that the values of the robot mass, moment of

inertia, and body length, are all borrowed from MIT [4].

Table 2.1: Blocks used in modeling a quadrupedal robot in MATLAB’s
Simscape Multibody

Block Name Function Quantity
Solver Configuration Solver settings 1

World Frame Establishes a reference frame 1
Mechanism Configuration Non-linearities and gravity 1

Rigid Transform Relate and orient reference frames 13
Solid Contains model geometry and inertia 8

Planar Joint Allows motion in a single plane 1
Revolute Joint Allows rotation about a single axis 4

Spatial Contact Force Models reaction forces between bodies 1

The Multibody system I designed can be broken down into three body group types:

the ground plane, the quadruped body, and a lumped leg system. The ground plane

is the simplest of the three, requiring only two blocks: the Rigid Transform block and

the Solid block. The Solid block generates the geometry and the inertial properties

of the ground plane. The Rigid Transform block allows me the ability to fix the

ground plane at a specific location relative to the world frame.The Multibody ground

plane construction can be seen below in Figure 2.3.The block titled Ground Plane

is the Solid block. The rest of the blocks displayed are labeled with their respective

block types. The three additional blocks displayed in the left are necessary for any
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Table 2.2: Model constant parameters.
Symbol Parameter Name Value Units

m Quadruped Body Mass 33 [kg]
I Quadruped Moment of Inertia 2.9 [kg ∗m2]
r1 Thigh Length 0.4 [m]
r2 Shank Length 0.3 [m]
` Quadruped Body Length 0.7 [m]
g Gravity 9.80665 [m/s2]

kstiff Spatial Contact Force Stiffness 4x105 [N/m]
kdamp Spatial Contact Force Damping 4x104 [N ∗ s/m]
µs Static Friction Coefficient 0.7 [−]
µk Dynamic Friction Coefficient 0.7 [−]
µvth Friction Velocity Threshold 0.1 [−]
d1 Hip Joint Damping Coefficient 0.5 [N ∗m ∗ s/rad]
d2 Knee Joint Damping Coefficient 0.2 [N ∗m ∗ s/rad]

Multibody model. The Solver Configuration block allows for selections to be made

so that MATLAB utilizes the correct solver for the particular Multibody model. The

World Frame block creates the world frame that all modeled bodies are related to. The

Mechanism Configuration block allows for the selection of gravity and linearization

parameters.

The quadruped body is the next most simple component consisting of 4 blocks. A

Planar Joint block and two Rigid Transform blocks are used to relate the quadruped’s

Solid block to the world frame. The Planar Joint block is a type of joint block that

constricts motion to a single plane. Therefore, I aligned the joint’s plane of motion

with the model robot’s sagittal plane. Figure 2.4 shows a snapshot of the block

configuration for modeling the quadruped body. The block titled Quadruped Body

is the Solid block. The block titled Planar Joint is the Planar Joint block.

Since the force production by each set of legs in the front and back is assumed to have

symmetric force production, a single lumped leg system is constructed for each set of

legs, back and front. Each lumped leg is co-planar with the center of mass forming
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Figure 2.3: Multibody environment snapshot of the ground plane con-
struction.

the sagittal plane. Torques and rotations at the knee and hip joints act normal to

the sagittal plane.

A single lumped leg system is constructed with ten blocks. Five of the ten blocks are

Rigid Transform Blocks that orient the other five blocks, Solid blocks and Revolute

Joint blocks. There are three Solid blocks: the foot, the shank, and the thigh. The

Revolute Joint blocks model the knee and the hip allowing rotation about one axis.

Figure 2.5 displays the full block diagram for a leg body system. Each Solid block

and Revolute Joint block is titled as the leg component it represents. The rest of the

blocks displayed are the Rigid Transform blocks.

Figure 2.5: Multibody environment snapshot of the leg body system.

Figure 2.6 displays how this whole system integrates together. The Spatial Contact

Force block shown connecting the robot legs to the ground plane is explained in sub-
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Figure 2.4: Multibody environment snapshot of the quadruped body de-
sign.

section 2.2.2. Each grey subsection block represents a type of block system discussed

in the previous paragraphs.

Figure 2.6: Multibody environment snapshot of the complete model.
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When the Simscape Multibody model is simulated it automatically generates an an-

imation helping to visualize the the system response. Figure 2.7 shows a snapshot of

one of these 3 dimensional animations.

Figure 2.7: A 3-dimensional rendering of the solid-body model

2.2.2 Simscape Spatial Contact Force Block

One key block that was not detailed in subsection 2.2.1 is the Spatial Contact Force

Block. This block is used to facilitate all of the reaction forces between the foot and

the ground plane. Figure 2.8 displays the Spatial Contact Force Block. The foot

geometry is passed to the block through port F and the ground plane geometry is

passed to the block through port B. The other two ports shown are for reaction force

sensing.
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Figure 2.8: The Spacial Contact Force Block displayed as it would be in a
Simulink model

In order for the Spatial Contact Force Block to model contact between two bodies, the

block utilizes the penalty method. The penalty method is implemented in this case

by allowing the two geometries to have a small region of penetration. The amount

of penetration directly corresponds to the reaction forces produced between the two

surfaces. The block utilizes a spring-damper system to model the normal force. This

makes the normal force proportional to the penetration distance and velocity. A

user specified transition region is also used by the block to avoid discontinuities in

the solver. This region allows for a gradual ramping of the spring and damping

constants. Once the penetration matches or exceeds the transition region the full

user specified spring and damping constants are applied to the penetration position

and velocity.

Friction force generated from the Spatial Contact Force Block is calculated from

the current normal force and friction coefficient. The block uses what the Simscape

Multibody Documentation refers to as ”Smooth Stick-Slip” to determine the current

friction coefficient. This method has the fricition coefficient as a continuous function

of the tangential velocity near the penetration region. The function mimics a second

order response where the selected static friction coefficient acts as the peak value,

the selected dynamic friciton coefficient acts as the steady-state value, and velocity

replaces time. The peak time in this analogy is the user specified critical velocity
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value. With the normal force calculated and the friction coefficient function the full

reaction forces are generated by the Spatial Contact Force Block.
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Chapter 3

IMPULSE BASED GAIT DESIGN AND PERIODIC ORBITS

The primary desire for the control algorithm established in this paper is to maintain

stable bounding. This means that this controller is only active once the system enters

bounding locomotion. Therefore, the initial states of the system are desired as an end

result of each complete bounding cycle. With this conclusion, the feed-forward control

should support net-zero impulse in the horizontal, vertical, and pitch directions over

the course of a bounding cycle. Section 3.1 details the periodic orbits created by the

aforementioned feed-forward control. Section 3.2 details the formulation and selection

of the feed-forward reaction force profiles. Lastly, Section 3.4 details the necessary

foot trajectory to maintain the periodic orbits for solid body implementation.

3.1 Periodic Orbits

A periodic orbit describes the behavior of a special dynamic system. The system

must generate state trajectories that end at the starting state on a repeating time

basis. It is desired for the quadrupedal system to exhibit this behavior in order to

sustain bounding. The idealized quadruped system follows four distinct state mapping

trajectories that make up the full periodic orbit. Figure 3.1 shows a phase plot of one

of these idealized orbits.
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Figure 3.1: The Idealized system phase plot forming a periodic orbit.

The system governing Equation 2.1 is linear time variant because the reaction forces

are known time dependent functions. Therefore, the equation can be rewritten in

state space as Equation 3.1 to reorganize the system for determining a closed form

solution.

q̇(t) = Ai(t)q(t) + Bi(t) (3.1)

where Ai and Bi are matrices relating the state variables to their time derivatives.

The contents of Ai and Bi are dependent upon which phase the system is in. See

Section 2.1 for further details. Since the Ai and Bi matrices are time variant for both

stance phases, Equations 3.2 and 3.3 are used to determine the closed form solution for

each phase state trajectory, g. These equations are realized from Duhamel’s principal

but are extended to time variant coefficients [13].

gj(qj−1) = Hi(Tj, 0)qj−1 +

∫ Tj

0

Hi(Tj, τ)Bi(τ) dτ (3.2)
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where Tj is the dwell time for each system phase and

Hi(t, to) = e
∫ t
to

Ai(η) dη (3.3)

Each following state in the orbit can be mapped by the previous one until the orbit

is complete and reset. The final state, q4, is reset to the initial state, q0, for the next

periodic orbit state mapping. Equation set 3.4, shows the state to state relationships

through the state trajectory mapping.

qj = gj(qj−1), ∀ j ∈ {1, 2, 3, 4}

q0 = q4

(3.4)

In order for the feed-forward system to operate on a periodic orbit the initial state

needs to fall on a periodic orbit. If you let P in Equation 3.5 represent the successive

execution of g over the range of j then Equation 3.6 can be used to approximately

find a periodic orbit. However, periodic orbits found in simulation are unstable and

diverge due to rounding error.

P(q0) = q4 (3.5)

q0 = arg min
q
||q−P(q)||2 (3.6)
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Figure 3.2: A phase plot of the open-loop hybrid model in the angular
domain. Demonstrates the existence of periodic orbits.

3.1.1 Periodic Orbit Stability

To take a closer look at the actual stability of the periodic orbits the state transition

matrix is utilized. Equation 3.8 displays how each state transition matrix, Φj, is

calculated. The state transition matrix for the entire bounding cycle, Ψ, can be

found by pre-multiplying each phase state transition matrix as seen in Equation

3.7. This combined total state transition matrix’s eigenvalues can be used to find

the system stability. By using the associated equations and calculating the state

transition matrix eigenvalues numerically it is possible to verify that the constructed

system actually exhibits periodic behavior.

Ψ = Φ4Φ3Φ2Φ1, (3.7)
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where

Φj =
dgj

dqj−1

= Hi(Tj, 0)

(3.8)

with j ∈ {1, 2, 3, 4}. The eigenvalues of Ψ are all equal to one. Since the transition

matrix is associated with a system discretized in time, the eigenvalues of 1 tell us that

the system, at best, is marginally stable. Perturbations to the system even as small

as rounding error during simulation can accumulate over consecutive bounding cycles

causing the orbits to destabilize. Therefore, from simulation and stability analysis it

is necessary for this system to utilize a feedback controller on top of the feedforward

design.

3.2 Reaction Force Profiles and Gait Timing

As discussed earlier in this chapter, the ideal reaction force profiles will cause a net

zero change on the momentum of the hybrid model over the course of one full bounding

cycle. Using the equations of motion 2.3 and 2.4 the linear momentum equations can

be calculated by integration. The linear momentum equations are shown in equations

3.9 and 3.10.

m [ẋ(T )− ẋ(0)] =

∫ T

0

Fxdt (3.9)

m [ẏ(T )− ẏ(0)] =

∫ T

0

(Fy −mg)dt (3.10)

It is apparent that if linear momentum is to be conserved the left sides of equations

3.9 and 3.10 need to be set to zero. Therefore,

∫ T

0

Fxdt = 0 (3.11)
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∫ T

0

(Fy −mg)dt = 0 (3.12)

When utilizing these two equations gait timing must be taken into account. For both

Equation 3.11 and Equation 3.12 the F terms are only non-zero for the duration of

Tst ∈ {T1, T3}, the time to complete a stance phase. For a desired forward bounding

velocity of the robot, vd, Equation 3.13 can be used to determine a nominal stance

time.

Tst = L/vd (3.13)

Where L functions as the stroke length of the quadruped leg. The L value selected for

any vd in this paper is 0.4[m], directly taken from MIT’s work done with the cheetah

2 [4]. This length can be thought of as the horizontal distance the foot travels relative

to the robot body during a stance phase.

By using Equation 3.13 to determine stance time and selecting the hip offset, γx, to

be half the stroke length, symmetric force production about the robot mass center

is achieved. This symmetric force production over the course of a bounding cycle

satisfies the net-zero impulse in the pitch direction. Keep in mind, the hip offset γx,

is only guaranteed for the hybrid model.

With the reaction force timing found, the last step is to select a scalable reaction

force function. For this paper, half sine wave functions are chosen as the base force

profiles since they start at zero and end at zero with smooth symmetric ramping in

between. These characteristics help to ensure smooth phase transitions by minimizing

discontinuities at impact and foot-lift. Using equations 3.11 and 3.12 the amplitude

coefficient can be selected for each reaction force profile. The amplitude coefficient

for the reaction force in the x-direction is trivial. As long as the front stance and

the back stance exhibit equal and opposite force profiles linear momentum in the

x-direction will be conserved. In theory, the reaction forces in the x-direction can be
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set to zero. However, robot pitch oscillation is at its most extreme with zero reaction

forces in the x-direction [14]. To find the reaction force amplitude coefficient in the

y-direction, Ay, Equation 3.12 can be modified to the form of Equation 3.14.

mgT = 2

∫ Tst

0

Aysin(πt/Tst)dt (3.14)

Solving equation 3.14 for Ay gives equation 3.15

Ay =
1

4
mgπT/Tst; (3.15)

With the vertical reaction force amplitude coefficient derived a full set of reaction

force profiles can be selected for any given bounding parameters. Figures 3.3 and 3.4

display an example set of reaction force profiles for one full bounding cycle.

Figure 3.3: A plot of the friction force as a function of time over the course
of one full bounding cycle
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Figure 3.4: A plot of the normal force as a function of time over the course
of one full bounding cycle

Tsw, the time a specific leg is off the ground, is defined by Equation 3.16. This time

is held constant for any vd at 0.22[s], again utilizing MIT’s work with the Cheetah 2

[4].

Tsw := Tst + 2Tair (3.16)

Tair ∈ {T2, T4} represents the time the quadruped has both feet off the ground. With

the known value of Tst from Equation 3.13 and the constant value of Tsw, Equation

3.16 can be manipulated to solve for Tair in Equation 3.17.

Tair =
1

2
(Tsw − Tst) (3.17)

The new gait timing terms from this chapter are shown in Figure 3.4 for visual

reference.
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3.3 Torque Reaction Force Mapping

This section finds the equations necessary to link the knee and hip input torques, MA

and MO, to the foot horizontal and vertical reaction profiles. The leg system being

analyzed is made up of two mass-less limbs linked by a knee joint. The top limb, r1,

is called the thigh which creates a rigid body connection between the lumped mass

at the hip and the knee joint. The bottom limb, r2, is called the shank which creates

a rigid-body connection between the knee joint and the mass less foot. The foot in

this leg analysis is assumed to exhibit no slip and remain in contact with the ground.

For a visual of the leg look to the free body diagram in Figure 3.5.

Since the legs are assumed to be mass-less, the power input at at the hip and knee

is equal to the power used to move the hip. Because of this relationship the input

torques can be set equal and opposite to the moments created by the reaction forces.

This can be written as Equation 3.18 where M is a column vector containing MA and

MO, and F is a column vector containing Fx and Fy [4].

Figure 3.5: The free body diagram of a single leg

M = −JTF (3.18)
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The Jacobian matrix, J, is made up of the partial derivatives of each system function

with respect to each function parameter. The system functions being considered

are the x and y positions. Using the forward kinematics, the two functions can be

generated, shown as Equation 3.19 and Equation 3.20 .

x(θ1, θ2) = r1cos(θ1) + r2cos(θ1 + θ2) (3.19)

y(θ1, θ2) = r1sin(θ1) + r2sin(θ1 + θ2) (3.20)

The Jacobian matrix is made by taking the partial derivatives of x and y with respect

to θ1 and θ2. The Jacobian matrix is displayed as Equation 3.21.

J =

−r1sin(θ1)− r2sin(θ1 + θ2) −r2sin(θ1 + θ2)

r1cos(θ1) + r2cos(θ1 + θ2) r2cos(θ1 + θ2)

 (3.21)

Knowing the above information Equation 3.18 can be solved for F by premultiplying

Equation 3.22 to both sides.This gives the reaction forces at the foot as a function of

the input torques.

J−T =

 cos(θ1+θ2)
r1sin(θ2)

− r2cos(θ1+θ2)+r1cos(θ1)
r1r2sin(θ2)

sin(θ1+θ2)
r1sin(θ2)

− r2sin(θ1+θ2)+r1sin(θ1)
r1r2sin(θ2)

 (3.22)

where the exponent of −T is the transpose of the inverse.

3.4 Foot Trajectory

The foot position for the hybrid model is enforced by j transitions allowing for equal

and opposite torques to be generated about the mass center over a bounding cycle.

This is a critical component to periodic orbit behavior within this system. In general
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the hybrid model assumes perfect footfall independent of the system states, however

for solid-body and real world implementation the transitions out of flight phase are

caused by leg contact with the ground. To begin to handle this increase in system

complexity, a foot trajectory must be utilized for leg swing to satisfy the j transitions

from flight to stance phases.

A new time reference is defined in Equation 3.23; sn is the normalized time where

tnsw ∈ R+ is the current time duration of a particular leg swing, front or back. tnsw for

a particular swing is reset to zero when that swing starts again.

sn =
tnsw
Tsw

, ∀ n = f, b (3.23)

where f is for the front leg swing and b is for the back leg swing. The trajectory used

in this paper is generated using a set of Bézier curves defined in equations 3.24 and

3.25. The coefficients βx ∈ R10 and βy ∈ R10, listed in Equation 3.26 and Equation

3.27, were recommended by MIT [15].

γx := γx(βx, sn) (3.24)

γy := γy(βy, sn) (3.25)

βx = [−0.2,−0.259,−0.275,−0.384, 0.261,−0.017, 0.248, 0.267, 0.259, 0.2] (3.26)

βy = −[0.5, 0.45, 0.406, 0.065, 1.031,−0.095, 0.545, 0.374, 0.45, 0.5] (3.27)

Figure 3.6 displays the foot trajectory over the course of one leg swing relative to the

hip position. This trajectory satisfies the location constraint of the flight to stance

transition, however it still relies on the no-slip assumption. To help ensure the no-slip

condition during solid-body and real-world implementation, foot-to-ground velocity
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Figure 3.6: Foot position relative to the hip over the course of a foot swing.

matching needs to be added to the foot trajectory by redefining γx in Equation 3.28.

γx := γx(βx, sswing(βswing, sn)) (3.28)

where sswing is a new Bézier curve with coefficients βswing ∈ R4. It is important

to note that sn is still used as a parameter for sswing and that βx is still the set of

Bézier coefficients for γx. The goal is to modify sn so that the Bézier curve satisfies

equations, 3.29 and 3.30.

γ̇x(sswing(0)) =
∂γx

∂sswing
ṡswing

∣∣∣∣
s=0

= γ̇x(τ) (3.29)

γ̇x(sswing(1)) =
∂γx

∂sswing
ṡswing

∣∣∣∣
s=1

= vd (3.30)
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The βswing values are calculated by Equation 3.31. τ represents the time at the end

of a stance phase and vd represents the nominal horizontal velocity desired.

βswing =

[
0, 1

3
(γ̇x(βx, 0))−1γ̇x(τ), 1− 1

3
(γ̇x(βx, 1))−1vd, 1

]
(3.31)

With the modified horizontal foot trajectory in place the overall foot trajectory sat-

isfies both the position and velocity constraints. Despite meeting theses constraints,

perfect footfall in real-world or solid-body implementation is still not guaranteed.

Since the normalized time relies on accurate swing duration, disturbances to gait

timing can still interfere with perfect footfall. This issue is handled later in Subsec-

tion 4.2.3.
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Chapter 4

CONTROLLER DESIGN

With the two models from Chapter 2 and the gait analysis conducted in Chapter 3,

controller design and implementation is possible. The complete controller is made

up of two separate leg phases. One control scheme is implemented for a leg in the

stance phase and a different control scheme is implemented for the duration of Tsw. A

leg finite state machine coupled with impact detection handles the controller scheme

switching, shown in Figure 4.1. Both of these separate control states contain a feed-

forward component and a feedback component. The following sections will discuss

both components for each leg phase controller.

Figure 4.1: A signal diagram of the controller switching

4.1 Stance Phase Controller

While a leg is in the stance phase it has the ability to provide input to the overall

system by generating reaction forces with the ground. This characteristic is unique

to the stance phase. Since the ground reaction forces are the only way to control the

quadruped’s gait and body state variables, all of the control schemes regarding those
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aspects are implemented during the stance phase. Figure 4.2 shows the signal control

diagram for the Stance Phase Controller within the controller finite state machine.

Figure 4.2: Block diagram for the stance phase state internal control im-
plementation.

4.1.1 Stance Feedforward

To give the system a trajectory to stabilize around, feedforward reaction force profiles

and gait timing is employed. This is the first layer of the Stance Phase controller and

sets the stage for the rest of the design.

The first parameter selected for the feedforward control is the desired horizontal

bounding speed, vd. Using the selected vd with Equation 3.13 gives the stance time,

Tst. Using Equation 3.17 and the experimental swing time value, Tsw, the full nominal

gait timing is determined.

With the Gait timing determined, Equation 3.15 can be used to find the normal

reaction force amplitude, Ay. With Ay found and a user selected friction reaction

force amplitude, Ax, the reaction force profiles can be generated as half sine waves.
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Equation 4.1 and Equation 4.2 give the general forms of the reaction force profiles.

Examples of these two profiles can be seen in Figure 3.4 and Figure 3.3.

Fy = Aysin(πt/Tst) (4.1)

Fx = ±Axsin(πt/Tst) (4.2)

The last aspect of the feedforward control design is the utilization of Equation 3.18

to generate torque inputs that will cause the reaction forces desired at the foot.

4.1.2 Body State Feedback Controller

The first layer of control to add on top of the feedforward control is a body-state

feedback controller. This layer of the overall controller is purely focused on adding

stability around the periodic orbits found through the hybrid model in Section 2.1.

The body-state feedback controller utilizes impedance based control law to generate

modified reaction force profiles during the stance phase. The total reaction force

profile generated is broken down into components in Equation 4.3.

F = F∗ + Fhip + Fv + Fθ (4.3)

F∗ is the nominal reaction force profile discussed in sections 3.2 and 4.1. Fhip is the

feedback force profile focused on stabilizing quadruped hip height, yhip ∈ R, shown

in Equation 4.4.

Fhip =

[
0, gfb(sst)(−kPy(yhip − ydes)− kDy(ẏhip))

]T
(4.4)

sst =
t̄

Tst
(4.5)
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kPy is the proportional gain selected for biasing the system towards the desired hip

height, ydes. kDy is the damping gain selected for minimizing the hip vertical velocity,

ẏhip ∈ R. The gfb function acts as a way to ensure the overall reaction force profile

does not become negative while the nominal reaction force profile is small. The

function behavior can be seen in Figure 4.3.

Figure 4.3: Gain modifier as a function of normalized stance time.

Fv is the feedback force profile designed to stabilize the system around the desired

bounding velocity, shown in Equation 4.6.

Fv =

[
−kDx(ẋ− vd), 0

]T
(4.6)

kDx is a damping coefficient selected to minimize horizontal velocity deviations from

the desired speed.
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Fθ is the feedback force profile that biases the system toward zero pitch, shown in

Equation 4.7.

Fθ =
1

x− xfoot

[
0, kPθθ + kDθ(θ̇ − θ̇des)

]T
(4.7)

kPθ is the proportional gain for minimizing quadruped body angle. kDθ is the damping

gain associated with biasing the angular velocity toward a desired angular velocity,

θ̇des. The fraction in front functions as a way to scale the feedback force profile with

the actual moment arm available to the system.

4.1.3 Gait Pattern Stabilizer

The feedforward reaction force profile combined with the state feedback controller is

sufficient for stabilizing the hybrid model but remains lacking for solid-body and real

world implementation. This is primarily due to imperfect foot fall and gait timing.

To help alleviate the gait timing issues, Equation 4.8 is utilized to make the stance

time adaptive.

T+
st =

L

vd
− κ(T−st + T−air −

T

2
) (4.8)

In this equation, + denotes the new variable value while − denotes the previous

variable value. In the equation above, the old Tst is added to the most recent Tair to

be compared against half a bounding cycle, T
2
. The disparity between the two half

cycles is modified using the gait gain, κ, before being subtracted from the nominal

stance time. The T+
st value is calculated during transitions to a new stance phase.
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4.2 Swing Phase Controller

The Stance Phase Controller does the heavy lifting when it comes to stabilizing the

system. However, it relies upon perfect footfall in order to do that. The Swing Phase

Controller does its best to provide this footfall. In order to achieve this goal the

controller utilizes a feedforward scheme to generate angle trajectories from a nominal

foot trajectory. The Swing Phase Controller also utilizes a feedback control scheme

to adjust foot trajectories based upon air time and ground velocity matching. In

addition, the feedback control employs Proportional, Integral, and Derivative (PID)

control to minimize angle error during swing. Figure 4.4 displays the Swing Phase

Control signal diagram.

Figure 4.4: Block diagram for the swing phase state internal control im-
plementation.

4.2.1 Swing Feedforward

The feedforward part of the swing phase control scheme is concerned with generating

a desired nominal foot trajectory and the corresponding leg angle trajectories. The

foot trajectory design aims to place the foot at the correct horizontal location for
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footfall while matching the horizontal ground velocity. In addition, the foot trajectory

should provide enough clearance with the ground so that an early stance phase is not

triggered. For in depth details regarding the formulation of the trajectory see Section

3.4.

The first step in the feedforward control is to generate a normalized time, sn, from

Equation 3.23 that can be passed into the sswing Bézier curve. Now with both sn and

sswing calculated, Equation 3.25 and Equation 3.28 can be used to find the current

desired foot location. Even though the desired foot location is determined, that still

leaves the leg joint angles as unknowns.

To find the foot position from the current angles is relatively straight forward. Equa-

tions 3.19 and 3.20 provide a simple solution. However, if the unknown values are

the angles and the know values are the Cartesian coordinates of the foot, the solution

process is a lot more difficult. The set of equations becomes a coupled nonlinear sys-

tem. To solve this system the Newton-Raphson method is employed. The basic idea

behind the Newton-Raphson method is to find a function’s roots by approximating

the function with its tangent line. It is necessary to provide an initial guess to the

solution method. The initial guess needs to be close to the desired solution so that it

doesn’t converge to another valid solution. This potential issue is avoided because in

both simulation and real-world implementation the current joint angular position is

known. The current joint angles can be used as the guess to find the closest desired

joint angles. This solution technique both minimizes simulation and system response

time. Equation 4.9 shows the general form of the Newton-Raphson method for a

single function. However, Inverse Kinematics for a two member leg requires a system

of equations. Equation 4.10 displays the Newton-Raphson method applied to the leg

system in a matrix form.

wd+1 = wd −
f(wd)

f ′(wd)
(4.9)
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χd+1 = χd − J−1f(χd) (4.10)

where χ = [θ1, θ2]
T and J can be found from Equation 3.21. d ∈ Z+ represents the

current iteration of the solution. f(χd), shown in Equation 4.11, is the rearranged

form of Equation 3.19 and Equation 3.20 so that the desired foot coordinates, xfootDes

and yfootDes, are included.

f(χd) =

r1cos(θ1) + r2cos(θ1 + θ2)− xfootDes

r1sin(θ1) + r2sin(θ1 + θ2)− yfootDes

 (4.11)

Using Equation 4.10 and Equation 4.11 iteratively until |χd − χd−1| < ε gives a

sufficiently accurate desired angular trajectory to match the desired foot trajectory.

ε is a small user specified error margin.

4.2.2 Proportional and Derivative Control

Selecting and generating a leg trajectory is critical to maintaining stable foot fall.

However, any trajectory is useless if the robot does not have a way to control its leg

position. This section details the method used for creating a position controller for

the robot leg during the swing phase.

For details of the feedforward components, foot trajectory and the inverse kinemat-

ics, see Section 3.4 and Subsection 4.2.1. The feedback portion of the control scheme

utilizes proportional-derivative (PD) style control. The controller is designed to po-

sition the knee and hip motors at specific angles in order to follow the foot trajectory

processed in the feedforward control. The way the controller works is by minimizing

the joint angle error. Equation 4.12 shows the formula for calculating the knee or hip

error, eθ(t).

eθ(t) = θdes(t)− θcur(t) (4.12)
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θdes is the desired hip angle and θcur is the current hip angle. After the error is

calculated its derivative is taken. These two different error values are used to deter-

mine the torque input to a motor, M(t). The control algorithm, shown in Equation

4.13, is best framed in the context of the S-Domain where Eθ(s) = L{eθ(t)} and

M(s) = L{M(t)}.

M(s) = Eθ(s)(kP +
kDkN

1 + kN/s
) (4.13)

kP is the proportional gain, kD is the derivative gain, and kN is the filter gain. These

gains can be tuned and selected for a desired leg system response. Variables can be

selected from a Simulink model to optimize for a given set of response requirements.

4.2.3 Swing Trajectory Planner

A limiting factor of the foot trajectory designed so far is that it relies on a constant

Tsw value. As stated earlier in Section 3.2 the nominal expected Tsw value is 0.22[s].

However, this value fails to take into account the variations in Tst from the Gait

Pattern Stabalizer and the variations in Tair from any disturbances in the vertical or

rotational directions. To solve this problem, Tsw in Equation 3.23 is replaced with

T+
sw. T+

sw is calculated by Equation 4.14 at each transition j = {1, 3} when the system

switches from a stance phase to a flight phase.

T+
sw = T+

st + T−air + TairEst (4.14)

TairEst is a value that estimates the duration of the following flight phase. This value

is calculated using the robot body state variables at the end of the previous stance

phase. Equation 4.15 provides the nonlinear equation that dictates the value TairEst.

Equation 4.15, like the inverse kinematics, is solved numerically using the Newton-

Raphson method. Just as the inverse kinematics have multiple solutions so does this
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equation. To ensure the correct TairEst is found, the nominal Tair is used as the initial

guess.

ydes = −1

2
gT 2

airEst + ẏTairEst + y ± 1

2
`sin(θ̇TairEst + θ) (4.15)

The first three terms describe the projectile motion of the robot mass center in the

vertical domain. The last term is positive for transition j = 3 and is negative for

transition j = 1. This final term is the vertical distance between the mass center and

the hip. Therefore, all four terms on the right estimate the hip location at TairEst.

The idea is to find a TairEst value that places the hip at the desired location for

impact, ydes. With Equation 4.14 and Equation 4.15 in place the foot trajectory can

be more reliable when the system is experiencing gait perturbations.
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Chapter 5

RESULTS

With the system modeled and controller design complete, simulation results can be

reviewed for modeling accuracy and controller performance insight. This chapter

will take a look at 4 different simulation configurations and their results. Section

5.1 reviews the hybrid model performance while only utilizing the nominal reaction

force profiles for input. Section 5.2 examines the results of implementing the body

state feedback controller on the hybrid model. Section 5.3 takes a look at the solid-

body performance with limited control during both stance and swing phases. Lastly,

Section 5.4 reviews the results from the full control scheme implemented on the solid-

body model.

5.1 Open-loop Hybrid Model

The hybrid model open-loop simulations utilize zero feedback control and rely upon

the nominal feedforward reaction force profiles to dictate system behavior. In addi-

tion, the hybrid model assumes perfect foot fall. Therefore, the swing phase feed-

forward and feedback control are not implemented. The simulation initial conditions

were found through the use of Equation 3.6. These initial conditions should theo-

retically place the system on a periodic orbit. Figure 5.1 and Figure 5.2 show these

periodic orbits over the duration of n = 4 bounding cycles. Table 5.1 lists all the

needed parameters to replicate this simulation. As was the case in Table 2.2 some of

the values for the robot are borrowed from MIT’s work with the Cheetah 2. These

values include the robot body mass, mass moment of inertia, body length, stride
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length, and swing time [4]. Additionally, the value for the friction force amplitude

was inspired by a recommended value from MIT [14].

Figure 5.1: A phase plot for the open-loop hybrid model in the angular
domain. n = 4

Figures 5.1 and 5.2 suggest that the system is completely stable on its own. However,

once the number of bounding cycles increases simulations suggest some instability.

Figure 5.3 shows the angular phase plane after 15 bounding cycles. The instability

shown in the figure may only be due to rounding error found in any simulation. No

matter where the instability comes from, it is important to realize the system could

easily be destabilized when less model simplifications are in place. In order to design

a robust system, feedback control needs to be implemented.
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Figure 5.2: A phase plot for the open-loop hybrid model in the vertical
domain. n = 4

Figure 5.3: Open-loop hybrid model phase plot in the angular domain.
n = 15
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Table 5.1: Open-loop hybrid model simulation parameters.
Symbol Parameter Name Value Units

m Body Mass 33 [kg]
I Mass Moment of Inertia 2.9 [kg ∗m2]
` Body Length 0.7 [m]
g Gravity 9.80665 [m/s2]
L Stride Length 0.4 [m]
Tsw Swing Time 0.22 [s]
θ0 Initial Angular Position -0.1662 [rad]

θ̇0 Initial Angular Velocity -3.0207 [rad/s]
y0 Initial Vertical Position 0.5227 [m]
ẏ0 Initial Vertical Velocity -0.2942 [m/s]
x0 Initial Horizontal Position -0.5734 [m]
ẋ0 Initial Horizontal Velocity 4 [m/s]
vdes Desired Horizontal Velocity 4 [m/s]
Ay Normal Reaction Force Amplitude 813.6222 [N ]
Ax Friction Reaction Force Amplitude 50 [N ]

5.2 Closed-loop Hybrid Model

The hybrid model closed-loop simulations still do not use the full stance phase con-

troller. These simulations only utilize the reaction force profiles generated by com-

bining the nominal reaction force profiles with the reaction force profiles created from

the body state feedback control. As stated in the previous section, the hybrid model

does not need any swing phase control implemented because of its perfect footfall

assumption. In addition, the footfall assumption makes the gait pattern stabilizer

irrelevant for the hybrid model.

The closed-loop hybrid model simulations were done starting at a set of arbitrary

initial conditions that do not fall on a periodic orbit. All new or changed parameter

values from the open-loop simulations are displayed in Table 5.2. The full set of

open-loop parameters can be found in Table 5.1. The gains selected in Table 5.2 are

suggested values from MIT [4].
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Table 5.2: Closed-loop hybrid model simulation parameters.
Symbol Parameter Name Value Units

θ0 Initial Angular Position -0.16 [rad]

θ̇0 Initial Angular Velocity -3.02 [rad/s]
ẏ0 Initial Vertical Velocity 0 [m/s]
x0 Initial Horizontal Position 0 [m]
kPy Vertical Proportional Gain 1000 [N/m]
kDy Vertical Damping Gain 120 [N ∗ s/m]
kDx Horizontal Damping Gain 60 [N ∗ s/m]
kPθ Angular Proportional Gain 30 [N/rad]
kDθ Angular Damping Gain 15 [N ∗ s/rad]
ydes Vertical Hip Bias 0.48 [m]

θ̇des Angular Velocity Bias 0 [rad/s]

Figure 5.4 and Figure 5.5 display the system response of the closed-loop hybrid model.

Figure 5.4: Closed-loop hybrid model phase plot in the angular domain.
n = 25
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Figure 5.5: Closed-loop hybrid model phase plot in the vertical domain.
The black thick orbit highlights where the system finds stability. n = 25

Figure 5.4 makes it easy to see that the system stabilizes toward a periodic orbit in

the angular domain. However, the response in the vertical domain takes longer to

stabilize. Figure 5.6 shows bounding cycles 21-25 where the system has found its

stable periodic cycle in the vertical domain. Each distinct loop is a flight phase and

a stance phase.
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Figure 5.6: A phase plot for the closed-loop hybrid model in the vertical
domain. Cycles 1-20 have been removed from the plot. See Figure 5.5 for
the transient response. n = 25

5.3 Open-loop Solid-Body Model

The open-loop solid-body simulations utilize the full feedforward control for both the

Swing Phase and the Stance Phase. Most of the feedback control is neglected ex-

cept the swing phase PD controller. The PD controller is necessary for any potential

bounding motion of the solid-body. The solid-body model also uses the impact detec-

tion and controller state switching to go back and forth between the swing phase and

the stance phase. Figure 5.7, Figure 5.8, and Figure 5.9 show the system response

over 4 bounding cycles. Table 5.3 displays the open-loop solid-body simulation pa-

rameters. As noted with Table 5.1, the stride length, swing time, and friction reaction

force amplitude are from MIT [4][14]. For general solid-body parameters, see Table

2.2.
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Figure 5.7: Open-loop solid-body phase plot in the angular domain. n = 4

Figure 5.8: Open-loop solid-body horizontal velocity response. n = 4
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Figure 5.9: Open-loop solid-body vertical position response. n = 4

The figures demonstrate how the open-loop solid-body system is immediately unstable

and begins loosing all horizontal velocity. Within only 4 bounding cycles the system

reaches a horizontal velocity of 0. Despite improvement in the closed-loop simulation

results, the horizontal velocity issue is persistent among all solid body controller

configurations tested. The nature of the contact modeling detailed in Subsection

2.2.2 seems to be more conducive for resisting overall system motion rather than

adding to it. Overall, these results show the need for the full controller design.
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Table 5.3: Open-loop solid-body model simulation parameters.
Symbol Parameter Name Value Units

L Stride Length 0.4 [m]
Tsw Swing Time 0.22 [s]
θ1F Front Hip Initial Angular Position -2.6266 [rad]
θ2F Front Knee Initial Angular Position 1.6646 [rad]
θ1H Hind Hip Initial Angular Position -1.7259 [rad]
θ2H Hind Knee Initial Angular Position 1.7179 [rad]
θ0 Initial Angular Position -0.08 [rad]

θ̇0 Initial Angular Velocity 0 [rad/s]
y0 Initial Vertical Position 0.543 [m]
ẏ0 Initial Vertical Velocity 0 [m/s]
x0 Initial Horizontal Position -0.5489 [m]
ẋ0 Initial Horizontal Velocity 4 [m/s]
vdes Desired Horizontal Velocity 4 [m/s]
Ay Normal Reaction Force Amplitude 813.6222 [N ]
Ax Friction Reaction Force Amplitude 50 [N ]
kPhip Hip Proportional Gain 1731.4 [N ∗m/rad]
kDhip Hip Derivative Gain 224.26 [N ∗m ∗ s/rad]
kNhip Hip Filter Gain 4.32 [rad/s]
kPknee Knee Proportional Gain 1.15e3 [N ∗m/rad]
kDknee Knee Derivative Gain 0 [N ∗m ∗ s/rad]
kNknee Knee Filter Gain 0 [rad/s]

5.4 Closed-loop Solid-Body Model

The closed-loop solid-body simulations have the entire control design implemented.

These simulations were tweaked and tuned to attempt to find the best possible con-

figuration. Figure 5.10 and Figure 5.11 display the results from the best control

configuration so far. Since there is an infinite number of gain and parameter values,

there certainly exists a more perfect configuration. Table 5.4 lists all of the new or

differing parameters from Table 5.3. All of the parameters selected in Table 5.4 ex-

cept the friction reaction force amplitude and the angular velocity bias are inspired

by the work done with the Cheetah 2 [4].
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Table 5.4: Closed-loop solid-body model simulation parameters.
Symbol Parameter Name Value Units
Ax Friction Reaction Force Amplitude 180 [N ]
kPy Vertical Proportional Gain 800 [N/m]
kDy Vertical Damping Gain 120 [N ∗ s/m]
kDx Horizontal Damping Gain 60 [N ∗ s/m]
kPθ Angular Proportional Gain 25 [N/rad]
kDθ Angular Damping Gain 15 [N ∗ s/rad]
κ Gait Gain 0.3 [−]
ydes Vertical Hip Bias 0.48 [m]

θ̇des Angular Velocity Bias 0.25 [rad/s]

Figure 5.10: A phase plot for the closed-loop solid-body model in the
angular domain. n = 4

Figure 5.10 suggests stability in the angular domain for the first four bounding cycles.

The outlying orbit at the end of the cycle is due to the system approaching a double

stance phase. Double stance is where both the front leg and back leg are in contact

with ground. This system mode, despite being stable, is not desirable since it does

55



Figure 5.11: Horizontal velocity response of the closed-loop solid-body
model. n = 7

not fit the characteristics of bounding. Simulation data shows that the system is able

to recover from this single double stance and return to an acceptable bounding gait.

The horizontal velocity unfortunately does not stabilize around the desired value but

instead approaches a value between 1.5 and 2 [m/s]. This is still an improvement upon

the open-loop configuration and demonstrates stable bounding despite the decrease in

speed. The first reason for improvement, besides the body state feedback control, is

that foot to ground speed matching was implemented. Theoretically entirely positive

friction profiles should be possible with foot to ground speed matching. Another

major reason for improvement is a change to the nominal friction reaction force profile.

The nominal profile commanded from the system is three times that of the open-loop

configuration. In addition, both front and back profiles are selected as positive. It is

important to note that these selections do not accurately represent the friction forces

experienced during simulation. Even with these drastic changes to the friction profile
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the system still sees a predominantly negative friction force during front stance and

some negative friction during back stance.

These results show the controller configuration supports stable bounding over 4

bounding cycles. This conclusion is very promising for continued research and work

regarding quadrupedal bounding using the techniques detailed in this paper.

57



Chapter 6

CONCLUSION AND FUTURE STEPS

It is important to continue investigation into quadrupedal control design in order to

take full advantage of the beneficial characteristics of legged locomotion. There are

countless potential control schemes and configurations that have the potential for

optimized performance.

The hybrid modeling done in this paper displays the importance of understanding

the fundamental behavior of a system in order to create the frame work for intelligent

control design. The solid-body modeling done in MATLAB’s Simscape environment

demonstrates the ability to create a model that may be more realistic than a control

designer’s mathematical model. This is of further importance because it provides a

way to test and modify a control scheme for implementation. This type of controller

design reduces financial and safety risks associated with real world experimentation.

Any critical failures during experimentation may put a person’s health at risk or

damage equipment. Finding these critical failures in simulation provide a much more

effective controller design procedure.

The controller demonstrates promising improvements to open-loop behavior and pro-

vides robust bounding for 4 consecutive cycles. This validates the fundamental logic

behind the control scheme and compels further investigation in tuning or additional

control layers. The primary next steps for improving the controller design would be

focused on producing more desirable friction reaction force profiles. If this single issue

is fixed I believe the controller performance will reach its full potential. It could be

useful to analyze system simulation response when stabilizing around lower desired
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speeds. It is possible that by reducing bounding speed, friction force production may

be easier. Another potential way to improve the controller is from the perspective of

optimal control. This could be useful for minimizing energy consumption.

Now that the control design has been verified, the system can be tested experimen-

tally. This stage of the research will require a quadruped and a test stand for restrict-

ing the system to the sagittal plane. Once successful implementation in the sagittal

plane is complete, full quadruped function can be achieved by implementing out of

plane stability and transient start up control.
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APPENDICES

Appendix A

GITHUB REPOSITORY

All necessary files or calculations for recreating the work done in this thesis can be

found in the GitHub repository https://github.com/paward661/Sagittal_Bounding
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