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ABSTRACT 

Using Portable X-ray Fluorescence to Predict Physical and Chemical Properties of 
California Soils 

Micaela Dyani Frye 

Soil characterization provides the basic information necessary for understanding 
the physical, chemical, and biological properties of soils. Knowledge about soils can in 
turn be used to inform management practices, optimize agricultural operations, and 
ensure the continuation of ecosystem services provided by soils. However, current 
analytical standards for identifying each distinct property are costly and time-consuming. 
The optimization of laboratory grade technology for wide scale use is demonstrated by 
advances in a proximal soil sensing technique known as portable X-ray fluorescence 
spectrometry (pXRF). pXRF analyzers use high energy X-rays that interact with a sample 
to cause characteristic reflorescence that can be distinguished by the analyzer for its 
energy and intensity to determine the chemical composition of the sample.  

While pXRF only measures total elemental abundance, the concentrations of 
certain elements have been used as a proxy to develop models capable of predicting soil 
characteristics. This study aimed to evaluate existing models and model building 
techniques for predicting soil pH, texture, cation exchange capacity (CEC), soil organic 
carbon (SOC), total nitrogen (TN), and C:N ratio from pXRF spectra and assess their 
fittingness for California soils by comparing predictions to results from laboratory 
methods. Multiple linear regression (MLR) and random forest (RF) models were created 
for each property using a training subset of data and evaluated by R2, RMSE, RPD and 
RPIQ on an unseen test set. The California soils sample set was comprised of 480 soil 
samples from across the state that were subject to laboratory and pXRF analysis in 
GeoChem mode.  

Results showed that existing data models applied to the CA soils dataset lacked 
predictive ability. In comparison, data models generated using MLR with 10-fold cross 
validation for variable selection improved predictions, while algorithmic modeling 
produced the best estimates for all properties besides pH. The best models produced for 
each property gave RMSE values of 0.489 for pH, 10.8 for sand %, 6.06 for clay % 
(together predicting the correct texture class 74% of the time), 6.79 for CEC (cmolc/kg 
soil), 1.01 for SOC %, 0.062 for TN %, and 7.02 for C:N ratio. Where R2 and RMSE 
were observed to fluctuate inconsistently with a change in the random train/test splits, 
RPD and RPIQ were more stable, which may indicate a more useful representation of out 
of sample applicability. RF modeling for TN content provided the best predictive model 
overall (R2 = 0.782,  RMSE = 0.062, RPD = 2.041, and RPIQ = 2.96). RF models for 
CEC and TN % achieved RPD values >2, indicating stable predictive models (Cheng et 
al., 2021). Lower RPD values between 1.75 and 2 and RPIQ >2 were also found for 
MLR models of CEC, and TN %, as well as RF models for SOC. Better estimates for 
chemical properties (CEC, N, SOC) when compared to physical properties (texture), may 
be attributable to a correlation between elemental signatures and organic matter. All 
models were improved with the addition of categorical variables (land-use and sample 
set) but came at a great statistical cost (9 extra predictors). Separating models by land 
type and 
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lab characterization method revealed some improvements within land types, but these 
effects could not be fully untangled from sample set. Thus, the consortia of characterizing 
bodies for ‘true’ lab data may have been a drawback in model performance, by 
confounding inter-lab errors with predictive errors. Future studies using pXRF analysis 
for soil property estimation should investigate how predictive models are affected by 
characterizing method and lab body. While statewide models for California soils 
provided what may be an acceptable level of error for some applications, models 
calibrated for a specific site using consistent lab characterization methods likely provide a 
higher degree of accuracy for indirect measurements of some key soil properties.  
 
Keywords: Portable X-ray fluorescence spectrometry, soil reaction, soil texture, cation 
exchange capacity, soil organic carbon, prediction models, random forest, California soils 
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“The ancient teachers of this science,” said he, “promised impossibilities, and performed 
nothing. The modern masters promise very little; they know that metals cannot be 
transmuted, and that the elixir of life is a chimera. But these philosophers, whose hands 
seem only made to dabble in dirt, and their eyes to pore over the microscope or crucible, 
have indeed performed miracles. They penetrate into the recesses of nature and show how 
she works in her hiding places. They ascend into the heavens; they have discovered how 
the blood circulates, and the nature of the air we breathe. They have acquired new and 
almost unlimited powers; they can command the thunders of heaven, mimic the 
earthquake, and even mock the invisible world with its own shadows.”  

Mary Shelly, Frankenstein 
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   Chapter 1 

INTRODUCTION 

Soils underpin life on Earth while also playing a major role in today’s most 

pressing environmental challenges, making their effective management more important 

now than ever before. The sustainable preservation of land ensures that humans and the 

constructed environment can exist in harmony with the natural world. In essence, an 

understanding and full consideration of soil bodies is crucial for any successful endeavor 

where humans impart on the land. Soil characterization provides the basic information 

necessary for understanding the physical, chemical, and biological properties of soils, 

which we rely on for food security, maintaining forests and grasslands, and supporting 

the structures that mark modern human civilization. Analytical data about these soil 

properties is necessary for taxonomic classification schemes that help organize existing 

knowledge, foster clear communication, and provide a basis for interpreting the behavior 

of soils. In California, soils show great variation due to the state’s diverse topography, 

underlying geology, and climatic conditions. Mapping soils across the landscape provides 

valuable information pertaining to fertility and suitability for a vast range of applications. 

Overcoming the broad generalizations that weaken predictive mapping requires a high 

density of ground truth data. This quantitative data allows for appropriate use of soil 

resources so that human needs can be met while ecological sustainability and 

environmental safeguards are preserved.  

Regionally, changes in land cover and land-use can subdue or enhance effects of 

climate change (Jia et al., 2019). Therefore, the management decisions made by 

agriculturists, land managers, and governments of all scales within the coming decades 
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will steer the trajectory of the global carbon balance. The concentration, quality, and 

dynamics of soil organic carbon (SOC) has a major impact on soil quality, functionality, 

and health (Lal, 2016). Since the largest share of terrestrial carbon is found in soils 

(Trumbore, 2009), continued degradation of soil health and loss of SOC could cause 

massive disruptions to the ecosystem services provided by soils— including water 

filtration, climate regulation, nutrient cycling, and food production (Garrett et al., 2018; 

Francaviglia et al., 2018). At smaller scales, implementing best management practices 

requires knowledge of various soil properties depending on the desired use. At grander 

scales, monitoring SOC to meet ambitious goals like increasing soil carbon stocks by 4% 

annually as called for by the “4 per 1000” initiative and improving social, economic, and 

ecological wellbeing outlined by the United Nations Sustainable Development goals will 

require streamlined sampling protocols which are reliable and accessible (Trivedi et al., 

2018; Lal, 2016). There is evidence that effective and targeted soil management may lead 

to an increase in soil carbon content, water-holding capacity, and infiltration (Bos et al., 

2017). Improving soil health can also decrease erodibility by providing protection against 

more frequent and severe weather events that contribute to soil erosion (Deryng, 2020). 

Appropriate soil management is therefore of vital importance for regions relying on 

maintained soil health for crop production, and to those areas dependent on the exports 

from agricultural hubs.  

California’s agricultural sector is large, dynamic, and provides huge economic 

value on a world-wide scale as a producer and exporter (CDFA, 2019). Despite this 

vigorous productivity, California’s crucial role as the food production epicenter of the 

United States is threatened by climate change induced pressures, which have continually  
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 increased heat extremes and droughts in the state since the 1950s (IPCC, 2021). Changes 

in temperature, precipitation, snowpack, extreme heat events, and flooding resulting from 

climate change are expected to prompt extensive spatial shifts in cropland acreage in 

California (Pathak et al., 2018). In addition to agricultural land cover shifts, grasslands 

and forests also face significant risk. Continued population growth and urbanization in 

the state is expected to decrease forest and rangeland areas (Wilson et al., 2016). As a 

consequence, fragmentation of these wild ecosystems threatens native biodiversity. These 

anthropogenic land changes cause fundamental shifts in the energy balance of the land 

and surface-heat budget (Mölders, 2012) and play a major role in terrestrial carbon losses 

(House et al., 2005). 

Deliberate attempts by humans to remove carbon dioxide from the atmosphere in 

conjunction with controlling emissions to reach “net zero” emissions could limit warming 

in the long term to 1.4 °C and advert the most catastrophic effects of climate change 

(IPCC, 2021). Soil carbon sequestration is one such carbon dioxide removal technique 

with great potential as a carbon sink for a low cost (< $0 - $100/ton) with an estimated 

reduction in CO2 concentrations between 2 and 5 gigatons/year by 2050 (IPCC, 2018). 

Soils act as both a buffer to increasing levels of atmospheric CO2 as well as a sink for 

carbon, but deterioration of land and loss of SOC stores poses ominous threats to 

ecosystem functioning and human livelihood (Trivedi et al., 2018). Therefore, optimal 

use of soil resources will focus on preservation, restoration, and informed stewardship by 

land-users.  A growing interest in tracking SOC coupled with a sustained need for soil 

characterization to understand the current state of soil health is made possible with 
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regular and accurate soil testing regimes. Initial simplistic methods to characterize soil 

features of interest have been refined over the previous century, giving way to more 

advanced and accurate methods (Weindorf and Chakraborty, 2020). In fact, current 

analytical standards often require specialized laboratory procedures for identifying each 

distinct property (Soil Survey Staff, 2014b). However, certain shortcomings of these 

methods are apparent. For instance, an accepted laboratory technique for sample 

elemental detection and quantification uses inductively coupled plasma (ICP) 

spectrometry. However, sample preparation for this method usually requires acid 

digestion with strong caustic chemicals including hydrochloric, nitric, and sometimes 

hydrofluoric acid (US EPA, 1996a; US EPA, 1996b), and can still result in incomplete 

digestion leading to measurement inaccuracies. Where these specialized methods are 

possible, traditional laboratory analysis for a range of soil properties can be a costly and 

time-consuming process, requiring sophisticated equipment and specially trained 

operators. The barriers to entry for analytical laboratory equipment compel a dire need 

for reproducible methods to quantify soil properties on a large scale in countries all over 

the world where soil information is often sparse or inadequate and access to reliable soil 

testing facilities is limited (Towett et al., 2015).  

A critical aspect to soil-testing is ensuring samples are representative of the soil 

attributes within a field. The high variability of soil across a landscape necessitates more 

efficient ways to determine soil attributes than traditional approaches. Sensor based 

technologies offer the opportunity to increase soil knowledge. The optimization of 

laboratory grade technology for wide scale and field-based use is demonstrated by the 

advances in a proximal soil sensing technique known as portable X-ray fluorescence
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 (pXRF). pXRF analyzers harness the power and reliability of benchtop XRF analysis in 

a sophisticated yet compact instrument that can be carried in a single hand and brought 

into the field. Onsite analysis of elements ranging in concentration from just a few ppm 

to 100% can be performed in about a minute with these devices. pXRF technology works 

by emitting high energy X-rays that excite electrons of different elements, causing them 

to be ejected  from their inner shell positions. As outer shells electrons move to fill the 

inner shell void, a characteristic reflorescence is emitted from the sample (Sharma et al., 

2014). The energy and intensity of the egressing fluorescence are measured as electric 

signals by the pXRF and translated into analytical data representing the specific elements 

and their concentrations present in the sample. High analytical precision of pXRF 

instruments (Hall et al., 2011; Goodale et al., 2012) and their close correlation to 

benchtop XRF (Shefsky, 1997; Guerra et al., 2014; Sarala, 2016) has proven the utility 

of this technology. The benefits of portable XRF transcend monetary and labor savings 

by offering real time decision support and increasing sample sizes to achieve a nuanced 

understanding of the soil environment. As the technology has evolved to become more 

powerful, the capabilities and utility of the instrument have also expanded—making 

pXRF analyzers a reliable tool used across a range of disciplines.  

While pXRF only measures total elemental abundance, the concentrations of 

certain elements have been used to develop regression-based and algorithmic models that 

indirectly predict several different soil characteristics (Radu and Diamond, 2009). pXRF 

has shown incredible capacity to quickly and accurately predict key soil features such as 

pH (Sharma et al., 2014), cation exchange capacity (CEC) (Sharma et al., 2015), texture 
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(Benedet et al., 2020), gypsum quantification (Weindorf et al., 2013), horizonation 

(Weindorf et al., 2012), salinity (Swanhart et al., 2014), lithologic discontinuities 

(Weindorf et al., 2015), and C:N ratio (Towett et al., 2015). pXRF methods for soil 

characterization have the potential to produce rapid, reproducible, and cost-effective 

estimates with only minimal sample preparation. The draw of this research is achieving 

good estimates of important soil features without the inherent expense or traditional lag 

time between sampling and results. Additionally, high spatial resolution of in-situ 

measurements via pXRF means that a more reliable site assessment can be achieved than 

would be possible with fewer ex-situ measurements. Utilizing pXRF technology may 

help optimize agricultural operations in the immediate future by measuring the 

concentrations of elements important for soil fertility and deriving physical and chemical 

properties of interest via digital soil morphometrics (Stockmann et al., 2016). Tracking 

changes across time is necessary for meeting goals that require reliable carbon pools and 

carbon sequestration to be monitored  (D'Amore and Kane, 2016) and also aids in 

adjusting land use management strategies proactively to discover which practices pay off 

in the long term. 

Methods using pXRF to infer soil properties via regression analysis have 

produced successful predictions when applied to test samples within that sample set. 

However, the utility of these models when applied to soils from a different geographic 

range is unknown. Previous studies necessarily confined by sample availability have 

produced regionally calibrated and validated models, warranting ongoing investigation 

into formulating larger scale models. This study aims to evaluate and refine the predictive 

power of existing published models that use pXRF to characterize soil properties for use  
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on Californian soils collected from throughout the state. If this technology is to be used 

for regulatory or monitoring purposes in the future, there must be a certain guarantee 

ofaccuracy and precision of the parameter estimates given. Even if pXRF estimates of

soil properties prove to have a lower degree of accuracy than laboratory determinations, 

this could be compensated for by the higher density sampling permitted with pXRF 

analysis. Ideally, a mixture of lab characterized and pXRF predicted properties could 

give a holistic picture of the land with more reasonable time and economic inputs than 

the current standards. In addition, the overall economic impact of soil testing in 

California could be greatly reduced with a shift to indirect measurements of soil 

properties via pXRF analysis when compared to traditional laboratory testing.  

pXRF analysis appears to be a timely and elegant solution for predicting a suite of 

soil properties while significantly cutting down on the volume of samples required for 

traditional lab analysis, but it’s accuracy and limitations must be evaluated on larger 

spatial scale. The objectives of this study were as follows: (1) evaluate existing models 

and model building methods that predict soil pH, texture, cation exchange capacity 

(CEC), soil organic carbon, total nitrogen, and C:N ratio from pXRF spectra and assess 

their fittingness to California soils by comparing predicted values to results from 

traditional laboratory methods, (2) use pXRF analysis to create multiple linear regression 

and random forest models to predict these properties and, (3) assess how the categorical 

variables of land type and characterization methods affect estimates. To accomplish these 

objectives, a set of soil samples from across the state of California was characterized 

using conventional laboratory procedures and using a pXRF analyzer. Several models 

were created to link elemental concentrations to physical and chemical soil properties. 
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Chapter 2  

 LITERATURE REVIEW 

2.1 Introduction 

California’s agricultural sector has consistently achieved tremendous gains in 

export values (CDFA, 2020)— providing a diversity of crops, including several specialty 

crops, throughout the country and sustaining a considerable workforce. However, the 

effects of climate change are already accentuating variable weather events, inducing large 

scale land use shifts, and challenging existing crop cultivation systems. To cope with 

rising food demands coupled with fewer acres of arable land, more efficient and 

sustainable agricultural production systems will be necessary. Targeted soil management 

achieved through the use of advanced technology is one solution that can help meet these 

needs by basing management decisions off quantitative data. Achieving high-density, 

accurate, and timely characterization of soils by proximal sensing techniques is one area 

which has shown great promise for this cause. Over the last two decades, improvements 

in portable X-ray florescence spectrometry (pXRF) detectors and miniaturization of 

internal parts have transformed the niche analytical technique to a widely accepted tool 

for obtaining total elemental analyses. pXRF works by subjecting a sample to high 

energy X-rays which cause electrons to be expelled from their inner shell positions and 

replaced by outer shell electrons (Sharma et al., 2014). This process results in a re-

emittance that detected by the pXRF as a characteristic fluorescence and translated into 

an analyte quantity based upon the unique energy and intensity of the spectral peaks 

(Bosco, 2013). Using the total elemental profile determined by pXRF (both alone and in 

tandem with other sensor data) as a proxy, various other physiochemical properties of 

interest can be estimated (Gozukara et al., 2022). Non-destructive sampling can be 
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achieved both in and ex-situ— but abiding by certain best operating practices is 

important for ensuring data accurately reflect the chemical composition of the sample in 

question. This literature review will explore the challenges and opportunities faced by 

California, technological advancements for resource use management, the working 

principles behind portable X-ray fluorescence spectroscopy, its use for modeling soil 

properties, and pertinent operating principles and considerations for use.  

2.2 Climate change impacts for California 

2.2.1 Overview 

California’s fertile soils, Mediterranean climate, and extensive groundwater storage 

and delivery basins have allowed for the establishment and growth of a highly productive 

agricultural industry that serves as the backbone of the United States food supply. With 

the fifth largest economy in the world (IMF, 2021), this multi-billion-dollar sector is the 

nation’s sole exporter of several agricultural commodities and specialty crops (CDFA, 

2019). However, California faces significant vulnerability from impending climactic 

shifts lying outside the bounds of natural seasonal variability. The agricultural sector 

proliferates the amount of greenhouse gas emissions (GHGs) that contribute to climate 

change while also being disproportionately impacted by the effects of climate change 

(Deryng, 2020; Jackson et al., 2012), representing a critical challenge to humankind.   

2.2.2 Land-use changes 

In the state of California, developed urban and suburban areas coalesce with 

intensively managed farmlands, grazed rangelands, and protected ecosystems to create a 

diverse mosaic of land uses. Regardless of the preparedness of the state or current efforts 

to curtail emissions, climate change effects will trigger extensive shifts in land-use 
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throughout California. Projected land use changes in the Central Valley indicate an 

increase in developed land cover (21,141 km2/62.9%) and decreases in annual cropland (-

30.3%) and rangeland (-7.3%) (Fig 2.1).  These land use conversions coincide with 

population growth estimates in the state— from 39.5 million in 2021 to 44.2 million by 

2060 (California Department of Finance, 2021a; 2021b). 

Figure 2.1: Historical and projected land use change in the Central California Foothills, 
Coastal Mountains, and Central Valley between 1992-2062 under a business-as-usual 
scenario (Excerpted from Wilson et al., 2016). 

In a study by Jackson et al. (2012), a spatially explicit agricultural vulnerability 

index for the state of California was derived from a framework of 22 land-use, climate, 

crop, and socioeconomic variables. The Sacramento‐San Joaquin Delta, Salinas Valley, 

the corridor between Merced and Fresno, and the Imperial Valley showed high 

agricultural vulnerability (Fig. 2.2). Authors suggested that adapting localized approaches 
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could be a benefit in addressing the resiliency or vulnerability of different regions who 

could use this information in developing climate action plans. 

Figure 2.2: The Total Agricultural Vulnerability Index integrates Climate Vulnerability, 
Crop Vulnerability, Land Use Vulnerability and Socioeconomic Vulnerability to display 
regions of concern in California (Excerpted from Jackson et al., 2012). 

The progressive development and inhabitation of California’s urban areas is an 

extreme case of landcover change. An expansion of urban areas into wild areas results in 

the replacement of natural surfaces with artificial surfaces. These urban surfaces conduct 

and store heat, causing higher air temperatures than surrounding rural areas in a 

phenomenon called urban heat island (UHI) (Vahmani et al., 2016). Higher temperatures 

can in turn provoke higher energy consumption by the population, which further drives 
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greenhouse gas emissions and warming. Furthermore, urban areas are major sources of 

carbon dioxide emissions, with up to 97% of human generated carbon emissions coming 

from cities (Svirejeva-Hopkins et al., 2004). Another consequence of urbanization is the 

reduction in natural land area serving as terrestrial carbon sinks (Grimmond, 2007). 

Urbanized areas also change the nature of carbon cycling, with around 50% of carbon 

from net primary productivity horizontally redistributed to other ecosystems, where 

decomposition conditions are variable (Svirejeva-Hopkins et al., 2004).  

Population increases and urbanization in California have caused considerable 

impacts on natural ecosystems. The areas in which man-made structures border or 

coalesce with natural vegetation are called Wild-land Urban Interface (WUI). California 

has the largest number of houses and highest population of people living in WUI areas 

which are at high-risk for wildfire (Li et al., 2022). Wildfires have become more severe in 

the state, with the area of land burned increasing each year (OEHHA, 2018). In 2020, 

over 10 million acres of land were burned by wildfires, and almost 40% of these acres 

were in California (CRS, 2021). Deadly wildfire events intensified by climate change 

release stored carbon in soils and emit carbon dioxide into the atmosphere— 111.7 metric 

tons of CO2 from California wildfires in 2020 (Huntsinger and Barry, 2021). 

Mediterranean vegetation and alpine forest ecosystems, both characteristic of California 

woodlands, are also particularly vulnerable to wildfire (Fischlin et al., 2007). 

Forests and climate change are inextricably tied, with forested land mitigating 

climate change effects by serving as a carbon sink, but also having the potential to 

contribute to climate change when forests are burned or destroyed, which releases CO2 

emissions. Between the years 1990 to 2020, there has been a global net loss of 178 
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million hectares of forest, primarily due to agricultural land conversion (FAO, 2020). The 

need for resources and land for food cultivation must be balanced with conservation 

goals, which requires more efficient and suitable food systems. Forests provide habitats 

to most of earth’s terrestrial species and preserve genetic diversity (Van Bodegom et al., 

2009). A direct benefit of forest conservation is habitat preservation for endangered 

species (Anderson et al., 2017). To meet the UN’s Sustainable Development goals for 

biodiversity, large scale reforestation efforts will be needed (FAO, 2020).  

Habitat loss and fragmentation is also a threat to grassland ecosystems, which 

support native biodiversity, ranching activities, and recreation (Root et al., 2015). The 

invasion of non-native grass species from the Mediterranean region have altered the soil 

carbon balance; in comparison to invasive grasses, native grassland perennials have been 

shown to increase carbon storage and root biomass, while decreasing soil evaporation to 

create a cooler and moister microbiome (Root et al., 2015). To ensure that plant and 

animal species dependent on grassland ecosystems have enough interconnected swaths of 

habitat to maintain their populations in the face of fire and range shifts, large enough 

areas of viable grassland habitats need to be established and protected (Klausmeyer et al., 

2011). For instance, Gea-Izquierdo et al. (2007) found that in Californian grasslands 

where non-native species dominate over native grasses, ‘islands’ of low soil fertility 

(high C:N ratios) provide a refuge for the native species. This research shows that 

landscape scale planning of conserved areas can help diverse native grassland species 

remain in the future.  

Mediterranean ecosystems characteristic of California are strongly influenced by 

a changing climate. As these climate sensitive systems oscillate more widely outside of 
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historic ranges of variability, resource managers are confronted with many unknowns and 

increasingly complicated risk-benefit analyses. In the design and maintenance of any 

ecological management plan, an understanding of many mechanisms and existing 

infrastructure is integral to a holistic approach. For instance, impervious surfaces in urban 

areas can cause flooding and consequent soil erosion in adjacent natural areas. Thus, the 

unique conditions of different land types and their interconnected dynamics play a role in 

soil health and management. Land use change has historically played a huge role in 

terrestrial carbon losses (40% over the last two centuries) by altering natural carbon 

fluxes between the soil and the atmosphere (House et al., 2005). Land use is both a driver 

of and resultant impact from climate change. Understanding how and why land cover 

changes as well as future threats and opportunities for improved land management is key 

to addressing the complex interactions between drivers and impacts on ecosystem health. 

2.2.3 Impending agricultural challenges 

In California, the minimum rate of temperature increase is higher than average 

global increases, resulting in more frequent and severe droughts and heat waves (Pathak 

et al., 2018). Agriculture is impacted directly and indirectly by changing climate 

conditions including temperature shifts, precipitation and snowpack, and extreme weather 

events. 

Understanding the climate sensitivity of crops to future climate conditions is 

difficult because weather and climate effects conditions must be uncoupled from other 

yield effecting factors including fertilization, pesticides, and soil health. Modeling the 

effects of specialty crop production is further complicated by the vast diversity of plants 

and their physiologies, various cultivation practices, and specific geographic 
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considerations (Auffhammer, 2014; Kerr, 2018; OEHHA, 2014). For major commodities 

including soy, wheat, cotton, and corn, evidence points to extremely detrimental effects 

of ‘extreme heat days’ (30ºC) on yields (Auffhammer, 2014). Specialty crops contribute 

to most of the agricultural value of California, and therefore are of particular importance. 

The Central Valley is at notable risk due to decline in winter chill hours, which can lead 

to yield losses in specialty fruit and nut trees if they do not meet their vernalization 

requirement (OEHA, 2018). Warmer winter temperatures can also effect overwintering in 

insects and cause them to appear earlier in the season (Shazad et al., 2021).  

 Perennial crops are slower to adapt to environmental changes and thus more 

vulnerable than annual crops to substantial alteration (Lobell et al., 2006). For 

California’s top 14 specialty crops, Kerr et al. (2018) found the highest absolute impacts 

of temperature increases in the San Joaquin Valley and Central Coast (Fig. 2.3), which 

contain the top three ranked specialty crop producing counties. The absolute impact 

metric created by authors considered each county’s overall sensitivity, temperature 

exposure, and total specialty crop acreage for each crop considered. 



16 

Figure 2.3: Absolute impact data for specialty crops shown on a county basis.1 indicates 
low sensitivity, 5 indicates high sensitivity, and 0 indicates no specialty crop production 
(Excerpted from Kerr et al., 2018). 

Precipitation by snow and rainfall are California’s primary source of water. 

Snowpack on the Sierras regulates California’s water supply and storage; contributing to 

about 80% of the average annual precipitation (Pathak et al., 2018). However up to 80% 

of these reserves will be diminished by 2100 (Zilberman and Kaplan, 2014), and heat 

spells pose the risk of instigating earlier and quicker snowmelt. If soils are high in 

moisture from snowmelt, spring flooding may not infiltrate into the soil, and would be 

inaccessible for use throughout the summer (Shahzad, 2021). While the total amount of 

annual statewide precipitation exhibits no discernable trends, annual variability (dry and 

wet precipitation extremes) has increased since the 1980s (OEHHA, 2018). For the 

Southwestern United States, increasing temperatures are expected to coincide with an 

increase in the frequency and intensity of droughts (IPCC, 2021). General circulation 

models, a type of climate change simulation, have projected that Southern California and 
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the state as a whole to be 15 to 35% drier by 2100 (Lobell et al., 2006). Drought events 

are exacerbated by increased atmospheric evaporative demand, which are expected to 

decrease soil moisture in the Southwestern United States (IPCC, 2021).  

Despite the stresses California is expected to endure in the coming decades, 

according to an economic optimization modeling study by California’s Fourth Climate 

Change Assessment, adaptive decision making in conjunction with technological 

advances can preserve the economic viability of agriculture in spite of the effects of 

climate change (Medellín-Azuara, et al., 2018; Bedsworth et al., 2018). Achieving the 

goal of getting more from less, requires a focus on high-yielding technologies and global 

technological improvements (Tilman et al., 2011). The successful utilization of 

technology for use in California agriculture offers the prospect of simultaneously 

optimizing cultivation outputs and sustainably managing resources. 

2.2.4 Adaptive technology  

To meet rising demands for food supply with increasing pressure on agricultural 

systems, effective adaptation to improve productivity will be necessary. Offsetting 

potential losses in airable farmland, crop yields, and water supply, may require 

sustainable intensification (SI) practices. The main tenant of SI is producing more output 

from the same or less land area and lessening negative ecological externalities (Deryng, 

2020). According to the Food and Agriculture Organization of the United Nations (2009), 

it is anticipated that 90% of the growth in crop production globally will come from 

greater yields and increased cropping intensity. 

Beyond California, smallholder farms in tropic and subtropic areas are at a 

disproportionate risk of being affected by food insecurity, increasing the risk of 
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undernourished and hungry people in these areas (Thornton and Herrero, 2014). In the 

past, small adaptations by farmers such as shifting planting dates or using different 

cultivars has allowed them to keep up with gradual environmental changes. However, 

more significant climate shifts in future will require more drastic adaption in place of 

incremental changes (Panda, 2018).  

Climate smart agriculture (CSA) is a concept based on productivity, adaptation, 

and mitigation strategies. Climate-smart technologies such as conservation agriculture, 

precision agriculture, agroforestry, integrated nutrient management, and soil and water 

conservation attempt to adapt to a changing climate and reduce emissions, while 

increasing crop productivity (Deryng, 2020).  

Technological advances and new inventions for agricultural use have emerged for 

site-specific management which uses quantitative data to inform best practices. The 

adoption of these technologies on a farm level has led to automation on multiple scales of 

farm management, increased resource use efficiency, and reduced labor (Khan et al., 

2018). Precision agriculture is a system of gathering, processing, and analyzing spatial, 

temporal, or individual data to inform managements decisions and improve resource use 

efficiency, environmental sustainability, and operation profitability (The International 

Society of Precision Agriculture, 2019). 

The adoption of sensor-based technologies for farm management has led to 

automation on multiple scales, which can in turn reduce operational and labor costs 

(Khan et al., 2018). Environmental sensors operate via sensor nodes which interact 

directly with the environment to collect, store, and communicate data to a central 

database.  In-situ sensors and wireless sensor networks (WSN) are increasingly being 
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employed to collect continuous environmental information and assist farmers in activities 

including irrigation and nutrient management. Advances in wireless communication 

networks with large deployable ranges and the development of small, low-cost 

multifunctional sensors offer incredible opportunities to monitor physical, chemical, and 

microbiological properties across time and space (Chai et al., 2020).  

For instance, soil moisture sensing via long-term sensor networks collects 

continuous in-situ data about soil moisture and temperature which can be used to inform 

efficient irrigation practices that strike the intermediary balance between crop water 

stress and excess water application. Figueroa and Pope (2017) used soil moisture probes 

that collected continuous moisture data (every 15 minutes) at five different depths in 

fields of avocados, kiwis, and nectarines. Time series analysis for the data involved 

detection of outliers and recognition of consumption patterns to identify the Root System 

Water Consumption (RSWC) pattern for each crop, which could be used to recommend 

an efficient irrigation schedule. Disease monitoring can also be performed by spectral 

sensors which capture changes in the physical appearance of plants and reveal the spatial 

distribution of infection to aid in timely and targeted pesticide applications. For example, 

Castalidi et al. (2017) deployed UAV multi-spectral imaging for weed identification in a 

cornfield, which led to a decrease in the amount of herbicide applied without an effect on 

yield. 

Barriers to entry for these technologies are apparent, however, with the major 

drawbacks to some popular spatial and temporal sensors involving ease of 

implementation, cost, and accessibility. In-situ sensor nodes that operate around the clock 

can pick up on noise or; malfunction, resulting in errors in the data. Therefore, it is 
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necessary to sift through the data to correct outliers. To overcome these challenges, 

various clustering techniques including partitioning, hierarchal, density-based, grid-

based, and model-based algorithms can be used to analyze high-dimensional time-series 

data (Singh et al., 2015). Additionally, various desktop software programs which 

transform sensor data into usable agronomic information can be used as decision support 

tools. Regardless of how well different sensors might work for precision agriculture, it 

can be difficult implementing these technologies on the ground. A lack of access to 

financial capital on a farm scale can severely limit the opportunity to make investments in 

these types of technology. Another major challenge facilitating direct lines of 

communication with primary users and the company’s technical assistance. However, 

communication protocols have been shown to increase battery life of sensors 

(Srbinovska et al., 2015). Aerial imaging or in-situ sensors alone only offer part of the 

story. An integration of imaging technology and continuous soil data would offer the 

clearest picture of field conditions and advise a holistic management strategy which 

bridges the spatial-temporal gap.   

For those areas where point measurements are utilized to inform management 

practices, soil testing is the standard. The Natural Resources Conservation Service has 

recommended at least 1 composite sample per 20 acres every 3-5 years should be 

submitted for routine soil testing (NRCS, 2009). Characterizing these samples for 

properties of importance through a reputable lab can incur significant costs from shipping 

and lab fees. To save on these expenses, fewer composite samples or less frequent soil 

testing may occur, but at the cost of less detailed characterization. Losing the spatial 

variation within a field also compromises the ability to make targeted adjustments to that 
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area. As a consequence, ‘one-size-fits-all’ management approaches may be taken, which 

can neglect the nutrient deficits in some areas or overfertilize in others, where excess 

nutrients no longer contribute to yield gains, and can even cause toxicity. 

Inexpensive technology with low barriers of entry for implementation and rapid 

functionality are a desirable option for farmers interested in precision agriculture 

practices that can save money by reducing inputs, increasing yields, and improving farm 

efficiency. Since soils react slowly to change, assessing soil quality over time can be a 

challenge (Bünemann et al., 2018). Scaling up the spatial and temporal density of soil 

sampling to achieve a detailed resolution of soil properties can help detect these trends.  

The major challenges facing California center around land cover changes where 

natural ecosystems are converted to urban or agricultural areas. These alterations affect 

carbon cycling, specifically by increasing greenhouse gas emissions and inhibiting the 

ability of soils to store carbon (Grimmond, 2007). Overcoming these challenges will 

require local approaches which leverage modern technology to inform decision making. 

Preserving, restoring, and monitoring soil health is an obligatory requisite for sustainable 

intensification of agricultural operations as well as the continued stability of grassland 

and forest ecosystems. Thus, accurate and timely data about soils, achievable through 

continued technological advancements, underpins sustainability centered goals. 

2.3 Portable XRF for environmental applications 

2.3.1 Monitoring for heavy metals 

Initial studies that investigated pXRF analyzers for their use in soil focused on 

heavy metal contamination in urban or industrial soils (Argyraki et al., 1997; Clark et al., 

1999; Carr et al., 2008; Chou et al., 2010; Radu et al., 2013). pXRF analysis has since 
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evolved to be an accepted field tool for environmental screening (Ravansari et al., 2020). 

While investigating heavily polluted soils at the site of a historic silver mine in Ireland, 

Radu and Diamond (2009) found pXRF analysis gave excellent correlation with 

laboratory digests for heavy metal concentrations (R2: 0.99 for Pb, 0.99 for As, 0.96 for 

Cu, and 0.84 for Zn), and recognized pXRF as a rapid and reliable analytical method for 

assessing soil pollution. A study measuring peatland lead contamination in the UK used 

in-situ pXRF measurements to map the spatial distribution of Pb in a 15-hectare peatland 

(Shuttleworth et al., 2014). Using dried, ground, and homogenized samples, an excellent 

relationship (R2 = 0.99/RSD = 1.75%) was found between lead levels determined by ex-

situ pXRF measurements and ICP-OES data.  

Monitoring lead in the urban soil environment has been studied extensively. Lead 

is a persistent and toxic soil contaminant, which can have devastating effects on human 

health (WHO, 2021). Through government regulations and widespread education efforts, 

a continuous and substantial decline in lead exposure to the population has been achieved 

(Dignam et al., 2019). However, its long-term use and persistence in the environment 

 Continues to cause public health concerns today, with 500,000 children between 

1-5 years old with blood lead levels (BLL) at or above the CDC reference value of 5 

μg/dL (Dignam et al., 2019). Because lead is highly insoluble and persists in the soil for 

centuries, it is important to determine the spatial distribution of lead in urban 

environments to protect residents from exposure and inform safe land planning efforts. 

pXRF has shown value in identifying, quantifying, and mapping the presence of lead 

across the US. At peri-urban agricultural sites in Louisiana, Weindorf et al. (2012) 

performed on-site interpolation of heavy metal levels and created interpolation maps of 
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enrichment factors from geo-referenced pXRF measurements, revealing the 

spatial distribution of contamination in the study area. The effect of urban-soil 

pedogenesis on the legacies of lead from paint and gasoline in Durham, North Carolina 

was also investigated by Wade et al. (2021). This study used gridded sampling and 

geospatial analyses in ArcGIS to map the distribution of lead throughout the city, 

visualize the movement of contaminated soil in the environment, and identify ‘hotspots.’ 

Figure 2.4: Total Pb as determined via pXRF analysis mapped along side streets in 
Durham, NC (Excerpted from Wade et al., 2021). 

 For environmental investigations, a single trip to the field to collect all samples 

can contribute to a cost-efficient sampling plan. The prospect of high sampling density 

and duplicated measurements is appealing for many uses in the environmental realm 

including delineating contaminated sites, pedologic descriptions, and civil engineering 

applications. Integration of pXRF data with GPS data into a geographic information 
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system allows for mapping areas of interest with ease. Official analytical techniques 

methods compatible with pXRF measurements include NIOSH Method 7702 for airborne 

lead concentrations (NIOSH, 1998) and USEPA Method 6200 (USEPA, 2007), which 

outlines procedural considerations for field use of pXRF to determine elemental 

concentrations in soils and sediments. The establishment of official methods using pXRF 

is a good indicator of its reliability as a tool for total elemental analysis; but its utility as a 

predictive model has yet to be incorporated into any official methodologies. Thus, before 

pXRF calibrated models can be deployed in a meaningful widespread sense, a certain 

level of accuracy needs to be determined and communicated and certain best practices 

should be established.  

2.4 Modeling soil properties with pXRF  

2.4.1 Overview 

 The pXRF instrument provides multi-elemental data, which has been used 

successfully as a proxy for predicting other important physical and chemical soil 

properties and pedogenic processes. Some of these characteristics include pH (Sharma et 

al., 2014; Wan et al., 2019; Weindorf et al., 2019), cation exchange capacity (Sharma et 

al., 2015; Li et al., 2018; Wan et al., 2020), soil texture (Weindorf and Zhang, 2011; 

Zhang and Hartemink, 2020; Benedet et al., 2020; Silva et al., 2020), total carbon and/or 

nitrogen (Wang et al., 2015; Andrade et al., 2020), parent materials and pedogenesis 

(Stockmann et al., 2016; Silva et al., 2019; Gozukara et al., 2021), and horizonation 

(Weindorf et al., 2012; Weindorf et al., 2015). Models typically assess the best predictor 

elements for the property of interest and use statistical processes to find coefficient 

values. For some properties, certain elements tend to be key predictors due to the nature 
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of the property in question. For instance, to estimate the quantity of gypsum (CaSO4 · 

2H2O) in soils, Weindorf et al. (2013) created simple and multiple linear regression 

models using Ca and S concentrations as determined by pXRF and achieved an R2 = 

0.9127. Additionally, because weathering indices depend on the fact that the 

concentration and movement of elements in a soil profile is determined by weathering 

and leaching processes, pXRF analysis can be used to identify elements in these indices 

(Stockmann et al., 2016; Zhang and Hartemink, 2019). For example, the Ruxton index 

(SiO2/Al2O3) and Sesquioxide ratio (Si/Al + Fe) are weathering indices that calculate the 

ratio of mobile to immobile soil elements in a given horizon (Ruxton, 1968). Where 

certain oxides are relatively stable and immobile including TiO2 and Al2O3, others 

including SiO2, K2O, and CaO are readily leached down the profile during the weathering 

process (Sauer et al., 2007; Gozukara et al., 2021). Thus, the index values determined by 

the concentration of these elements throughout the profile can signify the degree of 

chemical weathering that has occurred and indicate horizonation boundaries. For 

instance, to overcome incorrect subjective field classifications and support improved 

identification of soil parent materials, Gozukara et al. (2021) used pXRF analysis to 

identify geochemical properties of loess (A and Bt) and terra rosa horizons (2Bt) for soils 

in the Driftless Area of Wisconsin. Authors found less weathered loess horizons to have 

higher Si, Ti, and Zr concentrations in comparison to more weathered dolostone bedrock 

horizons which had higher concentrations of Al and Fe and lower Ruxton 

index/Sesquioxide ratio values. 

The relative novelty of this research and necessity for large modeling datasets 

compels a wide array of soil collections to build the basis of the models. Published 
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models are calibrated for the areas from which soils came, which may be a single or 

multiple regions. Research for pXRF modeling of soil properties has been performed in 

arid regions (Naimi et al., 2022; Towett et al., 2015), tropical areas (Silva et al., 2019; 

Silva et al., 2020; Silva et al., 2022; Benedet et al., 2022), various states in the United 

states including Wisconsin (Zhang and Harteman, 2020; Gozukara, et al., 2021), 

Louisiana (Zhu et al., 2011; Sharma et al., 2015) and Texas (Aldabaa et al., 2015), and 

throughout the globe (Stockman et al., 2016; Weindorf et al., 2015; Schneider et al., 

2016; Wan et al., 2019; Mukhopadhyay et al., 2020; Weindorf et al., 2013). Modeling 

soil properties from pXRF analysis has been limited in California, despite the state’s 

massive geographic extent within the US and importance for agriculture, forests, and 

rangelands. Notable studies using CA soils include Sharma et al. (2015) who used a 

sample set of 450 soils from California and Nebraska farmlands to assess CEC and Rawal 

et al. (2019) who used 300 samples from California and five other agricultural states to 

predict base saturation. However, these two studies only examined agricultural soils in 

California.  

No research has been performed for calibrating state-wide models for properties 

of interest from California soils, taking account of the diverse California land types that 

exist outside of agricultural production. Existing models are typically calibrated based off 

of soils which come from a particular area or region, but there is a growing interest in 

models which facilitate reasonably accurate predictions on a larger geographic scale, such 

as state-wide scale. According to Weindorf and Chakraborty (2020), customized models 

calibrated with pXRF typically show considerable accuracy across a given region with 

relatively similar soil properties. Authors advise that significantly differing soils should 
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have their own calibrated model. However, it is still important to assess the level of 

accuracy of widespread models constructed with strongly differing soils, because the 

level of accuracy given by these models may be adequate for some applications and 

would be more accessible than customized models.  

2.4.2 Statistical modeling approaches  

Several modeling strategies with varying levels of complexity have been 

investigated to uncover relationships between elemental concentrations and lab verified 

soils data. Data modeling and algorithmic modeling are two approaches used to associate 

predictor variables (x) with response variables (y) as to uncover how they are associated 

and/or make predictions about response variables from future input variables. Brieman 

(2001) explains the difference in how x and y are related between these approaches by 

imaging an intermediary ‘box’ between independent and dependent variables (Fig. 2.5).  

Figure 2.5: In the data modeling approach (left), a stochastic data model relates x and y 
using variables and coefficients while in the algorithmic modeling approach (right), the 
relationship between x and y is complex and unknown but can be related through 
algorithms (Excerpted from Brieman, 2001).   

Data modeling is one such technique based on the idea that response variables are 

a function of the predictor variables, and some ‘noise.’ Simple linear regression (SLR) 

models assess the association between a single measured element and a soil property. 

These models have been unable to produce sufficiently robust predictions for soil pH 
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(Sharma et al., 2014), but have proven useful for relating Ca to gypsum quantity in soils 

(Weindorf et al., 2013; Acree et al., 2020) 

Multiple linear regression models attempt to explain the response variable as a 

linear combination of multiple independent x-variables. MLR models can be simply 

constructed using linear modeling functions of statistical software, wherein the response 

variable is related to independent variables as shown in Eq. 2.1, with β0 representing the 

intercept β1… βi as the estimated regression coefficients, x1…xi as the predictor variables, 

and ε as the random error variable, which is assumed to have a mean of 0. 

Equation 2.1 

Y = β0 + β1x1 + β2x2 + … + βixi + ε 

The goal of MLR models in the context of relating spectral data to measured 

properties is to choose the collection of elements that best describe a certain soil 

characteristic. MLR models can be expressed as equations or in a table of coefficients. 

Use of MLR has been successful for predicting soil pH (Sharma et al., 2014), soil texture 

(Zhu et al., 2011), and CEC (Sharma et al., 2015), for the soils used in these studies. 

When model components interact nonlinearly or X values exhibit 

multicollinearity, MLR models may not be possible, and alterative algorithmic models 

may be necessary. In addition, while regression models are useful for inference, machine 

learning is often a better approach for predictive modeling (Brieman, 2001). For instance, 

decision tree models which can integrate categorical data such as soil color as well 

quantitative data like total C and N were used to identify parent materials and terra rossa 

horizons in Wisconsin soils (Gozukara et al., 2021). Decision trees work by iteratively 

splitting the dataset on different attributes, depending on the reduction in MSE that is 

produced. During the training phase, decision trees use decision rules from the data 
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attributes to learn relationships and map the data to its output. Overfitting and instability 

in predictions with small changes in the data are disadvantages of using decision trees. 

Cubist/M5 models also use a tree structure, wherein each path from the top to bottom of 

the tree is a rule that divides the dataset into smaller subsets. From these subsets, linear 

regression models are created, with the models produced at the terminal leaves having 

been ‘smoothed’ by the models formed at the above nodes. O’Rouke et al., (2016) used 

Cubist predictive models to predict agronomic properties from pXRF and Vis-NIR sensor 

data individually and by averaging the two models together.   

Support vector machine (SVM) learning works by identifying a hyperplane that 

distinctly classifies the datapoints. The data exist as points in n-dimensional space, where 

n is the number of features. The support vectors which ultimately build the shape of the 

hyperplane separate different classes of data in a way so that there is the maximum 

margin between the classes. Unseen data can be classified by the SVM by plotting it 

against the established hyperplane and seeing where it falls with regards to the vectors.  

SVM learning can also be used as a regression method called support vector regression or 

support vector machine regression (SVR/SVMR) which is based upon the same 

principles as SVM: identify the plane which minimizes error and maximizes the margin 

between two or more groups. For SVR/SVMR, a continuous variable can be predicted by 

specifying the margin of error and allowing the algorithm to find the regression model 

that gives the best approximation. Both SVM and SVR are helpful for visualizing multi-

dimensional non-linear patterns and classification of datapoints. SVR has been used to 

link proximal data to soil characteristics across catenas (Duda et al., 2017) and SVM 

learning has been used to predict soil texture from proximal data (Benedet et al., 2020).  
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Partial least squares regression (PLSR) is a linear modeling approach that can be 

applied for a large number of correlated predictor variables. By preserving those 

predictors which explain as much covariance between the observations and predictions as 

possible, the number of predictors is reduced, and a linear regression model is created. 

Random forest (RF) regression fits several decision trees to train predictions. A number 

of decision tree regressors are indicated to the algorithm and resultant model outputs 

from many different subsets of the data are averaged across trees to find the final output 

(Fig. 2.6). This approach is strong because the averaged predictions from an ensemble of 

trees reduces the error and variability compared to a single prediction. RF models can be  

by specifying certain hyperparameters such as the number of trees in the forest and the 

number of features considered at each node. 

Several studies have compared multiple machine learning models for their 

suitability in predicting certain soil properties. For example, Rawal et al., (2019) applied 

generalized additive model (GAM), MLR, RF, and regression tree (RT) models for 

predicting soil base saturation percentage (BSP) and CEC. All four models produced fair 

residual predication deviations (RPD) with the RT model for BSP and GAM approach for 

CEC performing the best. Authors advised that GLMs to be preferred over RF models for 

simplicity and interpretation’s sake. Aldabaa et al. (2015) used SVR and PLSR methods 

to predict soil salinity from pXRF, Vis-NIR, and remotely sensed data. SVMR and PLSR 

have also been utilized to predict environmental risk based on heavy metals and soil pH 

from Vis-NIR and pXRF data in the Yunnan Province, China (Wan et al., 2019). Authors 

found that SVMR from pXRF elemental data gave reasonable predictions of pH. Silva et 

al., (2020) compared GLM, SVM, and RF algorithms for predicting soil texture of 
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Brazilian soils from pXRF data and found that SVM provided the best estimates for clay 

and sand contents, while RF gave the best estimates for silt contents.  

Figure 2.6: RF ensembles use the predictions of many decision trees to produce a final 
output prediction (Excerpted from Afzal et al., 2020).  

2.4.3 Metrics for model performance evaluation 

To assess how well a model can predict output values, it is standard to compare 

the emulated response values (y’) to the actual response values (y). For regression 

models, this typically involves using a subset of the data to establish the model 

parameters and then assessing how well that model predicts your data using a holdout 

sub-set for testing. Performance metrics are important for interpreting how well the 

model fits unseen data and for comparison of various models.   

The coefficient of determination (R2) represents the squared correlation between 

the predicted values and actual values. It signifies the proportion of the variability of the 

response that is explained by the predictors through a linear relationship. Past studies 

have contended that models with an R2  value of 0.6 - 0.8 provide medium level 

predictive power, whereas models with R2  > 0.8 are acceptable or highly accurate for 
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indirect prediction of soil properties (Malley et al., 2004; Nduwamungu et al., 2009). But 

it has also been suggested that the usefulness of the model should instead be based on the 

reduction of uncertainty it provides for a given purpose (Towett et al., 2015). As more 

predictor variables are added to a MLR model, R2 will rise regardless of whether 

additional variables are related to the response or contribute significantly to the model. A 

large amount of predictor variables will therefore inflate R2 and increase the chance of 

making a type I error (rejecting the null hypothesis when it is actually true).  Adjusted R2 

is a metric which helps account for this phenomenon by applying a penalty for 

unimportant variables in the model. The use of adjusted R2 can help to explain variance 

more economically and identify the most parsimonious model. The correlation coefficient 

(R) is also used to determine the strength and direction between two variables. To

validate MLR models for pH and CEC (Sharma et al., 2014; 2015) performed correlation 

analysis on their validation sub-datasets between the predicted values from their model 

and the actual values. 

Root mean square error (RMSE) is the square root of the average squared error. It 

is one of the most common ways to quantify how well a model predicts response values. 

RMSE is a helpful metric for gauging the average distance between the model’s predicted 

values and the actual values from the dataset (the average error magnitude). In other 

words, how closely concentrated the data are around the line of best fit influences the 

magnitude of the RMSE. Poor models where predicted values are far from the model line 

of best fit, will have a relatively high RMSE, whereas a model that predicts y values 

accurately will have a relatively lower RMSE and be more tightly clustered around the 



33 

line of best fit. Interpretation of RMSE values is straightforward because it is measured in 

the same units as the dependent variable.  

Another prevalent model assessment metric is residual prediction deviation 

(RPD), which is the ratio of standard deviation of observed values and RMSE. RPD is a 

unitless statistic that allows for error to be easily compared (Malley et al., 2004). 

However, RPD as well as R2 can be overly influenced if data shows a skewed distribution 

(Malley et al., 2004). In formulating models to predict various soil properties from near 

infrared reflectance spectroscopy, Chang et al., (2001) judged their model’s performance 

from the RPD values of the validation set, where an RPD > 2 indicated a stable an 

accurate model, RPD between 1.4 and 2 were fair models with the potential to be 

improved with different calibration approaches, and RPD < 1.4 were considered poor 

models that could not predict the property of interest. RPD and the classification system 

for interpretation by Chang et al., (2001) have been used to evaluate models 

characterizing soil properties across catenas (Duda et al., 2017), modeling total carbon 

and nitrogen (Wang et al., 2015), predicting CEC from pXRF spectra (Sharma et al., 

2015), using proximal and remote sensing methods to predict soil salinity (Alabaa et al., 

2015), and estimating base saturation of agricultural soils with pXRF data (Rawal et al., 

2019). However, the RPD categories created by Chang et al. (2001) are relatively 

arbitrary, and suitable models have been developed which give considerably lower RPD 

values (Bellon-Maurel et al., 2010).  

The ratio of performance to interquartile distance (RPIQ) is another metric to 

assess prediction status calculated as the interquartile range divided by the RMSE of the 

prediction, where a higher RPIQ indicates better model performance. RPIQ is appropriate 
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for non-normally distributed data and better accounts for the spread of the population 

than RPD (Bellon-Maurel et al., 2010). As an assessment of model performance, RPIQ 

has been used extensively, including for interpreting results of model averaging of pXRF 

and Vis-NIR spectra (O’Rouke et al., 2016), classifying soils in Romania with pXRF and 

Vis-NIR models (Acree et al., 2020), and predicting soil fertility attributes with pXRF 

and Vis-NIR data (Liu et al., 2021). O’Rouke et al., 2016 used interquartile ranges of 

RPIQ values from their validation set to categorize predictions as good (>1.03), 

reasonable (0.77 -1.03), and unreliable (<0.77). In a soil quality study using VNIR 

reflectance spectrometry, Veum et al. (2015), extended upon the prediction categorization 

by Chang et al., (2001) to include RPIQ ranges. Their classification defined RPIQ ≥ 3.0 

as the most reliable ‘Category A’ models, RPIQ ≥ 1.9 as ‘Category B’ models with the 

potential for improvement, and RPIQ ≥ 1.5 as unsuitable ‘Category C’ models. 

2.4.4 Sensor data fusion for modeling 

Proximal sensing simply refers to the use of a sensor which collects signals via a 

detector when in close proximity to soil (Soil Science Division Staff, 2017). A major 

advantage of this technology is the ability to gather high density measurements which 

‘fill the gap’ between high resolution point data validated in a laboratory and more coarse 

resolution remote sensing data. Information obtained from proximal sensors can be used 

to observe spatial variability of a soil property and refine soil survey data by indicating 

soil map unit boundaries. Some examples of proximal sensors include ground-penetrating 

radar, time domain reflectometry, electrical resistivity, visible–near–infrared (Vis–NIR) 

spectroscopy, and portable X-ray fluorescence. Using the spectra obtained by Vis-NIR 

and pXRF analysis in tandem has proven a popular method for building predictive 
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models relating to soil properties. It should be noted that for both technologies, 

spectroscopy refers to the science of the interaction between radiated energy and matter, 

while spectrometry makes sense of the spectra produced by spectroscopy and translates it 

into quantifiable results. Vis-NIR measures the transmittance, reflectance, and 

absorbance of light at specific wavelengths across the visible range, allowing for 

quantitative analysis and material characterization. A sample is illuminated with light 

across the visible electromagnetic wavelength range (400-800 nm) and the absorbency at 

discrete wavelengths is graphed to produce a spectrum. This method exhibits similar 

advantages and limitations to pXRF spectrometry including the ability to collect high 

sensitivity measurements rapidly and nondestructively with a compact instrument but 

with the need to distinguish between sample peaks and background noise. Used together, 

pXRF and Vis-NIR have complementary capacities for assessing soil— with Vis-NIR 

able to quantify the organic components and minerology, while pXRF can accurately 

estimate inorganic elements (O’Rourke et al., 2016). 

Research into which of these techniques is superior, or if they are best used in 

tandem for predicting soil properties has shown varied results. Wang et al. (2013) 

obtained robust models to predict sand and silt contents using the combination of pXRF 

data and Vis-NIR DRS spectra; however, the use of the combined data did not 

satisfactorily increase accuracy of clay content prediction in comparison to models 

trained with pXRF data only. Zhang and Hartemink (2019), also found that pXRF was 

better at predicting texture than Vis-NIR when used solo— but observed that sensor 

fusion further improved the prediction. On the other hand, Benedet et al. (2020) found 

that pXRF and Vis-NIR data produced accurate predictions of soil texture both 
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individually and in tandem. The results of these models were heavily dependent on 

preprocessing, the sensor dataset, and the algorithms used, but authors found a pXRF 

dataset and RF algorithm providing the best results. Conversely, Naimi et al. (2022) 

found Vis-NIR-produced better estimates for soil texture when compared to pXRF. 

Swetha and Chakraborty (2021) found that a Nix color sensor data improved pXRF based 

predictions of clay content which were then used as a proxy to predict soil organic carbon 

content. 

For predictions of SOC, Liu et al. (2021) found Vis-NIR alone was a good predictor 

(R2 = 0.77) while pXRF used alone was an inadequate predictor (R2 <0.32). Naimi et al., 

2022 also found that pXRF was unable to predict SOC in arid soils of the Afar region. 

However, Wang et al., (2015) found synthesized penalized spline regression (PSR) and 

RF models using both pXRF and Vis-NIR data were more effective than either proximal 

sensing technique on its own for predicting total carbon and nitrogen. For distinguishing 

between parent materials and identifying lithologic discontinuities, Gozukara et al. (2021) 

found pXRF spectra to have better prediction accuracy than Vis-NIR spectra when using 

decision trees. In assessing sensor data fusion for predicting soil pH, Wan et al. (2019) 

observed that pXRF elemental data alone could predict soil pH with reasonable accuracy 

but predictions were improved with fused pXRF and Vis-NIR data. For CEC predictions, 

fused Vis-NIR and pXRF data also provided the most accurate and comprehensive 

predictions when compared to those produced by either single sensor dataset— but pXRF 

elemental data contributed more to the PLSR fused sensor data (Wan et al., 2020). Model 

averaging procedures that combined model outcomes from pXRF and Vis-NIR were used

 by O’Rourke et al. (2017) to greatly improve predictive capacity for soil pH, SOC, total
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 nitrogen, texture, and CEC.  

Thus, it is evident that sensor data fusion has yielded mixed results even when 

tasked with predicting the same properties. When using two sensor datasets to build 

predictive models, the data collection, preprocessing, and analyzing is made more labor-

intensive when compared to using only one of these datasets. In addition, the acquisition 

cost of these sensors is considerable. An ultimate goal of using proximal sensors to 

estimate properties of interest soil is to make soil characterization more straightforward. 

When it comes to using several datasets to build predictive models, it is important to be 

cautious of incorporating too many predictor variables to ‘force’ a correlation. Overfitting 

a model can also occur with enough free variables in overly complex models.  

2.5 Existing models of interest 

2.5.1 pH 

Soil pH is a critical measure for soils and has implications for soil fertility related 

to buffering capacity and nutrient availability. The need for a standardized and efficient 

method of measuring pH is imperative for appropriate soil management as soil pH can 

serve as a measure for terrestrial biogeochemical processes (Kome et al., 2018). In 

building models to predict soil reaction (pH) from pXRF elemental data, Sharma et al., 

(2014) used two datasets with two modes of pXRF operation. For this study, soil pH was 

measured via saturated paste with deionized water. Datasets A and B were divided into 

80% modeling and 20% validation subsets. Dataset A was comprised of 100 soil samples 

across the United States, with 50 coming from supposed alkaline and 50 coming from 

supposed acidic soils. Scanning via pXRF was conducted using a DP-6000 Delta 

Premium pXRF (Olympus, Waltham, MA, USA) operated in GeoChem mode for dataset 
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A samples. Authors used Pearson’s correlation on log values of elemental concentrations 

to identify those elements with significant relationships to pH and then eliminated those 

samples which were missing any concentrations of the significant elements, leaving n = 

57. The resultant model equation shown below (Eq. 2.2) achieved an R2 = 0.570/RMSE =

0.822 on the modeling dataset. The model was validated by running correlation analysis 

on 15 randomly selected samples, to find an R = 0.433. The addition of clay, sand, and 

organic matter contents as predictors further improved the model to an R2 = 0.825/RMSE 

= 0.541. 

Equation 2.2 

 pH = 9.7164 – 5.9247 * log(Al) + 1.8491 * log(Si) - 2.0419 * log (Mn) + 1.9212 * 
log(Fe) + 2.3906 * log(K) + 0.4396 * log(Ca) + 0.6680 * log(Zn) 

Dataset B was comprised of 639 samples from across Louisiana scanned by the 

pXRF using the Soil Mode of operation. Pearson’s correlation was used on 15 elements 

(K, Ca, Cu, Zn, Ti, Cr, Mn, Fe, Co, As, Rb, Sr, Zr, Ba, Pb) to select predictor 

variables. Authors achieved an R2 = 0.772/RMSE = 0.685 from the modeling dataset 

using Eq. 2.3 shown below. To validate the MLR model, 20% of samples were randomly 

selected and used for correlation analyses, returning R = 0.573.  

Equation 2.3. 

     pH = 1.4246 – 0.5989 * log(K) + 1.3739 * log(Ca) – 0.4426 * log(Cu) – 0.4296 * 
log(Zn) – 0.4220 * log(Ti) – 1.3528 * log(Cr) – 6.8667E–02 * log(Mn) – 0.6366 
* log(Fe) + 0.9780 * log(Co) + 9.7264E–02 * log(As) + 1.1561 * log(Rb) –
5.2320E–02 * log(Sr) + 1.1699 * log(Zr) + 1.3802 * log(Ba) – 0.4718 * log(Pb)

2.5.2 Texture 

Soil texture, defined as the relative proportions of sand, silt, and clay, is likely the 

most important physical characteristic of soils crucial for understanding their behavior, 

suitability for various applications, and the effect of management practices. Some soil 
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characteristics directly influenced by soil texture include water holding capacity, nutrient 

retention capacity, rate of chemical weathering and microbial reactions (Weil and Brady, 

2017). To assess the viability of using pXRF data to predict soil texture by estimating 

clay and sand contents, Zhu et al., (2011) analyzed 584 samples from Louisiana and 

Capulin, New Mexico. Authors scanned the samples using Soil Mode, operating with a 

sequential 3-beam scan for a total scan time of 90 seconds per sample. Soil texture was 

also determined via traditional laboratory analysis using the pipette method (Soil Survey 

Staff, 2004). Authors used a 2/3 modeling and 1/3 validation split of their dataset. 

Backward stepwise multiple regression analysis with entry significance of 0.5, removal 

significance of 0.1 and 15 maximum steps was conducted on the modeling sub dataset 

between lab values of clay and sand precents and 15 predictor elements (K, Ca, Ti, Cr, 

Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Zr, Ba, and Pb). Predicted clay and sand percentages 

were subtracted from 100% to find silt contents. The results of the backward stepwise 

MLR models can be found in Fig. 2.7. Higher Rb concentrations were found to correlate 

with higher clay and lower sand percentages, while higher Fe concentrations were found 

to correlate with higher clay and sand percentages. Applying the model to the validation 

sub-dataset revealed better performance in predicting clay contents (R2 = 0.975/RMSE = 

2.68% for Louisiana soils and R2 = 0.876/RMSE = 2.66% for Capulin soils) than in 

predicting sand contents (R2 = 0.854/RMSE = 5.53% for Louisiana soils and R2 = 

0.891/RMSE = 6.62% for Capulin soils) (Fig. 2.8).  
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Figure 2.7: Backward stepwise MLR models produced from the modeling sub-datasets 
for sand and clay contents of Louisiana and Capulin soils (Excerpted and adapted from 
Zhu et al., 2011). 

Figure 2.8: Sand, silt, and clay predictions (left to right) for Louisiana (top row) and 
New Mexico samples (bottom row) (Excerpted from Zhu et al., 2011). 
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2.5.3 CEC 

Cation exchange capacity (CEC) is a useful measure for soil fertility, indicating 

the portion of exchangeable cations that are electrostatically bound to negatively charged 

soil surfaces. The nutrient retention of a soil is indicated by CEC because those cations in 

the exchangeable pool are readily taken up as plant nutrients. A regression model was 

built by Sharma et al. (2015) to predict CEC based off of 450 agricultural soils from 

Nebraska and California. For sample collection, three sampling depths were collected 

from 75 sampling pits in both states. Scanning via pXRF was conducted in Soil Mode, 

and models were constructed from 360 samples and 15 elements. An 80/20 model 

training and validation split were conducted on the full dataset. Authors performed 

stepwise regression analysis which selected eight elements to be included in the model 

equation (Eq. 2.4) which produced an R2 = 0.908 and RMSE = 2.498 for the modeling 

dataset (Fig. 2.9). The addition of clay content and SOM as auxiliary predictors improved 

modeling dataset predictions to R2 = 0.926/ RMSE=2.236. The developed models were 

validated via correlation analysis, with Eq. 2.4 producing a significant correlation (R = 

0.904). 

Equation 2.4 

 CEC = 17.2507 − 3.6514E–04 * Ca – 3.4957E–03 * Ti + 7.0977E–02 * V + 7.0991E–02 
* Cr + 5.9759E–04 *  Fe + 0.1479 * Cu – 6.2096E–02 * Sr + 5.6551E–03 * Zr
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Figure 2.9: The lab measured CEC plotted against pXRF predicted CEC using Eq. 
2.4. The dashed line is a 1:1 line and gray lines represent the 95% confidence interval 
(Excerpted from Sharma et al., 2015). 

2.5.4 Soil organic carbon, total nitrogen, and C:N ratio 

A limitation of pXRF analysis is the inability to detect light elements (Z scores ≤ 

11) and therefore only present an abridged geochemical profile of samples (Duda et al.

2017). Carbon and nitrogen contents are light elements that are important aspects of soil 

characterization. Nitrogen is a plant essential nutrient imperative in the right quantities 

for plant health and vigor, while excesses of N can lead to nitrate pollution in waterways. 

Soil organic matter is comprised of about half organic carbon (Weil and Brady, 2017) 

and therefore plays an important role in soil quality and the world’s carbon balance. 

Despite not being capable of detecting C or N contents directly, a relatively high portion 

of the variance in these concentrations explained by XRF may be indicative of elemental 

signatures which correlate with soil organic matter fractions (Towett et al., 2014).  
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pXRF has been used with limited success on its own for predicating TC and TN 

when compared to fused sensor datasets (Wang et al., 2015; Duda et al., 2017). However, 

Towett et al., (2015) achieved moderate predictive accuracy (R2 > 0.60) when estimating 

OC and TN from total XRF (TXRF) spectra alone. To develop predicative models for use 

in Sub-Saharan Africa, Towett et al., (2015) used mid-infrared (MIR) and TXRF 

spectroscopy individually and in tandem to predict various properties for 700 soil 

samples. Organic C and total N were determined using flash dynamic combustion with a 

Flash EA 1112 Elemental Analyzer and TXRF methodology was used to analyze total 

elemental concentrations in each soil sample using a S2 PICOFOX TXRF spectrometer. 

Random forest models were built to predict the properties of interest from the raw TXRF 

elemental concentrations using the ‘randomForest’ library in R (Liaw and Wiener, 2022). 

To optimize prediction accuracy, RF models grew a prespecified number of classification 

and regression trees (CART) (ntree= 200) (via bootstrap sampling) with randomly 

selected variables from the calibration dataset. At each node in the tree a CART 

algorithm tested the performance of randomly selected variables to determine how the 

node was to be split. An internal cross-validation was performed by splitting the 

calibration set into 2/3 in-bag and 1/3 out-of-bag (OOB) subsets. The OOB error 

predictions provided were justified by comparing these errors to the errors from a 50% 

holdout set. The RF OOB validation for the TXRF based dataset produced an R2 = 

0.68/RMSE= 0.7 for organic carbon and R2 = 0.63/RMSE=0.003 for total nitrogen. The 

TXRF data used alone performed more poorly than both the MIR and combined MIR + 

TXRF datasets.  
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2.6 pXRF instrumentation technology and theory 

 
2.6.1 Excitation sources 

 
XRF works by bombarding a sample with high energy X-ray beams to irradiate a 

sample via internal sealed radioisotope sources or X-ray tube. Earlier generations of 

pXRF instruments used a sealed radioisotope source to meet the requirements of minimal 

mass and no power consumption, but X-ray tubes are the prominent sources used in 

pXRF analysis today.  

The commonly used radioisotope excitation sources include 55Fe, 57Co, 109Cd, and 

241Am, which each give off radiation at particular energy levels (Kalnicky and Singhvi, 

2001). As a result, each of these sources causes different elements to fluoresce based on 

their atomic number, making multi-elemental analysis possible only with a combination 

of isotopes. Use of pXRF with a 57Co radioisotope has been used for decades to detect 

lead-based paint for public health applications (Guimarães et al., 2015). However, 

relatively short half-lives for some sources (~272 days for 57Co) means that detection 

sensitivity degrades over time and isotope replacement is necessary every few years.  

An X-ray tube consists of a cathode, anode, and tube envelope, tube housing, and a 

window. These components are housed within a vacuum sealed envelope necessary to 

dissipate the heat energy from the X-ray generation and contain radiation. Heating a wire 

filament made of tungsten causes a beam of electrons to be expelled from the cathode 

component and accelerated towards and absorbed by the anode component. This collision 

results in X-rays known as Bremsstrahlung (also called white radiation/breaking 

radiation) which produce continuous emissions characteristic of the anode material 

(Kramar, 2017). When the pXRF is aimed at a target, these emitted X-rays interact with 
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the atoms in the substance. If the energy from the emitted X-rays exceeds the shell 

binding energies of electrons in the K or L orbitals of an atom, an inner shell electron is 

dislodged. In turn, a characteristic reflorescence indicative of the element is emitted and 

measured as electric signals by the XRF (Fig. 2.10).  

Unlike active sources, which are always ‘on’ and emitting some levels of radiation 

which can be potentially hazardous, the X-ray tube mechanism only emits X-rays when 

energized. X-ray tube mechanisms can be modified for specific applications and have a 

less demanding licensing process when compared to radioisotope sources which present 

decay characteristics (Nummi, 2015). Other drawbacks to active sources are apparent, 

including the increased stringency for their use and handling. Additionally, the need for 

radiation shielding limits the number of sources that can be used in tandem within 

handheld devices, which makes these sources less bright those using X-ray tubes (Potts 

and West, 2008). Where radioisotope sources gradually and predictably lose efficacy, X-

ray tube mechanisms burn out abruptly, and require replacement by the manufacturing 

company (Glanzman and Closs, 2007). Radioisotope sources may be a preferred source 

over X-ray tubes when simplicity, compact construction, low power requirement, and 

high energy X-rays are needed are needed for the application. 
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2.6.2 Wavelength vs energy dispersion 

There are two main XRF methods used for characterizing elemental composition: 

energy dispersive XRF (EDXRF) and wavelength dispersive XRF (WDXRF). Prior to the 

1970s, wavelength dispersive technology underpinned most X-ray spectrometers. The 

development of energy dispersive spectrometers in the late 1960s made microanalysis in 

portable XRF devices possible (Weindorf et al., 2014a). These techniques differ primarily 

by the way characteristic X-rays are detected and analyzed, with each offering some 

advantages. Where wavelength dispersion separates X-ray lines based on their 

wavelengths, energy dispersion separates X-rays based on photon energies. 

WDXRF technology is based on Bragg’s law, which states that X-rays of specific 

wavelengths and diffraction angles will be reflected by crystals when the wavelengths of 

the scattered x-rays experience constructive interference (Keng, 2015b). Crystals are used 

in WDXRF to separate and distinguish the wavelengths of each element in the 

Figure 2.10: pXRF testing process (Image from Olympus Scientific Solutions).

Stamp
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different directions based on their wavelengths. By fixing the crystal and detector 

positions, the characteristic wavelengths produced by each element can be quantified 

(Henry et al., 2016). 

In an energy dispersive detection method, the energies of the fluoresced X-rays 

are directly measured by an internal detector made of a semiconductor material (typically 

silicon) and transformed into an electric signal. These signals are then processed with a 

pulse height analyzer  (Kalnicky and Singhvi, 2001). The height of the peaks represents 

the number of return X-rays registered by the instrument and corresponds to the 

concentration of a particular element (Crumbling et al., 2008). 

Since EDXRF provides lower spectral resolution (150-300eV) when compared to 

WDXRF (5-20eV) the peaks of different elements may overlap, making it difficult to 

distinguish which elements are present (Wolfgong, 2016). For instance, in Fig. 2.11, at 

6.0 keV, the Mn and Cr peak experience spectral interference/peak overlap, which can 

distort results for these elements. Elements with longer wavelengths are difficult for 

EDXRF to detect, so the technology is generally only practical for detecting ‘heavier’ 

elements (atomic numbers > 11 ((Na)). However calibrations for WDXF are more 

involved and a high power unit for the X-ray source necessitates a larger and typically 

more expensive instrument compared to EDXRF instruments (Wolfgong, 2016; 

Kawahara and Shoji, 2007). pXRF relies on EDXRF, because its components can be 

miniaturized into a compact device, and the detector can be close to the sample, which 

allows for highly sensitive measurements from a small amount of sample  (Kawahara and 

Shoji, 2007). 

fluorescence spectrum. The crystals physically separate X-rays and diffract them in 
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Figure 2.11: An example XRF spectrum with X-ray energy in keV on the x-axis and the 
number of X-rays observed for that energy level on the y-axis (Excerpted from 
Crumbling et al., 2008). 

2.6.3 Detectors 

In addition to the excitation source, a detector and empirical calibration software 

are major pXRF components. Together, these mechanisms make real-time elemental 

quantification possible using only the device with no external electronics unit required. 

Improvements in detectors with lower detection limits and advanced algorithms for 

spectral corrections have evolved the performance of pXRF technology, facilitating its 

applications in more arenas than ever before.   

The two main categories of detectors are proportional counter detectors including 

scintillation and gas flow detectors, and solid-state semiconductors including Si-PIN 

diode and silicon drift detectors (SDD). Detector types vary in their resolution, which 

reflects their capacity to correctly distinguish the energy level of incident photons that are 

energetically similar to each other. Generally, a higher resolution output spectrum will 

have tighter peaks than a lower resolution spectrum with wider peaks. The peaking time 
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refers to the amount of time between a voltage pulse and its peak (Fig. 2.12). A shorter 

peaking time allows more photons to be collected and distinguished from each other, 

resulting in more precise readings with increased count rates.  

Proportional detectors convert characteristic fluorescence X-ray photons into 

voltage pulses, with the energy from incoming X-ray photons proportional to the output 

voltage. In scintillation detectors (also called indirect detectors) radiation interactions 

occur in a scintillation crystal, where incoming energy is converted into optical photons. 

These photons are collected in a photodetector and converted to electrical charges. 

Among the detector types, scintillation detectors offer a wide detection range for incident 

X-rays but have lowest resolution (Longoni and Fiorini, 2006). In contrast to indirect 

scintillation detectors, gas flow detectors are a proportional detector which directly 

converts photoelectric radiation into electric charges received by an output electrode 

(Longoni and Fiorini, 2006). This is achieved with the use of a cylindrical gas chamber 

(cathode component) which houses an anode component. When electrons in the cylinder 

are irradiated, they accelerate towards the anode component and become ionized via 

collision with the gas atoms. The signal measured by the collision is proportional to the 

incoming photon’s energy. Gas flow detectors have an intermediate resolution between 

low resolution scintillation detectors and high-resolution solid-state semiconductors 

Solid-state semiconductors offer multi-elemental analysis with high sensitivity. 

The possibility of a high-density ionization chamber to improve resolution was realized 

when high-purity silicon was used to create silicon lithium, Si(Li), detectors. Si(Li) 

detectors showed an improved resolution from the proportional detectors, but the need to 

house these detectors in cryostats for cooling made them large and challenging to handle 
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(Scholze, 2006). Thermoelectrically cooled Si-PIN detectors have since removed the 

limitation of these cryogenic cooling mechanisms. Within Si-PIN detectors, silicon 

crystals interact with incoming X-ray photons to create electron-hole pairs. Depending on 

the detector, these pairs are created for every ~3.6-3.8 eV of energy lost in the Si. The 

energy loss can be correlated with the energy of the incoming X-rays to create a spectrum 

of counts versus energy (Ametek, 2019). 

SDDs far outperform Si-PIN detectors in regard to energy resolution and allow 

for detection of lower-Z elements. Within the detector, electrons ionized by X-rays are 

caused to drift towards a central anode component by means of an electric field parallel 

to the surface. The electric field is created with a series of concentric electrodes engraved 

in the surface (Potts and West, 2008). SDDs have a lower resolution (~40 eV), lower 

LOD (~3x), and lower peaking time than PIN detectors (Shields, 2020; Hullinger et al., 

2009). SDDs can also count approximately ten times more X-rays per second than PIN 

detectors, making their analysis more sensitive and precise. The complicated equipment 

used in SDDs substantially increases costs, but the technology has consistently gotten 

less expensive as demand rises and production is streamlined. Solid-state conductors are 

preferred for pXRF instruments due to their small size, high resolution and count rates, 

and fast results (Kalnicky and Singhvi, 2001; Keng, 2015a). 
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Figure 2.12: When an X-ray photon is absorbed in the detector, the voltage signal passes 
through a shaping amplifier in order to create peaks which can be distinguished for their 
energy and intensity (Excerpted from Hullinger et al., 2009) © 2009 IEEE. 

2.6.4 Calibration software 

Independent from the X-ray source and detector type, a method to accurately 

discern and quantify fluorescence is crucial for pXRF capabilities. In the past, on-site 

calibrations for field portable XRF instruments were necessary for specific sites and 

materials. pXRF instruments can now be calibrated internally using fundamental 

parameters (FP) established by the manufacturer or using Compton normalization, based 

off Compton peak ratios (USEPA, 2007).  

The FP approach leverages X-ray theory to mathematically account for 

interelement effects and create quantitative algorithms for a certain sample type 

(Kalnicky and Singhvi, 2001). Sherman (1955) contrived a computational method from 

which FP is founded that related measured intensities to sample composition. Certain 

physical constants are fundamental for each element, such as mass absorption coefficients 

and excitation efficiencies, so elemental concentrations can be derived as a function of 

the measured X-ray intensities (Potts and West, 2008). Essentially, the FP approach 

iterates through and solves a system of equations for many unknowns. To simplify the 
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calculation step, X-ray spectroscopists have used established theory and experiments to 

formulate approximations and linearize calibration equations. A number of robust 

algorithms now exist, which account for absorption and enhancement effects to 

accurately express sample concentrations.   

The Compton normalization method relies on the analysis of one certified 

standard to normalize Compton peaks. Every sample spectrum has backscattered X-ray 

radiation (Compton scatter) present, but intensity of the Compton peaks varies with the 

matrix (USEPA, 2007). The ratio between analyte fluorescence intensity to the intensity 

of Compton scattered radiation for a particular reference material is the normalization 

factor used to calibrate the instrument. Because Compton scattering is highly dependent 

on the matrix, for efficacious measurements the SRM used for calibration should have a 

similar matrix and elemental concentrations to those in the samples being analyzed. 

Modern instruments offer different modes of operation, which take advantage of 

the different calibration techniques. For instance, Soil Mode and GeoChem Mode are 

popular scanning modes for many pXRF instruments that differ in their calibrations. Soil 

Mode uses Compton normalization which works well in dilute samples where >85% of 

the sample is composed of light elements (LE) (elements lighter than magnesium) and no 

single element exceeds 2-3% concentration. Because soil materials are generally high in 

quartz, oxides, and organic materials (all LE), and low mineralization (heavy metals) 

Compton normalization calibrations have traditionally been applied for soil analysis (J. 

Litofsky, personal communication, January 23, 2022). However, the assumptions of 

Compton normalization calibrations (dilute samples and no inter-element interferences) 

are considerable drawbacks to operating in this mode, especially for ores and heavily 
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mineralized samples. Additionally, Compton normalization/Soil mode cannot measure 

the concentrations of some analytes including Mg, Al, Si, or LE in a sample. Since this 

calibration approach is computationally simple, it was satisfactory for older instruments 

with limited processor power.  

By comparison, GeoChem modes uses Fundamental Parameters calculations, 

which are more computationally intensive, but easily managed by modern processors. FP 

calibration/GeoChem mode is ideal for measuring across the range of concentrations of 

elements in sample, with the capability to discern ppm level detection in the presence of 

other elements in the percent range. Modern calibration software based on the 

fundamental parameters is ‘standardless’ because the versatile internal calibration detects 

concentrations from 0.1 ppm to 100% without requiring user input or numerous 

calibrants (Potts and West, 2008). Fundamental Parameters calibrations determine the 

total chemistry of the sample, including Mg, Al, Si, and LE.  

2.6.5 Fluorescence mechanism  

 
Exposing a material to short wavelength high energy X-rays can cause atoms to 

become ionized and fluoresce at specific energies. The reflorescence energies can then be 

categorized and quantified to construct an elemental profile. Incident X-ray photons 

produced within the device bombard the atoms in the sample and excite inner shell 

electrons which causes them to be ejected from their position in the K or L orbitals. The 

electrons will only be expelled from their orbital positions if the X-ray energy exceeds 

the binding energy for that electron. When outer shell electrons cascade down to regain 

atom stability by filling the inner shell void, energy is given off by the atom in the form 

of photons. The energy and intensity of the egressing fluorescence are measured as 



54 
 

electric signals by the XRF (Sharma et al., 2014). The energy difference between the two 

shells is represented by Eq. 2.5, where ΔE is the characteristic X-ray energy, E1 is the 

empty shell electron binding energy and E2 is the donor shell electron binding energy 

(Kabir, 2013). ΔE and the corresponding energy peak produced by the transition are 

unique for each element, making qualitative identification of the elements in the sample 

possible.  

Equation 2.5 

ΔE = E1 – E2 

 
A multichannel analyzer produces a digital spectrum of XRF peaks for each 

element present so that these ‘fingerprints’ can be transformed to analytical data. The 

intensity of the reflorescence represents the number of photons being dislodged, to allow 

for quantitative determination of elemental concentrations.  

Depending on which orbital shell an electron is vacated from, the X-ray emission 

can be classified as a K X-rays (n=1/K-orbital) or L X-rays (n=2/L-orbital). The X-ray 

emission can be further differentiated with α and β subscripts which indicate the orbital 

from which an electron cascades down from to fill the hole (Fig. 2.13). For instance, a 

transition from n=2  to 1 is a Kα X-ray and a transition from n=3 to 1 is a Kβ X-ray. 

Similarly, a transition from n=3 to 2 is an Lα x-ray and from n=4 to 2 is an Lβ X-ray 

(Bosco, 2013). A typical emission spectrum for each element has several peaks indicative 

of the energy difference between the electron transitions. Thus, measuring appropriate 

standards to ascertain the resultant peaks alongside unknown samples allows for the 

relative abundance of elements in the unknown sample to be determined.  



55 

Figure 2.13: Electron transitions within an atom cause characteristic secondary X-rays to 
be emitted, the energy and intensity of which is measured by the pXRF. The dashed 
arrows represent ΔE, which is the difference in energy between the 2 quantum states of 
the electron (Adapted from Kalnicky and Singhvi, 2001).  

2.6.6 Interaction of X-rays with matter 

When X-rays come in contact with matter, three main interactions take place—

fluorescence (photo-electric effect), Compton scatter, and Rayleigh scatter. The 

proportion of fluoresce to scatter depends upon the thickness (d), density (ρ), and 

chemical composition of the material (Fig. 2.14).  

As discussed in the preceding section, fluorescence occurs when X-ray photons 

are absorbed in the material, causing an electron in the outer shell of an atom to cascade 

down to fill the spot of an electron which was ejected from its orbital position by incident 

X-rays. The fluorescence yield measured by the instrument is the ratio between emitted 

fluorescent photons and initial vacancies and is dependent upon the atomic number of the 

element.  
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Rayleigh and Compton scattering are the portion of X-ray photons which are not 

absorbed by the material. Rayleigh scattering, also referred to as coherent or elastic 

scattering, occurs when incoming photons hit electrons which are strongly bound in their 

orbitals, causing them to oscillate in place and emit radiation at the same frequency as 

incoming radiation. In this case, the photon’s trajectory is deviated but there is no energy 

transfer (Beckhoff et al., 2006). Compton, or incoherent scattering, occurs when a photon 

hits an electron and transfers a fraction of its energy to the electron, causing the photon to 

move off with reduced energy and momentum. The amount of energy transferred is 

dependent on the angle at which the photon strikes the electron (Beckhoff et al., 2006). 

The sample composition affects the type and proportion of scatter that occurs (Fig. 2.15) 

(Potts and West, 2008). Light elements in sample materials cause a high proportion of 

Compton scatter and low Raleigh scatter because the electrons of these elements are 

loosely bound in their orbitals. Conversely, the interaction of photons with heavy 

elements where electrons are tightly bound, eliminates Compton scatter and leaves only 

Raleigh scatter (Brouwer, 2010). The scattered radiation can be absorbed by the detector, 

complicating spectrum interpretation.  
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Figure 2.14: X-ray photons coming in contact with matter. While fluorescence returns 
characteristic measurable X-rays, some of the X-rays are scattered. It is also possible for 
transmitted photons to travel through the material without interacting with atoms in the 
material (Excerpted from Brouwer, 2010). 

Figure 2.15: The fluorescence yield for K and L electrons. A low yield can be 
observed for light elements, which makes them difficult to detect and measure 
(Excerpted from Brouwer, 2010). 
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2.7 Factors influencing accuracy 

 

2.7.1 Overview 

 
An effective conversion of X-ray intensities into analyte concentrations requires 

consideration of interfering factors. While careful use of pXRF can give laboratory grade 

output, lack of consideration for best practices can lead to a misrepresentation of the true 

nature of the sample. Earlier studies comparing pXRF measurements to wet chemistry 

techniques correlated the two with variable success— casting doubt on the capabilities of 

pXRF. However, the EPA’s Environmental Technology Verification Program (ETV), 

standard method 6200 (USEPA, 1998; USEPA 1995; USEPA, 2007) and subsequent 

studies have shown pXRF is capable of accurate repeatable analyses if proper sample 

preparation procedures mirroring those used for lab analyses are carried out (Radu and 

Diamond, 2009; Hall et al., 2011; Parsons et al., 2013). 

pXRF measurements can be taken in-situ analysis where a profile face or cored 

samples are scanned directly without any sample preparation. For ex-situ measurements, 

sample preparation such as air-drying, grinding, and sieving typically precedes analysis. 

Using pXRF in-situ with soil under field conditions introduces performance variation that 

has been shown to result in elemental disparities (Ravansari et al., 2020). These sources 

of variation can include physical matrix effects (soil moisture, heterogeneity, sample 

thickness, and surface irregularity), chemical matrix effects (absorption and 

enhancement) and user error (instrument stability). The discrepancy between in and ex-

situ measurements leading to error arises from the fact that pXRF instruments are 

calibrated using dried fine powder reference materials, with little pore space and flat 
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surfaces while soil in situ has field moisture (typically ~5–50%), pore spaces, and an 

irregular surface (Potts and West, 2008).  

2.7.2 Soil moisture 

 
High-water content of a sample can cause X-ray scattering and a dilution effect. 

Soil water absorbs X-ray radiation from the pXRF and decreases the intensity of 

egressing fluorescence, which can result in artificially low elemental concentrations 

(Fischer et al., 2019, Schneider et al., 2016, Ge et al., 2005). Using a dataset of 215 

samples, Schneider et al. (2016) found that the elemental concentrations measured by 

pXRF decreased exponentially as water content increased. Similar findings have been 

published for permafrost-affected soils. For in-situ analysis of Gelisols using pXRF 

analysis, Weindorf et al. (2014) found that for in-situ frozen soil, ex-situ re-frozen soil, 

and a melted soil/water mixture, elemental concentrations were significantly 

underestimated. They corrected for the denudation of secondary radiation by applying a 

moisture correction factor based on the total moisture content. Correction equations have 

also been used by others to effectively mitigate the dilution effect of soils that have a 

considerable moisture content (Ge et al., 2005; Shuttleworth et al., 2014). Though a high 

moisture content of field samples has been shown to reduce elemental intensity spectra, a 

moisture content between 5 to 20% results in minimal error overall (USEPA, 2007). 

2.7.3 Soil organic matter content 

 
Organic matter in the soil is crucial for providing nutrients to promote plant 

growth, increasing water holding capacity, decreasing bulk density, and increasing CEC. 

While most soils have some amount of organic matter, soils from natural ecosystems tend 

to have higher SOM levels than agricultural soils (Magdoff and van Es, 2021). However, 
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SOM fractions have been shown to influence pXRF measurements by attenuating the 

fluorescence signal which in turn lowers the detection accuracy (Chen et al., 2021). 

The calibration modes for pXRF instruments developed using organic-free 

matrices may not account for measurements deviations as a result of soil organic matter. 

For instance, scanning via a fundamental parameters calibration approach would be 

affected by OM changes due to the correction for light elements (Shad and Wendler, 

2014). Shad and Wendler (2014) suggest that empirical calibrations employ certified 

reference materials that include organic soils and peaty soils. 

Ransavari and Lemke (2018) tested the effect of adding 4 different organic matter 

surrogates to mineral soils and found that with increasing fraction of organic matter, 

pXRF concentrations for detected elements decreased due to a dilution effect. These 

measurement inaccuracies linked to the presence of organic matter would likely be 

accentuated with in-situ measurements of topsoils, which tend to be enriched with OM 

from plant residue. 

2.7.4 Heterogeneity and sampling uncertainty 

 
Efforts to characterize and quantify environmental properties contain uncertainty, 

which arises from both sampling and chemical analysis. Spatial heterogeneity, or random 

distribution of minerals in the environment, is the main source of uncertainty in pXRF 

data (Crumbling et al., 2010). Boon et al. (2007) assessed uncertainty of measurements in 

environmental applications and found that sampling contributes over 80% of 

measurement uncertainty, whereas the analytical component is usually less than 20% 

uncertainty of the total variance. In a study comparing in-situ and ex-situ pXRF with ICP 

analyses, Rouillon et al. (2017), found that sampling contributed over 95% of overall 
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measurement errors. According to Ramsey and Boon (2012) since analytical uncertainty 

is much less important than sampling uncertainty, in-situ and ex-situ measurements can 

be practically equal in their reliability.  

In the field, sample heterogeneity has been shown to have the largest impact on 

measurement accuracy when compared to laboratory analysis (USEPA, 2007). Since 

uncertainty from spatial heterogeneity exceeds uncertainty from analytical errors, the 

most effective way to reduce data uncertainty is to constrain spatial heterogeneity. The 

“nugget effect” is a phenomenon that can influence measurements when a chunk of soil 

or crystal of accessory phase minerals causes a particular analyte to be artificially 

concentrated and thus result in a deceptively high measured concentration (Steiner et al., 

2017; Ravansari et al., 2020). Additionally, calculation of in-situ analytical bias is not 

advised due to the discrepancy between heterogenous surface samples in-situ and dried 

powder reference materials (Rouillon et al., 2017).  

2.7.5 Particle sizes 

 
For multiple samples with the same elemental matrices but different particle sizes, 

characteristic X-rays will vary in their intensities. Importantly, a sample with very fine 

particles will give a higher concentration of analyte than for a sample with coarse grains, 

and these effects are pronounced for low atomic number elements (Potts and West, 

2008). For these reasons, in-situ measurements may be less accurate than ex-situ 

measurements which undergo sample preparation to negate these effects. In order to be 

consistent with the particle size across a sample set, samples should be ground and sieved 

to a uniform particle size. Ensuring that particles are a uniform size prevents falsely low 

and high analyte concentrations and improves accuracy of the readings. In a sampling 
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cup, the physical soil matrix can cause elements to be under or overrepresented if particle 

sizes are not uniform. With unhomogenized samples, finer particles can settle to the 

bottom of the sampling cup causing their compositions to go unregistered. Although 

tedious, manual griding via a mortar and pestle can reduce the particle size of inorganic 

aluminosilicates to about 40 μm and may be the best option for small amounts of sample 

(Injuk et al., 2006). If using this method, care must be taken to ensure uniform particle 

sizes to prevent preferential absorption of secondary X-rays by contrasting particle sizes. 

Mills and mechanical grinders can also be used, but these require larger quantities of 

sample and can introduce contamination (Injuk et al., 2006). Homogenizing samples ex-

situ via sieving and grinding to achieve a roughly uniform particle size helps to eliminate 

the fluctuation of field measurements where contrasting particle sizes can cause 

erroneous measurements. 

2.7.6 Sample thickness  

 
Sample thickness may influence elemental concentrations if the sample analyzed 

is not “infinitely thick.” Infinite thickness refers to the minimum thickness that a sample 

must be to absorb penetrating X-ray beams and remit characteristic fluorescence. At an 

infinite thickness, 99% of the analyte’s return X-rays are generated (Kalnicky and 

Singhvi, 2001). Critical penetration depth refers to the layer from which the intensity of 

the secondary X-rays from is measured by the instrument (Markowicz, 2011) and is 

calculated from Eq. 2.6,  where ρ is the sample material’s density, and μtot is the 

absorption properties of the sample.  

            Equation 2.6 

tcrit = 4.61/( ρμtot) 
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Below this depth, fluorescence photons have a high likelihood of being absorbed 

by the sample. The critical penetration depth will vary for different photons, since those 

with high energy penetrate deeper than those with lower energies (Potts, 1999). For 

example, the energy of the K-line for potassium is 3.31 keV and has a critical penetration 

depth of 0.03mm within an andesitic silicate rock. Cerium by contrast, has a K-line 

energy of 34.72 keV and a critical penetration depth of 9.6mm, within the same silicate 

rock (Potts, 1999). Practically speaking, this means that when the pXRF is used on a 

sample, the signal for potassium is coming from a layer in the sample much shallower 

than the layer from which the signal for cerium is coming. This is to say that the pXRF 

signal is derived from a specific and concentrated area, and disproportionate grain sizes 

in the bulk sample will affect the output analytics. Samples against a profile in-situ are 

always infinitely thick, however, a surficial layer of uncontaminated soil only 5mm thick 

could mask contaminated soil (or vice-versa) and lead to a misrepresentation of the true 

nature of the sample. Analyzing a sample in a cup that is not infinitely thick can result in 

artificially low readings, so cups should be filled at least ¾, allowing for sample 

thickness to remain consistent ("How to Test Soil for Lead," 2020). Typical sized pXRF 

sampling cups have an outside diameter of 30.7 mm, aperature size of 24.6 mm, and 

height of 22.9 mm, but larger cup sizes also exist (Chemplex Industries Inc., Palm City, 

FL). 

2.7.7 Surface irregularity 

 
Ideally, the surface of the sample will be entirely flat and aligned perfectly 

perpendicular to the analytical plane of the device. pXRF devices are calibrated with flat 

samples, so scanning an irregular surface will result in a reduction of the excitation and 
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detection power owing to the inverse square law effect (Potts et al., 1997). An irregular 

surface can also introduce air attenuation which is especially consequential for elements 

with atomic numbers <20 (calcium and lower) (Potts and West, 2008). Without an 

appropriate correction factor to peak intensities, air gaps as small as 1-2mm can result in 

inaccuracies (Scholze et al., 2006). Correcting for the effects of surface irregularity can 

be achieved by determining a normalization factor using the Compton and Rayleigh 

scattered peak intensities for a limited range (a few mm) of surface irregularity 

(Marcowicz, 2011). 

2.7.8 Chemical matrix effects 

 
The measured concentration of an analyte depends not only on the abundance of 

that element, but also on the composition of the whole sample. As an X-ray beam travels 

through a sample, its intensity is affected by other elements in the matrix. Chemical 

matrix effects manifest as absorption of emitted X-rays (artificially dulling the intensity), 

and enhancement (artificially enhancing the intensity) (Beckhoff et al., 2006).  

 The characteristic radiation emitted from atoms when they are excited by 

incoming radiation is capable of expelling electrons from other atoms in the sample, 

causing them to fluoresce. While characteristic radiation that is directly produced by the 

X-ray source is primary fluorescence, secondary fluorescence refers to the characteristic 

X-rays emitted by atoms that were excited by primary fluorescence (Fig. 2.16). This 

indirect excitation can enhance the fluorescence intensities and exaggerate the measured 

count rate registered by the XRF device (Brouwer, 2010). Additional excitation from 

matrix elements occurs when an atom refluoresces at an energy higher than the critical 

absorption energy of other elements in the sample (Potts and West, 2008). For instance, 
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the interaction between Fe and Zn can cause both absorption and enhancement effects. 

Since characteristic X-rays produced by Zn are absorbed strongly by Fe, the reported 

concentration of Zn may be artificially low. On the other hand, Fe can be enhanced by the 

characteristic X-rays of Zn, which have an energy close to the K absorption edge of Fe 

(Potts and West, 2008).  

After the discovery of these matrix effects, numerous correction methods were 

developed, including the Lucas-Tooth and Pyne method, Lachance-Traill method, and 

Japanese Industrial Standards (JIS) correction (Lucas-Tooth and Pyne, 1963; Lachance 

and Traill, 1966; The Committee of Iron and Steel Standard Samples, 1982). Modern 

instruments however, use internal calibration software to correct for these intra- and 

inter-element interactions to accurately report the elemental concentrations (Glanzman 

and Closs, 2007). 

Figure 2.16: Inter-element secondary fluorescence occurs when characteristic X-rays 
produced by an atom are energetically efficient enough to excite electrons in the inner 
shells of other atoms in the sample (Adapted from Brouwer, 2010). 

2.7.9 Scan time and detection limits 

The detection limit (DL) or limit of detection (LOD) refers to the smallest amount 

of analyte that can be detected in a sample. On a spectrum, an element’s peak element 

Incoming X-rays

Primary 
fluorescence

Secondary 
fluorescence

Stamp
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must be distinguished from and corrected for the background measurements (noise) 

beneath the peak intensities (Rousseau, 2001). Detection limits are a function of the 

specific method, sample preparation, and instrument, and therefore will depend upon the 

experimental setup and particular matrix (Mantler, 2006). The ability of the instrument to 

detect if an element is present in the sample or not above some given limit defines the 

LOD for that element.  

Typically, the DL values published by instrument manufacturers represent the 

concentration equal to three standard deviations of the background intensity for a set of 

measurements (Rousseau, 2001). Practically, this means that to be considered ‘detected,’ 

the area under the peak for an element’s signal needs to be at least 3x the background 

height (Fig. 2.17). The standard deviation (±3 sigma) which drives the LOD calculation is 

a function of the total number of counts. Therefore, there is a direct relationship between 

scan time (which determines the total number of counts) and the limit of detection 

calculation. As shown in Eq. 2.7, the relative standard deviation (σM/M) decreases with 

the number of counts (M) (Friedlander et al., 1981).  

             Equation 2.7 

 
 

Thus, a shorter scan time results in a higher standard deviation for the 

concentration of any element when compared to a longer scan time (Fig. 2.18). While a 

scanning time of 60 or 90s is common for soil analysis, longer scanning times have been 

shown to increase the accuracy of elemental concentration readings (Weindorf and 

Chakraborty, 2020). For instance, if aluminum has an LOD of 125 ppm with a 120 
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second beam condition, halving the beam time to 60 seconds while keeping all else equal 

would result in a LOD of 250 ppm. However, the increase in accuracy from longer scans 

must be weighed against the quantity of samples which can be analyzed in the same time 

frame. While it is true that a longer detection time improves detectability and can 

decrease measurement variability across replicate measurements (Ransavari et al., 2020), 

the associated gains in detectability will diminish at some point with increasing scan 

times reducing detection limits only by the square root of that factor (Potts and West, 

2008). The detection limits are improved up until a point when the signal to background 

noise ratio becomes less optimal (Tighe et al., 2018; Killbride and Hutchings, 2006),  

Figure 2.17: An established way to pick up on the detected elements is to only report 
those where the peak height is at least 3x the background height (Image from Olympus 
Scientific Solutions, How to Use and Understand LODs). 
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Figure 2.18: Increasing the scan time decreases the standard deviation of the elemental 
concentrations and captures their presence more consistently. For Fe, the margin of 
uncertainty decreases from ±0.19 with a 4 second scan to ±0.087 with a 20 second scan 
(Image from Olympus Scientific Solutions, PMI Workshop- Part 4 -XRF Statistics).  

2.7.10 Fit for purpose 

The use of quick and efficient in-situ measurements should be weighed against 

the higher accuracy of ex-situ pXRF analysis, taking specific goals of the study or 

investigation into account. In other words, the manner of pXRF operation should be 

tailored to and suited for the particular purpose for which it is being utilized.  

In-situ analysis via pXRF greatly increases the uncertainty of the measurements 

due to the inherent interfering effects (heterogeneity, granularity, moisture, and surface 

irregularity), making these results only semi-quantitative (Markowicz, 2011). The 

sensitivity of analysis using a simple ‘point-and-shoot’ methodology is impeded by air 

space between the target and window while representativity is hindered by heterogeneous 

mineral soils (Leimere, 2018). However, these limitations are mostly removed in the case 

of fine-grained and naturally homogenous matrices, such as till. Sarala (2016) and Sarala 
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et al., (2015) observed that pXRF used in Finland for geochemical mineral exploration of 

till correlated well to ex-situ pXRF and ICP-AES results. Further, Yuan et al. (2021) 

found in-situ pXRF measurements to produce comparable results to laboratory methods 

for most elements and were able to achieve high spatial resolution data to observe 

geochemical patterns resulting from weathering.  

Ramsey and Boon (2012) challenged the traditional mindset that in-situ 

measurements are inherently less reliable than traditional laboratory ex-situ 

measurements by comparing pXRF measurements of As at a contaminated golf course to 

hydride generation-AAS method. Authors found that sampling uncertainty consisted over 

93% of the total uncertainty for both in-situ and ex-situ measurements. They concluded 

that despite higher levels of uncertainty for in-situ measurements, as long as the 

uncertainty is quantified this sampling technique can be more fit for purpose than ex-situ 

measurements. For some instances, in-situ measurements with water, organisms, coarse 

fragments, and roots present may more accurately capture the target value than dried, 

sieved, homogenized, and chemically digested soil used for laboratory analysis, which 

can cause some bioavailable or volatile analytes to be lost (Ramsey and Boon, 2012). 

Additionally, high spatial resolution of in-situ measurements means that a more reliable 

site assessment can be achieved than would be possible with fewer ex-situ measurements. 

If accuracy of pXRF measurements is monitored, the confidence level of a high volume 

of pXRF samples will be higher than a handful of lab-analyzed samples, despite a higher 

analytical uncertainty of pXRF (Lemière, 2018). For the same cost as ICP analyses, much 

higher resolution sampling can be conducted with pXRF in-situ, which drives down 

sampling uncertainty considerably (Rouillon et al., 2017). Another advantage of in-situ 
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measurements are the potential cost savings from storage, transportation, and disposal 

associated with ex-situ samples. For temporal studies and geographically extensive study 

areas, in-situ pXRF measurements offer tangible cost and labor savings over pXRF 

samples analyzed in a lab and may more accurately represent the entire sampling target. 

For instance, Rouillon et al. (2017) found that in-situ pXRF measurements for assessing 

metal contamination provided over twice as many samples for around half the cost of ex-

situ and ICP analysis. Thus, consideration of the study objectives, level of accuracy 

needed, and economic constraints should be integrated into the sampling plan.  

Initial assessments of pXRF instrument reliability were concerned with absolute 

accuracy of pXRF measurements, but as technology has improved, it has become clear 

that despite less accurate data, pXRF measurements still provide consistent data sets for 

geochemical analyses and spatial distribution of elements, with most of the inaccuracy 

emerging as a result of bias (Lemière, 2018). The use of pXRF for pedological 

classification or agricultural use to determine soil nutrients might be best served by in-

situ measurements in the field to inform immediate decisions or home in on the areas of 

interest. Intergrade field preparation techniques between point and shoot and laboratory 

preparation can also be used to improve the precision of in-situ measurements. The “mole 

heap” technique consists of roughly homogenized loose media which is flattened 

(Lemière, 2018). A mortar and pestle may also be transported to the field to achieve more 

uniform particle sizes. In-situ pXRF analysis can be affected by hand movement 

instability which can change the analyte quantification, but this can be remedied by 

mounting the pXRF in a small transportable stand or ‘soil foot’ (Fig. 2.19) to allow for 

stable measurements and consistent sample positioning.   
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The question of if pXRF analysis is right for the task at hand should be decision 

comparability, rather than comparability to lab results, which are also imperfect and 

‘wrong’ to some extent. This is especially true for methods which require acid digestions 

to determine the total elemental abundance, because an incomplete digestion can result in 

artificially low concentrations being reported. Also, despite an imperfect regression 

between field and lab data, pXRF analysis has the capability to estimate upper 

concentration limits (UCL) and exposure point concentrations (EPC) for contaminated 

sites (Crumbling et al., 2010). On the other hand, regulatory decisions that consider 

public health or environmental impact with a high level of accuracy and precision may be 

most appropriately determined via ex-situ laboratory confirmation.  

Simple sample preparation including drying, sieving, and homogenizing before 

pXRF scanning still allows for quicker sample analysis than conventional techniques 

such as ICP-OES. A good way to balance accuracy with practicality is combining low-

cost pXRF field measurements as the bulk of the data, with some systematic control 

analyses in the lab to improve the data quality (Lemière, 2018).  

Figure 2.19: Use of a field portable pXRF mount can help address some of the 
error typical of in-situ analysis, like surface irregularity and sensor instability. 
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Chapter 3  

  MATERIALS AND METHODS 

3.1 Sample collection 

 
A set of soil samples (n=480) from throughout the state of California were assembled 

prior to pXRF analysis. The total sample set represents 809 km (~500 miles) across the 

state (Fig. 3.1). The availability of extra soil material from existing collections at Cal 

Poly and from other soils departments in the state influenced the resulting dataset. A wide 

array of samples from California were collected to determine the level of accuracy that 

could be achieved from predictive models built with soils from a vast geographic range 

with contrasting properties. For LA Urban, marine terrace, SPR/LBHC Mollisol, and 

some of the NRCS Chico samples, the land type was provided by the entity or individual 

who performed the soil sampling. For the NRCS Chico samples which were collected 

from Lassen National Park and for the UC Merced samples, the sample coordinates were 

input into Google Earth to identify the land type. The respective land types from which 

the samples were collected can be viewed in Table 3.1. 

Due to the opportunistic sampling design of this study, the different sample sets were 

characterized by a handful of different labs. As a result, sample characterization was 

approached using different methods between the sample sets. While it is expected that 

this approach introduced variability into the lab ‘truth’ measurements, an array of 

acceptable standard methods was expected to contribute to a robust modeling dataset 

capable of linking elemental spectra to the soil property of interest in spite of typical 

analytical or inter-lab variability errors. Summarily, this study relies on the assumption 

that soils data collected across several labs can be directly compared.  
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A collection of 159 samples were amassed from a chronosequence of marine terraces 

at Swanton Pacific Ranch (SPR) in Davenport, CA. For 32 plots, samples were collected 

at four depths: 0-5 cm, 5-15 cm, 15-50 cm, and 50-100 cm. These samples are referred to 

as marine terrace samples for the remainder of this report. These samples were 

characterized by Cal Poly’s soils labs for texture, SOC, N, and C:N and by A&L 

Laboratories for pH and CEC. A total of 39 surface samples were collected from urban 

forestry sites in Los Angeles, CA and are referred to as LA urban samples in this report. 

These samples were characterized for all properties by Cal Poly’s soils labs.  

A total of 218 samples were collected from Landel’s-Hill Big Creek Reserve 

(LHBC) in Monterey County, CA and SPR in Davenport, CA as part of a study 

investigating the properties and management implications of Mollisols in forest and 

grassland environments (Clark, 2021). Both locations contained redwood forest and 

grassland ecosystems with mollic epipedons. At LHBC, 15 pits were established at the 

southern extent of the LHBC property and at SPR, 28 pits were excavated along five 

transects. The transects ran through several ecosystem types including redwood forest, 

mixed evergreen forests, coastal scrub, and coastal grasslands. At each pit, soil material 

was collected from three different depth classes: 0-10 cm, 10-25 cm, and 25-50 cm. 

These samples are referred to as SPR/LHBC Mollisol samples in this report. All soil 

properties assessed in this study were characterized by Cal Poly’s soil labs.  

An additional four agricultural soils were collected within the vicinity of the 

University of California Merced and analyzed by the University’s soils department. The 

four samples come from the Atwater, Bear Creek, Alamo, and San Joaquin series. These 

samples are referred to as UC Merced samples in this report.  
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A set of 60 samples that were pre-characterized by the Kellogg Soil Survey 

Laboratory were obtained from storage at the NRCS Chico location. Of this collection, 

16 were from Lassen National Park (Project C2008USCA016), 11 were from Lassen 

Volcanic National Park (Project C2007USCA026), four were from Shasta Co. (Project 

R2008USCA103), 14 came from Bay Delta MLRA 17 (Project C2016USCA033), three 

were from Bay Delta Soil Systems Study (Project C2017USCA083), 10 were collected 

from Bay Delta (Llano Seco) (Project C2014USCA050) and two were from DSP Sutter 

Co. Prune Orchard (Project C2015USCA019). These samples are referred to as NRCS 

Chico samples in this report. Lab data for each sample set can be found in Appendix A, 

and elemental data can be found in Appendix B.  

Table 3.1: The land cover categories from which samples in this study were collected. 
Forest Grassland Urban Agriculture Bay delta Marine terrace 

Number 
of samples 

168 81 39 6 27 159 

While marine terrace samples were collected from a grassland environment, they were 
separated from the grassland category to maintain the distinction of close proximity to a 
sea cliff and generally higher sand contents. 
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Figure 3.1: Map of sample locations color coded by sample set. Following each sample 
set is the number of sampling locations for that sample set. Where the number of sites is 
less than the total number of samples (SPR/LHBC Mollisols, Marine terrace, and NRCS 
Chico) multiple samples were collected at different depths in the soil profile.   

3.2 Laboratory analysis 

3.2.1 Sample preparation 

Soil samples were left to air-dry prior to analysis and then sieved to ≤2mm to 

separate the fine earth fraction from any coarse fragments. A subsample of about 40g of 

the sieved soil was ground with a mortar and pestle into a fine powder to be used for CN 

and pXRF analysis. The sieved soils and finely ground subsamples were stored in labeled 

plastic bags on laboratory shelves. 
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3.2.2 pH 

 
Measurements of pH for the LA urban, SPR/LHBC Mollisols, NRCS Chico, and 

UC Merced samples were carried out following the standard 1:1 water pH method 

(4C1a2a1) outlined in the Kellogg Soil Survey Laboratory Methods manual (Soil Survey 

Staff, 2014b). Prior to taking measurements, a three-point calibration with an acid, base, 

and neutral buffer solution was carried out to ensure proper pH meter functioning. To 

prepare the soil water solution, 20g of soil was mixed with 20mL of reverse osmosis 

(RO) water. The mixture sat for an hour to equilibrate and was stirred occasionally. After 

an hour, the pH electrode was inserted into the mixture, just above the soil sediment layer 

and the pH was recorded when the measurement stabilized. Three replicate measurements 

were taken with the pH probe and averaged to determine the solution pH in water. When 

the pH electrode was not being actively used, it was kept in a storage solution. 

 For the marine terrace samples, the saturated paste method (S - 1.10) was carried 

out as described in the Soil, Plant, and Water Reference Methods for the Western Region 

manual (Gavlak et al., 2005). This approach used a 200g of air-dry soil and deionized 

water to create a saturated paste which meets the following criteria: 

 Does not have free standing water on the surface of the paste. 

 Soil paste slides freely and cleanly off a spatula (excluding soils with >40% clay). 

 Paste will flow slightly when the container is tipped. 

 Soil surface glistens as it reflects light. 

 Consolidates easily by tapping after a depression is formed in the paste with a 

spatula (excluding soils with >70% sand). 
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After allowing the saturated paste to equilibrate for 4 hours, the saturation 

characteristics were checked again to ensure they still meet the requirements of a 

saturated paste. A pH meter equipped with electrodes was standardized to 3 different 

buffers (pH 4, 7, and 10). The meter was inserted into the soil paste and allowed to 

stabilize, after which the pH was recorded.  

3.2.3 Particle size analysis 

 
In order to determine the textural classes and relative proportions of sand, silt, and 

clay for LA Urban, SPR/ LHBC Mollisols, marine terrace, and UC Merced samples, 

particle size analysis (PSA) was carried out using the hydrometer method (S - 14.10) 

from Soil, Plant and Water Reference Methods for the Western Region (Gavlak et al., 

2005). Pretreatment of soils for removal of soluble salts, organic matter, carbonates, and 

iron oxides was not carried out due to logistical constraints. Forgoing H2O2 pretreatment 

for the samples was not anticipated to cause major impacts on the PSA results. While salt 

and carbonate levels were mostly negligible, some Mollisol soils did have high levels of 

organic matter, which may have impacted the hydrometer readings of these samples. 

However, conflicting evidence about the overall impact of forgoing pretreatment exists 

(Callesen et al., 2018; Ferro and Mirabile, 2009). The degree of error arising from this 

decision was expected to be minor, compared to inherent theoretical and sampling errors 

of hydrometer analysis (Black, 1951).  

To perform the PSA analysis, a volume of 40 ± 0.05g of sieved and air-dried soil 

was weighed on an electric balance and placed into metal dispersing cups. The weight of 

soil was recorded to later correct for the air-dry/oven-dry ratio (AD/OD). Then, 100ml of 

sodium hexametaphosphate (HMP) solution was added to each cup and samples were left 
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to equilibrate overnight. Extra deionized (DI) water was added to the cups so there was 

enough solution for the mixing attachment to reach. The dispensing cups were attached to 

an electric mixer (Hamilton Beach Scovill Model 936-Drink mixer) and set to mix on 

high speed for five minutes. Additional DI water was used to rinse the soil from the cup 

into a clean sedimentation cylinder and brought to 1L volume using DI water. A 

reference cylinder with 100ml HMP brought to 1L volume with DI water was prepared as 

a reference blank. In some samples, a thick layer of foam formed at the top of the 

sedimentation cylinder, requiring a couple drops of amyl alcohol to be added as a foam 

reducer. Using a plunger (rubber disk attached to a rod) the samples were thoroughly 

mixed using an up and down motion for one minute. Immediately after mixing, a 

standard hydrometer with the Bouyoucos scale in g L-1 was placed into the cylinder and at 

read at the upper edge of the meniscus surrounding the stem to the closest ±0.05 g/L after 

40 seconds. This measurement was recorded and represented the clay and silt fraction 

(Rsand) that was suspended in the cylinder. A measurement of the blank was taken in this 

same manner (RC1). Samples were allowed to thermally equilibrate based on the 

temperature of the blank solution. After six hours, the temperature of the blank was taken 

and used to determine the settling time for clay (ranging from 6 hours and 27 minutes for 

28°C to 8 hours and 9 minutes for 18°C). When the settling time was reached, the second 

density measurement was taken for each sample and the blank (RC2). The second 

measurement was carried out by placing the clean hydrometer in the cylinder gently as to 

not disturb the settled particles and again reading to the nearest ±0.05 g/L. The second 

measurement represented the clay fraction (Rclay) of the sample suspended in the cylinder. 

The air-dry/oven-dry (AD/OD) ratio was determined using method 3D1 from the Kellogg 
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Soil Survey Laboratory Methods Manual (Soil Survey Staff, 2014b) and used to adjust 

the air-dry sample weights. Hydrometer measurements of samples and the blank were 

used to determine the percent sand (Eq. 3.1), clay (Eq. 3.2), and silt (Eq. 3.3). 

Equation 3.1 

 
 

Equation 3.2 

 
 

Equation 3.3 

 
 

For NRCS Chico samples, standard KSSL PSDA method 3A1a1a (Soil Survey 

Staff, 2014b) was used to determine soil texture. For this method, 10g of soil was 

pretreated to remove soluble salts and organic matter. The sample was oven-dried 

overnight at 110°C to obtain an initial sample weight unaffected by moisture. Then, 

10mL of HMP solution and 175mL of RO water was added to the sample and placed on a 

horizontal shaker set to 120 oscillations per minute to be shaken overnight. Next, the 

sample was wet sieved using a 300 mesh (0.047mm) sieve to separate the silt and clay 

fraction (collected underneath the sieve) from the sand fraction which remained on top of 

the sieve. The silt and clay fraction were transferred to a 1L cylinder and brought to 

800mL volume with RO water. A watch glass was placed on top of the cylinder and left 

to equilibrate overnight while the sand fraction was transferred to an evaporation dish to 

dry in the oven overnight. The dry sand was sorted with a stack of sieves (in descending 

order: 1, 0.4, 0.25, 0.1, and 0.047mm) and the sand fraction remaining on top of each 
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sieve was weighed. Clay and silt contents in the 1L cylinder were determined 

gravimetrically using a 25mL Lowry pipette mounted to an adjustable pipette rack. The 

temperature of a prepared blank solution was recorded. A hand-stirrer was then used to 

mechanically stir the silt and clay solution for five minutes and then for an additional 30 

seconds using an up and down motion. For the <20μm fraction, an aliquot was retrieved 

at a depth of 10cm into the suspension and placed into a weighing bottle. For the <2μm 

fraction, aliquots were retrieved at 4.5, 5, 5.5, or 6.5 hours. A second temperature of the 

blank was recorded and used to adjust for the pipette depth into the solution. The 

collected aliquots were oven dried overnight and weighed as residue weights. Particle 

size fractions could then be determined using Eq. 3.4–3.7, where RW2 is the <2 μm 

fraction residue weight, DW is the weight of the HMP dispersing agent, CF is 

1000mL/DV, DV is the dispensed pipette volume, TW is the total weight of the oven dry 

sample, RW20 is the <20μm residue weight, and SWi are the weights of the sieved sand 

fractions.  

Equation 3.4 

Clay % = 100 x [(RW2 − DW) x (CF / TW)] 
 

Equation 3.5 

Fine Silt % = 100 x [(RW20 − DW) x (CF / TW)] − Clay % 
 

Equation 3.6 

Sand % = ∑ (SWi / TW) x 100 
 

Equation 3.7 

Coarse Silt % = 100 − (Clay % + Fine Silt % + Sand %) 
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3.2.4 CEC 

 
CEC for SPR/LHBC Mollisols samples was determined via a two-step extraction 

process as described by Clark (2021) which drew on methods taken from the KSSL 

manual chapter 4B1a (Soil Survey Staff, 2014b), method S - 14.10 and S - 10.10 in Soil, 

Plant, and Water Reference Methods for the Western Region (Miller et al., 2013), and the 

Fall 2018 Soil and Water Chemistry Laboratory Manual for the California State 

Polytechnic University of San Luis Obispo (Appel and Stubler, 2018). For this method, 

2.5g of soil was combined with 35mL of pH 7 1 M ammonium acetate (NH4OAc) in a 

centrifuge tube. The samples were placed on an oscillating shaker at 180 cycles/minute 

for 30 minutes then centrifuged at 2000 rotations/minute. The basic cation extract was 

filtered from the soil and another 25mL of ammonium acetate was added to ensure full 

saturation of soil cation exchange sites. Excess ammonium that was unbound to exchange 

sites was washed from the solution with isopropyl alcohol three times. Then, 35mL of 2 

M KCL was added to the tube, which was shaken and centrifuged at the previously 

mentioned settings. The supernatant was decanted into a scintillation vial and frozen until 

colorimetric analysis. Prior to analysis, extracts were diluted 45x with 2 M KCl to ensure 

absorbance readings would be within the limit of detection for the instrument. Several 

aliquots were also added to the extract, including two reagents necessary for the 

colorimetric reaction. Absorbance readings were obtained using Ocean Optics UV-VIS at 

650 nm. The results of this method were validated by measuring exchanged ammonium 

with an ammonia gas electrode.  

 For LA Urban and UC Merced samples, CEC was determined using an adapted 

version of UN-FAO methods as described in the Fall 2019 Soil and Water Chemistry 
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Laboratory Manual for the California State Polytechnic University of San Luis Obispo 

(Appel and Stubler, 2019). In this method, 2.5g of soil was weighed into a falcon tube 

and combined with 25mL of pH 7 1 M NH4OAc. The samples were shaken for 30 

minutes on an oscillating shaker (New Brunswick Scientific Innova 2100 Open-Air 

Platform Shaker) at 180 cycles per minute for 30 minutes. After being shaken the 

samples were centrifuged (Eppendorf 5810R Centrifuge, serial no. 0034398) at 2000 rpm 

for five minutes. The supernatant was poured off of the samples to discard excess 

unbound ammonium. To rinse off any remining ammonium in the pore water of the 

sample, 25mL of 91% isopropanol was added to the tubes as a cleansing solution. It was 

necessary to resuspend the soil pellet that formed at the bottom of the tubes after 

centrifugation using a vortex mixer (Thermo Scientific, Vortex Maxi Mix II). The soil 

and isopropanol mixture was placed on the oscillating shaker for five minutes and then 

centrifuged for five minutes at the previously mentioned settings. Once again, the 

supernatant was poured off, and another round of cleansing with the isopropanol solution 

was performed (vortex mixer, oscillating shaker, centrifuge). After the supernatant was 

poured off for the last time, an additional 10mL aliquot of isopropanol was added to the 

centrifuge tube to re-suspend the soil pellet so the contents could be transferred to a 

crucible. Additional isopropanol was used to rinse any remaining soil from within the 

centrifuge tube. The crucibles were placed in a drying oven set to 30°C for 24 hours. For 

those samples with coarse particles, the dried soil was ground via mortar and pestle. 

Then, 1000 ± 250mg of the dried soil was weighed into crucibles for analysis of total N 

in an Elemantar Vario MAX Cube CN analyzer (Elemetar, Langenselbold, Germany; 

serial no. 29191038). For every 10 samples, a standard reference material B2178, 



83 
 

“Medium Organic Content Sediment” (Elemental Microanalysis Limited) was run for 

continuing calibration verification. To determine CEC from %N, the total %N was 

converted to a weight (mg/kg) and then to cmolc/kg. Two example calculations are 

shown below.  

LA Plot 4 (Loamy sand, 6.29% clay) 

 
 

LA Plot 169 (Loam, 25.84% clay) 

 

Determination of CEC for NRCS Chico samples was carried out following 

method 4B1a1a as described in the KSSL manual for CEC7 (Soil Survey Staff, 2014b). 

For this procedure, exchange sites were saturated with an index cation (NH4
+) using 1 M 

pH 7 NH4OAc solution applied with a mechanical vacuum extractor. The soil was 

washed with ethanol to remove unabsorbed NH4
+. Then, the sample was rinsed with 2 M 

KCl and the leachate was analyzed using steam distillation and titration to determine 

CEC to the nearest 0.1 cmolc/kg soil.  

To determine CEC for marine terrace soils, the ammonium replacement method 

(S - 10.10) as described in Soil, Plant, and Water Reference Methods for the Western 

Region (Gavlak et al., 2005) was performed by A&L laboratory in Modesto, CA. This 

approach involved weighing 10 ± 0.1g air-dry soil into a 125mL Erlenmeyer flask. Then, 
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50mL of pH 7 1 M NH4OAc was added to the flask and placed in a reciprocating shaker 

for 30 minutes. The solution was transferred to a Bucher funnel fitted with Whatman No. 

5 filter paper. A 1L vacuum extractor was connected to the Buchner funnel and the 

solution was leached using 175mL NH4OAc. The excess NH4OAc was rinsed from the 

soil solution in the Buchner funnel with 200mL of ethanol. After rinsing soil in this 

manner, exchangeable ammonium was replaced by attaching the funnel to a 500mL 

suction flask and leaching the solution with 225mL of 0.1 M HCl. The leachate was 

brought to a volume of 250mL using DI water and then analyzed for ammonium 

concentration with an ALPKEM rapid flow analyzer. The analyzer measures indophenol 

blue at 660 nm produced by the complexation of ammonium and salicylate intensified 

with sodium nitroprusside.  The basic cation concentrations (K, Mg, Ca, Na) of marine 

terrace samples were also determined by A&L laboratory and reported in ppm. To 

determine the base saturation of these samples (Eq. 3.8), the ppm of each cation was 

converted to cmolc/kg soil (Eq. 3.9) and then divided by the CEC, as shown in the 

example calculation below.  

Equation 3.8 

 
Equation 3.9 
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Marine terrace sample #1 

 
 

 

 

 

 

 

 

3.2.5 SOC, TN, and C:N ratio 

Total carbon (TC) and nitrogen contents for the LA urban, SPR/LHBC Mollisol, 

and marine terrace samples were measured via combustion using an Elemantar Vario 

MAX Cube CN analyzer. Using an analytical balance (Mettler Toledo, Columbus, OH) 

CN tube crucibles were filled with 1000 ± 100mg of finely ground soil. For method level 

quality control, all LA Urban samples were run in duplicate, and 10% of SPR/LHBC 

samples were duplicated. Empty crucibles were used as blanks and organic analytical 

standard B2178 was run every 10 samples for continuing calibration verification.  

NRCS Chico samples were analyzed by the KSSL for total carbon and nitrogen 

via combustion techniques 4H2a1 and 4H2a2 (Soil Survey Staff, 2014b). In this method, 

samples were subjected to high temperatures in an oxygenated CO2 environment within 

an elemental analyzer using catalytic tube combustion. The N2 and CO2 gases released 

from the sample were distinguished from each other by adsorption columns and measured 

using a thermal conductivity detector. 
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To determine soil organic C content (SOC) for SPR/LHBC Mollisols, a correction 

to the % TC determined via combustion was applied. Assuming any organic C was the 

result of calcium carbonate (CaCO3) dissolution, the difference between TC and 

inorganic C contributed by carbonates was calculated to find the organic C fraction (Soil 

Survey Staff, 2014a) (Eq. 3.10). A correction was applied to soils that exceeded 120% 

base saturation (BS) (typically, 100%, but 120% was used for these soils due to error 

associated with basic cation extractions). To find SOC, the difference between the 

exchangeable charge and the extracted basic charge was assumed to be associated with 

calcium carbonate (Eq. 3.11) and was subtracted from TC (Clark, 2021).  

 

 

Soil organic carbon % = Total C % — Inorganic carbon % associated with CaCO3 
 

 
 
For marine terrace samples, the calculated base saturation (as described in the 

CEC determination section) was used to infer SOC content. If the base saturation 

exceeded 100%, as was the case for three samples, the sample was discarded due to the 

presence of carbonates and no way to correct for them. If base saturation was <100%, 

SOC was assumed to equal TC. 

NRCS Chico samples that were classified by the Kellogg National Laboratory, 

had total carbon and nitrogen, estimated SOC, and CN ratio values reported (methods  

4H2a1 and 4H2a2). The estimated organic carbon was calculated using Eq. 3.12. In the 

case that carbonates were determined (method 4E1a1a1) and reported, TC could be 

Equation 3.10 

Equation 3.11 
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corrected for carbonates. No data in the carbonates section was assumed to mean no 

carbonates were present in the sample since most samples that go through KSSL are 

requested for the calcium carbonate equivalent analysis. Thus, no data in that section 

generally indicates that the sample didn’t meet the pretest criteria to be analyzed for 

carbonates (S. Murphy, personal communication, 30 March 2022). While TC values are 

reported to the hundredths place, OC values were reported to the tenths place, causing 

OC values to be higher than TC values in some cases. In the case that there was no data 

for calcium carbonate equivalent on the sample report, no carbonates were detected, or 

OC was higher than TC, SOC was reported to be equal to TC. If carbonates were detected 

in trace amounts or more, the OC value was used for SOC. 

Equation 3.12 

 
 

For LA Urban Samples, soil organic carbon was determined by using the CN 

analyzer set to a reduced temperature (Pitt et al., 2003). Subjecting the samples to a 

temperature between 600-650°C results in combustion of the organic fraction, while 

preventing the loss of inorganic carbon. The same sample preparation process as total C 

and N was followed for loading the samples (1000 ± 100mg of finely ground soil placed 

into CN tube crucibles). Empty crucibles were used as blanks and natural reference 

material B2188 (Elemental Microanalysis) was run every 10 samples for continuing 

calibration verification. SOC, TN, and C:N ratio were not determined for UC Merced 

samples. The C:N ratio of all samples for this report is represented as the ratio between 

SOC and total nitrogen.  
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3.3 pXRF sample preparation and analysis 

Samples were analyzed according to the manufacturer’s recommended 

instructions by placing 3-5g of finely ground soil into XRF sample cups followed by 

pXRF analysis in a stand mount. A mortar and pestle were used to manually grind the 

samples into a fine powder. The powder was transferred into double open ended XRF 

sample cups with caps and a serrated snap-on ring (Cat. No. 1330-SE, Chemplex 

Industries Inc., Palm City, FL). The soil powder was packed into cups tightly to avoid air 

pockets which can lead to X-ray attenuation. Cups were sealed using 4 µm Prolene™ 

films (Cat. No. 426, Chemplex Industries Inc., Palm City, FL), which contain fewer 

impurities than Mylar™ and Kapton™ films (Laperche and Lemière, 2021). 

Figure 3.2: A batch of pXRF cups packed with finely ground soil ready to be scanned 
(Photograph by the author).  

For all samples, scanning was conducted with a handheld VMR model Vanta M 

Series XRF analyzer (S/N 801741, Olympus, Waltham, MA). The instrument uses a 4-

watt X-ray tube with a rhodium (Rh) anode material as an excitation source and was 

https://sciprofiles.com/profile/1919221
https://sciprofiles.com/profile/472846
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operated at 40 and 10 kV with a large area Silicon Drift Detector (165eV). The GeoChem 

calibration was used, with two sequential beams set to scan the soil samples for 30 

seconds each, so that every complete scan took one minute. The 10kV beam analyzed 

magnesium up to titanium while the 40kV beam analyzed titanium and heavier elements. 

Given the greater robustness of a fundamental parameters calibration, as discussed in 

Chapter 2, it can be reasoned that most applications are better served with GeoChem than 

with Soil mode, which is why GeoChem mode was used in this study.  

Before scanning the samples in each batch, a clean wipe was used to gently wipe 

off the lens of the pXRF, the quartz blank, and the top films of the standards and samples. 

An internal calibration or ‘Cal Check’ was performed before the start of each scanning 

session. To perform this check, the pXRF was placed in the instrument docking station 

and the Cal Check was initiated. This step checks the detector, X-ray tube, filter wheel, 

and safety features of the analyzer. After passing the Cal Check, the SiO2 (quartz) blank 

was scanned to check for contamination on the analyzer window (EPA, 2007).  

To account for within sample variability, differences in particle size and packing 

density at the small area analyzed by each scan, each sample was reoriented between the 

two scans (Towett et al., 2015). Accuracy at the instrument level was evaluated with 

initial calibration verifications and continuing calibration verifications every 10 scans 

using standard reference materials 2711a “Montana II Soil Moderately Elevated Trace 

Element Concentrations” and 2706 “New Jersey Soil, Organics and Trace Elements” 

(NIST, Gaithersburg, MD). The chemistry results for each scan session were exported 

from the Vanta XRF Analyzer PC Software to .csv files. The results of standard scans 
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were used to monitor precision over time, as discussed further in the Instrument Quality 

Control section.  

3.4 Data processing 

After each round of pXRF scans, the chemistry results were exported as .csv files. 

The .csv exports were manually combined in Excel (Version 16.54, Microsoft, 2021) for 

each sample set and an extra column labeled “Unique Sample ID” was added to easily 

average replicate scans and link lab data to pXRF data. Scans of the standard soils, 2711a 

and 2706, were exported as a .csv file to monitor instrument precision over time. 

The combined .csv files were loaded into RStudio for the remaining data 

processing and analysis (Version 1.3.1093) (RStudio Team, 2020). To average replicate 

scans into one value for each elemental concentration, a series of iterations through the 

combined dataframe selected the subset of scans that had matching Unique Sample ID 

values. For rows with matching Unique Sample IDs, the non ‘<LOD’ values of each 

column were averaged. If one concentration was ‘<LOD’ and the other concentration was 

detected, only the detected value was used. In the case that both readings were ‘<LOD’, 

that elemental concentration was not captured and was henceforth recorded as ‘NA’. An 

example of the concentration averaging is shown in Tables 3.2 and 3.3. The averaged 

elemental concentrations were used for subsequent modeling and can be found in 

Appendix B.  
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Table 3.2: A few rows of the raw replicate scan data loaded into RStudio for averaging. 
Unique Sample 

ID 

Mg 

Concentration 

Al 

Concentration 

Si 

Concentration 

P 

Concentration 

NRCS1 5561 72417 228626 1370 

NRCS1 <LOD 73645 227576 1311 

NRCS2 4116 93591 223757 1052 

NRCS2 4874 94745 238797 988 

NRCS3 8628 72748 234682 1450 

NRCS3 8713 75172 237753 1461 

NRCS4 <LOD 102692 216816 365 

NRCS4 <LOD 103703 218894 269 

NRCS5 19759 67697 205774 852 

NRCS5 21975 68747 206118 867 

Concentrations are in ppm. 

Table 3.3: The averaged concentration values. 

Unique Sample 

ID 

Mg 

Concentration 

Al 

Concentration 

Si 

Concentration 

P 

Concentration 

NRCS1 5561 73031 228101 1340.5 

NRCS2 4495 94168 226277 1020 

NRCS3 8670.5 73960 236217.5 1455.5 

NRCS4 <LOD 103197.5 217855 317 

NRCS5 20867 68222 205946 859.5 

Only the 1st NRCS1 scan was used as the Mg concentration because the 2nd replicate 

scan of Mg was <LOD. Since both NRCS4 scans were <LOD for Mg, no averaged 

concentration could be computed and <LOD was returned. 

All averaged scans and corresponding lab data were merged based on Unique 

Sample ID into one at frame which could be used to evaluate and build multiple linear 

regression and RF models. Importantly, a high proportion of non-detectability for some 

elements necessitated that they were eliminated prior to modeling (Sharma et al., 2014; 

Sharma et al., 2015). Thus, Co, Se, Mo, Ag, Cd, Sn, Sb, W, Hg, Bi, Th, and U were 

excluded from the modeling datasets.  

3.5 Instrument quality control 

To ensure the pXRF was functioning properly across the duration of the 

experiment, QC measures were established. The Cal Check was performed and passed at 
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the beginning of each scanning session to make sure the internal components were 

functioning properly.  

A quartz blank was scanned at the beginning of each batch of samples to ensure 

no contamination was present on the instrument window or sample. To avoid dust or soil 

from impacting the measurements, a water wipe was used to clean off any dust on the 

blank and standards. The instrument blank indicated no contamination was present if the 

pXRF read about 50% Si and 50% LE (oxygen). As shown in Fig. 3.3, LE and Si 

concentrations mirror each other to reflect the composition of the quartz blank. Most 

readings reflect LE and Si in a typical range between 490,000 and 510,000 ppm, but for 

some readings, LE appears to be much higher, while Si is lower. A likely explanation for 

this is that the water deposited onto the blank by the water wipe was not completely 

evaporated. As a result, the LE concentration was overestimated which in turn drove 

down the Si concentration. Even a very small film of water left on the blank can lead to 

this uptick in LE concentrations (Michael Hull, personal communication, 15 March 

2022).  

 Every 10 sample scans, NIST 2711a and 2706 SRS materials were scanned. 

These standard reference soils were used to monitor for precision and any possible drift 

rather than percent recovery. The % recovery method, while useful for many QC plans, is 

inadequate when it comes to monitoring calibration accuracy and utilization of the 

reference check sample for pXRF related uses. For elements with small concentrations 

like Se, fractions may skew the percent recovery statistics and cause large swings. For 

example, if the instrument reads 1 ppm and then 3 ppm, a denominator of 2 ppm 



93 

(certified value) would cause the % recovery to swing from 50% under recovery to 50% 

over recovery.  

Figure 3.3: Silicon and LE concentrations of quartz blank over time. The concentrations 

of Si and LE track each other to make up 100% of the blank. LE can be seen to deviate to 

higher concentrations, likely due to some residual water present on the blank.  

The Vanta pXRF is calibrated using a wide range of geochemical, mineral, and 

soil samples to ensure it performs well over a large concentration range. Looking at a 

single reading for a certain element and comparing that value to the certified reference 

value could lead one to believe the instrument is functioning poorly— also called the 

single point fallacy. An example of this fallacy can be demonstrated with the following 

scenario. A pXRF reading underreports arsenic for the 2711a standard (Fig. 3.4), so 

looking at this point alone (one analyte in one standard), might lead the user to believe 

the instrument’s calibration is off. However, adjusting the calibration to be perfect on the 

arsenic calibration for NIST 2711a, would actually make it worse over the long range (M. 

Hull, personal communication, 24, June 2021). A look at the larger dataset with several 

standards reveals that the instrument demonstrates reliable accuracy (R2 = 0.99) over a 
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range of diverse soil types (Fig 3.5). Thus, while precision can be monitored with a single 

check sample, accuracy for the instrument can only be evaluated with multiple, multi-

element, large range reference samples. 

Figure 3.4: Vanta concentration readings for arsenic for a range of test samples. The 
point circled in red represents the As reading for the NIST 2711a standard and the dotted 
orange line represents the overall calibration curve (Image from OLYMPUS Scientific 
Solutions). 
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Figure 3.5: Calibration results for 2711a using the Vanta analyzer, showing that the 
instrument’s calibration is reliable overall (Image from OLYMPUS Scientific Solutions). 

To monitor the precision of the reference sample readings the measured values for 

several elements were plotted over several sessions of readings. The exported .csv of 

scans presented the concentrations for measured elements in ppm as well as the 1 

standard deviation error value (sigma; σ) of the analyte concentration that was unique to 

that particular scan. In order to examine the readings of 2711a and 2706 standards over 

time, the concentrations of a few elements (Pb, Zn, and Ni) were plotted over the duration 

of the experiment, as shown in Figures 3.6-3.11. Lead, zinc, and nickel were chosen as 

the elements to graph because they are ‘Beam 1’ elements, meaning that they are detected 

in the first of two sequential beams by the pXRF, and are generally more stable than the 

lighter elements detected via Beam 2. The test numbers are chronological and span from 

10/22/20 to 1/31/22 for 2711a, with 109 total readings, and from 7/27/21 to 1/31/22 for 
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2706, with 53 total readings. Fewer test numbers exist for 2706 because it was acquired 

part-way through this experiment. To create these figures, the 1σ error provided by the 

instrument for each measurement was averaged across all readings and then tripled to 

find the 3σ value. This value was then added to the average concentration to find the 

upper bound (+3σ) and subtracted from the average concentration to find the lower bound 

(−3σ).  

Figure 3.6:  2711a Pb readings over time. 93.6% of 2711a’s Pb readings points lie 
within the average 3 standard deviation bounds of the average Pb concentration. 
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Figure 3.7: 2706 Pb readings over time. 94.3% of 2706’s Pb readings lie within 
the average 3 standard deviation bounds of the average Pb concentration. 

Figure 3.8: 2711a Zn readings over time. 100% of 2711a’s Zn readings lie within 
the average 3 standard deviation bounds of the average Zn concentration. 
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Figure 3.9: 2706 Zn readings over time. 94.3% of 2706’s Zn readings lie within 
the average 3 standard deviation bounds of the average Zn concentration. 

Figure 3.10: 2711a Ni readings over time. 100% of 2711a’s Ni readings lie within 
the average 3 standard deviation bounds of the average Ni concentration. 
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Figure 3.11: 2706 Ni readings over time. 100% of 2706’s Ni readings lie within 
the average 3 standard deviation bounds of the average Ni concentration.

The distance covered by the three standard deviations above and below the 

average concentration should include 99.7% of the measured values, which is 

demonstrated by figures 3.8, 3.10 and 3.11, but not by figures 3.6, 3.7, and 3.9. A 

possible explanation for points outside these bounds could be due to the fact that since 

each measurement has an associated 1 sigma error which depends on the particular test, 

averaging across over a year of measurements may have decorrelated the errors from 

their associated measurements. However, most importantly, none of the graphs show drift 

in any one direction, which would indicate a problem with the instrument. From this data, 

we are able to trust that the instrument calibration is reliable overall, and the instrument is 

functioning properly. 

Additional QC monitoring to assess method precision was performed by 

inspecting the relative standard deviation (RSD) of elemental concentrations for both 

standards over the duration of the experiment. According to Method 6200 (USEPA, 
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2007), for measurement values to be considered adequately precise, the RSD should be 

<20%, with the exception of chromium which should be <30%. The RSD were calculated 

using Eq. 3.13 and are shown in Table 3.4. All analytes fall within the acceptable RSD 

range except for P (20.68%) and Sn (20.87%) for 2706, and Sb (22.02%) and Th 

(25.80%) for 2711a.  

Equation 3.13 

 RSD = (Standard deviation/Average concentration) × 100 
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Table 3.4: The relative standard deviations of each analyte. 
Relative Standard Deviation (%) 

Element 2706 2711a 

Mg - 10.07 
Al 2.44 1.77 
Si 1.81 1.57 
P 20.68 6.15 
Si 2.27 2.63 
K 1.75 0.74 
Ca 4.65 1.09 
Ti 2.53 3.09 
V 14.73 10.01 
Cr 18.43 18.37 
Mn 3.54 3.06 
Fe 0.99 0.99 
Ni 9.57 10.29 
Cu 2.89 2.93 
Zn 2.35 1.39 
As - 9.89 
Rb 1.70 1.22 
Sr 1.32 0.91 
Y 4.53 3.43 
Zr 3.62 2.38 
Nb 9.12 6.19 
Mo 17.99 - 
Cd - 10.05 
Sn 20.87 - 
Sb 5.07 22.02 
Hg - 15.74 
Pb 0.99 0.91 
Bi - - 
Th 12.67 25.80 

3.6 Data Preprocessing 

The dataset was prepared for modeling by first removing some elements which 

had a high percentage of <LOD readings (Co, Se, Mo, Ag, Cd, Sn, Sb, W, Hg, Bi, Th, 

U). This left 19 elements subject to regression (Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, 

Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Nb, Pb). Within these 19 elements, missing (<LOD) 

Dashed cells represent no certified value exists for that 
element on the Certificate of Analysis sheet or it was 
detected less than 10% of the time by the analyzer. 
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elemental concentrations for Mg (90 values), P (69 values), S (23 values), Ca (5 values), 

Cr (9 values), As (16 values), and Nb (69 values) were imputed. Imputation was 

conducted based on logical rules⁠— the detection threshold for the scans that was 

registered by the analyzer provided a basis for the range of values from which the 

missing value could be in. To fill in missing values for each element, the associated 1σ 

error for the <LOD readings were multiplied by three to find the average limit of 

detection for the missing values of that analyte, since the LOD is typically represented as 

the 3σ error (Rousseau, 2001). The average limit of detection and average standard 

deviation of the 1σ errors was used to impute the missing values along a normal 

distribution curve (Dennis Sun, personal communication, 20 Jan. 2022; Nichols, 2018). 

Because the missing data mechanism was known, the strategy of imputation described 

above did not rely on particularly strong assumptions and missing data could be 

accounted for, without the need to throw away many observations which can lead to 

biased estimates (Gelman and Hill, 2007). The imputed concentrations can be found in 

Appendix D. Data processing, analysis, model building, and graphing was accomplished 

using R Studio (Version 1.3.1093 PBC, 2009-2020). 

3.7 Testing existing models 

Selected existing research using pXRF analysis to predict soil properties of 

interest was outlined in Chapter 2 of this report. The models themselves (in the case that 

our dataset contained the same variables), the indicated variables with generated 

coefficients, or the author’s modeling processes were mimicked using our dataset for 

each property to see if these models or modeling approaches could produce reasonable 

estimates. Because regression model equations were being applied for predicative 
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purposes and not inference purposes, it was not necessary to check that typical linear 

regression assumptions were met. Multiple linear regression models were evaluated for 

pH, texture, and CEC, but no linear models existed for SOC, TN, and C:N ratio. Thus, for 

these three properties, RF modeling techniques set forth by Towett et al. (2015) were 

mimicked. Model performance was assessed using R2, RMSE, RPD, and RPIQ. A 

number of metrics for measuring model performance were considered in order to 

strengthen model comparisons and interpretations.  

3.7.1 pH 

To evaluate and formulate models suitable for predicting soil pH, laboratory 

determined values of soil reaction (pH) measured in deionized water were used as the 

target value with averaged elemental concentrations as the predictors. First, Eq. 2.2 

developed by Sharma et al. (2014) and discussed in Chapter 2 was applied to the entire 

dataset and evaluated for its performance. Of the initial 480 samples, 3 samples were 

excluded from analysis due to missing pH values, leaving n=478. For Eq 2.3 derived 

from author’s dataset B, scanning was operated in Soil Mode, which detects elements not 

detected in Geochem mode. For this reason, Eq. 2.3 could not be validated with our 

dataset. After poor performance from applying Eq. 2.2 as is, a new regression model was 

built using the same variables found by Sharma et al. (2014), but with coefficients 

generated specifically for our dataset. The dataset of 478 observations was split into 80% 

training and 20% testing/validation sub-datasets. Using the lm() function, pH was set as 

the x variable and the log values of Al, Si, Mn, Fe, K, Ca, and Zn concentrations were 

used as predictors for the training dataset. The resulting Eq. 4.1 when applied to the test 

dataset, improved model performance, but was still an inadequate predictive model. 
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3.7.2 Soil texture 

The model developed by Zhu et al., (2011) and summarized in Chapter 2, could 

not be validated with the California soils dataset, due to the absence of Co and Ba 

concentrations from our scans (as a result of the different modes of operation). In lieu of 

applying the variables and coefficients used by authors, the same methodology was 

applied for deriving correlations between soil texture and the studied elements. To 

achieve this, observations without lab verified texture data were eliminated, leaving n= 

358. The modeling dataset was then split into 2/3 modeling and 1/3 validation sub-

datasets. Backward stepwise multiple linear regression was conducted on the training 

dataset using the stepwise () function and specifying an entry significance of 0.5, exit 

significance of 0.1, and 15 maximum steps. AIC was indicated as the selection criterion 

for keeping elements in the model. The sand and clay percentages were individually set 

as the dependent variables, with all elemental concentrations listed as predictors. To find 

silt percentage of the entire dataset, clay and sand contents were subtracted from 100. 

Zhu et al., (2011) did not logarithmically transform elemental concentrations, so the 

concentrations were left in their original form for this regression analysis. 

3.7.3 CEC 

The model equation (Eq. 2.4) created by Sharma et al., (2014) to predict CEC 

from pXRF analysis was applied to our entire dataset to evaluate its performance. After 

poor performance from applying Eq. 2.4 as is, a new equation was built using the same 

elemental variables found by Sharma et al. (2014), but with coefficients generated 

specifically for our dataset. Our dataset was split into 80% training and 20% 

testing/validation sub-datasets. Using the lm() function, CEC was set as the x variable 
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and the concentrations of Ca, Ti, V, Cr, Fe, Cu, Sr, and Zr were used as predictors for the 

training dataset. The resulting Eq. 4.5 when applied to the test dataset, improved model 

metrics slightly, but was still an inadequate predictive model. 

3.7.4 Soil organic carbon, total nitrogen, C:N ratio 

 
The random forest modeling process followed by Towett et al., (2015) and 

summarized in Chapter 2 was applied to the SOC data. It should be noted that while this 

study used conventional benchtop XRF and not pXRF, they harness the same technology, 

and it has been established that with proper preprocessing of samples and QC protocols 

the two methods have been shown to correlate very well (Goff et al., 2020;  Laperche and 

Lemière 2021). Using the randomForest library in R, regression computations were 

performed and validated using out-of-bag (OOB) validation. To corroborate the mean 

square error (MSE) calculated on a 1/3 OOB validation set, the MSE was compared to a 

50% random hold out sample. A similar MSE from both methods substantiated the OOB 

process, and an RF model was developed using the entire sample set. The authors 

building criteria of number of trees built (ntree = 200) was specified but the criteria of 

number of variables tried at each split (mtry=50) could not be replicated because the CA 

modeling dataset only had 22 variables/elements. Therefore, mtry was set to equal 22.  

3.8 Multiple linear regression model building 

 
Multiple linear regression models were also constructed from scratch using the 

‘tidyverse package’ (Wickham et al., 2019). For modeling using this method, all 

elemental concentrations were log transformed to fix right skewed distributions (present 

in 18/22 elements) and improve predictions. Instead of dividing the dataset into a single 

train/test set to evaluate model performance, 10-fold cross validation on a training set 
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(75% subset) was used as well as an unseen test ‘hold-out’ set (25% subset). This 

resampling approach trained a model using a portion of the data from each fold as 

training data and measured the accuracy of the developed model on the remaining part of 

the data. Variables were selected to be in the final model based on their significance (p< 

0.05) following the 10-fold cross-validation step. Then, the refined model was applied to 

the unseen test set, where model metrics (R2, RMSE, RPD, and RPIQ) were determined. 

Coefficient significance was then determined using the final model on the entire dataset 

once at the end. The results of the MLR model that performed the best on the test set was 

displayed graphically, with the 1:1 line as a black line and the line of best fit as a blue 

line.   

The main intention of MLR modeling in this study was for prediction, which does 

not require regression assumptions to be met. However, these assumptions must be met 

for inference purposes, such as interpreting variable coefficients and reporting their 

significance. Thus, for all properties modeled, four residual plots (residuals vs fitted, 

normal Q-Q, scale-location, and residuals vs leverage) were created to check the 

assumptions of linearity, homoscedasticity, normality of residuals, and to indicate any 

influential points. Residual values of the log transformed elemental concentrations used 

to create MLR models were regressed against raw values for each of the seven soil 

properties investigated. These plots can be found in Appendix C. 

3.9 Algorithmic modeling using random forest  

 
Random forest models were also created in an attempt to further improve 

predictions. Using tidymodels in RStudio, raw elemental concentrations were used as 

predictors and soil properties of interest were used as the target variable. 10-fold cross-
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validation on the training set (75%) was used to determine hyperparameters for the 

random forest model. Tuning indicated an optimal mtry (# of predictors randomly 

sampled at each split) of 5, min_n (minimum number of data points required to further 

split the node) of 2, and trees (number of trees in the forest) as 100. In effect, this created 

many ‘deep’ trees fit on fewer variables. The RF model was then applied to the test set, 

from which model performance metrics were derived.  

3.10 Grouping predictive models by land type and characterization method 

 
To see if the addition of the categorical variables land type and sample set would 

improve predictions for each property, MLR models built using only elemental data were 

compared to MLR models using elemental data as well as categorical data. The models 

were built using the entire dataset, with 10-fold CV to pick significant coefficients and 

model results (R2 and RMSE) were reported on the unseen ‘folds’ (no unseen test set was 

employed for this application). Categorical data was transformed into nominal data by 

using the step_dummy() function which mapped the land type and sample set to a 

sequence of 0/1 indicator variables, so they could be used as regression predictors. A 

categorical variable with n levels would require n-1 dummy variables to represent the 

categories (an nth dummy variable would be redundant and carry no new information). 

For instance, to discover how helpful land type and sample set were for predicting pH, a 

model with pH set as the dependent variable and all elements as predictors was compared 

to a model with pH as the dependent variable and all elemental predictors as well as 9 

columns filled with either a 0 or 1 to represent the 6 land types and 5 sample sets.   

In an attempt to further refine models, additional MLR models were constructed 

within land type categories and laboratory methodologies. The aforementioned methods 
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of 10-fold CV on a 75% train set to pick significant variables and model testing/metric 

reporting on the 25% test dataset were carried out. Land type categories distinguishable 

from the entire modeling dataset and large enough for modeling were forest (n=166), 

grassland (n= 81) and marine terrace (n = 159) environments. For all other land types, 

regression was unreasonable due to the small sample sizes (n ≤ 39). Separate models 

were also created by grouping samples based on the methodology used to determine each 

property. For instance, pH was determined using 1:1 DI to soil method for the LA Urban, 

SPR/LHBC Mollisols, NRCS Chico, and UC Merced soils, so these samples were 

grouped together. By contrast, the pH of marine terrace samples was determined using a 

saturated paste method, so these samples comprised their own group. In some instances, 

all samples in a certain land type were also characterized using a separate method, so 

making another model for these same samples twice would be redundant. For example, 

the marine terrace soils were the only samples characterized for CEC using method S - 

10.10 (Soil, Plant, and Water Reference Methods for the Western Region), so making 

another model for this method would be redundant. For SOC, N, and C:N ratio, dry 

combustion was the only method used, so samples could not be divided based on 

methodology for these properties. 
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Chapter 4 Chapter 

RESULTS 

4.1 pH 

4.1.1 Descriptive statistics 

Summary statistics for pH values can be found in Table 4.1. A boxplot for each 

sample set (Fig. 4.1) and for all samples in the dataset (Fig. 4.2) show the spread of pH 

values. The Tukey outlier test revealed a bottom threshold of 3.160 and upper threshold 

of 9.355, indicating 1 outlier: LA Urban Plot 2 (pH: 10.38).  

Table 4.1: pH summary statistics.
Sample set 

SPR/LHBC NRCS 
Chico 

LA 
Urban 

UC 
Merced 

Marine 
terrace 

Total 
dataset 

Samples 218 58 39 4 159 478 
Minimum 4.8 4.70 3.28 5.18 4.50 3.28 
Median 6.31 6.40 6.39 5.56 5.80 6.20 
Mean 6.37 6.52 6.48 5.60 6.00 6.29 

Maximum 8.02 8.80 10.38 6.09 7.40 10.38 

Figure 4.2: pH values for entire 
dataset. 

Figure 4.1: pH by sample set. 
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4.1.2 Data models 

Applying Eq. 2.2 to our entire dataset exhibited poor predictive performance, 

producing an R2 = 0.0109, RMSE = 1.21, RPD = 0.5918825, and RPIQ = 0.732941. 

Using the same variables as Eq. 2.2 but with coefficients derived from our own dataset 

Eq. 4.1 was created. When applied to the validation sub-dataset, Eq. 4.1 produced an R2 = 

0.153, RMSE = 0.666, RPD = 1.045788, and RPIQ = 1.324972.  

Using the tidyverse approach to build a linear regression model, the results of 10-

fold CV on a 75% training set showed P, S, Ca, V, Fe, Ni, Zn, Sr, and Y to be significant 

so they were chosen for the final model (Eq. 4.2). When applied to the test set, this model 

produced a further improved R2 = 0.532, RMSE = 0.489, RPD = 1.455922, and RPIQ = 

1.732563 (Fig. 4.3).  

Equation 4.1 

pH = −19.8528 + 1.4055 * log(Al) + 2.4755 * log(Si) +  0.1693 * log(Mn) + 1.0162 * 
log(Fe) − 0.5235 * log(K) + 0.6103* log(Ca) + 0.5010 * log(Zn) 

 
Equation 4.2 

pH =   5.4066 − 0.4374 * log(P) − 0.4995 * log(S) + 1.0886 * log(Ca) + 1.1805 * log(V) 
− 0.6077 * log(Fe) + 0.6122 * log(Ni) + 1.0926 * log(Zn) − 1.0331 * log (Sr) − 
0.8818 * log(Y) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



111 

Table 4.2: Model parameters for pH regression models. 
Variable 
(Logged) 

Eq. 2.2 

Sharma et al. 

(2014) 

Eq. 4.1 

Generated 

coefficients 

Eq. 4.2 

10-fold CV

method

Constant 9.7164 −19.8528*** 5.4066*** 
Al −5.9247 1.4055** 
Si 1.8491 2.4755*** 

Mn −2.0419 0.1693 
Fe 1.9212 1.0162** −0.6077*

K 2.3906 −0.5235
Ca 0.4396 0.6103***   1.0886*** 
Zn 0.6689 0.5010* 1.0926*** 
P −0.4374***

Ni 0.6122*** 
S −0.4995***

Sr −1.0331***

Y −0.8818***

V 1.1805** 
Sample # 478 478 478 

R2 0.0109 0.153 0.532 
RMSE 1.21 0.666 0.489 
RPD 0.5918825 1.045788 1.455922 
RPIQ 0.732941 1.324972 1.732563 

The model performance metrics were calculated using the entire dataset for Eq. 2.1, the 
20% test sub-dataset for Eq. 4.1, and the 25% test subset for Eq. 4.2. Significance codes 
(p-values): ‘***’ 0.001 ‘**’ 
0.01 ‘*’ 0.05  
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4.1.3 Algorithmic modeling 

Implementing a random forest model for predicating pH revealed an R2 = 0.485, 

RMSE = 0.490, RPD = 1.377041, and RPIQ = 1.547162 when applied to the test sub-

dataset (Fig 4.5).  

Figure 4.3: Eq. 4.2 for pH applied to the 
holdout set.

Figure 4.4: Eq. 4.2 for pH applied to the train and 
test set.
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4.2 Texture 

4.2.1 Descriptive statistics 

Soil textures for the samples used this study were plotted on a soil texture triangle 

using the ‘soiltexture’ package (v1.5.1, Moeys, 2018) (Fig. 4.7) and are shown in Table 

4.3.  

Table 4.3: Texture classes of 358 characterized samples.
Texture 

class 
S LS SL SCL SC L CL C SiC SiCL SiL Si 

Sample # 10 42 107 31 2 83 58 6 2 11 6 0 

Figure 4.5: RF modeling for pH on the holdout 
set.

Figure 4.6: RF modeling for pH on the train 
and test set.
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Figure 4.7: The texture classifications for 358 samples plotted on USDA-NRCS texture 
triangle. 

4.2.2 Data models 

Following the methodology of creating backward stepwise regression models 

from untransformed elemental concentrations set forth by Zhu et al. (2011), Eq. 4.3 and 

4.4 were developed for sand and clay percentage. Eq. 4.3 produced an R2 =  0.599, 

RMSE = 14.2, RPD = 1.582784, and RPIQ = 2.359735 while Eq. 4.4 produced an R2 =  

0.575, RMSE = 7.23, RPD = 1.534052, and RPIQ = 2.40448 for the 33% validation sub-

dataset. Predicted silt percentages were found by subtracting the predicted sand and clay 

content from 100%. Applying these two models to the total dataset of 358 samples 

resulted in 3 samples with a negative value for a textural separate, so these observations 



115 
 

were removed prior to determining predicted texture class. For the remaining 355 

samples with predicted and actual texture classes, the correct texture class was predicted 

54% of the time. Predicted textures obtained via Eq. 4.3 showed no strong tendency to 

over or underestimate sand contents (51% vs 49% of the time) while Eq. 4.4 exhibited a 

marginal tendency to overestimate clay contents (55% of the time).  

When using the tidyverse approach to build a linear regression model, the results 

of 10-fold CV on a 75% training set for predicting sand contents showed 12 variables 

(Mg, Al, P, S, K, Fe, Ni, Cu, As, Rb, Sr, Zr) to be significant so they were used for the 

final model (Eq. 4.5). When applied to the test set, this model produced a further 

improved R2 = 0.616, RMSE = 12.3, RPD = 1.600894, and RPIQ = 2.589406 (Fig. 4.8). 

Applying this approach for predicting clay contents indicated 13 significant variables 

used for the final model (Eq. 4.6). Applied to the test set, model metrics were as follows:  

R2 = 0.599, RMSE = 6.83, RPD = 1.586135, and RPIQ = 2.294147 (Fig. 4.10). When 

these two models were applied to the entire dataset, 8 values were negative and had to be 

excluded prior to texture class determination. The remaining 350 samples with a 

predicted texture class matched the actual texture class 55% of the time. Sand and clay 

contents obtained via Eq. 4.5 and 4.6 showed a slight tendency to overestimate these 

values (53/54% of the time). The coefficients found by Zhu et al. (2011) for Louisiana 

and New Mexico soils is compared with Eq. 4.3, 4.4, 4.5, and 4.6 in Table 4.4. As shown 

in Table 4.5, while Zhu et al. (2011) found that more Fe implied a higher sand and clay 

content and more Rb implied more clay and less sand, models produced following their 

process showed the same pattern only for clay. Eq. 4.3 and 4.5 contained a negative 

coefficient for Fe, which made its weight negative. 
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Equation 4.3 

Sand % = 63.46884 − 0.09080045 * (Zr) − 0.1518520 * (Ni) + 0.0007474723 * (Al) − 
0.001509740 * (Fe) + 0.02812715 * (Sr) + 0.001212738 * (Mg) − 0.3078903 * 
(Rb) + 0.001328229 * (P) + 1.021068 * (Nb) + 0.03346892 * (Cr) − 
0.00007750474 * (Si) + 0.001105562 * (K) 

 
Equation 4.4 

Clay % = 15.83067 − 0.001951922 * (K) + 0.3827918 * (Rb) + 0.00003171078 * (Si) − 
0.0002763703 * (Al) + 0.0006723170 * (Fe) − 0.0001804027 * (Ca) − 0.6357696 
* (Nb) − 0.00045686710 * (Mg) + 0.06044283 * (V) − 0.002901094 * (Mn) 

 
Equation 4.5 

Sand % = −166.194 + 18.044 * log(Mg) + 76.115 * log(Al) + 9.024 * log(P) − 4.988 * 
log(S) + 24.110 * log(K) − 40.852 * log(Fe) − 18.098 * log(Ni) − 12.396 * 
log(Cu) −  14.755 * log(As) − 54.038 * log(Rb) + 31.098 * log(Sr) − 29.866 * 
log(Zr) 

        
Equation 4.6 

Clay % = −81.893 − 3.986 * log(Mg) − 32.472 * log(Al) + 32.186 * log(Si) − 4.666 * 
log(P) + 6.319 * log(S) − 32.344 * log(K) − 5.189 * log(Ca) − 3.395 * log(Mn) + 
39.162 * log(Fe) + 8.437 * log(Ni) − 5.446 * log(Cu) + 7.350 * log(As) + 40.218 
* log(Rb) 
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Table 4.4: Model parameters for sand and clay % regression models. 
Variable Eq. 4.3: sand 

Zhu et al. 

methods 

Eq. 4.4: clay 

Zhu et al. 

methods 

Variable 
(Logged) 

Eq. 4.5: sand 

10-fold CV

method

Eq. 4.6: clay 

10-fold CV

method

Constant 63.47*** 15.83* Constant −166.19* −81.89
Al 7.47 × 10-4*** −2.76 × 10-4*** Al 76.12*** −32.47***

Fe −1.51 × 10-3*** 6.72 × 10-4*** Fe −40.85** 39.16*** 
Sr 2.81 × 10-2* Sr −31.10***

Rb −0.31** 0.383*** Rb −54.04*** 40.22*** 
K 1.11 × 10-3* −1.95 × 10-3 

***
K 24.11* −32.34***

Si −7.75 × 10-5* 3.17 × 10-5 Si 32.19** 
Mn −2.90 × 10-3 Mn −3.40
Cu Cu −12.40* −5.45*

Zn Zn 
As As −14.76** 7.35* 
Ni −0.15** Ni −18.10** 8.44** 
Ca −1.80 × 10-4* Ca −5.19**

V 6.04 × 10-2* V 
Zr −9.08 × 10-2*** Zr −29.87***

Mg 1.21 × 10-3*** −4.57 × 10-4** Mg 18.04*** −3.986
P 1.33 × 10-3 P 9.02** −4.67**

Cr 3.35 ×10-2* Cr 
Nb 1.02* −0.64** Nb 
S S −4.99 6.32** 

Sample 
# 

358 358 Sample # 358 358 

R2 0.599 0.575 R2 0.616 0.599 
RMSE 14.2 7.23 RMSE 12.3 6.83 
RPD 1.583 1.534 RPD 1.601 1.586 
RPIQ 2.360 2.404 RPIQ 2.589 2.294 

Table 4.5: Weights for Fe/Rb coefficients found by Zhu et al. (2011) and developed equations.
Weights for selected coefficients 

Element Louisiana 
sand 

Capulin 
sand 

Eq. 
4.3 

sand 

Eq. 
4.5 

sand 

Louisiana 
clay 

Capulin 
clay 

Eq. 
4.4 
clay 

Eq. 
4.6 
clay 

Fe 18.1 11.9 −44.8 -182.7 29.6 11.5 19.9 175.1 
Rb −38.3 −24.1 −21.0 -99.1 29.7 13.1 26.1 73.7 

Model evaluation metrics were calculated using the 1/3 test set for Eq. 4.3 and 4.4 and using 
the 1/4  test set for Eq. 4.5 and 4.6. Significance codes (p-values): ‘***’ 0.001 ‘**’ 0.01 ‘*’ 
0.05  

Weights were calculated as a function of the variable coefficient and the average 
concentration of that element. 
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Figure 4.8: Eq. 4.5 for sand % applied to the 
holdout set. 

Figure 4.9: Eq. 4.5 for sand % applied to the 

train and test set. 

Figure 4.10: Eq. 4.6 for clay % applied to the 

holdout set.  

Figure 4.11: Eq. 4.6 for clay % applied to the 
train and test set. 
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4.2.3 Algorithmic modeling 

Random forest modeling to predict sand contents revealed an R2 = 0.658, RMSE 

= 10.8, RPD = 1.697111, and RPIQ = 2.448834 when applied to the validation subset 

(Fig. 4.12). For the prediction of clay contents, model metrics were improved to an R2 = 

0.625, RMSE = 6.06, RPD = 1.612843, and RPIQ = 2.539862 (Fig. 4.14). When these 

two models were applied to the entire modeling dataset, only one value needed to be 

excluded prior to texture class determination for negative values. The correct texture 

class was predicted 72% of the time, with sand contents underestimated 51% of the time 

and clay contents overestimated 54% of the time.  

Figure 4.12: RF modeling for sand % on the 
holdout set. 

Figure 4.13: RF modeling for sand % on the 
train and test set.
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4.3 CEC 

4.3.1 Descriptive statistics 

474 samples had measured CEC values and were viable for modeling testing. 

Summary statistics for CEC values can be found in Table 4.6. A boxplot for each sample 

set (Fig. 4.16) and for all samples in the dataset (Fig. 4.17) show the spread of CEC 

values. The Tukey outlier test revealed an upper threshold of 68.8, indicating 1 outlier in 

the CEC values: SPR/LHBR 34 (CEC: 74.57 cmolc/kg soil).  

Figure 4.15: RF modeling for clay % on the 
train and test set. 

Figure 4.14: RF modeling for clay % on the 
holdout set. 
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Table 4.6: CEC summary statistics.
Sample set 

SPR/LHBC 

Mollisols 

NRCS 

Chico 

LA 

Urban 

UC 

Merced 

Marine 

terrace 

Total 

dataset 

Samples 218 56 37 4 159 474 

Minimum 5.36 0.40 5.118 3.059 2.50 0.40 

Median 23.25 13.40 16.059 4.441 10.80 16.14 

Mean 26.14 15.78 18.243 7.647 11.24 19.15 

Maximum 74.57 41.90 51.647 18.647 32.20 74.57 

4.3.2 Data models 

Applying Eq. 2.4 to the entire dataset showed no predictive capacity (R2 = 0.0006, 

RMSE = 20.9, RPD = 0.5913471, and RPIQ = 0.7008987) and predicted 13 negative 

CEC values. Generating new coefficients with the variables from Eq. 2.4 using an 80% 

train dataset produced Eq. 4.7. When applied to the validation sub-dataset, somewhat 

improved metrics were observed: R2 = 0.138, RMSE = 11.5, RPD = 1.079546, and RPIQ 

= 0.9894607.  

Figure 4.16: CEC by sample set.
Figure 4.17: CEC for entire dataset.
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Applying the tidyverse approach to MLR model building revealed 12 significant 

variables (Mg, Al, Si, K, Ti, Cr, Cu, Zn, As, Rb, Y, Pb) from 10-fold CV on a 75% 

training set for predicting CEC. When applied to the test set, Eq. 4.8 produced a further 

improved R2 = 0.761, RMSE = 6.88, RPD = 1.985829, and RPIQ = 2.078793 (Fig. 4.18). 

The coefficients found by Sharma et al., (2011) for Louisiana and New Mexico soils is 

compared with Eq. 4.7 and 4.8 in Table 4.7.

Equation 4.7 

CEC = 35.83 + 0.0003427 * (Ca) – 0.0007776 * (Ti) –  0.2516 * (V) – 0.04001 * (Cr) + 
0.0004214 * (Fe) + 0.07008 * (Cu) – 0.04428 * (Sr) + 0.0315 * (Zr) 

Equation 4.8 

CEC = 820.779 – 10.182 * log(Mg) – 70.462 * log(Al) – 71.186 * log(Si) – 25.764 * 
log(K) – 15.310 * log(Ti) – 6.097 * log(Cr) + 9.246 * log(Cu) + 15.486 * log(Fe) 
+ 9.268 * log(Zn) + 12.062 * log(As) + 32.262 * log(Rb) – 7.940 * log(Sr) –
6.288 * log(Y) – 6.529 * log(Pb)
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Table 4.7: Model parameters for CEC regression models. 
Variable Eq. 2.4 

Sharma et al. 

(2015) 

Eq. 4.7 

Generated 

coefficients 

Variable 
(Logged) 

Eq. 4.8 

10-fold CV method

Constant 17.2507 35.83*** Constant 820.779*** 
Ca −0.00036514 0.0003427** Ca 
Ti −0.0034957 −0.0007776 Ti −15.310*

V 0.070977 −0.2516*** V 
Cr 0.070991 -0.04001*** Cr −6.097**

Fe 0.00059759 0.0004214 *** Fe 15.486 
Cu 0.1479 0.07008* Cu 9.246** 
Sr −0.062096 −0.04428*** Sr –7.940*

Zr 0.0056551 0.0315* Zr 
Al Al –70.462***

Si Si –71.186***

K K –25.764 *** 

Zn Zn 9.268** 
As As 12.062*** 
Rb Rb 32.262*** 
Mg Mg –10.182***

Y Y −6.288*

Pb Pb −6.529***

Sample # 474 474 Sample # 474 
R2 0.0006 0.138 R2 0.761 

RMSE 20.9 11.5 RMSE 6.88 
RPD 0.5913471 1.079546 RPD 1.985829 
RPIQ 0.7008987 0.9894607 RPIQ 2.078793 

Model performance metrics are from the entire dataset for Eq. 2.4 and for the 20/25% 
validation sets for Eq. 4.7 and 4.8. Significance codes (p-values): ‘***’ 0.001 ‘**’ 0.01 
‘*’ 0.05 
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4.3.3 Algorithmic modeling 

A random forest model created with the training subset resulted in an R2 = 0.788, 

RMSE = 6.79, RPD = 2.009571, and RPIQ = 2.554648 when applied to the validation set 

(Fig. 4.20). 

Figure 4.19: Eq. 4.8 for CEC applied to the 
train and test set.

Figure 4.18: Eq. 4.8 for CEC applied to the 
holdout set.



125 

4.4 SOC, TN, and C:N ratio 

4.4.1 Descriptive statistics 

After omitting those samples without lab data for the property of interest, 475 

samples had measured SOC and N values, and 479 had C:N values. Boxplots for all 

samples in the dataset (Fig. 4.22-4.27) show the spread of N, SOC, and C:N values for 

the entire dataset and grouped by sample set. Summary statistics for these properties’ 

values can be found in Table 4.8. For total nitrogen, the Tukey outlier test indicated two 

outliers: 0.86% and 0.757%. There were also four outliers for SOC: 11.902%, 12.446%, 

14.08%, and 11.45%, and 13 outliers for C:N ratio: 27, 28, 28.404, 29, 31, 32, 34, 45.378, 

56.9, 81, 85, 99, and 167.  

Figure 4.21: RF modeling for CEC on the train 
and test set. 

Figure 4.20: RF modeling for CEC on the 
holdout set.  
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Table 4.8: Summary statistics for SOC, N, and C:N.
Soil organic carbon (%) Total nitrogen (%) C:N ratio

Samples 475 475 479
Minimum 0.02 0.01 1
Median 1.7305 0.1424 11.75
Mean 2.3562 0.17774 13.35

Maximum 14.08 0.86 167

Figure 4.23: SOC % by sample set.

Figure 4.22: SOC % for entire dataset.

Figure 4.25: TN % for each sample set.

Figure 4.24: TN % for entire 
sample set.
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4.4.2 Data models 

Presently, there is no readily accessible published literature which describes using 

pXRF derived elemental data to produce regression models for predicting SOC, N or C:N 

ratio. Despite this, an attempt was made here to see if MLR modeling can produce 

acceptable estimates of these properties. Using the 10-fold CV on the train set indicated 

12 significant elements for predicting SOC. When applied to the test set, this model (Eq. 

4.9) produced an R2 = 0.719, RMSE = 1.01, RPD = 1.767523, and RPIQ = 1.835098 

(Fig. 4.28). Applying this same process for total N content produced Eq. 4.10 for total N, 

and Eq. 4.11 for C:N ratio. When applied to the test set, Eq. 4.10 produced four negative 

values with an R2 = 0.699, RMSE = 0.0753, RPD = 1.793764, and RPIQ = 2.081165 

(Fig. 4.30) while Eq. 4.11 showed poor performance, producing three negative values and 

an R2 = 0.00308, RMSE =  7.02, RPD = 0.5893667, and RPIQ = 0.4986284 (Fig. 4.32). 

A summary of the model coefficients and their significance can be found in Table 4.9. 

Figure 4.27: SOC to TN % for entire dataset. 
Figure 4.26: SOC to TN % for 
entire dataset. 
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Equation 4.9 

SOC % = 204.4158 − 1.6341 * log (Mg) − 13.7128 * log(Al) − 22.8982 * log(Si) +  
1.1454 * log(S) − 1.1736 * log(Ca) − 3.8801 * log(Ti) − 0.8717 * log(Cr) + 
1.8537 * log(Mn) + 1.8565 * log(Cu) − 1.5105 * log(Y) + 3.0772 * log(Zr) − 
0.9256 * log(Pb)  
 

Equation 4.10 

N % =  9.53996 − 0.09183 * log(Mg) − 0.81023 * log(Al) − 0.84295 * log(Si) + 0.04199 
* log(P) + 0.07529 * log(S) − 0.15990 * log(Ti) − 0.20653 * log(V) + 0.06524 * 
log(Mn) + 0.11225 * log(Cu) − 0.20783 * log(Sr) + 0.12302 * log(Zr)  
 

Equation 4.11 

C:N =  −62.765 + 15.938 * log(Al) − 17.086 * log(K) + 6.621 * log(Ca) + 23.885 * 
log(Cu) − 23.672 * log(Zn) − 12.785 * log(As) + 13.612 * log(Rb) + 17.253 * 
log(Sr) 
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Table 4.9: Model parameters for SOC %, TN % and C:N regression models. 
Variable 
(Logged) 

Eq. 4.9 

SOC (%) 

Eq. 4.10 

TN (%) 

Eq. 4.11 

C:N 

Constant 204.4158*** 9.53996*** −62.765
Mg −1.6341*** −0.09183***

Al −13.7128*** −0.81023*** 15.938 
Si −22.8982*** −0.84295***

K −17.086
Ca −1.1736*** 6.621** 
Ti −3.8801*** −0.15990*

Mn 1.8537*** 0.06524** 
S    1.1454*** 0.07529*** 

Rb 13.612 
Y −1.5105***

Cu 1.8565*** 0.11225*** 23.885 
Zr 3.0772*** 0.12302** 
Cr −0.8717**

Pb −0.9256***

P 0.04199* 
V −0.20653**

Sr −0.20783*** 17.253 
As −12.785
Zn −23.672

Sample 
number 

475 475 479 

R2 0.719 0.699 0.00308 
RMSE 1.01 0.0753 7.02 
RPD 1.767523 1.793764 0.5893667 
RPIQ 1.835098 2.081165 0.4986284 

Model performance metrics are from the 25% validation sets for SOC and TN model 
equations. CN variables were not tested for their significance due to not meeting residual 
assumptions. Significance codes (p-values): ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Figure 4.28: Eq. 4.9 for SOC % applied to the 
holdout set. 

Figure 4.31: Eq. 4.10 for TN % applied to the 
train and test set. 

Figure 4.29: Eq. 4.9 for SOC % applied to the 
test and train set. 

Figure 4.30: Eq. 4.10 for TN % applied to 
the holdout set. 
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4.4.3 Existing RF methodology 

Following the process outlined by Towett et al. (2015) using randomForest 

applied to SOC data, the MSE determined on a 50% hold out sample of the data was 

compared to the MSE found by OOB validation. The OOB errors (1.172955) were found 

to be only 6.4% lower than for the 50% hold out sample (1.252541). Similarly, Towett et 

al. (2015) found OOB errors to be only 10% lower than for the 50% hold out sample, 

which authors used as validation of the OOB error calculation process and justification 

for reporting model validation metrics from the entire modeling dataset. When the 

resultant RF model was applied to the entire dataset, model results indicated R2 = 0.748, 

RMSE = 1.08, RPD = 1.995045 and RPIQ = 2.155392 (Fig. 4.31). Thus, when 

compared to the results found by Towett et al., (2015) for SOC, a higher R2 (0.75 vs 

0.68) but also higher RMSE (1.1 vs 0.7) was obtained. 

Figure 4.32: Eq. 4.11 for SOC to TN % 
applied to the holdout set. 

Figure 4.33: Eq. 4.11 for SOC to TN % applied 
to the train and test set. 



132 

4.4.4 Algorithmic modeling 

Applying random forest modeling to predict SOC with use of the tidyverse 

package resulted in an R2 = 0.735, RMSE = 1.14, RPD = 1.877131, and RPIQ =  

2.335256 when applied to the test set (Fig. 4.32). For total nitrogen, this technique 

yielded an R2 = 0.782, RMSE = 0.0615, RPD = 2.041243, and RPIQ = 2.960288 (Fig. 

4.34), and for C:N ratio, results showed R2 = 0.373, RMSE = 9.04, RPD = 1.263024, and 

RPIQ = 0.4686274 (Fig. 4.36). 

Figure 4.34: Towett et al. (2015) random forest 
modeling methodology applied to the entire dataset. 
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Figure 4.35: RF modeling for SOC % on 
the holdout set.

Figure 4.36: RF modeling for SOC % on the 
train and test set.

Figure 4.38: RF modeling for TN % on the 
train and test set. 

Figure 4.37: RF modeling for TN % on the 
holdout set. 
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4.5 Significance of land type and characterization methods on predictions 

4.5.1 pH  

The addition of land type and sample set as predictor variables improved pH 

metrics from R2 = 0.479/RMSE = 0.520 to R2 = 0.547/RMSE = 0.492. The results for 

models within land type and methods are shown in Table 4.10. Model equations for the 

groupings within each property can be found in Appendix E.  

Figure 4.40: RF modeling for C:N on the train 
and test set.

Figure 4.39: RF modeling for C:N on the 
holdout set. 
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Table 4.10: pH MLR model metrics differentiated by land type and lab method. 
Complete dataset Land Type Methodology 

Metric MLR 
model 

RF 
model 

Forest Grassland Marine 
terrace 

1:1 Saturated 
paste 

Sample 
# 

478 478 166 81 159 319 159 

R2 0.532 0.485 0.554 0.721 0.463 0.488 - 
RMSE 0.489 0.490 0.392 0.346 0.396 0.531 - 
RPD 1.456 1.377 1.492 1.832 1.330 1.405 - 
RPIQ 1.733 1.547 2.182 2.484 1.580 1.791 - 

Bolded text indicates metric was improved beyond MLR/RF modeling using complete 

dataset. Marine terrace and saturated paste groupings represent the same group of 

samples.  

4.5.2 Texture: sand 

 The addition of land type and sample set as predictor variables improved sand 

metrics from R2 = 0.614/RMSE = 12.6 to R2 = 0.644/RMSE = 12.1. The results for 

models within land type and methods are shown in Table 4.11. 

Table 4.11: Sand content MLR model metrics differentiated by land type and lab method. 
Complete dataset Land Type Methodology 

Metric MLR 
model 

RF 
model 

Forest Grassland Marine 
terrace 

Hydrometer Pipette 

Sample 
# 

358 358 86 41 159 298 60 

R2 0.616 0.658 0.672 0.895 0.884 0.462 0.348 
RMSE 12.3 10.8 13.8 5.56 5.71 13.3 24.5 
RPD 1.601 1.697 1.523 2.985 2.905 1.239 1.197 

RPIQ 2.589 2.449 2.634 4.945 4.812 1.902 1.820 
Bolded text indicates metric was improved beyond MLR/RF modeling using complete 
dataset. 

4.5.3 Texture: clay 

Including land type and sample set variables when predicting clay content 

improved metrics from R2 = 0.586/RMSE = 6.72 to R2 = 0.639/RMSE = 6.28. Resultant 

models within land type and methodology are shown in Table 4.12. 
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Table 4.12: Clay content MLR model metrics differentiated by land type and lab method. 
Complete dataset Land Type Methodology 

Metric MLR 

model 

RF 

model 

Forest Grassland Marine 

terrace 

Hydrometer Pipette 

Sample 

# 

358 358 86 41 159 298 60 

R2 0.599 0.625 0.714 0.101 0.812 0.624 0.631 

RMSE 6.83 6.06 6.60 9.25 3.55 6.05 10.1 

RPD 1.586 1.613 1.802 0.559 2.194 1.594 1.143 

RPIQ 2.294 2.540 3.425 0.743 2.760 2.180 1.486 

Bolded text indicates metric was improved beyond MLR/RF modeling using complete 

dataset. 

4.5.4 CEC 

Inclusion of land type and sample set variables as predictor variables for CEC 

improved metrics from R2 = 0.694/RMSE = 6.80 to R2 = 0.721/RMSE = 6.50. Resultant 

models within land type and methodology are shown in Table 4.13.  

Table 4.13: CEC MLR model metrics differentiated by land type and lab method.
Complete dataset Land Type Methodology 

Metric MLR 

model 

RF 

model 

Forest Grass

land 

Marine 

terrace 

Ammonia 

absorbance 

UN-

FAO 

CEC

7 

S - 

10.10 

Sample # 474 474 164 81 159 218 41 56 159 

R2 0.761 0.788 0.819 0.517 0.653 0.689 0.23

8 

0.64

6 

- 

RMSE 6.88 6.79 7.52 5.44 2.57 7.38 12.8 8.54 - 

RPD 1.986 2.010 2.328 1.083 1.717 1.777 1.07

1 

1.14

1 

- 

RPIQ 2.079 2.555 2.497 1.139 2.721 2.248 0.80

1 

1.56

2 

- 

Bolded text indicates metric was improved beyond MLR/RF modeling using complete 

dataset. Marine terrace and S - 10.10 groupings represent the same group of samples.  

4.5.5 SOC content 

The additional categorical variables of land type and sample set for SOC 

prediction improved metrics: from R2 = 0.766/RMSE = 1.03 to R2 = 0.800/ RMSE = 

0.901. Models created within land type for SOC are displayed in Table 4.14. 
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 Table 4.14: SOC % MLR model metrics differentiated by land type. 
Complete dataset Land Type 

Metric MLR 
model 

RF model Forest Grassland Marine 
terrace 

Sample # 472 472 168 81 159 
R2 0.719 0.735 0.815 0.661 0.821 

RMSE 1.01 1.14 1.3 1.01 0.738 

RPD 1.768 1.877 2.204 1.638 2.367 

RPIQ 1.835 2.335 2.432 1.845 2.239 
Bolded text indicates metric was improved beyond MLR/RF modeling using 
complete dataset. 

4.5.6 TN content 

Including land type and sample set variables when predicting TN content 

improved metrics from R2 = 0.689/RMSE = 0.0767 to R2 = 0.717/RMSE = 0.0724. 

Resultant models within land type and methodology are shown in Table 4.15. 

   Table 4.15: TN % MLR model metrics differentiated by land type. 
Complete dataset Land Type 

Metric MLR 
model 

RF model Forest Grassland Marine 
terrace 

Sample # 475 475 165 81 159 
R2 0.699 0.782 0.738 0.842 0.762 

RMSE 0.075 0.062 0.084 0.057 0.0544 

RPD 1.794 2.041 1.973 2.456 1.920 
RPIQ 2.081 2.960 2.307 4.435 2.697 

Bolded text indicates metric was improved beyond MLR/RF modeling using 
complete dataset. 

4.5.7 C:N ratio 

Inclusion of land type and sample set variables as predictor variables for C:N ratio 

improved metrics from R2 = 0.274/RMSE = 7.62 to R2 = 0.402/RMSE = 7.2. Resultant 

models within land type and methodology are shown in Table 4.16.  
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 Table 4.16: C:N ratio MLR model metrics differentiated by land type. 
Complete dataset Land Type 

Metric MLR 
model 

RF model Forest Grassland Marine terrace 

Sample # 472 472 168 81 159 
R2 0.003 0.373 0.273 0.192 0.342 

RMSE 7.02 9.04 6.46 2.03 1.04 

RPD 0.589 1.263 0.705 1.097 1.240 
RPIQ 0.499 0.469 0.711 1.067 1.177 

Bolded text indicates metric was improved beyond MLR/RF modeling using 
complete dataset. 
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Chapter 5 Chapter 5 

DISCUSSION 

The objectives of this study were to assess the accuracy of existing data models 

and model building approaches to predict pH, texture, CEC, SOC%, TN% and C:N ratio 

from pXRF elemental data for 480 California soils. As expected, existing data models 

were inadequate in predicting California soil properties, likely due to the fact that 

elemental coefficients will be specific to the sample set used to calibrate the model. 

While certain covariates can be seen to be important for specific properties, the exact 

weight of these coefficients will vary by sample set, making large range data models 

unrealistic. Multiple linear regression and random forest models were also constructed 

specific to the California soils dataset, the results of which can be seen in summary Table 

5.1. Overall, RF models tended to produce better estimates when compared to MLR 

models. Variable importance plots from RF models can be created to uncover the relative 

importance of predictors while MLR models can give an estimate of absolute importance 

through variable coefficients. However, the multicollinearity of many important soil 

elements, wherein some elements are associated with each other, (which was not 

investigated in this study) can obfuscate beta coefficients given by MLR model 

equations. Grouping sample sets by land type and lab characterization approach showed 

no clear improvement in data models but may have an effect for larger sample sets where 

RF modeling can be used. Considering that most existing literature in which pXRF is 

used to predict soil properties has only a single characterizing lab body for the ‘lab truth’ 

measurements, the model predictions for this study were decent, and are expected to 

improve with more contained sampling areas used to calibrate models. 
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Table 5.1: Test set model metrics for each property investigated. 
Model outcomes 

MLR RF 
R2 RMSE* RPD RPIQ R2 RMSE* RPD RPIQ 

pH 0.532 0.489 1.456 1.733 0.485 0.490 1.377 1.547 
Sand % 0.616 12.3 1.601 2.589 0.658 10.8 1.697 2.449 
Clay % 0.599 6.83 1.586 2.294 0.625 6.06 1.613 2.540 

CEC 0.761 6.88 1.986 2.079 0.788 6.79 2.010 2.555 
SOC % 0.719 1.01 1.768 1.835 0.735 1.14 1.877 2.335 
TN % 0.699 0.0753 1.794 2.081 0.782 0.062 2.041 2.960 
C:N 0.003 7.02 0.589 0.499 0.373 9.04 1.263 0.469 

Red indicates poor predictive power, yellow indicates fair models with the potential for 
improvement, and green represents stable and accurate models. The ranges for red, 
yellow, and green categorization were as follows: R2: <0.6, 0.6 - 0.8, >0.8 (Malley et al., 
2004), RPD: <1.4, 1.4-2, >2 (Chang et al., 2001), RPIQ: ≥ 1.5 , ≥ 1.9,  ≥ 3.0 (Veum et al., 
2015).  
*No established range for poor, fair, and good RMSE values have been established for
the properties. Depending on the intended purpose, acceptable levels of error may vary.

5.1 RF models tended to outperform MLR models 

This study investigated and built MLR data models as well as RF algorithmic 

models. While many different algorithmic modeling approaches exist, RF was chosen as 

the machine learning algorithm to compare predictions from data models. The reasons for 

this decision were that RF handles complex data types well without the need to scale or 

normalize predictor variables (Towett et al., 2015). Since RF is a tree-based model which 

relies on rules to make predictions, the need to pre-process features is eliminated, unlike 

many other types of machine learning algorithms which assume normality or compute 

distance. In the past, the use of machine learning for any regression or classification 

problem may have been discouraged by a steep learning curve of various statistical 

software programs. However, modern statistics packages such as tidymodels in R makes 

it relatively straightforward to adapt machine learning approaches. Both RF and MLR 

models can also be used to determine variance importance, via variable importance plots 

and coefficient values that indicate the influence of certain elements for predicting a 
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given property. These are helpful where relationships between elements and the 

properties of interest may help explain the underlying processes which connect the 

chemistry of the sample to its observable characteristics. For six out of the seven soil 

properties investigated, RF models improved predictive estimates. The only property to 

have worse estimates from the RF model was pH, which may indicate that this feature is 

best predicted through a linear relationship. Thus, when prediction accuracy is the 

priority of modeling efforts, RF models will almost always be most appropriate, likely 

due to the non-linear nature of this type of modeling.  

5.2 Complications for MLR model interpretation 

 
Despite prediction being the main goal of MLR modeling, residual plots were 

created (Appendix D) to see if interpretations surrounding coefficient values and their 

significance could be carried out. Although some of the residual’s vs fitted and scale-

location plots appear to follow a non-horizontal line, the studentized Breusch-Pagan test 

produced a p-value <0.05 for each property, to rejecting the null hypothesis of 

homoscedasticity and meet the assumption of random variance. The normal Q-Q plots 

displaying the distribution of values shows a normal distribution for pH, CEC, SOC, and 

TN. For sand and clay, however, the Q-Q plots appear to have a light tail, which indicates 

that compared to the normal distribution, more data is located at the extremes of the 

distribution and less is located in the center of the distribution. This may suggest that 

stronger transformations such as square root transformations may be needed to meet the 

assumption of normal distribution. The Q-Q plot for CN has a heavy tailed distribution, 

which indicates more extreme values are present than would be expected in a normal 

distribution. Additionally, the residuals vs leverage plot showed highly influential points 
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for CN only, which can alter regression outcomes. A high number of outlier data points 

for CN ratio likely contributed to the non-normal distribution and high influence points. 

In summary, pH, SOC, and TN showed random variance and normal distribution of 

residuals, while clay and sand had slightly non-normal distributions, and CN was even 

more non-normal. Thus, since regression assumptions were not met universally across the 

board, coefficient significance and interpretation of significant variables and beta 

coefficients, especially for texture, should be taken with caution. No attempt was made to 

assign variable significance or interpretation for MLR CN models. Furthermore, the 

independence assumption of the datapoints may be invalid due to the fact that multiple 

samples from the same point locations (at different depths) may show spatial 

autocorrelation. In addition, multicollinearity of elemental concentrations was not 

controlled for, which can weaken the reliability of statistical inferences.  

Summarily, predictive power was the main goal of the study, and model 

performance metrics (R2, RMSE, RPD, RPIQ) are still valid without these assumptions. 

Any interpretations of the MLR models were best attempts to connect sample 

composition to physical and chemical properties and should be taken with discretion. 

5.3 Data models outperform machine learning for pH 

 
The existing model equation created for predicting pH performed considerably 

worse (RMSE=1.21) compared to the findings of Sharma et al., (2014) who found an 

RMSE = 0.822. The model was noticeably improved by finding coefficients from the CA 

soils dataset (RMSE = 0.666) with the same variables as the model equation. An MLR 

approach using 10-fold CV further improved predictions to RMSE = 0.489, signifying an 

impressive ability to predict pH within half a unit through a linear relationship. In fact, 
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the MLR model represented by Eq. 4.2 outperformed the RF model in all four of the 

calculated model metrics. Contrarily, Wan et al. (2019) found estimates of pH to be 

improved by non-linear modeling of pH from pXRF spectra (PLSR vs SVMR) and 

attributed the finding to non-linear relationships between pH and the chemical 

composition.  

Deriving a relationship between elemental makeup and pH is not surprising, since 

it is well known that the availability of plant nutrients in the soil depends upon soil 

reaction. Since the proportion of basic cations (Ca, Mg, and K) to H+ ions directly affects 

the pH, it was expected that these elements would be significant. However, only Ca was 

included in Eq. 4.2. Calcium may have been an important element for pH prediction due 

to calcium containing amendments such as gypsum in agricultural soils, shell meal from 

the marine terrace soils, and a high quantity of base cations in Mollisols. The heavy 

metals Ni and Zn may indicate pH level because these cationic metals are more highly 

soluble at low pH levels (USDA-NRCS, 2000). In addition, P is directly affected by pH, 

reaching with Ca in alkaline environments to form soluble compounds and reacting with 

Fe in acidic environments to form soluble compounds (Snyder, 2014). Given the 

relationship between the presence of aluminum and exchangeable soil acidity (Weil and 

Brady, 2017), it was surprising that Al was not indicated as a significant variable for Eq. 

2.4.  

For some applications, a prediction of pH within half a unit may be adequate. For 

purposes such as these, creating a MLR or RF model calibrated to the specific dataset 

may give the advantage of getting rough estimates of pH quickly. Libohova et al., (2018) 

found that uncertainty in soil pH measurement can vary widely, between an error of 0.06 
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for measurement methods and up to 1.3 for database attribution of pH using spatial 

interpolation. Thus, for pH determination, the amount of acceptable error should be 

determined beforehand. If an error up to above 1 unit is acceptable, digital soils maps 

which predict pH using polygon-based aggregation and spatial interpolation rules such as 

the US Soil Survey Geographic (SSURGO) and General Soil Map (STATSGO2) can be a 

convenient resource (Libohova et al., 2018). However, if a large collection of datapoints 

is needed within budget and time constraints, indirect pH measurement with pXRF 

analysis is a viable option. Considering that pH can be quickly measured in the field 

using a miniaturized pH meter to indicate pH within 0.01 units (Weil and Brady, 2017), 

direct measurements of this property may make more sense than use of predictive 

models.  

5.4 Soil texture: clay lends itself to better predictions than sand 

 

To assess the suitability for predicting soil texture from pXRF analysis, sand and 

clay % were estimated through backward stepwise models created following the methods 

of Zhu et al. (2011). This method gave inadequate predictions of these contents (RMSE = 

14.2/7.2). Despite its pervasive use, the shortcomings of stepwise regression as a variable 

selection technique are evident. For instance, explanatory variables unrelated to the 

dependent variable may just happen to show significance while variables without a causal 

effect on the outcome may not register as significant— resulting in an overfit model that 

performs poorly on unseen data (Smith, 2018). Additional issues with stepwise regression 

include artificially high R2 values and low p-values, falsely high regression coefficients 

(in absolute value), and low biased standard errors for regression coefficients leading to 

inaccurately narrow confidence intervals for predicted values (Harrell, 2015). Despite the 
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drawbacks of this approach and performing the worst of the three methods attempted, 

predictions made both the MLR method with 10-fold CV and the RF modeling approach 

did not appreciably improve estimates. Only a slight improvement was seen with the 

MLR approach compared to the stepwise approach (RMSE reduction of 1.9% for sand 

and 0.4% for clay). There was also only a slight prediction improvement between the 

MLR approach and the RF approach (further RMSE reduction of 1.5% for sand and 

0.77% for clay). The RF model that gave the best result still had an RMSE of 10.8 for 

sand and 6.06 for clay— representing less accurate estimates than those obtained by Zhu 

et al. (2011) for sand (RMSE: 5.53-6.26%) and clay (RMSE: 2.66-2.68%) of Louisiana 

and New Mexico soils. However, correct prediction of the soil texture class was 

improved from of 55% (MLR) to 72% (RF modeling). For many pertinent applications of 

texture including surface runoff class and infiltration, designation of the right textural 

class may be all the information that is needed. Where within-lab error for traditional 

sedimentation methodologies (hydrometer and pipette) have relatively low error rates (0-

6%), these methods are still inherently biased and oftentimes based on untrue 

assumptions (Salley et al., 2018). In addition, the time and cost of PSA analyses is a 

drawback to traditional lab texture analysis. By contrast, the texture by feel method is 

rapid and has the advantage of being completed in the field. However, in a study 

investigating the accuracy of these estimates, Salley et al., (2018) found that amongst 

professional soil scientists from the NCSS-SCD (National Cooperative Soil Survey soil 

characterization database), the correct texture class was predicted 66% of the time. 

Broadening the definition of the correct texture class to include adjacent textural classes, 

authors found that accuracy was increased to 91% for professionals. By comparison, the 
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RF models produced for texture could predict the correct texture class or adjacent class 

98.6% of the time. Thus, pXRF estimates of sand and clay may be a good intergrade 

between higher accuracy lab measurements and more subjective texture by feel 

measurements in the field. 

Both our MLR (Eq. 4.6) and RF model estimates of clay content produced lower 

RMSE values (6.83 and 6.06 respectively) than GLM, SVM, and RF modeling 

approaches (RMSE = 9.84, 7.11, 7.68) taken to predict clay of subsuperficial horizons 

from pXRF data by Silva et al. (2020). However, authors did achieve a lower RMSE for 

sand contents from GLM and RF modeling (11.92, 8.53) when compared to our RF 

model (RMSE = 10.8). Compared to the findings of Duda et al. (2017) both our MLR and 

RF models outperformed their SVR model findings for sand content (for R2, RPD and 

RPIQ but not for RMSE). Our MLR and RF models for clay content outperformed their 

SVR model for clay % within all measured metrics.  

Consistently superior predictions for clay than sand is likely a result of the 

inability of the pXRF to detect light elements correlated to quartz-derived sand (SiO2) in 

comparison to the heavier elements associated with the more highly weathered clay 

fraction. Both Fe and Al were highly significant (p<0.001) coefficients for clay 

prediction, which suggests that oxides in the soil may provide the basis for detecting this 

textural fraction. Like Zhu et al. (2011), this study showed a strong relationship between 

Fe/Rb and clay contents, with an Fe coefficient weight of 175.1 and Rb weight of 73.7 

for the 10-fold CV MLR model (Eq. 4.6). This finding lends more support for the 

possibility of a ‘unified pXRF clay model’ as referenced by Zhu et al. (2011). On the 
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other hand, sand contents showed a negative correlation with Fe in this study, which 

contrasts with the positive relationship found by Zhu et al. (2011).  

Models created in this study may have had improved success in relating soil 

minerology to textural separates given a more even distribution of samples over the 12 

textural classes. A predominance of samples with a sandy texture may have caused the 

models to be better calibrated to associate sand with elemental concentrations. Additional 

samples in clay, silt loam, silt, silty clay loam, and silty clay categories could have the 

effect of improved clay and silt predictions.  

5.5 CEC models gave reasonably good estimates 

 

The MLR model to predict CEC developed by Sharma et al. (2015) (Eq. 2.4) 

could not produce useful estimates for CEC when applied to the California soils dataset 

(RMSE = 20.9). Estimates were noticeably improved by generating our own coefficients 

in Eq. 4.7 (RMSE = 11.5) and even more so by creating an MLR model with 10-fold CV 

to pick coefficients as in Eq. 4.8 (RMSE = 6.88). Random forest modeling further 

improved model metrics, but only marginally (RMSE = 6.79). Since CEC can vary 

widely from just a few cmolc/kg in low organic matter sandy soils to up to 100 cmolc/kg 

in fine textured organic soils, a RMSE of under 7 cmolc/kg as given by the developed 

models could be helpful for getting quick rough estimates of CEC to decipher spatial 

variation. While sandy soils can easily be discerned from highly organic soils, soils with 

a more intergrade composition may benefit from pXRF analysis to detect ballpark 

approximations of CEC.  

Compared to the validation results of Li et al. (2018) (R2 = 0.60 and RMSE = 

8.07) who used RF modeling to predict CEC of compost from pXRF analysis, both our 
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MLR and RF were able to achieve a higher R2 and lower RMSE. It’s likely that the 

preprocessing techniques used by Li et al. (2018) obscured the relationship between 

elemental concentrations and CEC. Authors used recovery percentages of 2711a SRS to 

apply a correction factor to raw elemental concentrations, rather than using it to check for 

RSD and stability over time. Our model results for both MLR and RF models achieved 

better R2 and RPIQ but worse RMSE values compared to PLSR models predicting CEC 

from pXRF data as found by Wan et al. (2020) (R2 = 0.50, RMSE = 5.30, and RPIQ = 

0.82), suggesting that other machine learning models may work even better for predicting 

some soil properties. 

For CEC prediction from MLR, concentrations of exchangeable cations were 

expected to be significant coefficients in a model equation. Of the main exchangeable 

cations, Ca was used in Eq. 2.4 and 4.8, and Mg, K, Na, and Al were strongly significant 

(p<0.001) for Eq. 4.8. Since CEC depends on soil pH, clay content, type of clay, and 

organic matter, teasing out direct relationships between pure elemental data and CEC 

becomes less clear, especially with sample sets characterized in different ways. Sharma et 

al. (2015) created their model using only agricultural soils, and in effect, calibrated their 

model with high organic matter samples. It can also be assumed that these agricultural 

soils were at one time amended, which could affect the elemental analysis when 

compared to unmanaged soils. In addition, the CA soils dataset exhibited a good spread 

of CEC values, likely due to the contrasting land types represented (from sandy marine 

terrace environments to forested Mollisols). Where the highest CEC value used in 

building Eq. 2.4 was <40 cmolc/kg soil, the CA soils dataset contained 40 values between 

40-75 cmolc/kg soil.  
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Another method for indirect predictions of CEC involves the use of pedotransfer 

functions (PTFs), in which basic known soil properties such as particle size distribution 

are used to predict unknown soil features which are cumbersome to measure directly. 

Khodaverdiloo et al., (2018) used PTFs to correlate CEC with clay, OC, and dg 

(geometric mean particle diameter) on a training set of Iranian soil samples. The 

reliability of the developed PTFs was evaluated on an unseen test set and produced 

accuracies ranging from R2: 0.48-0.72 depending on the size of the calibration set and the 

derived PTF. The R2 values found in this study (MLR: 0.76/RF: 0.79) for CEC prediction 

are improved from the PTFs estimates found by Khodaverdiloo et al., (2018), which may 

represent that elemental covariates are better for predicting CEC and can be attained 

more easily when compared to other laboratory derived soil properties like clay content 

or organic carbon content.  

5.6 Good predictions for N, SOC models show some potential, and C:N models are 

poor 

 
The MLR model for predicting SOC produced the best RMSE (1.01) of the three 

SOC models, outperforming both the RF model (RMSE = 1.14) and RF methodology 

used by Towett et al. (2015) (RMSE = 1.08). However, both RF approaches improved the 

three other performance metrics when compared to the MLR approach. Towett et al., 

(2015) was able to achieve an RMSE of 0.7 for predicting SOC from TXRF using an 

immense dataset of 700 samples. For their RF model, authors chose the hyperparameters 

of mtry = 50 and ntree = 200 somewhat arbitrarily, and also reported OOB errors from 

the entire dataset rather than from an unseen hold-out set. This technique of bootstrapping 

means that as samples were used for model building/validation, they were returned to the 

data pool to be used again (sampling with replacement). While a valid statistical 
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approach, model performance on an unseen test set may have given a worse prediction 

that more accurately represents how the model will perform on new data. The method 

used in this study used 10-fold CV to pick hyperparameters that were shown to reduce 

OOB error, and then tested model performance on a holdout set. Since SOC content in 

soils is usually low in typical soils (≤3%) an error >1% is not likely to be helpful in 

distinguishing SOC levels for management needs or tracking SOC pools across time.  

Interestingly, all 12 elements used in the SOC regression model (Eq. 4.9) were 

highly significant (p<0.001), indicating that a number of elemental covariates are 

important in illustrating the relationship between soil chemistry and SOC. Si had the 

strongest negative correlation to SOC (coefficient of -22.9), which may be due to the fact 

that very sandy soils with a high proportion of quartz (SiO2) tend to have less organic 

matter than soils with finer textures. Al was also highly negatively correlated to SOC 

contents (coefficient of -13.7), despite the fact that aluminum bearing minerals are 

thought to protect and stabilize SOC (Hall and Thompson, 2022). However, the form of 

Al in the soil (free-metal cations, poorly crystalline, organically complexed phases) and 

its behavior (sorption to mineral surfaces vs downward leaching) is highly dependent on 

environmental conditions and solution characteristics (McLean and Bledsoe 1992). For 

instance, in a study comparing the association between pedogenic Al at four different 

forest sites, Porras et al., 2017 found site specific factors to be a major component in the 

relationship between SOC stability and Al content. For instance, authors saw that at low 

pH levels, organo-metal complexes were less stable and can be negatively correlated with 

SOC turnover times (Porras et al., 2017). Zr, on the other hand showed a positive 

correlation (coefficient of 3.1) with SOC. Since Zr is relatively resistant to weathering 



151 
 

and its amount tends to increase as weathering progresses (Stockmann et al., 2016), it 

could be possible that more developed and mature soils may have elevated levels of Zr, in 

addition to larger stores of SOC which accumulated over time.  

Predictions for nitrogen content were quite good, achieving an RMSE of 

0.075/0.062 from MLR/RF modeling approaches. One way to conceptualize how these 

errors compare to typical N totals is through the lens of C:N ratios of SOM. This ratio 

typically ranges between 8 and 15, with the lower end being more representative of 

agricultural soils and the higher end being more representative of natural ecosystem soils. 

With typical ranges of 0.5-5% SOC in California soils, a rough range for TN would be 

between 0.06-0.33%. The range of TN in this dataset was 0.01-0.86%, representing a 

good spread of values. Thus, the error achieved by MLR/RF models would probably only 

be acceptable for soils with high SOM including those in forest and grassland 

ecosystems, but less useful for low OM soils, including many agricultural soils, which 

typically have around 0.1% TN (W. Horwath, personal communication, 27 July 2022). 

No logical relationships were able to be identified between the variables used in Eq. 4.10 

and TN content. This could be due to the fact that nitrogen content in is a highly dynamic 

soil property which changes throughout the season, and samples for this study were 

collected at different time periods and at different depths in the profile. These 

confounding factors which may have obscured the relationship between the chemistry of 

the soils and TN contents.  

For three out of the four metrics, our RF model outperformed the SVR model for 

total nitrogen created by Duda et al. (2017). This result is significant given the 

importance of N for plant health and productivity. Without enough nitrogen, plants can 



152 
 

become stunted, and vigor is dramatically reduced. On the other hand, nitrogen 

oversupply can increase disease susceptibility and worsen crop quality (Weil and Brady, 

2017). Additionally, the production of nitrogen fertilizer contributes a large fraction of 

the fossil fuels used by agriculture (Woods et al., 2010). Clearly, knowledge about the 

nitrogen content of soils at any given time is essential for sustainable land management. 

The option to curtail conventional dry combustion methods to determine TN via pXRF 

modeling could allow for nitrogen contents to be estimated with a high spatial density. 

Similar to Eq. 4.9 for SOC, Si and Al were negatively correlated with TN contents, as 

shown in Eq. 4.11.   

C:N ratio was not able to be effectively predicted in this study. This could be a 

result of the large range of C:N values from 1-167, and 13 outlier values. In addition, 

samples coming from different characterizing entities had varied conventions for 

reporting C:N ratio values. For instance, KSSL primary characterization data rounds C:N 

to a whole number, whereas results from the CN analyzer used for the SPR/LHBC 

Mollisols, marine terrace, and LA Urban samples provided a more precise number with 

several decimal places included. Furthermore, CN may not lend itself to adequate 

predictions from elemental data due to different and uncorrelated proxies for detecting C 

and N contents individually. In other words, since C and N may have different error 

frameworks, a combination of these uncorrelated errors magnifies the overall prediction 

error beyond what would be useful for prediction purposes. Considering that C:N ratio is 

easily determined from SOC and TN content and provides only a proportion of these 

elements rather than their actual quantities, future research may benefit from focusing on 

models to predict SOC and TN directly rather than their ratio.  
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5.7 Significance of land-type and characterization methods on predictions 

 

To understand how the addition of categorical variables impacted predictions for 

each property, model predictions on unseen folds using only elemental predictors were 

compared to model predictions which also included the dummy variables land type and 

sample set. The inclusion of these categories resulted in an improved R2 and RMSE for 

all properties. Since R2 will always improve with more predictor variables, RMSE is the 

better metric to reference in this case. Relatively small reductions in RMSE at a large 

statistical cost (9 extra predictors) revealed that the additional variables may not add 

enough predictive power to justify their inclusion.  

 Beyond using land type and sample set as predictor variables, models for each 

property were also constructed within three land types and within the same 

methodologies. The interpretation of the results of grouped models was complicated by 

improvement in some metrics and not others. A model was considered to be improved 

(beyond the MLR and RF models constructed with all samples) if the majority (3 or 

more) of the model performance metrics were improved. Where RMSE and R2  were seen 

to fluctuate drastically with a change in the seed (ensuring the same split of the data for 

10-fold CV and the train/test split), RPD and RPIQ were more stable with varying seeds. 

This may indicate that these metrics are a better indication of model performance on 

future datasets, whereas RMSE and R2  are mostly relevant to the current dataset.  

Only the groupings within land type were seen to improve predictions, which may 

indicate that method of characterization is not a significant factor for elemental 

predictions and supports the assumption that various lab methods for the same property 

can be compared. However, consistent characterization across the entire sample set is 
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expected to improve overall model MLR and RF model estimates as a result of less 

overall error in lab truth data. In other words, inter-lab variability errors would not also 

be compounded with errors associated with the methods and modeling errors. For land 

type groupings, estimates of pH were improved within the forest and grassland subsets, 

sand estimates were improved within the grassland and marine terrace subsets, clay and 

SOC % were improved within the forest and marine terrace groups, TN % was improved 

only in the grassland group, and estimates for CEC and C:N were not improved by any 

grouping.  

Given these results, it is difficult to differentiate any hard and fast ‘rules’ for if 

and how separating samples by land type influences predictions. An improvement in 

predictive power shown by some of the equations is attributable to the fact that model 

equations derived from subsets of the total modeling dataset were allowed to have 

different slopes and only incorporate variables significant to that subset. By including all 

significant variables in the all-inclusive models, overall error was increased due to the 

presence of variables that were only significant for certain samples. Considerable 

improvements in predictions for some properties may suggest that some soil 

characteristics are more clearly derived from elemental data within a certain type of soil. 

However, the small sample sizes used to build some of the models (as small as n = 41) 

could be to blame for limited predictive power and higher uncertainty in MLR. These 

relatively small sub-datasets made RF modeling impractical. However, since RF models 

were seen to generally improve soil property predictions with the entire dataset, it’s likely 

that with enough samples to use RF, grouped model estimates would be further 

improved.  
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While the forest land type group had samples from multiple sample sets, 

grassland soils all came from the SPR/LHBC Mollisol dataset and all marine terrace 

samples came from the marine terrace dataset. Thus, it cannot be said with certainty if 

improvements for predictions in these categories may be attributed to the soil’s origin or 

simply inter-lab variability from the characterizing party. Additionally, even standard 

methods will be performed differently by specific labs given the available equipment, 

financial/time constraints, and technician experience. Therefore, to uncover if differences 

in land type /categorization are truly important for predictions, assessing the inter-lab 

variability of models would also be necessary. For instance, if samples within the same 

land type were all subject to the UN-FAO method for determining CEC, grouping models 

by characterizing body would help unveil if this was a prominent deciding factor in 

model efficacy. These results may point to the need for site specific calibration of 

predictive models which are calibrated using a single lab’s methodology for the ‘true’ 

values.  

Another important consideration in this vein is that while conventional lab 

analyses may be viewed as the definitive “truth,” error is still present in conventional 

techniques, even when performed with high caliber equipment in reputable laboratories. 

For instance, when ICP analyses is compared to pXRF analysis, a poor correlation is 

typically associated with the alternative analysis despite the fact that traditional lab bench 

equipment also includes errors (Crumbling et al., 2010). Existing studies that use pXRF 

to make predictive models about soil characteristics attempt to draw correlations between 

common wet chemistry measures of soil properties and pXRF measurements, but if the 
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measured values deviate too far from the actual values, it becomes difficult to assess the 

accuracy of pXRF based models. 

5.8 California soils dataset  

 
The strength of the predictive models developed from the California soils sample 

set may have been limited by the consortia of characterizing entities and their respective 

techniques. This study relied on the assumption that pre-characterized samples had 

accurate values for the properties of interest. However, even within the same methods, 

labs may follow different protocols or be limited with their time and financial resources. 

Existing models for pXRF prediction did not indicate different methods used to 

characterize any single property, which could explain their lower RMSE values. This 

difference could be considered a disadvantage due to the fact that more inter-lab 

uncertainty existed for lab measurements but could also be regarded as a strength of the 

study, because the developed models may have a wider scope of applicability.  

The sample set for this study was 480, which while sizable, could not capture all 

the diverse ecosystems and soil types in the state of California. Marine terrace, grassland, 

and forested ecosystems made up the bulk of the samples in this study. To achieve a more 

robust sample set and improve the models for the uses for which they are most likely 

destined, more soils from agricultural origins would be beneficial.  

5.9 pXRF analysis: areas for improvement  

 

A pXRF scan time of 60 seconds (two 30 second beams) was used to analyze the 

samples in this study due to precedent from other studies (Sharma et al., 2014) and for 

ease of sample analysis. For this technology to meet the promise of truly high sample 

throughput, a rapid one-minute scan time is appealing. However, some elements were 
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close to their LOD for that test time, resulting in a fraction of those elements falling out 

of their limit of detection. For example, Mg was <LOD for ~19% of scans and P and Nb 

had <LOD readings for ~14% of scans. This signifies that the 60 second scan time was 

not long enough (could not capture a high enough number of counts) to cause an atom in 

these elements to fluoresce and become differentiated from the background noise. Data 

imputation, a common statistical technique to account for missing data, was performed 

prior to model building to preserve as many observations as possible. The imputation 

method used in this study was based on the limit of detection for those scans where a 

‘<LOD’ concentration was recorded. The associated 1 sigma error provided by the pXRF 

output allowed for the LOD to be determined and was then used as the upper bound of a 

normal distribution curve from which values were imputed. This technique was based off 

knowing something about the missing datapoint and was preferable over deleting all 

observations missing any elemental readings. Of course, it would be best to have the 

concentration as reported by the analyzer, so to ensure most elements are reliably 

captured with each scan, a longer scan time (90-120 seconds) is recommended for future 

studies. This would have the effect of lower limits of detection and in turn capture 

elemental concentrations more consistently. While a two-minute scan is significantly 

longer than a one-minute scan per sample, the additional counts contribute to a more 

complete and accurate chemistry result in what is still a very quick timeframe. While 

some applications may only need a 20 second test time to be fit for purpose, when 

building predictive models, it is expected that a longer scan time will pay off for the 

increase in element detection, needed for robust modeling. 
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Some existing models could not be assessed by the CA soils dataset due to 

missing elements as a result of using Soil Mode of operation. Where Soil Mode uses 

Compton normalization, a computationally straightforward method, it’s unrealistic to 

meet the assumptions of dilute samples and no interelement interferences, of which this 

method relies on. Further, Mg, Al, and Si cannot be detected in this mode, which is a 

considerable drawback when reflecting on the frequency and significance of these 

elements in the models developed for this study. It is likewise recommended that future 

studies use GeoChem mode with a FP calibration to determine many important elemental 

concentrations making up the total chemistry of a sample that are not detected in Soil 

Mode.  

5.10 Applicability of modeling 

 

Singular models formulated from hundreds of samples across the diverse state of 

California showed fair performance, which is expected to improve with more targeted 

calibrations. However, aspirations to use pXRF analysis for consistent and reliable 

estimates of the soil properties explored in this study throughout an open-ended 

geographic range seems implausible. To ensure repeatability of results, certain sample 

preparation, scan times, and preprocessing conventions would need to be followed. Since 

these steps, as well as model building, are generally beyond the capabilities of typical 

landowners, a practical application of these models could be use by soil testing 

laboratories. It is not uncommon for a testing facility to offer indirect, calculated 

measurements, such as CEC from base cation summation and %OC from SOM%. These 

laboratories could similarly offer pXRF estimations of soil properties for a much lower 

cost, because many pXRF samples could be scanned rapidly with minimal sample 



159 
 

preparation and no advanced training or traditional reagents/laboratory equipment 

needed. The deployable use for this technology could then be increasing the number of 

samples that can be quickly and reasonably characterized, after calibrating for the 

specific sample range using laboratory data. Basic sample preparation (air-dry, sieved, 

ground) is recommended to obtain the most accurate chemistry results. For some 

properties that are more easily determined via direct methods, it’s probably most logical 

to measure them via existing approaches, rather than indirectly with pXRF analysis. For 

instance, pH is easily measured with the use of just deionized water and an inexpensive 

pH probe and can be performed in the field.  

Despite the advanced capabilities of pXRF devices, the fact that they are more 

widespread now than ever before and are popular in geological exploration and ore 

identification purposes, they are still relatively obscure as a tool for soils characterization 

(apart from heavy metal detection). It might be impractical for every farm to own a pXRF 

due to the high startup costs of purchasing the analyzer, especially when it could be 

reasoned that those funds could go directly towards lab measurements. However, for a 

sizable operation where soil properties are highly dynamic, a high-density number of  

pXRF characterized samples (even at a lower accuracy) may better serve a land 

manager’s goals than a handful of very precise lab measured samples.  
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Chapter 6 

CONCLUSIONS 

In the face of impending climactic shifts amid continued population growth, soils 

will be tasked with maintaining crucial ecosystem services and supporting intensified 

crop production. Understanding the characteristics of soils on a spatial and temporal basis 

is compulsory to ensuring soils are managed productively and to abate the negative 

consequences of land-use shifts from wildland to constructed environments. Obtaining a 

baseline picture of soil health is required for tracking changes over time which allows for 

the benefits or drawbacks of certain management practices to be quantified.  

To curtail current time and cost intensive analytical techniques for soil 

characterization, indirect measurements of soil properties with proximal sensors have 

been widely explored. This study aimed to assess existing model equations and model 

building techniques to determine their applicability for California soils. Multiple linear 

regression models were constructed by including those elements which showed a 

significant relationship to the target variable, and model performance was tested on a 

holdout set. This study also aimed to leverage the random forest machine learning 

algorithm to go beyond data modeling and uncover underlying relationships between soil 

properties and elemental data.  

Both the MLR and RF models formed via 10-fold CV tuning methods were able 

to achieve an RMSE<0.5 for prediction of pH. The high density throughput sampling 

made possible by pXRF measurements can overcome its analytical uncertainty to give a 

higher level of confidence than that provided by sparse lab measurements (Lemière, 

2018). Thus, pXRF estimations can be more fit for purpose than lab characterization for 

some applications, such as when the level of accuracy needed for pH measurements is 
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between coarse resolution digital maps (RMSE≤1.3) and very accurate pH meter 

measurements (RMSE≥0.06) (Libohova et al., 2019). However, since portable pH meters 

can achieve quicker and more accurate measurements compared to indirect pXRF 

scanning and model building, where only a few point measurements are needed for pH, 

predictive models for pH would be extraneous.   

As noticed by Zhu et al. (2011) and Wang et al. (2013) Rb and Fe were 

consistently significant in predicting clay contents. Also similar to Zhu et al. (2011), Zr 

was consistently significant in sand prediction, which authors attributed to zircon, a 

mineral resistant to weathering. Patterns indicating the significance of certain elements 

for sand and clay prediction in conjunction with only moderately improved metrics from 

RF modeling, indicates that linear modeling may be the best option for predicting sand 

and clay contents. However, correct texture class prediction was improved from 55% 

with MLR models to 72% with the use of RF modeling— so, if textural class is more 

important than specific percent of sand and clay, RF modeling would be the better option.  

Despite relatively high RMSE values for CEC prediction from MLR and RF 

models (6.88 and 6.79, respectively), good RPD (1.986/2.010) and RPIQ (2.079/2.555) 

values point to stable predictive capacity of the developed models. Considering four 

different methods were used in laboratory CEC determinations, these predictions are 

quite good and would be expected to improve further with consistent lab characterization 

methods.  

Surprisingly good estimates for SOC and TN contents were achieved from MLR 

models, and predictions were further improved with RF modeling. These results are 

significant in symbolizing the ability to correlate heavier elements with light elements 
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that are extremely important in soil health. Inaptly high RMSE values for SOC % by the 

modeling techniques used in this study would likely improve with a site-specific 

calibration to where indirect SOC tracking over time could be possible. By providing 

more ways to assess SOC in a timely fashion, carbon sequestration driven goals and 

timelines can be projected with increased accuracy. Poor predictive power of C:N ratio 

was likely a combined result of many outliers, different rounding protocols, and indirect 

inference of carbonate presence for some samples. 

To further improve predictive power of models, pXRF may be used in tandem 

with other sensors, which has shown good success for many important soil properties 

(Swetha and Chakraborty, 2021; Wang et al., 2015; Wan et al., 2019). Combining sensors 

that can be used estimate the organic fraction of soils (Vis-NIR, color sensors) with 

pXRF analysis providing information about the inorganic fraction may be necessary to 

achieve higher accuracy predictions of SOC. Other approaches to linear modeling (PLSR, 

GLM) and machine learning models (SVM) outside those used in this study have also 

shown success for predicting various properties. Using the tidyverse package to create 

and tune models makes it possible to easily change the type of model being run, and thus 

many different modeling techniques can be used with relative simplicity. 

It is recommended that future studies use longer scan times (at least 90 seconds) 

to achieve a robust modeling dataset, minimize confounding errors by constraining the 

number of different characterizing methods and bodies, and report results on unseen data 

to candidly represent how the model performs. Reporting several model evaluation 

metrics as was done in this study, helps to interpret results and compare models.  
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This study identified key relationships between elements of interest and soil 

properties and expressed those relationships both linearly and non-linearly. Model results 

indicate good prospects for the use of indirect ex-site pXRF estimates where a reasonable 

level of error is established and accepted. This study used simple sample preparation and 

scanned samples via pXRF according to the current best practices. Estimates for soil 

properties based off of in-situ scans would be expected to be much poorer due to 

interfering factors which are difficult to control for in the field. The challenge of 

detecting clear relationships between chemical composition and soil features and creating 

dependably reliable and accurate models for those features points to the incredibly 

complex and heterogenous nature of soils. Understanding more about the soils underfoot 

in California and beyond will be key for confronting imminent ecological challenges.  
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APPENDICES 

Appendix A: Laboratory data 

Table A.1: LA Urban laboratory soils data. 
Sample ID Land use Texture class Sand % Silt %  Clay % N % SOC % C:N pH CEC (cmolc/kg soil)

LA Plot 11 Urban SL 65.9 25.2 8.8 0.148 2.537 14.27 6.10 9.82

LA Plot 115 Urban SiCL 16.3 44.5 39.2 0.088 0.938 12.47 6.33 9.06

LA Plot 116 Urban L 48.9 32.0 19.2 0.184 2.886 13.99 6.72 -

LA Plot 12 Urban SL 56.8 29.2 14.0 0.095 1.596 19.93 7.62 13.82

LA Plot 120 Urban SL 54.5 39.1 6.3 0.117 1.482 16.37 5.62 14.24

LA Plot 124 Urban SL 62.0 25.3 12.7 0.242 3.811 11.23 5.84 17.65

LA Plot 125 Urban SL 54.4 35.5 10.1 0.132 1.383 11.83 7.33 17.59

LA Plot 134 Urban L 51.0 30.9 18.0 0.197 2.122 13.20 7.11 18.88

LA Plot 151 Urban SL 63.0 25.5 11.5 0.228 2.483 12.44 6.47 20.06

LA Plot 154 Urban SL 53.7 27.0 19.3 0.229 2.042 9.48 5.40 16.06

LA Plot 16 Urban L 49.2 35.5 15.2 0.335 4.387 11.11 6.39 27.06

LA Plot 169 Urban L 34.1 40.1 25.8 0.576 7.457 10.35 6.53 42.82

LA Plot 171 Urban L 49.0 35.7 15.3 0.197 3.182 12.50 7.18 12.29

LA Plot 172 Urban SL 60.8 32.9 6.3 0.128 1.448 13.84 6.13 8.82

LA Plot 176 Urban SL 72.4 22.6 5.0 0.134 2.590 15.83 5.26 10.53

LA Plot 185 Urban SL 63.3 27.9 8.9 0.105 1.436 12.72 6.13 6.35

LA Plot 189 Urban SL 60.9 31.5 7.6 0.067 0.790 15.39 5.10 5.76

LA Plot 198 Urban SL 73.5 20.2 6.3 0.266 3.687 11.51 5.37 15.76

LA Plot 2 Urban SL 74.6 19.0 6.3 0.087 3.498 56.90 10.38 5.47

LA Plot 202 Urban LS 81.0 11.4 7.6 0.215 2.693 12.72 6.70 18.76

LA Plot 204 Urban L 51.4 33.2 15.3 0.140 1.741 13.21 6.89 9.12

LA Plot 207 Urban SL 74.8 20.1 5.0 0.034 0.545 28.40 3.28 20.88

LA Plot 21 Urban L 50.0 37.2 12.8 0.078 0.919 12.34 7.85 22.76

LA Plot 31 Urban CL 28.8 38.9 32.4 0.082 1.133 17.58 7.67 12.76

LA Plot 34 Urban SL 55.3 29.4 15.3 0.155 1.757 12.15 6.54 9.65

LA Plot 35 Urban SL 66.1 23.9 10.1 0.300 6.172 11.67 6.29 16.65

LA Plot 4 Urban LS 81.1 12.6 6.3 0.052 1.507 45.38 6.29 5.12

LA Plot 41 Urban SL 69.6 20.3 10.1 0.362 4.674 12.48 6.89 29.82

LA Plot 46 Urban L 48.3 36.2 15.5 0.147 2.375 20.50 6.90 12.65

LA Plot 48 Urban SL 61.9 24.1 14.0 0.174 1.708 10.90 6.35 14.88

LA Plot 57 Urban SL 61.9 21.6 16.5 0.172 1.793 11.66 7.75 40.18

LA Plot 6 Urban SiCL 17.4 46.6 36.0 0.416 6.456 13.75 5.88 31.41

LA Plot 68 Urban L 47.3 36.0 16.7 0.486 5.721 10.79 6.02 25.24

LA Plot 74 Urban L 47.6 35.8 16.6 0.299 4.422 15.20 5.59 27.12

LA Plot 84 Urban SL 62.9 26.9 10.3 0.183 2.635 14.99 5.64 19.47

LA Plot 87 Urban SCL 49.9 27.0 23.1 0.211 - - 6.51 -

LA Plot 9 Urban SL 56.6 29.4 14.0 0.127 1.485 13.85 8.01 12.53

LA Plot 91 Urban SL 62.0 22.8 15.2 0.476 3.780 10.60 6.63 51.65

LA Plot 97 Urban L 50.0 32.1 18.0 0.163 2.227 12.89 5.85 22.29
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Table A.2: SPR/LHBC Mollisols laboratory soils data. 
Sample ID Land use Texture class Sand % Silt % Clay % N % SOC % C:N pH CEC (cmolc/kg soil)

SPR/LHBC 1 Forest - - - - 0.346 5.734 16.57 6.63 32.61

SPR/LHBC 2 Forest - - - - 0.631 11.902 18.86 6.44 53.54

SPR/LHBC 3 Grassland - - - - 0.243 2.644 10.88 6.15 18.30

SPR/LHBC 4 Forest - - - - 0.681 12.446 18.28 6.53 59.11

SPR/LHBC 5 Grassland - - - - 0.303 3.122 10.30 5.85 21.34

SPR/LHBC 6 Forest - - - - 0.145 2.049 14.13 6.79 16.58

SPR/LHBC 7 Forest - - - - 0.559 8.385 15.00 6.62 39.86

SPR/LHBC 8 Grassland - - - - 0.229 2.569 11.22 6.47 15.16

SPR/LHBC 9 Grassland - - - - 0.111 1.235 11.13 6.17 15.20

SPR/LHBC 10 Grassland - - - - 0.128 1.301 10.17 6.78 14.39

SPR/LHBC 11 Grassland CL 41.8 26.6 31.6 0.065 0.761 11.65 5.93 19.83

SPR/LHBC 12 Forest CL 39.1 33.6 27.3 0.461 7.631 16.56 6.78 46.51

SPR/LHBC 13 Forest CL 33.9 32.0 34.1 0.080 1.105 13.78 6.45 15.85

SPR/LHBC 14 Forest SL 83.9 2.2 13.8 0.039 0.771 19.56 6.48 10.73

SPR/LHBC 15 Grassland L 39.5 34.2 26.3 0.236 2.947 12.46 5.86 21.16

SPR/LHBC 16 Forest CL 24.0 43.2 32.9 0.165 2.401 14.59 6.88 18.78

SPR/LHBC 17 Grassland C 12.9 32.7 54.4 0.093 1.293 13.87 6.32 15.29

SPR/LHBC 18 Grassland CL 39.2 26.6 34.2 0.157 2.323 14.80 6.25 21.44

SPR/LHBC 19 Grassland CL 38.6 27.3 34.2 0.111 1.722 15.51 6.28 19.68

SPR/LHBC 20 Grassland CL 40.9 27.7 31.4 0.068 0.916 13.41 6.06 17.74

SPR/LHBC 21 Grassland CL 38.9 26.8 34.4 0.089 1.348 15.15 6.3 19.13

SPR/LHBC 22 Grassland - - - - 0.085 0.791 9.30 7.16 17.49

SPR/LHBC 23 Grassland - - - - 0.056 0.415 7.41 6.91 14.81

SPR/LHBC 24 Grassland - - - - 0.156 1.558 9.99 5.91 18.25

SPR/LHBC 25 Grassland - - - - 0.202 2.398 11.87 6 27.48

SPR/LHBC 26 Forest - - - - 0.539 8.532 15.83 6.45 45.09

SPR/LHBC 27 Grassland - - - - 0.107 1.105 10.33 6.18 15.15

SPR/LHBC 28 Grassland - - - - 0.243 2.684 11.05 6.3 15.14

SPR/LHBC 29 Grassland CL 40.3 25.4 34.3 0.102 1.591 15.53 6.2 18.40

SPR/LHBC 30 Forest SCL 61.2 15.8 23.0 0.237 4.602 19.42 5.49 25.00

SPR/LHBC 31 Grassland CL 39.1 30.9 30.0 0.104 1.480 14.23 6.28 18.88

SPR/LHBC 32 Grassland CL 40.2 31.0 28.8 0.121 1.508 12.51 5.84 18.08

SPR/LHBC 33 Forest CL 21.4 48.1 30.5 0.321 5.508 17.16 6.62 27.53

SPR/LHBC 34 Forest - - - - 0.698 14.080 20.17 6.84 74.57

SPR/LHBC 35 Forest SL 65.2 15.6 19.2 0.088 0.716 8.15 7.45 18.74

SPR/LHBC 36 Forest - - - - 0.084 0.762 9.10 7.31 18.92

SPR/LHBC 37 Forest SL 68.3 14.9 16.8 0.086 0.576 6.68 7.33 19.48

SPR/LHBC 38 Forest - - - - 0.121 1.099 9.10 7.12 21.47

SPR/LHBC 39 Forest SCL 59.7 19.0 21.3 0.142 2.121 14.90 5.39 16.43

SPR/LHBC 40 Forest SCL 76.4 9.6 13.9 0.052 0.940 18.11 6.24 14.43

SPR/LHBC 41 Forest CL 34.8 29.3 36.0 0.075 1.167 15.51 6.32 21.28

SPR/LHBC 42 Forest LS 84.0 4.1 11.9 0.031 0.494 15.92 6.7 8.00

SPR/LHBC 43 Forest LS 84.2 6.4 9.4 0.023 0.568 24.59 6.55 10.20

SPR/LHBC 44 Forest LS 91.3 0.6 8.0 0.012 0.260 21.13 6.92 5.92

SPR/LHBC 45 Forest CL 29.2 40.2 30.6 0.144 1.998 13.90 6.93 27.25

SPR/LHBC 46 Forest CL 28.2 43.6 28.2 0.225 3.206 14.25 7.08 27.66

SPR/LHBC 47 Forest CL 26.7 39.9 33.5 0.084 0.856 10.21 7.13 30.12

SPR/LHBC 48 Grassland L 43.8 35.4 20.8 0.414 4.338 10.47 4.93 20.69

SPR/LHBC 49 Grassland CL 31.4 39.9 28.7 0.303 3.268 10.77 5.69 22.01

SPR/LHBC 50 Grassland SiCL 18.6 42.7 38.7 0.164 1.608 9.81 5.9 21.79

SPR/LHBC 51 Grassland L 45.7 33.6 20.6 0.391 3.944 10.08 4.8 33.09

SPR/LHBC 52 Grassland CL 31.2 35.9 32.9 0.448 4.102 9.16 5.57 18.99

SPR/LHBC 53 Forest L 45.4 35.1 19.6 0.084 0.763 9.10 5.54 23.08

SPR/LHBC 54 Forest CL 27.9 42.7 29.4 0.180 2.213 12.27 7.47 24.49

SPR/LHBC 55 Forest CL 37.3 40.7 22.0 0.122 1.389 11.37 5.57 20.88

SPR/LHBC 56 Forest SCL 58.4 20.4 21.2 0.114 1.480 12.99 7.06 25.34

SPR/LHBC 57 Forest L 26.2 44.2 29.7 0.166 1.933 11.63 7.34 22.39

SPR/LHBC 58 Forest L 47.1 27.9 25.0 0.156 2.238 14.32 7.13 30.33

SPR/LHBC 59 Forest L 40.0 33.6 26.4 0.159 1.972 12.39 7.26 31.45

SPR/LHBC 60 Forest L 34.7 42.7 22.5 0.177 2.157 12.21 6.85 26.25

SPR/LHBC 61 Forest L 41.1 33.8 25.1 0.189 2.401 12.72 7.59 29.89

SPR/LHBC 62 Forest L 32.1 44.4 23.6 0.299 4.323 14.45 6.86 30.55

SPR/LHBC 63 Forest CL 34.1 36.5 29.4 0.255 3.884 15.25 8.01 30.76

SPR/LHBC 64 Forest L 38.0 35.6 26.3 0.342 5.854 17.14 7.83 46.14

SPR/LHBC 65 Grassland CL 38.2 31.5 30.3 0.201 1.657 8.24 5.62 32.86

SPR/LHBC 66 Grassland SCL 46.8 31.9 21.3 0.587 6.168 10.51 5.08 26.50

SPR/LHBC 67 Grassland CL 37.1 31.4 31.5 0.213 1.817 8.53 5.65 31.64

SPR/LHBC 68 Grassland CL 36.1 36.1 27.8 0.250 2.192 8.78 5.73 31.62

SPR/LHBC 69 Grassland CL 26.4 40.7 32.9 0.309 3.078 9.97 5.92 30.38

SPR/LHBC 70 Forest L 30.7 43.6 25.8 0.173 2.329 13.44 6.41 19.89

SPR/LHBC 71 Forest L 34.0 44.1 22.0 0.189 2.306 12.18 7.06 20.33

SPR/LHBC 72 Forest L 34.3 46.0 19.7 0.360 6.444 17.90 6.87 36.08

SPR/LHBC 73 Forest CL 27.0 45.1 27.9 0.188 2.319 12.33 7.6 28.94

SPR/LHBC 74 Forest L 41.1 32.4 26.5 0.235 3.626 15.40 6.96 32.68

SPR/LHBC 75 Forest L 30.3 45.6 24.1 0.309 4.134 13.40 7.55 37.38
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SPR/LHBC 76 Forest L 45.7 31.3 23.0 0.248 5.254 21.20 6.93 39.79

SPR/LHBC 77 Forest L 42.9 30.7 26.4 0.101 1.070 10.60 6.63 22.61

SPR/LHBC 78 Forest CL 29.7 40.1 30.2 0.316 5.392 17.06 5.92 38.66

SPR/LHBC 79 Forest L 40.1 35.4 24.5 0.091 0.924 10.10 6.6 26.52

SPR/LHBC 80 Forest CL 24.0 48.3 27.7 0.308 4.931 16.01 6.66 22.10

SPR/LHBC 81 Forest L 34.5 40.9 24.5 0.145 2.154 14.86 5.69 8.50

SPR/LHBC 82 Grassland CL 23.6 48.0 28.4 0.092 0.976 10.67 6.28 16.22

SPR/LHBC 83 Forest CL 29.4 39.7 30.9 0.395 6.799 17.19 5.41 33.09

SPR/LHBC 84 Grassland SCL 60.4 19.3 20.3 0.034 0.211 6.16 6.25 5.50

SPR/LHBC 85 Grassland CL 27.2 35.7 37.1 0.234 3.140 13.45 6.18 27.91

SPR/LHBC 86 Grassland CL 25.3 38.6 36.1 0.383 5.118 13.37 5.81 32.82

SPR/LHBC 87 Grassland SCL 48.1 20.3 31.7 0.041 0.270 6.63 5.67 13.72

SPR/LHBC 88 Grassland CL 28.7 34.6 36.7 0.179 2.343 13.12 5.9 23.55

SPR/LHBC 89 Grassland SCL 60.3 18.1 21.6 0.040 0.285 7.15 5.36 7.36

SPR/LHBC 90 Forest CL 31.8 37.3 30.9 0.341 5.131 15.04 5.51 35.43

SPR/LHBC 91 Grassland SL 52.8 28.2 19.0 0.020 0.073 3.69 5.05 5.36

SPR/LHBC 92 Forest CL 30.9 39.4 29.7 0.271 3.873 14.30 6.83 37.01

SPR/LHBC 93 Grassland SCL 55.7 20.1 24.2 0.056 0.424 7.53 6.16 9.06

SPR/LHBC 94 Forest CL 25.8 46.9 27.2 0.166 1.825 10.98 6.34 16.40

SPR/LHBC 95 Grassland SCL 51.3 25.8 22.9 0.101 1.036 10.26 6.04 9.74

SPR/LHBC 96 Grassland SCL 50.2 26.6 23.1 0.184 2.143 11.65 5.72 11.42

SPR/LHBC 97 Grassland CL 31.8 37.6 30.6 0.078 0.638 8.23 5.52 14.20

SPR/LHBC 98 Grassland CL 37.8 31.7 30.5 0.073 0.675 9.25 5.36 14.07

SPR/LHBC 99 Forest CL 27.8 33.6 38.6 0.676 11.451 16.93 7.14 52.32

SPR/LHBC 100 Grassland SL 68.1 12.4 19.5 0.166 1.825 10.98 5.25 7.11

SPR/LHBC 101 Grassland SCL 67.6 12.4 20.1 0.084 0.832 9.94 5.92 7.13

SPR/LHBC 102 Grassland SCL 61.0 9.9 29.1 0.057 0.384 6.79 6.46 9.06

SPR/LHBC 103 Forest CL 33.0 37.1 29.9 0.348 5.969 17.14 6.9 42.92

SPR/LHBC 104 Forest L 51.1 29.1 19.8 0.104 1.255 12.11 6.52 23.56

SPR/LHBC 105 Grassland CL 21.1 48.0 30.9 0.125 1.557 12.43 6.38 18.65

SPR/LHBC 106 Forest CL 29.6 35.7 34.7 0.214 3.000 14.02 6.45 22.04

SPR/LHBC 107 Grassland SiCL 17.2 49.0 33.8 0.191 2.603 13.61 6.52 23.90

SPR/LHBC 108 Grassland SiCL 15.9 50.1 34.0 0.265 3.787 14.29 6.47 27.18

SPR/LHBC 109 Forest CL 32.6 37.6 29.8 0.183 2.329 12.70 7.25 30.77

SPR/LHBC 110 Forest CL 31.4 39.2 29.5 0.262 3.767 14.39 7.13 31.95

SPR/LHBC 111 Forest CL 39.9 27.9 32.2 0.128 1.652 12.91 7.22 29.79

SPR/LHBC 112 Forest L 40.9 35.3 23.8 0.220 3.138 14.25 5.97 25.99

SPR/LHBC 113 Grassland SiCL 16.3 49.6 34.1 0.402 5.548 13.79 5.95 32.55

SPR/LHBC 114 Forest CL 35.1 35.3 29.6 0.203 2.753 13.54 6.27 36.54

SPR/LHBC 115 Grassland SCL 50.7 18.0 31.3 0.034 0.192 5.65 5.24 13.25

SPR/LHBC 116 Forest CL 29.8 30.9 39.3 0.526 7.757 14.74 7.41 46.73

SPR/LHBC 117 Grassland - - - - 0.121 1.225 10.12 6.59 15.21

SPR/LHBC 118 Forest - - - - 0.054 0.661 12.24 7.15 12.87

SPR/LHBC 119 Grassland - - - - 0.053 0.337 6.36 7.01 12.02

SPR/LHBC 120 Forest - - - - 0.246 3.958 16.09 6.66 17.94

SPR/LHBC 121 Forest - - - - 0.083 1.192 14.36 6.94 12.29

SPR/LHBC 122 Grassland - - - - 0.093 1.018 10.95 7.1 17.94

SPR/LHBC 123 Grassland - - - - 0.127 1.375 10.83 6.4 13.94

SPR/LHBC 124 Forest - - - - 0.107 2.131 19.92 7.13 19.51

SPR/LHBC 125 Forest - - - - 0.096 1.989 20.72 6.81 19.82

SPR/LHBC 126 Forest - - - - 0.114 1.703 14.94 6.63 15.55

SPR/LHBC 127 Grassland - - - - 0.350 4.229 12.08 6.07 23.38

SPR/LHBC 128 Grassland - - - - 0.123 1.292 10.50 6.85 17.67

SPR/LHBC 129 Grassland - - - - 0.239 2.689 11.25 6.25 16.02

SPR/LHBC 130 Grassland - - - - 0.075 0.376 5.02 7.06 14.15

SPR/LHBC 131 Grassland - - - - 0.102 1.319 12.93 6.75 19.61

SPR/LHBC 132 Forest - - - - 0.386 7.026 18.20 6.89 42.60

SPR/LHBC 133 Grassland - - - - 0.092 0.937 10.18 6.25 13.99

SPR/LHBC 134 Grassland - - - - 0.072 0.846 11.76 7.21 17.49

SPR/LHBC 135 Forest - - - - 0.037 0.511 13.81 6.89 8.71

SPR/LHBC 136 Forest - - - - 0.064 0.905 14.14 7 14.33

SPR/LHBC 137 Grassland - - - - 0.052 0.321 6.18 7.09 14.83

SPR/LHBC 138 Forest - - - - 0.400 8.427 21.07 6.91 48.04

SPR/LHBC 139 Forest - - - - 0.056 0.660 11.79 6.78 12.31

SPR/LHBC 140 Forest - - - - 0.159 2.776 17.46 7.48 17.63

SPR/LHBC 141 Forest - - - - 0.081 1.468 18.12 7.42 13.76

SPR/LHBC 142 Forest - - - - 0.172 2.333 13.56 7.21 21.89

SPR/LHBC 143 Forest - - - - 0.196 2.916 14.88 6.8 21.53

SPR/LHBC 144 Forest - - - - 0.075 0.753 10.04 7.4 12.39

SPR/LHBC 145 Grassland - - - - 0.131 1.650 12.60 6.64 24.47

SPR/LHBC 146 Forest - - - - 0.184 1.981 10.77 6.02 30.73

SPR/LHBC 147 Forest - - - - 0.392 5.146 13.13 5.75 41.23

SPR/LHBC 148 Forest - - - - 0.121 1.235 10.21 6.24 13.90

SPR/LHBC 149 Forest - - - - 0.346 3.919 11.33 6.01 23.23

SPR/LHBC 150 Forest - - - - 0.275 3.075 11.18 6.03 25.66
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SPR/LHBC 151 Forest - - - - 0.236 2.430 10.30 6.06 30.62

SPR/LHBC 152 Forest - - - - 0.254 3.120 12.28 5.77 33.83

SPR/LHBC 153 Forest - - - - 0.229 2.301 10.05 5.58 31.12

SPR/LHBC 154 Forest - - - - 0.284 4.085 14.38 5.85 33.24

SPR/LHBC 155 Grassland - - - - 0.246 2.685 10.91 5.94 22.38

SPR/LHBC 156 Grassland - - - - 0.187 1.989 10.64 6.15 20.16

SPR/LHBC 157 Grassland - - - - 0.440 5.078 11.54 5.63 23.87

SPR/LHBC 158 Forest - - - - 0.307 4.871 15.87 6.17 45.32

SPR/LHBC 159 Forest - - - - 0.202 2.738 13.55 6.6 17.16

SPR/LHBC 160 Forest - - - - 0.187 3.279 17.53 6.1 58.67

SPR/LHBC 161 Forest - - - - 0.223 4.310 19.33 6.27 50.91

SPR/LHBC 162 Grassland - - - - 0.338 3.794 11.22 5.64 24.14

SPR/LHBC 163 Forest - - - - 0.388 5.849 15.07 6.73 63.15

SPR/LHBC 164 Grassland - - - - 0.310 3.610 11.65 5.8 25.18

SPR/LHBC 165 Forest - - - - 0.180 2.284 12.69 6.63 36.87

SPR/LHBC 166 Forest - - - - 0.306 4.127 13.49 5.85 32.59

SPR/LHBC 167 Forest - - - - 0.151 2.084 13.80 5.17 46.29

SPR/LHBC 168 Forest - - - - 0.168 2.250 13.39 5.68 21.93

SPR/LHBC 169 Grassland - - - - 0.345 4.241 12.29 5.67 43.00

SPR/LHBC 170 Forest - - - - 0.236 3.009 12.75 5.92 25.49

SPR/LHBC 171 Forest - - - - 0.072 0.891 12.38 5.13 25.30

SPR/LHBC 172 Grassland - - - - 0.227 2.760 12.16 5.74 50.01

SPR/LHBC 173 Forest - - - - 0.103 1.504 14.60 5.52 12.77

SPR/LHBC 174 Forest - - - - 0.184 3.080 16.74 6.6 21.35

SPR/LHBC 175 Forest - - - - 0.084 1.626 19.36 6.44 13.61

SPR/LHBC 176 Forest - - - - 0.183 2.787 15.23 5.28 14.35

SPR/LHBC 177 Forest - - - - 0.178 1.958 11.00 5.86 14.50

SPR/LHBC 178 Forest - - - - 0.481 8.659 18.00 6.02 54.20

SPR/LHBC 179 Forest - - - - 0.392 6.730 17.17 6.21 57.64

SPR/LHBC 180 Forest - - - - 0.088 0.918 10.43 5.92 14.12

SPR/LHBC 181 Forest - - - - 0.218 2.990 13.72 5.76 14.73

SPR/LHBC 182 Forest - - - - 0.034 0.330 9.70 7.84 7.74

SPR/LHBC 183 Forest - - - - 0.191 3.030 15.86 7.12 11.07

SPR/LHBC 184 Forest - - - - 0.168 1.841 10.96 5.49 18.46

SPR/LHBC 185 Forest - - - - 0.057 1.017 17.84 8.02 10.47

SPR/LHBC 186 Forest - - - - 0.223 4.482 20.10 7 34.91

SPR/LHBC 187 Forest - - - - 0.206 2.665 12.94 6.33 24.33

SPR/LHBC 188 Forest - - - - 0.504 10.141 20.12 6.7 46.89

SPR/LHBC 189 Forest - - - - 0.222 2.859 12.88 5.24 20.76

SPR/LHBC 190 Forest - - - - 0.198 2.808 14.18 5.95 24.23

SPR/LHBC 191 Forest - - - - 0.251 3.504 13.96 6.07 30.29

SPR/LHBC 192 Grassland - - - - 0.254 3.183 12.53 6.01 22.83

SPR/LHBC 193 Forest - - - - 0.375 5.561 14.83 7.21 44.57

SPR/LHBC 194 Forest - - - - 0.361 4.729 13.10 5.83 21.69

SPR/LHBC 195 Forest - - - - 0.290 4.072 14.04 5.95 19.39

SPR/LHBC 196 Forest - - - - 0.228 2.870 12.59 5.92 26.12

SPR/LHBC 197 Forest - - - - 0.368 5.769 15.68 5.98 52.52

SPR/LHBC 198 Forest - - - - 0.285 4.210 14.77 6.92 40.05

SPR/LHBC 199 Grassland - - - - 0.346 4.618 13.35 5.86 28.54

SPR/LHBC 200 Forest - - - - 0.404 5.861 14.51 7.02 54.03

SPR/LHBC 201 Forest - - - - 0.293 4.084 13.94 7.07 42.19

SPR/LHBC 202 Grassland - - - - 0.160 2.064 12.90 6 23.26

SPR/LHBC 203 Forest - - - - 0.149 2.274 15.26 6.49 41.62

SPR/LHBC 204 Forest - - - - 0.240 3.524 14.68 6.24 38.29

SPR/LHBC 205 Forest - - - - 0.120 1.561 13.01 5.91 26.15

SPR/LHBC 206 Forest - - - - 0.423 6.574 15.54 6.27 58.38

SPR/LHBC 207 Forest - - - - 0.478 7.242 15.15 7.21 53.00

SPR/LHBC 208 Forest - - - - 0.336 5.382 16.02 6.8 48.50

SPR/LHBC 209 Grassland - - - - 0.343 4.292 12.51 6.28 26.14

SPR/LHBC 210 Grassland - - - - 0.475 5.811 12.23 6.15 43.77

SPR/LHBC 211 Grassland - - - - 0.424 5.312 12.53 6.09 29.64

SPR/LHBC 212 Forest - - - - 0.212 3.099 14.62 6.92 29.68

SPR/LHBC 213 Grassland - - - - 0.205 1.793 8.75 5.25 31.72

SPR/LHBC 214 Grassland - - - - 0.460 5.034 10.94 5.42 42.96

SPR/LHBC 215 Grassland - - - - 0.368 3.792 10.30 5.27 28.30

SPR/LHBC 216 Forest - - - - 0.221 2.793 12.64 6.03 36.54

SPR/LHBC 217 Forest - - - - 0.284 3.565 12.55 6.36 42.11

SPR/LHBC 218 Forest - - - - 0.341 4.596 13.48 6.7 44.56
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Table A.3: Marine terrace laboratory soils data. 
Sample ID Land use Texture class Sand % Silt % Clay % N % SOC % C:N pH CEC (cmolc/kg soil)

Marine Terrace 1 Marine terrace SL 59.1 28.1 12.8 0.267 3.039 11.38 6.40 15.90

Marine Terrace 2 Marine terrace SL 56.8 28.0 15.3 0.154 1.736 11.27 5.80 13.80

Marine Terrace 3 Marine terrace SL 63.3 24.1 12.7 0.117 1.278 10.92 6.20 11.50

Marine Terrace 4 Marine terrace SL 64.6 20.2 15.2 0.056 0.629 11.23 6.40 8.10

Marine Terrace 5 Marine terrace SL 61.8 24.2 14.0 0.032 0.228 7.13 6.70 7.20

Marine Terrace 6 Marine terrace L 48.4 38.7 12.9 0.457 5.460 11.95 6.40 18.20

Marine Terrace 7 Marine terrace L 46.0 36.0 18.0 0.231 2.395 10.37 5.90 15.40

Marine Terrace 8 Marine terrace L 41.2 38.4 20.5 0.152 1.497 9.85 6.10 15.90

Marine Terrace 9 Marine terrace L 46.1 35.9 18.0 0.122 1.120 9.18 6.20 16.60

Marine Terrace 10 Marine terrace SL 63.4 22.2 14.4 0.036 0.249 6.92 6.30 11.20

Marine Terrace 11 Marine terrace L 41.3 42.1 16.6 0.292 3.545 12.14 6.40 22.30

Marine Terrace 12 Marine terrace L 44.1 35.6 20.3 0.174 1.807 10.39 5.70 9.80

Marine Terrace 13 Marine terrace L 41.5 36.9 21.6 0.125 1.292 10.34 5.80 9.80

Marine Terrace 14 Marine terrace L 41.5 36.9 21.6 0.138 1.420 10.29 6.00 11.20

Marine Terrace 15 Marine terrace L 40.2 36.9 22.9 0.112 1.255 11.21 6.40 10.00

Marine Terrace 16 Marine terrace LS 82.4 11.3 6.3 0.103 1.298 12.60 6.40 6.90

Marine Terrace 17 Marine terrace L 39.8 41.0 19.2 0.235 2.656 11.30 5.80 15.60

Marine Terrace 18 Marine terrace L 41.2 35.8 23.0 0.182 2.025 11.13 6.10 13.90

Marine Terrace 19 Marine terrace L 36.5 40.2 23.3 0.179 2.093 11.69 6.20 12.50

Marine Terrace 20 Marine terrace L 32.3 43.0 24.7 0.104 0.915 8.80 6.50 12.10

Marine Terrace 21 Marine terrace SL 64.5 24.1 11.4 0.233 2.862 12.28 6.20 8.30

Marine Terrace 22 Marine terrace SL 64.5 24.1 11.4 0.149 1.664 11.17 5.60 8.30

Marine Terrace 23 Marine terrace SL 69.7 18.9 11.4 0.074 0.743 10.04 5.90 5.30

Marine Terrace 24 Marine terrace SL 77.3 13.9 8.8 0.042 0.462 11.00 6.30 4.90

Marine Terrace 25 Marine terrace SL 79.9 8.8 11.3 0.014 0.143 10.21 6.60 3.90

Marine Terrace 26 Marine terrace LS 78.6 13.9 7.6 0.116 1.576 13.59 6.30 8.30

Marine Terrace 27 Marine terrace LS 82.4 8.8 8.8 0.071 0.830 11.69 5.60 6.50

Marine Terrace 28 Marine terrace LS 84.9 7.6 7.6 0.029 0.363 12.52 5.80 4.50

Marine Terrace 29 Marine terrace LS 79.7 11.4 8.9 0.015 0.153 10.20 6.40 4.20

Marine Terrace 30 Marine terrace LS 82.3 8.8 8.8 0.013 0.138 10.62 6.80 3.30

Marine Terrace 31 Marine terrace L 49.2 35.6 15.3 0.314 3.739 11.91 6.30 12.90

Marine Terrace 32 Marine terrace SL 56.7 26.7 16.5 0.171 1.803 10.54 6.00 10.10

Marine Terrace 33 Marine terrace SL 56.9 27.9 15.2 0.113 1.248 11.04 6.10 10.00

Marine Terrace 34 Marine terrace SL 58.2 22.8 19.0 0.096 1.064 11.08 6.50 9.80

Marine Terrace 35 Marine terrace SL 72.3 17.7 10.1 0.033 0.357 10.82 6.70 4.50

Marine Terrace 36 Marine terrace L 33.3 43.6 23.1 0.293 3.354 11.45 6.50 18.20

Marine Terrace 37 Marine terrace LS 81.1 12.6 6.3 0.063 0.769 12.21 5.80 5.60

Marine Terrace 38 Marine terrace LS 82.3 7.6 10.1 0.043 0.494 11.49 5.60 5.30

Marine Terrace 39 Marine terrace SL 79.9 10.1 10.1 0.025 0.300 12.00 6.20 4.60

Marine Terrace 40 Marine terrace LS 82.4 7.5 10.1 0.018 0.189 10.50 6.40 4.10

Marine Terrace 41 Marine terrace SL 59.3 24.2 16.5 0.137 1.685 12.30 6.60 9.20

Marine Terrace 42 Marine terrace SL 60.6 21.6 17.8 0.136 1.543 11.35 5.90 11.00

Marine Terrace 43 Marine terrace SL 61.9 22.8 15.2 0.124 1.322 10.66 6.10 10.30

Marine Terrace 44 Marine terrace SL 69.6 16.5 13.9 0.083 0.923 11.12 6.20 8.00

Marine Terrace 45 Marine terrace SL 72.2 13.9 13.9 0.042 0.431 10.26 6.40 5.40

Marine Terrace 46 Marine terrace LS 84.9 8.8 6.3 0.081 1.045 12.90 6.80 5.90

Marine Terrace 47 Marine terrace LS 79.8 12.6 7.6 0.069 0.808 11.71 5.90 5.10

Marine Terrace 48 Marine terrace LS 84.9 6.3 8.8 0.026 0.334 12.85 6.20 5.80

Marine Terrace 49 Marine terrace LS 87.4 5.0 7.6 0.018 0.196 10.89 6.50 4.60

Marine Terrace 50 Marine terrace LS 87.4 6.3 6.3 0.01 0.105 10.50 6.60 4.60

Marine Terrace 51 Marine terrace SL 72.1 19.0 8.9 0.204 2.246 11.01 6.20 11.40

Marine Terrace 52 Marine terrace SL 72.1 15.2 12.7 0.147 1.523 10.36 5.50 9.70

Marine Terrace 53 Marine terrace SL 74.7 12.6 12.6 0.095 1.082 11.39 5.90 12.30

Marine Terrace 54 Marine terrace LS 82.2 6.4 11.4 0.069 0.801 11.61 6.20 9.20

Marine Terrace 55 Marine terrace LS 82.4 11.3 6.3 0.023 0.272 11.83 6.30 4.70

Marine Terrace 56 Marine terrace LS 86.1 7.6 6.3 0.128 1.518 11.86 6.60 7.40

Marine Terrace 57 Marine terrace LS 84.9 10.1 5.0 0.056 0.682 12.18 6.00 5.00

Marine Terrace 58 Marine terrace LS 83.6 10.1 6.3 0.04 0.455 11.38 6.10 3.90

Marine Terrace 59 Marine terrace LS 87.4 7.5 5.0 0.014 0.150 10.71 6.30 3.10

Marine Terrace 60 Marine terrace LS 84.9 8.8 6.3 0.012 0.131 10.92 6.40 12.70

Marine Terrace 61 Marine terrace L 41.3 40.8 17.9 0.278 3.215 11.56 6.40 15.20

Marine Terrace 62 Marine terrace L 44.1 39.4 16.5 0.173 1.826 10.55 5.80 10.80

Marine Terrace 63 Marine terrace L 45.3 35.6 19.1 0.127 1.391 10.95 6.30 11.00

Marine Terrace 64 Marine terrace SL 55.8 30.3 13.9 0.072 0.709 9.85 6.40 6.90

Marine Terrace 65 Marine terrace SL 72.2 20.2 7.6 0.026 0.221 8.50 6.60 3.50

Marine Terrace 66 Marine terrace SL 55.2 34.5 10.2 0.357 3.974 11.13 6.50 14.70

Marine Terrace 67 Marine terrace SL 59.3 28.0 12.7 0.212 2.322 10.95 6.00 10.90

Marine Terrace 68 Marine terrace SL 56.8 25.4 17.8 0.119 1.321 11.10 6.40 10.60

Marine Terrace 69 Marine terrace SL 56.7 28.0 15.3 0.118 - - 6.50 9.50

Marine Terrace 70 Marine terrace SL 64.6 20.2 15.2 0.06 0.680 11.33 6.70 6.80

Marine Terrace 71 Marine terrace SL 72.3 18.9 8.8 0.112 1.415 12.63 6.40 5.60

Marine Terrace 72 Marine terrace SL 62.2 26.5 11.4 0.099 1.143 11.55 5.80 6.60

Marine Terrace 73 Marine terrace SL 67.2 22.7 10.1 0.075 0.721 9.61 5.90 6.10

Marine Terrace 74 Marine terrace LS 79.9 13.8 6.3 0.021 0.173 8.24 6.20 3.10

Marine Terrace 75 Marine terrace LS 82.5 10.0 7.5 0.013 0.087 6.69 6.50 2.50
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 Marine Terrace 76 Marine terrace L 47.5 35.9 16.7 0.33 3.832 11.61 6.30 18.30
Marine Terrace 77 Marine terrace L 49.1 33.1 17.8 0.175 1.776 10.15 5.40 12.60
Marine Terrace 78 Marine terrace SL 61.8 20.4 17.8 0.087 0.857 9.85 5.90 9.10
Marine Terrace 79 Marine terrace SCL 57.7 16.7 25.6 0.05 0.372 7.44 5.40 10.00
Marine Terrace 80 Marine terrace SCL 57.0 18.3 24.8 0.041 0.251 6.12 4.50 8.50
Marine Terrace 81 Marine terrace SL 67.1 20.3 12.7 0.19 2.304 12.13 5.90 11.30
Marine Terrace 82 Marine terrace SL 67.1 17.7 15.2 0.087 1.086 12.48 5.20 10.80
Marine Terrace 83 Marine terrace SL 67.0 19.0 13.9 0.073 0.802 10.99 5.90 8.60
Marine Terrace 84 Marine terrace SL 65.7 20.3 14.0 0.042 0.377 8.98 6.40 7.20
Marine Terrace 85 Marine terrace SCL 64.0 15.4 20.6 0.03 0.224 7.47 6.80 10.40
Marine Terrace 86 Marine terrace SL 69.6 19.0 11.4 0.143 1.802 12.60 5.60 8.20
Marine Terrace 87 Marine terrace SL 69.7 19.0 11.4 0.137 1.717 12.53 5.30 9.00
Marine Terrace 88 Marine terrace SL 72.2 15.1 12.6 0.099 1.137 11.48 5.70 8.70
Marine Terrace 89 Marine terrace SL 67.0 19.1 14.0 0.045 0.521 11.58 6.20 9.20
Marine Terrace 90 Marine terrace SCL 67.5 11.7 20.8 0.036 0.291 8.08 6.70 14.80
Marine Terrace 91 Marine terrace SL 60.5 20.4 19.1 0.276 3.231 11.71 6.70 16.00
Marine Terrace 92 Marine terrace SL 63.1 19.1 17.8 0.146 1.802 12.34 5.50 12.20
Marine Terrace 93 Marine terrace SL 52.8 21.7 25.5 0.077 0.824 10.70 6.40 11.80
Marine Terrace 94 Marine terrace SL 42.9 16.9 40.2 0.045 0.428 9.51 7.10 18.60
Marine Terrace 95 Marine terrace SL 57.9 13.2 29.0 0.035 - - 7.20 14.70
Marine Terrace 96 Marine terrace SL 65.7 20.4 14.0 0.277 3.285 11.86 5.60 12.90
Marine Terrace 97 Marine terrace SL 66.9 15.3 17.8 0.14 1.599 11.42 5.30 9.80
Marine Terrace 98 Marine terrace SCL 60.2 14.1 25.7 0.071 0.750 10.56 6.00 13.20
Marine Terrace 99 Marine terrace SL 70.6 10.2 19.2 0.023 0.196 8.52 7.10 8.60

Marine Terrace 100 Marine terrace SL 70.3 12.9 16.8 0.015 0.105 7.00 7.30 8.40
Marine Terrace 101 Marine terrace CL 38.9 31.2 29.9 0.326 3.799 11.65 5.70 20.80
Marine Terrace 102 Marine terrace CL 37.7 25.9 36.3 0.144 1.377 9.56 6.00 18.50
Marine Terrace 103 Marine terrace CL 33.6 30.0 36.5 0.084 0.769 9.15 6.70 18.20
Marine Terrace 104 Marine terrace C 36.2 23.4 40.3 0.062 0.543 8.76 5.70 18.10
Marine Terrace 105 Marine terrace CL 44.2 18.6 37.2 0.037 0.289 7.81 4.90 14.60
Marine Terrace 106 Marine terrace L 50.8 28.5 20.7 0.583 6.684 11.46 5.60 17.90
Marine Terrace 107 Marine terrace L 46.0 38.6 15.4 0.149 1.626 10.91 5.50 17.10
Marine Terrace 108 Marine terrace SCL 53.4 20.7 25.9 0.062 0.596 9.61 5.70 11.50
Marine Terrace 109 Marine terrace SL 69.3 14.1 16.6 0.023 0.202 8.78 5.10 8.10
Marine Terrace 110 Marine terrace SL 83.5 1.3 15.3 0.025 0.173 6.92 5.10 7.20
Marine Terrace 111 Marine terrace L 45.2 35.2 19.6 0.554 6.243 11.27 5.80 20.90
Marine Terrace 112 Marine terrace L 43.3 32.2 24.5 0.192 2.132 11.10 5.80 16.60
Marine Terrace 113 Marine terrace L 43.1 33.6 23.3 0.113 1.192 10.55 6.20 15.50
Marine Terrace 114 Marine terrace C 27.8 27.6 44.7 0.062 0.469 7.56 6.40 18.40
Marine Terrace 115 Marine terrace C 32.7 25.1 42.2 0.047 0.326 6.94 5.30 16.40
Marine Terrace 116 Marine terrace L 42.4 32.7 24.9 0.757 8.503 11.23 5.50 32.20
Marine Terrace 117 Marine terrace CL 44.2 24.6 31.1 0.11 1.074 9.76 5.70 16.60
Marine Terrace 118 Marine terrace SCL 48.5 20.6 30.9 0.078 0.763 9.78 5.80 15.90
Marine Terrace 119 Marine terrace CL 42.9 28.5 28.5 0.047 0.391 8.32 5.80 15.90
Marine Terrace 120 Marine terrace SCL 46.5 24.8 28.7 0.032 0.156 4.88 5.30 14.50
Marine Terrace 121 Marine terrace SL 73.1 19.2 7.7 0.204 2.356 11.55 5.90 10.60
Marine Terrace 122 Marine terrace SL 73.4 16.5 10.1 0.099 1.163 11.75 5.50 7.30
Marine Terrace 123 Marine terrace SL 77.3 10.1 12.6 0.073 0.767 10.51 5.90 7.90
Marine Terrace 124 Marine terrace SL 69.5 15.2 15.2 0.069 0.656 9.51 6.20 7.50
Marine Terrace 125 Marine terrace SC 49.9 14.5 35.6 0.042 0.326 7.76 6.80 10.80
Marine Terrace 126 Marine terrace SL 62.0 22.8 15.2 0.228 2.671 11.71 6.00 11.90
Marine Terrace 127 Marine terrace SL 70.9 16.4 12.6 0.133 1.519 11.42 5.40 8.70
Marine Terrace 128 Marine terrace SL 70.9 16.4 12.6 0.076 0.806 10.61 5.70 7.40
Marine Terrace 129 Marine terrace SCL 57.4 18.1 24.5 0.05 0.420 8.40 6.30 9.90
Marine Terrace 130 Marine terrace SCL 57.9 18.4 23.7 0.036 0.314 8.72 6.80 11.30
Marine Terrace 131 Marine terrace SL 65.1 18.1 16.8 0.288 3.343 11.61 5.70 14.30
Marine Terrace 132 Marine terrace SCL 61.7 15.3 23.0 0.14 1.643 11.74 5.30 12.30
Marine Terrace 133 Marine terrace SCL 57.8 16.6 25.6 0.076 0.774 10.18 6.70 12.70
Marine Terrace 134 Marine terrace SC 49.6 14.2 36.2 0.039 - - 7.10 11.60
Marine Terrace 135 Marine terrace SCL 60.4 15.8 23.8 0.014 0.137 9.79 6.10 10.60
Marine Terrace 136 Marine terrace SL 68.1 19.1 12.8 0.319 3.479 10.91 5.80 12.70
Marine Terrace 137 Marine terrace SL 67.0 17.8 15.2 0.163 1.725 10.58 5.30 10.00
Marine Terrace 138 Marine terrace SL 68.2 14.0 17.8 0.096 0.933 9.72 5.80 9.60
Marine Terrace 139 Marine terrace SCL 50.2 18.3 31.4 0.058 0.593 10.22 6.40 14.40
Marine Terrace 140 Marine terrace SCL 58.1 18.3 23.6 0.017 0.124 7.29 7.40 11.10
Marine Terrace 141 Marine terrace L 43.4 36.0 20.6 0.282 3.452 12.24 5.80 18.60
Marine Terrace 142 Marine terrace L 42.4 35.8 21.8 0.204 2.571 12.60 5.70 14.50
Marine Terrace 143 Marine terrace SCL 56.4 19.2 24.3 0.132 1.564 11.85 6.00 12.10
Marine Terrace 144 Marine terrace L 38.8 42.1 19.1 0.084 1.071 12.75 6.00 8.70
Marine Terrace 145 Marine terrace L 43.7 39.7 16.6 0.044 0.369 8.39 6.00 7.30
Marine Terrace 146 Marine terrace L 39.5 39.9 20.6 0.326 4.108 12.60 5.80 17.60
Marine Terrace 147 Marine terrace L 34.5 42.4 23.1 0.218 2.672 12.26 5.70 15.40
Marine Terrace 148 Marine terrace L 36.9 38.6 24.5 0.163 2.077 12.74 6.20 16.40
Marine Terrace 149 Marine terrace CL 30.3 38.7 31.0 0.141 1.655 11.74 6.00 13.70
Marine Terrace 150 Marine terrace L 41.5 36.4 22.1 0.059 0.514 8.71 5.80 9.70
Marine Terrace 151 Marine terrace L 32.8 41.3 25.8 0.285 3.537 12.41 6.00 18.10
Marine Terrace 152 Marine terrace L 38.0 38.7 23.2 0.25 2.940 11.76 5.80 17.10
Marine Terrace 153 Marine terrace L 37.5 36.5 26.0 0.191 2.299 12.04 6.10 18.60
Marine Terrace 154 Marine terrace L 38.5 41.9 19.6 0.105 1.013 9.65 6.00 15.10
Marine Terrace 155 Marine terrace L 41.1 42.8 16.1 0.051 0.377 7.39 6.00 11.20
Marine Terrace 156 Marine terrace L 38.8 39.1 22.1 0.462 5.812 12.58 5.20 24.00
Marine Terrace 157 Marine terrace L 38.0 38.7 23.2 0.195 2.322 11.91 5.20 17.20
Marine Terrace 158 Marine terrace L 40.7 34.8 24.5 0.136 1.538 11.31 5.90 16.30
Marine Terrace 159 Marine terrace L 40.8 37.3 21.9 0.087 0.978 11.24 6.10 12.30
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Table A.4: NRCS Chico laboratory soils data. 
Sample ID Land use Texture class Sand % Silt %  Clay % N % SOC % C:N pH CEC (cmolc/kg soil)

NRCS Chico 1 Forest LS 78 19.5 2.5 0.25 5.83 24 4.8 13.2

NRCS Chico 2 Forest SL 65.4 31.3 3.3 0.15 4.41 29 5.8 17.6

NRCS Chico 3 Forest LS 77.7 20.8 1.5 0.07 2.17 32 5.7 6.4

NRCS Chico 4 Forest SL 68.6 27.4 4 0.07 1.64 22 6.2 9.9

NRCS Chico 5 Forest S 92.1 7.9 0 0.09 1.76 20 5.9 5.6

NRCS Chico 6 Forest S 94.9 5.1 0 0.04 0.12 3 6.7 0.4

NRCS Chico 7 Forest S 95.4 4.6 0 0.01 0.59 85 6.4 1.3

NRCS Chico 8 Forest S 94.7 5.3 0 tr 0.33 167 6.6 1.2

NRCS Chico 9 Forest LS 76.1 20.4 3.5 0.01 0.59 99 6.7 13

NRCS Chico 10 Forest SL 69.7 27.5 2.8 0.36 9.78 27 5.9 29.3

NRCS Chico 11 Forest SL 63.6 33.6 2.8 0.18 6.19 34 6.4 20.3

NRCS Chico 12 Forest LS 74 24.3 1.7 0.42 9.23 22 5.8 26.8

NRCS Chico 13 Forest SL 56.7 41.1 2.2 0.44 8.43 19 6 32

NRCS Chico 14 Forest L 44.3 30.4 25.3 0.41 9.29 22 4.7 41.9

NRCS Chico 15 Forest CL 35.9 25.4 38.7 0.10 1.22 12 5 41.2

NRCS Chico 16 Forest LS 81.5 16.3 2.2 0.06 1.77 31 5.2 -

NRCS Chico 17 Forest SL 62.3 32.2 5.5 0.03 0.62 21 6.1 -

NRCS Chico 18 Forest LS 80.5 17 2.5 0.12 3.06 25 5.4 9.2

NRCS Chico 19 Forest LS 74.9 24.2 0.9 0.10 1.95 20 6 8.2

NRCS Chico 20 Forest SL 64.7 33.6 1.7 0.06 0.75 12 6 4.6

NRCS Chico 21 Forest LS 79.9 17.7 2.4 0.13 2.67 20 - -

NRCS Chico 22 Forest LS 79.7 18.1 2.2 0.09 1.80 19 - -

NRCS Chico 23 Forest S 90.6 8.7 0.7 0.08 2.34 28 5.3 4.4

NRCS Chico 24 Forest S 85.9 13.3 0.8 0.03 0.12 4 6.1 0.4

NRCS Chico 25 Forest LS 75.5 22.4 2.1 0.02 0.02 1 6.4 1.9

NRCS Chico 26 Forest LS 76.4 21.6 2 0.11 2.30 22 5.5 9.7

NRCS Chico 27 Forest LS 78 20.3 1.7 0.06 1.46 24 5.9 6.6

NRCS Chico 28 Forest S 93.1 5.7 1.2 0.02 0.46 21 6.1 4.4

NRCS Chico 29 Forest LS 76 19.8 4.2 0.29 6.90 23 5.5 19.8

NRCS Chico 30 Forest SL 71.8 26 2.2 0.01 0.97 81 6.1 4.8

NRCS Chico 31 Forest S 90.2 8.3 1.5 0.02 0.41 23 6.5 3.8

NRCS Chico 32 Bay Delta L 35.8 48.5 15.7 0.52 4.07 8 5.9 20.7

NRCS Chico 33 Bay Delta L 35.2 49.9 14.9 0.09 0.78 8 7.3 11.6

NRCS Chico 34 Bay Delta SiL 32.3 50.1 17.6 0.05 0.48 9 7.5 12.3

NRCS Chico 35 Bay Delta L 38.5 38.9 22.6 0.45 3.54 8 6 23.3

NRCS Chico 36 Bay Delta L 45.3 34.5 20.2 0.06 0.55 9 7.5 13

NRCS Chico 37 Bay Delta CL 33.2 35.9 30.9 0.86 7.83 9 7 35

NRCS Chico 38 Bay Delta C 18.5 36.6 44.9 0.06 0.96 15 8.2 27.8

NRCS Chico 39 Bay Delta SICL 16.4 48 35.6 0.07 0.38 4 8.4 29.1

NRCS Chico 40 Bay Delta SIL 28.2 54.6 17.2 0.03 0.07 1 8.5 26.3

NRCS Chico 41 Bay Delta L 41.6 45 13.4 0.16 1.43 9 6.8 14.9

NRCS Chico 42 Bay Delta L 40.5 46.4 13.1 0.11 0.77 7 6.8 13.6

NRCS Chico 43 Bay Delta S 91.1 5.3 3.6 0.01 0.15 13 7.2 5.2

NRCS Chico 44 Bay Delta SL 61.2 30.5 8.3 0.40 2.69 7 5.7 11.1

NRCS Chico 45 Bay Delta SL 72.9 20.8 6.3 0.08 0.39 5 7 6.2

NRCS Chico 46 Bay Delta S 93.4 4.6 2 0.04 0.08 2 7.6 1.8

NRCS Chico 47 Bay Delta SL 63.4 26.7 9.9 0.17 1.20 7 6 11.3

NRCS Chico 48 Bay Delta SL 53.8 35.5 10.7 0.10 0.53 5 6.8 11

NRCS Chico 49 Bay Delta SiL 7.3 68.8 23.9 0.23 1.95 8 6.5 20

NRCS Chico 50 Bay Delta SiL 21.9 63.1 15 0.13 0.85 6 7 16.4

NRCS Chico 51 Bay Delta SiCL 13.5 56.1 30.4 0.21 1.78 8 7 23.5

NRCS Chico 52 Bay Delta SiCL 12.1 57.8 30.1 0.13 0.69 5 7.4 22.5

NRCS Chico 53 Bay Delta SiCL 6.3 61.7 32 0.24 1.98 8 6.3 23.4

NRCS Chico 54 Bay Delta SiC 4 50.2 45.8 0.15 0.52 3 8 30.2

NRCS Chico 55 Bay Delta SiL 10.7 71 18.3 0.13 0.60 1 8.8 14.4

NRCS Chico 56 Bay Delta SiCL 7.6 57.4 35 0.19 1.65 8 6 23.5

NRCS Chico 57 Bay Delta SiC 6.2 42.7 51.1 0.11 0.60 5 6.8 32.3

NRCS Chico 58 Bay Delta SiL 32.9 50.8 16.3 0.07 0.10 2 8.7 17.7

NRCS Chico 59 Agriculture CL 26.4 41.6 32 0.17 1.40 9 7 21.1

NRCS Chico 60 Agriculture C 18.8 38.9 42.3 0.06 0.50 8 7.7 26.4
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Table A.5: UC Merced laboratory soils data. 
Sample ID Land use Texture class Sand % Silt %  Clay % N % SOC % C:N pH CEC (cmolc/kg soil)

Atwater Agriculture LS 82.9 8.6 8.5 - - - 6.09 3.06

Bear Creek Agriculture SL 63.5 19.4 17.1 - - - 5.31 18.65

Alamo Agriculture SL 67.1 18.2 14.7 - - - 5.18 4.29

San Juaquin Agriculture SL 68.2 17.7 14.1 - - - 5.8 4.59
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Appendix B: pXRF elemental data 

Table B.1: LA Urban pXRF data. 
Sample ID Mg Al Si P S K Ca Ti V Cr Mn Fe Ni Cu Zn As Rb Sr Y Zr Nb Pb LE

LA Plot 11 7695.75 69825.75 246372.75 3776.5 1291.75 19385.75 17560 4476.75 103.5 47 608 20307.25 27.25 63.75 295 <LOD 83.75 376.75 21 284.5 10.25 109 607313.75

LA Plot 115 23211 75123.5 196312 5912.5 428 14719.25 35774.75 9787.75 102.25 59 1171.25 69610.75 38 49.25 157 <LOD 43.5 608.5 39 162 12.5 66 566641.5

LA Plot 116 10832.75 64018.25 216216.5 2116 1267.5 17556 19477 4427.5 112.5 68 533 29797.75 27 41 103 6.67 79.75 362 21.25 167.5 11.25 22 632755

LA Plot 12 13944.75 73065.75 215921.5 681.25 1936.75 17860 27430.75 4900.5 118.5 55 688.75 33519 32.5 37.75 108.75 7 76 422.5 19.25 174.75 8.75 30.5 608986.5

LA Plot 120 14979.5 101351.5 198708.25 606.75 411 18816 14827.25 6669 121.5 70 820.75 46211 22.25 39.5 112 5.5 98.5 395.25 17.25 318.5 11.25 26 595413.75

LA Plot 124 16455 72351.75 204299.25 3104.75 1486.25 17632.25 25741.5 5241.5 111 77 902 40650.75 33.25 97 405.5 14.67 82.75 529.25 20 144.5 12.25 147.5 610458.25

LA Plot 125 11906.25 56648.5 220428.5 1133 826.75 16820.5 24031 3930.5 115 76 390.5 25485 37.75 33.25 91.25 6 76 358.25 20.75 159.75 11.25 34.25 637426.75

LA Plot 134 10615 65317.5 218257.75 1552 1438.5 18568.25 20852.75 4288 106.75 73 443.25 29626.25 44.5 52.5 149.75 8 102.5 282.25 19.5 127.75 6.25 76.5 627991.75

LA Plot 151 10057 64162.25 209478.25 1277.5 1444.25 16449.5 17670.75 4246.25 101.25 53.5 493.75 26550 22.25 51.75 284 <LOD 78 452 15.5 154 8.25 192.75 646784.5

LA Plot 154 14110.75 71048.5 215742 3690.5 2218 18162.5 23702.75 6113.5 101.5 59.25 771.25 44166 31.75 56.25 394.75 14 74.25 511 24 156 8.25 79.75 598763.75

LA Plot 16 11015.5 70111.25 204843.25 1867 1102.5 15076.5 19600 4938.25 102.25 64 732.25 36820.25 37.25 58.25 421.5 <LOD 75 425.5 23.5 150.5 11.75 309 632230.25

LA Plot 169 9392.5 57197.75 202309.75 3662.5 2754 17246 23351.25 4726.75 101.25 96 536.5 29080.5 31.75 83.5 317.5 9.5 77.5 439 17.75 159 7 161.75 648244.25

LA Plot 171 20175 70463 194424 5063.75 1426.5 14791 35514.75 8261.25 111 76.67 1026.75 57669.75 33.75 51.25 267.75 9 52 619.75 29.25 129.25 9.5 99.5 589715.25

LA Plot 172 18273 73679.25 200486.25 5078.5 1096 15432.5 31692.75 7919.5 124.25 79.75 904 51359.25 35.25 57.75 215.75 11 54.5 660 24.75 115 6.5 102.5 592593.75

LA Plot 176 17091.5 93616.5 203538.5 1581.75 489 21758.25 18782.75 8442.5 129.5 87.5 759.25 51224.25 23 57.25 130.25 7 143 360 48 616.5 27.75 44 581011

LA Plot 185 14984 76785.25 187629.75 4561.75 771.75 14722 26146.75 14542 118.75 70.33 1237.5 68592.75 34 91.5 302.75 <LOD 54 515 42 240.5 20.5 168 588386

LA Plot 189 26048 75042.5 207508 1452.25 471.25 23372.75 21989 9011.5 153 52.33 1077.75 59393.25 34.5 43 133.75 7 99.25 452.25 21.5 225.75 14.5 25.5 573387.25

LA Plot 198 16612.75 63570.75 187262.5 4066.25 2131 14381 29773.25 10847.5 109.25 70 927.25 53188.5 30.75 73.5 203.75 22 56.25 577.5 32 195.75 13.5 351 615539

LA Plot 2 11915.5 53819 180177.25 734.5 7164.75 14327.5 63364.25 3519 111.25 68.5 655.5 24405.5 40.75 320.25 217.75 8 67.5 444.75 15.5 116.5 5.67 74.25 638421.25

LA Plot 202 10769.75 68943.5 219731.5 1515.75 1593.75 18082.5 19638 4342 112.25 55.5 508.5 27399.75 25.25 30.5 79.5 5 76.75 463.25 16.5 170 7.75 25.75 626438.25

LA Plot 204 21249.25 68258.5 192358.5 2324 979 18329.25 28301 7723.25 110.5 70.5 923.5 49223.75 39 53.5 151.5 5.75 76.5 481.5 22.25 216.25 15.5 39.25 609046.25

LA Plot 207 7833.5 60902 242792.25 524.25 28743.25 21217 7873.5 4911 104.75 <LOD 311.25 18614.25 16 11 32 4.33 78.75 359.75 13.75 171.25 6.75 13.5 605474.5

LA Plot 21 12183.75 76523.25 214402.25 322.25 320 13719.25 20270 5460.25 123 56 836.75 40974 34.5 37.75 135.75 7 77.75 461.75 25.25 212.75 12.25 31 613782.5

LA Plot 31 15397.5 66837.5 214125.75 1144.5 957 15703 32341.75 4878 110.25 91.5 476.75 33075.75 39.75 53.75 269.25 8.67 80.5 360.25 18.75 143.5 7 78.75 613802.5

LA Plot 34 16208.5 70761 210140.5 3125.5 1723.5 18733.25 30245.5 5692.25 116 61.75 749.75 38864 31.75 60 323 <LOD 77.75 527 21.5 166 9.75 173 602186

LA Plot 35 12006.75 60786 194598.75 3621.5 3230.5 18060.75 25184.5 4946.25 109.5 69.5 610.25 33371 32.25 82.25 584.5 <LOD 78.75 534.75 21 196.25 8.75 691.25 641199

LA Plot 4 10389 68262.75 231385.25 844.75 3280.25 19821.75 12806.75 3440 99 <LOD 430.25 20115.75 21.25 18.25 60.5 <LOD 81.5 412.75 13.25 141 6 34.5 628337.25

LA Plot 41 15086 64885.25 194025.5 2003.25 1421.25 15034.25 32389 4711 96.75 57.25 720 37477.75 32 58 227.25 19 73.75 443.25 19.75 157 8.5 167 630881

LA Plot 46 11166 73043 217242.75 1238.75 1981.25 17097.25 20549.25 4970.75 122.5 66 650 35067.25 30.75 121.25 530.5 <LOD 76.75 520.25 23 240.75 10.25 546.25 614723.25

LA Plot 48 12352 72468.75 207804 1983.25 1047.75 14882.75 19681.5 5598.5 96.75 80.75 650 36574.25 23.5 62.25 259.5 16.75 73 450.25 21.25 144 7.5 183.75 625538.25

LA Plot 57 10014.5 49450.5 225229 1262.75 283.5 8837.25 35434.75 4072.25 118.5 <LOD 439 34431 56 62.25 129.75 9 65.5 285.5 26 136 10.75 31.75 629615.75

LA Plot 6 16076.75 56523.75 190498.75 2070.5 3669.25 16368.5 18388 5359.25 114.75 85.25 623.5 36678 46.25 123.25 813 <LOD 87.75 323.5 24.5 155.5 9.5 768.75 651187.25

LA Plot 68 10064.75 72163.5 204041.75 1980 1607.75 19471.5 16242.75 4976.25 120 68.75 726 33503.75 28.25 56.75 229 <LOD 88.75 389 23.25 226.75 12.25 164 633815.5

LA Plot 74 7770.5 65954.5 227943 1824.5 1448.25 17065.5 17262.75 4196.25 102 59.33 490.25 24194 32.25 73 280.5 9 80.5 314 15 150.25 5.75 84.25 630653.25

LA Plot 84 6863.75 86415.5 193846.25 407.5 547.75 20413.75 7783 4058.25 89.5 55.5 503.25 30601 26.25 25.5 91.5 10 111 104 26.5 161.75 8.25 18 647858

LA Plot 87 7407.75 85246.25 216801 529 655.25 16944.75 8734.5 4914.25 98.75 84.5 886.25 41597.75 57.75 72 491.25 85 88.25 208.25 26.5 159 11.75 61.5 614828

LA Plot 9 8191.5 69891.25 244354.75 1323.75 1280.25 18576 16901.75 4025.5 146.25 57.75 510 22542.5 30.75 59.75 284.5 <LOD 84 339.25 16.75 163.75 6.75 152.25 611060.5

LA Plot 91 10328.75 53490.75 225079.5 1322 601 13337.25 17183 5075.25 110 64 453.25 40757.5 68.25 68.25 216.75 9.5 92.75 207.75 30.75 156.25 12.25 101 631210.5

LA Plot 97 10999 64924.5 235679.25 1301.5 1598.5 17047.5 13690.75 4449.25 104.5 63.67 516.75 28097.75 33.5 49.75 148.5 <LOD 80 357 22.5 183.25 10.25 239.25 620418.75

Concentration (ppm)
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Table B.2: SPR/LHBC Mollisols pXRF data. 

Sample ID Mg Al Si P S K Ca Ti V Cr Mn Fe Ni Cu Zn As Rb Sr Y Zr Nb Pb LE

SPR/LHBC 1 22074.5 83796.5 167491.5 1514 696 17339.5 13334.5 5462.5 105.5 164 1162.5 50301 142 54 115 8.5 82 178 26.5 185.5 10 11.5 635745.5

SPR/LHBC 2 20520 82264.5 163196.5 1626.5 649 17258 13890.5 6153 105 179.5 1118 49483.5 128.5 69.5 113 7.5 78 177.5 25 183.5 8.5 11 642746

SPR/LHBC 3 24008 86401.5 184911.5 765 457.5 17596 3692.5 5943 118 253 1148 50938.5 222 67 111.5 11 85.5 92.5 27 161 8.5 11.5 622964

SPR/LHBC 4 16640.5 64046 128179 1610.5 1265.5 13656 24116 4513.5 83 124.5 1195 40825.5 94.5 51.5 119 6.5 67 203 18.5 144 5.5 15 703005.5

SPR/LHBC 5 25932 93508.5 211699 803.5 540 20497.5 1876.5 6218.5 123.5 223 858 46327 174.5 53 112.5 22.5 118 81.5 24 232 16 20 590539

SPR/LHBC 6 23156.5 87814.5 184371 1612.5 520.5 17342 8879 6141.5 101 176.5 963.5 50288.5 155 57.5 99.5 8.5 83 160.5 29 202 11 11 617816

SPR/LHBC 7 26733.5 71800.5 153446 1038.5 944.5 15672 14585 4923.5 82 255.5 1411.5 46112.5 206 61.5 123 7 83.5 137 24 145.5 9 21.5 662177

SPR/LHBC 8 26601.5 91199 189555 548 448.5 19057.5 3038 6091 108 272.5 1000 50175 241.5 64.5 108.5 12 91.5 76.5 31.5 171 9 10.5 611090

SPR/LHBC 9 25873 90378.5 207171.5 541.5 209.5 19000 1853 6683.5 125.5 245 926.5 48454.5 195 56 114 26 123.5 82.5 26.5 215.5 17.5 18 597663.5

SPR/LHBC 10 27773.5 99969 204895 465 278 19162 2896.5 6651 118.5 336.5 951.5 54889 255 83.5 113 17 102 82 38 201 10.5 8.5 580703

SPR/LHBC 11 3657.5 73046.5 272474.5 <LOD <LOD 9082 1208 6778 101.5 183.5 1637.5 34347.5 33 22 51.5 7 63 154 11.5 226 7.5 14 596890.5

SPR/LHBC 12 4873 48194.5 253709 924.5 1035 13023.5 17278 3553.5 67.5 54 884.5 26202.5 45 41 223.5 7 83 187.5 15 121 10 14.5 629475

SPR/LHBC 13 4498 71744 250399 <LOD 96 10330.5 5975 5872 103.5 157 151.5 43493 36.5 17.5 66.5 7.5 73 217.5 6 161.5 7.5 14.5 608822

SPR/LHBC 14 7609 72397 262564.5 620 229 15229.5 11030.5 4613 82.5 51.5 510.5 30285 18 12.5 78 7 77.5 333.5 15.5 166.5 6.5 9 594052.5

SPR/LHBC 15 <LOD 60680 278364.5 326.5 438 11654.5 3946 5372.5 89 124 861 30615.5 29.5 21.5 52 4 67 190 8.5 170.5 6.5 17 606953

SPR/LHBC 16 <LOD 54459.5 303684 <LOD 299.5 14926 8123 5606.5 91 167 361.5 21868 16.5 24 38.5 6 86 164.5 8.5 236 9.5 14.5 589806.5

SPR/LHBC 17 <LOD 68170.5 288714.5 114.5 161.5 10649 3435 6411 97.5 131 1051.5 31250 34 21.5 52 6.5 66 190.5 11 186 7 13 589220

SPR/LHBC 18 <LOD 63166 258014.5 266 182 9617.5 5092.5 5787.5 109 99.5 1205 29916 34 18 64 9 70.5 204.5 10 155.5 6.5 8.5 625964.5

SPR/LHBC 19 <LOD 66916.5 271602.5 235 189.5 10251 4867.5 6146.5 94 110.5 1309 30756 34 25 58 6.5 68 212.5 10.5 220 9 12 606868

SPR/LHBC 20 4771 70825 275517 <LOD 61 9661 2048 6513.5 104.5 150 1211.5 32057.5 32 18.5 55 6 63 171.5 10.5 215 7.5 11.5 598868

SPR/LHBC 21 3559 67506 284512 116 66.5 10567.5 3403.5 6093 104 215 878.5 30484 30.5 28 54.5 8 65.5 196 12 221.5 9 12 593640.5

SPR/LHBC 22 23482 94210.5 205197.5 388.5 143 16418 3085.5 6638 107.5 290 1018 54385.5 239 77.5 111.5 13 86 96.5 32 173 11 9 593788.5

SPR/LHBC 23 22249.5 87676.5 196414 431.5 149.5 18217.5 3953 6605 122 281.5 1118.5 54181.5 235 74.5 111 12 90.5 98.5 36.5 176.5 13.5 12 607738.5

SPR/LHBC 24 22467 87190 204252 584 290 19865.5 1377.5 6047.5 120.5 247.5 873.5 47304 174 55 112 23 119.5 79 24 219.5 17 17.5 608542

SPR/LHBC 25 30594.5 80853 191189 676.5 300 12479.5 8825 6524.5 108.5 413 1173 56395.5 322.5 74 100 9.5 71 98 22 143.5 8 6.5 609606.5

SPR/LHBC 26 19076 62241 134819 1662.5 1221.5 14145.5 19170 4719 102 162.5 1186.5 40898 126.5 49.5 117.5 7 70.5 178.5 19 146.5 6 12 699850

SPR/LHBC 27 19495.5 82241.5 200355 470.5 159 18816.5 1855 6272 115 223.5 895 47840.5 170.5 53 109 24.5 109 74 24 201.5 18.5 18 620444.5

SPR/LHBC 28 30139 94861 214628.5 567.5 332.5 18850 2496 6332 102.5 262 951 47962 208 57 103 12 89.5 79.5 25.5 198 11.5 9 581716.5

SPR/LHBC 29 4489 69380 279032 <LOD 182 10226 3995 6251 119 117.5 821.5 32996.5 36.5 30 60.5 6 69.5 203 12 203 8 13.5 593991.5

SPR/LHBC 30 9031 56882 193852 1142.5 1126 13468.5 14742.5 4321 64 <LOD 558.5 26423 19 13.5 96 6 74.5 289.5 9.5 159 4 13.5 677705.5

SPR/LHBC 31 <LOD 61689 260118.5 176.5 247.5 9830.5 3841 5896.5 112 135.5 1058 31774 29.5 25 53.5 6.5 64.5 181.5 11 185.5 8 11.5 624544

SPR/LHBC 32 <LOD 60223.5 266334 159.5 154.5 9651.5 3569.5 5642 88.5 170.5 863.5 30676.5 27.5 22 58 6.5 65 187.5 9 166.5 6.5 14 621903

SPR/LHBC 33 <LOD 44216 252343 104 419.5 13351.5 10549.5 5385 71.5 104.5 400 23006 23.5 21.5 44.5 6.5 81.5 174 10 248 13.5 15.5 649460

SPR/LHBC 34 17960 58815.5 112508 6690.5 1179.5 13577 36188.5 4379.5 116.5 135 1569.5 40334 120.5 79 161.5 7 73 330 18.5 154 6.5 13.5 705569.5

SPR/LHBC 35 4785 58548.5 302882 575 497.5 11889.5 5027.5 3833 66.5 70 358 29892 71.5 39 162 7.5 72.5 177 18.5 122.5 6.5 6.5 580884

SPR/LHBC 36 5306.5 54979 294630.5 400 432 12072 5299.5 3603 64 83.5 425 28063 88 42 168.5 10 73.5 187 19 95.5 7.5 5 593928.5

SPR/LHBC 37 5372 55156.5 306314 431 440.5 12254.5 4480 3748.5 65 75.5 315.5 29344 56.5 36.5 137.5 8 72 171.5 20 96.5 8.5 7 581370.5

SPR/LHBC 38 7794 66240.5 281375 470 465.5 15434.5 6039 5171 68 66.5 345.5 37082 48 41 162.5 8.5 95.5 163 25.5 121.5 13.5 9 578748.5

SPR/LHBC 39 4614 64013 236651.5 1088 706 14805 7989 4678.5 81.5 49 362.5 23471 21.5 24 76 6 81 277.5 12.5 149 7 11 643154

SPR/LHBC 40 14040.5 80736 214861 897.5 361 18496.5 10011 7175 93 <LOD 819 46984.5 24 17 131 14 108.5 259.5 16.5 195 5 12.5 604733.5

SPR/LHBC 41 3330 61287 279753 <LOD 115 11909 5699 5524.5 96 141.5 204 38626.5 34 20.5 54 8.5 76.5 183 7 187 8.5 11.5 594382.5

SPR/LHBC 42 6636.5 68042 255785.5 808.5 296 15105.5 10593.5 4175.5 79.5 59 433 26522.5 16.5 17 71.5 6 71.5 320.5 10 143.5 5 11 610782

SPR/LHBC 43 8039 69612 206562.5 681.5 214 16268 12456.5 5523 80.5 <LOD 622.5 35025.5 17 9 93 12 81.5 338 11.5 136.5 5.5 10 644200.5

SPR/LHBC 44 11429 86478 242577.5 1287.5 214 14782.5 12908 6088 103.5 59 2304.5 45713 28 27 119 14 84 297 17.5 198 6 12 575245

SPR/LHBC 45 3791 63622.5 292712.5 <LOD 179.5 13027 4726.5 4295.5 80 107.5 287.5 27965.5 24.5 25 49 10 77.5 148.5 9 161 6.5 11.5 590580

SPR/LHBC 46 5282 63061 281579.5 314 293.5 13666 7840 4263 77 98 609 28043 28.5 25 67.5 7 80 170.5 7.5 156.5 6 12 596955

SPR/LHBC 47 3845.5 68859.5 308146.5 <LOD 107.5 11916.5 2087.5 4182 68.5 97 168 30224 20.5 36 44.5 11 76 125 7.5 161.5 6.5 8 569802

SPR/LHBC 48 <LOD 58746.5 285702 1300.5 840.5 9348.5 614 2992.5 52 80 276 24789 16.5 28 51 8 67.5 81.5 8 124.5 6 11 614855.5

SPR/LHBC 49 4371 67556 292303 245 518.5 13529.5 1697.5 4247 96 89.5 271.5 26705 25.5 24 45.5 9 81.5 126.5 16.5 190 5 11.5 587829.5

SPR/LHBC 50 4649 74658.5 308541.5 129.5 205.5 13481.5 482.5 4657.5 89 162 282 29660.5 26.5 27.5 49 7.5 84.5 122 15.5 203 6.5 12 564769.5

SPR/LHBC 51 <LOD 60584 298161.5 1329 839.5 9851.5 120 3110.5 39 108 237 23501 13.5 30.5 52.5 7.5 68.5 81 8 124 5.5 12 601772

SPR/LHBC 52 3680.5 77366 287909 <LOD 123.5 12479.5 <LOD 4454 77.5 151 56 33219 20.5 28.5 38.5 10.5 86.5 109 9.5 181 7.5 9.5 579970

SPR/LHBC 53 <LOD 54651.5 336009 <LOD 132 12410.5 445 4268 57.5 108 131 24461 20 22 39 8.5 70.5 124 7 158 10.5 9.5 566921

SPR/LHBC 54 3460 68261.5 294200 410 156 16500.5 5344.5 4899.5 96 120.5 663.5 29923 40.5 38.5 93.5 10 92 181 9 173.5 9.5 11 577037.5

SPR/LHBC 55 <LOD 55744 337607.5 <LOD 115.5 15030 1314 4677 81 92.5 292 24961.5 19 23 41 7.5 84 144 8 174 9 11 559566

SPR/LHBC 56 5389.5 65596 278225 277.5 299.5 11728.5 8059 4103 90.5 202 198.5 27954 41.5 32.5 51 6.5 61.5 298 12.5 158.5 5 9.5 597203

SPR/LHBC 57 4158 67443.5 296287.5 325.5 163.5 16450 4379 4880.5 99.5 108 606.5 28999.5 44.5 33.5 88 9 91 175.5 8 186.5 8.5 11 575444

SPR/LHBC 58 6174.5 63517.5 280859 231 341 11346.5 7234.5 3745.5 82 101 394 29418.5 40 30 71 7.5 63 248 13.5 133 4 8.5 595938

SPR/LHBC 59 3911 59170 290581.5 125 199.5 14525 6723 4245 68.5 73.5 410.5 24623 26 32.5 71 8.5 82.5 196 8.5 155.5 9.5 11 596698.5

SPR/LHBC 60 <LOD 52012.5 312491.5 186.5 246.5 14659.5 5333.5 4450.5 83.5 107 531.5 23814.5 18 27.5 48.5 7 83.5 166.5 8 170 11.5 11 585517.5

SPR/LHBC 61 4396 61717.5 297614 335.5 325 14574.5 8419.5 4056 98 105.5 502.5 24866.5 26.5 34 73 10.5 84.5 211 6.5 156 7.5 7 582373

SPR/LHBC 62 <LOD 52207 295586 450.5 473.5 14216 8852 4066 80.5 108.5 840 23294.5 17 20.5 63.5 8.5 80 175.5 10 180 7.5 13 599251

SPR/LHBC 63 4587 59347 281710 734 515 13752.5 14998 4139 104 106 606 22648 29 37.5 84.5 8 82 251 6.5 148.5 5 8.5 596093

SPR/LHBC 64 <LOD 52210 244640.5 899.5 554 12555.5 20263 3714 107 132 813.5 22862.5 33 33 105 6.5 76.5 270 6.5 132 6 12.5 640568.5

SPR/LHBC 65 5741.5 65962.5 296078 495.5 327.5 11684 1829.5 3688.5 61.5 103.5 222.5 29965.5 26.5 37 64.5 7 73.5 145.5 12.5 133 8 10.5 583321.5

SPR/LHBC 66 <LOD 50613.5 266874 1608 1400 8854.5 3204.5 2773.5 49.5 55.5 372.5 21112 15.5 25.5 83 8 67.5 93.5 7 96 5 15 642671.5

SPR/LHBC 67 4253 66034 292036.5 468 330 11724.5 2183.5 3563 69.5 89.5 245.5 28243 23.5 23 61 9 72 143 10.5 129.5 5.5 8.5 592398

SPR/LHBC 68 4564 67375.5 294747 472 476.5 11969 2871 3687 77 83 236 29642.5 23 34 70 8.5 73 151 11.5 122.5 6 11 583290

SPR/LHBC 69 4573 56009 258413.5 471.5 538 12410 3608 3491.5 67.5 68.5 279 27809.5 29.5 28 70.5 7.5 73 151 10.5 127.5 7 10 631746.5

SPR/LHBC 70 <LOD 63507 291433 298.5 214 17693 3259 4944 84 115.5 465 27877 33 29 53.5 10 87 180.5 7.5 184.5 11 11.5 589497

SPR/LHBC 71 4679 63878.5 283741.5 672.5 264 17679 5322 5091.5 93 122 623.5 29507 35.5 27 58.5 9 88.5 197.5 12.5 184.5 11 11.5 590030

SPR/LHBC 72 5312 56141.5 250965.5 941.5 516.5 15966 11388 4623.5 87 88 961.5 26738.5 33 22.5 76 8 82 232.5 8 168 9 15 628272.5

SPR/LHBC 73 4818 66246.5 278279 435 163 15902.5 5710 4673 112.5 112.5 790 31313.5 44 37 103 8.5 91.5 185 9.5 180 8.5 10.5 593158

SPR/LHBC 74 6071.5 59915 284543.5 339.5 397 13202.5 7696.5 4173.5 97.5 70.5 681 27353 38 30 88.5 7.5 76.5 207.5 9 129 6 9 594859.5

SPR/LHBC 75 4847.5 62857 257875 1191.5 385 15073.5 11006 4656 122.5 110 1231 29297 39 38 122 7.5 88.5 210 8 158.5 10 11.5 610655.5

Concentration (ppm)
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SPR/LHBC 76 5186.5 55563 250112 459 585 10695 13722 3710.5 87 82.5 481 27194.5 31 27.5 74.5 7.5 61.5 250 9 127 4 10 631511
SPR/LHBC 77 6029.5 62177 282761.5 1222.5 144.5 12043 4862 3464.5 77 101.5 690.5 33236.5 26.5 25.5 62.5 9 74 213 19 131.5 5 9.5 592613
SPR/LHBC 78 6752.5 54433 253802.5 1128.5 820.5 11044 11583.5 3180.5 59.5 102.5 476.5 27610.5 43.5 27 97 10.5 62.5 252.5 17 132 5 11.5 628348
SPR/LHBC 79 6581 61568 293714.5 751 142.5 12309 5017 3582 70 96 296.5 27221.5 27 24.5 59.5 8 73.5 219.5 17.5 157.5 4.5 8 588052
SPR/LHBC 80 <LOD 50831.5 294457.5 678.5 654 14843 8803.5 5209.5 93.5 208.5 511 19388.5 15 26 67 5 80.5 199.5 8.5 217.5 10.5 26 603665.5
SPR/LHBC 81 <LOD 61135 359529.5 <LOD 108 16899.5 2077.5 6360.5 108.5 257.5 209.5 18688 15.5 15 33.5 6 81.5 180 10 256 8.5 8.5 533995
SPR/LHBC 82 4094 60534.5 322563.5 197 247.5 14737.5 2255 5164.5 88 139 363.5 30301.5 19 28 46.5 13 81 171 9.5 206 11.5 10.5 558814.5
SPR/LHBC 83 4352 49019.5 234860.5 1106 858.5 10070 10665.5 3140.5 64.5 82 423 27133.5 34 30.5 96 8.5 60.5 241 17 111 4 12.5 659787.5
SPR/LHBC 84 3187 75434 277136 <LOD 77 12686 1143.5 4379.5 81 166.5 166 21140 22 13 28 6 67.5 136 6 174 3 8 605578
SPR/LHBC 85 4228 59621 300226 515.5 408 14949 5347 4147.5 81.5 103 466.5 24076 27 30.5 61.5 10 98.5 200.5 13.5 180 7.5 8.5 585187.5
SPR/LHBC 86 4594 54572 282132 662.5 643 13898 6643 3828 83 106.5 501 23092 25.5 26.5 74 8.5 92 193 12.5 161 5.5 8 608640
SPR/LHBC 87 4753 77760.5 251835 <LOD 92 9283.5 1280 3554 66 163 73.5 27335.5 24 11.5 34 7.5 51.5 120 9.5 187 4 8 625711
SPR/LHBC 88 4143 60221 300564 308 255.5 14758.5 2785 4199 86 122.5 392.5 26576 28 27.5 59.5 8.5 95 176 21 189 7.5 10 584968
SPR/LHBC 89 <LOD 85809.5 281454.5 <LOD 131 11481 586 4477 81.5 180.5 147 26168.5 32 14 30.5 5.5 66.5 131 8 198 4.5 12 588968
SPR/LHBC 90 5034.5 54011.5 257005 1084 731.5 10737.5 9753 3199.5 62.5 94 490.5 27616 46 32.5 107 10.5 64.5 255 18.5 113 4 9 629513.5
SPR/LHBC 91 <LOD 75950.5 328119 <LOD 54 14020.5 <LOD 4763 74.5 208 108.5 18481 21.5 13.5 20 <LOD 69.5 136.5 5.5 216 7 10.5 557744.5
SPR/LHBC 92 4290 53626.5 260052 1412 648 11757.5 12721.5 3244.5 79 83 680 26088.5 43 33.5 95 9.5 69 231.5 19 122 6.5 11 624678
SPR/LHBC 93 4484 73182.5 250923.5 <LOD 88 12297.5 1503.5 4071.5 75 137.5 302.5 24593 24 14 36 5.5 71 133 5 194 4 8.5 630082.5
SPR/LHBC 94 <LOD 55457 325577.5 407.5 351 16385.5 4911.5 5957 74 186 488 20306 21.5 19.5 60.5 <LOD 87 186.5 10 253.5 11 24 569226
SPR/LHBC 95 <LOD 75126.5 283291.5 145 244.5 13636 2870.5 4664 96.5 332 489.5 23712 29 15 34.5 3.5 73 155.5 9.5 195.5 5.5 10 594923.5
SPR/LHBC 96 3773 71432 272334.5 255 578 12955 3308 4092.5 105 128 470.5 22088.5 22 15.5 36 4.5 72 151 7.5 190.5 4 10.5 607957.5
SPR/LHBC 97 4123.5 64052 341608.5 <LOD 166.5 15303 1805 4693.5 72 134.5 228 21751.5 19 27 45.5 7 83.5 172 18 212 7.5 10 545461
SPR/LHBC 98 4838 58125 291948.5 <LOD 183 13905.5 1896 4623 82.5 144 173.5 25687.5 21.5 25 42 10 76.5 159 12.5 239 7.5 9 600208.5
SPR/LHBC 99 5040 45691.5 177337.5 1593.5 1381 7326 35353 2595.5 56.5 43.5 476.5 22016 31.5 33.5 101 7.5 58.5 189.5 4 105 4 9.5 700534.5

SPR/LHBC 100 <LOD 57267 289311.5 365 691.5 12233.5 3532 3697.5 77.5 261 278 14561.5 14 14.5 24.5 6 61 138.5 7 194 4.5 10 617253
SPR/LHBC 101 <LOD 62482.5 295002 164 259 13243 2902.5 2846 73.5 111 266 13682 18 9.5 29.5 4 63 136.5 7.5 183 3 8 608509
SPR/LHBC 102 4179 79892 261234.5 <LOD 113.5 10853 2609 4010 83.5 365.5 109.5 26922 24 13 36 7 64 139.5 9.5 287 6 9 611123
SPR/LHBC 103 5267.5 53710 241528 1755 673.5 10823 17656.5 3312 77 95 1187.5 25478.5 57 35.5 134.5 7.5 69 265.5 15.5 117.5 4.5 11.5 637700.5
SPR/LHBC 104 4594 62660.5 293616.5 592 397.5 12950.5 5847.5 3236.5 71.5 97.5 412 25587.5 27 26.5 59.5 9 71.5 211 10 149.5 3 7.5 589364
SPR/LHBC 105 4320 61544.5 307639.5 193.5 224 14494.5 3106.5 5113.5 86 140 414.5 32254 22 28.5 45 11.5 85.5 173.5 9.5 221 10 10.5 571997
SPR/LHBC 106 5334.5 55854 235498 1558.5 341 11930.5 7939 3451 91.5 106.5 1732 38592.5 44 36 128.5 8.5 73.5 236.5 24.5 125.5 5 10 636880.5
SPR/LHBC 107 4562 62921.5 303083.5 334 279 14114.5 4531 4873 97.5 150 610 31449.5 21 34 48 11.5 95.5 188 8 229.5 7 10 572332.5
SPR/LHBC 108 3231 61259 288600.5 580 435 14017.5 7301 4871 108 113 716.5 31069.5 24 31 56 13.5 109 191 7.5 197 8 9.5 588667
SPR/LHBC 109 4397.5 60760.5 282592 1152.5 366.5 12858 8572 3772 87 112.5 788 27287 40 34 90 9.5 76 241.5 18 136 7 9 596594
SPR/LHBC 110 6238 56971.5 260541.5 1801 525 12488 12893 3627 89 74.5 1014 28097 47.5 37 116.5 9.5 75.5 269 18.5 127.5 6 9.5 614924
SPR/LHBC 111 4478 55438.5 324124.5 234 311.5 9890.5 7452 3197 52.5 83 97.5 29763 23 24 58 12.5 75.5 86 4.5 116 5.5 7.5 564455
SPR/LHBC 112 3942 54714 270523 722.5 490 12231.5 7264 3240 74 130.5 527 22116 28 23.5 69 6 70 202 15.5 145.5 3.5 12 625420.5
SPR/LHBC 113 4778 57539 268084.5 733 675 13251.5 8683.5 4453.5 95 128 785 29929.5 18 39.5 69.5 12.5 108.5 187 7 170.5 6 10 612625.5
SPR/LHBC 114 5139 61897.5 281584 1305.5 630.5 11342 8589 3388 96.5 103 437 29530 46.5 37 101 11 67.5 243 18.5 112.5 4 8 595295
SPR/LHBC 115 3613 76815.5 256984.5 <LOD 60 7845 952 3528 77 244.5 79 27484.5 23 7 30 4.5 48 121 8 144.5 5 9 623743
SPR/LHBC 116 5986 49414.5 214037 1162.5 840 9580 23632 3235 71 65.5 367.5 25210 33.5 37.5 93 6.5 71 161 5 130 5.5 9 668841
SPR/LHBC 117 27729.5 92753.5 205418.5 486.5 196 19300 2628 6525 113 286.5 994 50401.5 229 75.5 113 12 93.5 78 30.5 178.5 15 10 592332
SPR/LHBC 118 22700 99811 204137 740 170 16997.5 5160 8191.5 117.5 156 929.5 53323.5 113.5 52.5 103.5 6.5 76 159.5 27 242 11 11.5 586757.5
SPR/LHBC 119 29787.5 102670 206738 359.5 71.5 21420 900 7318.5 126.5 270.5 820.5 55257 219 82 125 16.5 106 60.5 35 209.5 13.5 9 573377.5
SPR/LHBC 120 22680.5 85581 166707 1450.5 776.5 17384 14326.5 6186.5 93.5 162.5 1182.5 49877 130.5 63 112.5 8 79.5 179 24 190.5 9.5 11.5 632770.5
SPR/LHBC 121 25810 98640 201851.5 1180 297 17176 6915 6139.5 114.5 199.5 974.5 50622 142.5 57 102.5 8 78.5 159.5 26 250 9.5 11 589219
SPR/LHBC 122 29872 102249.5 205007.5 435 222 19361.5 2684 6571.5 106.5 306.5 944.5 54225.5 255.5 95 112 13.5 98 81.5 36.5 191.5 11 11 577093.5
SPR/LHBC 123 28666 94099.5 208774.5 543.5 276 19872 2754 6246 108.5 271.5 969 49245 218 67 107 10.5 94 76 30 176 12 9.5 587374.5
SPR/LHBC 124 20481 89346 172486.5 3755 343.5 17812.5 12559 6680 131 165 1093 53869 123 59.5 108 6.5 79 205.5 22 203.5 10 10.5 620443.5
SPR/LHBC 125 22874.5 93729.5 189590.5 2756.5 322 17929.5 10366.5 6593.5 107 154 1127 55067 119.5 56.5 105 8.5 78 194 21.5 217 12 10 598550.5
SPR/LHBC 126 25341 98145 200817 906.5 381 19852 7776.5 5934.5 102.5 194 1127.5 52346.5 147 62.5 110.5 8 84.5 161.5 26.5 212 9 12 586231.5
SPR/LHBC 127 32883.5 79260.5 195216 879.5 654.5 13003 9506.5 6497 108.5 416 1113 54247.5 309.5 70.5 96 8 65.5 97.5 24 145 7.5 7 605364
SPR/LHBC 128 25646.5 90061.5 202631.5 719.5 359.5 18674 3360.5 6020.5 110.5 275 1077 52374.5 236 69 114 11 85.5 96.5 29.5 170 9.5 10 597854
SPR/LHBC 129 22254 99666 212149 609 539.5 20035 3783 5210.5 131.5 186 1011 45124.5 138.5 59 95.5 9 89.5 87.5 38 176.5 9.5 13.5 588583.5
SPR/LHBC 130 24041 104888.5 200033 228.5 124.5 20644.5 2779 6176.5 125 229 938.5 59844.5 212.5 75.5 136.5 14.5 125 139.5 27 163.5 12.5 15 579026.5
SPR/LHBC 131 36751 85021.5 204635 554 151 12416.5 9038 7355.5 119 440.5 1179 59185 340.5 88.5 100.5 9 71 96.5 25.5 160 9 10.5 582243.5
SPR/LHBC 132 22614 71542.5 139920.5 5849.5 871.5 15856.5 25178.5 4759 118.5 165 1406 45719.5 140 76 150 7 80.5 275.5 21.5 163 7.5 11 665054
SPR/LHBC 133 30141 99029 252825.5 368.5 117 17237 <LOD 6918 111.5 264 774.5 45899 196 56.5 110 23.5 103.5 65 23.5 241 13.5 14.5 545456
SPR/LHBC 134 40869.5 92185 220118.5 364.5 51 12571 8048 7276.5 111.5 520 1152 60840.5 349 86.5 96.5 9 71 94 26 166 7.5 9.5 554996
SPR/LHBC 135 31002 92571 228473 680.5 58 16613.5 3554 5375.5 122.5 213 792 46840 145 39.5 82.5 6.5 73 147.5 20 207.5 6.5 9.5 572952.5
SPR/LHBC 136 26980 93821.5 216660.5 533 150.5 17037.5 6196 5245 112.5 235 969 50358 169.5 54 102 9 80 130 23.5 185.5 8 9.5 580920.5
SPR/LHBC 137 29627.5 104758.5 228426.5 255 83 17161 2253.5 7003 113 309 1061.5 55395 241 75 103 11.5 84.5 87.5 28 169 9.5 13 552764
SPR/LHBC 138 21414 68577.5 141658.5 947.5 1058.5 14909 22025.5 4427.5 91 112 1020.5 40480 116.5 46 95.5 7 64 183.5 20 146 5 10 682584.5
SPR/LHBC 139 23451.5 97974 208503.5 691 203.5 18572.5 5350 6808 113 191.5 866.5 52991.5 133 42 98 8 79 162 31.5 200 12.5 6 583506.5
SPR/LHBC 140 28697.5 92127.5 194365.5 727 447.5 18641.5 10880 5797 112 181.5 1106 49793.5 147 53.5 108.5 8 79.5 158.5 24 168.5 8 9 596346
SPR/LHBC 141 25747 92195.5 199018 735 226 17772 8154 6042 128.5 146 1016.5 55334 121.5 44.5 104.5 6 70.5 180.5 24 215.5 9.5 10.5 592697.5
SPR/LHBC 142 36687 95444.5 198130 750 347 18922 6454.5 6006 121.5 279 1137.5 53881 240.5 75.5 115.5 12 98.5 109.5 29 157 8.5 13.5 580981.5
SPR/LHBC 143 25059 87430.5 195268 884.5 478.5 16821.5 9655 5041 106 195.5 1009.5 48046.5 159.5 50 103 10 84.5 136.5 23.5 150.5 10 10.5 609258
SPR/LHBC 144 30176 95925 220204 310.5 119.5 22525.5 3853 5174 99.5 231 925.5 48946 182 66.5 100 10.5 120.5 97 27.5 154.5 9.5 12.5 570729.5
SPR/LHBC 145 38850.5 87208.5 208894.5 594.5 178 12091 9530 7042.5 117.5 444.5 1235.5 59955 348.5 84 93 8 70 98 23 156.5 8 9.5 572948.5
SPR/LHBC 146 4713.5 66069.5 266182 450 412.5 13374.5 3711.5 3991.5 78 139.5 293.5 29567 25 21 62.5 8 76.5 172 7.5 136.5 6.5 11.5 610489.5
SPR/LHBC 147 3374 53065 263861.5 544.5 610.5 13136.5 5609 3483.5 50.5 65.5 413.5 24234.5 25 29.5 74 9 71.5 150 7.5 132.5 9 9.5 632717.5
SPR/LHBC 148 3432 67701.5 295204.5 148 257 14906 2767 4349.5 94.5 125 205 21091 14 18.5 33 6.5 79.5 171.5 8.5 151.5 6.5 10.5 589211
SPR/LHBC 149 5236 60599 263012.5 629 736.5 14314 5860 3966.5 85 149 413.5 21193.5 17 22 48 7 85 188 10 165 6 12 625856
SPR/LHBC 150 <LOD 64451.5 269308.5 438 480.5 14375 5064.5 4211 78.5 114.5 322 21912 19 18.5 41 6.5 85.5 187.5 8 159 5.5 12 618700.5
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SPR/LHBC 151 6851 65133 260546.5 499 508.5 13212.5 4590.5 4089.5 58.5 113 284.5 30396.5 31 22.5 63 10 75 169 8.5 129.5 6 8 613192.5
SPR/LHBC 152 4958.5 57577.5 280790 417 405 13366.5 3387 3412 67 97.5 392.5 24462.5 23 27.5 69.5 10.5 74.5 137 6.5 122 5.5 8 610182
SPR/LHBC 153 4312 55206 281992.5 351 318.5 13735.5 2774.5 3626 63 94 347.5 24203.5 20 28.5 66.5 10 75.5 129.5 8 116.5 8 9 614653
SPR/LHBC 154 5497.5 59194.5 237646.5 514 591.5 12570 5599.5 3667 76 92.5 399.5 30248.5 29 21.5 77 7 72 158.5 8 124.5 7.5 13.5 643385.5
SPR/LHBC 155 3673 72807 265760.5 670 558.5 13337 4280.5 3986.5 85 111 533.5 25393 22 28 50.5 7.5 83.5 200 14 178.5 4.5 9.5 610042
SPR/LHBC 156 4052 72341 265571.5 445 363.5 13401.5 3846.5 4165 93 173.5 522.5 25548 21.5 24.5 50 8.5 80.5 200 15.5 203 5.5 10 610876
SPR/LHBC 157 6002 57323 249236.5 728 1044 11739.5 5563 3733 55.5 106 487.5 26875 28.5 31.5 77 8 67.5 152.5 7 128.5 5 10.5 639591
SPR/LHBC 158 6005 54297.5 264231 695.5 614 12875.5 8813.5 3663 70 90.5 441 29189 24 27 94 9 75.5 175.5 7.5 133 6.5 9.5 618454.5
SPR/LHBC 159 <LOD 55731 277286 587.5 380 13568 6437 3839 63 97 364.5 29620.5 26.5 26 78.5 11 77.5 168 8.5 130 8.5 7.5 611473.5
SPR/LHBC 160 4196 57921.5 246802.5 302.5 636.5 7732 7111.5 3148.5 56.5 86 125 32193 24 45 64 14.5 59 115.5 8.5 100 6 11.5 641318.5
SPR/LHBC 161 5248.5 54261 231515 389.5 896.5 8117 9780.5 3091 56 72.5 159 30739 24 36 78 12.5 60 126 7.5 104.5 6.5 14.5 655180.5
SPR/LHBC 162 4464 71042.5 265620.5 690.5 694 13315 4488.5 4301 92.5 92 527 23444 22 24 50.5 6.5 81.5 200 13 173 5.5 12 612871
SPR/LHBC 163 5725.5 47495.5 229242 1020 947 8936.5 14373 2740.5 48.5 61 420 25801.5 23.5 32.5 86 10 57 162 6.5 84.5 4.5 10 662741.5
SPR/LHBC 164 <LOD 60946.5 259820.5 681.5 794 12424.5 4945.5 3795.5 72 101.5 454 29592.5 31.5 32.5 74 8 71.5 159 7 131 5.5 12 625839
SPR/LHBC 165 4627 56619 282702.5 599 339 13334 5325 3951.5 54 96 332 29978.5 24.5 27.5 75.5 12 79 162.5 7.5 132.5 7 8 601507
SPR/LHBC 166 4771 61043.5 282194.5 379.5 559 10379 2867 4170 74.5 119 158 33870.5 20.5 33 45 16 66 131 8.5 148 8 12 598925
SPR/LHBC 167 4657.5 65500 269560.5 347.5 730 8142 2678 3325 47.5 142.5 71.5 35792 21 54.5 63.5 20.5 64 91 7 102 4.5 13.5 608542.5
SPR/LHBC 168 4929 58048.5 286465 140 320.5 11331.5 1078 4316 77.5 91.5 125.5 32292 17.5 28.5 39 15.5 65 123 7.5 151.5 6.5 7.5 600322.5
SPR/LHBC 169 5827.5 62919 260593 294.5 667.5 8055 3368.5 3915 59 152.5 130.5 34475 19.5 34 50 16.5 55 112.5 7.5 135 5 9.5 619097.5
SPR/LHBC 170 3819.5 59607 277915.5 259.5 436 10740.5 2299 4305 72 100 132.5 32861 16 36 40.5 16 68 130.5 6.5 165.5 6.5 11.5 606953
SPR/LHBC 171 3722.5 100900.5 201168.5 <LOD 172 5852 619.5 4036.5 67.5 135.5 70.5 41577.5 29 9 36.5 8 47 98.5 5.5 154.5 <LOD 10.5 641264.5
SPR/LHBC 172 6187.5 61972 246149 193 430.5 7225.5 2231.5 3725.5 52.5 92 93.5 36036.5 20 35 43.5 16.5 53 99.5 7.5 135 4 10 635185.5
SPR/LHBC 173 <LOD 72383.5 257114.5 <LOD 292 9816 2222 3452 71.5 122.5 167.5 22175.5 17.5 15 25 5.5 58.5 119 4.5 156.5 <LOD 8 631774.5
SPR/LHBC 174 3543 52681 286971.5 485.5 426 15189 8691.5 3908 110 96.5 523.5 18432.5 15.5 19 56.5 3 76 185 5.5 168 6.5 10 610155
SPR/LHBC 175 <LOD 53207 310575 169 183.5 15855 4683.5 4523 85 110 253 17656 12 15 42.5 <LOD 74.5 161.5 4.5 169.5 6 10 592201
SPR/LHBC 176 3766 65503.5 247530 343 612.5 10468 3846 3870.5 80.5 89 301 21867.5 21.5 10 28.5 5 61.5 129 7.5 130 <LOD 10 643192
SPR/LHBC 177 3972 65629.5 285434 333.5 372.5 14293 3679.5 3764.5 76 171.5 468.5 19355 20 17 39.5 4.5 80.5 141.5 6 155 5 10 603952
SPR/LHBC 178 4554 36460 190186 779 1100.5 8563 13192.5 2297.5 43 64.5 631.5 17158 13.5 16.5 84.5 5 52 118 5 80 <LOD 8.5 724590
SPR/LHBC 179 4820 43513.5 232667 856.5 860.5 9761.5 11325 3001.5 44.5 74 519 21022 16.5 24.5 86 5 62 123.5 4.5 93.5 4.5 9 673517.5
SPR/LHBC 180 <LOD 68074 302144.5 92 196.5 14306.5 2042 4597 89 191.5 236 20748 20.5 15 30 7.5 77.5 143.5 7.5 221 6.5 9 586791
SPR/LHBC 181 <LOD 64511.5 277871.5 561.5 736.5 14563.5 3690.5 4004 91.5 179.5 523.5 19852 15 16 45 5 82 142.5 6.5 151 5 10 612938
SPR/LHBC 182 30536 92947 228205 189 72.5 21265 4473 4977 117.5 230 925.5 45021 188.5 44.5 107 10.5 83 113.5 25.5 178.5 10 11.5 570270
SPR/LHBC 183 25984 82742.5 181852 679.5 600 18788.5 13529 5665 95.5 240 876.5 47895.5 160.5 55 113 7 79 166 25.5 195 11.5 11 620227.5
SPR/LHBC 184 <LOD 54526.5 302349.5 286.5 275 16207.5 2238 4583.5 86 122 296.5 27884 21.5 21.5 52 8 89 152.5 8 163.5 10.5 12 590601
SPR/LHBC 185 53585 79628.5 186132.5 495 159.5 18409 16308.5 6271 109 425.5 1095.5 60260.5 371 93.5 121.5 11 80.5 98 26.5 148 10.5 8 576150
SPR/LHBC 186 21660 70300.5 152106.5 833.5 785 16893 18204.5 5048.5 95 199.5 760 43626.5 157 45 107 6.5 72 178.5 24 180.5 10 11.5 668694
SPR/LHBC 187 3871 60474.5 256249.5 488.5 309.5 16044 6169 4742.5 99.5 222.5 610 29401 25.5 31.5 74 9.5 93.5 172.5 7.5 174.5 10.5 13.5 622644
SPR/LHBC 188 17538 59678 126430 1078.5 1223.5 13281.5 21905 3903.5 73.5 146.5 986 36105 137 45.5 93.5 7.5 74 159 19 124 7.5 11 716974
SPR/LHBC 189 3530 55322.5 295471.5 320.5 370 15642 3548 4754 84 106 348.5 27429 19 23.5 55.5 9 89 156.5 7.5 179.5 10 10.5 594280
SPR/LHBC 190 4234.5 64521.5 254058.5 393 262 9328 4107.5 3114 68.5 96.5 396.5 22225 25.5 18 43 6 70.5 148.5 20.5 97 <LOD 9 636741.5
SPR/LHBC 191 3903 63119 261322.5 503.5 443.5 8959 7342.5 3053.5 76 172 644 21603.5 25.5 17.5 54 6 69.5 161 18.5 82.5 <LOD 9.5 628404
SPR/LHBC 192 3885.5 59112 272786.5 454 439 13533.5 5007 4193 75 160 401.5 24844 23 26.5 50 8.5 86.5 173 17.5 172 8.5 10.5 614530
SPR/LHBC 193 5583 60142 240285.5 643.5 617.5 15600.5 12340.5 4628 124 126 1238 27708.5 34.5 32.5 105.5 7 89.5 190.5 8 166.5 8 13.5 630307
SPR/LHBC 194 4330.5 53852.5 280845.5 468 558 15126 6334.5 4306.5 78.5 144 531 26179 19.5 24 56.5 8.5 85 154 7.5 183.5 7.5 11 606689.5
SPR/LHBC 195 4160 59731.5 251021.5 610.5 714 9499 8267 3436 77.5 107.5 834.5 21788.5 26 25 64.5 6 69.5 167.5 11.5 94 <LOD 11.5 641350.5
SPR/LHBC 196 4874 62425 273840.5 217 324.5 12778 3948.5 4151.5 65.5 98 288.5 27187 18.5 18.5 48 8.5 76 130 5.5 138 5.5 9 609331
SPR/LHBC 197 4830 55601.5 242523.5 370.5 581.5 12139 9161 3650 72.5 79.5 866 25957 20.5 22 63 9 73 154 6 125 6.5 12.5 643677.5
SPR/LHBC 198 5175 65569.5 259299 606.5 456 15562 9023 4511.5 106 144 968.5 28696 29.5 33 90.5 8.5 91 184.5 6 184.5 8 11.5 609231
SPR/LHBC 199 5147 55288 261423 461.5 594.5 12939 5581.5 3887 81 94.5 460 23900 24 26 55.5 8 81.5 166.5 14 138.5 6 10.5 632187.5
SPR/LHBC 200 4287 54717.5 253039 1289 666.5 13486.5 13762 4332.5 85.5 92 1012 24203.5 30 35 115 5.5 81.5 194.5 8.5 155.5 8 12.5 630523.5
SPR/LHBC 201 5574 57501 273410.5 1057.5 516.5 14288.5 10792.5 4699 83.5 119.5 828 26929 29.5 31 96 8.5 84.5 183.5 9 170.5 9.5 9.5 606355
SPR/LHBC 202 4299 58653 281120.5 225.5 313 13682 3259 4260 80.5 99 264.5 23407.5 22.5 27 49.5 8 80 163.5 17 200 7 10 611902.5
SPR/LHBC 203 4093 51232.5 258169 783.5 1105.5 11038.5 5867 3593 67.5 94 254.5 32239 35 29 75 10.5 67.5 227 6.5 121.5 6.5 6.5 630869
SPR/LHBC 204 4391 45819 278870 158.5 448.5 10568 6010 3188 55 91 269 21014 16.5 19.5 40.5 7 66.5 161.5 5.5 124.5 5 6 628665.5
SPR/LHBC 205 4465 60911.5 285809 <LOD 230 12179 1683.5 3688.5 67 92 165.5 24586.5 14 19 48.5 9.5 80 123.5 4.5 148.5 8 6.5 605703.5
SPR/LHBC 206 3296 41965.5 249067.5 422 786.5 9418.5 12147.5 2916.5 37.5 80 448 20755.5 19.5 25.5 46.5 6.5 58.5 177.5 4 106 4.5 8 659851
SPR/LHBC 207 4602 52909 244813.5 1235.5 760.5 13213.5 16218.5 4129 78.5 96 1015.5 23778 28.5 29.5 123 6.5 79 208.5 8.5 151.5 6.5 11.5 636490.5
SPR/LHBC 208 3739 51420 268196.5 724.5 854 11945.5 10525 3830 77 88 443 25732.5 28 24 72.5 7.5 74.5 174 8 151.5 6 12.5 623729.5
SPR/LHBC 209 4325.5 54181.5 269260.5 743 594 11471.5 7435.5 3768.5 79 86.5 510.5 28017.5 19 29.5 55 9.5 94.5 166.5 6 141.5 6.5 10.5 618988.5
SPR/LHBC 210 5465 53147 265086.5 888.5 834.5 11915 8244 3734.5 73.5 93 607.5 25662 15 36 73.5 10 92.5 169.5 6.5 139.5 5.5 9.5 623691
SPR/LHBC 211 <LOD 53173 272723.5 888 758.5 12353 8147.5 3694 76.5 94 590.5 26453 20.5 29 67 10.5 96 173.5 7.5 148.5 6 11 620476.5
SPR/LHBC 212 4602 49511 263819.5 535 621.5 11777 7130.5 3623.5 66 93 294 26204 25.5 26 68.5 9.5 69 162 7 140.5 7.5 8.5 633499
SPR/LHBC 213 4329.5 59682 302335.5 313.5 327 11072.5 <LOD 3619.5 56.5 104 82 28512 21 32 43 10.5 75 86.5 7 125.5 7.5 9.5 589138
SPR/LHBC 214 4992 52883.5 283987 609 754 10262.5 2824 3365 47 107 173 28586.5 17 26 52.5 13 74 99 5.5 118.5 6.5 6.5 613472
SPR/LHBC 215 3610 54318 272114 670 597 10044.5 909.5 3274.5 48 105 108.5 28568 18 26 48.5 12 72 86.5 5 112 6.5 7 625231
SPR/LHBC 216 5485.5 61386 276795.5 450.5 594 10470.5 2869.5 3567.5 81.5 73.5 140.5 27847 19.5 28.5 53 13 64 146 5.5 127.5 5.5 8 609769
SPR/LHBC 217 4832.5 59427.5 270732.5 503 668.5 10698.5 4755 3544 57.5 131.5 160.5 27631 15 27.5 61 11.5 63 150 6 110 4 10.5 616398
SPR/LHBC 218 5076.5 55489.5 253569 493.5 824 10413 7488 3606.5 67.5 67 185 28570.5 22 32 78.5 10.5 65.5 158 6.5 112 6 11 633645
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Table B.3: Marine terrace pXRF data. 

Sample ID Mg Al Si P S K Ca Ti V Cr Mn Fe Ni Cu Zn As Rb Sr Y Zr Nb Pb LE

Terrace 1 2848 55983.5 276424 827 770 13370.5 6848.5 3208.5 74.5 105 324.5 17292.5 15.5 18 34.5 5 72.5 152 8.5 147 3 9.5 622877.5

Terrace 2 3383 62531 298972 595.5 484.5 14418 5176 3709.5 80.5 132 275.5 19079 18 16.5 32 5 75.5 147.5 8.5 158.5 2.5 9.5 590676.5

Terrace 3 2883.5 63260.5 300117.5 529 376.5 14393 5068 3250.5 79.5 125 279.5 17760 19.5 18.5 31.5 5 73 146.5 10.5 160 2 13 591389

Terrace 4 2868 67392.5 311085 319.5 288.5 15024.5 4580 3661 85.5 126.5 321 18826 18.5 17 30.5 5.5 73 150.5 14 137.5 2 10 574948

Terrace 5 4431 65085 327205.5 <LOD <LOD 13058.5 3092.5 3698.5 86.5 114 162 18150 18.5 16.5 26 5 61 144.5 11.5 143 2.5 8 564469.5

Terrace 6 <LOD 53349 286619 790.5 895 12149.5 5531.5 3401.5 55.5 102.5 219.5 20336 16 19 39.5 6.5 65 152.5 7 175.5 6 10 616050.5

Terrace 7 <LOD 56797 306927.5 394 535.5 12141.5 3973 3540.5 69 113 196.5 22789 15.5 19 33.5 7.5 66 151 7.5 166 5.5 11 592036

Terrace 8 3366 63080 319454.5 334.5 424.5 13136.5 3614 3555 83 136 218.5 21963 17.5 20.5 34.5 7 71 155.5 6.5 207.5 5 11 571764

Terrace 9 3126 59923.5 302589.5 253.5 292 12737.5 3721 3938.5 69 114 222.5 22197.5 16.5 21.5 33 7 71 154 6.5 195 6 12.5 590292

Terrace 10 3983 67926.5 320764.5 <LOD 71 9675.5 1283 3209.5 75.5 158 116.5 19970 16 16 26 6 60.5 131 3 120.5 2 8 572403.5

Terrace 11 <LOD 58165 288486.5 1102.5 723 15054.5 6929.5 3785.5 79.5 133 392.5 19029.5 14 18.5 36 4.5 73 178 7 212.5 4 17 605550

Terrace 12 <LOD 63475.5 314173 506.5 412.5 15185.5 5055 4056 82.5 158.5 377.5 18579.5 15.5 18.5 32 6.5 75.5 175 7.5 210 5 11 577370

Terrace 13 3316 66327.5 314304 416.5 311 14499 4567.5 4164.5 84 121.5 392.5 20398 17.5 19.5 37 6.5 77 169 7.5 186.5 5.5 10.5 570549

Terrace 14 2653 65982.5 301456.5 431 275 14748.5 5411 4081 82.5 200.5 473 22199 19.5 20.5 39 7 83.5 179 8.5 175 7 12 582771

Terrace 15 3808 69096.5 298015 331 219 14357.5 5330.5 4294 89 135 584 22228.5 20 20.5 35 7 84.5 178 8 206 5 9.5 582830

Terrace 16 2566 61592.5 300192 1138 526 14683 4664.5 1968 68.5 59 218.5 11555.5 22 7.5 26 3 60 151 3 60.5 <LOD 8 601695.5

Terrace 17 2955 59441.5 290033.5 639.5 481 14506 6861.5 4106 77.5 112.5 433 21759 18.5 22 40.5 7 85.5 181.5 7.5 198 5.5 11 599487.5

Terrace 18 2825 64739 301759.5 631.5 385.5 14416 6973.5 4131.5 92 139.5 423 22192 18.5 22.5 41 7.5 86 185 9 179 5.5 11 580714.5

Terrace 19 3004 65579.5 298716.5 452.5 298.5 14964 6227.5 4086.5 87.5 123.5 430 23672 20.5 23.5 43 7 88 184 7 194 6.5 10.5 583269.5

Terrace 20 3833 66138.5 321795 92 224.5 13219.5 3651.5 4175.5 76 199.5 224.5 25561.5 19.5 24.5 37 8 76.5 165.5 7 189.5 7.5 11 560256

Terrace 21 2553 61193.5 290030.5 1253.5 906.5 14336.5 6222.5 3268.5 77 86 361 15712.5 16 12 31.5 4.5 66.5 139.5 5 108.5 <LOD 8 604873

Terrace 22 <LOD 61338.5 299970 809 584 15587.5 5426 3348 65 144.5 341 15931 16 13 30.5 4.5 68.5 154 6.5 151 2.5 9.5 595992

Terrace 23 2650 65557 298611.5 648.5 334.5 14154 4357 3317.5 79.5 264 356 15757 18 13 29 4.5 65 143 4.5 124.5 <LOD 10 593487.5

Terrace 24 3307 67399 304801.5 554 177 13880.5 4289.5 2925 76.5 89.5 293 13392.5 21.5 8.5 23 3.5 64.5 137.5 3.5 94.5 <LOD 7.5 590088.5

Terrace 25 2351 71387.5 299394 229.5 <LOD 14450 2492.5 2308.5 69 70.5 185 11538.5 19 7 19.5 4 61.5 133 2 68 <LOD 6.5 596366

Terrace 26 4310 65575.5 296008 1003 606.5 14144 4639 2324 65.5 108 236 12622 20.5 6 28.5 3 59 134 3 76.5 <LOD 8 600162.5

Terrace 27 <LOD 72000 296729.5 911 552.5 13923 4668.5 2712.5 74 79.5 280 14778 26 7.5 27.5 4 62.5 148 4.5 85 <LOD 8 592906.5

Terrace 28 2954.5 74236.5 295037 496.5 205.5 15232.5 4580 2947 81.5 152 247 14113 27.5 7 25 4 63 161.5 3.5 62 <LOD 9 589345

Terrace 29 <LOD 119085 258231 241 <LOD 10109 2685 2511.5 68.5 94.5 828.5 19178 48.5 7 26 6.5 56 155.5 3 67 <LOD 10 586575

Terrace 30 <LOD 108531.5 252255 200.5 <LOD 8929.5 2752 2316.5 60 65.5 586 18358.5 47.5 10 23.5 7 52 152.5 4.5 93.5 <LOD 8 605536.5

Terrace 31 3285 59152 271364.5 1328 848 13727.5 7322.5 3571.5 78.5 116.5 495 18828.5 16.5 18 45 4.5 76 161.5 8 136.5 3 10 621032.5

Terrace 32 3549 64850.5 293624.5 819 546 14647.5 6200.5 3615 80.5 165 467.5 18255 19.5 18 38.5 5.5 76.5 159 6.5 163.5 3 10.5 594442

Terrace 33 <LOD 67417.5 288371.5 814.5 365 14963 6066 4109 97.5 153.5 542 20644 20 21 44.5 6 80 168 9 184.5 5 12.5 595893.5

Terrace 34 2770 66624.5 292105.5 736.5 304 13996.5 5591.5 3717 81.5 131.5 531.5 19444.5 21 15.5 37.5 5.5 77 151.5 7 113 3 9 593514.5

Terrace 35 2828.5 66254 305954 379.5 171.5 14696 4310 3550 87.5 93 400 16552 19.5 12 27.5 3 68.5 145.5 7 87.5 2.5 8.5 584330.5

Terrace 36 3845 60249 291956 750.5 590 14687 7347 4006 79 120 453.5 22812 18.5 22 45 7 84 184 8.5 187.5 5.5 12.5 594444

Terrace 37 2829.5 69701 289240 1002 477.5 14579.5 5022.5 2711.5 75.5 133 238.5 14858.5 22.5 7.5 30 5 58.5 161.5 4 89.5 <LOD 7.5 598735

Terrace 38 3448.5 73964 304788.5 1011.5 314 13692 4203.5 2497.5 71.5 133.5 226 12883.5 25 9 27 3.5 56.5 137.5 3 92 <LOD 7 582388.5

Terrace 39 3897 77476 296376 809.5 224 15115 4607 2996 77.5 86 235.5 15093.5 30.5 10 27 4.5 62.5 153 3.5 73.5 4 9 582618

Terrace 40 4046 81229 301261 149 102 13881 4473 2727 80 96.5 193.5 16286 35.5 10 29.5 5.5 58 165 4.5 97 <LOD 8.5 575052.5

Terrace 41 <LOD 61187.5 274504 1245 670 14231 6279 3131.5 76.5 114.5 444.5 17126.5 19 16 37.5 4 70.5 131 5.5 70.5 <LOD 8.5 620620.5

Terrace 42 3392 70870 291289 999 575 14455 6272.5 3766.5 81.5 217.5 570.5 21491 25.5 22 50.5 6 84.5 179 10.5 158.5 4 11 587155

Terrace 43 2944 72909.5 299505.5 1047.5 443 14075 5704.5 3845 80.5 116 534.5 19840.5 25.5 19.5 44.5 6.5 78 150 8 147.5 2 9 579920.5

Terrace 44 3001 76474 278338.5 1016.5 292 12001 5636 3242.5 86.5 99.5 462.5 19001 24 15.5 35.5 5 71 145.5 8 94 <LOD 8.5 599928

Terrace 45 3339 76407.5 300394.5 478 165.5 11774 4001 3182.5 77 105.5 323.5 16499.5 20 12 25.5 4.5 61.5 141.5 6 92 <LOD 8 584535

Terrace 46 2591.5 70363 278320 1038.5 616 15730.5 4671 2074.5 77 52.5 206.5 12721 24 7 24.5 4.5 60 151.5 3.5 47.5 <LOD 8 611196

Terrace 47 <LOD 71517.5 294877 759.5 525.5 14985.5 3325.5 2025.5 68 73 208 12708 21 7.5 23 4.5 58 145 4 58 <LOD 7 598586

Terrace 48 <LOD 75001 291071 559.5 215 14800.5 2457 1984.5 85.5 66.5 179.5 11678 24.5 5.5 19 4 56.5 152.5 2.5 43.5 <LOD 7 601570.5

Terrace 49 <LOD 90762 274339 386.5 84 10708.5 2046 1965 68 45.5 165.5 13274.5 29 6.5 19.5 4.5 54.5 151.5 3 59.5 <LOD 7 605805

Terrace 50 <LOD 86904 287313 132.5 45 13655 2233 1763 75.5 43 145 12623.5 33.5 6 18.5 6 60.5 159 2 47 <LOD 6.5 594737.5

Terrace 51 4289 62026.5 260085.5 1340 987 11462 7294.5 2766.5 65 73 362.5 16389 28 12.5 39.5 5.5 62.5 156.5 10 89.5 <LOD 6.5 634583

Terrace 52 <LOD 59350 278607 1248 504 12249.5 3998 2185.5 73.5 82 282.5 14424 23 9.5 34.5 4 66.5 150.5 9.5 68 <LOD 8 626604.5

Terrace 53 2961 71694 279667 1257.5 472 11005 4606 2864.5 81 88.5 366 16779 26 12.5 36.5 5 66 167 11 78 <LOD 8.5 607727.5

Terrace 54 3120.5 71417 279157.5 857.5 313.5 11685 4479 2527.5 82 137.5 551 16608 29.5 10.5 34.5 6 63 153 13 62.5 <LOD 9 608673.5

Terrace 55 <LOD 64283.5 314294 134 68 11693.5 4074.5 2923.5 82 136.5 387.5 14354.5 18.5 7 22.5 5 57 160 9 67.5 <LOD 7.5 587198

Terrace 56 3018 58922 291739 1267 777 14596.5 4345.5 1772.5 66.5 80 212 9818 18 6 23 3 59 134.5 2.5 47 <LOD 8 614581.5

Terrace 57 <LOD 62915.5 290855 1023 472.5 14496.5 3526.5 2037 64.5 56 213.5 11577.5 20 6.5 23.5 3 60.5 131 3 43 <LOD 11.5 612453.5

Terrace 58 2589 65443.5 304342 931.5 356 15125.5 2752 2166.5 73.5 53 192 11034 20 5.5 20.5 3.5 67 141 2.5 51.5 <LOD 10 595904

Terrace 59 <LOD 69587 313533 296.5 86 16038 2288 1986 83 62 133 10460.5 22 4 19.5 4.5 67 155 2 44 <LOD 9 585100.5

Terrace 60 <LOD 70173.5 303042 239.5 56 12622.5 2348.5 2020.5 70.5 61 131.5 11512 19.5 5 15 3 55 148 2 45.5 <LOD 7 597434.5

Terrace 61 3024 61916.5 292682 992.5 672 14720.5 6601.5 4139 86.5 148 481.5 20424 16.5 21.5 45 4.5 79 178 7 185 3.5 17.5 595051.5

Terrace 62 3873 64980 300799.5 662 443.5 14786 5460 4698 89 200.5 482 21346 20 21.5 42 5 78.5 171.5 8.5 204 4 16.5 583525.5

Terrace 63 2474 66071 295596 636.5 331.5 15405 6007 4121.5 90 118 532 22150.5 22 22.5 46.5 7 86 174 8 183 6 11 587134

Terrace 64 <LOD 66614.5 311662.5 337 201.5 16319.5 4653.5 3950 89.5 127.5 425.5 18506 18.5 16.5 31 4 79.5 156 6 167 4.5 10.5 576607.5

Terrace 65 <LOD 62330.5 324193.5 <LOD 157 15348.5 3339 3192.5 82 88.5 196.5 13802.5 14 9 22.5 3.5 61 142.5 4.5 103 <LOD 7 576889

Terrace 66 <LOD 52254 257919 1438 992 14767.5 8293 3487.5 66 234.5 452 17384.5 16 15.5 44 3.5 71 162 7.5 149.5 3.5 15 642219.5

Terrace 67 3324 62815 290501.5 1069 678 14747.5 6870 3403.5 78 100 410 18290 18 18 39.5 4 74 157.5 7 167 2 10.5 597201

Terrace 68 3455 62947 287468.5 823.5 374.5 14422.5 5997.5 3920.5 85 144 519.5 20338.5 20.5 17.5 43.5 5.5 79 162 9 166.5 5 13.5 600704.5

Terrace 69 3217.5 69260.5 285341 941 365 14696 7080.5 3912.5 86.5 151 572.5 21498 26.5 20 48.5 6.5 82.5 159 10.5 139 4 9.5 592359.5

Terrace 70 2651 69356 299812.5 485 189 15273.5 5431 3665 80 96.5 479 17557 22.5 15.5 32 4 74 149.5 9 111.5 2 10.5 584485.5

Terrace 71 <LOD 62788 307104 640.5 424.5 16137.5 4109 3282 81.5 88 343.5 14370.5 15 12 27.5 4 68.5 143.5 4.5 114 2 8.5 590222

Terrace 72 <LOD 65513 312563.5 516 397.5 16109.5 3718.5 3377.5 80.5 105 356 15149.5 18 11.5 28 3.5 70 146.5 5 143 3 10.5 581664.5

Terrace 73 2572 68972 310838 358 233.5 17395.5 3854 3487 84 190 385 16221.5 18.5 14.5 30.5 4 76 152 5.5 138.5 2.5 10 576233.5

Terrace 74 <LOD 67493 315904.5 <LOD 54 16477 2760 3248.5 85.5 101 261.5 12981.5 16.5 7.5 20 4 70 142.5 3.5 101.5 <LOD 6.5 580274

Terrace 75 <LOD 67925.5 322208 <LOD <LOD 17346.5 1724 2477.5 84 80.5 149 10556 16 7 17 2.5 73 136.5 4 85.5 <LOD 10 577081.5

Concentration (ppm)
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 Terrace 76 3309 59761 294788 611 701.5 13675.5 4796.5 3456 67.5 146 346.5 18543.5 23 16 39.5 5.5 68.5 152.5 9.5 168.5 3 10 600945.5
Terrace 77 <LOD 63701.5 311262 234 408 14233.5 3482.5 3768 88 99 313 19401.5 23.5 18.5 35.5 5.5 72 158 10.5 173.5 4.5 13 582488
Terrace 78 3640 68938.5 314989 <LOD 202 13349 2974.5 3466 81 109.5 224.5 20314 23 13.5 30.5 6 68 151 8.5 144.5 3 12 573060
Terrace 79 4253.5 88591 278630.5 <LOD 49 10454 857 3461 83 97.5 116.5 26101 26 13.5 32 6 59.5 127.5 5.5 116 <LOD 11.5 586885.5
Terrace 80 2709 78138 291130.5 <LOD 227 10076.5 232.5 3586 70 297 99 25794 21 14.5 30.5 7.5 60 127 9.5 102 3.5 13 588594
Terrace 81 <LOD 62302 283581 985.5 618 10230 7175.5 3589.5 74 235.5 406.5 19353 23 11.5 34 5 45 169 6.5 177.5 <LOD 9.5 610953.5
Terrace 82 2611 70749.5 290098 746 425 10208 6529.5 4016.5 77 176 484.5 21179.5 24 11 31.5 6.5 46.5 167.5 8.5 167.5 <LOD 9 593516
Terrace 83 <LOD 68478 269483.5 831 250.5 8939.5 6515 3866 80 321.5 611 22059 29 10.5 37 5.5 50 165 10 180.5 2.5 10 618053
Terrace 84 2372 78257.5 280435.5 275 109 8781.5 5199 4025.5 77 238 594.5 21541 24 11.5 30 5.5 45 156 8 175 <LOD 8 598860
Terrace 85 3048 91105 235995 <LOD <LOD 4939.5 5311 3617 71 150.5 366.5 25232 37.5 10.5 34 5.5 36 178.5 8.5 97 2 7 631260.5
Terrace 86 <LOD 61961.5 292533 1311 746.5 9772 6995.5 3793.5 65.5 193.5 387 17422 20.5 12.5 34.5 5 46.5 155 6 172 <LOD 9 604344
Terrace 87 <LOD 59024 286425.5 1130.5 662 10805 7355.5 3365.5 71.5 195.5 379 16981.5 20 9.5 34 4.5 45.5 150.5 6.5 150.5 3 8 613164
Terrace 88 <LOD 62646.5 292453.5 890.5 404.5 10441 6437.5 3814 77.5 349.5 368.5 17340.5 17.5 13 32 4.5 51 161.5 5.5 220 <LOD 8.5 604246
Terrace 89 2633 72451.5 262218 496 128 8550 5401.5 3456 78.5 215 410.5 23070.5 29.5 9 28 4.5 42.5 164.5 6 100.5 2 10.5 621799
Terrace 90 <LOD 99006 219915.5 <LOD 83.5 4509.5 4551 3370.5 76.5 98 176 32571.5 46.5 11 35 6 35.5 174 6.5 62.5 <LOD 8.5 635242.5
Terrace 91 <LOD 54476 260226.5 1266 919 8974.5 6628 3286.5 59 187.5 236 18610 19 10 36 5 42.5 145.5 5.5 213 2.5 10.5 644628.5
Terrace 92 <LOD 64740 279380.5 1317 658.5 10333.5 6235.5 3431 61 174 236.5 20325 20.5 11 33 4 45.5 143 5.5 217 <LOD 9.5 612606.5
Terrace 93 <LOD 72573.5 270680.5 938.5 291.5 8063.5 5574.5 3937.5 75.5 316.5 216.5 25049.5 23 9 34.5 5 45 132 5.5 170.5 <LOD 10.5 611831.5
Terrace 94 3038 84052.5 228277 <LOD <LOD 4852 3652 3789.5 60 213.5 85.5 38159.5 37 6.5 29 6.5 32.5 117.5 6.5 136 5 8 634941
Terrace 95 4087.5 85547 245828.5 <LOD <LOD 4487.5 3885.5 4105.5 74.5 251 105.5 32687.5 35 6 30 3 30.5 146 7 182.5 2.5 20 618416.5
Terrace 96 <LOD 60981.5 259312.5 1300 986.5 7552 6491.5 3055 63.5 319 232 20861 20 11 30.5 5 40.5 146 5 209.5 <LOD 7.5 638356.5
Terrace 97 2842 69417.5 258788 1026.5 555 7787.5 5986 4070.5 72 257 245 22219.5 22.5 8.5 30 4.5 39 148.5 5.5 212 <LOD 9 627663
Terrace 98 <LOD 85757 237737.5 531.5 208 5486.5 3386.5 3211 72 121 177 29776 30 8 30 5.5 37 130 5.5 93.5 <LOD 8 633172
Terrace 99 3499 96042 222676.5 <LOD <LOD 4057.5 2844 3509.5 71.5 134.5 196.5 33124.5 36 7 28.5 6 35 143.5 8 94 <LOD 7.5 635218

Terrace 100 4394 91420 208358.5 <LOD <LOD 4464.5 4945.5 4472 89.5 314.5 289.5 38223.5 41 11.5 32.5 7 34 203 14.5 146.5 2 8 642517.5
Terrace 101 2932.5 59772.5 272459.5 518 906.5 7353 4352.5 3451.5 66.5 178 161.5 20287 14.5 15.5 35.5 4.5 48.5 128 8 217.5 2 11 627060
Terrace 102 4227 64058 274746.5 <LOD 305 7514.5 3141 3245 75.5 190.5 112 23027.5 17 14 31 5.5 51 127 8 194 2.5 9.5 618882
Terrace 103 4050 69548 288079.5 <LOD 236 6403 2851.5 3824.5 106.5 140 111 26711 21 14 33.5 6 47 142 7.5 175 4 10.5 597466
Terrace 104 3241 67258 299917 <LOD 265 5478.5 1875 3825.5 116.5 133.5 86.5 26854 22 14 30.5 8 46.5 146 7.5 145 3 7 592129.5
Terrace 105 4574 66357 296627 <LOD 320.5 6001.5 1269.5 3617.5 92.5 124.5 88.5 25924 28.5 12.5 28.5 6.5 43 151.5 7 104.5 4 9 596883
Terrace 106 3191 47893 234357 940.5 1483 7964 6822 2792.5 60 136 151.5 17699 16.5 11 38.5 3.5 43.5 141 8 118 <LOD 8.5 677703.5
Terrace 107 3191 59907.5 275837.5 136 453 7715 4200 3028.5 67.5 115 118 20893.5 20 10 32 5.5 45.5 141.5 8.5 133.5 2.5 8.5 623988.5
Terrace 108 3626 67186.5 278511 <LOD 94.5 7380 3638.5 3219 64.5 183.5 95 24736.5 25 9.5 27.5 7 43 155.5 8 132.5 2 8 610833
Terrace 109 2407 68279 291510 <LOD 74.5 9514 4491.5 3428.5 95 104.5 105 17807.5 28 7.5 24.5 4 48.5 208.5 8 108 <LOD 9 602930
Terrace 110 2884.5 77716.5 278924.5 <LOD <LOD 8340.5 1776.5 2547 68 126 79.5 16038 24.5 7 21.5 3 59.5 161 12 46 <LOD 7 611143.5
Terrace 111 3473.5 51641.5 259603 1064.5 1353 9609.5 6439 3181.5 56 140 306.5 18006 12.5 13.5 42.5 3.5 56.5 132.5 7 185 2 10.5 644644
Terrace 112 2422 57949.5 284760.5 612.5 553.5 10180.5 4516 3917.5 68.5 191.5 214 21203.5 16 13 31 7 58 139.5 9 283 4.5 10 614040.5
Terrace 113 3659.5 63993.5 299597.5 256.5 274.5 10363.5 4142.5 3852 78.5 201 183.5 22161 15 12 30 6 59 140 8.5 245 3 11.5 590693.5
Terrace 114 2950 70590 274448 <LOD 86 5838 1863.5 3543.5 75 145 69 27766.5 20.5 11 31 4.5 45 118 9.5 160 6 27 612150
Terrace 115 3284 70556.5 286541 <LOD 121.5 5662 756 3541 51 144 63.5 27326 18.5 15 29.5 6 43 114 5.5 164.5 5.5 16 601517
Terrace 116 3581 45122 218193 1250 1875 7255.5 6620 2706 43.5 171 209 17468.5 13 11.5 42.5 4 43.5 125 7 143.5 <LOD 7 696884
Terrace 117 3408 64606.5 294441.5 <LOD 287.5 8116.5 3660.5 3180 69 252.5 116 22758 16 10 28.5 5.5 47.5 140 9 158.5 2.5 11 598661
Terrace 118 3827 65981.5 303290.5 <LOD 148 7663 3248 3481 78 147.5 92 23747.5 22 12 30 6.5 46 140.5 10.5 141.5 3 9 587862
Terrace 119 4075.5 63864 305485.5 <LOD 423 7586 3035 3961.5 159.5 196 132.5 25502 34.5 11.5 28.5 8 47 162 11 128.5 4.5 8 585124.5
Terrace 120 4129 68183 291953 <LOD 167.5 7947 3814.5 3652.5 97.5 182 273.5 27902.5 59 13.5 37 7.5 53.5 188 26 96 4.5 9 591196
Terrace 121 <LOD 61104.5 280579.5 1637.5 879 12479 6455.5 3749 75 249 348.5 16274.5 14.5 11 32.5 3.5 51 131.5 4.5 156 <LOD 10.5 615738.5
Terrace 122 <LOD 60635.5 290346 1395 510.5 11063.5 5334 3029.5 63.5 259.5 326.5 15616.5 16.5 12 32.5 3 46.5 123.5 6 146 <LOD 10 611014
Terrace 123 <LOD 68923.5 284081.5 1705 365.5 11532.5 5420.5 4116.5 85.5 268 352.5 16784.5 18.5 13 33 3 49 126 6 196.5 2 9.5 605893.5
Terrace 124 <LOD 76651 267723.5 1106.5 180 9580 4230.5 3643.5 72 215.5 283.5 24794.5 22.5 11 30.5 5.5 49 123 7 182 2.5 9.5 611068
Terrace 125 <LOD 111455 217132 <LOD 47 4677 1913.5 4798 85 191 189.5 41557 43 11.5 31 7.5 37 108 5.5 171 3.5 9 617516
Terrace 126 <LOD 65653 285659.5 1671.5 936.5 11715 6356 3942 84.5 220 362.5 18327.5 19.5 13.5 37.5 3.5 51.5 138 6.5 247 2 9.5 604529.5
Terrace 127 <LOD 67192.5 291443.5 1458 662.5 10597 5626.5 4115.5 76.5 366.5 384 18144 18.5 13.5 35.5 4.5 47.5 126.5 6 191.5 <LOD 8 599463.5
Terrace 128 <LOD 70702.5 293524.5 1225.5 323.5 10933 4764 4242 80.5 252 388.5 19097 22.5 11 36.5 5 51 130 7 181.5 2 8.5 593999
Terrace 129 2578 106668 228093.5 257.5 84 7911 2175 4531 92.5 277.5 240 35818.5 35 10 32 8.5 50 121 6 198 2 9.5 612073
Terrace 130 2660 115514.5 198132.5 <LOD 62 3927.5 2206 4838 84 219.5 232.5 43781.5 48 11.5 41 10 37 121 9.5 138.5 4 7.5 629235.5
Terrace 131 3335 66431 239808 1232 967.5 7677 4923 2934 59 195 161 20705.5 18.5 11 33 5.5 40.5 126.5 6 192 <LOD 6.5 652787
Terrace 132 3173 85903.5 238475 867 607.5 7036 3645.5 3693 70.5 267.5 157 25892 24 10 34 4.5 38.5 116.5 6 152 2 10 631386
Terrace 133 2809 97320 244536.5 669 326.5 6761 3937 4171 76 227 182.5 30991 31 13 39 7 44.5 125 6.5 218.5 2.5 10 608884
Terrace 134 3456 96672 205635.5 <LOD 64.5 4014 2311 3667 70 161.5 91 35518.5 33.5 7.5 30 7 32.5 114 6 73 3 7.5 649740.5
Terrace 135 3933 95677.5 222585.5 <LOD 344.5 4678 2320 3592 81.5 140.5 425 38692.5 35.5 10.5 25.5 10.5 34.5 146.5 7.5 77.5 <LOD 9.5 629127
Terrace 136 3061 60650.5 244227.5 1569.5 1154.5 7932.5 7354.5 2917.5 57.5 337.5 247 20296 19.5 11 34.5 4 43 120.5 4.5 127.5 <LOD 9 651334.5
Terrace 137 <LOD 68681.5 260048 1430.5 638.5 9710 4452 3202.5 65.5 337 227 20984.5 19.5 12 34 5.5 47.5 128.5 5.5 175 <LOD 9 629774.5
Terrace 138 <LOD 79410.5 242633 1368.5 398 8229.5 4018.5 3991 71 284 234 25340.5 24 10.5 33.5 5 43 113 5.5 185 2.5 10 633574
Terrace 139 3417 99673.5 183928 497.5 103.5 3784 2759.5 3697 74 134 311 57988 43 9.5 31.5 21.5 36.5 110 5.5 103.5 <LOD 11 644955
Terrace 140 3688 95997 200836.5 <LOD <LOD 3933 3152 4120 90 192.5 405.5 41150 42 9 29 11.5 33 134 8.5 122.5 3 6.5 647868.5
Terrace 141 <LOD 44251.5 266753.5 544 660 9920.5 5587.5 3482.5 67.5 161 296.5 16981.5 14.5 13 33.5 4.5 60 149 8 202 4 10 650787.5
Terrace 142 2416 55168 304922.5 465.5 481.5 10525 4976 3577.5 67.5 144 282 17937 10.5 13 31.5 5 59 141.5 9.5 190.5 2.5 9 599760.5
Terrace 143 <LOD 59365.5 309135.5 234.5 320 10918 5153 3695.5 86.5 196 266.5 19190.5 14.5 14.5 30.5 6.5 64 145 9 222.5 3.5 8.5 590906.5
Terrace 144 2534 54053.5 334255.5 <LOD 134 12281 3504.5 4287 71.5 182.5 141.5 17706.5 11 13 24 7 65 155.5 10.5 248.5 5.5 11 571554
Terrace 145 <LOD 55460 350247.5 <LOD 66.5 12171.5 1451 4093.5 74.5 157 117 16620 12 10 23 5.5 59.5 147 7 233.5 5.5 9 559019
Terrace 146 <LOD 50891 290095 608.5 686.5 11229.5 6842.5 3449 63 179 382.5 17755.5 14 14.5 34.5 5 63.5 154.5 9 228.5 5 12.5 617266.5
Terrace 147 2724 56648.5 307156 326.5 468.5 10940.5 5475.5 3797 79 153.5 355.5 18669 15.5 15.5 33.5 7 66 152.5 9.5 207.5 5 8.5 594036
Terrace 148 3447 60155.5 308235 90 329.5 11012.5 5248 3801 82 229.5 354 20358.5 15.5 16.5 32 6 68.5 156 10.5 217.5 4 10.5 587875
Terrace 149 3657 60694.5 291131 <LOD 226 11393.5 3693.5 3897.5 74 155.5 247.5 24724 19.5 17.5 31 8 72 148 10.5 221 6.5 9 601386
Terrace 150 3819.5 61556.5 330725.5 <LOD 55.5 11083.5 831 3977 73 204.5 97.5 20427 14 14 25 7.5 62 132 7 258 6 9 566604.5
Terrace 151 2552.5 56212.5 294219.5 670.5 593.5 12056 5786.5 3615 68.5 128.5 352.5 20833.5 17.5 18 39 7 73 151.5 11.5 204.5 6 11 602360
Terrace 152 3214 58137 299787 435.5 489 11688.5 4999 3951 70.5 142 322.5 20578.5 13.5 17 34.5 7.5 70.5 145.5 11 206.5 4.5 8.5 595651.5
Terrace 153 2778 58453.5 299717 286 360.5 12229 4703.5 3734.5 84.5 184 312.5 22429.5 18 20 36 8 73.5 145.5 10.5 183 5.5 10 595595.5
Terrace 154 4177 59875.5 320166 <LOD 162.5 11264 2194 3642.5 69.5 135 140 22649 15.5 16.5 33.5 9 65.5 125.5 7.5 176.5 6 10.5 577143.5
Terrace 155 3007.5 57743 341170 <LOD 73.5 11192.5 822 4045.5 69 472.5 138.5 21615 15.5 15.5 31 9 60.5 127 5.5 209.5 6 8.5 559151.5
Terrace 156 2835 52659 277465.5 748 984.5 10456.5 4457 3441.5 61 142 491 21452.5 16 17.5 40.5 6 64.5 135.5 11.5 204 5.5 10.5 625707.5
Terrace 157 3128 61715 315051.5 521.5 459.5 11708.5 3413.5 3769.5 79.5 151.5 263 21861 17 18 36 6.5 71 143 11.5 195.5 3.5 10 577351
Terrace 158 3554.5 59852 312082 276 267 11581.5 3400 4098 78 208.5 219.5 22712 19 17 35.5 8.5 72 147.5 11.5 235 6 12 581092.5
Terrace 159 4671 58600.5 302986.5 <LOD 129.5 10920 3017.5 3748 72.5 150 155.5 23829 18 18 30.5 9 64 136 10 230.5 6 8.5 593525.5
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Table B.4: NRCS Chico pXRF data. 

Sample ID Mg Al Si P S K Ca Ti V Cr Mn Fe Ni Cu Zn As Rb Sr Y Zr Nb Pb LE

NRCS 1 5561 73031 228101 1340.5 558 15179.5 19267.5 3405 80 34.5 688.5 26017 26.5 27.5 56 5 59 350 11.5 117.5 7 13.5 628838.5

NRCS 2 4495 94168 226277 1020 356.5 14448.5 11932.5 3874 81.5 33 516.5 32356 21.5 36.5 60 5.5 62 268.5 13 173.5 6.5 10.5 609791

NRCS 3 8670.5 73960 236217.5 1455.5 277 14367.5 26513 3641.5 95 106.5 1104 30226 40 32 71 4.5 54.5 372.5 13 104.5 7 15.5 602646

NRCS 4 <LOD 103197.5 217855 317 174.5 13377 12847 4034 87.5 56.5 492.5 32483 32.5 42 59 5 57.5 299.5 16 142.5 9.5 14 614392.5

NRCS 5 20867 68222 205946 859.5 187.5 8575 43876 4412 88.5 282 939.5 46078 146.5 60.5 76 2.5 35 374.5 17 86.5 6 10 598850

NRCS 6 24235 76464 218438 608.5 <LOD 8069.5 52704.5 4348 81.5 314.5 897.5 48438 144 74 69.5 4 29.5 364 15.5 83 4.5 6.5 564608.5

NRCS 7 24380.5 76699 220203 640.5 <LOD 9638.5 43189.5 4402.5 95.5 362 1216 46064 161.5 56.5 77 3.5 37.5 368.5 16.5 90.5 6 10.5 572271

NRCS 8 25540.5 80798 220203.5 423.5 <LOD 8985 41142 4544 98 294 1020 46270.5 153.5 65 70.5 3.5 38.5 373.5 16.5 89 5 7.5 569848

NRCS 9 7332.5 144005.5 161996.5 746.5 145.5 3779 14367.5 7582 107 140 695 60154 102 108 83.5 5 28.5 263.5 28.5 173 9.5 14 598130.5

NRCS 10 9108 88367 121870.5 3430 1054.5 6184 23037 6515.5 90.5 101 1463.5 47406 68 53.5 113.5 4 31 394 14 121.5 8 17.5 690544.5

NRCS 11 6762.5 105840.5 147198 3064.5 445.5 7168 20723.5 8432.5 106.5 77 978 58102 59.5 70 122 5 31.5 443.5 17 167 15.5 14.5 640157.5

NRCS 12 7203.5 83478 125324 2778 1075.5 7694 22500 4966 91 105 1654 43701.5 78 53 105.5 2.5 33.5 281.5 12.5 104 7 11 698740.5

NRCS 13 6672.5 112182.5 127701 2494 923.5 5423 16520.5 6171 91.5 113.5 1173.5 55980 93.5 55.5 100.5 4 25 221.5 15.5 130 10 8 663887

NRCS 14 5258 78214 183941.5 1195.5 1332 12466 6785 3677 76 31 573 25659.5 15.5 22.5 47 22.5 60 121 15 149.5 6.5 26 680308.5

NRCS 15 4778 104928.5 243487 353.5 222 22545.5 <LOD 4844 105 30.5 72.5 21812.5 10 13.5 28 53 109 135 16 200 8.5 4.5 596222.5

NRCS 16 3715 75945.5 272522 461 249 17495.5 18546.5 3305.5 77.5 34 450.5 22272.5 23 21 43 5 60 365.5 12 135 8.5 12.5 584229.5

NRCS 17 3821 91828.5 277333.5 871 411.5 17580 17283.5 3505.5 91 <LOD 527 26347 19 21.5 51.5 5 62.5 375 13.5 172 8.5 13 559651.5

NRCS 18 4735 65624 216259 797.5 614.5 14482 20030 3129.5 70 50.5 588 25331.5 33 29 47 4.5 52.5 327 11 127 7 13.5 647639

NRCS 19 <LOD 106947 223068.5 1034 543.5 13800 12884.5 3209 76 27 521 24392 14 16.5 44 4.5 57 325.5 11 159.5 8.5 11.5 612854

NRCS 20 4013.5 94955.5 275991.5 304.5 182.5 17006 18049 3480 90.5 <LOD 593 25877.5 17 19.5 51.5 4 62.5 370 10 149 7.5 11.5 558750

NRCS 21 5070 83079 237007.5 852 272.5 15686.5 18968.5 3446.5 106.5 46 760 23084 21.5 26 49 5.5 62.5 370 14 147.5 8 14.5 610926

NRCS 22 <LOD 96525 229259 631 239 13974 16217 4163.5 94 28.5 606.5 29120 19 26.5 53.5 6.5 57 361.5 20 172.5 9.5 15.5 608391

NRCS 23 3325 66235 260968 503.5 383 19067 21391.5 2650 88.5 30 523.5 19386 17.5 20 43 3.5 60 369 10 88.5 5.5 18 606489

NRCS 24 2494 72516.5 291366.5 <LOD <LOD 17954 21193 2258 88 <LOD 388.5 13372 9 13.5 27.5 3 64.5 414.5 9.5 103 6 13 578944.5

NRCS 25 7523.5 84302.5 264217 388.5 <LOD 15380.5 36300.5 4395.5 104.5 50 595 30971 37.5 52 53 5.5 62.5 486.5 19.5 191 9 13 554836.5

NRCS 26 5514 74110.5 260196.5 1174 219 17211 20754.5 3012.5 84.5 27 576.5 21830 18.5 23.5 43 4.5 65 376 12.5 127.5 7 11.5 594609.5

NRCS 27 4607 75271.5 248095.5 605 155 16539.5 20550 3195.5 81 31 560 23383.5 20 32.5 45.5 4.5 61 387 13 125.5 7.5 12.5 606219.5

NRCS 28 5790.5 79137.5 266251.5 531 171 15895.5 20560 3022 91.5 35 551 20383 16.5 30 39 6 55.5 411 13 109 6 11 586879

NRCS 29 4341 58632.5 209590.5 854 1002.5 14480.5 26146 2675.5 81 29.5 669 19871.5 15.5 20 38 2.5 58.5 378 11.5 103 6.5 16.5 663144

NRCS 30 5878 80981 275882.5 418.5 137 18035.5 19642 3068.5 92 35 571 21225 17 23 42.5 6.5 63 377 13.5 129.5 7 11.5 573357

NRCS 31 4753.5 88189 278531 255.5 49.5 17543.5 16352 3081 103 27 527.5 23990 14.5 26 42 4 58 336.5 13 109.5 7 11 565976.5

NRCS 32 10766.5 56964 252496.5 1360 1324.5 7516 10770 4466.5 61.5 430.5 621 30148 152.5 49.5 109.5 4.5 33 117 16 126.5 2 13 622437

NRCS 33 14346.5 71188.5 289399.5 254 164 7577 7963.5 5026.5 83.5 597 684.5 35196.5 191 44 75.5 6 33 104.5 19 135 2.5 9 566882

NRCS 34 14976 75141 275882.5 271 52 9798 8846 5346.5 90.5 610.5 844.5 42842 262 55 90.5 7 38.5 115 20.5 132.5 4 6 564554.5

NRCS 35 17916 60686.5 239470.5 813.5 980.5 8264 12772.5 4322 85 884.5 747 41301 242 56 124.5 6 38.5 135 16.5 102 3.5 7.5 611016

NRCS 36 20185.5 68895.5 270638.5 282 60 8008.5 13340 4614 91 1193.5 907.5 45259.5 286.5 53 84 7.5 31 112.5 18 101.5 4.5 5 565845.5

NRCS 37 10833.5 56101 226435.5 3183 1629 9666.5 14104 3464.5 60 389.5 609 32442.5 137 55 123.5 4 35.5 150 15 100 <LOD 8.5 640442.5

NRCS 38 14248.5 78830 243461 757.5 321.5 11372 7040 4556 86 328 475.5 45632.5 153 55 74 9.5 37 91 19 114.5 4 7.5 592323.5

NRCS 39 16597 77746 230842.5 <LOD 134.5 8487.5 7634.5 4671.5 77.5 229.5 603.5 47903 191.5 52.5 71 10 34 92.5 23.5 128.5 4.5 7.5 604456

NRCS 40 22891 74988 237953 <LOD 48 8186 7972 4644.5 91.5 217 841.5 48450.5 188.5 60.5 87.5 9 39 95 27 128 5 8 593092.5

NRCS 41 18968 78168 255489 581.5 243.5 11043 11059.5 4783 93 181 783 43892 110.5 63 128 10.5 44 163 19.5 142.5 4 9.5 574012.5

NRCS 42 17291 74472 251340 542.5 150.5 10576.5 10413.5 4653.5 96.5 184.5 783 43950 119.5 62 121 9.5 44 156 21 125 6.5 9.5 584871.5

NRCS 43 16785.5 70114 263845 223.5 66 10782 12062.5 4033.5 86.5 177.5 631 38066 92 49.5 143 9 39 197.5 15 93 4.5 9 582508.5

NRCS 44 22149.5 70297 214858 1209.5 1102.5 12762.5 6794.5 4456 83.5 203 691.5 39517 113 42.5 114.5 7.5 42.5 69 15 101 3 7.5 625347.5

NRCS 45 23468 76922.5 251652.5 551 80 12925 3250.5 4675 96.5 257.5 643 42605.5 136.5 47.5 97 8 42 50 16 104 3.5 6 582352

NRCS 46 23557 58324.5 316218.5 215 <LOD 6449 3258.5 2977 62.5 335 510.5 30222 89 23 59.5 5 18 31.5 8.5 51 <LOD 3 557563

NRCS 47 19794.5 78804 252707 751.5 359 10918.5 12968.5 4540 100 337 697.5 40801.5 99 88.5 139.5 9 40.5 203 17.5 114 <LOD 8 576486

NRCS 48 18998 76985 243390.5 467.5 108 10118.5 11692.5 4700 102 184.5 733.5 42967.5 105 96.5 142 11 42 193.5 18.5 123.5 4.5 8.5 588800

NRCS 49 18328 78819 242094.5 715 273 12967 9365.5 5119 93 131 862.5 49726 122.5 77.5 139 11.5 52 138 24 124.5 7.5 13 580789.5

NRCS 50 19062 78480.5 243360.5 600 96 11616 10102.5 5117 100 163 839 49183 139 68 115.5 11 52 148 23 137 7 9 580564

NRCS 51 17757.5 80881.5 234989 813.5 269.5 11809 10354 4914.5 99.5 149.5 952 51910 123.5 73.5 135.5 10.5 56 156.5 23.5 112 6 10.5 584393.5

NRCS 52 18916.5 84061.5 240116.5 290 55 10359.5 9684.5 5069.5 110.5 173.5 949.5 53324 136 72 118 13 51 158.5 23.5 124 7 9.5 576171

NRCS 53 12844.5 74002 237901 698.5 324 12578 9325.5 4898.5 90.5 141 916 44405 115 66 107 9 45 157 23 119.5 7.5 14 601211.5

NRCS 54 17279 78902 230464 <LOD <LOD 7655 7997 4988 109.5 173 793.5 49171.5 127 69 99.5 11 46 144 23.5 126.5 6.5 8 601805.5

NRCS 55 23306.5 73739.5 241772.5 509 <LOD 10296.5 17183 5241.5 108 163.5 840 47623.5 140 65 111 11.5 46.5 179 22.5 129.5 8.5 8.5 578492.5

NRCS 56 10367.5 73999.5 261756.5 287 245.5 8391 7051 5293 97.5 157.5 921 40926.5 110 59 89 9.5 40.5 135 22 144.5 7 9.5 589871

NRCS 57 15085.5 83806 255598 <LOD <LOD 5950.5 5487 5285.5 100.5 171 804.5 45843 125 61 83.5 9 43.5 122.5 22 151 3.5 8.5 581222.5

NRCS 58 31291 70226.5 207316.5 238 <LOD 8785 50847 4333.5 106.5 151.5 696.5 45150 135.5 61.5 91.5 9 40.5 272 18 106 4.5 7.5 580109

NRCS 59 11644 80429 234119.5 365.5 306 12633.5 14434 5543.5 102 161.5 969.5 45656 103.5 68.5 92.5 10.5 55 243.5 22 132.5 7.5 24.5 592876

NRCS 60 14401 89202.5 213591 <LOD 57 9000.5 11442 4933 87.5 148.5 715.5 55940.5 118.5 66.5 90.5 9.5 48 183.5 21 118.5 6 12.5 599831.5

Concentration (ppm)
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Table B.5: UC Merced pXRF data. 

Sample ID Mg Al Si P S K Ca Ti V Cr Mn Fe Ni Cu Zn As Rb Sr Y Zr Nb Pb LE

Merced Atwater 3924 85553 292602.5 246.5 314 20724.5 12389.5 3016.5 98 63 420 18868.5 17.5 17.5 50 3.5 80.5 276 9 136 3.5 19 561156.5

Merced Alamo 4981 87580.5 269126.5 155.5 169 18641.5 6895 3845.5 96 45 518.5 19174.5 24 16.5 39 3.5 89 218.5 12.5 134 5 19 590701.5

Merced Bear Creek <LOD 78412.5 264760 1096.5 1031.5 13968 6267.5 4354.5 89 53.5 635 22216 28.5 46 62.5 4 67.5 131 11.5 232 6 18 606508.5

Merced San Juaquin 3038.5 82249.5 290488.5 130 211 20270 8813 3580.5 98 37.5 506 18439 21 18 41.5 2.5 92 241.5 14 193.5 8.5 18.5 571486.5

Concentration (ppm)
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Appendix C: Regression diagnostic plots 

pH 

Figure C.1: Regression diagnostic plots for pH (a) Residual vs Fitted graph 
(b) Normal Q-Q plot (c) Scale-Location plot (d) Residuals vs Leverage plot 

a b 

c d 
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Sand % 

Figure C.2: Regression diagnostic plots for sand % (a) Residual vs Fitted graph 
(b) Normal Q-Q plot (c) Scale-Location plot (d) Residuals vs Leverage plot 

a b 

c d 
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Clay % 

Figure C.3: Regression diagnostic plots for clay % (a) Residual vs Fitted graph 
(b) Normal Q-Q plot (c) Scale-Location plot (d) Residuals vs Leverage plot 

a b 

c d 
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CEC 

Figure C.4: Regression diagnostic plots for CEC (a) Residual vs Fitted graph 
(b) Normal Q-Q plot (c) Scale-Location plot (d) Residuals vs Leverage plot 

a b 

d c 
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SOC % 

Figure C.5: Regression diagnostic plots for SOC % (a) Residual vs Fitted graph 
(b) Normal Q-Q plot (c) Scale-Location plot (d) Residuals vs Leverage plot 

a b 

c d 
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TN % 

Figure C.6: Regression diagnostic plots for TN % (a) Residual vs Fitted graph 
(b) Normal Q-Q plot (c) Scale-Location plot (d) Residuals vs Leverage plot 

a b 

c d 
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CN ratio 

Figure C.7: Regression diagnostic plots for CN ratio (a) Residual vs Fitted 
graph (b) Normal Q-Q plot (c) Scale-Location plot (d) Residuals vs Leverage 
plot

a b 

c d 
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Appendix D: Imputed analyte concentrations 

Magnesium 

Table D.1: Mg normal distribution curve parameters. 
Average 1σ error of <LOD readings 3071.27 ppm 

Average LOD (1σ error * 3) 9213.82 ppm 
Mean concentration 4606.91 ppm 
Standard deviation 1535.64 ppm 

Figure D.1: Normal distribution curve for Mg concentration imputation. 

Imputed concentrations in ppm (n = 90) 

5458 6495 2517 4431 5559 4594 4096 5477 5033 4967 2670 3726 
4177 4970 1757 5685 4836 5909 4236 7086 6770 4150 5065 6373 
7333 4046 3931 5010 2366 4018 3282 3887 5026 3316 4380 6363 
4895 6304 4309 7427 1494 3798 3306 3492 5767 5876 3242 4239 
6361 2928 6751 5156 2984 4187 4761 3035 4071 6885 6163 2938 
5245 5316 4761 3002 3489 3677 7049 1631 3768 5681 3193 4513 
3813 1677 4771 2799 7287 3995 5286 5298 4490 5064 2773 1540 
6739 4480 5210 2944 7067 6149 
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Phosphorous 

Table D.2: P normal distribution curve parameters. 
Average 1σ error of <LOD readings 103.05 ppm 

ppmAverage LOD (1σ error * 3) 309.14 ppm 
ppmMean concentration 154.57 ppm 
ppmStandard deviation 51.52 ppm 

ppm

Figure D.2: Normal distribution curve for P concentration imputation. 

Imputed concentrations in ppm (n = 69) 

104 198 135 143 121 178 101 114 175 242 76 233 
271 131 72 129 124 44 95 228 234 95 130 169 
65 135 81 162 228 206 196 194 87 212 151 99 

141 115 131 176 206 190 125 122 96 85 174 61 
174 86 141 223 119 188 92 247 207 145 225 162 
114 20 165 186 327 109 215 105 159 
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Sulfur 

Table D.3: S normal distribution curve parameters. 
Average 1σ error of <LOD readings 101.03 ppm 

ppmAverage LOD (1σ error * 3) 303.09 ppm 
ppmMean concentration 151.54 ppm 
ppmStandard deviation 50.51 ppm 

ppm

Figure D.3: Normal distribution curve for S concentration imputation. 

Imputed concentrations in ppm (n = 23) 

155 144 107 115 189 174 202 198 123 272 111 218 
147 195 235 139 149 134 196 201 113 122 145 
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Calcium 

Table D.4: Ca normal distribution curve parameters. 
Average 1σ error of <LOD readings 149.27 ppm 

ppmAverage LOD (1σ error * 3) 447.80 ppm 
ppmMean concentration 223.90 ppm 
ppmStandard deviation 74.63 ppm 

ppm

Figure D.4: Normal distribution curve for Ca concentration imputation. 

Imputed concentrations in ppm (n = 5) 

128 130 240 295 136 
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Chromium 

Table D.5: Cr normal distribution curve parameters. 
Average 1σ error of <LOD readings 26.35 ppm 

ppmAverage LOD (1σ error * 3) 79.06 ppm 
ppmMean concentration 39.59 ppm 
ppmStandard deviation 13.18 ppm 

ppm

Figure D.5: Normal distribution curve for Cr concentration imputation. 

Imputed concentrations in ppm (n = 9) 

36 33 34 29 47 59 46 43 49 
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Arsenic 

Table D.6: As normal distribution curve parameters. 
Average 1σ error of <LOD readings 3.87 ppm 

ppmAverage LOD (1σ error * 3) 11.60 ppm 
ppmMean concentration 5.80 ppm 
ppmStandard deviation 1.93 ppm 

ppm

Figure D.6: Normal distribution curve for As concentration imputation. 

Imputed concentrations in ppm (n = 16) 

10 6 7 5 5 5 4 8 5 6 4 4 
5 3 4 6 
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Niobium 

Table D.7: Nb normal distribution curve parameters. 
Average 1σ error of <LOD readings 2.81 ppm 

ppmAverage LOD (1σ error * 3) 8.44 ppm 
ppmMean concentration 4.22 ppm 
ppmStandard deviation 1.41 ppm 

ppm

Figure D.7: Normal distribution curve for Nb concentration imputation. 

Imputed concentrations in ppm (n = 69) 

6 6 6 4 5 5 6 5 5 5 4 4 
4 3 4 2 4 4 4 6 3 4 6 5 
2 3 3 6 4 5 6 3 3 5 5 3 
5 4 6 4 4 7 4 5 2 3 3 5 
3 4 6 7 1 6 6 6 7 2 1 4 
4 4 4 5 3 4 3 4 4 
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Appendix E: MLR models grouped by land type and methodology 

pH 

Predictions within land type  

Forest: (n=164) R2 = 0.554,  RMSE = 0.392, RPD = 1.491989, RPIQ = 2.181967 
pH (forest) = 12.4764 − 0.9890 * log(S) −  2.9041 * log(K) + 1.2929  * log(Ca) +  1.2405 
* log(V) − 2.0563 * log(Fe) + 0.9099 * log(Cu) + 1.5726 * log(Zn) + 3.4226 * log(Rb) − 
1.3226 * log(Sr) + 1.9926 * log(Zr) − 1.5661 * log(Pb)

Grassland: (n=81) R2 = 0.721, RMSE = 0.346, RPD = 1.832114, RPIQ = 2.484338 

pH (grassland) = 0.3702 − 0.5780 * log(S) + 0.4813 * log(Ca) + 1.2014 * log(Ti) +  
0.3710 * log(Mn) 

Marine terrace: (n=159) R2 = 0.463, RMSE = 0.396, RPD = 1.330089, RPIQ = 
1.579797 

pH (marine terrace) = 4.86504 − 0.70310 * log(P) + 0.72776 * log(Ca) + 0.09614 * 
log(V) − 0.25164 * log(Cr) + 0.54533 * log(Mn) − 0.62438 * log(Y) 

Predictions within methodologies 

1:1 DI to soil: (n=319) R2 = 0.488, RMSE =  0.531, RPD = 1.405067, RPIQ= 1.790669 

pH (1:1) = 9.1443 − 2.0023 * log(Al) − 0.6190 * log(P) − 0.5009 * log(S) + 0.6448 * 
log(Ca) + 1.2714* log(V) + 1.0910* log(Cu) +  1.7927* log(Zn) − 0.5594* log(Y) + 
0.7178 * log(Zr) − 0.9327 * log(Pb) 

Saturated paste: (same model as pH for marine terrace) 
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Sand % 

Predictions within land type 

Forest: (n=86) R2 = 0.672, RMSE = 13.8, RPD = 1.523129, RPIQ = 2.633648 

Sand % (forest) =  −1102.86 + 31.20 * log(Mg) + 67.21* log(Al) + 114.93 * log(Si) + 
90.09 * log(Ti) − 46.67 * log(Cr) − 49.31 * log(As) − 23.054 * log(Zr) + 43.62 * log(Sr) 
− 80.97 * log(Zr) − 29.62 * log(Pb)

Grassland: (n=41) R2 = 0.386, RMSE = 10.1, RPD = 1.140051, RPIQ = 1.351508 

Sand % (grassland) = 590.72 − 74.78 * log(Fe) − 117.84 * log(Rb) 

Marine terrace: (n=159) R2 = 0.895, RMSE = 5.56, RPD = 2.985065, RPIQ= 4.94454 

Sand % (marine terrace) =  −3.438 + 6.782 * log(Mg) + 110.230 * log(Al) − 59.377 * 
log(Si) + 6.566 * log(P) + 69.368 * log(K) + 10.794 * log(Cr) − 65.167 * log(Fe) −  
19.689 * log(Zn) − 77.312 * log(Rb) + 15.831 * log(Y) − 21.735 * log (Zr) − 11.772 * 
log(Pb) 

Predictions within methodologies 

Hydrometer: (n= 298) R2 = 0.462, RMSE = 13.3, RPD = 1.238532, RPIQ = 1.902471 

Sand % (hydrometer) = 73.594 + 115.730 * log(Al) − 76.393 * log(Si) + 6.591 * log(P) + 
41.964 * log(K) − 69.658 * log(Fe) − 30.785 * log(Cu) − 34.578 * log(Rb) + 19.141 * 
log(Sr) + 10.272 * log(Y) 

Pipette: (n= 60) R2 = 0.348, RMSE = 24.5, RPD = 1.19692, RPIQ = 1.819865 

Sand % (pipette) =  −41.1663 + 0.1271 * log(Mg) − 36.6582 * log(Si) + 87.7636 * log(K) 
− 79.0289 * log(As)
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Clay % 

Predictions within land type 

Forest: (n= 86) R2 = 0.714, RMSE = 6.60, RPD = 1.801769, RPIQ = 3.425242 

Clay % (forest) = 312.642 − 34.958 * log(Al) − 22.128 * log(Si) − 47.058 * log(K) + 
8.385 * log(Cr) + 22.251 * log(As) + 76.126 * log(Rb) + 6.630 * log(Zr)  

Grassland: (n=41) R2 = 0.101, RMSE = 9.25, RPD = 0.558785, RPIQ = 0.7429938 

Clay % (grassland) = −1053.14 + 242.05 * log(Si) − 20.20 * log(P) − 147.94 * log(K) + 
19.28 * log(Ca) + 72.46 * log(Ti) − 71.76 * log(V) − 10.87 * log(Mn) + 145.83 * 
log(Rb) − 27.05 * log(Nb)  

Marine terrace: (n= 159) R2 = 0.812, RMSE = 3.55, RPD = 2.193866, RPIQ = 2.759737 

Clay % (marine terrace) = −125.565 + 37.201 * log(Si) − 50.809 * log(K) − 7.667 * 
log(Mn) + 18.487 * log(Fe) + 46.287 * log(Rb) − 11.529 * log(Sr) + 7.591 * log(Zr) +  
11.613 * log(Pb) 

Predictions within methodologies 

Hydrometer: (n= 298) R2 = 0.624, RMSE = 6.05, RPD = 1.59405, RPIQ = 2.180083 

Clay % (hydrometer) = −63.433 − 36.985 * log(Al) + 49.569 * log(Si) − 55.291 * log(K) 
+ 24.823 * log(Fe) + 12.253 * log(Ni) + 42.641 * log(Rb) + 7.279 * log(Zr)

Pipette: (n=60) R2 = 0.631, RMSE = 10.1, RPD = 1.143407, RPIQ = 1.485874 

Clay % (pipette) =  −68.354 − 28.919 * log(Mg) + 8.771 * log(S) − 112.427 * log(Ti) + 
125.696 * log (Fe) − 38.959 * log(Zn) + 38.438 * log(As) + 79.109 * log(Y) − 54.210 * 
log(Nb)  
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CEC 

Predictions within land type 

Forest: (n= 164) R2 = 0.819, RMSE = 7.52, RPD = 2.328453, RPIQ = 2.496853 
 
CEC (forest) = 960.22 − 16.74 * log(Mg) − 70.88 * log(Al) −101.23 * log(Si) − 12.07 * 
log(Ti) + 17.00 * log(Cu) + 13.68 * log(Zn) + 32.03 * log (As) − 17.18 * log(Y) 
 
Grassland: (n= 81) R2 = 0.517, RMSE = 5.44, RPD = 1.082659, RPIQ = 1.139399 
 
CEC (grassland) = 448.11 − 116.72 * log(K) − 31.79 * log(Fe) + 36.44 * log(Cu) + 84.84 
* log(Rb) − 17.99 * log(Pb) 
 
Marine terrace: (n=159) R2 = 0.653, RMSE = 2.57, RPD = 1.716937, RPIQ = 2.721496 
 
CEC (marine terrace) = 282.558 − 43.197 * log(Al) − 24.900 * log(K) − 24.897 * log(Ti) 
− 4.258 * log(Cr) + 16.979 * log(Fe) + 9.954 * log(Zn) + 16.208 * log(Rb) + 8.594 * 
log(Zr)  
 

Predictions within methodologies 
 

Ammonia gas absorbance: (n= 218) R2 = 0.689, RMSE = 7.38, RPD = 1.777052, RPIQ 
= 2.248444 
 
CEC (absorbance) = 866.41 − 17.42 * log(Mg) − 57.19 * log(Al) − 84.50 * log(Si) − 
26.04 * log(Ti) + 32.08 * log(Cu) + 11.87 * log(Zn) − 15.45 * log(Y) 
 
UN-FAO CEC: (n= 41) R2 = 0.238, RMSE = 12.8, RPD = 1.071226, RPIQ = 0.800528 
 
CEC (UN-FAO) =  31.82 − 43.53 * log(Ti) + 30.10 * log(Fe) + 11.97 * log(As) 
 

CEC7: (n= 56) R2 = 0.646, RMSE = 8.54, RPD = 1.140609, RPIQ = 1.562391 
 

CEC (CEC7) = 1118.46 − 42.04 * log(Mg) − 58.67 * log(Al) − 117.73 * log(Si) − 21.35 
* log(Ca) − 90.29 * log(Ti) + 26.11 * log(Mn) + 41.93 * log(Fe) + 27.19 * log(As) + 
21.73 * log(Sr) + 90.34 * log(Y) − 39.18 * log(Nb) −18.16 * log(Pb) 
 
S - 10.10: (n=159) (same model as CEC for marine terrace) 
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SOC content 

Predictions within land type 

Forest: (n= 168) R2 = 0.815, RMSE = 1.3, RPD = 2.203682, RPIQ = 2.432288 
 
SOC % (forest) = 200.254 − 11.670 * log(Al) − 22.149 * log(Si) + 2.337 * log(S) − 
6.716 * log(Fe) + 1.790 * log(Cu) 
 

Grassland: (n=81) R2 = 0.661, RMSE = 1.01, RPD = 1.638437, RPIQ = 1.844786 

 

SOC % (grassland) = −21.705 − 9.916 * log(Al) + 2.863 * log(P) + 1.672 * log(S) + 
16.823 * log(Ti) − 3.322 * log(Mn) − 1.310 * log(Ni) − 1.986 * log(Cu) + 5.537 * 
log(Zn) + 4.028 * log(Rb) − 5.465 * log(Nb) 
 
Marine terrace: (n= 159) R2 = 0.821, RMSE = 0.738, RPD = 2.36662, RPIQ = 2.239114 

 

SOC % (marine terrace) = 123.814 − 11.556 * log(Al) − 13.193 * log(Si) + 1.002 * 
log(S) − 1.772 * log(Cr) + 2.439 * log(Zn) + 1.439 * log(Zr) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



216 

TN content 

Predictions within land type 

Forest: (n= 165) R2 = 0.738, RMSE = 0.0840, RPD = 1.973068, RPIQ = 2.306534 

TN % (forest) = 9.0712 − 0.5387 * log(Al) − 0.8676 * log(Si) + 0.1171 * log(S) − 0.2682 
* log(K) + 0.1413 * log(Mn) − 0.4349 * log(Fe) + 0.1308 * log(Cu) + 0.1861 * log(As) −
0.1302 * log(Y) + 0.2561 * log(Zr)

Grassland: (n=81) R2 = 0.842, RMSE = 0.0568, RPD = 2.456222, RPIQ = 4.434534 

TN % (grassland) = −2.8321 + 0.2104 * log(P) + 0.1217 * log(S) + 0.6091* log(Ti) − 
0.1660 * log(Mn) − 0.2159 * log(Ni) + 0.4400 * log(Zn) + 0.1190 * log(Rb) − 0.3014 * 
log(Nb)  

Marine terrace: (n= 159) R2= 0.762, RMSE = 0.0544, RPD = 1.919689, RPIQ = 
2.69714 

TN % (marine terrace) = 10.99877 − 0.97424 * log(Al) − 1.09490 * log(Si) − 0.05386 * 
log(P) + 0.10879 * log(S) − 0.03612 * log(Ca) − 0.37419 * log(V) − 0.13065 * log(Cr) + 
0.41760 * log(Zn) − 0.09371* log(Y) + 0.11565 * log(Zr) 



217 

CN ratio 

Predictions within land type 

Forest: (n= 168) R2 = 0.273, RMSE = 6.46, RPD = 0.7049186, RPIQ= 0.7112989 

C:N (forest) = 100.97 + 25.32 * log(Mg) − 54.53 * log(K) − 23.30 * log(Zn) + 38.45 * 
log(Sr)  

Grassland: (n= 81) R2 = 0.192, RMSE = 2.03, RPD = 1.096776, RPIQ= 1.067139 

C:N (grassland): 36.184 − 8.783 * log(Al) + 2.957 * log(S) − 4.100 * log(K) + 10.370 * 
log(Zr) + 3.552 * log(Pb) 

Marine terrace: (n= 159) R2 = 0.342, RMSE = 1.04, RPD = 1.239946, RPIQ= 1.176866 

C:N (marine terrace) =  3.369 + 1.019 * log(S) + 4.091 * log(Ca) − 5.359 * log(Ni) − 
4.323 * log(Cu) + 2.406  
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