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ABSTRACT

Long-term rainfall prediction on Hawaiian islands in the scale of up to decades is a crucial task

for water resource management. The current physics based climate models only produce coarse

outputs, which are not suitable to the islands due to high rainfall gradient. Statistical downscaling

is a method of learning a model to perform super-resolution on weather and climate variables;

predicting local weather and climate from coarse resolution variables. This project focuses on

rainfall data, and aims at building a framework for statistical downscaling using historical reanalysis

data in coarse resolution.

Statistical downscaling is typically done using linear regression models. Here we test the use of

machine learning methods such as decision trees and neural networks, which are underutilized for

this application. Given a set of coarse inputs, non-linear machine learning models are trained to

make rainfall predictions.

In this study, we compare machine learning methods for statistical downscaling on a large his-

torical dataset for Hawai‘i’s rainfall. In Chapter 2, the dataset used for this project is explained.

In Chapter 3, explanations on each method are provided. Chapter 4 iterates the result on fea-

ture selection and experiment on site-specific models. It also has a followup on the site-specific

experiment, where the effect of sample size on machine learning methods is examined.

Our results show that neural networks are able to improve upon linear regression prediction.

However, while this is true in aggregate, there are some cases where linear regression is superior to

neural networks, typically when there is not much data.

Overall, this project provides a demonstration of the capabilities and limitations of non-linear

machine learning methods, establishing the initial milestone on improvement on statistical down-

scaling research to follow.
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CHAPTER 1
INTRODUCTION

Long-term rainfall prediction on the Hawaiian islands is a crucial task for water resource manage-

ment as the livelihood of the people living on the islands is highly dependent on rainfall. In fact,

99% of domestic water is from groundwater, which comes from rainfall and cloud-water interception

[5]. However, how the changing climate will affect the water resources is still unknown. Climate

scientists study the effects of climate change using General Circulation Models (GCMs). These are

long-running simulations of global climate variables. However, they are very expensive simulations

and done in a coarse manner that doesn’t capture local micro-climates of places like Hawai‘i. The

mountainous topography of the islands change the weather in ways that are unaccounted for by

the GCMs. This causes high rainfall gradients [7], resulting in micro-climates across the islands.

Fig 1.1 shows mean annual rainfall of Hawai‘i, with measurements taken from 100+ stations and

smoothed for visualization. Even within the same island, there is a great diversity in the amount

of rainfall. Estimating the future rainfall at high resolution is necessary for accurately predicting

the future water budget.

Figure 1.1: Mean annual rainfall of Hawai‘i [4]. Hawai‘i exhibits high rainfall gradients, requiring
predictions at high resolution, as these patterns cannot be captured by GCM.

Statistical downscaling is a method of making predictions at high resolution based on coarse

resolution inputs. Linear statistical models have been applied to climate data over Hawai‘i, but

exploration of non-linear models still has not extensively been conducted. Recent studies have seen

advances in machine learning methods such as neural networks and tree methods such as XGBoost,
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which can effectively learn non-linear and thus complicated representation of the data. In this

study, such non-linear algorithms are applied to rainfall prediction over Hawai‘i in order to assess

their effectiveness. Random forest, XGBoost, and neural networks are tested as non-linear methods

while being compared against linear regression models as the performance baseline.
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CHAPTER 2
DATASET

2.1 Rainfall Data

The rainfall data includes monthly rainfall data collected from over 2,000 rain gauges across Hawai‘i

up to 2012, after which gap filling was applied to fill the missing data [4]. As explained in the next

section, the reanalysis data is available starting 1948. Therefore, only the subset of the rainfall

data collected between 1948 and 2012 is used for this study, which means that the maximum

number of rainfall observations that a single station could have is 780. This resulted in 1992 unique

weather stations from Kauai, Oahu, Molokai, Maui, Kahoolawe, and Hawai‘i. Observations are

monthly rainfall for each station in inches, accompanied with latitude and longitude coordinates

and elevation of the weather station. Total of 865,537 month-station samples are available, of which

52% (453,285 samples) are gap-filled data. Of all 1992 stations between 1948 and 2012, there are 78

stations where all of rainfall data is obtained by gap filling. Although 780 is the maximum number

of rainfall samples per station, the rainfall dataset has a significant number of missing data. Figure

2.1 shows the histogram of the number of samples available per station, of the entire dataset and

of the actual observations. If we exclude the gap-filled data, only a few stations have more than

600 samples per station.

Figure 2.1: Number of samples available per station. left : histogram of the entire dataset. right :
histogram of the subset of the data excluding the gap-filled data. A large portion of the rainfall
data is gap-filled.
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2.2 Reanalysis Data

Climate data has been measured across the globe for a long time, but their format and geographical

configurations are not consistent. For example, different instruments would record different climate

variables at different periods of times. Reanalysis data is an attempt to impose geographical

and temporal consistency in climate variable measurements. Taking actual observations across

the globe, climate variables are re-calculated using physics based climate models to end up in

measurements at consistent timestamps and geographical grid.

In order to make rainfall predictions on specific weather stations, 16 of commonly used reanalysis

variables are used. These variables are suggested by the climate science collaborators, including

but not limited to air temperature at different levels, air pressure, humidity, surface temperature,

etc. The complete list is provided in Table B.1 in Appendix. The dataset is published by National

Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR)

[6]. Reanalysis data consists of monthly mean observations on 2.5◦ by 2.5◦ grid across the globe

since 1948. Unless explicitly specified, the model input is the closest observation from each station

per each of the 16 reanalysis variables. Therefore, a vector of length 16 describes the state of the

atmosphere for each data sample. As shown in the figure 2.2, such resolution is not appropriate to

capture local climate patterns, as the whole island of Oahu is explained by a single cell. Therefore,

machine learning models take such coarse observations and try to make rainfall predictions on each

weather station.

Figure 2.2: Distribution of weather stations and locations of observations from reanalysis data.
While weather stations are densely distributed across the islands, the reanalysis measurements are
coarsely distributed.

2.2.1 Linear Interpolation

One way of mitigating the effect of coarse resolution observation is to fill the gap with linear

interpolation. This increases the resolution of observation in the form of simple approximation.
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In order to incorporate observations from around the islands, observations ranging in 152.5◦W

to 162.5◦W and 15◦N to 25◦N are used for computing the linear interpolation. Two different

resolutions are tested; one that splits the entire region in 50 by 50 cells, and another that splits the

same region in 100 by 100 cells. Figure 2.3 compares the resolutions of original observation, 50 by

50, and 100 by 100 interpolation.

Figure 2.3: Comparison of resolution of reanalysis data. left : original resolution. middle: linear
interpolation in 50 by 50 resolution. right : linear interpolation in 100 by 100 resolution.

The model input for each station is now the closest data obtained from linear interpolation

instead of the original value in the coarse grid. As a result, stations that are physically close to

each other are guaranteed to possess similar valued climate variables, which was not the case with

coarse resolution. As shown in Figure 2.4 left, if two stations are next to each other but their

locations are such that one is in a grid cell and the other in another grid cell, the reanalysis input

for each station with be very different despite their physical closeness. As shown in the middle and

right plots, such effect is mitigated by interpolation.
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Figure 2.4: Monthly mean of skin temperature. left : original values as given in NCAR/NCEP
reanalysis data. middle: 50 by 50 interpolation. right : 100 by 100 interpolation. By linearly
interpolating the coarse input, input values to the models among stations are smoothed out.
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CHAPTER 3
METHODS

The performance comparison is evaluated via four types of methods: linear regression, random forest

and XGBoost, both of which are types of tree methods, and neural networks. Linear regression

serves as the performance baseline. Evaluation is made on Root Mean Squared Error (RMSE)

between ground truth rainfall observation vs. the prediction made by machine learning models.

3.1 Linear Regression

Linear regression is one of the simplest statistical models, where the predicted value is expressed as

the sum of each input variable multiplied by its corresponding scalar values. Under the assumption

that a quantity yi depends on a set of d predictor variables, {x1i , x2i , . . . , xdi }, the prediction ŷi is

expressed as

ŷi = β0 + β1x1i + · · ·+ βdxdi + ε

where ε follows a normal distribution with mean zero. Given a dataset of n samples {x1i , x2i , . . . , xdi , yi}ni=1

and corresponding predictions {ŷi}ni=1, the objective is to find β such that it minimizes the total

sum of squares, i.e.,

argmin
β

(
n∑

i=1

(yi − ŷi)
2

)
Because of its simplicity, linear regression serves as the baseline model.

3.2 Tree Methods

The basic component of tree methods is a decision tree. Starting from the root node, each sample

is categorized by sequences of decisions, where each internal node is a binary decision and each

edge of the tree represents agreement/disagreement on the decision. Therefore, each leaf node is

a subset of the entire data. Random forest builds upon decision trees, where instead of a single

tree making predictions, multiple trees are trained, each with a different subset of the training data

[2]. The prediction is therefore ensemble from the trees, i.e., forest. XGBoost is also a variant of

tree methods, where instead of taking ensembles of predictions, shallow trees with small number

of depth, also called as ‘weak learners’, make sequential prediction, each updating the prediction

made by previous weak learners [3]. In this paper, random forest and XGBoost are trained and

tested for their performance.
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3.3 Neural Networks

Neural networks are a set of computational units that execute sequential transformations of the

input. A series of layers transform the input and pass onto the next layer, after all of which the

prediction (output) is calculated. Each layer consists of a set of weights, which are used to transform

the output from the previous layers. During training, those weight values are updated gradually.

Neural networks are able to capture non-linear and complicated relationships between the input

and the output. Though there exist numerous possible neural network architectures, this project

focuses on simple feed-forward dense networks.
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CHAPTER 4
RESULTS

4.1 Feature Selection

Our first set of experiments identify which input features are most useful for predicting rainfall.

For each algorithm in linear regression, random forest, and XGBoost, a single model learns on the

entire dataset from all of the stations. Latitude and the longitude coordinates are also included so

that the models can identify which site each sample came from.

There are two types of experiments for feature selection: one that tests the effect of ablation of

inputs, and the other that explores the variants of reanalysis data. In the ablation study, elevation

and the seasonal indicator are tested for inclusion/exclusion. Seasonal indicator is a binary variable

indicating whether the sample is observed in dry season (months fromMay to October) or wet season

(November to April). This results in four variations of the input as described in Table 4.1: 1)base,

which includes all of latitude and longitude coordinates, the seasonal indicator, and elevation. 2)

-both, where the seasonal indicator and elevation are excluded from the base. 3) -elevation, where

elevation is excluded from the base. 4) -seasonal, where the seasonal indicator is excluded from the

base.

In the other experiment for exploring the variants of reanalysis input, three variants are tested as

described in Table 4.1: linear interpolation with resolution of 50×50, linear interpolation again but

with resolution of 100×100, and the grid. With the interpolation, all of the 16 reanalysis variables

are linearly interpolated to replace the original coarse observations with the closest observations at

higher resolutions. With the grid variant, the 16 reanalysis variables are given as a whole grid. The

grid cells to be included are at (160◦W, 22.5◦N), (157.5◦W, 22.5◦N), (155◦W, 22.5◦N), (160◦W,

20◦N), (157.5◦W, 20◦N), (155◦W, 20◦N), which correspond to the blue dots in the Figure 2.2.

Hyperparameter search is conducted for each type of the input from both of the experiments,

and for all of the methods. The dataset is split into train, validation, and test set chronologically.

The training set consists of all of the data between 1948 and 1983, the validation set consists of

years between 1984 and 1996, and the test set consists of years between 1997 and 2012. Boundary

years are all inclusive. This results in 513,970 data in the training set, 172,508 data in the validation

set, and 179,059 data in the test set, i.e., 59.3%, 19.9%, 20.7% split.

Hyperparameter tuning is done using random grid search in hyperparameter space to test 50

different combinations, using a python package for hyperparameter optimization, SHERPA [1]. The

search space for XGBoost is the number of estimators in {100, 110, 120, ..., 300}, learning rate in

[0.05, 0.2], and max depth in {1, 2, ..., 10}. The search space for random forest is the number of

estimators in {100, 110, 120, ..., 300} and the minimum number of samples for a node to be split

in {2, 3, ..., 6}. For every randomly chosen combination of hyperparameters, a model is trained on
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the training set and performance on the validation set is used for choosing the best combination

of hyperparameters. After the best hyperparameter is chosen, the final evaluation is made on the

test set.

The following Table 4.1 categorizes the input type by attributes used. In order to capture

non-deterministic results by randomized training for random forest and XGBoost, each model is

trained five times for the evaluation to calculate the mean and the standard deviation of Root Mean

Squared Error (RMSE).

Table 4.1: Categorization of the model input. Total of seven variations of the input were tested.

Ablation Study

Input Type lat lon seasonal elevation reanalysis resolution

base ✓ ✓ ✓ closest original

-both ✓ × × closest original

-elevation ✓ ✓ × closest original

-seasonal ✓ × ✓ closest original

Reanalysis Variant

Input Type lat lon seasonal elevation reanalysis resolution

50x50 ✓ ✓ ✓ closest 50x50

100x100 ✓ ✓ ✓ closest 100x100

grid ✓ ✓ ✓ grid original

The follwoing table 4.2 summarizes the RMSE obtained by this experiment. The best per-

formance of the ablation study was observed with XGBoost when using both elevation and the

seasonal indicator. Neither resolution of interpolation helped improve the performance, suggesting

the original resolution is enough for this task. The fact that the RMSE increased compared to

base suggests that interpolating the original reanalysis data is not only useless, but it introduces

artifacts that negatively affect performance.

Providing reanalysis data as a grid had no strong effect over the base input type, either. Mean-

while, grid input increased the computation time significantly. This suggests that single input of

the coarse reanalysis resolution is enough.
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Table 4.2: Result of the study on feature selection. Statistics are obtained from five runs. Linear
regression is run only once, as the prediction is deterministic. Removing some of the input variables
did not yield improvement over the base input type. The performance increased when feeding
reanalysis data as grid but the difference is not significance, while it increased the computation
time.

Ablation Study

Input Type LR RF XGB

base 5.301 3.931 ± 0.006 3.784 ± 0.012

-seasonal 5.315 3.963 ± 0.002 3.818 ± 0.008

-elevation 5.319 3.959 ± 0.008 3.813 ± 0.019

-both 5.333 3.994 ± 0.011 3.868 ± 0.015

Reanalysis Variant

Input Type LR RF XGB

50x50 5.556 4.103 ± 0.010 4.113 ± 0.023

100x100 5.556 4.075 ± 0.005 4.077 ± 0.054

grid 5.667 3.991 ± 0.004 3.762 ± 0.021

4.2 Site-specific experiments

In the previous experiments, a single machine learning model fit to all of the data from all the

stations. In this study, multiple models fit to each station using only the input data for that sta-

tion, hence making them site-specific. Theoretically, there are as many machine learning models

as the number of stations, which significantly reduces the number of training data for each model.

Moreover, each model has a different number of data available. In order to compensate for the

reduced number of training samples and thus variance of the performance, chronological five-fold

cross validation is used to evaluate the performance. For each station, the entire data is chrono-

logically split into five folds. The prediction on the first fold is made by training on the rest of the

four folds. The prediction on the second fold is also done in the same manner, and so are for all the

rest of the folds. This means any stations with less than five samples have to be excluded, which

resulted in 1944 unique weather stations. Regarding the input features, since each model only

receives data from a single station, lat lon coordinates and elevation become irrelevant. Therefore,

XGBoost models are given 16 reanalysis variables in the original coarse resolution, along with the

seasonal indicator. Comparison is made on linear regression and XGBoost.

The following figure 4.1 shows the result of such an experiment. When aggregated, the mean

of RMSE with linear regression is 4.309, and 4.150 with XGBoost, so XGBoost outperforms linear

regression. However, this is merely due to the fact that linear regression is particularly bad with a

low number of samples. If we focus on the case where a station has more than 100 samples, linear

regression outperforms XGBoost in the majority of stations. The issue with this approach is that
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the XGBoost models are using the same hyperparameters across all the site-specific models. In

the next experiment, we narrow down the number of stations so that we can choose appropriate

hyperparameters for each site.

Figure 4.1: The comparison of performance between XGBoost and LR per station. Each bar
corresponds to a station, where the positive height (blue) indicates XGBoost outperforms LR, and
negative height (red) in the opposite case. XGBoost outperforms LR for the stations with low
number of samples, but that is not the case with a higher number of samples.

4.3 The effect of the sample size

As shown in the previous section, it is challenging to beat the performance of linear regression when

it comes to site-specific models. In this study, we focus only on actual rainfall data, by excluding

gap-filled data. This is to remove any possibility that the gap-filling method is inducing artifacts

such that it favors the performance of downstream prediction with linear regression. The study

focuses on the effect of sample sizes for site-specific models. Each model takes in samples from a

single station, while the number of training data is different, i.e., in {50, 100, 150, ..., 500, 550}. To
achieve this, gap-filled data is removed from the dataset first. Next, any stations with less than 750

samples are excluded for insufficient training data. This resulted in 24 unique stations. In order to

achieve the best performance, hyperparameter tuning was done using 80% of the data for five-fold

cross validation. The rest of 20% was set aside for the final performance evaluation. This split was

made chronologically.

The search space for the hyperparameter tuning for XGBoost is the number of estimators in

{100, 110, 120, ..., 300}, learning rate in [0.001, 0.1], and the max depth in {1, 2, 3, ..., 10}. Randomly

chosen 500 combinations of the hyperparameters were tested. For each of the random combina-

tions, all of the 24 site-specific models are trained independently to evaluate the individual model’s

performance. After every combination is tested, each station obtains (possibly, but not necessarily)

a different set of the best hyperparameters.

Since XGBoost had difficulty making comparable predictions to linear regression models, an-
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other non-linear method, neural networks were introduced. This model consisted of three dense

layers with selu activation, and the input and the output layers. Between each dense layer are

dropout layers with the dropping rate of 0.5. L2 regularization is applied to each of the dense

layers. Unlike linear regression and tree methods, input data has to be pre-processed for the best

performance. All of the input values are scaled into values in [0, 1], and the output was scaled

into log space. Training was done using 20% of the training data for early stopping. The hyper-

parameter search was done for the number of units in each layer in {256, 257, ..., 1024}, learning
rate in [1 × 10−5, 1 × 10−2], and batch size in {64, 128, 192, 256, 512}. Randomly chosen 160 com-

binations of the hyperparameters were tested with five-fold cross validation on the 80% of the

entire data. Again, 24 of site-specific models were independently trained to achieve site-specific

hyperparameters.

After the best hyperparameters were obtained, all of the five folds used for hyperparameter

tuning were now used as the training set. 24 independent models train on each site, and mean and

standard deviation of ten runs was calculated on the held-out 20% of the data. The following figure

4.2 shows the aggregated result of all 24 models. In general, it is shown that more samples lead to

better performance in any method. Neural networks are able to achieve lower RMSE than linear

regression if provided more than 150 samples.

However, if we focus on the comparison on a station basis as shown in figure 4.3, we can observe

that neural networks are still outperformed by linear regression in some stations.

Figure 4.2: RMSE of the prediction with different numbers of training samples.

This suggests that it is still challenging to outperform linear regression on all the stations.

If the task is to predict the overall rainfall amount as the entirety, neural networks are able to
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Figure 4.3: The comparison of performance between NN and LR per station. x-axis is the number
of training samples and the y-axis is RMSE. At some stations, LR performs better but on average,
NN performs better.

achieve better performance compared to linear regression. However, if the task is to achieve better

prediction on a station basis, then linear regression is still effective in some cases.

Overall, the number of samples is a significant factor that affects the performance of the models.

The observed trend is that the more training samples lead to better performance. However, because

of the coarse temporal resolution of rainfall data (monthly observations) this encounters limitations

on collecting more samples.
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CHAPTER 5
DISCUSSION AND CONCLUSIONS

A series of experiments tested the performance of non-linear machine learning methods on climate

data. Neural networks outperformed linear regression on this task, especially when provided with

more sample sizes. We quantified an improvement of performance as the amount of historical data

increased.

One of the challenges is to capture correlation between stations. In this study, all of the site-

specific models were trained independently. However, correlation of prediction uncertainty is of

crucial interest in some applications such as disaster control and state-wise rainfall mass prediction

for water resource management. More research into spatial regression models that can capture

uncertainty is needed. Our preliminary results on site-specific heteroskedastic regression models

indicate capturing uncertainty is possible, but because we did not conduct a complete and thorough

experiment on that, the result is not included in this paper.

Nonetheless, this project provides insight on the capability and limitation of non-linear methods,

which encourages the future research on statistical downscaling.
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APPENDIX A
HYPERPARAMETER SEARCH

The following tables show the space of hyperparameters search, and the best combination of hy-

perparameters chosen using cross validation.

A.1 Hyperparameter search for feature selection

Table A.1: Hyperparameter search for XGBoost

XGBoost

#estimators learning rate max depth

{100,110,120,...,300} [0.05, 0.2] {1,2,...,10}

Table A.2: Best hyperparameters for XGBoost per each input type

XGBoost

input type #estimators learning rate(×10−2) max depth

base 290 11.6 9

-both 300 9.15 8

-elevation 240 5.52 9

-seasonal 170 10.6 8

50x50 190 6.34 9

100x100 240 8.52 8

grid 240 13.0 8

Table A.3: Hyperparameter search for random forest

Random Forest

#estimators min # samples

{100,110,120,...,300} {2,3,...,6}
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Table A.4: Best hyperparameters for random forest per each input type

Random Forest

input type #estimators min # samples

base 180 4

-both 270 3

-elevation 250 2

-seasonal 100 5

50x50 270 3

100x100 200 2

grid 220 2

A.2 Hyperparameter search for assessing the effect of the sample

size

Table A.5: Hyperparameter search for XGBoost

XGBoost

#estimators learning rate max depth

{100,110,120,...,300} [0.001, 0.1] {1,2,...,10}
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Table A.6: Best hyperparameters for XGBoost per each site

XGBoost

station id #estimators learning rate(×10−2) max depth

0 190 2.785 3

1 190 9.494 2

2 280 6.212 2

3 160 4.773 1

4 110 7.366 1

5 170 7.953 1

6 110 5.225 1

7 100 2.856 4

8 260 6.785 1

9 300 8.400 1

10 260 8.308 1

11 240 9.677 1

12 130 8.458 2

13 130 3.406 2

14 170 3.603 1

15 110 4.833 4

16 130 3.396 2

17 220 7.775 2

18 110 3.337 4

19 130 5.728 2

20 170 9.065 1

21 190 2.891 3

22 280 9.263 4

23 180 7.471 2

Table A.7: Hyperparameter search for neural networks

Neural Networks

#units learning rate batch site

{256,257,...,1024} [1× 10−5, 1× 10−2] {64,128,192,256,512}
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Table A.8: Best hyperparameters for neural networks per each site

neural networks

station id #units learning rate(×10−3) batch size

0 274 1.702 192

1 388 2.570 192

2 315 1.835 512

3 558 1.129 512

4 558 1.129 512

5 558 1.129 512

6 558 1.129 512

7 558 1.129 512

8 795 0.793 256

9 961 0.749 256

10 558 1.129 512

11 494 0.451 128

12 558 1.129 512

13 961 0.749 256

14 558 1.129 512

15 795 0.793 256

16 961 0.749 256

17 687 1.343 64

18 719 1.185 256

19 559 0.489 256

20 987 0.891 256

21 987 0.891 256

22 987 0.891 256

23 961 0.749 256
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APPENDIX B
CLIMATE VARIABLES FROM REANALYSIS DATA

The following table provides the complete list of attributes of reanalysis data used for the experi-

ments and the atmospheric trait they explain.

Table B.1: List of Attributes of Reanalysis Data

Attribute Atmospheric Trait

Geopotential Height at 500hPa Air pressure

Geopotential Height at 1000hPa Air pressure

Air temperature difference 1000hPa minus 500hPa Air temperature difference: atmo-
spheric stability

Surface air temperature at 2m Air temperature

Zonal moisture transport at 700hPa Flux of moisture

Zonal moisture transport at 925hPa Flux of moisture

Meridional moisture transport at 700hPa Flux of moisture

Meridional moisture transport at 925hPa Flux of moisture

Omega Vertical velocity of the atmosphere

Specific humidity at 700hPa Specific humidity

Specific humidity at 925hPa Specific humidity

Precipitable water Atmospheric moisture

Potential temperature difference between 850hPa and
1000hPa

Air temperature: atmospheric sta-
bility

Potential temperature difference between 500hPa and
1000hPa

Air temperature: atmospheric sta-
bility

Sea level pressure Air movement: rising/sinking

Skin temperature Surface temperature
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