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In recent years many groups have used Fisher, Fisher and(REBE dynamical scaling to investigate and
demonstrate details of the superconducting phase transition. Some attention has been focused on two dimen-
sions where the phase transition is of the Kosterlitz-Thouless-Berez{lKdk#i) type. Piersoret al. used FFH
dynamical scaling almost exclusively to suggest that the dynamics of the two-dimensional superconducting
phase transition may be other than KTB-like. In this work we investigate the ability of scaling behavior by
itself to yield useful information on the nature of the transition. We simulate current-valtegeurves for
two-dimensional Josephson junction arrays with and without finite-size-induced resistive tails. We find that, for
the finite-size effect data, the values of the scaling parameters, specifically the transition temperature and the
dynamical scaling exponemt depend critically on the magnitude of the contribution that the resistive tails
make to thelV curves. In effect, the values of the scaling parameters depend on the noise floor of the
measuring system.
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[. INTRODUCTION Recently, Pierson and co-workébs? published a dy-
namic scaling analysis ofV data taken on ultrathifone
In certain ideal systems, the two-dimensiot2D) super-  unit-cell thick high-temperature superconducting fifres
conducting phase transition in zero magnetic field is of thewell as on prototypical 2D low-temperature superconducting
Kosterlitz-Thouless-BerezinskiKTB) type. For more than systems in which it is believed that a KTB transition exists
two decades, there has been a great deal of work explorirand has been observed’**Basedprimarily on the results
the details of the KTB transition and whether, in fact, oneof their scaling they propose that a reevaluation of the dy-
can be truly observed in physically realizable systems. In th@amics of the KTB transition may be in order. In particular,
past decade, a new class of superconductors has been addleey propose that the dynamical critical exponemay not
to the mix—the high-temperature cuprate superconductorde 2, as one would expect for diffusive dynamics in systems
With their layered structures and highly anisotropic couplingthat follow the 2D XY model, but may be as high as 5 or 6.
strengths, these systems offer the possibility of quasi-two- In this paper we look to determine the proper role of
dimensional behavior. While the nature of the superconductdynamic scaling in such systems and for a possible source
ing phase transition in high-temperature superconductors i®r the very high values of that Pierson and co-workers
as yet an unsettled isstié>* several authoP® have pub- observe in their scaling analysis. In particular, we suggest
lished works that purport to show the existence of a KTBthat it is inappropriate to use evidence of scaling behavior in
phase transition as part of a larger three-dimensional transexperimental data as thgimary support for the existence of
tion mechanism. Othefslo not observe such a transition and a 2D phase transition. In the particular case of the KTB
believe that the conditions for it do not exist in these mate+transition, scaling behavior should, in fact, be valid only
rials. above the transition temperature where a KT correlation
In 1989 Fisher, Fisher, and Hu$EFH) (Refs. 8 and ®  length exists and divergé$.Below the transition tempera-
offered a general analysis of a superconducting phase trangiire the correlation length is infinite and so we should not
tion in D dimensions using a dynamic scaling argument.observe scaling® Nonetheless, apparent scaling is often
Their primary focus was on the behavior of superconductingound below the transition temperature in red data.
systems in the presence of magnetic fields, but they pointeMedvedyeva, Kim, and Minnhagth (MKM) have sug-
out that their scaling also applied in zero field to the KTB gested that the specifics of the scaling behavior bélgwis
transition forD=2 and for a dynamical critical scaling ex- determined by the finite size of the sample rather than point-
ponentz=2. In the years since, some grolipsave used this ing to evidence of some new dynamics as Pierson and co-
scaling approach as a measure of proof of the existence avorkers suggest. In their analysis, MKM point out that al-
absence of a KTB transition; in effect, if the properly scaledthough for any finite-size sample, the resistance only truly
current-voltage(IV) curves collapsddo not collapsgonto  vanishes at zero temperature, for a sample of fixedlsemed
universal scaling curves above and below the transition, thefor data within a limited temperature region, the resistance
a KTB transition is likely(unlikely) to be present. In those may appearto vanish at some nonzero temperature and
cases, the scaling behavior was offered in support of othemay appear to be greater than 2. Thus, one may be led to
more conventional analyses such as the KTB square-rodielieve that a transition to zero resistance may actually occur
temperature dependence in the exponent of the resistive btsr values ofz>2, when in fact it does not. MKM have
havior or the existence of a universal jump in theexpo-  designated such an apparent transition a “ghost” transition.
nent. Our results are entirely consistent with those of MKM.
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We examine this question using the straightforward apsuperconductof? In bulk superconductors the energy to cre-
proach of simulating thelV characteristics of two- ate a vortex is proportional to the length of the vortex and as
dimensional Josephson junction arrays including finite-sizea result is always much greater than the available thermal
effects. As thdV curves are generated using KTB theory, weenergy. However, in thin superconducting films where the
would expect that scaling would yield parameters consisten$erpendicular penetration depth (=1?%/d) can be made
with KTB behavior. Instead we find that the details of the jmych greater than the sample size, the energy needed to
scaling, i.e., the values farand Tyt depend in a critical way  reate a boungair of vortices is (27ng:2/2m)In(r/&), where
on the effective voltag_e sensitivity of the measyring instru-nS is the 2D superfluid densitg is the superconducting co-
ments, a purely experimental parameter. We find the mergg o ce jength, andis the separation between the two vor-

fact that scaling can be accomplished with valueg other tices. This can easily be of the order kfT. [For an array

than 2 insufficient evidence for the existence of an alterna- . .
. " we have 2rE;In(r/ay), wherea, is the array lattice param-
tive phase transition.

We begin in Sec. Il with a brief discussion of the naturee'[er andE, is the Josephson coupling energyhe energy to

of the phase transition in a 2D superconductor and then disc_reatez a single free vortex on the other hand is
2m)In(L/&), infinite in the thermodynamic limitL(

cuss applications of dynamic scaling to such systems in Sekmnsh ;
Ill. In Sec. IV we outline the details of our current-voltage —>)- Thus for temperatures greater than zero, but still suf-

simulations and present the results of our scaling in Sec. \ficiently low, the sample will contain no free vortices, but
We end with a discussion of the apparent scaling behavioi@ther bound pairs of thermally generated vortices that can-
below the transition in Sec. VI and conclude in Sec. VII. not be driven by an applied electrical current.
The KTB phase transition occurs when these bound pairs
of vortices dissociate; this occurs at the Kosterlitz-Thouless-
IIl. THE TWO-DIMENSIONAL PHASE TRANSITION Berezinskii temperatur&,;. These now free vortices may
IN SUPERCONDUCTORS be driven by an applied electric current yielding a flux-flow

For many years it was believed that many types of phasgesistance. Thus, below the vortex-unbinding temperature the
transitions were not possible in two dimensions. For a superdissipation is zero in the limit of zero current. Abovgy the
conductor, for example, it was believed that as the temperd©sistance is not zero due to the finite density of free vortices
ture dropped, the resistivity might become exponentially@nd. as is the usual case for flux-flow resistance, the voltage
small but would never be zero, and no true phase transitiof€Pends linearly on the current, i.e., the system appears
would actually occur. There were theoretical predictionsOhmIC- (Once agaln,_thls is strictly correct onl'y in the limit
about the impossibility of general long-range order in two-Of Zero current as discussed belpwhe magnitude of the
dimensional systems. The earliest was by Péierdo ar-  esistance depends on the density of free vortisgswhich
gued that the thermal motion of long-wavelength phonondn turn varies as ¥ where, , the correlation length, is a
would destroy conventional long-range order in a two-measure of the size of the fluctuations above the transition
dimensional crystal. The absence of certain types of longtemperature.
range order in two dimensions was rigorously shown by An externally applied current may unbind a pair of vorti-
Mermin18 ces via the Lorentz force. Well above the transition tempera-

The absence of long-range order, however, does not ne¢Ure, where many pairs of vortices are already unbound, the
essarily imply the absence of a phase transition. Such a phagéditional effect of emall current unbinding vortex pairs is
transition would be from a disordered high-temperature statgot observable. That is, abovigr and at low currents the
to an ordered, but not infinite-ranged low-temperature statecurrent-voltage characteristics are linear due to the thermally
Kosterlitz and Thouled and Berezinski® showed that this unbound vortices. As the current increases and the additional
was indeed correct by showing that “quasi-long-range or-density of free vortices begins to be important, tifechar-
der,” the algebraic decay of correlations, could occur. Ko-acteristics switch to a power law=12T" where <a(T)
sterlitz and Thouless called thispological long-range order <3. Below the transition temperature, where there are no
and applied it to two-dimensional crystatseutral superflu-  thermally unbound free vortices, current unbindinglisays
ids, and XY magnets. They did not apply it to two- important and the current-voltage relations alwayspower
dimensional superconductors or the isotropic two-law with a(T)>3. The result is that fosufficiently small
dimensional Heisenberg magnet, where they believed theeasuring currenisthe exponent of théV characteristics
proper conditions for observing the transition could notjumps discontinuously from 1 to 3 & .
strictly be met. Whether a KTB transition or KTB-like transition is ob-

Beasley, Mooij, and Orlandd and Doniach and servable in a particular experimental system depends on the
Hubermar? demonstrated that Kosterlitz and Thouless’srelationships among several length scalethe sample size,
theory could be extended to superconductors under certaif, the correlation length fof =Ty, £&_ the characteristic
special conditions. It is thesspecial conditionghat concern  size of a bound vortex pair beloWr, r. a critical distance
us here. In order to observe a KTB transition—or a KTB-like between the two members of the bound pair, and The
transition—certain very stringent conditions must be met. Ifexistence of a correlation length is necessary to the scaling
they are not, theletails of the transition will not be correct we discuss belowé, the size of fluctuationgvortices
and the phase transition will not occur. above the transition temperature itrae coherence length—

What are those conditions as applied to the case of #&ue in the sense of point-to-point correlations of the order
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parameteré_ , which may be thought of as the typical sepa-andT. Note that using Eg2) implies that correlation lengths

ration between the two vortices in a bound Féiis not a  exist above and below the transition temperature. In ordinary
true coherence length in that sense. However, the temperauperconductors this presents no problems. However in thin
ture dependence of these two lengths is the same differinfiims and in Josephson-junction arrays this does present a

only by a constant. problem since the correlation length is not well defined be-
In general, to experimentally observe a KTB phase traniow the transition; this is further discussed below.
sition we must be in the thermodynamic limit—must be In the rest of this paper we will focus on two-dimensional

very large. Second, in a superconductor we also require thaystems and we rewrite ER) as

N\, >L so that the vortex-vortex interaction is always loga- _

rithmic. Finally, we must be in the low-current limit to avoid V=1E"7p (1E1T). ©)

having too many current-unbound vortices aboVgr.  \we can remove a factor of §/T)? from p. and rename it

These conditions are most often met in high-resistance , yielding

granular low-temperature superconductors and in Josephson--

junction arrays—i.e., in weakly coupled systems. |1\ 3
The problem that most often arises in an experiment is ?( ) :P+(?>-

that two of the limitsL very large and\, >L, are violated—

either because the Samp|e is too small or becaulse's This is the form often preferréazs for analySiS since the

strongly temperature dependent and crosses over to becorfi@herence length, which tends toward infinity as the transi-

smaller than the sample size as the temperature is lowered. fign temperature is approached from abdee below in

both cases it becomes energetically possible for free vortice¥0me systemsonly appears in the argument of the scaling

to form at all temperaturesieither 27E;In(L/a) or  function. _ )

2wE;In(\, /a) is no longer much greater thagT]. These At the critical temperature the voltage is proportional to

additional free vortices, called finite-size-induced free vorti-1*" for a two-dimensional superconductor, wtéra(T)

ces, are most noticeable well below the transition tempera=2z+ 1. This results from the coherence length going to in-

ture at very low currents, where they create a linear or ohmidinity as T approached . while the voltage is finite for non-

“tail” on the IV characteristics. As we will see, these finite- z€ro currents. However, this power law behavior is also valid

size-induced free vortices have profound effects on naivéor any temperature and current that makes the argument of

v @

dynamic-scaling analyses. p- tend toward infinity since this drives E¢B) to the same
limiting form. Thus for high currentsy should be a power-
IIl. SCALING BEHAVIOR law function of I at least until other physics enters, e.g., the

critical current of the film or junctions is exceeded andttie
In a phase transition sufficiently close to the transitioncurves should once again become Ohmic.
temperature critical fluctuations are observed. The closer one Above the transition, in the limit&/T goes to zero, if we
gets to the transition temperature, the longer these fluctuaassume that the power of the exponent is greater than 1, then
tions will last and the larger the relevant length scale bewe can takep. to be equal to a constant and
comes. In a superconductor the relevant length scale is the

coherence lengthy. Without loss of generality we can as- V—R _ 5
sume that the lifetime of the fluctuations,varies as 1 Linear” - ®)
roc &2, (1) This is valid for T>T, and I—0 and is simply the

Kosterlitz-Thouless result just above the transition due to
which definesz the critical exponent. Time “slows-down”  yortex unbinding. Below the transition we cannot take the
asT—T.. As we approach the critical region, all the physicssame limit as it leads to the unphysical result of voltages in
that really matters is in the diverging length and time scalesthe superconducting state.

In the KTB transitionz is expected to be 2. Piersat al* At this point, all that is required to do dynamic scaling is
have suggested thatis considerably larger than 2 in such the temperature dependence of the correlation length. In the
systems, perhaps as large as 5 or 6. They base this concldTB theory the correlation lengt§, can be defined above
sion on a scaling analysis of several experimental systemgne transition as the size of a fluctuatiéire., a vortey, or
some of which®** have heretofore been assumed to displayajternatively, as the average distance between two free vor-

a KTB transition. tices. It has a temperature dependence given by
FFH presented a generalized scaling law for
D-dimensional superconductors using dynamical scaling ar- b, 12
guments. We write their result in the following way, using €4 (—)xex m ' (6)
the experimentally determined quantitiésandl,
whereb, (b_) is a constant, theoretically of order one. In
[¢P-1 practice, experimental values fbr, (b_) are often found to
V=I §DZZP+( T ) (2 be up to an order of magnitude higher. The constant of pro-

portionality depends on the system; for 2D Josephson junc-
wherep= are scaling functions above and below the transition arrays it is essentiallg, the lattice parameter, while for
tion whose argument is a dimensionless combinatioh ¢f 2D films it is the Ginsburg-Landau coherence length. Below
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the transition, the correlation length is infinite and so we 7E,(T)
often use the quantit¢_ the typical separation of hound a(m= Tl 9)
vortex pair to discuss the dynamics of the vortices. This is B

not a true correlation length in that it does not come from apys yielding the familiar KTB power-law dependence.
two-point correlation function. Howeve,_ is often treated  Apove Ty, the IV exponenta(T) is given by k<a(T)<3

as if it werea correlation length, even though it is incorrect pyt the |V curves also have a low-current flux-flow voltage
to do so, since it has the same temperature dependerGe as grising from the thermally unbound vorticgsee Eq.(7)].

to within a constantb, andb_ differ by a factor of 2r). To  Below T, a(T)=3 and thelV curves are pure power law.

compound the confusion, we often take the temperature derhe total voltage signal is closely approximated as the sum
pendence off, and £ to be symmetric for the sake of of Egs.(7) and(8),

simplicity. (Indeed, we shall follow this convention for the
rest of the paper, i.e., we will assurbe =b_=Db.) Never- V=V +Vy,. (10)
theless, the fact that the correlation length is not well defined

below the transition will have consequences as regards to the
scaling behavior and will be further discussed below.

Figure Xa) shows the IV curves generated from E#0),
plotted on a log scale to show the power-law behavior. Here
we used a square arraly € W= 300a,) with a lattice param-
IV. CURRENT-VOLTAGE CURVE DETAILS etera=10um, a normal state resistan& =100 2, and

In this section we discuss our simulations of the current-Tkr = 2.55 K. We determinet; from the universal relatid
voltage characteristics of Josephson junction arrays. We ude(Tkr) =(26.706 nA/K)T7=68nA and then calculatesl,
standard results from the literatéiefor the power-lawly = hic/2e. For ease of calculation we suppressed the tempera-
characteristics and for the flux-flow resistance immediatelyiuré dependence of (and hencee ), a reasonable approxi-
above the transition. Since this system is inherently twoJnation near the transition and in the weak Josephson-
dimensional and theoretically displays a KTB transition incoupling limit. 'We also ignore the renormalization
the ideal limit, we should expect any dynamic scaling toCorrection, which is assumed to be small. o
yield values consistent with the KTB resuffsnamely, z Even though the Eqs¢7) and(8) contain the array size in
—2. Next we add the voltages caused by finite-size-induced[1€ir expressions, the data of Figallassume that we are in
vortex nucleation above and below the transifi®iwe then ~ the thermodynamic limitl(—c). A finite-size sample will
use dynamic scaling to study these simulations and to detefOntain a population of thermally generated free vortices
mine the effects of finite samples. both above and beloWy . If we assume thak,>L, this

Above the transition temperatuiB, thermally gener- finite-size-induced free vortex density can be writteff as
ated free vortices add a flux-flow resistance of the form

bs —7E;/kgT
Vi (T) L b, 12 nf(T)—a—ge 278
R(T)tUZI—ZZROWbleX - y

T=Tkr and the flux-flow voltage contributed by these vortices will
be of the form

7E;/kgT
: (11

L

Qo

T>Tkr, (7
~ a2 ;

where tu stands for “thermally unboundT=kgT/E;(T) is Vis=aWRony(T)i, (12)
the reduced temperaturR, is the normal state resistance,
L/W is the length/width of the array, and; and b, are
constants of order ongNote thatb, is related tob, in Eq. . . .
(6).] For T< Ty this thermally unbound flux-flow resistance E(iSr;aynV(\j”ylg)e given approximately by the sum of Edg),
will be zero since there will be no thermally unbound vorti- *=” a ’
ces. In addition to the thermally generated voltage, any finite
current will unbind vortex pairs, yielding a voltage of the
form?3

where fs stands for “finite size,” anld; in Eq. (11) is nearly
constant for small currents. The total voltage for a finite-size

V(T,i)=c V(T,i)+ V(T i) +c3Vi(T,i), (13

where we have made the temperature and current depen-
2\ 112 dence explicit and added the constaois c,, andcs, all
—) roughly of the same order, to allow us to adjust Meurves
Pop so that they appear in a current-voltage window that is
X [io(T) M2 "EAMIkeT[j]7E(MIkeT+1  (g) roughly experimentally accessible. WE_: emphasize that these
constants do not change the essential character of\the
where cu stands for “current unbounddy is the array lat- curves but rather change where the deflections will appear in
tice parameteri, is the critical current per junction,is the  current-voltage space. Figurébl shows Eq(13) plotted on
current per junction(roughly I/W), and B is a constant of a log scale over an abnormally large voltage s¢tle usual
proportionality. This expression is valid both above and berange is 10°~0.1V) but over a typical current scale. All
low the transition temperature. Looking at E®), we see other generating parameters were the same for Figsahd
that we can write it a¥ 413", where 1(b), including the values foc, andc,.

Vel T)=2R¥ a,
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FIG. 1. (a) Simulated current-voltage curves for a Josephson

junction array in the thermodynamic limno finite-size effectsfor
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FIG. 2. ScaledlV curves for data of Fig. (&) including no
finite-size effects. Inseta) shows a blowup of the data below the
transition, but with theV data truncated below I8 V. Inset (b)
shows a blowup of the scaling curve above the transition to show
the details of the scaling collapse.

17 Y2/[TVY?] as a function of the scaling function variable
x=1¢/T and vary the fitting parametes Ty, andb to
achieve the best collapse onto a scaling curve. In practice, we
found many values o ¢t that gave an acceptable scaling
collapse, but there was alwayshaghestvalue above which

no collapse could be achieved. We report below those high-
est values ofTxt and the corresponding values fprand b

that yield the best collapse. This method closely mirrors the
procedure followed by Piersoet al!! For each of the pa-
rameters obtained from a scaling collapse, the uncertainty in
the reported transition temperature9.01 K and the un-
certainty in the value for is =0.03.

The fitting parameter§yt and b are contained in the
expression for the KT correlation length., Eq. (6). It is
proper to uset, in the scaling analysis of the data in Fig.
1(a) (no finite-size effectswhere the thermodynamic limit is
assumed, and then only above the transition sécés not
well defined below the transition. For the finite-size effect
data[Fig. 1(b)], it is not proper to us€, in the scaling
analysisfor all temperaturedecause the existence of finite-
size-induced free vortices presumes that the correlation
length is larger than the sample si%¢aking us out of the
thermodynamic limit. In this case, we should substituter
the correlation length at least for those temperatures for
which £, >L. Nevertheless, we will proceed by usigig
for our analysis in order to draw a connection with the work
of Piersonet al.

Figure 2 shows the scaling behavior of the data of Fig.
1(a) (no finite-size effects Here the best scaling collapse

temperatures varying between 0.5 and 2.76 K with temperatur@CCUrs forTyr=2.55K, in agreement with the value used to

steps of 0.05 K. The dark line indicatd . (b) Current-voltage

generate the data and far=2, in agreement with the KT

curves including finite-size-induced vortices. Temperatures aréheory. Notice that the data aboVer (lower scaling curve

shown every 0.1 K.
V. CURRENT-VOLTAGE SCALING RESULTS

We may now analyze th&/ data of Figs. 1a) and Xb)
using scaling as expressed in E4).. Our approach is to plot

show excellent scaling behavior in that all of thé curves
collapse onto a single scaling curve with no stray data. This,
of course, is not surprising in that the data were generated
using the KTB model and evaluated in the regime where the
KT correlation length is well defined so that true scaling
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behavior is expected. Nevertheless, the lower scaling curve 10" g
of Fig. 2 sets the standard by which scaling curves using ;
experimental data should be evaluated. Figure 2 igiset 10° E
shows an expanded view of the scaling curve above the tran- 3 i

sition. 107
The data below the transitiqupper scaling curyedo not i
display as good a scaling collapse as above. Data very near
the transition(right side of the scaling curyeare slightly
askew and do not seem to lie along the same curve and data :
at lower temperatures do not collapse completely on top of of
one another. This curve is in fact strongly reminiscent of :
many scaling curves using experimental dhthat are con-
sidered good evidence of scaling behavior. Most experimen-

10-7 : MRV / LN \ /.//.l 3
tal data, however, have power-law dependence over only one 16° : /////////// [ /////. ]
or two orders of magnitudéon rare occasions as high as :
three or fouy with a rollover to Ohmic behavior at high and 10° E / / // 4
low currents. Thus, the data are often culled to include only E
the power-law portion—typically a very short portion of the 107 £ L4 AL LIAEOINCERINENT R A
IV curve—and as a consequence, the scaling may appear 2 3
more favorable than it would otherwisgds an example, in 0mE ]
Fig. 2 inset(a) we plot the data below the transition but : 05K 3
truncate it to include onlylV data above 10°V.] Con- 10" = vdv HERESFAT AP

N 107 10° 1

versely here, where the data is as KTB-like as possible, i.e., 10 0*
pure power-lawlV curves over 10—15 orders of magnitude
with a(T) following the expected temperature dependence, FiG. 3. Replot of Fig. fb) showing the voltage cutoffsiV

we should expect to see the best scaling collapse possiblgurves are shown every 0.05 K. The arrows denote the location of
That we do not is due to the fact that a correlation length ighe “ghost transition” for each cutoff valuésee text, the point at

not well defined below the transition and so no simple scalwhich the resistive character disappears.

ing behavior should be expected.

In order to show the effect that finite size and experimeny,ayior with the non-finite-size data where for all voltage cut-
tal limitations have on scaling behavior, we start with the y¢ qown tov= 1020V (where we stoppédthe same val-
finite-size-induced frge vortex data of Fighland introduce | ,4q forz and T yield the same scaling collapse. Thus, data
a voltage cutoff. This voltage cutoff plays the role of the ypained on the same sample but measured using different
minimum voltage sensitivity or the experimental voltage neaguring systems can yield completely different scaling
noise floor for a measurement system. In Fig. 3 we replot thyys Thjs simple fact calls into question the practical viability
daE% of fl'g 1b) W'tlhz four voltage cutoffs: alv=10"", ¢ oy loiting the scaling behavior of IV curves to confirm the
10°%, 10", and 10 *°V. Notice that as the minimum volt-  jeails of the phase transition in 2D superconductors.
age or noise floor is reduced, the effect is to include progres- \ye a1s0 point out that the value of the voltage cutoff is

sively more of the finite-size-induced linear tail in the IV qomewhat arbitrary for the data that we generated. That is,
data set. As we shall see, this has a dramatic effect on the

parameters of the IV scaling function.

Figures 4, 5, 6, and 7 show the scaling curves obtained fol E E
the four voltage cutoffs,V=10"7, 108 10° and . V=107V ]
10 2V, respectively. Here we show the best scaling curve 0L i
using the highest value df¢t for which a scaling collapse : ]
would occur. For the/=10 'V cutoff (Fig. 4), we obtain
Tkr=2.29K andz=2.23, in contrast td y+=2.55K andz
=2 obtained in Fig. 2. We note that the 70V cutoff, being
the highest of the cutoff voltages, allows for very little of the
finite-size-induced linear tail to be included in the IV data ™ e
set. This is reflected in the scaling parameters being com: [
paratively close to those diV curves without finite-size- 10° £
induced resistance. As the voltage cutoff is lowered, the ;
value of Ty obtained from the scaling procedure progres-
sively decreases and the value ofincreases. For th&/ 0 10°
=10""?V cutoff the values ard «y=0.84K andz=5.9. By 1/ T
adjusting a parameter that is determined by the experimental
measurement systefie., the noise flogrwe can vary the FIG. 4. Scaling collapse of the finite-size-induced resistive
fitting parameters of the scaling collapse. Contrast this bedata(Fig. 3) with a voltage cutoff of 107 V.

v(V)

I(A)

1+l/z/ |:,.[“\/1/2]

10
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FIG. 5. Scaling collapse of the finite-size-induced resistive

data(Fig. 3 with a voltage cutoff of 108 V. FIG. 7. Scaling collapse of the finite-size-induced resistive

data(Fig. 3 with a voltage cutoff of 10%2V.

for the same selection of voltage cutoffs, we could have al-. L . . L .
tered the results of the scaling fits by changing the values 0?on of fln_|te-5|ze-|nduced free vortices. _Thls deviation, dif-
c,, C,, andc, in Eq. (13) to allow more or less of the |cult_ to d_|scern from the unscaled daf@ig. _3) yet clearly
resistive portion to appear aboer below the cutoff. This manifest in the s_caleq, prevents a t.Ot"’.II sc_allng collapse O.f the
is akin to the experimental situation where the noise floor o]data(compare with Fig. P The d(_ewatlon IS als_o present _'n
the measuring system is fixed and the coupling strength o igs. 5-7. As the voltage cutoff is lowerel; is reduced;

the sample determines how much of the resistive tails of thd!'S causes more of the IV curves to fnq up on ,t,he sqalmg
IV curves will be observable. curve aboveT ¢t . The curve becomes “thickened,” making

The quality of the scaling collapse is not an indication 0fit difficult to distinguish the slight flaws in the collapse. In-

o . ; deed, if we had used data points of only moderate size, we
the reliability of the scaling fit. In Figs. 4—7 we have plotted " X "
the scalingycurves as Iings rathergthan data points pso as ight not have even noticed the effect. In addition, the shape

expose any shortcomings in the scaling collapse. We not8 the scaling curve changes, becoming more rour(dede

that the scaling curves look to be quite good, certainly com2dain, compare with Fig.)2 Eor data belqw the transition
gpper scaling curveghe scaling collapse is not good at all.

parable to most experimental data scaling, despite the wid i h it toff is | d and th

variation of the scaling parameters. In particular, the dat ljj asd ?VO al%e cutott 1s OW.eTe Ianth € a?'?ﬁfaf"t i

above the transitioflower scaling curvesseem to exhibit an reduced, 1ewer 1V: curves remain. On}f ose at the _o_vves”
%mperatures that are now suddenly “near the transition.

especially good collapse in each case. A closer examinatio . .
however, reveals a few problems. In Fig(¥~7 V cutoff) onsequently, the scaling collapse may appear better than it
' ) treally is.

for the curves above the transition a slight deviation from

KTB behavior at the lowest currents is caused by the addi-
VI. APPARENT SCALING BELOW THE TRANSITION

WET T T We end with a discussion of the scaling behavior below
: ] the phase transition. As mentionetl/ data below Tyt
10° b d should not scale and a careful examination of the scaling
\ curves(Fig. 2 and Figs. 4-7shows that this indeed is the
) = 1 case(at least in comparison to the quality of the scaling
10°F - 3 collapse in the lower curve of Fig.)2The data below the
] transition, however, certainly does showeamdencytowards
a scaling collapse. MKM have dealt extensively with this
E question for the 2DXY model with resistively shunted Jo-
i T, = 137K sephson junction dynamics. They point out that because the
10" £ z=37 3 low-temperature phase is “quasicritical,” with=c, each
i b=20 3 temperature is characterized by @&n scaling function. For
] small values of the scaling variable however, the scaling
10" function may be taken to be temperature independent. For a
finite-sized system, they assume an approximate form for the
correlation lengthécR™ %, whereR is the resistance in the
FIG. 6. Scaling collapse of the finite-size-induced resistive  limit of zero current andr in general depends on bothand
data(Fig. 3 with a voltage cutoff of 10%°V. T. They then demonstrate that shouldbe a constant, the

I1 4‘]/2/ [Tvl/z]

&/ T
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resistance would vanish at a temperature for whietl/a. above and below the transition. If th¢ curves exhibit the

In the KT picture, MKM note that the resistance actually same concavity, the scaling fit is an artifact of the limited
vanishes only at zero temperatufence again, for finite voltage resolution of the data.

size), but it could happen that is approximately constant

over a I|m|teq temperature regime causing the resistance to VIl. CONCLUSION

appearto vanish at some nonzero temperature. If Melata

happen to fall within this limited temperature regime, we We have demonstrated that the interpretation of dynami-
would observe an apparent scaling collapse and the apparetdl scaling oflV curves in 2D systems is subtle. In the ther-
vanishing of the resistance at some specific temperaturenodynamic limit, while scaling exists and is robuetove
That is, we may be tempted to conclude that we have evithe transition, it does not exist below the transitiéig. 2).
dence for a phase transition. MKM term this type of transi-The reason is that the 2D correlation length is well defined
tion a ghost transition. above the transition but infinite at and below the transition.

We may make a connection between this ghost transitiohe addition of finite-size effects significantly degrades the
and our voltage cutoff analysis by noting that theexpo-  scaling. Although a scaling curve can be obtained for finite-
nenta(T) is related to the dynamical critical exponent below size-effect data, the scaling parameters are significantly al-
the transition,a(T)=2z(T)+ 1. For each of the four voltage tered, particularly the dynamical critical exponent A
cutoffs used, we take the value pfobtained in the scaling change inz would nominally point to a change in the vortex
procesgFigs. 4—7 and identify the corresponding tempera- dynamics of the phase transition, indicating other than the
ture for which thelV exponent isz+ 1. TheselV curves are diffusive behavior of the KTB picture wherz=2. While it
identified by the arrows above each of the cutoff axes in Figis certainly not unreasonable to believe that the vortex dy-
3. Notice that each of these curves may be identified as theamics of a finite-sized system may be different from an
ones where evidence of the low-current resistive behavioinfinite system(perhaps even entirely differentve are skep-
first disappearsabove the corresponding noise floor. That is,tical that the scaling collapse alone is sufficient evidence for
all IV curves at temperatures below this one are pure powethis change. The fact that we may obtain a range of values
law-like and the ones above show curvatures towards afor z simply by truncating the finite-size data at various volt-
Ohmic slope. This observation is illusory. If we look below age cutoffs, makes the actual valuezdbr most experimen-
the cutoff voltage, each of th&/ curves displays Ohmic tal data highly suspicious, at least in the absence of corrobo-
behavior at lower currents. rating support from other analytical methods.

In the MKM picture, this ghost-transition temperature will  Nevertheless, it is intriguing that Piersaet al. find a
change depending on the finite sample size. For a fixed voltvalue of z=6 for a variety of 2D systems, both supercon-
age cutoff(noise flooy, decreasing the sample size will causeducting and superfluid. Rather than pointing to some univer-
more finite-size-induced resistance to appear above the cuwsality of physics, however, we suspect that this has more to
off and the ghost transition will move to lower temperature.do with the nature of the data collection and the limitations
This is analogous to our picture in which we keep the size obf instrumentation. In particular, we note that the Johnson
the sample fixed but allow the voltage cutoff to decreasenoise is the universal noise floor for all measurement systems
thereby uncovering more of the resistive character and afand that nearly all experimental systems are optimized to
fecting the ghost transition. In either case, it is obvious thaapproach this limit.
this does not constitute a “true” phase transition and thus, a More recently, Pierson and co-workers have presented a
search for new vortex dynamics is not required. numerical study of a 2D-lattice Coulomb ga which they

Strachan, Lobb, and Newrotkhave recently offered a find thatz=2 rather than the=6 obtained in their previous
methodology for determining whether scaling behavior inanalysis. They attribute the inflated value ofo finite-size
experimentalV data is truly indicative of a phase transition effects, a result consistent with the results we show here.
or instead, is an artifact of limited voltage resolution. TheyThey also claim to show evidence of the existence of a 2D
use the scaling curve from the best fit to the data to extendorrelation length below the transition, a result at odds with
the IV curves to voltages below the voltage cutoff. Their our analysis.
argument is that a true scaling curve should predict the shape
of the en'qfelv curve, even that_ below the noise flpor. _Usmg ACKNOWLEDGMENTS
the transition temperature derived from the scaling fit, they
then examinelV curves of temperatures equidistant from  We would like to acknowledge useful discussions with
Tkr. constructing lines tangent to each curve at the sam@etter Minnhagen. This work was supported in part by grants
fixed current. The tangent lines are used to determine th&om the NSF under Contract No. DMR-980182Gincin-
concavity of eachV curve. If Tr represents a true phase nat) and Contract No. DMR-97328Maryland, and from
transition, thelV curves should exhibit opposite concavity the John Hauck FoundatidiXavier).
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