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Finite-size effects and dynamical scaling in two-dimensional Josephson junction arrays
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In recent years many groups have used Fisher, Fisher and Huse~FFH! dynamical scaling to investigate and
demonstrate details of the superconducting phase transition. Some attention has been focused on two dimen-
sions where the phase transition is of the Kosterlitz-Thouless-Berezinskii~KTB! type. Piersonet al. used FFH
dynamical scaling almost exclusively to suggest that the dynamics of the two-dimensional superconducting
phase transition may be other than KTB-like. In this work we investigate the ability of scaling behavior by
itself to yield useful information on the nature of the transition. We simulate current-voltage~IV! curves for
two-dimensional Josephson junction arrays with and without finite-size-induced resistive tails. We find that, for
the finite-size effect data, the values of the scaling parameters, specifically the transition temperature and the
dynamical scaling exponentz, depend critically on the magnitude of the contribution that the resistive tails
make to theIV curves. In effect, the values of the scaling parameters depend on the noise floor of the
measuring system.
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I. INTRODUCTION

In certain ideal systems, the two-dimensional~2D! super-
conducting phase transition in zero magnetic field is of
Kosterlitz-Thouless-Berezinskii~KTB! type. For more than
two decades, there has been a great deal of work explo
the details of the KTB transition and whether, in fact, o
can be truly observed in physically realizable systems. In
past decade, a new class of superconductors has been a
to the mix—the high-temperature cuprate superconduct
With their layered structures and highly anisotropic coupl
strengths, these systems offer the possibility of quasi-t
dimensional behavior. While the nature of the supercond
ing phase transition in high-temperature superconductor
as yet an unsettled issue,1,2,3,4 several authors5,6 have pub-
lished works that purport to show the existence of a K
phase transition as part of a larger three-dimensional tra
tion mechanism. Others7 do not observe such a transition an
believe that the conditions for it do not exist in these ma
rials.

In 1989 Fisher, Fisher, and Huse~FFH! ~Refs. 8 and 9!
offered a general analysis of a superconducting phase tra
tion in D dimensions using a dynamic scaling argume
Their primary focus was on the behavior of superconduct
systems in the presence of magnetic fields, but they poin
out that their scaling also applied in zero field to the KT
transition forD52 and for a dynamical critical scaling ex
ponentz52. In the years since, some groups10 have used this
scaling approach as a measure of proof of the existenc
absence of a KTB transition; in effect, if the properly scal
current-voltage~IV! curves collapse~do not collapse! onto
universal scaling curves above and below the transition, t
a KTB transition is likely~unlikely! to be present. In those
cases, the scaling behavior was offered in support of ot
more conventional analyses such as the KTB square-
temperature dependence in the exponent of the resistive
havior or the existence of a universal jump in theIV expo-
nent.
0163-1829/2001/63~18!/184508~9!/$20.00 63 1845
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Recently, Pierson and co-workers11,12 published a dy-
namic scaling analysis ofIV data taken on ultrathin~one
unit-cell thick! high-temperature superconducting films7 as
well as on prototypical 2D low-temperature superconduct
systems in which it is believed that a KTB transition exis
and has been observed.5,10,13 Basedprimarily on the results
of their scaling they propose that a reevaluation of the
namics of the KTB transition may be in order. In particula
they propose that the dynamical critical exponentz may not
be 2, as one would expect for diffusive dynamics in syste
that follow the 2D XY model, but may be as high as 5 or

In this paper we look to determine the proper role
dynamic scaling in such systems and for a possible sou
for the very high values ofz that Pierson and co-worker
observe in their scaling analysis. In particular, we sugg
that it is inappropriate to use evidence of scaling behavio
experimental data as theprimary support for the existence o
a 2D phase transition. In the particular case of the K
transition, scaling behavior should, in fact, be valid on
above the transition temperature where a KT correlat
length exists and diverges.14 Below the transition tempera
ture the correlation length is infinite and so we should n
observe scaling.15 Nonetheless, apparent scaling is oft
found below the transition temperature in realIV data.
Medvedyeva, Kim, and Minnhagen16 ~MKM ! have sug-
gested that the specifics of the scaling behavior belowTKT is
determined by the finite size of the sample rather than po
ing to evidence of some new dynamics as Pierson and
workers suggest. In their analysis, MKM point out that a
though for any finite-size sample, the resistance only tr
vanishes at zero temperature, for a sample of fixed sizeL and
for data within a limited temperature region, the resistan
may appear to vanish at some nonzero temperature anz
may appear to be greater than 2. Thus, one may be le
believe that a transition to zero resistance may actually oc
for values ofz.2, when in fact it does not. MKM have
designated such an apparent transition a ‘‘ghost’’ transiti
Our results are entirely consistent with those of MKM.
©2001 The American Physical Society08-1
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We examine this question using the straightforward
proach of simulating the IV characteristics of two-
dimensional Josephson junction arrays including finite-s
effects. As theIV curves are generated using KTB theory, w
would expect that scaling would yield parameters consis
with KTB behavior. Instead we find that the details of t
scaling, i.e., the values forz andTKT depend in a critical way
on the effective voltage sensitivity of the measuring inst
ments, a purely experimental parameter. We find the m
fact that scaling can be accomplished with values ofz other
than 2 insufficient evidence for the existence of an alter
tive phase transition.

We begin in Sec. II with a brief discussion of the natu
of the phase transition in a 2D superconductor and then
cuss applications of dynamic scaling to such systems in S
III. In Sec. IV we outline the details of our current-voltag
simulations and present the results of our scaling in Sec
We end with a discussion of the apparent scaling beha
below the transition in Sec. VI and conclude in Sec. VII.

II. THE TWO-DIMENSIONAL PHASE TRANSITION
IN SUPERCONDUCTORS

For many years it was believed that many types of ph
transitions were not possible in two dimensions. For a sup
conductor, for example, it was believed that as the temp
ture dropped, the resistivity might become exponentia
small but would never be zero, and no true phase transi
would actually occur. There were theoretical predictio
about the impossibility of general long-range order in tw
dimensional systems. The earliest was by Peierls17 who ar-
gued that the thermal motion of long-wavelength phono
would destroy conventional long-range order in a tw
dimensional crystal. The absence of certain types of lo
range order in two dimensions was rigorously shown
Mermin.18

The absence of long-range order, however, does not
essarily imply the absence of a phase transition. Such a p
transition would be from a disordered high-temperature s
to an ordered, but not infinite-ranged low-temperature st
Kosterlitz and Thouless19 and Berezinskii20 showed that this
was indeed correct by showing that ‘‘quasi-long-range
der,’’ the algebraic decay of correlations, could occur. K
sterlitz and Thouless called thistopological long-range order
and applied it to two-dimensional crystals,neutral superflu-
ids, and XY magnets. They did not apply it to two
dimensional superconductors or the isotropic tw
dimensional Heisenberg magnet, where they believed
proper conditions for observing the transition could n
strictly be met.

Beasley, Mooij, and Orlando21 and Doniach and
Huberman22 demonstrated that Kosterlitz and Thoules
theory could be extended to superconductors under ce
special conditions. It is thesespecial conditionsthat concern
us here. In order to observe a KTB transition—or a KTB-li
transition—certain very stringent conditions must be met
they are not, thedetailsof the transition will not be correc
and the phase transition will not occur.

What are those conditions as applied to the case o
18450
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superconductor?23 In bulk superconductors the energy to cr
ate a vortex is proportional to the length of the vortex and
a result is always much greater than the available ther
energy. However, in thin superconducting films where
perpendicular penetration depthl'(5l2/d) can be made
much greater than the sample size, the energy neede
create a boundpair of vortices is (2pns\

2/2m)ln(r/j), where
ns is the 2D superfluid density,j is the superconducting co
herence length, andr is the separation between the two vo
tices. This can easily be of the order ofkBT. @For an array
we have 2pEJ ln(r/a0), wherea0 is the array lattice param
eter andEJ is the Josephson coupling energy.# The energy to
create a single free vortex on the other hand
(pns\

2/2m)ln(L/j), infinite in the thermodynamic limit (L
→`). Thus for temperatures greater than zero, but still s
ficiently low, the sample will contain no free vortices, b
rather bound pairs of thermally generated vortices that c
not be driven by an applied electrical current.

The KTB phase transition occurs when these bound p
of vortices dissociate; this occurs at the Kosterlitz-Thoule
Berezinskii temperatureTKT . These now free vortices ma
be driven by an applied electric current yielding a flux-flo
resistance. Thus, below the vortex-unbinding temperature
dissipation is zero in the limit of zero current. AboveTKT the
resistance is not zero due to the finite density of free vorti
and, as is the usual case for flux-flow resistance, the volt
depends linearly on the current, i.e., the system app
Ohmic. ~Once again, this is strictly correct only in the lim
of zero current as discussed below.! The magnitude of the
resistance depends on the density of free vortices,nf , which
in turn varies as 1/j1

2 wherej1 , the correlation length, is a
measure of the size of the fluctuations above the transi
temperature.

An externally applied current may unbind a pair of vor
ces via the Lorentz force. Well above the transition tempe
ture, where many pairs of vortices are already unbound,
additional effect of asmall current unbinding vortex pairs is
not observable. That is, aboveTKT and at low currents the
current-voltage characteristics are linear due to the therm
unbound vortices. As the current increases and the additi
density of free vortices begins to be important, theIV char-
acteristics switch to a power lawV5I a(T), where 1,a(T)
,3. Below the transition temperature, where there are
thermally unbound free vortices, current unbinding isalways
important and the current-voltage relations arealwayspower
law with a(T).3. The result is that forsufficiently small
measuring currents, the exponent of theIV characteristics
jumps discontinuously from 1 to 3 atTKT .

Whether a KTB transition or KTB-like transition is ob
servable in a particular experimental system depends on
relationships among several length scales:L the sample size,
j1 the correlation length forT>TKT , j2 the characteristic
size of a bound vortex pair belowTKT , r c a critical distance
between the two members of the bound pair, andl' . The
existence of a correlation length is necessary to the sca
we discuss below.j1 the size of fluctuations~vortices!
above the transition temperature is atrue coherence length—
true in the sense of point-to-point correlations of the ord
8-2
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FINITE-SIZE EFFECTS AND DYNAMICAL SCALING . . . PHYSICAL REVIEW B63 184508
parameter.j2 , which may be thought of as the typical sep
ration between the two vortices in a bound pair,24 is not a
true coherence length in that sense. However, the temp
ture dependence of these two lengths is the same diffe
only by a constant.

In general, to experimentally observe a KTB phase tr
sition we must be in the thermodynamic limit—L must be
very large. Second, in a superconductor we also require
l'@L so that the vortex-vortex interaction is always log
rithmic. Finally, we must be in the low-current limit to avoi
having too many current-unbound vortices aboveTKT .
These conditions are most often met in high-resista
granular low-temperature superconductors and in Joseph
junction arrays—i.e., in weakly coupled systems.

The problem that most often arises in an experimen
that two of the limits,L very large andl'@L, are violated—
either because the sample is too small or becausel' is
strongly temperature dependent and crosses over to bec
smaller than the sample size as the temperature is lowere
both cases it becomes energetically possible for free vort
to form at all temperatures@either 2pEJ ln(L/a) or
2pEJ ln(l' /a) is no longer much greater thankBT#. These
additional free vortices, called finite-size-induced free vo
ces, are most noticeable well below the transition tempe
ture at very low currents, where they create a linear or oh
‘‘tail’’ on the IV characteristics. As we will see, these finit
size-induced free vortices have profound effects on na
dynamic-scaling analyses.

III. SCALING BEHAVIOR

In a phase transition sufficiently close to the transiti
temperature critical fluctuations are observed. The closer
gets to the transition temperature, the longer these fluc
tions will last and the larger the relevant length scale
comes. In a superconductor the relevant length scale is
coherence lengthj. Without loss of generality we can as
sume that the lifetime of the fluctuations,t, varies as

t}jz, ~1!

which definesz the critical exponent. Time ‘‘slows-down’
asT→Tc . As we approach the critical region, all the physi
that really matters is in the diverging length and time sca
In the KTB transitionz is expected to be 2. Piersonet al.11

have suggested thatz is considerably larger than 2 in suc
systems, perhaps as large as 5 or 6. They base this co
sion on a scaling analysis of several experimental syste
some of which10,13 have heretofore been assumed to disp
a KTB transition.

FFH presented a generalized scaling law
D-dimensional superconductors using dynamical scaling
guments. We write their result in the following way, usin
the experimentally determined quantitiesV and I,

V5I jD222zr6S I jD21

T D , ~2!

wherer6 are scaling functions above and below the tran
tion whose argument is a dimensionless combination ofI, j,
18450
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andT. Note that using Eq.~2! implies that correlation lengths
exist above and below the transition temperature. In ordin
superconductors this presents no problems. However in
films and in Josephson-junction arrays this does prese
problem since the correlation length is not well defined b
low the transition; this is further discussed below.

In the rest of this paper we will focus on two-dimension
systems and we rewrite Eq.~2! as

V5I j2zr6~ I j/T!. ~3!

We can remove a factor of (I j/T)z from r6 and rename it
P6 yielding

I

T S I

VD 1/z

5P6S I j

T D . ~4!

This is the form often preferred11,25 for analysis since the
coherence length, which tends toward infinity as the tran
tion temperature is approached from above~or below in
some systems!, only appears in the argument of the scali
function.

At the critical temperature the voltage is proportional
I a(T) for a two-dimensional superconductor, where26 a(T)
5z11. This results from the coherence length going to
finity as T approachesTc while the voltage is finite for non-
zero currents. However, this power law behavior is also va
for any temperature and current that makes the argumen
r6 tend toward infinity since this drives Eq.~3! to the same
limiting form. Thus for high currents,V should be a power-
law function of I at least until other physics enters, e.g., t
critical current of the film or junctions is exceeded and theIV
curves should once again become Ohmic.

Above the transition, in the limitI j/T goes to zero, if we
assume that the power of the exponent is greater than 1,
we can taker1 to be equal to a constant and

V

I
5RLinear}j2z. ~5!

This is valid for T.Tc and I→0 and is simply the
Kosterlitz-Thouless result just above the transition due
vortex unbinding. Below the transition we cannot take t
same limit as it leads to the unphysical result of voltages
the superconducting state.

At this point, all that is required to do dynamic scaling
the temperature dependence of the correlation length. In
KTB theory the correlation lengthj1 can be defined above
the transition as the size of a fluctuation~i.e., a vortex!, or
alternatively, as the average distance between two free
tices. It has a temperature dependence given by23

j1~2 !}expH S b1~2 !

uT2TKTu D
1/2J , ~6!

whereb1 (b2) is a constant, theoretically of order one.
practice, experimental values forb1 (b2) are often found to
be up to an order of magnitude higher. The constant of p
portionality depends on the system; for 2D Josephson ju
tion arrays it is essentiallya0 the lattice parameter, while fo
2D films it is the Ginsburg-Landau coherence length. Bel
8-3
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HOLZER, NEWROCK, LOBB, AOUAROUN, AND HERBERT PHYSICAL REVIEW B63 184508
the transition, the correlation length is infinite and so
often use the quantityj2 the typical separation of abound
vortex pair to discuss the dynamics of the vortices. This
not a true correlation length in that it does not come from
two-point correlation function. However,j2 is often treated
as if it werea correlation length, even though it is incorre
to do so, since it has the same temperature dependencej1

to within a constant~b1 andb2 differ by a factor of 2p!. To
compound the confusion, we often take the temperature
pendence ofj1 and j2 to be symmetric for the sake o
simplicity. ~Indeed, we shall follow this convention for th
rest of the paper, i.e., we will assumeb15b25b.! Never-
theless, the fact that the correlation length is not well defin
below the transition will have consequences as regards to
scaling behavior and will be further discussed below.

IV. CURRENT-VOLTAGE CURVE DETAILS

In this section we discuss our simulations of the curre
voltage characteristics of Josephson junction arrays. We
standard results from the literature23 for the power-lawIV
characteristics and for the flux-flow resistance immediat
above the transition. Since this system is inherently tw
dimensional and theoretically displays a KTB transition
the ideal limit, we should expect any dynamic scaling
yield values consistent with the KTB results,27 namely, z
52. Next we add the voltages caused by finite-size-indu
vortex nucleation above and below the transition.28 We then
use dynamic scaling to study these simulations and to de
mine the effects of finite samples.

Above the transition temperatureTKT , thermally gener-
ated free vortices add a flux-flow resistance of the form23

R~T! tu5
Vtu~T!

I
52R0

L

W
b1 expH 2S b2

T̃2T̃KT
D 1/2J ,

T.TKT , ~7!

where tu stands for ‘‘thermally unbound,’’T̃5kBT/EJ(T) is
the reduced temperature,R0 is the normal state resistanc
L/W is the length/width of the array, andb1 and b2 are
constants of order one.@Note thatb2 is related tob1 in Eq.
~6!.# For T<TKT this thermally unbound flux-flow resistanc
will be zero since there will be no thermally unbound vor
ces. In addition to the thermally generated voltage, any fi
current will unbind vortex pairs, yielding a voltage of th
form23

Vcu~T!52R0
3/2La0S 2p

F0b D 1/2

3@ i c~T!#1/22pEJ~T!/kBT@ i #pEJ~T!/kBT11, ~8!

where cu stands for ‘‘current unbound,’’a0 is the array lat-
tice parameter,i c is the critical current per junction,i is the
current per junction~roughly I /W!, and b is a constant of
proportionality. This expression is valid both above and
low the transition temperature. Looking at Eq.~8!, we see
that we can write it asVcu}I a(T), where
18450
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pEJ~T!

kBT
11, ~9!

thus yielding the familiar KTB power-law dependenc
Above TKT , the IV exponenta(T) is given by 1<a(T),3
but the IV curves also have a low-current flux-flow voltag
arising from the thermally unbound vortices@see Eq.~7!#.
Below TKT , a(T)>3 and theIV curves are pure power law
The total voltage signal is closely approximated as the s
of Eqs.~7! and ~8!,

V5Vcu1Vtu . ~10!

Figure 1~a! shows the IV curves generated from Eq.~10!,
plotted on a log scale to show the power-law behavior. H
we used a square array (L5W5300a0) with a lattice param-
etera510mm, a normal state resistanceR05100 mV, and
TKT52.55 K. We determinedi c from the universal relation29

i c(TKT)5(26.706 nA/K)TKT568 nA and then calculatedEJ
5hic/2e. For ease of calculation we suppressed the temp
ture dependence ofi c ~and henceEJ!, a reasonable approxi
mation near the transition and in the weak Josephs
coupling limit. We also ignore the renormalizatio
correction, which is assumed to be small.

Even though the Eqs.~7! and~8! contain the array size in
their expressions, the data of Fig. 1~a! assume that we are in
the thermodynamic limit (L→`). A finite-size sample will
contain a population of thermally generated free vortic
both above and belowTKT . If we assume thatl'.L, this
finite-size-induced free vortex density can be written as28

nf~T!5
b3

a0
2 e2pEJ /kBTS L

a0
D pEJ /kBT

, ~11!

and the flux-flow voltage contributed by these vortices w
be of the form

Vfs5a0
2WR0nf~T!i , ~12!

where fs stands for ‘‘finite size,’’ andb3 in Eq. ~11! is nearly
constant for small currents. The total voltage for a finite-s
array will be given approximately by the sum of Eqs.~7!,
~8!, and~12!,

V~T,i !5c1Vcu~T,i !1c2Vtu~T,i !1c3Vfs~T,i !, ~13!

where we have made the temperature and current de
dence explicit and added the constantsc1 , c2 , and c3 , all
roughly of the same order, to allow us to adjust theIV curves
so that they appear in a current-voltage window that
roughly experimentally accessible. We emphasize that th
constants do not change the essential character of thIV
curves but rather change where the deflections will appea
current-voltage space. Figure 1~b! shows Eq.~13! plotted on
a log scale over an abnormally large voltage scale~the usual
range is 10210– 0.1 V! but over a typical current scale. Al
other generating parameters were the same for Figs. 1~a! and
1~b!, including the values forc1 andc2 .
8-4
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V. CURRENT-VOLTAGE SCALING RESULTS

We may now analyze theIV data of Figs. 1~a! and 1~b!
using scaling as expressed in Eq.~4!. Our approach is to plo

FIG. 1. ~a! Simulated current-voltage curves for a Josephs
junction array in the thermodynamic limit~no finite-size effects! for
temperatures varying between 0.5 and 2.76 K with tempera
steps of 0.05 K. The dark line indicatesTKT . ~b! Current-voltage
curves including finite-size-induced vortices. Temperatures
shown every 0.1 K.
18450
I 111/z/@TV1/z# as a function of the scaling function variab
x5I j/T and vary the fitting parametersz, TKT , and b to
achieve the best collapse onto a scaling curve. In practice
found many values ofTKT that gave an acceptable scalin
collapse, but there was always ahighestvalue above which
no collapse could be achieved. We report below those h
est values ofTKT and the corresponding values forz and b
that yield the best collapse. This method closely mirrors
procedure followed by Piersonet al.11 For each of the pa-
rameters obtained from a scaling collapse, the uncertaint
the reported transition temperature is60.01 K and the un-
certainty in the value forz is 60.03.

The fitting parametersTKT and b are contained in the
expression for the KT correlation lengthj1 , Eq. ~6!. It is
proper to usej1 in the scaling analysis of the data in Fig
1~a! ~no finite-size effects! where the thermodynamic limit is
assumed, and then only above the transition sincej2 is not
well defined below the transition. For the finite-size effe
data @Fig. 1~b!#, it is not proper to usej1 in the scaling
analysisfor all temperaturesbecause the existence of finite
size-induced free vortices presumes that the correla
length is larger than the sample size30 taking us out of the
thermodynamic limit. In this case, we should substituteL for
the correlation length at least for those temperatures
which j1.L. Nevertheless, we will proceed by usingj1(2)
for our analysis in order to draw a connection with the wo
of Piersonet al.

Figure 2 shows the scaling behavior of the data of F
1~a! ~no finite-size effects!. Here the best scaling collaps
occurs forTKT52.55 K, in agreement with the value used
generate the data and forz52, in agreement with the KT
theory. Notice that the data aboveTKT ~lower scaling curve!
show excellent scaling behavior in that all of theIV curves
collapse onto a single scaling curve with no stray data. T
of course, is not surprising in that the data were genera
using the KTB model and evaluated in the regime where
KT correlation length is well defined so that true scali

n

re

re

FIG. 2. ScaledIV curves for data of Fig. 1~a! including no
finite-size effects. Inset~a! shows a blowup of the data below th
transition, but with theIV data truncated below 1029 V. Inset ~b!
shows a blowup of the scaling curve above the transition to sh
the details of the scaling collapse.
8-5
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HOLZER, NEWROCK, LOBB, AOUAROUN, AND HERBERT PHYSICAL REVIEW B63 184508
behavior is expected. Nevertheless, the lower scaling cu
of Fig. 2 sets the standard by which scaling curves us
experimental data should be evaluated. Figure 2 inset~b!
shows an expanded view of the scaling curve above the t
sition.

The data below the transition~upper scaling curve! do not
display as good a scaling collapse as above. Data very
the transition~right side of the scaling curve! are slightly
askew and do not seem to lie along the same curve and
at lower temperatures do not collapse completely on top
one another. This curve is in fact strongly reminiscent
many scaling curves using experimental data11 that are con-
sidered good evidence of scaling behavior. Most experim
tal data, however, have power-law dependence over only
or two orders of magnitude~on rare occasions as high a
three or four! with a rollover to Ohmic behavior at high an
low currents. Thus, the data are often culled to include o
the power-law portion—typically a very short portion of th
IV curve—and as a consequence, the scaling may ap
more favorable than it would otherwise.@As an example, in
Fig. 2 inset ~a! we plot the data below the transition b
truncate it to include onlyIV data above 1029 V. # Con-
versely here, where the data is as KTB-like as possible,
pure power-law IV curves over 10–15 orders of magnitud
with a(T) following the expected temperature dependen
we should expect to see the best scaling collapse poss
That we do not is due to the fact that a correlation length
not well defined below the transition and so no simple sc
ing behavior should be expected.

In order to show the effect that finite size and experim
tal limitations have on scaling behavior, we start with t
finite-size-induced free vortex data of Fig. 1~b! and introduce
a voltage cutoff. This voltage cutoff plays the role of th
minimum voltage sensitivity or the experimental volta
noise floor for a measurement system. In Fig. 3 we replot
data of Fig. 1~b! with four voltage cutoffs: atV51027,
1028, 10210, and 10212V. Notice that as the minimum volt
age or noise floor is reduced, the effect is to include prog
sively more of the finite-size-induced linear tail in the I
data set. As we shall see, this has a dramatic effect on
parameters of the IV scaling function.

Figures 4, 5, 6, and 7 show the scaling curves obtained
the four voltage cutoffs,V51027, 1028, 10210, and
10212V, respectively. Here we show the best scaling cu
using the highest value ofTKT for which a scaling collapse
would occur. For theV51027 V cutoff ~Fig. 4!, we obtain
TKT52.29 K andz52.23, in contrast toTKT52.55 K andz
52 obtained in Fig. 2. We note that the 1027 V cutoff, being
the highest of the cutoff voltages, allows for very little of th
finite-size-induced linear tail to be included in the IV da
set. This is reflected in the scaling parameters being c
paratively close to those ofIV curves without finite-size-
induced resistance. As the voltage cutoff is lowered,
value of TKT obtained from the scaling procedure progre
sively decreases and the value ofz increases. For theV
510212V cutoff the values areTKT50.84 K andz55.9. By
adjusting a parameter that is determined by the experime
measurement system~i.e., the noise floor! we can vary the
fitting parameters of the scaling collapse. Contrast this
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havior with the non-finite-size data where for all voltage c
offs down toV510220V ~where we stopped!, the same val-
ues forz andTKT yield the same scaling collapse. Thus, da
obtained on the same sample but measured using diffe
measuring systems can yield completely different scal
fits. This simple fact calls into question the practical viabili
of exploiting the scaling behavior of IV curves to confirm th
details of the phase transition in 2D superconductors.

We also point out that the value of the voltage cutoff
somewhat arbitrary for the data that we generated. Tha

FIG. 3. Replot of Fig. 1~b! showing the voltage cutoffs.IV
curves are shown every 0.05 K. The arrows denote the locatio
the ‘‘ghost transition’’ for each cutoff value~see text!, the point at
which the resistive character disappears.

FIG. 4. Scaling collapse of the finite-size-induced resistiveIV
data~Fig. 3! with a voltage cutoff of 1027 V.
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for the same selection of voltage cutoffs, we could have
tered the results of the scaling fits by changing the value
c1 , c2 , and c3 in Eq. ~13! to allow more or less of the
resistive portion to appear above~or below! the cutoff. This
is akin to the experimental situation where the noise floor
the measuring system is fixed and the coupling strength
the sample determines how much of the resistive tails of
IV curves will be observable.

The quality of the scaling collapse is not an indication
the reliability of the scaling fit. In Figs. 4–7 we have plotte
the scaling curves as lines rather than data points so a
expose any shortcomings in the scaling collapse. We n
that the scaling curves look to be quite good, certainly co
parable to most experimental data scaling, despite the w
variation of the scaling parameters. In particular, the d
above the transition~lower scaling curves! seem to exhibit an
especially good collapse in each case. A closer examina
however, reveals a few problems. In Fig. 4~1027 V cutoff!,
for the curves above the transition a slight deviation fro
KTB behavior at the lowest currents is caused by the ad

FIG. 5. Scaling collapse of the finite-size-induced resistiveIV
data~Fig. 3! with a voltage cutoff of 1028 V.

FIG. 6. Scaling collapse of the finite-size-induced resistiveIV
data~Fig. 3! with a voltage cutoff of 10210 V.
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tion of finite-size-induced free vortices. This deviation, d
ficult to discern from the unscaled data~Fig. 3! yet clearly
manifest in the scaled, prevents a total scaling collapse of
data~compare with Fig. 2!. The deviation is also present i
Figs. 5–7. As the voltage cutoff is lowered,TKT is reduced;
this causes more of the IV curves to end up on the sca
curve aboveTKT . The curve becomes ‘‘thickened,’’ makin
it difficult to distinguish the slight flaws in the collapse. In
deed, if we had used data points of only moderate size,
might not have even noticed the effect. In addition, the sh
of the scaling curve changes, becoming more rounded~once
again, compare with Fig. 2!. For data below the transition
~upper scaling curves! the scaling collapse is not good at a
But as the voltage cutoff is lowered and the apparentTKT
reduced, fewer IV curves remain: only those at the low
temperatures that are now suddenly ‘‘near the transitio
Consequently, the scaling collapse may appear better th
really is.

VI. APPARENT SCALING BELOW THE TRANSITION

We end with a discussion of the scaling behavior bel
the phase transition. As mentioned,IV data below TKT
should not scale and a careful examination of the sca
curves~Fig. 2 and Figs. 4–7! shows that this indeed is th
case~at least in comparison to the quality of the scali
collapse in the lower curve of Fig. 2!. The data below the
transition, however, certainly does show atendencytowards
a scaling collapse. MKM have dealt extensively with th
question for the 2DXY model with resistively shunted Jo
sephson junction dynamics. They point out that because
low-temperature phase is ‘‘quasicritical,’’ withj5`, each
temperature is characterized by itsownscaling function. For
small values of the scaling variablex, however, the scaling
function may be taken to be temperature independent. F
finite-sized system, they assume an approximate form for
correlation lengthj}R2a, whereR is the resistance in the
limit of zero current anda in general depends on bothL and
T. They then demonstrate that shoulda be a constant, the

FIG. 7. Scaling collapse of the finite-size-induced resistiveIV
data~Fig. 3! with a voltage cutoff of 10212 V.
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resistance would vanish at a temperature for whichz51/a.
In the KT picture, MKM note that the resistance actua
vanishes only at zero temperature~once again, for finite
size!, but it could happen thata is approximately constan
over a limited temperature regime causing the resistanc
appearto vanish at some nonzero temperature. If theIV data
happen to fall within this limited temperature regime, w
would observe an apparent scaling collapse and the app
vanishing of the resistance at some specific temperat
That is, we may be tempted to conclude that we have
dence for a phase transition. MKM term this type of tran
tion a ghost transition.

We may make a connection between this ghost transi
and our voltage cutoff analysis by noting that theIV expo-
nenta(T) is related to the dynamical critical exponent belo
the transition,a(T)5z(T)11. For each of the four voltage
cutoffs used, we take the value ofz obtained in the scaling
process~Figs. 4–7! and identify the corresponding temper
ture for which theIV exponent isz11. TheseIV curves are
identified by the arrows above each of the cutoff axes in F
3. Notice that each of these curves may be identified as
ones where evidence of the low-current resistive beha
first disappearsabove the corresponding noise floor. That
all IV curves at temperatures below this one are pure pow
law-like and the ones above show curvatures towards
Ohmic slope. This observation is illusory. If we look belo
the cutoff voltage, each of theIV curves displays Ohmic
behavior at lower currents.

In the MKM picture, this ghost-transition temperature w
change depending on the finite sample size. For a fixed v
age cutoff~noise floor!, decreasing the sample size will cau
more finite-size-induced resistance to appear above the
off and the ghost transition will move to lower temperatu
This is analogous to our picture in which we keep the size
the sample fixed but allow the voltage cutoff to decrea
thereby uncovering more of the resistive character and
fecting the ghost transition. In either case, it is obvious t
this does not constitute a ‘‘true’’ phase transition and thus
search for new vortex dynamics is not required.

Strachan, Lobb, and Newrock25 have recently offered a
methodology for determining whether scaling behavior
experimentalIV data is truly indicative of a phase transitio
or instead, is an artifact of limited voltage resolution. Th
use the scaling curve from the best fit to the data to ext
the IV curves to voltages below the voltage cutoff. The
argument is that a true scaling curve should predict the sh
of the entireIV curve, even that below the noise floor. Usin
the transition temperature derived from the scaling fit, th
then examineIV curves of temperatures equidistant fro
TKT , constructing lines tangent to each curve at the sa
fixed current. The tangent lines are used to determine
concavity of eachIV curve. If TKT represents a true phas
transition, theIV curves should exhibit opposite concavi
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above and below the transition. If theIV curves exhibit the
same concavity, the scaling fit is an artifact of the limit
voltage resolution of the data.

VII. CONCLUSION

We have demonstrated that the interpretation of dyna
cal scaling ofIV curves in 2D systems is subtle. In the the
modynamic limit, while scaling exists and is robustabove
the transition, it does not exist below the transition~Fig. 2!.
The reason is that the 2D correlation length is well defin
above the transition but infinite at and below the transitio
The addition of finite-size effects significantly degrades
scaling. Although a scaling curve can be obtained for fini
size-effect data, the scaling parameters are significantly
tered, particularly the dynamical critical exponentz. A
change inz would nominally point to a change in the vorte
dynamics of the phase transition, indicating other than
diffusive behavior of the KTB picture wherez52. While it
is certainly not unreasonable to believe that the vortex
namics of a finite-sized system may be different from
infinite system~perhaps even entirely different!, we are skep-
tical that the scaling collapse alone is sufficient evidence
this change. The fact that we may obtain a range of val
for z simply by truncating the finite-size data at various vo
age cutoffs, makes the actual value ofz for most experimen-
tal data highly suspicious, at least in the absence of corro
rating support from other analytical methods.

Nevertheless, it is intriguing that Piersonet al. find a
value of z>6 for a variety of 2D systems, both superco
ducting and superfluid. Rather than pointing to some univ
sality of physics, however, we suspect that this has mor
do with the nature of the data collection and the limitatio
of instrumentation. In particular, we note that the Johns
noise is the universal noise floor for all measurement syst
and that nearly all experimental systems are optimized
approach this limit.

More recently, Pierson and co-workers have presente
numerical study of a 2D-lattice Coulomb gas31 in which they
find thatz52 rather than thez.6 obtained in their previous
analysis. They attribute the inflated value ofz to finite-size
effects, a result consistent with the results we show h
They also claim to show evidence of the existence of a
correlation length below the transition, a result at odds w
our analysis.
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