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Abstract In this paper, a contribution to the determination of
reliable cutting parameters is presented, which is minimizing
the expected machining cost and maximizing the expected
production rate, with taking into account the uncertainties of
uncontrollable factors. The concept of failure probability of
stochastic production limitations is integrated into constrained
and unconstrained formulations of multi-objective optimiza-
tion problems. New probabilistic version of the nondominated
sorting genetic algorithm P-NSGA-II, which incorporates the
Monte Carlo simulations for accurate assessment of cumula-
tive distribution functions, was developed and applied in two
numerical examples based on similar and anterior work. In the
first case, it is a question of the search space that is completely
‘closed’ by high natural variability related to the multi-pass
roughing operation: in this case, the failure risk of technolog-
ical limitations are considered as objectives to minimize with
economic objectives. The second case is related to deformed
search space due to the uncertainties specific to finishing op-
eration; therefore, the economic objectives are minimized un-
der imposed maximum probabilities of failure. In both situa-
tions, the efficiency and robustness of optimal solutions

generated by the P-NSGA-II algorithm are analysed,
discussed and compared with sequence of unconstrained min-
imization technique (SUMT) method.

Keywords Failure probability . Monte Carlo simulations .

Pareto optimal solutions . Optimization . NSGA-II . Reliable
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Nomenclature
Rmax The maximum roughness (μm)
Tmax The maximum tool life (min)
Fmax The maximum cutting force (kg)
Pmax Power on the spindle (kW)
L Length to be machined for a single pass (mm)
d Diameter of workpiece (mm)
tm Cutting time (min)
tl Nonproductive and handling time (min)
tr Tool changing time (min/edge)
a Depth of cut (mm)
t Total depth of metal to be cut in roughing oper-

ation (mm)
n Number of passes in rough machining (an

integer)
p0 Direct labour cost added to overhead (paise/min)
p0*tm Machining cost by actual time in cut (paise/pc)
p0*tl Machine idle cost due to loading and unloading

operations (paise)
pl*(tm/T) Tool cost per unit piece (paise/pc)
pl The cost of a cutting edge (paise/edge)
p0*(tr*tm/
T)

Tool replacement cost (paise/pc)

rε Nominal nose radius (mm)
η Nominal machine efficiency (%)
E The expectation measurement
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Xx Random decision variables
f(x+Xx) Random « objective » function
g(x+Xx) Random « constraint » function
gr j

xð Þ Robust « constraint » function
Ua Uniform distribution of (a) uncertainty
Urε Uniform distribution of (rε) uncertainty
R Random roughness in finishing (μm)
Prs Random production rate in finish machining (pc/

min)
Prr Random production rate in roughmachining (pc/

min)
Cs Random total cost in finish machining (paise)
Cr Random total cost in rough machining (paise)
T Random tool life (min)
F Random cutting force (kg)
P Random cutting power (kW)
Kt Constant in the Taylor’s equation for the tool life
p, q, r Exponents in the Taylor’s equation for the tool

life
β0, β1, β2,
β3

Constants depending on cutting tool and
workpiece

PDF Probability density function
CDF Cumulative distribution function
Φ Failure probability (%)
F The reliability level (%)
γ Target failure probability (%)
SUMT Sequence of unconstrained minimization

technique
NSGA-II Nondominated sorting genetic algorithm

1 Introduction

Generally, the classical deterministic optimization does not
explicitly consider the uncertainties of decision variables.
These uncertainties are implicitly considered through the in-
troduction of safety coefficients to ensure the reliability of an
optimal design. In machining, the optimization of cutting con-
ditions with consideration of uncontrollable factors is always
specific to certain cutting methods [1], to a few uncertain
factors [2], and to the high-speed machining process [3].
Thenceforward, neglect of these uncertain parameters, in or-
der to simplify the mathematical models and reducing the
prohibitive calculation time, alters the accuracy and reliability
of the expected results. Also, the respect of the constraints
related to machined workpieces quality, the guarantee of pro-
ductivity, the operator safety, as well as the machining equip-
ment longevity, requires a mastery of uncertain factors such as
the power consumed by the machine, tool wear and tool
deflection.

One of the predominant error sources affecting the cutting
process is the tool deflection [4, 5]. For conventional milling
and turning, this defect depends essentially on the rigidity of

the used tool. The error magnitude order of the machined
surface is 25 to 30 μm [6], considering a slender end mill
(6 mm in diameter and 60 mm in length) and by applying
the finishing conditions on steel. In the worst case, the error
values may be higher than 90 μm. In other scales, typical
parameters of micro-milling cause cutting forces on the order
of 30–100 mN, which can lead to a tool deviation of 3 μm.
The tool wear is another important error source, increasing the
cutting forces and produces a variation in tool dimensions [7,
8] and causing a loss of precision [9]. The nose radius of the
straight end mills and the turning inserts become more round-
ed because of the wear, causing a decrease of the diameter or
the tool length compared to the nominal dimensions. More-
over, the ball-end mills lose their initial radius, particularly, in
the case of the hard materials machining, such as the tempered
and hardened steels to over 50 HRC [4]. In much optimization
work of cutting conditions, the machine efficiency is taken,
falsely, as a constant. It was also verified that machine effi-
ciency depends on cutting regime [10]. Exceptionally, in ro-
bust optimization problems under uncertainties, Hati and Rao
in [11] have taken into account the variability of the machine
power.

The reliable optimization is closely linked to respect con-
straints or limitations imposed by the machinist. Of mathemat-
ical viewpoint, an optimum is robust or reliable if and only if it
satisfies the constraint functions subjected to natural variabil-
ity or error propagation from uncontrollable factors which
enter their formulation. Moreover, an efficient optimum is
defined as the global minimum of the objective function.
Thus, upon the resolution of robust optimization problems,
particularly in [12, 13], the use of safety coefficients under
another name (penalty factors) is taken up in the penalistic
formulation of constraint functions. But, the penalty factor is
not related directly to the requirements of a reliable machin-
ing. As stated in [13], overestimation of the penalty factor can
lead to less efficient solutions of the optimization problem,
and even that there would be no solutions because of the
closure or distortion of search space. To remove this ambigu-
ity, an approach to determine the optimum cutting conditions
with consideration of uncertainty, called ‘probabilistic optimi-
zation’, has emerged. This last introduces a more practical
concept for considering natural variability of constraints,
which is the probability of failure or the reliability of limita-
tions. Indeed, the failure probability of a constraint is the risk
to which this constraint may be violated or unsatisfied because
of the natural variability of the system.

Several techniques have been used to solve probabilistic
optimization problems with single objective in machining,
inter alia; the sequence of unconstrained minimization tech-
nique (SUMT) in [11], SUMT method combined with the
Newton-Raphson method in [14] and dynamic objective-
particle swarm optimization (DO-PSO) that has been used
recently in [15]. The genetic algorithm (GA) has been a long
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time applied effectively to solve deterministic optimization
problems in different machining processes, such as multi-
pass turning operation in [16] and end milling operation in
[17]. In a comparative study, Khan et al. [18] have shown that
the genetic algorithm is very efficient compared to other
methods based on the gradient information, such as SUMT,
Box’s Complex Search, Hill Algorithm. Moreover, the
nondominated sorting genetic algorithm NSGA-II, originally
developed by Deb and Sirinivas [19, 20], is an excellent tool
to solve constrained multi-objective optimization problems.
Indeed, it is able to maintain a better dissemination of
nondominated solutions and it converges better in obtaining
the Pareto front, compared to other elitist methods, such as
Pareto-Archived Evolution Strategy (PAES) and Strength-
Pareto Evolution Strategy (SPES). Yusoff et al. [21] have re-
alized an exhaustive review of work involving NSGA-II in
optimization of cutting conditions, relating to traditional and
modern machining operations. In some of these works, the
NSGA-II was compared to other optimization techniques,
such as multi-objective differential evolution (MODE), qua-
dratic programming (QP), GA, PSO, scatter search (SS), ACO
and differential evolution (DE). It was found that the NSGA-II
is more efficient than other methods in terms of solutions
number and ratio of nondominated individuals. Yusoff et al.
[21] concluded that the NSGA-II is a reliable and efficient
technique for optimizing simultaneously many interest vari-
ables in machining.

In this contribution, a proposed new version of the
nondominated sorting genetic algorithm P-NSGA-II is used
for multi-objective probabilistic optimization of cutting con-
ditions. This new algorithm incorporates the Monte Carlo
simulations for accurate assessment of failure probabilities
of technological constraints. The limitations related to the
minimum and maximum tool life, the cutting temperature,
the cutting force, the power consumption and the surface
roughness are the considered constraints. The developed algo-
rithm is implemented in two numerical applications based on a
similar anterior work [11]. In the first case, it is a question of
the search space that is completely ‘closed’ by high natural
variability related to the multi-pass roughing operation: in this
case, the failure risk of technological limitations are consid-
ered as objectives to minimize with economic objectives. The
second case is related to deformed search space due to the
uncertainties specific to finishing operation; therefore, the eco-
nomic objectives are minimized under imposed maximum
probabilities of failure.

In the next section, a brief review on the probabilistic op-
timization in machining is exposed. Then, the Section 3 is
dedicated to the development of mathematical models for
multi-objective optimization in multi-pass turning operation,
namely, the ‘objective’ functions and the different constraint
of production. In Section 4, two probabilistic formulations of
robust multi-objective optimization problem for two different

cases are presented, particularly, when the search space is
closed and deformed. A diagram explaining the operation of
the developed nondominated sorting genetic algorithm P-
NSGA-II is presented in Section 5. In section 6, two numerical
illustrative applications based on similar work [11] in multi-
pass roughing and finishing operations are proposed. Finally,
the results generated by the genetic algorithm P-NSGA-II of
different probabilistic formulations will be discussed,
interpreted and compared with SUMT method.

2 A succinct review on probabilistic optimization
in machining

Based on the results of Kyparissis [22] for the geometric pro-
gramming problems, Dupocova et al. [23] have proposed sta-
tistical sensitivity analysis of the optimal machining condi-
tions, the minimal value of the total machining costs in a
single pass and single tool turning operation. Their study is
concentrated on the case of random parameters only in the
objective function, assuming that the only source of uncertain-
ty stems from Taylor’s equation. Similarly, Szantai et al. [24]
have minimized the total machining time taking into account
the stochastic nature of the tool life via the probability model
of Rosetto-Levi [25], while considering a probabilistic con-
straint for log-normally distributed tool life. His approach is
insufficient for an exhaustive probabilistic optimization of
cutting conditions where the probabilistic nature of the other
cutting parameters and some constraint of production must be
considered. In contrast, Iwata et al. [14] have proposed an
analytic method based on the chance-constrained program-
ming concept as an effective technique for determining the
optimum cutting conditions in relation to the probabilistic na-
ture of the objective function and constraints.

Iakovou et al. have presented models for simultaneously
determining the optimal cutting speed and the optimal tool
replacement policy in cost minimization machining econom-
ics [26]. It is shown that when the tool lives follow a certain
class of phase type distributions, including Gamma, the ob-
jective function is separable and they have exploited this struc-
ture to develop efficient solution procedures. Sheikh et al. in
[27] attempted to determine analytically the optimal cutting
conditions and tool replacement policies in a machining eco-
nomics system, but the resulting equations could be solved
only by numerical methods. Furthermore, the optimal cutting
speed and feed were determined sequentially instead of being
determined simultaneously. One of the variables (speed of
feed) had to be preselected, and then the optimal value of
the other variable was determined [28]. Another limitation of
the Sheikh’s approach is that it is applicable only to uncon-
strained machining economics problems, while many real life
machining economics problems are constrained by maximum
allowable feed, or by available machine horsepower and/or by
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surface finish requirements. However, Koulamas et al.
in [28] have developed an analytical model for the si-
multaneous determination of the optimal machining con-
ditions and the optimal tool replacement policies with
stochastic tool lives. The constraints on the optimal
values of the cutting speeds, feeds and/or tool life
fractiles can be handled in the geometric programming
formulation through the optimization of the dual objec-
tive function. Hati and Rao in [11] have developed a
probabilistic model for the optimization of the produc-
tion cost per piece, of the production rate and of the
profit by using the method of sequence of unconstrained
minimization technique (SUMT). They have assumed
that if the uncertain parameters follow normal distribu-
tions, similarly, the constraint functions will follow the
same distribution type. This is not necessarily correct,
given the nonlinearity of constraints functions. They
have also considered too many uncertain factors in their
study, which led to the closing of the feasible space.
Similarly to Iwata [14], they studied and considered
different predetermined probability levels to satisfy the
stochastic constraints. Recently, Hippalgaonkar and Shin
[15] have used a modified version of the particle swarm
optimization algorithm (dynamic objective PSO), for the
minimization of the production cost while considering
the tool life uncertainty in multi-pass turning. The deci-
sion variables include not only the machining parame-
ters but also the tool replacement time. Unusually, they
have integrated the concept of tool failure cost in cal-
culation of total production cost.

3 Models for the considered multi-pass optimization
problem

For comparison reasons, we take as references in the fol-
lowing, the models considered by Haiti and Rao [11] to
determining optimal cutting parameters minimizing the ex-
pected production cost and production time under uncer-
tainty of uncontrollable factors associated with multi-pass
roughing and finishing operations. The stochastic con-
straints related to the surface roughness, the cutting power,
the tool life, the cutting force and temperature are also taken
into account.

3.1 Objective functions

O.1 The production rate
The total production time can be decomposed into

production time in multi-pass roughing and single pass
in finishing:

Tu ¼ Tus þ Tur ð1Þ

& For the single pass finishing operation:

Tus ¼ tl þ tm þ tr
tm
T

� �
ð2Þ

tm
T

� �
is the number of tool changes per piece.

Then the production rate for finishing operation is calculat-
ed as the following:

Prs ¼ 1
�
Tus

ð3Þ

& For the multi-pass roughing operation:

Tur ¼ tl þ tln n − 1ð Þð Þ þ n tm þ tr
n tm
T

� �
ð4Þ

And the production rate for roughing operation is calculat-
ed as the following:

Prr ¼ 1
�
Tur

ð5Þ

The cutting time tm per single pass and the tool life T in
[29], for turning process, are given by:

tm ¼ π L d

1000 f V
ð6Þ

T ¼ Kt

V p f qar
ð7Þ

where p, q, r and Kt are characteristic positive constants of the
tool and the workpiece material.

O.2 The production cost
The production cost is the total manufacturing cost of

a complete product; it is linked to the cutting parameters
by the lifetime T and the production time Tu. The global
equation of the production costs C is given by [11]. The
total production cost can be decomposed into produc-
tion cost in multi-pass roughing Cr and finishing Cs:

C ¼ Cs þ Cr ð8Þ
Then, we have for a single pass in finishing operation:

Cs ¼ p0tl þ p0tm þ pl
tm
T

� �
þ p0 tr

tm
T

� �
ð9Þ

And for a multi-pass roughing operation:

Cr ¼ p0 tl þ tln n − 1ð Þ½ �f g þ p0 n tm þ pl
n tm
T

� �

þ p0 tr
n tm
T

� �
ð10Þ
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3.2 Constraints set

C.1 The workpiece quality
The surface roughness directly reflects the machining

quality. Many factors influence the workpiece rough-
ness (wear, vibrations, deflection), but the most prepon-
derant is the tool feed and the nose radius [30]. There-
fore, the following relationship allows respecting a cer-
tain level of roughness Rmax:

1000
f 2

8rε
:≤Rmax ð11Þ

C.2 The chip-tool interface temperature
To reduce the dimensional and geometric errors due

to thermal stress, the temperature at the chip-tool inter-
face Te should be less than a maximum allowable tem-
perature denoted Temax . It is given by [31]:

Te ¼ β0V
β1 f β2aβ3 ≤Temax ð12Þ

C.3 The tool life
During machining, we should not exceed the

maximum lifetime Tmax fixed for a given tool to
avoid all unforeseen breakage and we must not use
the tool below a minimum time Tmin, in order to
avoid high production time.

Tmin≤T ≤Tmax ð13Þ

C.4 The cutting force
This constraint is imposed to restrict the deflection of

tool and the workpiece and keep the machine stable. The
expression for the cutting force is given by [32].

F ¼ a f 28:10 V 0:07−0:525 V 0:5
� �

1:590þ 0:946
1þ eð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−eð Þ2 þ e

q
0
B@

1
CA

2
64

3
75≤ Fmax

ð14Þ

where e is a variable dependent on the cutting speed V
and the feed rate f.

C.5 The machine motor power
During machining, it is imperative that the cutting

power does not exceed the power of machine Pmax:

P ¼ 0:746FV

4500η
≤Pmax ð15Þ

4 Formulation of optimization problem

4.1 Deterministic formulation

The deterministic optimization problem without uncertainties
consideration can be expressed by:

minimize f xð Þ
Such as g j xð Þ≤0 j ¼ 1;…; n:

xmin≤ x ≤ xmax

8<
: ð16Þ

where x is the design variables vector xmin and xmax are the
lower and upper bounds of the search space. f(x) and gj (x) are
respectively the objective functions and the n constraint
functions.

4.2 Proposed probabilistic-robust formulation

By taking into account the uncertainties of uncontrollable fac-
tors, a major change in the formulation of constraint functions
is proposed in this approach (Eq. 17).

gr j xð Þ ¼ Φg j
x;X xð Þ≤γ j ð17Þ

The failure probability Φg j
x;X xð Þ allows quantifying the

risk in terms of probabilities that a limitation g max would be
suddenly exceeded due to the errors and uncontrollable factors
(Fig. 1). Therefore, the reliability level of a constraint is de-
fined as such (Eq. 18):

Fg x;X xð Þ ¼ 1−Φg x;X xð Þ ð18Þ

The calculation of the robustness measurement related to
constraint is realized by the Monte Carlo simulations of the
cumulative distribution function CDF in optimization algo-
rithm. After CDF simulation, the failure probability Φ
(Eq. 19) is estimated in the point g max (e.g. maximum cutting
force, maximum roughness and spindle power) and then, it is
compared with a target failure probability γj imposed a priori
(Fig. 1).

Φg x;X xð Þ ¼ 1−CDF g xþ X xð Þ≤gmax½ � ð19Þ

Numerically, the CDF is calculated as the following:

CDF g xþ X xð Þ≤gmax½ � ¼ 1

N

X N

r¼1
I g xþ X x

r
i

� �
≤gmax

� 	
ð20Þ

Where N is the number ofMonte Carlo samples and I is the
index function (Eq. 21):
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I g xþ X x
r
i

� �
≤gmax

� 	 ¼ 1 if g xþ X x
r
i

� �
≤gmax

0 if g xþ X x
r
i

� �
> gmax



ð21Þ

Analytically, the CDF is given as the following (Eq. 22):

CDF g xþ X xð Þ≤gmax½ � ¼
Z

g xþX xð Þ≤gmax

PDFg x;X xð ÞdX x

ð22Þ

We present in this section two typical problems related to
the constraints variability (Figs. 2 and 3). For purposes of
illustration, the variability of constraint functions is assumed
to follow normal distributions.

4.2.1 The closing of search space

The first is when the search space is completely or partially
closed by the dispersions of limitations; this can occur when a
large number of uncertain factors exist with high variability.
Therefore, it is impossible to satisfy the imposed constraints
using a penalistic formulation [13] or even with a probabilistic
formulation. So, the solution to this problem is impossible
(Fig. 2). In this case, a compromise must be performed to
determine the robust solutions satisfying all the stochastic
constraints that delimit the search space.

For example on the Fig. 2 above, the two constraints
bounding the deterministic feasible space, g1(x) and g2(x) are

Fig. 1 Robust optimum in the
feasible space for a target failure
probability (γ)

Fig. 2 The closing of the search
space due to the constraints
dispersions gj (x)
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subject to a high variability. At this point, we cannot satisfy a
constraint without violating the other; therefore, we can say
that g1(x) and g2(x) are a conflictual nature. Accordingly, this
problem must be resolved through an unconstrained multi-
objective formulation, where the failure probabilities of deter-
ministic limitations Φg j

x;X xð Þ will be considered as objec-

tives to minimize with initial objectives f(x+Xx) of the prob-
lem (Eq. 23):

minimize E f xþ X xð Þ½ �
minimize Φg j

x;X xð Þ
xmin≤ x ≤ xmax

8<
: ð23Þ

4.2.2 The deformation of the search space

It sometimes happens, depending on the distribution law
of the uncertain parameter and of uncertainty propaga-
tion towards the interest variables, that the mean
(expectation) of disturbances E[g(x+Xx)] will be
completely shifted from the original and deterministic
function g(x), as it is the case of constraint functions.
Therefore, two possible cases could be distinguished,
according to the narrowing or expanding of the feasible
space (Fig. 3).

Using the probabilistic formulation of the problem under
uncertainties, we obtain robust and reliable solutions in both
situations, i.e. narrowing or expanding of feasible space. But
the efficiency of solutions depends on nature of the set objec-
tive f(x). For example (Fig. 3), if we wanted to maximize the
material removal rate, the solutions corresponding to the

search space expansion will be more efficient than those ob-
tained by the deterministic formulation and vice versa.

When the search space is distorted, the probabilistic-robust
optimization problem (Eq. 24) can be expressed as follows:

minimize E f xþ X xð Þ½ �
Such as Φg j

x;X xð Þ−γ j≤0 j ¼ 1;…;m
xmin≤ x ≤ xmax

8<
: ð24Þ

5 The proposed new algorithm P-NSGA-II

In this section, the major modification of the Nondominated
Sorting Genetic Algorithm NSGA-II [19, 20] is presented by
incorporating the concept of failure probability of constraints
in order to solve an optimization problem under uncertainties.
The proposed Probabilistic Genetic Algorithm P-NSGA-II
contains the same steps as the deterministic genetic algorithm
[19, 20]. Therefore, we will process here only the essential
step relating to the posed problem, namely the evaluation step
or fitness. The following sub-steps illustrate the conduct of the
P-NSGA-II based on MC evaluations:

Step 1: Random generation of N samples for each individual
of the uncertain variable (Xxi

r) according to a distribution law
Step 2: Calculation of stochastic functions (Xf r) and (Xgj

r) for
each N sample value of uncertain variable
Step 3: Evaluation of the expectation (E [Xf])
Step 4: Evaluation of the cumulative distribution function of
constraints violation (CDF[Xgj, gjmax]) at the point (gjmax) for
each sample
Step 5: Calculation of failure probability (Φg j x;X xð Þ ) for the
m constraints

Fig. 3 The narrowing and
expanding of the robust feasible
space
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Step 6: Replacement of constraint functions by (Φg j x;X xð Þ ≤
γ j ) and the objective functions by (E (Xf)) for unconstrained

problem. For uncostrained problem, replacement of objective
functions by (E (Xf)) and Φg j x;X xð Þ
Step 7: Evaluation of chromosomes by robust adaptation
function

6 Numerical applications

In order to evaluate the methodology, two distinct nu-
merical applications, inherent in multi-pass roughing and
finishing operations are proposed: (i) The first applica-
tion is characteristic of a search space completely closed
by high variability, as is the case with the problem
posed by Hati and Rao in [11]. (ii) The second appli-
cation is related to a deformed search space, as is the
case in finishing operation. In this case, the geometrical
and dimensional errors, mainly caused by tool deflection
and wear of nose radius, propagate to the dependent
variables such as surface roughness and tool life. For
both numerical applications, mild steel is taken as the
workpiece material and a carbide tool for cutting.

6.1 When the search space is obturated

The considered numerical case is based on the example
treated by Hati and Rao [11]. The numerical data
(Table 1) and the used equations in [11] are reconsidered
in the mathematical formulation of our unconstrained
multi-objective problem.

6.1.1 Uncertain factors

The numerical values of uncertain factors used in [11] are
given in Table 2.

* Utl3 and Utl4 are the uncertainty of handling time, respec-
tively, for n=3 and n=4.

As we have previously stated, the probabilistic opti-
mization problem posed by [11] comprising single ob-
jective and five constraints related to failure probabili-
ties is converted into unconstrained multi-objective op-
timization problem. Only the constraints related to upper
and lower bounds of the decision variables are taken
into account. The cost or production time are minimized
simultaneously with failure probabilities of production
limitations ΦTmax, ΦTmin, ΦPmax, ΦFmax, ΦTemax

. So,
our problem (Eq. 25) is formulated as follows:

minimize E Cr

� �
or maximize E Prr

� �
minimize ΦT T ≤Tmax

h i
minimize ΦT T ≥Tmin

h i
minimize ΦF F ≤ Fmax

h i
minimize ΦP P≤Pmax

h i
minimize ΦTe Te≤Temax

h i
Vmin≤V ≤Vmax

f min≤ f ≤ f max

amin≤a≤amax

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð25Þ

The unconstrained multi-objective problem above is imple-
mented in the Matlab™ and resolved by P-NSGA-II. The pa-
rameter values of which are given in Table 3 below.

6.1.2 Results and discussion

After presentation and critic of probabilistic solutions obtain-
ed by the SUMT method in [11], a comparison with the solu-
tions generated by P-NSGA-II is presented below.

The optima obtained by SUMT [11] First, the optima
presented by Hati and Rao [11] are not reliable be-
cause of the dissatisfaction of failure probabilities lim-
itations (Table 4). Indeed, due to obturation of the
search space, there is no solutions to probabilistic op-
timization problem, as formulated by Hati and Rao
[11] for a target probability of failure γj=2.5 %. Such
as we can see it on Fig. 4, the specific feasible space
to a depth of cut a=1.25 (n=4) is completely obturated
by the constraint dispersions, particularly those related

Table 1 The values of the used constants [11]

amin=1.2 amax=2.75 fmin=0.3 fmax=0.75

Vmin=50 Vmax=400 t=5 Kt=6 * 1011

p=5 q=1.75 r=0.75 Fmax=85

Tmin=25 Tmax=45 Pmax=2.5 Temax
=1000

η=90 % tl=1 tln =0.2 tr=0.5

pl=50 p0=10 d=100 L=1000

β0=132 β1=0.4 β2=0.2 β3=0.105

rε=1.2 Rmax=10

Table 2 The numerical values and distributions of uncertain factors

Up=N (5, 0.05) Ur=N (0.75, 0.075) Uβ1=N (0.4, 0.02)

Uβ2=N (0.2, 0.01) UTmax
=N (45, 3) UTmin =N (25, 1)

UPmax
=N (2.5, 0.25) Utr =N (0.5, 0.1) Utl3=N (1.4, 0.2)*

Utl4=N (1.6, 0.2)* Uc0=N (10, 0.05) Uct =N (50, 5)

UTemax
=N (1000, 50) UTemax

=N (1000, 50) U Fmax
=N (85, 5)
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to maximum cutting temperature, to minimum and
maximum tool life. The high fluctuations of cited con-
straints is necessarily due to the large number of un-
certain parameters considered simultaneously in the
study, and it may be to overestimation of their stan-
dard deviations. The solutions, given by the SUMT
method, provide practically a high probability of fail-
ure ΦTmin (Table 5) followed by maximum cutting
temperature ΦTemax

for both objectives, i.e. production
cost and production rate, for all possible depths of cut
(n=2, 3, 4).

The optima obtained by P-NSGA-II The multi-objective
optimization problem (Eq. 25) is resolved by P-NSGA-
II. The optimal solutions generated by P-NSGA-II are
represented under Pareto’s abacus form of nondominated
solutions. This arrangement of solutions, also called
Pareto’s front of nondominated solutions, is based on
the principle stated by Vilfredo Pareto [33]. The optima
that we selected in each Pareto front (Figs. 5, 6, 7, 8, 9,
10) for the pass numbers (n=2, 3, 4) are shown in
Tables 4 and 5. Unlike Hati and Rao [11], we were
able to obtain solutions for a number of passes n=2
(Table 4), using P-NSGA-II and the unconstrained
multi-objective formulation. The optima obtained by
the multi-objective probabilistic approach are less effi-
cient compared to those of deterministic case that are
not represented here. This fact is the characteristic of

the robust optimization, which is observed in other
works as [11, 13, 14].

It is observed on Pareto fronts that is impossible to
attain simultaneously a probability of failure lower or
equal to 2.5 % for all the technological limitations, con-
trary to what is stated in [11].

We notice for all passes ‘n’ that the selected optimal
solutions involve a risk of 8 to 9 % for which the
maximum cutting temperature (1000 °C) can be
exceeded. Because of high dispersion in constraint relat-
ed to cutting temperature Temax

, it influences substantial-
ly on the robust-probabilistic solutions, despite it is not
involved in the delimitation of deterministic feasible
space (Fig. 4). The failure probability of the constraint
related to maximum cutting power ΦPmax is somewhat
high for n=2 than for depths of cut n=3 and n=4
(Table 5). Practically, for number of passes n=3 and
n=4, the risk to generate a superior cutting power to
that available on spindle ΦPmax is acceptable (Figs. 7,
8, 9, 10). Generally, this risk increases when the depth
of cut increases. The failure probability of maximum
cutting force is proportional to the feed rate, for two
and three cutting passes, but not for four cutting passes.
This is due to the fact that the maximum cutting force
is not involved in the demarcation of classical feasible
space for n=4. Therefore, we can say that the risk to
generate a superior cutting force to 85 kg decreases
when the depth of cut decreases.

The contradictory nature between objectives ΦTmin

and ΦTmax can be observed on all Pareto fronts
(Figs. 5, 6, 7, 8, 9, 10). We also note that the failure
probability of the maximum tool life ΦTmax is propor-
tional to production cost. In fact, the Iwata [14] and
Hati [11] findings, for which the machining cost is
inversely proportional to the reliability level of con-
straints, are verified only for the maximum tool life
in the roughing case but not for all constraints.

In addition, the production cost decreases when the
failure probability of minimum tool life ΦTmin in-
creases. However, the production rate is inversely pro-
portional to the failure probability of the maximum
tool life ΦTmax.

In terms of robustness, the solutions can be selected
a posteriori, according to the constraint reliability levels
desired by the manufacturer. The minimum production
cost and maximum production rate generated by the

Table 4 Representation of results given by the P-NSGA-II and SUMT
methods for number of pass n=2

Pass number n=2 and a=2.5

Algorithm SUMT P-NSGA-II

Objectives No feasible
optimum
was obtained

E Cr

� �
= 176.25 E Prr

� �
= 0.06764

ΦPmax 6.55 12.38

ΦFmax 3.31 22.95

ΦTmax 19.87 9.92

ΦTmin 9.24 18.52

ΦTemax 8.33 8.99

V 148.58 144.45

f 0.3160 0.3405

Time taken 4 min 27 s 4 min 24 s

Table 3 The parameter values of P-NSGA-II

Population size Number of Monte Carlo samples Selection Crossover rate Mutation rate Maximum number of generations

100 10,000 By tournament 0.8 0.01 300

Int J Adv Manuf Technol



developed algorithm P-NSGA-II and the unconstrained
multi-objective formulation (Figs. 7, 8, 9, 10) provide

more efficiency (E Cr

� �
= 176.55 paise/piece; E Prr

� �
=

0.06232 piece/min), (E Cr

� �
= 191.25 paise/piece; E

Prr

� �
= 0.05557 piece/min), respectively, for n=3 and

n=4, compared with the solutions offered by SUMT
method.

Using Monte Carlo simulations by P-NSGA-II for
estimating failure probabilities resulted to the increase
of the calculation time approximately two times greater
than that taken by SUMT method [11]. The time taken
P-NSGA-II to resolve the problem is always acceptable,
since the genetic algorithm is not very affected by the
choice of the input vector, unlike SUMT method which
takes longer to converge, if the starting vector is far
from optimal vector.

6.2 When the search space is distorted

In the finishing operation optimization, wear and tool
deflection mainly affect the variability of constraints re-
lated to tool life and the machined surface roughness.
So, these uncontrollable factors are at origin of the de-
formation of search space. Later, we study the reliability
level influence of stochastic constraints on the probabi-
listic optima.

6.2.1 Uncertain factors

We distinguish two geometric dispersion types in turning
(Fig. 11):

& Systematic dispersion: during cutting, the tool tip
declines gradually from a distance Urε due to wear
of nose radius. In addition, it becomes larger r’ε
relative to the nominal nose radius rε. The uncer-
tainty on the nose radius is assumed to 5 % on the
machining tolerance basis fixed by the standards
[34, 35], which makes a variation range of the nose
radius Urε =0.06 μm (Table 6).

& Random dispersion: the error on the depth of cut
is caused by the random displacements of the tool
Dr in the radial direction (assumed at 10 μm).
The tool deflection Dr combined with nose radius
wear Urε, out comes the following equation
(Eq. 26):

Ua ¼ Urε þ Dr ð26Þ

On one hand, the radial displacement affects strongly
the profile height of the machined surface [36]. More-
over, the wear of the cutting edge generates an uncon-
trollable surface state and first-order dimensional errors.
In this part, the uncertainty of the machine efficiency is
taken into account. Based on other optimization works,
it has found that the efficiency varies between 55 to
85 % for the same machined material and therefore,
nominal machine efficiency for the deterministic case
is taken to 70 %.

The parameters ~ap;~rε; ~η are the uncertain variables of
this problem. The numerical values of uncertain factors

Fig. 4 Probabilistic optima for
the minimum of production time
and cost obtained by SUMT [11]
and NSGA-II for n=4
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are given in Table 6. The parameters not included in
Table 6 are considered deterministic, and their numerical
values are given in Table 1.

The constrained multi-objective problem below is
implemented in the Matlab™ and resolved by probabi-
listic nondominated sorting genetic algorithm P-NSGA-
II which presented before. The parameter values of
used algorithm are already given in Table 3. In this
section, the levels of failure probabilities have been
fixed as γj=2.5, 5, 10, 20 %.
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Fig. 5 The Pareto abacus of minimum production cost and minimum
failure probabilities, for two cutting passes

Fig. 6 The Pareto abacus of minimum production rate and minimum
failure probabilities, for two cutting passes
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maximize E Prs

� �
minimize E Cs

� �
such as

ΦT T ≤Tmax

h i
≤γT

ΦT T ≥Tmin

h i
≤γT

ΦR R≤Rmax

h i
≤γR

ΦP P≤Pmax

h i
≤γP

ΦTe Te≤Temax

h i
≤γTe

Vmin≤V ≤Vmax

f min≤ f ≤ f max

a ¼ 1 mm

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð27Þ

6.2.2 Results and discussion

In finishing, we can choose and compare between solutions
that reduce simultaneously the time and cost of production,
with and without consideration of the uncertainties (Table 7).
In this optimization case, the limitation related to the surface
quality and tool life (Rmax, Tmax, Tmin) influences the probabi-
listic and deterministic solutions. As stated previously in sec-
tion (§.4.2.2), the average of the three constraints function E
[Rmax, Tmax, Tmin] is shifted compared to the original function.
And the robust feasible space, defined by the dispersion, is
deformed (Fig. 12).

Fig. 7 The Pareto abacus of minimum production cost and minimum
failure probabilities, for three cutting passes

Fig. 8 The Pareto abacus of minimum production rate and minimum
failure probabilities, for three cutting passes

Fig. 9 The Pareto abacus of minimum production cost and minimum
failure probabilities, for four cutting passes

Fig. 10 The Pareto abacus of minimum production rate and minimum
failure probabilities, for four cutting passes
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In this case, the deterministic formulations provide
‘reliable’ solutions with respect to imposed constraints,
after considering the variability of the cutting process.
The failure probabilities associated to the minimum tool
life and maximum surface roughness are acceptable, re-
spectively, 1.70 and 1.45 %. This is due to the shift of
disturbances upwards (expansion of the feasible space)
(Fig. 12). On the contrary, if the feasible space had
shrunk, these reliable solutions would be infidels and
unusable because of the significant failure probability.

The generated optimal cutting parameters by P-
NSGA-II algorithm satisfy the different targets failure
probabilities, j (2.5, 5, 10 to 20 %), as shown in the
table below. For example, if we agreed to take a risk of
8.6 and 9.33 % for having respectively a machined sur-
face roughness upper than 10 μm, and a tool life lower
than 25 min, the production cost and production rate
will be more efficient than those obtained by the deter-
ministic and classical formulation. With the evaluations
based on Monte Carlo simulations, we find that the
average evaluation time required for solving probabilis-
tic problem is approximately eight times greater than
time required for solving deterministic problem
(Table 7).

The effect of failure probability levels The effect of failure
probability level on the optimum cutting conditions is
illustrated on Fig. 13. Table 7 gives the list of optimum

cutting conditions for different predetermined levels of
failure probability γj, are 2.5, 5, 10 and 20 %. In this
case study, the production cost is proportional to reli-
ability level of constraints and it is inversely proportion-
al to failure probability of constraints (Fig. 13). In ad-
dition, production rate increases when the failure prob-
ability level increases and therefore, it decreases when
reliability level increases. It can be said also that the
efficiency of objectives and the robustness (reliability)
of constraints are conflicting concepts, where a compro-
mise must be achieved. In the case studied, the optimal
cutting parameter values, corresponding to failure prob-
ability of 2.5 %, are efficient and robust solutions in the
same time.

The new probabilistic formulation makes possible, a
priori, a compromise between reliable cutting conditions
ensuring failure risk controls of machining equipment
and efficient cutting conditions minimizing the time
and costs of machining. A future alleviation of probabi-
listic formulation by removing the constraints with low
variability will reduce systematically the calculation
times.

7 Conclusion

In this paper, two probabilistic multi-objective optimiza-
tion problems in of multi-pass roughing and finishing
operations are studied. In the first, the failure probabil-
ities of technological limitations are considered as ob-
jectives to optimize with economic objectives, i.e. pro-
duction cost and production rate. In the other, probabil-
ities of failure are considered as constraints to satisfy.
The new developed genetic algorithm P-NSGA-II was
used to determine the optimum cutting parameters min-
imizing the machining cost and maximizing the produc-
tion rate.

Fig. 11 The uncertainty of depth
of cut caused by the tool
deflectionDr and the wear of nose
radius Urε

Table 6 Uncertain factors and distribution law

Uncertain factors Distribution law Value

Depth of cut a Uniform U[a −0.07; a]
Tool deflection Dr Uniform U[1; 10]

Machine efficiency η Uniform U[55; 85]

Wear of nose radius rε Uniform U[rε; rε +0.06]
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The findings from the two studies are:

– The presented solutions by Hati and Rao [11] are unreli-
able and probably unusable, because of target failure
probability that cannot be satisfied for all constraints,
due to obturation of search space.

– The optimums obtained by developed algorithm P-NSGA-
II and the unconstrained multi-objective formulation

showed more efficiency (E Cr

� �
= 176.55 paise/piece, E

Prr

� �
= 0.06232 piece/min), (E Cr

� �
= 191.25 paise/piece,

E Prr

� �
= 0.05557 piece/min) respectively for three and four

cutting passes, compared with solutions generated by
SUMT method for the same case studied in [11].

– It was found that the reliabilities of limitations related to
minimum and maximum tool life are conflictual. The
production cost decreases when failure probability of
the minimum tool life increases. However, the production
rate is inversely proportional to the violation risk of max-
imum tool life.

– When the feasible space is deleted, the Iwata [18] and
Hati and Rao [11] findings, for which the machining cost
is inversely proportional to the reliability level of con-
straints, are verified only for the maximum tool life but
not for all constraints.

– The unconstrained multi-objective optimization formulation
has provided various solutions in the form of Pareto fronts,
i.e. efficient and robust solutions. These solutions can be
chosen a posteriori according to reliability level of each of
the considered technological limitations or according to the
production cost and time that the machinist desires.

– In the case relating to the finishing operation where the
search space is deformed, the efficient and robust obtain-
ed solutions are contradictory and a compromise can be
achieved.

– The computation time taken by the P-NSGA-II algorithm
for probabilistic formulation is about eight times greater
than that taken by NSGA-II algorithm for the determin-
istic formulation. However, to improve the processing
time, the parallelization of computations or replacement

Table 7 The probabilistic and deterministic optima in finishing operation for a=1 mm

Formulations Variables of decision Objectives (O.1, O.2) Constraints (C.1, C.3)

V f
Crs Prs

ΦRmax ΦTmin Time taken

Det 179.534 0.3098 78.90 0.1479 1.45 1.70 30.15 s

Pro (γj = 2.5 %) 179.490 0.3097 78.57 0.1479 0.96 0.62 3 min 52 s

Pro (γj = 5 %) 179.547 0.3101 78.52 0.1481 3.88 4.14 4 min 6 s

Pro (γj = 10 %) 179.574 0.3105 78.45 0.1482 8.60 9.33 3 min 53 s

Pro (γj = 20 %) 179.629 0.3113 78.34 0.1486 17.33 19.61 4 min 35 s

Det deterministic, Pro probabilistic

Fig. 12 Probabilistic and deterministic optima in the feasible space for
a=1 mm

Fig. 13 Evolution of solutions based on failure probability of
constraints
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of Monte Carlo simulations by other sampling methods
such as importance sampling and directional sampling are
potential solutions.

– The flexibility of the P-NSGA-II resides in the efficient eval-
uations of failure probability, by theMonte Carlo simulations
for any combination of the uncertain parameters distribution
laws. In the case where the search space is closed because of
uncertainties, the constrained optimization problem can be
converted into an unconstrainedmulti-objective optimization
problem and thus obtain compromising solutions. Finally, P-
NSGA-II algorithm can be applied to the cutting conditions
optimization for other conventional and modern machining
processes, which represent high natural variability or many
uncontrollable factors.
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