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Abstract: Some models of probabilities are described by generalized stochastic 

equations. These models (like that prediction) lead to the resolution of boundary problems 

for random distributions (generalized equations). We are interested in the equation 

Lx f= in dS IR⊂  where L is a linear operator, f is a random distribution and to the class 

of boundary conditions on the frontier SΓ = ∂  in order to define for the corresponding 

boundary conditions. The resolutions of boundary problems for random distributions lead 

to the Markov property for the solution of these equations. 
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INTRODUCTION 

 

The Markov property can for stochastic generalized equations be studied from several different angles, 

see, e.g. Levy (1956), Kallianpur and Mandrekar (1974), Rozanov (1981, 1987), Khaldi (1989, 2000). 

In this paper we consider the classical case where L is a linear operator. 

The boundary problems for the linear equations of the type: 

( ) ( )Lx t f t , t S= ∈  (1) 

where L is a linear operator , lead to search the distribution x(t), t∈T, in dT E⊆ , containing the 

domain 
dET ⊆ , such as 

( ) ( )x t v t , t T= ∈ \S (2) 

where T\S is the additional of S in T. 
 So that the problem admits a (only) solution, the distributions f(t) and v(t) as the solution x(t) have 

to belong to a certain class which we shall describe more low. The solution x(t) is bound to the operator 

L verifying the equation: 

( ) ( )*
L t t , t Tξ = ξ ∈  (3) 

where ( )tξ t) and ( )*
tξ  are distributions with values in Hilbert's space H. 

 By distribution with values in H, we understands a linear continuous application: 

( ) ( )0
: C T , H

∞ξ ϕ∈ → ϕ ξ ∈  (4) 

 In first, we are interested in the properties of the solution ( )tξ  of the boundary problem (3) that 

we prolong in ( )*

0
W C T∞=  space of distributions ( )u ,u= ϕ , ( )0

C T
∞ϕ∈ . The distribution 

( )0
u C T

∞∈  is, 

( ) ( ) ( )
T

, u t u t dtϕ = ϕ∫  (5) 

we define for a some set S ( ( )S T⊂  the space 

( ) ( ){ }*H S u, ,u W ,Suppu S+ = ξ ∈ ⊆  (6) 
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The solution ( )tξ  of the equation (3) for a local operator L possesses the following Markov property: 

for everything S T⊆  with border SΓ = ∂ , the projection of the space H+ (T\S) in H+ (S) coincides 

with ( )H+ Γ . 

 One notices that an equation of the type (3) with *L l l=  and ( ) ( )* *
t l tξ = η  occupies an important 

place in the theory of the stochastic differential equations of the type ( ) ( )L t t , t Tξ = η ∈ , where l is a 

differential linear operator, ( )tη  a distribution in H (Hilbert's space) called "white noise" in t T∈ . 

 For every ( )0
u C T

∞∈ , the distribution ( ) ( )0
Lu ,Lu , C T

∞= ϕ ϕ∈  is a positive linear application 

u→Lu : 

( ), 0≥Luϕ  (7) 

with ϕ = ( )
1

2,Luϕ  and one considers the space de Hilbert's W, completed of ( )0
C T
∞

 by the scalar 

product 

( )u, v u,Lv , u, v= ∈ ( )0
C T
∞

 (8) 

 By using (8), one corresponds to every v W∈  the distribution Lv: 

Lv ( ),Lv , v= ϕ = ϕ , ( )0
C T
∞ϕ∈  (9) 

and one introduces 
*W  (set of distributions Lv  

 

prolonged by continuance on W): 

Lv ( ) vuLvu ,, ==  (10) 

 It is evident that *W  is the dual of W and exactly *W  is the set of functional linear on W 

described by (9), with Lv = ( )
1

2
1

Lv,Lvu Supp , v
ϕ =

= ϕ .  

The equation (1) is understood in the sense 

( ) ( )0
,Lx , f , C S

∞ϕ = ϕ ϕ∈  (11) 

and the boundary conditions (2) as 

( ) ( ) *
u, x u, v , u W , Suppu T= ∈ ⊆ \S (12) 

 For the search for the solution of the problem (1)-(2), one considers the Hilbert's space H defining 

the isometric application 

( )* *
: ,∈ → ∈u W u Hξ ξ  (13) 

defined by (3). 
 The application (4) maybe identified with the isometric application 

( ) ( )* 1 *
: , ,

−∈ → = ∈u W u L u Hξ ξ ξ  (14) 

 We define ( )H S  and ( )*
H S  respectively by ( ) ( ) ( )( )0, , ∞= ∈H S C Sϕ ξ ϕ  and 

( ) ( ) ( )( )* *

0, , ∞= ∈H S C Sϕ ξ ϕ . It is evident that ( ) ( )*=H T H T . Afterward, one define ( )=H H T . 

  That is to say { },ξ η  the scalar product of ξ  and ∈Hη . One has so 

( ) ( ){ } ( ) ( ){ }
( ) ( )

* * 1 *

1 1

, , , , , ,

, , ,

−

− −

=

= = =

u L u

L u LL u u

ϕ ξ ξ ϕ ξ ξ

ϕ ϕ ϕ
 (15) 

 The condition ( ) ( ) ( )( )*

0, , ,
∞⊥ ∈u C Sξ ϕ ξ ϕ , for an opened set ⊆S T  is equivalent in 

⊆Suppu T \S. By indicated by ( ) ( )* *⊥
=H S H T ⊖ ( )*

H S , one has H+ (T\S) ( )* ⊥
= H S  where 

H+ (T\S) ( ){ }, , ,= ∈ ⊆v v W Suppu Tξ \ S  because 

( ) ( ){ } ( ) ( )*, , , , ,= =v u v u u vξ ξ  (16) 

that one deducts of (15) by passage on the limit of ϕ→ ∈v W . 

 

Theorem 1: The unique solution x∈W of the problem (1)-(2) is given by: 



( ) ( ) ( ), , ,
+
Γ= = + Πx u x g f x v  

Where +
ΓΠ  is the operator of projection on ( )+ ΓH  and g the solution of the equation 

* ,+
Γ= −Π ⊆L g x x Suppu S . 

 

Proof: As ( ) ( )⊥
= ⊕H H S H S  ( ) ( ) ( )

⊥ ⊥

+= ⊕ Γ ⊕H S H H T S\ , every ∈x H  can be written under the 

shape 
1 2 3

= + +x x x x  where 1x , 2x  and 3x  are the orthogonal projections of x on the sub-spaces 

( )⊥H S , ( )+ ΓH  and ( )⊥H T S\ . One has then ( ) ( ) ( ) ( )1 2 3, , , ,= + +u x u x u x u x , ( )⊥∈x H S . As 

( ) ( ) ( )1 1
* * *, , , ,

− −
= = =u x Lu L x L Lu x u L L x , one has ( ) ( ) 1

*

3 3, ,
−

=u x f L x  because 

∀ ∈y ( )* ⊥
L H T S\ , ( ), ,=u y Lu g , ∈g ( )⊥H T S\ , ( ) 1

*
−

=g L y . It remains to show that 

, ,=Lu g f g , ∈g ( )⊥H T S\ . The equation =Lx f  means ( ) ( ), ,=Lx fϕ ϕ , ( )0

∞∈C Sϕ  or 

−Lx f ( )⊥∈H T S\ . As a consequence , 0− =Lx f g , ∈g ( )⊥H T S\  and so any solution of the 

equation =Lx f  can be represented by ( ) ( ) ( )( )1
*

2 3, , ,
−

= +u x u x f L x  or ( ) ( )2, , ,= +u x u x f g  where 

( ) ( )1
*

2

−
= −g L x x  with 

2

+
Γ= Πx x . 

 
Theorem 2: The equation 

( ) 0,= ∈Lx t t S   (17) 

where L is a local operator local with the boundary conditions 
( ) ( ) *, , , ,= ∈ ⊆ Γu x u v u W Suppu  (18) 

possesses a unique solution x∈W in S. 

Proof: As one say that the solution is written by ( ) ( ), ,= =x u x g f ( ),
+
Γ+ Π x v . It remains to check that 

all solution x∈W with null boundary conditions is egal to 0 in S. The condition (18) give 

( ) ( )* *

1 1, ,⊥ =x H S S Sξ  and ( ) ( ) ( ){ }*

*
0 , , , , , ,= = = ⊆ Γu x u Lx u x Suppuξ ξ  mean that 

( ) ( )*
, +⊥ Γx Hξ .  

The decomposition ( ) ( ) ( )
⊥ ⊥

+= ⊕ Γ ⊕H H S H H T S\  implies ( ) ( ) ( )* *
, +∈ =x H T S H Sξ \ . It 

means that ( ) ( ) ( ){ }*, , , , 0,= = ⊆u x u x Suppu Sξ ξ . 

 

Theorem 3: The equation (3) with a local operator L possesses the Markov property. 
 

Proof: As ( ) ( )( )*
⊥

+ Γ = ∪H H S T S\  where ( )( ) ( ) ( )* * *
⊥

∪ = ⊕H S T S H S H T S\ \  direct sum of the 

two sub-spaces ( )*
H S  and ( )*

H T S\  because ( )( )0

∞∀ ∈ ∪y C S T S\ , 
1 2

= +ϕ ϕ ϕ , ( )1 0

∞∈C Sϕ and 

( )2 0

∞∈C T Sϕ \ , which, as elements of W are orthogonal: 1 2 1 2, , 0= =Lϕ ϕ ϕ ϕ . One has 

consequently ( ) ( ){ }* *

1 2 1 2
, , , , 0= =ϕ ξ ϕ ξ ϕ ϕ . We have so the orthogonal decomposition 

( ) ( ) ( )
⊥ ⊥

+= ⊕ Γ ⊕H H S H H T S\  in which ( ) ( ) ( ) ( )* * * ⊥

+⊕ Γ = =H S H H T S H S\  and 

( ) ( ) ( ) ( )* * ⊥

+ +Γ ⊕ = =H H T H S H T\ S \ S . By indicating by ( )+Π S  and ( )+Π T \ S  the orthogonal 

projections on ( )+H S  and ( )+H T \ S  respectively, one has 

( )+Π S ( )+H T \ S ( )+= H T \ S ( )+Π S ( )+= ΓH . That means that the distribution ( )tξ (t) possesses, 

in the space of Hilbert, the Markov property. 
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