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Abstract 

Heat spreading from local, time-dependent heat sources in electronic packages results in the propagation of 

temperature non-uniformities through the stack of material layers attached to the chip. Available models 

either predict the chip temperatures only in the steady-state or a single substrate for transient analysis, without 

the ability to predict the transient response in compound substrates having multiple anisotropic layers. We 

develop a transient resistance/capacitance network-based modeling approach capable of predicting the 

spatiotemporal temperature fields for this chip-on-stack geometry, accounting for in-plane heat spreading, 

through-plane heat conduction, and the effective convection resistance boundary conditions. The transient 

heat spreading resistance for an anisotropic substrate has been formulated by converting it to an effective 

isotropic substrate for which there is an available half-space solution. The transient heat spreading model for 

a step heat input to a single substrate is subsequently extended to any arbitrary transient heat input using a 

Fourier series and extending the half-space formulation from a step heat input to sinusoidal heat input. For 

obtaining the transient spreading resistance for heat inputs into multiple stacked substrates, a method has 

been outlined to convert the multi-substrate stack to a single substrate with effective isotropic properties by 

properly accounting for the in-plane and through-plane thermal conductivities, and the heat capacity. The 

estimates from the present model are validated with direct comparison to a finite-volume numerical model 

for three-dimensional heat conduction. Case studies are presented to demonstrate the capabilities of the 

proposed network-based model and compare its estimates with the numerical conduction solution. In the 

presence of a step heat input, the results demonstrate that the model accurately captures the transient 
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temperature rise across the multi-substrate stack comprising layers with different anisotropic properties. For 

a case where the rectangular stack is exposed to a sinusoidally varying heat input the model is able to capture 

the general trends in the transient temperature fields in the plane where the heat source is applied to the multi-

substrate stack. In summary, the developed resistance/capacitance network-based transient model offers a 

low-computational-cost method to predict the spatiotemporal temperature distribution over an arbitrary 

transient heat source interfacing a multi-layer stack of substrates.  

 

1 Introduction 
 
 Electronic packages typically comprise time-dependent heat sources attached to a composite substrate 

that results in temperature non-uniformities. The spatiotemporal temperature gradients arising from these 

transient heat inputs can strongly affect the device reliability. The device performance is largely influenced 

by heat conduction and spreading inside the multiple packaging layers, which determines the chip 

temperatures and gradients in the plane of these heat sources. Hence, it is critical to develop compact transient 

models to predict the chip temperatures within these electronic packages to facilitate the design of reliable 

packaging technologies.  

 There have been extensive previous investigations focusing on the development of models to compute 

the steady-state and transient temperature fields for conduction heat spreading from local heat sources, as 

reviewed by Razavi and Muzychka [1]. Lee et al. [2] proposed closed-form steady-state formulations for 

spreading resistances in an axisymmetric chip-on-substrate geometry, subjected to a wide range of boundary 

conditions. In a sequence of studies, Muzychka et al. developed multi-dimensional, series-solution-based 

analytical models for steady-state spreading resistance in a Cartesian domain for single and compound (i.e., 

multi-layer) isotropic substrates [3], and anisotropic substrates [4], later incorporating interfacial resistances 

between the layers in compound substrates [5].  Bagnall et al. [6] proposed an analytical series-solution-based 

model for estimating the steady-state spreading resistance for a complex multi-layered structure, accounting 

for anisotropy (viz., different in-plane versus through-plane conductivity), multiple heat sources, and 

application of convection boundary condition on the same face as the heat source. 

 Alternatively, several studies have focused on transient modeling of a chip-on-substrate geometry. In 

this architecture, heat from a local source on a substrate is spread out by conduction and then dissipated to a 

reference sink temperature with an effective convection coefficient. Yovanovich et al. [7,8] proposed a half-

space integral formulation to estimate the temperature fields and transient spreading resistance for an 

isotropic substrate subjected to a step heat input. These multi-dimensional temperature solutions have been 

transformed into area-averaged and centroid-based transient spreading resistance models for arbitrarily 

shaped iso-flux heat inputs [9]. Yazawa et al. [10] developed a reduced-order model by extending the 

transient formulations reported in [9] to account for transient heat spreading and conduction in a heat spreader 

under a step heat input. Sadeghi et al. [11] proposed unified relations for accurately estimating the transient 

spreading resistance over a broad spectrum of heat source shapes under both isoflux and isothermal 

conditions. Recently, Sudhakar et al. [12] outlined an analytical series-solution-based model for computing 
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the three-dimensional spatiotemporal temperature fields in a substrate subjected to arbitrarily located, time-

varying heat inputs.  

The thermal models developed in past literature are either capable of only estimating the steady-state 

chip temperatures for a multi-substrate stack, or for purposes of transient analysis, consider only a single 

substrate. The present study introduces a compact, transient thermal network-based modeling approach in a 

chip-on-stack geometry capable of estimating the spatiotemporal evolution of temperature fields in the plane 

of the heat source for multi-layer substrates where each layer has anisotropic properties. First, the transient 

thermal network for a general chip-on-stack architecture is developed. The transient heat spreading resistance 

for any given substrate with an anisotropic thermal conductivity has been formulated based on the pre-

existing framework [9] for an isotropic substrate. The transient heat spreading model for a step heat input to 

a single substrate is subsequently employed to develop the formulation for any arbitrary time-dependent heat 

input. Lastly in the model development, an approach for considering a multi-substrate stack is described. 

Case studies are presented to demonstrate the capabilities of the proposed thermal model and to compare its 

estimates with a finite-volume numerical solution. 

 
2 Model Development 
  

The multi-substrate stack described schematically in Figure 1 comprises M heat sources placed 

arbitrarily underneath a stack of N substrates. Any spatially non-uniform heat input to a multi-substrate stack 

can be effectively represented as a combination of multiple superposed spatially uniform heat inputs. Hence, 

in this study we will only consider spatially uniform heat inputs. Each of the heat sources has a time-varying 

input heat load Qi(τ) distributed uniformly over the heat source area, where the index i corresponds to a 

particular heat source. The remaining area surrounding the heat sources is insulated (as are the side surfaces 

of the substrates); a convective boundary condition with a uniform effective heat transfer coefficient h at a 

reference temperature T∞ is considered as the boundary condition at the top of the substrate stack. The total 

power generated by the heat sources gets spread laterally and conducted across the stack before being 

dissipated from the top of the spreader. The transient resistance/capacitance network (see Fig. 1(b)) comprises 

representative elements denoting the different mechanisms of heat transfer in the multi-substrate stack 

(namely, the transient in-plane heat spreading, transient through-plane heat conduction, and the convection 

boundary condition). As time progresses, each of the substrates stores energy and conducts heat across its 

thickness. The resistance and capacitance corresponding to a particular substrate share a common temperature 

node, which denotes the average temperature at the base of a given substrate. The transient heat conduction 

through the jth substrate is represented by a capacitance (Cj) and a resistance (Rcond,j), as:          

                                                                         ,
,

;=

=

=

j j j j j

j
cond j

z j j

j

C c t A
t

R
k A

A ab

ρ

                                                                     (1) 



Journal of Electronic Packaging 
 

4 
 

The transient resistance arising from the heat spreading in the entire stack from the ith source is denoted by 

Rsp,i (τ). This transient spreading resistance can be estimated for any given point in the plane of the heat 

source. In this study, we estimate the transient spreading resistance for the centroid of the heat input area. 

Consequently, this will correspond to the maximum transient spreading resistance and will yield the 

maximum temperature for a given heat source. Details of the approach behind the estimation of the transient 

spreading resistance are described in the subsections that follow. 

 
 
Fig. 1. (a) Schematic drawings of the cross-section of a general multi-substrate stack (top) subjected to 
discrete heat sources (bottom). (b) Transient network depicting the in-plane spreading resistances 
corresponding to each heat source Rsp,i(τ), through-plane conduction resistances Rcond,j and capacitances Cj of 
each substrate, and the boundary convection resistance Rconv (where i denotes a given heat source and j 
denotes a particular substrate). 
 
 2.1 Transient Spreading Resistance for a Step Heat Input to a Single Substrate.  
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2.1.1 Isotropic Substrate. The resistance due to transient heat spreading for an arbitrarily located and 

randomly shaped step heat input, at a uniform heat flux, on an isotropic single substrate (see Fig. 2(a)), can 

be quantified using the half-space formulation proposed by Yovanovich [7], and can be represented as: 

                                                           
,

( )  
=  

 

sp

sp ss S

R
F

R A
τ α

                                                       (2) 

The steady-state spreading resistance (Rsp,ss) is estimated from an exact Fourier series based analytical 

solution of the temperature fields in a given stack, subjected to a given boundary condition [1]; as noted 

above, this study considers an effective convective boundary condition at the top of the stack. The exact 

nature of the function F depends on the shape of the heat input; details of the nature of the function for 

different shapes are available in Refs. [7,8]. For heat inputs having the shape of a circle or a regular polygon, 

and a given source area AS, the transient spreading resistance is obtained as: 

                                                         
,

( ) 4 1 exp erfc
4π 4π

    −     = − +                  

sp S S

sp ss S

R A A
R A

τ ατ
ατ ατ

       (3) 

 
2.1.2 Anisotropic Substrate. The governing energy equation and boundary conditions for transient 

heat conduction in a substrate having different in-plane and through-plane conductivities (see Fig. 2(b)), 

subject to a given heat input at the base and a convective boundary condition at the top of the substrate, are 

given by: 

                                                   

( )

2 2 2
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                                  (4) 

To obtain the resistance due to transient heat spreading in an anisotropic substrate for an arbitrarily located 

and randomly shaped step heat input (at a uniform heat flux), we find its effective isotropic diffusivity. Hence, 

we introduce the following mathematical transformations, similar to Ref. [4].   

 

                                                         

eff
eff eff
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z
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c

k
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k
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k

ρ
ρ

ε

=

=

=

                                                           (5) 

The transformed governing equation and boundary conditions, rewritten in terms of the transformed through-
plane coordinate variable ε , results in: 
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                                  (6) 

where t  is the transformed substrate thickness. The effective isotropic diffusivity is estimated as:  

                                                  = eff
eff

eff eff

k
c

α
ρ

                                                                 

(7) 

The steady-state spreading resistance (Rsp,ss) and the transient spreading resistance Rsp(τ), for the anisotropic 

substrate, can be obtained by substituting this effective isotropic diffusivity into Eq. (3). In the presence of 

multiple heat sources, the spreading resistance, following the formulation for an isotropic substrate above, 

can be computed using the principle of superposition, similar to the approach outlined in Ref. [3]. 

 
Fig. 2. (a) Schematic cross-section of a substrate having an isotropic conductivity subjected to a transient 
heat source having an area AS. (b) Schematic cross-section depicting the transformation of a substrate having 
anisotropic conductivities to an analogous isotropic substrate with effective thermophysical properties.  
 
 
2.2 Transient Spreading Resistance for any Arbitrary Transient Heat Input to a Single Substrate.  
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Any transient heat input Q(τ) to a substrate can be represented as a combination of sinusoidal heat inputs at 

multiple frequencies, as obtained from a Fourier series (where the summation of infinite terms may be 

truncated to a summation of a finite number of terms n beyond which the contribution of leading order terms 

becomes negligible), as: 

                   ( ) ( ) ( )
1 1

sin sin
n

v v v v
v v

Q Q Qτ ω τ ω τ
∞

= =

= ≈∑ ∑                                (8) 

Each constituent sinusoidal heat input Qv sin(ωvτ) will result in a change in temperature corresponding to a 

transient heat spreading resistance: 

                            
( ) ( )

( ) ( )

,
1

, , ( ) sin

n

sp sp v
v

sp v sp v v v

T T

T R Q

τ τ

τ τ ω τ
=

∆ ≈ ∆

∆ =

∑
                                            (9)  

The net transient spreading resistance attributable to all sinusoidal inputs can be subsequently computed as: 

                                                     ( ) ( ),
1( )

( ) ( )

n

sp v
sp v

sp

TT
R

Q Q

ττ
τ

τ τ
=

∆∆
= ≈

∑
                                        (10) 

To compute the new transient spreading resistance for arbitrary heat input to a single substrate, the spreading 

resistance for a sinusoidal heat input with a given amplitude must be first estimated. Then, all these estimated 

amplitudes can be summed and divided by the net heat load to estimate the new transient spreading resistance.  

The transient spreading resistance for a sinusoidal heat input can be estimated following a method similar 

to the isotropic half-space formulation as outlined by Yovanovich [9]. To account for an anisotropic substrate 

property in estimation of the transient spreading resistance, the approach represented by Eq. (4) - Eq. (7) can 

again be used to obtain the effective isotropic diffusivity. The present solution approach employs the principle 

of superposition to evaluate the instantaneous temperature change at the centroid (see Fig. 3) of the heat 

source. The heat source provides a heat flux which is spatially uniform and sinusoidally varying in time q’’ 

sin(ωτ) over the heat input area AS and an adiabatic boundary condition for all the points outside the heated 

area. The boundary conditions at points far away from the heat source have a temperature identical to the 

initial temperature (Tinit) at any given time τ. The resulting governing equation for transient heat conduction 

in spherical coordinates, with the boundary conditions and the initial conditions, is given by: 
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                                     (11) 

To solve Eq. (11), the temperature difference θ(r,τ) with respect to the initial temperature is decomposed into 

two components.   

 
                                                   1 2( , ) ( , ) ( , )= +r r rθ τ θ τ θ τ                                                     (12) 

The governing differential equation with the respective boundary conditions and the initial conditions for the 

first decomposed component θ1(r,τ) is:  
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                                   (13) 

where m = 
2 eff

ω
α

. The complementary equation set for the second decomposed component θ2(r,τ) is given 

by:   

                                           

22 2
2

2 1

2

2

 = 0: 

 = 0: - 0

: 0

∂ ∂∂  =  ∂ ∂ ∂ 
= −
∂

=
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r

αθ θ
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θ

                                                         (14) 

The governing equations, boundary conditions, and initial conditions for the first decomposed component 

θ1(r,τ), is of a form following Stokes second problem [13]; the solution is thus: 

                                                
{ }"

1

exp( )sin( )
( , )

2π
− −

= S

eff

q dA mr mr
r

k r
ωτ

θ τ                                   (15) 
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The governing differential equation for the second decomposed component θ2(r,τ) has homogeneous 

boundary conditions. Hence, the second decomposed component θ2(r,τ) can be evaluated by applying the 

separation of variables approach, as:  

                                               
{ }

2

2
1

"

2 1

sin( ) exp( )
( , ) ;

exp( )sin( )
( ,0) ( ,0)

2π

g g g eff
g

g

S

eff

C v r v
r v gm

r

q dA mr mr
r r

k r

α τ
θ τ

θ θ

∞

=

−
= =

−
= − =

∑
                         (16) 

The coefficients Cg can be estimated by Fourier series expansion, with the initial condition of θ1(r,τ) specified 

by Eq. (13). Now, the net temperature difference θ(r,τ) can be computed by summing θ1(r,τ) and θ2(r,τ). The 

net temperature difference at the centroid of the given arbitrary shaped heat source can be computed by 

integrating the temperature change θ(r,τ) over the entire area of heat input: 

                                               (0, ) ( , )= ∫
S

sp S
dA

r dAθ τ θ τ                                                            (17) 

Equation (17) can be employed to compute the net temperature rise due to heat spreading from any arbitrary 

shape following a similar approach as developed for a step heat input in Refs. [7,8]. The net temperature 

changes at the centroid of the heat source due to the decomposed components θ1(r,τ) and θ2(r,τ) are termed 

θsp,1(0,τ) and θsp,2(0,τ), respectively. For heat inputs having the shape of a circle or a regular polygon, and a 

given area 2πSA p= , the transient spreading resistance can be obtained as: 

( ){ }{ }
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1 2
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(18) 

The transient spreading resistance Rsp(τ) due to the sinusoidal heat input Q sin(ωτ) can then be computed as: 

                                              ( , )
( )

sin( )
sp

sp

0
R

Q
θ τ

τ
ωτ

=                                                                  (19) 

The above formulation is obtained for a heat source whose centroid coincides with the centroid of the base 

of the effective isotropic half-space domain. In the case of a step heat input over the same area, when the heat 

source centroid does not coincide with the centroid of the base of the effective isotropic half-space domain, 
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the transient spreading resistance Rsp,step,skew(τ) is related to its counterpart Rsp,step,center(τ) for a centered heat 

input as: 

                                              , , , , ,

, , , , ,

( )
( )

=sp step skew sp ss step skew

sp step center sp ss step center

R R
R R

τ
τ

                                                     (20)  

Hence, the transient spreading resistance Rsp,sin,skew(τ) arising from the non-centered sinusoidal heat input Q 

sin(ωτ) may be estimated as: 

                                              , , ,
, , , ,

, , ,

( ) ( ) sp ss step skew
sp sin skew sp sin center

sp ss step center

R
R R

R
τ τ=                                        (21) 

 

Fig. 3. Schematic of the half-space domain having an effective isotropic diffusivity, subjected to a spatially 
uniform and sinusoidally varying (in time) heat flux q’’ sin(ωτ) at the origin (r’ denotes the radial coordinate 
in the plane of the heat source) and an adiabatic boundary condition for all the points outside the heated area. 
The governing differential equation for the domain is written in terms of the temperature difference (θ) with 
respect to the initial temperature (Tinit). The boundary conditions at points far away from the heat source have 
a temperature identical to the initial temperature (Tinit) at any given time τ.  

 

2.3 Transient Spreading Resistance for any Arbitrary Transient Heat Input to a Multi-Substrate 

Stack.  

To obtain the resistance due to transient heat spreading in a multi-substrate stack for arbitrary transient heat 

inputs, we evaluate the effective isotropic diffusivity of the entire stack. In practical applications, the 

resistances due to through-plane conduction across the substrates, computed based on the total cross-sectional 

area, substrate thickness, and the conductivity, are orders of magnitude lower than the spreading resistance 

and the convection resistance. Hence, for purposes of estimating the effective properties of the multi-substrate 

stack, the original transient network (as shown in Fig. 1(b)) can be reduced into the network shown in Fig. 

4(a), which assumes the conduction resistances are much smaller than the spreading resistances (Rcond,j << 
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Rsp,i) and the convection resistance (Rcond,j << Rconv). This network can then be simplified to represent 

through-plane conduction with a single effective resistance and capacitance (see Fig 4(b)) obtained as:  

                                              

N

,
1

N

1

eff cond j
j

eff j
j

R R

C C

=

=

=

=

∑

∑
                                                                (22) 

The effective isotropic conductivity and the capacity (and thereby diffusivity) of the multi-substrate stack 

can then be estimated as: 
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eff
eff eff

j j
j

t
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A t

ρ

=

=

=

=

∑

∑

                                                                    (23) 

 
Comparing the through-plane conduction resistances for the multi-substrate stack to the convection 

resistance yields the effective Biot number (Bi). The proposed formulation of the effective diffusivity for a 

multi-substrate stack is applicable when the through-plan conduction resistance is negligible relative to the 

in-plane spreading resistance and the convection resistance. The resistance arising from the convection 

from the top of the stack of substrates to the coolant is obtained, as: 

                                              1
=conv

n

R
hA

                                                                            (24) 
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Fig. 4. (a) Reduced transient network representing the multi-substrate stack in the limit of negligible 
conduction resistances relative to the spreading and convection resistances (Rcond,j << Rsp,i)  
and (Rcond,j << Rconv) (b) The equivalent network of the multi-substrate stack for estimating the effective 
isotropic diffusivity in calculating the transient spreading resistance.  
 
2.4 Solution Methodology 

All the elements of the transient resistance/capacitance network (see Fig. 1(b)), corresponding to the multi-

substrate stack are computed using the formulations described in the previous sections. Conservation of 

energy at each node of the network leads to the governing equation set:  
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                    (24) 

where θmax,i denotes the maximum temperature for the ith heat source and θj is the temperature difference (Tj 

-T∞) at the base of substrate j. In the transient network, this temperature difference occurs at the intersection 

of the conduction resistance Rcond,j and the capacitance Cj. This set of coupled ordinary differential equations 

is solved using a finite difference scheme implemented in MATLAB [14]. The derivative of the temperature 

change with change in time, in the left-hand side of Eq. (26) is discretized using a backward finite difference 

scheme, as: 

                                              ( ) ( )
  0

− − ∆
= ∀ >

∆
j j jd

d
θ θ τ θ τ τ

τ
τ τ

                                              (25)  

Substituting Eq. (27) in Eq. (26) converts the latter into a given set of algebraic equations which can be solved 

simultaneously at a given time τ to yield the temperatures at that time step, as the temperatures at the previous 

time step are known. The maximum temperature for the ith heat source can be subsequently computed as: 

                                              , ,( ) ( )  max i max i initT Tτ θ τ= +                                                  (26)  

The maximum resistance for the ith heat source can be estimated, as: 

                                              ,
,

( )
( )

( )
max i

max i
i

R
Q

θ τ
τ

τ
=                                                        (27) 

For comparison in the following results section, this maximum resistance is also computed using the 

numerical conduction model implemented in the commercial software ANSYS Fluent [15]. A metric E is 

developed to map the deviation between the predictions from the present model and the finite-volume 

numerical model as a function of the non-dimensional time * eff

SA
α τ

τ = , as:  
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τ τ
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−
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3 Results and Discussion 
The predictions of the developed model are demonstrated, and their accuracy evaluated, for step function and 

sinusoidal heat inputs for a stack of three rectangular substrates. For these cases, the rectangular stack 

comprises three anisotropic substrates with the thermophysical properties as given by Table 1, where ρ, c, 

kxy, and kz stand for the density, specific heat capacity, in-plane conductivity, and through-plane conductivity 

of the respective substrates. The length and width of each substrate are a = 150 mm and b = 60 mm. The 

substrate thicknesses are t1 = 800 µm, t2 = 400 µm, and t3 = 600 µm. The multi-substrate stack is initially at 

a uniform temperature of 300 K. A convective boundary condition with a heat transfer coefficient 12 W/m2K 

and an ambient temperature of 300 K is imposed on the top face. The faces coinciding with the plane of the 

heat source and the side walls are insulated (except for the source itself). 

Table 1 Thermophysical properties of the substrates chosen for the case studies 

Substrate Index (j) ρ (kg/m3) c (J/kgK) kxy (W/mK) kz (W/mK) 
1 2000 840 20 3 
2 2200 710 1.3 1.3 
3 1738 1020 159 159 

 
3.1 Response of Multi-Substrate Stack to a Central Step Heat Input.  

The transient model is demonstrated for a case where a given multi-substrate stack is subjected to a centrally 

located step heat input (see Fig. 5). For this case, starting at τ = 0 s, the stack is subjected to a heat input of 2 

W each over a 4 cm2 square area (d = 2 cm) at the location identified in Fig. 5a. The centroidal coordinates 

of the heat source are xc = 75 mm and yc = 30 mm. While obtaining the solution, the model is run at time 

steps of 0.01 s till τ = 2000 s.  

 Fig. 5c shows the model-predicted (dots) temporal evolution of the maximum temperature of the single 

heat source, which occurs at the center of the heat input area. The maximum temperature of the heat input 

area increases until ~ τ = 1500 s, after which it is within ~ 0.2% of the constant temperature that is reached 

at steady state. At steady state, the total power input to the multi-substrate stack gets dissipated by convection 

from the top of the stack at the same rate. Overall, this temperature response is characteristic of a step heat 

input to a stack-up interfacing a heat sink. Comparing the model prediction to the numerical simulations 

(solid line in Fig. 5c) reveals an excellent match.  Fig. 5d shows the evolution of the deviation of the 

maximum non-dimensional resistance between the model and numerical simulation (as quantified by the 

metric E), as a function of the non-dimensional time τ*. The deviation is largest at the start of the step input, 

and reduces with an increase in non-dimensional time, finally converging to a constant value that indicates 

the percentage error in the steady state prediction of only 0.2% for this case. This transient error reduces with 

time as the temperature gradients in the domain reduce and the half-space propagation becomes an 

increasingly more accurate representation of the actual transient temperature distribution. These results 

illustrate the capability of the proposed model to accurately capture the transient response of the complex, 

multi-substrate stack having layers with differing and anisotropic properties, when subjected to a step heat 

input.  
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Fig. 5. (a) Sectional view of the multi-substrate stack (left) with a bottom-up view of the surface (right) with 
the heat source having a (b) step heat input profile. (c) Comparison of the maximum heat source temperature 
obtained from the present network-based model and the numerical simulations. (d) Non-dimensional metric 
E quantifying the deviation in the prediction of the maximum resistance obtained from the present model and 
the numerical simulations. 

 
3.2 Response of Multi-Substrate Stack to an Off-Center Transient Heat Input.  

The transient model is also demonstrated for a case (see Fig. 6) where the multi-substrate stack is subjected 

to a sinusoidal transient heat input, as depicted by Fig. 6b. Starting at τ = 0 s, the stack is subjected to the 

specified heat input over a 4 cm2 square area (d = 2 cm) at the off-center location identified in Fig. 6a. The 

centroidal coordinates of the heat source are xc = 130 mm and yc = 20 mm. While obtaining the solution, the 

model is run at time steps of 0.01 s, till τ = 1000 s. 

 Fig. 6c shows the temporal evolution of the maximum source temperature at the center of the heat input 

area as a dash-dot line. The maximum temperature of the heat source displays an oscillating periodic behavior 

following the sinusoidal heat input. The amplitude of the oscillations, as well as the mean, increase during 

the initial simulation time up till ~ τ = 750 s. After τ = 750 s, a steady time-periodic response is reached, and 

the amplitude of the oscillations in the maximum temperature become constant. Similar to the step input case, 

the time-averaged total power input to the multi-substrate stack and that dissipated by convection become 

balanced during this steady time-periodic response. Fig. 6d shows the evolution of the deviation of the 

maximum non-dimensional resistance as compared to the numerical simulation as a function of the non-

dimensional time. With an increase in non-dimensional time τ*, the deviation of the maximum non-

dimensional resistance displays a periodic behavior with decreasing amplitude, and finally, the amplitude of 

oscillation attains a constant value. The slight deviation in the mean temperature (τ > 750) is attributed to the 

compounded effect of the off-center location of heat source and the assumption behind the linear scaling of 
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the transient spreading resistance with the steady-state spreading resistances, as given by Eq. 20 and Eq. 21. 

While the mean temperature and trend in oscillations are well-predicted, the model is less accurately in 

capturing the peak amplitudes of the transient response of the temperatures, arising from the half-space 

formulation (superposition of point heat loads) of the sinusoidal heat input. However, it is worthwhile to note 

that there are three orders of magnitude reduction in the computational time from ~12 hr for the finite volume 

numerical simulation to ~0.02 hr for the present model, with both implemented on the same server node. 

These results illustrate the capability of the proposed model to capture the general transient behavior in the 

heat source plane of the multi-substrate stack when subjected to a sinusoidal heat input.  

 

 
Fig. 6. (a) Sectional view of the multi-substrate stack with the plan-view location and (b) transient heat input 
profile for the heat source. (c) Comparison of the maximum heat source temperature obtained from the 
present model and the numerical simulations. (d) Non-dimensional metric E quantifying the deviation in the 
estimate of the maximum resistance obtained from the present model and the numerical simulations. 
 
 
4 Conclusions 
 
 A low-computational-cost resistance/capacitance network-based modeling approach is developed to 

predict the spatiotemporal temperatures over an arbitrary located and shaped transient heat source attached 

to a multi-layer stack of substrates, where each substrate layer can have different anisotropic properties. The 

network considers all salient transport mechanisms of in-plane heat spreading, through-plane heat conduction 

across the layers, and an effective convection boundary condition. As a foundational building block, the 

transient model is first constructed for any single substrate subjected to a step heat input, accounting for 

anisotropic properties by obtaining the effective isotropic diffusivity representation. Based on the formulation 
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for a step heat input response, this transient model is extended to accept arbitrary transient heat inputs using 

Fourier series. For heat inputs to multiple stacked substrates, the effective isotropic diffusivity is estimated 

for developing the model, by converting the multi-substrate stack to an equivalent single-substrate domain. 

The deviation between the temporal predictions of the maximum heat source temperature from the present 

model and finite volume simulations is evaluated for cases of a step heat input and sinusoidal heat input to a 

complex substrate stack-up. Results obtained from the proposed model indicate good accuracy in estimation 

of die temperatures relative to the finite volume conduction simulations at a significantly reduced 

computational cost.  

While the proposed model is evaluated for only for a couple of specific cases in this study for 

demonstration purposes, it may be generally applicable for other material stackups and power maps, provided 

that the assumption of a dominant spreading resistance in the network holds. The resistance/capacitance 

network-based modeling approach can be particularly useful to minimize the time for co-design of stacked 

and heterogenous architectures for which low-computational-cost thermal models are needed to co-optimize 

along with other electrical and mechanical performance objectives. Also, resistance/capacitance network-

based models are well-suited for the needs of thermal control systems in electronic devices [16], where the 

framework can be used to construct semi-empirical models based on available device test data. In summary, 

the analysis method developed in this work can be broadly useful in quantifying the heat source temperatures 

for conduction and spreading into a multi-substrate stack having a wide range of form factors and 

thermophysical properties under a variety of boundary conditions. 

 

Nomenclature 
A  cross-sectional area 
a  length of rectangular substrate 
Bi  Biot number 
b  width of rectangular substrate 
C  thermal capacitance 
c  specific heat capacity 
d  side length of square heat source 
E non-dimensional error metric  
h heat transfer coefficient 
k thermal conductivity 
M           number of heat sources 
N            number of substrates 
Q  heat input 
q”  heat flux 
R  thermal resistance 
r        radial coordinate direction 
r’        radial coordinate in the plane of heat source 
T  temperature 
Tinit  initial temperature 
T∞  ambient reference temperature 
t             thickness of substrate  
t            transformed thickness of substrate 
t vg         component of eigen value for estimating θ2(r,τ) 
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x,y,z       Cartesian coordinate directions 

Greek Symbols 
α  thermal diffusivity 
ϵ  transformed coordinate in through-plane direction 
ρ  density 
τ  time 
τ*  non-dimensional time 
θ  temperature rise from initial condition 
ω  frequency  

Subscripts 
c  centroid 
center centered heat input 
cond conduction 
conv convection 
eff  effective isotropic representation 
i  index for a heat source 
init         initial 
j  index for a substrate 
max        maximum 
nm         numerical model 
pm         present model 
S            heat source 
sin  sinusoidal heat input 
skew non-centered heat input 
sp  spreading 
ss  steady-state 
step  step heat input 
v  summation variable 
g  summation variable  
xy  in-plane 
z  through-plane  
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