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Abstract 

The design optimization of various thermal management components such as cold plates, 

heat sinks, and heat exchangers relies on accurate prediction of flow heat transfer and pressure 

drop. During the iterative design process, the heat transfer and pressure drop is typically either 

computed numerically or obtained using geometry-specific correlations for Nusselt number 

and friction factor. Numerical approaches are accurate for evaluation of a single design but 

become computationally expensive if many design iterations are required (such as during 

formal optimization processes). Correlation-based approaches restrict the design space to a 

specific set of geometries for which correlations are available. Surrogate models for the Nusselt 

number and friction factor, which are more universally applicable to all geometries than 

traditional correlations, would enable flexible and computationally inexpensive design 

optimization. The current work develops machine-learning-based surrogate models for 

predicting the Nusselt number and friction factor under fully developed internal flow in 

channels of arbitrary cross section and demonstrates use of these models for optimization of 

the cross-sectional channel shape. The predictive performance and generality of the machine 

learning surrogate models is first verified on various shapes outside the training dataset, and 

then the models are used in the design optimization of flow cross sections based on 

performance metrics that weigh both heat transfer and pressure drop. The optimization process 

leads to novel shapes outside the training data, and so numerical simulations are carried out on 

these optimized shapes to compare with the surrogate model predictions and show their 

performance is at least as good as that of shapes with known correlations available. A three-

lobed shape was found to reduce friction factor, whereas a pentagon with rounded corners and 

an ice cream cone-shaped duct, both found using different performance metrics. Although the 

ML model predictions lose accuracy outside the training set for these novel shapes, the 
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predictions follow the correct trends with parametric variations of the shape and therefore 

successfully direct the search toward optimized shapes. 

Keywords: fully developed, internal, single-phase flow, Nusselt number, friction factor, 

machine learning, artificial neural network, optimization 

 

Nomenclature 

A  area of channel cross section, m2 

ANN  artificial neural network  

cp  specific heat capacity, J/(kg K) 

Dh  hydraulic diameter, m 

dP/dz  flow pressure gradient 

f  Fanning friction factor ((dP/dz)Dh/(2ρv2) ) 

fi (x)  objective function for optimization 

g(x)  inequality constraint 

h  heat transfer coefficient, W/(m2 K) 

h(x)  equality constraint 

j  Colburn j-factor (Nu/(RePr1/3)) 

k  thermal conductivity, W/(m K) 

MAE  mean absolute error 

MSE   mean squared error 

ML  machine learning 

Nu   Nusselt number (hDh/k)  

NuH1   Nusselt number for H1 boundary condition  

NuH2   Nusselt number for H2 boundary condition  

P  wetted perimeter 

Pr  Prandtl number (µcp/k) 

Re   Reynolds number 

v  average flow velocity, m/s 

µ  fluid dynamic viscosity, N s/m2 

ρ  density of fluid, kg/m3
 



1. Introduction 

The design and optimization of heat sinks, cold plates, and heat exchangers relies on 

accurate prediction of Nusselt number and friction factor for internal flow through a wide 

variety of heat transfer surfaces. Correlations for these geometry-dependent non-dimensional 

numbers are available for commonly encountered flow geometries, obtained either though 

analytical solutions, numerical solutions, or physical experiments, resulting in different 

correlations for each specific geometry. It is difficult to make use of this large number of 

disconnected Nusselt number and friction factor correlations in the process of design 

optimization of heat transfer surfaces. Thus, there is a need collapse this catalogue of 

correlations for all commonly encountered heat transfer surfaces into more a generalized and 

readily accessible form.  

In recent years, instead of fitting functions to experimental and simulation data to develop 

correlations, machine learning (ML) methods have been successfully used to create surrogate 

models across various scientific fields. These methods allow the models to capture highly non-

linear transport phenomena without having to assume a functional form for a correlation. The 

use of data-driven machine learning approaches has influenced various fields including 

medicine, manufacturing, energy, transportation, software development, agriculture, and even 

artistic creations [1]. Most notable, machine learning has fueled major advances in computer 

vision applications, has leading to improvements in non-destructive testing, medical imaging, 

autonomous vehicles, and geomatics, to name a few. Within traditional mechanical engineering 

disciplines, the use of ML techniques has matured in areas such as solid and fracture mechanics 

[2,3], fluid dynamics and turbulence modeling [4,5], and energy systems analysis [6–10]. In 

comparison, the more recent adoption of ML methods for heat and mass transfer analyses, as 

reviewed below, is less widely explored. 

In the area of convective transport, there have been a few studies on developing ML-based 

surrogate models for predicting the heat transfer and pressure drop characteristics for certain 

configurations of nanofluid flows [11–13], boiling/condensing two-phase flows [14–18], and 

single-phase flows in general [19–27]. However, prior studies that develop surrogate models 

for single-phase convection focus on capturing the parametric variations for very specific flow 

geometries. For example: Parrales et al. [19] and Beigzadeh and Rahimi [20] trained artificial 

neural networks (ANNs) to predict the Nusselt number and friction factor for flow in helical 

tubes; Xie et al. [21,22] trained ANNs to predict the heat transport and fluid flow relations for 

shell-and-tube and fin-and-tube heat exchangers; Beigzadeh et al. [23] and Ostenak [24] trained 



ANNs to predict the Nusselt number and friction factor for interrupted plate fins and circular 

pin-fins respectively; and Chokphoemphun et al. [25], Islamoglu and Kurt [26], and Kwon et 

al. [27] developed ANN and random-forest-based surrogate models for predicting the heat 

transfer and fluid flow parameters for grooved, corrugated, and ribbed array channel 

geometries, respectively. More universal surrogate models are not available to predict the 

Nusselt number and friction factor for a wide variety of flow geometries. Such surrogate 

models, applicable across differing flow geometries, would allow bypassing of the flow and 

heat transfer simulations that are otherwise required in the design optimization of thermal 

management components. Even for the simplest case of constant cross-section flow channels, 

the focus of the current work, universal surrogate correlations which predict the heat transfer 

and fluid flow properties for a wide range of cross-sections do not exist. Hence, the process of 

optimizing the constant cross-section flow channel for a given design metric requires the use 

of numerical simulations, owing to the geometry specific nature of existing correlations. 

In this work, we develop machine-learning-based surrogate models for internal flow 

through channels of arbitrary constant cross-section, which are then demonstrated for use in 

design optimization of the cross-sectional shape. A surrogate model for predicting the friction 

factor (fRe) and two models for predicting the Nusselt number under both H1 and H2 boundary 

conditions are developed. H1 and H2 are essentially two different types of constant flux 

boundary conditions; in the H1 boundary condition, the heat flux is uniform along the flow 

direction and the wall temperature is uniform along the perimeter of the duct cross section, 

while in the H2 boundary condition, the heat flux is constant along both. These ML models are 

trained on existing data and correlations compiled for all available constant cross section 

geometries of interest. The design optimization is formulated to maximize design metrics 

aimed to increase the heat transfer rate and simultaneously reduce the pressure drop in the 

channel. The following sections introduce the developed ML models, verify their prediction 

accuracy on geometries outside the training data set, and then employ the model in the design 

optimization of constant cross section internal flow geometries. 

2. Machine-Learning-Based Surrogate Model  

2.1. Model Development  

An artificial neural network (ANN) ML architecture is chosen as it is a mature approach 

that has been successfully used in various applications. An ANN is a computing system 

inspired by the biological neural networks in animal brains. It is a directed acyclic graph which 



consists of nodes (or artificial neurons) which are connected to each other. Connections 

between the neurons transmit information from one neuron to another. Every neuron processes 

the information it receives and then relays this processed information to downstream neurons 

to which it is connected. Figure 1 shows a schematic diagram of an ANN along with the inputs 

and outputs specific to this work. The nodes in an ANN are typically arranged in the form of 

layers as shown. Information enters the network from the layer of nodes on the far left, called 

the input layer, and the output layer of nodes on the far right gives the final prediction based 

on the input information. The layers in between the input and the output layers are called the 

hidden layers. ANNs are powerful function approximators, and it has been shown that they 

(under certain conditions) can be used to approximate any continuous function [28]. The power 

of an ANN lies in its ability to extract underlying rules governing an input dataset and then 

make predictions for new data based on the rules learned. In the current ML model [29], the 

input layer encodes the geometric information of the flow channel cross-section as a vector 

(Figure 1); the single output node represents the predicted quantity (NuH1, NuH2, or fRe). The 

ANN development, including justification for the choice of the rectified linear unit (ReLU) 

activation function, training data partitioning strategy, hyperparameter tuning process, loss 

function selection, and ensemble method are summarized below.   

 

Figure 1. Structure of the ANN used in the prediction of Nusselt number and friction factor for internal 

flow channel geometries. The channel geometry represented in polar coordinates is given as the input 

and ANN is trained to predict the Nusselt number or friction factor.  

The performance of ML algorithms depends on the amount and quality of training data (in 

general, more data leads to better training). Nusselt number (NuH1 and NuH2,) and friction 

factor (typically presented as the product fRe in correlations) data of different constant cross 

section flow shapes were collected from established literature [30][31]. These flow shapes span 

a wide range of shape classes (listed in Table 1). Each shape class has parametric variations 



such as their aspect ratios and included angles. As Nu and fRe are non-dimensional, their 

conversion to heat transfer coefficient ‘h’ and pressure drop requires a characteristic length, 

taken as the hydraulic diameter, Dh=4A/P, in the data used. Separate surrogate models are built 

for Nusselt number under the H1 and H2 constant heat flux boundary conditions. 

To ensure rotational invariance during the training process, several orientations of each 

distinct shape were used in the training of the ANN [29]. In general, 360 different rotations 

were considered for each distinct shape, i.e., one for each degree of rotation. However, for 

many of the shapes, several rotated versions are discarded due to symmetry. For example, for 

an ellipse or rectangle, only rotations from 1° to 180° were considered, due to a two-fold axis 

of symmetry. Similarly, a regular polygon with n sides has an n-fold axis of symmetry so only 

rotations from 1° to 360°/n (to the nearest degree) are considered. In some other cases, like in 

the case of trapezoids, rotations were considered at intervals larger than 1° so that total number 

of data points from this shape do not have undue influence over the dataset. The number of 

different orientations for each shape generally tries to ensure an equitable distribution of total 

samples belonging to each distinct shape. The total number of training data samples across all 

orientations is 70,262 for NuH1, 55,334 for NuH2 and 94,322 for fRe.  

Table 1.  List of flow cross section shapes in the dataset. The number of available distinct and total 

shapes across all shape classes are specified for NuH1, NuH2 and fRe. 

No Shape Class of Flow Cross Section NuH1 NuH2 fRe 

Distinct Total Distinct Total Distinct Total 

1 Isosceles Triangle 37 6660 37 6660 37 6660 

2 Right Triangle 20 7200 20 7200 20 7200 

3 Corrugated Circle 18 553 18 553 18 553 

4 Regular Polygons 18 751 18 751 18 751 

5 Trapezoid 228 8208 120 4320 228 8208 

6 Rhombus 35 6300 35 6300 35 6300 

7 Segment of a Circle 71 6390 71 6390 71 6390 

8 Equilateral Triangle (Rounded Corners) 3 840 3 840 3 840 

9 Sinusoid 40 7200 40 7200 40 7200 

10 Ellipse 20 3600 20 3600 20 3600 

11 Rectangle 19 3420 19 3420 19 3420 

12 Sector of a Circle 35 6300 35 6300 35 6300 

13 Quadrilaterals 4 1440 4 1440 4 1440 

14 Cardioid 1 360 1 360 1 360 

15 Arbitrary Triangle 35 4200 - - 28 3360 

16 Rectangle (Semicircular Ends) 19 3420 - - 19 3420 



17 Circle (Flat Ends) 19 3420 - - 19 3420 

18 Square (All Indented Corners) - - - - 50 4500 

19 Square (One Indented Corner) - - - - 12 4320 

20 Star - - - - 22 1980 

21 Lens - - - - 16 2880 

22 Rectangle (Two Indented Corners) - - - - 12 4320 

23 Horseshoe - - - - 5 1800 

24 Football - - - - 3 540 

25 Boomerang - - - - 2 720 

26 Elliptic Circle - - - - 2 720 

27 Equilateral Triangle (Indented Corners) - - - - 2 240 

28 Atomic Bunker - - - - 1 360 

29 Kite - - - - 1 360 

30 Symmetric L - - - - 1 360 

31 Asymmetric L - - - - 1 360 

32 Milk Can - - - - 1 360 

33 Parabola - - - - 1 360 

34 Rectangle (Unilateral Circular Ends) - - - - 1 360 

35 Rectangle (Unilateral Elliptical Ends) - - - - 1 360 

Total 622 70,262 441 55,334 749 94,322 

 

Polar coordinates are used to represent the flow cross section shape that is input to the ML 

model, as shown in the left side of Figure 1. The area of every cross section is normalized to 

one square unit, and the origin is placed at the center of mass such that any point on the 

boundary of the geometry can be represented in terms of a (𝑟, 𝜃) tuple. Because the same 𝜃 

values (viz., 360 linearly spaced values from 1° to 360°) are used for all the geometries in the 

dataset, they can be excluded from the input, leaving only the radial coordinates of each 

boundary point as an ordered set. Thus, the input to the ML model is a 1×360 vector of the 

radial coordinates of the points on the boundary of the input geometry in 1° rotational 

increments. Note that the angular starting point in the ordered set is made irrelevant due to the 

training on many different orientations of the same shape to ensure rotational invariance. 

The Huber loss function was chosen for training the ML models as it was found to perform 

better than other commonly used loss functions like the mean squared error (MSE) or mean 

absolute error (MAE) loss functions. Huber, which is quadratic for small errors and linear for 

larger errors, is less sensitive to outliers than MSE and differentiable at zero unlike MAE. The 

number of hidden layers and the number of nodes per layer in the ANN were optimized through 



a grid search and 5-fold cross validation process. The complete dataset was first randomly split 

into train and test datasets (70:30 ratio) and a preliminary grid search was performed by varying 

the number of layers from 1 to 5 and number of nodes in each layer from 10 to 250. At this 

stage of the training, the number of nodes in each layer were kept equal. For all three models, 

3 hidden layers gave the best compromise between the training time and the prediction 

accuracy on the testing set. Next, the optimal numbers of nodes in each of the 3 layers were 

found by first doing a grid search on a random train-test (70-30) split of the data, choosing the 

top few high-performing combinations of number of nodes (based on goodness of fit values), 

and then doing a 5-fold cross validation with each of those combinations. In general, k-fold 

cross validation is a technique to assess the skill of ML models. In this method, the dataset is 

randomly divided into k groups, or folds, of approximately equal size, where one fold is treated 

as a testing set and the model is trained on the remaining k − 1 folds. This process of training 

and testing is repeated on every split in a cyclic manner to obtain the mean prediction metric. 

Three-layer ANNs were found to have a good bias–variance trade-off for all three models 

(NuH1, NuH2, and fRe). The optimal numbers of nodes in the 3 layers of the ANNs were found 

to be 250-100-50 for the NuH2 data and 150-150-150 for the fRe data. For the NuH1 data, ANNs 

with 150-150-25 and 150-200-50 both performed similarly.  

The results supporting the choice of the hyperparameters are discussed in the Supplemental 

Material section 1. The NuH1, NuH2 and fRe models with the above hyperparameters, trained on 

70% of the data, have R2 values of 0.99, 0.99 and 0.935 on the 30% test data, which consists of 

unseen data but belonging to the shape classes defined in Table 1. Because heat is transferred 

in ducts of all shapes via the same physical processes, it is fair to assume that all the Nusselt 

numbers for different ducts come from the same underlying distribution. Thus, 

hyperparameters that are optimized using 70% of the data would also be optimal for models 

trained on the entire dataset. The same argument holds for friction factor. This method of tuning 

hyperparameter on parts of the dataset, and then using those hyperparameters to refit the final 

model on the entire dataset is a commonly used ML technique to ensure utilization of all the 

currently available data to make models for prediction of new, unseen, future cases. 

Ensemble ML models are known to perform better than any of the constituting individual 

models, and they also improve the stability of the predictions by reducing variance. Bootstrap 

aggregating, commonly known as bagging, is an ensemble technique that was used to improve 

the performance of the fRe and Nu models. Given a training dataset S of size n, bagging 

generates m new datasets Si (i=1, 2..., m) of size n by sampling uniformly from S but with 



replacement. Thus, each datapoint in S may appear repeated times or not at all in any particular 

Si. For a large n, any Si is expected to have around 63.2% of the unique examples from S. In 

this work, a value of m=20 has been used for all three models. The final fRe surrogate model 

is an ensemble of 20 ANNs with 150-150-150 nodes in the hidden layers, the NuH2 model is 

an ensemble of 20 ANNs with 250-100-50 nodes in the hidden layers, and the NuH1 model is 

an ensemble of 10 ANNs with 150-150-25 nodes and 10 ANNs with 150-200-50 nodes in the 

hidden layers. 

All the models have been trained using Keras in TensorFlow on Google Colaboratory. The 

optimization of weights was carried out using the Adam optimization algorithm, for 300 

epochs, by which time the model predictions had converged [29]. Because the training data 

sets were randomly selected from the main dataset, it is assumed that both these datasets come 

from similar distributions, and hence, these sets of hyperparameters will also give a good 

performance (i.e., no over/under fitting) when trained on the entire dataset. Therefore, models 

with the hyperparameters mentioned above were trained on the entire dataset. The ML models 

are published as a tool available on nanoHUB.org [32], and recommended for use as surrogate 

correlations within training dataset. 

The performance of the models is depicted in Figure 2. The performance statistics are 

calculated on a set which consists of all the distinct shapes in the original dataset. For each 

distinct shape, the Nu and fRe values are calculated by averaging out the model predictions 

across 360 different rotational orientations (one per degree of rotation). It is found that for some 

shapes, at extreme aspect ratios, the individual predictions at some orientations have increased 

error, but when the average of each individual prediction across several rotational orientations 

is taken as final predicted value of the output (Nu or fRe), the error in the prediction is reduced 

significantly [15]. The plot on the left of Figure 2 shows the mean percentage errors between 

the three ML surrogate model final predictions and the training data over the 14 shape classes 

which are common across the datasets. The percentage error on each shape is less than 5%, 

except for the first two classes (isosceles and right triangles) for which the NuH2 model gives 

higher error. The box plot on the right shows the percentage error averaged across all the shapes 

in the respective datasets. The diamond markers indicate the shape classes that are outliers in 

the box and whisker plots. The mean percentage error is 0.70% for the fRe model, 1.24% for 

the NuH1 model, and 2.84% for the NuH2 model. A summary of the model performance statistics 

is given in Table 2. The table shows the absolute and percentage mean errors, and the number 

and percentage of outliers. For all three models, the mean percentage errors are less than 3%, 



and the percentage of outliers is around 10%. Thus, the models perform satisfactorily on all the 

different shapes in the dataset drawn from existing correlations. 

 

Figure 2. Error plots for the fRe and Nu models: (left) percentage error in the model predictions for 

each of the 14 shape classes common to the fRe, NuH1, and NuH2 models, indexed as per the list in Table 

1; (right) box plot showing the the percentage error averaged across all the shapes in the fRe, NuH1, and 

NuH2 datasets. 

 

Table 2. Summary of error statistics in the predictions of NuH1, NuH2 and fRe by the surrogate ML 

models on the respective training datasets from available correlations.  

 NuH1 NuH2 fRe 

Mean Absolute Error 0.0531 0.0297 0.1083 

Mean Percentage Error 1.24 2.84 0.70 

Number of Outliers 66 44 63 

Percentage of Outliers 10.76 9.97 8.52 

 

2.2. Model Predictions on Shapes Outside the Primary Training Shape Classes 

To assess the ML model generality in prediction of Nu and fRe outside the dataset of 

existing primary shape classes, several different shapes were generated. Primary shape classes 

have been defined as those classes in Table 1 which contribute more than one distinct case to 

the training data. The ML model prediction on these shapes is compared to Nu and fRe values 

obtained by carrying out numerical simulations of fully developed internal flow through 

channels having these cross sections. Predictions are performed for parametric variations of a 

fRe 

NuH1 

NuH2 

fRe      Nu
H1

    Nu
H2

 



half lens, half parabola, and parabola (see the shape cross sections and definition of the varied 

geometric parameters in the inset sketched within Figure 3).  

The numerical finite volume simulations (ANSYS Fluent) are carried out with water as the 

working fluid. Flow channels with 1-2 mm hydraulic diameters and channel lengths of 600 mm 

are used (sufficiently long to confirm fully developed flow). Constant fluid properties and a 

low flow rate to ensure laminar flow (Re between 100-500) are maintained. The pressure drop 

and heat transfer characteristics are extracted from a location in the latter half of the flow 

channel (at a distance of 500 mm) where developing effects are no longer present, but slightly 

away from the channel exit to prevent boundary-effects from influencing the results. The NuH1 

boundary condition is simulated using a 1 µm-thick shell layer of a highly conducting fictitious 

material (thermal conductivity of 2×104 W/(m K)) with constant wall heat flux boundary 

condition. The shell conduction layer only allows circumferential conduction of heat, with no 

conduction along the axial (flow) direction. This configuration ensures that the heat flux 

applied to the walls is spread uniformly around the channel perimeter to provide a uniform wall 

temperature over the channel cross section (i.e., a constant wall heat flux along the flow 

direction and constant wall temperature along the channel perimeter). The NuH2 boundary 

condition is simulated by simply having a constant wall heat flux boundary condition without 

any shell conduction layer (i.e., a constant wall heat flux along both the channel flow direction 

and perimeter). The SIMPLE solution scheme is used with 2nd order pressure and momentum 

discretization. The convergence criteria are set to 1×10-6 for the continuity, velocity, and energy 

residuals. The simulation meshes, generated using the sweep option along the axis, with an 

element size of 0.5 mm on the faces and 2 mm along the axis, are found to give mesh-

independent results. 

Figure 3 compares the ML model predictions of fRe (top) and Nu (bottom) with values 

obtained from the finite-volume simulations for parametric variations of the half lens (left), 

half parabola (center) and parabola (right). For all three shape classes, the fRe values from the 

ML model are very close (often almost overlapping) to the values obtained through finite-

volume simulations. The Nu values obtained from the ML model are not as accurate, in 

particular the NuH1 values for the half parabola and the NuH2 values for the half lens.  



 

Figure 3. Comparison between numerically simulated and ML-predicted fRe and Nu values for the new 

shapes: half lens (left), half parabola (center), and parabola (right). 

Overall, the ML models have a mean percentage error of 4%, 10%, and 25% in predicting 

the fRe, NuH1 and NuH2 values of these new shapes, but they capture the trends in the fRe and 

Nu values with parametric variations in the shape. For example, even for the half lens shape 

for which the numerical value of the NuH2 prediction is the least accurate, the ML model 

predictions follow the correct trend with variation in the included angle. With the intent to use 

such surrogate ML models in design optimization approach, it is important to predict the correct 

trends so as to drive shape changes toward the optimal. Once optimized geometries are 

identified using low-cost surrogate model, it is expected that quantitatively correct values of 

the pressure drop and heat transfer coefficient would be obtained from numerical simulations 

or other exact solution methods, especially if the obtained shape belongs to a shape class 

outside the primary training classes. 

3. Design Optimization 

3.1. Performance Metric 
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In convective cooling applications, a high heat transfer coefficient is desired to extract the 

maximum amount of heat at a given temperature difference, and a lower friction factor to 

reduce the pressure drop and thereby pumping power. Thus, heat exchanger geometries are 

often selected using performance metrics that simultaneously consider both the Nusselt number 

and friction factor; these performance metrics can also serve as objective functions for design 

optimization. The modified ‘area goodness’ performance metric that is commonly used in the 

design of heat exchangers, is selected to form the objective function to optimize the channel 

cross sectional shape in this work. The area goodness is defined as the ratio of Colburn-j factor 

and the friction factor (f ) as Nu/(fRePr1/3). As the Prandtl number is a property of the working 

fluid, for a given fluid, it is assumed to be constant and hence optimizing the area goodness is 

equivalent to optimizing Nu/fRe. Physically, the area goodness provides a measure of the 

frontal area required for a heat exchanger to operate at a given design point (viz., flow rate, 

pressure drop, and total surface area). A lower required frontal area corresponds with a higher 

area goodness per the formulation of this metric.  

3.2. Formulation of the Optimization Problem 

The process of optimizing the channel geometry to maximize the performance metric 

requires a model for prediction of the Nusselt number and the friction factor for the geometries 

generated. Rather than carrying out computationally expensive numerical simulations at each 

iteration, the ML-based surrogate models developed in this work are used to predict the Nusselt 

number and friction factor of the channel cross section shape during the optimization process. 

The design optimization is carried out by importing the ML-based surrogate models developed 

using TensorFlow into MATLAB v2020b.  

The optimization problem of maximizing Nu/fRe, is equivalent to minimizing -Nu/fRe. 

Because optimization methods are typically designed to minimize the value of the objective 

function, the objective function is written as  

f
1
(x)= -

Nu

fRe
                                                              (1) 

Similarly, objective functions based on the standalone friction factor and Nusselt number can 

be respectively written as f2(x) = fRe and f3(x) = -Nu. These objectives are functions of the flow 

cross section represented in a polar coordinate system as 360 equiangularly spaced radial points 

x, the same as the 1×360 vector input to the ML surrogate models for predicting the Nu and the 

fRe values. For the models to give precise predictions, it is also necessary that the area of the 



enclosed geometry is one square unit. If x is an ‘n’ dimensional vector, the area of the geometry 

can be approximated as 

A= 
sin (dθ)

2
(x1x2+x2x3+…+xnx1)                                   (2) 

where for equiangular spaced radial points x, dθ=2π/n. Writing this area constraint in the form 

of equality constraint h(x) = 0 yields 

 h(x)= 
sin (2π/n)

2
(x1x2+x2x3+…+xnx1) - 1                             (3) 

For a physical shape, it is necessary that xi ≥ 0 , and thus the lower bound on x is 0. However, 

preliminary runs of the several optimization algorithms discussed below showed that the values 

of xi were typically confined between 0.2 and 1 (for a perfect circle, all xi = 0.5642 for the area 

to be one square unit). Thus, for most subsequent optimization processes, the range of xi was 

constrained between 0.2 and 1 to reduce the search space and expedite convergence. Therefore, 

an upper bound is often used to prevent the result from being a completely skewed shape.  

As the Nu and fRe values are obtained from the ML model, functions involving either of 

these two quantities are non-analytic functions. As analytic derivatives cannot be obtained for 

functions involving these two quantities, numerical-derivative-based and non-derivative 

methods have been considered. Four different methods have been employed to optimize the 

flow cross section: 1) interior point method (IPM); 2) sequential quadratic programming 

(SQP); 3) genetic algorithm (GA); and 4) Nelder-Mead (NM) simplex. The IPM and SQP are 

derivative-based methods for which numerical derivatives have been used, while GA and NM 

are non-derivative methods. The IPM and SQP have been employed using MATLAB’s 

constrained multivariable nonlinear optimizer (fmincon function), whereas the NM simplex has 

been employed using MATLAB’s direct search method (fminsearch function). The GA has 

been employed using a code developed at Purdue University (see Acknowledgements)  

While the Nu and fRe ML models take a 1×360 vector input, the number of control points 

was reduced because 360 were found to generate shapes with fine features highly dissimilar 

from the training data and therefore beyond the predictive precision of the trained ML models. 

During the shape optimization, 45 equiangular control points are used to represent the channel 

geometry. Cubic interpolation is used to generate an interpolated 1×360 vector input to the ML 

models for predictions of Nu and fRe. The problem formulation for IPM is given below; The 

formulations for the other methods are described in the Supplemental Material section S2. 



For IPM, the objective function is f1(x) (equation (1)), subject to the bounds 0 ≤ xi ≤ 2, i = 

1, 2…, 45 and the equality constraint h(x) = 0 (equation (3)), as described above. The algorithm 

was observed to output very wavy shapes, so it was run in a cyclic manner, with cycles of a 

few hundred iterations each, where a Savitzky-Golay filter with order 2 and frame length 7 was 

used on the output of each cycle before feeding it back as the initialization for the next cycle. 

This was found to reduce the propagation and amplification of noise. 

Once the optimized cross section shape is obtained via any of the optimization methods, 

post-processing is performed on this raw shape to obtain a regular (i.e., having some rotational 

symmetry) shape having similar characteristics. Predictions of the performance of that regular 

shape (scaled to have an area of 1 square unit) obtained by numerical simulations are then 

compared to the ML surrogate predictions. 

3.3. Results and Discussion on the Design Optimization 

The four optimization methods are first applied on the basis of the area goodness metric 

(with H2 boundary condition). The IPM, SQP, and NM simplex were run with different 

initializations and for different numbers of cycles, and the highest NuH2/fRe values, along with 

the corresponding NuH2, fRe and areas, were noted. Similarly, the GA was run with different 

input vector lengths and bits per input vector. A detailed discussion of the tabulated results is 

provided in the Supplemental Material section S3.  In summary, it is concluded that the interior 

point method, with 3 cycles and a normal random initialization performed the best.  Therefore, 

IPM is applied with the friction factor, Nusselt number, and area goodness metrics to identify 

optimized shapes. 

With friction factor (fRe) minimization as the objective function, an optimized geometry is 

identified by performing several trials with different random initializations. The maximum 

number of function evaluations per cycle was capped at 1500 after which the Savitzky-Golay 

filter was applied to smoothen the shape. Cross sectional shapes having a characteristic three-

lobed structure obtained from the optimization process have fRe values in the range of 6.60 to 

9.20, with an average value of 7.49. Figure 4 (a) uses dashed lines to show a couple of 

representative output shapes for this objective function. Next, using IPM to maximize the value 

of NuH2 leads to a regular circular shape with a predicted NuH2 value of 4.36. The circular duct 

has the highest NuH2 value in the training dataset, so it is expected that the optimization 

algorithm would converge to this trivial result. On the other hand, optimization of NuH1 tends 

to two different shapes either a circular shape when randomly initialized or a rectangular shape 



when given a rectangular initialization. In the training data, NuH1 values of some rectangles are 

greater than that of a circular duct, and so one would expect a non-circular optimum, indicating 

the shape results are local optima. 

For the area goodness metrics, the optimal shapes obtained from a random initialization 

differ with the H1 versus H2 boundary condition. From several runs with an H1 boundary 

condition, the representative optimized shapes as shown in the dashed lines in Figure 4 (b) are 

amoeba-like, typically with four to six pseudopodia (most often five). The H2 boundary 

condition yields ice cream cone-like shapes as illustrated in Figure 4 (c). In general, the Nu/fRe 

values for these shapes as predicted by the ML models notably exceed that of circular ducts 

(e.g., Nu/fRe = 0.2725), and hence, these identified shapes are of interest for further inspection 

with higher fidelity numerical simulation.  

 

Figure 4. Examples of typical shapes as the raw optimization outputs (dashed lines) overlaid by the 

post-processed regular geometry (solid black line) when the objective function is: (a) fRe, (b) NuH1/fRe, 

and (c) NuH2/fRe. 

 

For better generalizability, the optimized shapes are post-processed (smoothened) to a more 

regular shape while retaining the key features of the optimized shapes identified from several 

runs of the optimization algorithm. The regular shapes were created by choosing forms of 

equations which are known to have the specific characteristics identified in the raw optimized 

shapes, and then selecting the parameters within these equations to match the raw shapes 

through a trial-and-error process. The regular shapes are constrained to an area of one square 

unit. Finite volume simulations are performed on these regular shapes to find the exact values 

of Nu and fRe, and these results are compared to the ML models’ predictions on those regular 

raw shapes obtained from optimization 

regular shape after post-processing 

(a) (b) (c) 



shapes. Figure 4 shows the post-processed regular shape overlaid as a solid black line on the 

previously discussed raw optimizations for each of the optimization functions. The three-lobed 

shape is represented using an area-normalized cosine wave superimposed on a circle (r = 1 + 

0.5cos(3θ), θ∈[0,2π]), shown in Figure 4 (a). For the amoeba--like shapes with five 

pseudopodia, shown in Figure 4 (b), the regular form is a pentagon with rounded corners, 

generated using an area-normalized cosine wave superimposed on a circle (r = 1 + 0.1cos(5θ), 

θ∈[0,2π]). The regular version of the ice-cream cone-like shape is generated using a semicircle 

and a cubic spline, as shown in Figure 4 (c). All three optimized shapes lie outside the training 

shape classes, and hence numerical simulations are carried out to determine the exact values of 

Nu and fRe. 

These results from numerical simulations and ML model predictions for the raw and regular 

post-processed shapes for the three metrics are summarized in Table 3. Numerical and ML 

model predictions on the regular three-lobed sinusoidal shape gave fRe values of 9.24 and 

14.11, respectively. While this fRe value predicted by the numerical simulation is not as low 

as that predicted by the ML model for the raw shapes during the optimization process, it is still 

notably lower than the fRe value of 16 for a circular channel. On the regular (post-processed) 

pentagon with rounded corners, numerical simulations and ML model predictions give 

NuH1/fRe values of 0.274 and 0.255 respectively, while the regular version of the horizontal 

ice-cream shaped duct gives NuH2/fRe values of 0.266 and 0.368 from numerical simulations 

and ML models respectively. From the last four columns of Table 3, it is generally seen that 

the Nu predictions from the ML models are usually quite accurate, but the fRe predictions have 

higher error. While the ML models capture the trends in parametric variations and steer the 

design toward more optimal shapes, exact values of fRe and Nu should be confirmed using 

numerical simulations.  

To assess how the obtained optimized shapes compare against existing shapes in the 

training set, the performance metric values of the optimized shapes are compared with that of 

shapes in the training dataset. Figure 6 shows a plot of the NuH2/fRe as a function of NuH2 for 

shapes in the training data (blue dots), the raw optimized shapes as predicted by the ML models 

(red dots), and the post-processed optimized shapes as predicted by numerical simulations 

(green dots). The NuH2/fRe values obtained from the ML models on the optimized shapes are 

seen to be much higher than for any shape in the training data (for a given NuH2); numerical 

simulations on the post-processed versions of these shapes pull these NuH2/fRe values back to 

the pareto front formed by the training data. This trend was also observed with the NuH1/fRe 



metric. Thus, the new shapes identified by the optimization process are optimal, but their 

performance does not break though as an outlier beyond the expected pareto front. 

Nevertheless, using the optimization process, this ML surrogate optimization approach was 

able to identify novel shapes (otherwise lacking available correlations) which have 

performance comparable to currently known optimal shapes, if not marginally better. Over the 

past several decades, this two-dimensional design space has been exhaustively explored, so it 

is not a surprise that significantly more optimal shapes weren’t identified. Rather, the fact that 

novel shapes with performance comparable to known optimal shapes were obtained from the 

ML models-based optimization process is a validation of the effectiveness this approach of 

using ML model surrogates in the design optimization process. 

Table 3. ML model predictions versus simulation results on raw and regular shapes. 

Objective 

function 

Parameter Range with 

ML models 

over several 

shapes (raw) 

Mean with 

ML models 

over several 

shapes (raw) 

ML model 

(regular) 

Simulation 

(regular) 

fRe fRe 6.60-9.20 7.49 14.11 9.24 

NuH1/fRe NuH1 4.13-4.23 4.18 3.91 4.08 

 fRe 10.70-14.95 12.07 15.35 14.87 

 NuH1/fRe 0.29-0.39 0.35 0.255 0.274 

NuH2/fRe NuH2 3.33-4.09 3.85 4.08 4.23 

 fRe 10.41-14.53 11.72 11.08 15.90 

  NuH2/fRe 0.23-0.38 0.33 0.368 0.266 

 

 

Figure 5. Comparison of NuH2/fRe values of the training data, ML model predictions for the raw shapes, 

and the numerical simulation predictions for the regular shapes. 
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4. Conclusion 

ML-based surrogate models for fRe, NuH1 and NuH2 were developed using data collected 

from existing correlations, validated against data outside the dataset, and then used for 

optimizing flow cross-section shapes of constant cross-section channels. The trained ML 

models were found to have good prediction accuracy for shapes similar to those in the training 

dataset, but reduced performance on shapes highly dissimilar from the training data. For shapes 

in the training dataset, the mean percentage error was 0.70% for the fRe model, 1.24% for the 

NuH1 model, and 2.84% for the NuH2 model.  Thus, the ML models do not serve as a universal 

correlation valid for any shapes, but rather, very effectively collapse all the known correlations 

into a single predictive correlation.  

The ML surrogates are then used as the basis for optimization of the shape cross section 

based on performance metrics that aim to increase the Nusselt number and decrease the friction 

factor. The interior point method was identified as a suitable optimization method from 

quantitative assessment of four different numerical-derivative and non-derivative-based 

optimization algorithms. For each objective function explored, a novel shape was generated by 

the optimizer that was unique from the training data, namely, a three-lobed shaped duct to 

reduce the friction factor, and a pentagon with rounded sides and an ice-cream cone like shape 

for different area goodness-based metrics. Finite volume simulations were run on post-

processed versions of the raw optimized shapes to make them more regular, and the results 

were compared to the predictions by the ML models. The ML model predictions of Nusselt 

number were generally found to be more accurate than predictions of friction factors. However, 

the ML model predictions were shown to follow the correct trends with parametric variations 

of different shapes, due to which the surrogate model-based optimization processes were able 

to predict novel optimized shapes with performance as good as (if not slightly better than) 

currently known optimal shapes. Expectedly, shapes having outlying performance 

improvement far better than currently known optimal shapes were not identified, given that 

this relatively simple 2D design space has been exhaustively explored. Nevertheless, the 

identification of novel optimized shapes with performance comparable to known optimal 

shapes is a validation of the optimization capabilities of the ML-assisted optimization process. 

When using these ML models, it is important to ensure that the area enclosed within the 

shape is normalized to 1 square unit. To further improve accuracy of the predictions, it is 

recommended that the average value of predictions for several rotational orientations of the 

shape is used as the final prediction. When using the ML models on shapes belonging to classes 



outside the training set, numerical simulations should always be carried out for confirmation 

of the exact Nu and fRe values. 

The use of ML-based surrogate models in the design optimization framework holds 

promise and should be explored further. This method could be extended from simple 2D 

geometry optimization to 3D systems with the training and availability of ML-based fRe and 

Nu surrogate models. The advantages of using ML models for design optimization are 

anticipated to increase with increased complexity of the system. In the case of such complex 

systems, the computational advantage of using ML-model-based optimization approaches 

versus iterative numerical simulations will also be significant.  
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