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Abstract

The design optimization of various thermal management components such as cold plates,
heat sinks, and heat exchangers relies on accurate prediction of flow heat transfer and pressure
drop. During the iterative design process, the heat transfer and pressure drop is typically either
computed numerically or obtained using geometry-specific correlations for Nusselt number
and friction factor. Numerical approaches are accurate for evaluation of a single design but
become computationally expensive if many design iterations are required (such as during
formal optimization processes). Correlation-based approaches restrict the design space to a
specific set of geometries for which correlations are available. Surrogate models for the Nusselt
number and friction factor, which are more universally applicable to all geometries than
traditional correlations, would enable flexible and computationally inexpensive design
optimization. The current work develops machine-learning-based surrogate models for
predicting the Nusselt number and friction factor under fully developed internal flow in
channels of arbitrary cross section and demonstrates use of these models for optimization of
the cross-sectional channel shape. The predictive performance and generality of the machine
learning surrogate models is first verified on various shapes outside the training dataset, and
then the models are used in the design optimization of flow cross sections based on
performance metrics that weigh both heat transfer and pressure drop. The optimization process
leads to novel shapes outside the training data, and so numerical simulations are carried out on
these optimized shapes to compare with the surrogate model predictions and show their
performance is at least as good as that of shapes with known correlations available. A three-
lobed shape was found to reduce friction factor, whereas a pentagon with rounded corners and
an ice cream cone-shaped duct, both found using different performance metrics. Although the

ML model predictions lose accuracy outside the training set for these novel shapes, the
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predictions follow the correct trends with parametric variations of the shape and therefore

successfully direct the search toward optimized shapes.

Keywords: fully developed, internal, single-phase flow, Nusselt number, friction factor,

machine learning, artificial neural network, optimization

Nomenclature

A area of channel cross section, m?

ANN artificial neural network

Cp specific heat capacity, J/(kg K)

Dn hydraulic diameter, m

dP/dz flow pressure gradient

f Fanning friction factor ((dP/dz)Dn/(2pV?) )
fi (X) objective function for optimization

g(x) inequality constraint

h heat transfer coefficient, W/(m? K)

h(x) equality constraint

j Colburn j-factor (Nu/(RePr*?))

k thermal conductivity, W/(m K)

MAE mean absolute error

MSE mean squared error

ML machine learning

Nu Nusselt number (hDn/k)

NUH1 Nusselt number for H1 boundary condition
NUn2 Nusselt number for H2 boundary condition
P wetted perimeter

Pr Prandtl number (ucp/k)

Re Reynolds number

Vv average flow velocity, m/s

VI fluid dynamic viscosity, N s/m?

p density of fluid, kg/m3



1. Introduction

The design and optimization of heat sinks, cold plates, and heat exchangers relies on
accurate prediction of Nusselt number and friction factor for internal flow through a wide
variety of heat transfer surfaces. Correlations for these geometry-dependent non-dimensional
numbers are available for commonly encountered flow geometries, obtained either though
analytical solutions, numerical solutions, or physical experiments, resulting in different
correlations for each specific geometry. It is difficult to make use of this large number of
disconnected Nusselt number and friction factor correlations in the process of design
optimization of heat transfer surfaces. Thus, there is a need collapse this catalogue of
correlations for all commonly encountered heat transfer surfaces into more a generalized and

readily accessible form.

In recent years, instead of fitting functions to experimental and simulation data to develop
correlations, machine learning (ML) methods have been successfully used to create surrogate
models across various scientific fields. These methods allow the models to capture highly non-
linear transport phenomena without having to assume a functional form for a correlation. The
use of data-driven machine learning approaches has influenced various fields including
medicine, manufacturing, energy, transportation, software development, agriculture, and even
artistic creations [1]. Most notable, machine learning has fueled major advances in computer
vision applications, has leading to improvements in non-destructive testing, medical imaging,
autonomous vehicles, and geomatics, to name a few. Within traditional mechanical engineering
disciplines, the use of ML techniques has matured in areas such as solid and fracture mechanics
[2,3], fluid dynamics and turbulence modeling [4,5], and energy systems analysis [6—10]. In
comparison, the more recent adoption of ML methods for heat and mass transfer analyses, as

reviewed below, is less widely explored.

In the area of convective transport, there have been a few studies on developing ML-based
surrogate models for predicting the heat transfer and pressure drop characteristics for certain
configurations of nanofluid flows [11-13], boiling/condensing two-phase flows [14-18], and
single-phase flows in general [19-27]. However, prior studies that develop surrogate models
for single-phase convection focus on capturing the parametric variations for very specific flow
geometries. For example: Parrales et al. [19] and Beigzadeh and Rahimi [20] trained artificial
neural networks (ANNSs) to predict the Nusselt number and friction factor for flow in helical
tubes; Xie et al. [21,22] trained ANNSs to predict the heat transport and fluid flow relations for
shell-and-tube and fin-and-tube heat exchangers; Beigzadeh et al. [23] and Ostenak [24] trained



ANN:Ss to predict the Nusselt number and friction factor for interrupted plate fins and circular
pin-fins respectively; and Chokphoemphun et al. [25], Islamoglu and Kurt [26], and Kwon et
al. [27] developed ANN and random-forest-based surrogate models for predicting the heat
transfer and fluid flow parameters for grooved, corrugated, and ribbed array channel
geometries, respectively. More universal surrogate models are not available to predict the
Nusselt number and friction factor for a wide variety of flow geometries. Such surrogate
models, applicable across differing flow geometries, would allow bypassing of the flow and
heat transfer simulations that are otherwise required in the design optimization of thermal
management components. Even for the simplest case of constant cross-section flow channels,
the focus of the current work, universal surrogate correlations which predict the heat transfer
and fluid flow properties for a wide range of cross-sections do not exist. Hence, the process of
optimizing the constant cross-section flow channel for a given design metric requires the use

of numerical simulations, owing to the geometry specific nature of existing correlations.

In this work, we develop machine-learning-based surrogate models for internal flow
through channels of arbitrary constant cross-section, which are then demonstrated for use in
design optimization of the cross-sectional shape. A surrogate model for predicting the friction
factor (fRe) and two models for predicting the Nusselt number under both H1 and H2 boundary
conditions are developed. H1 and H2 are essentially two different types of constant flux
boundary conditions; in the H1 boundary condition, the heat flux is uniform along the flow
direction and the wall temperature is uniform along the perimeter of the duct cross section,
while in the H2 boundary condition, the heat flux is constant along both. These ML models are
trained on existing data and correlations compiled for all available constant cross section
geometries of interest. The design optimization is formulated to maximize design metrics
aimed to increase the heat transfer rate and simultaneously reduce the pressure drop in the
channel. The following sections introduce the developed ML models, verify their prediction
accuracy on geometries outside the training data set, and then employ the model in the design

optimization of constant cross section internal flow geometries.

2. Machine-Learning-Based Surrogate Model

2.1.  Model Development
An artificial neural network (ANN) ML architecture is chosen as it is a mature approach
that has been successfully used in various applications. An ANN is a computing system

inspired by the biological neural networks in animal brains. It is a directed acyclic graph which



consists of nodes (or artificial neurons) which are connected to each other. Connections
between the neurons transmit information from one neuron to another. Every neuron processes
the information it receives and then relays this processed information to downstream neurons
to which it is connected. Figure 1 shows a schematic diagram of an ANN along with the inputs
and outputs specific to this work. The nodes in an ANN are typically arranged in the form of
layers as shown. Information enters the network from the layer of nodes on the far left, called
the input layer, and the output layer of nodes on the far right gives the final prediction based
on the input information. The layers in between the input and the output layers are called the
hidden layers. ANNs are powerful function approximators, and it has been shown that they
(under certain conditions) can be used to approximate any continuous function [28]. The power
of an ANN lies in its ability to extract underlying rules governing an input dataset and then
make predictions for new data based on the rules learned. In the current ML model [29], the
input layer encodes the geometric information of the flow channel cross-section as a vector
(Figure 1); the single output node represents the predicted quantity (Nug;, Nugp, or fRe). The
ANN development, including justification for the choice of the rectified linear unit (ReLU)
activation function, training data partitioning strategy, hyperparameter tuning process, loss

function selection, and ensemble method are summarized below.

Flow of information in ANN
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Figure 1. Structure of the ANN used in the prediction of Nusselt number and friction factor for internal
flow channel geometries. The channel geometry represented in polar coordinates is given as the input

and ANN is trained to predict the Nusselt number or friction factor.

The performance of ML algorithms depends on the amount and quality of training data (in
general, more data leads to better training). Nusselt number (Nuy; and Nugp,) and friction
factor (typically presented as the product fRe in correlations) data of different constant cross
section flow shapes were collected from established literature [30][31]. These flow shapes span

a wide range of shape classes (listed in Table 1). Each shape class has parametric variations



such as their aspect ratios and included angles. As Nu and fRe are non-dimensional, their
conversion to heat transfer coefficient ‘h’ and pressure drop requires a characteristic length,
taken as the hydraulic diameter, Dhn=4A/P, in the data used. Separate surrogate models are built
for Nusselt number under the H1 and H2 constant heat flux boundary conditions.

To ensure rotational invariance during the training process, several orientations of each
distinct shape were used in the training of the ANN [29]. In general, 360 different rotations
were considered for each distinct shape, i.e., one for each degree of rotation. However, for
many of the shapes, several rotated versions are discarded due to symmetry. For example, for
an ellipse or rectangle, only rotations from 1° to 180° were considered, due to a two-fold axis
of symmetry. Similarly, a regular polygon with n sides has an n-fold axis of symmetry so only
rotations from 1° to 360°/n (to the nearest degree) are considered. In some other cases, like in
the case of trapezoids, rotations were considered at intervals larger than 1° so that total number
of data points from this shape do not have undue influence over the dataset. The number of
different orientations for each shape generally tries to ensure an equitable distribution of total
samples belonging to each distinct shape. The total number of training data samples across all
orientations is 70,262 for Nuy,;, 55,334 for Nuy, and 94,322 for fRe.

Table 1. List of flow cross section shapes in the dataset. The number of available distinct and total

shapes across all shape classes are specified for Nuwi, Nunz and fRe.

No  Shape Class of Flow Cross Section Nugy Nuyy fRe
Distinct Total Distinct Total Distinct Total
1 | Isosceles Triangle 37 6660 37 6660 37 6660
2 | Right Triangle 20 7200 20 7200 20 7200
3 | Corrugated Circle 18 553 18 553 18 553
4 | Regular Polygons 18 751 18 751 18 751
5 | Trapezoid 228 8208 120 4320 228 8208
6 | Rhombus 35 6300 35 6300 35 6300
7 | Segment of a Circle 71 6390 71 6390 71 6390
8 | Equilateral Triangle (Rounded Corners) 3 840 3 840 3 840
9 | Sinusoid 40 7200 40 7200 40 7200
10 | Ellipse 20 3600 20 3600 20 3600
11 | Rectangle 19 3420 19 3420 19 3420
12 | Sector of a Circle 35 6300 35 6300 35 6300
13 | Quadrilaterals 4 1440 4 1440 4 1440
14 | Cardioid 1 360 1 360 1 360
15 | Arbitrary Triangle 35 4200 - - 28 3360
16 | Rectangle (Semicircular Ends) 19 3420 - - 19 3420




17 | Circle (Flat Ends) 19 3420 - - 19 3420
18 | Square (All Indented Corners) - - - - 50 4500
19 | Square (One Indented Corner) - - - - 12 4320
20 | Star - - - - 22 1980
21 | Lens - - - - 16 2880
22 | Rectangle (Two Indented Corners) - - - - 12 4320
23 | Horseshoe - - - - 5 1800
24 | Football - - - - 3 540
25 | Boomerang - - - - 2 720
26 | Elliptic Circle - - - - 2 720
27 | Equilateral Triangle (Indented Corners) - - - - 2 240
28 | Atomic Bunker - - - - 1 360
29 | Kite - - - - 1 360
30 | Symmetric L - - - - 1 360
31 | Asymmetric L - - - - 1 360
32 | Milk Can - - - - 1 360
33 | Parabola - - - - 1 360
34 | Rectangle (Unilateral Circular Ends) - - - - 1 360
35 | Rectangle (Unilateral Elliptical Ends) - - - - 1 360
Total 622 70,262 441 55,334 749 94,322

Polar coordinates are used to represent the flow cross section shape that is input to the ML
model, as shown in the left side of Figure 1. The area of every cross section is normalized to
one square unit, and the origin is placed at the center of mass such that any point on the
boundary of the geometry can be represented in terms of a (r, 8) tuple. Because the same 6
values (viz., 360 linearly spaced values from 1° to 360°) are used for all the geometries in the
dataset, they can be excluded from the input, leaving only the radial coordinates of each
boundary point as an ordered set. Thus, the input to the ML model is a 1x360 vector of the
radial coordinates of the points on the boundary of the input geometry in 1° rotational
increments. Note that the angular starting point in the ordered set is made irrelevant due to the

training on many different orientations of the same shape to ensure rotational invariance.

The Huber loss function was chosen for training the ML models as it was found to perform
better than other commonly used loss functions like the mean squared error (MSE) or mean
absolute error (MAE) loss functions. Huber, which is quadratic for small errors and linear for
larger errors, is less sensitive to outliers than MSE and differentiable at zero unlike MAE. The
number of hidden layers and the number of nodes per layer in the ANN were optimized through



a grid search and 5-fold cross validation process. The complete dataset was first randomly split
into train and test datasets (70:30 ratio) and a preliminary grid search was performed by varying
the number of layers from 1 to 5 and number of nodes in each layer from 10 to 250. At this
stage of the training, the number of nodes in each layer were kept equal. For all three models,
3 hidden layers gave the best compromise between the training time and the prediction
accuracy on the testing set. Next, the optimal numbers of nodes in each of the 3 layers were
found by first doing a grid search on a random train-test (70-30) split of the data, choosing the
top few high-performing combinations of number of nodes (based on goodness of fit values),
and then doing a 5-fold cross validation with each of those combinations. In general, k-fold
cross validation is a technique to assess the skill of ML models. In this method, the dataset is
randomly divided into k groups, or folds, of approximately equal size, where one fold is treated
as a testing set and the model is trained on the remaining k — 1 folds. This process of training
and testing is repeated on every split in a cyclic manner to obtain the mean prediction metric.
Three-layer ANNs were found to have a good bias—variance trade-off for all three models
(Nugy, Nuyp, and fRe). The optimal numbers of nodes in the 3 layers of the ANNSs were found
to be 250-100-50 for the Nuy, data and 150-150-150 for the fRe data. For the Nu;;, data, ANNs
with 150-150-25 and 150-200-50 both performed similarly.

The results supporting the choice of the hyperparameters are discussed in the Supplemental
Material section 1. The Nuni, Nun2 and fRe models with the above hyperparameters, trained on
70% of the data, have R?values of 0.99, 0.99 and 0.935 on the 30% test data, which consists of
unseen data but belonging to the shape classes defined in Table 1. Because heat is transferred
in ducts of all shapes via the same physical processes, it is fair to assume that all the Nusselt
numbers for different ducts come from the same underlying distribution. Thus,
hyperparameters that are optimized using 70% of the data would also be optimal for models
trained on the entire dataset. The same argument holds for friction factor. This method of tuning
hyperparameter on parts of the dataset, and then using those hyperparameters to refit the final
model on the entire dataset is a commonly used ML technique to ensure utilization of all the

currently available data to make models for prediction of new, unseen, future cases.

Ensemble ML models are known to perform better than any of the constituting individual
models, and they also improve the stability of the predictions by reducing variance. Bootstrap
aggregating, commonly known as bagging, is an ensemble technique that was used to improve
the performance of the fRe and Nu models. Given a training dataset S of size n, bagging

generates m new datasets Si (i=1, 2..., m) of size n by sampling uniformly from S but with



replacement. Thus, each datapoint in S may appear repeated times or not at all in any particular
Si. For a large n, any S; is expected to have around 63.2% of the unique examples from S. In
this work, a value of m=20 has been used for all three models. The final fRe surrogate model
is an ensemble of 20 ANNSs with 150-150-150 nodes in the hidden layers, the Nuy, model is
an ensemble of 20 ANNs with 250-100-50 nodes in the hidden layers, and the Nu;; model is
an ensemble of 10 ANNs with 150-150-25 nodes and 10 ANNSs with 150-200-50 nodes in the
hidden layers.

All the models have been trained using Keras in TensorFlow on Google Colaboratory. The
optimization of weights was carried out using the Adam optimization algorithm, for 300
epochs, by which time the model predictions had converged [29]. Because the training data
sets were randomly selected from the main dataset, it is assumed that both these datasets come
from similar distributions, and hence, these sets of hyperparameters will also give a good
performance (i.e., no over/under fitting) when trained on the entire dataset. Therefore, models
with the hyperparameters mentioned above were trained on the entire dataset. The ML models
are published as a tool available on nanoHUB.org [32], and recommended for use as surrogate

correlations within training dataset.

The performance of the models is depicted in Figure 2. The performance statistics are
calculated on a set which consists of all the distinct shapes in the original dataset. For each
distinct shape, the Nu and fRe values are calculated by averaging out the model predictions
across 360 different rotational orientations (one per degree of rotation). It is found that for some
shapes, at extreme aspect ratios, the individual predictions at some orientations have increased
error, but when the average of each individual prediction across several rotational orientations
is taken as final predicted value of the output (Nu or fRe), the error in the prediction is reduced
significantly [15]. The plot on the left of Figure 2 shows the mean percentage errors between
the three ML surrogate model final predictions and the training data over the 14 shape classes
which are common across the datasets. The percentage error on each shape is less than 5%,
except for the first two classes (isosceles and right triangles) for which the Nun2 model gives
higher error. The box plot on the right shows the percentage error averaged across all the shapes
in the respective datasets. The diamond markers indicate the shape classes that are outliers in
the box and whisker plots. The mean percentage error is 0.70% for the fRe model, 1.24% for
the Nun1 model, and 2.84% for the Nun2 model. A summary of the model performance statistics
is given in Table 2. The table shows the absolute and percentage mean errors, and the number

and percentage of outliers. For all three models, the mean percentage errors are less than 3%,



and the percentage of outliers is around 10%. Thus, the models perform satisfactorily on all the
different shapes in the dataset drawn from existing correlations.
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Figure 2. Error plots for the fRe and Nu models: (left) percentage error in the model predictions for
each of the 14 shape classes common to the fRe, Nun1, and Nun2 models, indexed as per the list in Table

1; (right) box plot showing the the percentage error averaged across all the shapes in the fRe, Nuns, and
Nun2 datasets.

Table 2. Summary of error statistics in the predictions of Nun1, Nun2 and fRe by the surrogate ML
models on the respective training datasets from available correlations.

Nugy Nuy, fRe
Mean Absolute Error 0.0531 0.0297 0.1083
Mean Percentage Error 1.24 2.84 0.70
Number of Outliers 66 44 63
Percentage of Outliers 10.76 9.97 8.52

2.2.  Model Predictions on Shapes Outside the Primary Training Shape Classes

To assess the ML model generality in prediction of Nu and fRe outside the dataset of
existing primary shape classes, several different shapes were generated. Primary shape classes
have been defined as those classes in Table 1 which contribute more than one distinct case to
the training data. The ML model prediction on these shapes is compared to Nu and fRe values
obtained by carrying out numerical simulations of fully developed internal flow through

channels having these cross sections. Predictions are performed for parametric variations of a



half lens, half parabola, and parabola (see the shape cross sections and definition of the varied

geometric parameters in the inset sketched within Figure 3).

The numerical finite volume simulations (ANSY'S Fluent) are carried out with water as the
working fluid. Flow channels with 1-2 mm hydraulic diameters and channel lengths of 600 mm
are used (sufficiently long to confirm fully developed flow). Constant fluid properties and a
low flow rate to ensure laminar flow (Re between 100-500) are maintained. The pressure drop
and heat transfer characteristics are extracted from a location in the latter half of the flow
channel (at a distance of 500 mm) where developing effects are no longer present, but slightly
away from the channel exit to prevent boundary-effects from influencing the results. The Nun
boundary condition is simulated using a 1 um-thick shell layer of a highly conducting fictitious
material (thermal conductivity of 2x10* W/(m K)) with constant wall heat flux boundary
condition. The shell conduction layer only allows circumferential conduction of heat, with no
conduction along the axial (flow) direction. This configuration ensures that the heat flux
applied to the walls is spread uniformly around the channel perimeter to provide a uniform wall
temperature over the channel cross section (i.e., a constant wall heat flux along the flow
direction and constant wall temperature along the channel perimeter). The Nun2 boundary
condition is simulated by simply having a constant wall heat flux boundary condition without
any shell conduction layer (i.e., a constant wall heat flux along both the channel flow direction
and perimeter). The SIMPLE solution scheme is used with 2" order pressure and momentum
discretization. The convergence criteria are set to 1x10°° for the continuity, velocity, and energy
residuals. The simulation meshes, generated using the sweep option along the axis, with an
element size of 0.5 mm on the faces and 2 mm along the axis, are found to give mesh-
independent results.

Figure 3 compares the ML model predictions of fRe (top) and Nu (bottom) with values
obtained from the finite-volume simulations for parametric variations of the half lens (left),
half parabola (center) and parabola (right). For all three shape classes, the fRe values from the
ML model are very close (often almost overlapping) to the values obtained through finite-
volume simulations. The Nu values obtained from the ML model are not as accurate, in

particular the Nunz values for the half parabola and the Nun2 values for the half lens.
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Figure 3. Comparison between numerically simulated and ML-predicted fRe and Nu values for the new
shapes: half lens (left), half parabola (center), and parabola (right).

Overall, the ML models have a mean percentage error of 4%, 10%, and 25% in predicting
the fRe, Nun1 and Nunz values of these new shapes, but they capture the trends in the fRe and
Nu values with parametric variations in the shape. For example, even for the half lens shape
for which the numerical value of the Nun2 prediction is the least accurate, the ML model
predictions follow the correct trend with variation in the included angle. With the intent to use
such surrogate ML models in design optimization approach, it is important to predict the correct
trends so as to drive shape changes toward the optimal. Once optimized geometries are
identified using low-cost surrogate model, it is expected that quantitatively correct values of
the pressure drop and heat transfer coefficient would be obtained from numerical simulations
or other exact solution methods, especially if the obtained shape belongs to a shape class

outside the primary training classes.

3. Design Optimization

3.1. Performance Metric



In convective cooling applications, a high heat transfer coefficient is desired to extract the
maximum amount of heat at a given temperature difference, and a lower friction factor to
reduce the pressure drop and thereby pumping power. Thus, heat exchanger geometries are
often selected using performance metrics that simultaneously consider both the Nusselt number
and friction factor; these performance metrics can also serve as objective functions for design
optimization. The modified ‘arca goodness’ performance metric that is commonly used in the
design of heat exchangers, is selected to form the objective function to optimize the channel
cross sectional shape in this work. The area goodness is defined as the ratio of Colburn-j factor
and the friction factor (f ) as Nu/(fRePr3). As the Prandtl number is a property of the working
fluid, for a given fluid, it is assumed to be constant and hence optimizing the area goodness is
equivalent to optimizing Nu/fRe. Physically, the area goodness provides a measure of the
frontal area required for a heat exchanger to operate at a given design point (viz., flow rate,
pressure drop, and total surface area). A lower required frontal area corresponds with a higher

area goodness per the formulation of this metric.

3.2.  Formulation of the Optimization Problem

The process of optimizing the channel geometry to maximize the performance metric
requires a model for prediction of the Nusselt number and the friction factor for the geometries
generated. Rather than carrying out computationally expensive numerical simulations at each
iteration, the ML-based surrogate models developed in this work are used to predict the Nusselt
number and friction factor of the channel cross section shape during the optimization process.
The design optimization is carried out by importing the ML-based surrogate models developed
using TensorFlow into MATLAB v2020b.

The optimization problem of maximizing Nu/fRe, is equivalent to minimizing -Nu/fRe.
Because optimization methods are typically designed to minimize the value of the objective

function, the objective function is written as

Nu
fi0)= “TRe (1

Similarly, objective functions based on the standalone friction factor and Nusselt number can
be respectively written as f2(x) = fRe and f3(x) = -Nu. These objectives are functions of the flow
cross section represented in a polar coordinate system as 360 equiangularly spaced radial points
X, the same as the 1x360 vector input to the ML surrogate models for predicting the Nu and the

fRe values. For the models to give precise predictions, it is also necessary that the area of the



enclosed geometry is one square unit. If X is an ‘n” dimensional vector, the area of the geometry

can be approximated as

sin (d6)
A= (x1xFxx3+... txpX1) 2)
where for equiangular spaced radial points X, d9=2z/n. Writing this area constraint in the form
of equality constraint h(x) = 0 yields

sin (2m/n)

h(x)= 3

(xpxtxox3+. . Axxg) - 1 3)

For a physical shape, it is necessary that xi> 0, and thus the lower bound on x is 0. However,
preliminary runs of the several optimization algorithms discussed below showed that the values
of x; were typically confined between 0.2 and 1 (for a perfect circle, all x; = 0.5642 for the area
to be one square unit). Thus, for most subsequent optimization processes, the range of x; was
constrained between 0.2 and 1 to reduce the search space and expedite convergence. Therefore,

an upper bound is often used to prevent the result from being a completely skewed shape.

As the Nu and fRe values are obtained from the ML model, functions involving either of
these two quantities are non-analytic functions. As analytic derivatives cannot be obtained for
functions involving these two quantities, numerical-derivative-based and non-derivative
methods have been considered. Four different methods have been employed to optimize the
flow cross section: 1) interior point method (IPM); 2) sequential quadratic programming
(SQP); 3) genetic algorithm (GA); and 4) Nelder-Mead (NM) simplex. The IPM and SQP are
derivative-based methods for which numerical derivatives have been used, while GA and NM
are non-derivative methods. The IPM and SQP have been employed using MATLAB’s
constrained multivariable nonlinear optimizer (fmincon function), whereas the NM simplex has
been employed using MATLAB’s direct search method (fminsearch function). The GA has

been employed using a code developed at Purdue University (see Acknowledgements)

While the Nu and fRe ML models take a 1x360 vector input, the number of control points
was reduced because 360 were found to generate shapes with fine features highly dissimilar
from the training data and therefore beyond the predictive precision of the trained ML models.
During the shape optimization, 45 equiangular control points are used to represent the channel
geometry. Cubic interpolation is used to generate an interpolated 1x360 vector input to the ML
models for predictions of Nu and fRe. The problem formulation for IPM is given below; The

formulations for the other methods are described in the Supplemental Material section S2.



For IPM, the objective function is f1(x) (equation (1)), subject to the bounds 0 < xi <2, i =
1,2...,45 and the equality constraint h(x) = 0 (equation (3)), as described above. The algorithm
was observed to output very wavy shapes, so it was run in a cyclic manner, with cycles of a
few hundred iterations each, where a Savitzky-Golay filter with order 2 and frame length 7 was
used on the output of each cycle before feeding it back as the initialization for the next cycle.

This was found to reduce the propagation and amplification of noise.

Once the optimized cross section shape is obtained via any of the optimization methods,
post-processing is performed on this raw shape to obtain a regular (i.e., having some rotational
symmetry) shape having similar characteristics. Predictions of the performance of that regular
shape (scaled to have an area of 1 square unit) obtained by numerical simulations are then

compared to the ML surrogate predictions.

3.3.  Results and Discussion on the Design Optimization

The four optimization methods are first applied on the basis of the area goodness metric
(with H2 boundary condition). The IPM, SQP, and NM simplex were run with different
initializations and for different numbers of cycles, and the highest Nun2/fRe values, along with
the corresponding Nuwnz, fRe and areas, were noted. Similarly, the GA was run with different
input vector lengths and bits per input vector. A detailed discussion of the tabulated results is
provided in the Supplemental Material section S3. In summary, it is concluded that the interior
point method, with 3 cycles and a normal random initialization performed the best. Therefore,
IPM is applied with the friction factor, Nusselt number, and area goodness metrics to identify
optimized shapes.

With friction factor (fRe) minimization as the objective function, an optimized geometry is
identified by performing several trials with different random initializations. The maximum
number of function evaluations per cycle was capped at 1500 after which the Savitzky-Golay
filter was applied to smoothen the shape. Cross sectional shapes having a characteristic three-
lobed structure obtained from the optimization process have fRe values in the range of 6.60 to
9.20, with an average value of 7.49. Figure 4 (a) uses dashed lines to show a couple of
representative output shapes for this objective function. Next, using IPM to maximize the value
of Nun2 leads to a regular circular shape with a predicted Nuwnz value of 4.36. The circular duct
has the highest Nun2 value in the training dataset, so it is expected that the optimization
algorithm would converge to this trivial result. On the other hand, optimization of Nun: tends
to two different shapes either a circular shape when randomly initialized or a rectangular shape



when given a rectangular initialization. In the training data, Nun: values of some rectangles are
greater than that of a circular duct, and so one would expect a non-circular optimum, indicating

the shape results are local optima.

For the area goodness metrics, the optimal shapes obtained from a random initialization
differ with the H1 versus H2 boundary condition. From several runs with an H1 boundary
condition, the representative optimized shapes as shown in the dashed lines in Figure 4 (b) are
amoeba-like, typically with four to six pseudopodia (most often five). The H2 boundary
condition yields ice cream cone-like shapes as illustrated in Figure 4 (c). In general, the Nu/fRe
values for these shapes as predicted by the ML models notably exceed that of circular ducts
(e.g., Nu/fRe = 0.2725), and hence, these identified shapes are of interest for further inspection

with higher fidelity numerical simulation.

90° 90°

(@) (b) (©)

180° 0° 180° 0°

270° 270° 270°

==== raw shapes obtained from optimization
— regular shape after post-processing

Figure 4. Examples of typical shapes as the raw optimization outputs (dashed lines) overlaid by the
post-processed regular geometry (solid black line) when the objective function is: (a) fRe, (b) Nuni/fRe,
and (c) Nun2/fRe.

For better generalizability, the optimized shapes are post-processed (smoothened) to a more
regular shape while retaining the key features of the optimized shapes identified from several
runs of the optimization algorithm. The regular shapes were created by choosing forms of
equations which are known to have the specific characteristics identified in the raw optimized
shapes, and then selecting the parameters within these equations to match the raw shapes
through a trial-and-error process. The regular shapes are constrained to an area of one square
unit. Finite volume simulations are performed on these regular shapes to find the exact values

of Nu and fRe, and these results are compared to the ML models’ predictions on those regular



shapes. Figure 4 shows the post-processed regular shape overlaid as a solid black line on the
previously discussed raw optimizations for each of the optimization functions. The three-lobed
shape is represented using an area-normalized cosine wave superimposed on a circle (r =1 +
0.5c0s(36), 0€[0,2x]), shown in Figure 4 (a). For the amoeba--like shapes with five
pseudopodia, shown in Figure 4 (b), the regular form is a pentagon with rounded corners,
generated using an area-normalized cosine wave superimposed on a circle (r =1 + 0.1cos(56),
0€[0,2x]). The regular version of the ice-cream cone-like shape is generated using a semicircle
and a cubic spline, as shown in Figure 4 (c). All three optimized shapes lie outside the training
shape classes, and hence numerical simulations are carried out to determine the exact values of
Nu and fRe.

These results from numerical simulations and ML model predictions for the raw and regular
post-processed shapes for the three metrics are summarized in Table 3. Numerical and ML
model predictions on the regular three-lobed sinusoidal shape gave fRe values of 9.24 and
14.11, respectively. While this fRe value predicted by the numerical simulation is not as low
as that predicted by the ML model for the raw shapes during the optimization process, it is still
notably lower than the fRe value of 16 for a circular channel. On the regular (post-processed)
pentagon with rounded corners, numerical simulations and ML model predictions give
Nun1/fRe values of 0.274 and 0.255 respectively, while the regular version of the horizontal
ice-cream shaped duct gives Nun2/fRe values of 0.266 and 0.368 from numerical simulations
and ML models respectively. From the last four columns of Table 3, it is generally seen that
the Nu predictions from the ML models are usually quite accurate, but the fRe predictions have
higher error. While the ML models capture the trends in parametric variations and steer the
design toward more optimal shapes, exact values of fRe and Nu should be confirmed using

numerical simulations.

To assess how the obtained optimized shapes compare against existing shapes in the
training set, the performance metric values of the optimized shapes are compared with that of
shapes in the training dataset. Figure 6 shows a plot of the Nun./fRe as a function of Nun2 for
shapes in the training data (blue dots), the raw optimized shapes as predicted by the ML models
(red dots), and the post-processed optimized shapes as predicted by numerical simulations
(green dots). The Nun2/fRe values obtained from the ML models on the optimized shapes are
seen to be much higher than for any shape in the training data (for a given Nuwnz); numerical
simulations on the post-processed versions of these shapes pull these Nun2/fRe values back to

the pareto front formed by the training data. This trend was also observed with the Nun1/fRe



metric. Thus, the new shapes identified by the optimization process are optimal, but their
performance does not break though as an outlier beyond the expected pareto front.
Nevertheless, using the optimization process, this ML surrogate optimization approach was
able to identify novel shapes (otherwise lacking available correlations) which have
performance comparable to currently known optimal shapes, if not marginally better. Over the
past several decades, this two-dimensional design space has been exhaustively explored, so it
IS not a surprise that significantly more optimal shapes weren’t identified. Rather, the fact that
novel shapes with performance comparable to known optimal shapes were obtained from the
ML models-based optimization process is a validation of the effectiveness this approach of

using ML model surrogates in the design optimization process.

Table 3. ML model predictions versus simulation results on raw and regular shapes.

Objective  Parameter = Range with Mean with ML model Simulation
function ML models ML models (regular) (regular)
over several over several
shapes (raw)  shapes (raw)
fRe fRe 6.60-9.20 7.49 14.11 9.24
Nuni/fRe Num1 4.13-4.23 4.18 3.91 4.08
fRe 10.70-14.95 12.07 15.35 14.87
Nuna/fRe 0.29-0.39 0.35 0.255 0.274
Nun2/fRe Numg 3.33-4.09 3.85 4.08 4.23
fRe 10.41-14.53 11.72 11.08 15.90
Nuro/fRe 0.23-0.38 0.33 0.368 0.266
0.40
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Figure 5. Comparison of Nunz/fRe values of the training data, ML model predictions for the raw shapes,

and the numerical simulation predictions for the regular shapes.



4, Conclusion

ML-based surrogate models for fRe, Nun: and Nunz were developed using data collected
from existing correlations, validated against data outside the dataset, and then used for
optimizing flow cross-section shapes of constant cross-section channels. The trained ML
models were found to have good prediction accuracy for shapes similar to those in the training
dataset, but reduced performance on shapes highly dissimilar from the training data. For shapes
in the training dataset, the mean percentage error was 0.70% for the fRe model, 1.24% for the
Nun1 model, and 2.84% for the Nuq2 model. Thus, the ML models do not serve as a universal
correlation valid for any shapes, but rather, very effectively collapse all the known correlations

into a single predictive correlation.

The ML surrogates are then used as the basis for optimization of the shape cross section
based on performance metrics that aim to increase the Nusselt number and decrease the friction
factor. The interior point method was identified as a suitable optimization method from
quantitative assessment of four different numerical-derivative and non-derivative-based
optimization algorithms. For each objective function explored, a novel shape was generated by
the optimizer that was unique from the training data, namely, a three-lobed shaped duct to
reduce the friction factor, and a pentagon with rounded sides and an ice-cream cone like shape
for different area goodness-based metrics. Finite volume simulations were run on post-
processed versions of the raw optimized shapes to make them more regular, and the results
were compared to the predictions by the ML models. The ML model predictions of Nusselt
number were generally found to be more accurate than predictions of friction factors. However,
the ML model predictions were shown to follow the correct trends with parametric variations
of different shapes, due to which the surrogate model-based optimization processes were able
to predict novel optimized shapes with performance as good as (if not slightly better than)
currently known optimal shapes. Expectedly, shapes having outlying performance
improvement far better than currently known optimal shapes were not identified, given that
this relatively simple 2D design space has been exhaustively explored. Nevertheless, the
identification of novel optimized shapes with performance comparable to known optimal
shapes is a validation of the optimization capabilities of the ML-assisted optimization process.

When using these ML models, it is important to ensure that the area enclosed within the
shape is normalized to 1 square unit. To further improve accuracy of the predictions, it is
recommended that the average value of predictions for several rotational orientations of the

shape is used as the final prediction. When using the ML models on shapes belonging to classes



outside the training set, numerical simulations should always be carried out for confirmation

of the exact Nu and fRe values.

The use of ML-based surrogate models in the design optimization framework holds
promise and should be explored further. This method could be extended from simple 2D
geometry optimization to 3D systems with the training and availability of ML-based fRe and
Nu surrogate models. The advantages of using ML models for design optimization are
anticipated to increase with increased complexity of the system. In the case of such complex
systems, the computational advantage of using ML-model-based optimization approaches

versus iterative numerical simulations will also be significant.
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