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Abstract: Flow boiling in microchannel heat sinks offers effective cooling for high-power 

electronics devices and compact heat exchangers in many other industrial applications. However, 

flow boiling instabilities, in particular pressure drop oscillations, can occur in these heat sinks and 

may reduce their performance by causing premature initiation of critical heat flux (CHF) or 

deterioration of the heat transfer coefficient. Predicting the occurrence and severity of pressure 

drop oscillations is hence important to ensure reliable operation. We perform stability analysis 

using bifurcation theory to determine the effect of various operating and geometric parameters on 

these oscillations in microchannel heat sinks. The analysis identifies the unstable (where pressure 

drop oscillations occur) and stable regions of operation based on the mass flux, heat input, and 

amount of inlet restriction. As the stability map does not yield information regarding the severity 

of oscillations in the unstable region, the effects of these parameters on the amplitude and period 

of pressure drop oscillations are also assessed via a transient numerical model. Surveying these 

parameters over the unstable region allows assessment of potential performance reductions of the 

heat sink due to pressure drop oscillations. 
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Nomenclature 

𝐴𝑐 Channel cross-section area (m2) 

𝐴𝑝 Pipe cross-section area (m2) 

𝐶 Chisholm parameter 

𝐷ℎ Hydraulic diameter (m) 

𝐷𝑝 Pipe diameter (m) 

𝐹𝑤 Frictional pressure gradient 

𝑓𝜙 Friction factor (2
𝜏𝑤𝜌𝜙

𝐺𝑖𝑛
2 ), 𝜙 = 𝑓, 𝑔) 

𝐺 Mass flux (kg/m2s) 

𝐺𝑏𝑢𝑓 Mass flux to buffer tank (kg/m2s) 

𝐺𝑖𝑛 Mass flux to channel (kg/m2s) 

𝐺𝑖𝑛
∗  Equilibrium mass flux to channel (kg/m2s) 

ℎ Enthalpy (kJ/kg) 

ℎ𝑖𝑛 Inlet enthalpy of liquid (kJ/kg) 

ℎ𝑓 Saturation enthalpy of liquid (kJ/kg) 

ℎ𝑔 Enthalpy of vapor (kJ/kg) 

ℎ𝑓𝑔 Enthalpy of vaporization (kJ/kg) 

𝐻𝑐 Height of channel (m) 

𝐼 Identity matrix 

𝐽 Jacobian matrix 

𝐾 Inlet throttle resistance coefficient (-)  

𝐿𝑐 Length of channel (m) 

𝑝 Pressure (Pa) 

𝑃𝑎𝑡𝑚 Atmospheric pressure (Pa) 

𝑃𝑏𝑢𝑓 Buffer tank pressure (Pa) 

𝑃𝑏𝑢𝑓
∗  Equilibrium buffer tank pressure (Pa) 

𝑃𝑖 Initial pressure of compressible volume (Pa) 
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𝑅𝑒 Reynolds number (
𝐺𝑖𝑛𝐷ℎ

𝜇
) 

𝑅𝑒𝑓 Superficial liquid Reynolds number (
(1−𝑥)𝐺𝐷ℎ

𝜇𝑓
) 

𝑅𝑒𝑔 Superficial vapor Reynolds number (
𝑥𝐺𝐷ℎ

𝜇𝑔
) 

𝑞’ Heat input per channel length (W/m) 

𝑇𝑖𝑛 Inlet temperature (℃) 

𝑇𝑠𝑎𝑡 Saturation temperature (℃) 

𝑡 Time (s) 

𝑢 Velocity (m/s) 

𝑉 Total buffer tank volume (m3) 

𝑉𝑏𝑢𝑓 Compressible volume (m3) 

𝑉𝑓 Liquid volume inside buffer tank (m3) 

𝑉𝑖 Initial compressible volume (m3) 

𝑣 Specific volume (m3/kg) 

𝑊𝑐 Width of channel (m) 

𝑥 Vapor quality (
ℎ−ℎ𝑓

ℎ𝑔−ℎ𝑓
) 

𝑧 Coordinate along channel length (m) 

Δ𝑃 Pressure drop (Pa) (𝑃𝑏𝑢𝑓 − 𝑃𝑎𝑡𝑚) 

Δ𝑃𝐴 Acceleration pressure drop (Pa) 

Δ𝑃𝐹 Frictional pressure drop (Pa) 

Δ𝑃𝐺 Gravitational pressure drop (Pa) 

Δℎ𝑖𝑛 Enthalpy difference (kJ/kg) (ℎ𝑓 − ℎ𝑖𝑛) 

𝛿(𝑧 − 𝐿𝑐) Kronecker delta function 

𝛿𝐺𝑖𝑛
∗  Perturbation of mass flux (kg/m2s) 

𝛿𝑃𝑏𝑢𝑓
∗  Perturbation of buffer tank pressure (Pa) 

(
𝜕𝑝

𝜕𝑧
)

𝑓
 Liquid frictional pressure gradient (2𝑓𝑓

𝑣𝑓(1−𝑥)2𝐺2

𝐷ℎ
) 

(
𝜕𝑝

𝜕𝑧
)

𝑔
 Vapor frictional pressure gradient (2𝑓𝑔

𝑣𝑔𝑥2𝐺2

𝐷ℎ
) 
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Subscripts 

𝐴 Acceleration 

𝐹 Friction 

𝑓 Liquid 

𝐺 Gravitation 

𝑔 Vapor 

Greek symbol 

𝛼 Void fraction 

𝛽 Aspect ratio of channel (
𝑊𝑐

𝐻𝑐
) 

𝜆 Eigenvalues 

𝜆𝑅 Real part of eigenvalues 

𝜇𝑓 Liquid dynamic viscosity (Pa·s) 

𝜇𝑔 Vapor dynamic viscosity (Pa·s) 

𝜌𝑓 Liquid density (kg/m3) 

𝜌𝑔 Vapor density (kg/m3) 

𝜏𝑤 Shear stress (Pa) 

𝜔 Imaginary part of eigenvalues 

 

1 Introduction 

Two-phase flow heat transfer is currently relied upon in various industrial applications such 

as chemical evaporators, steam generation, thermosiphons, nuclear power plants, and air 

conditioning systems [1,2]. The next-generation of high-power electronic devices used in 

communications, computing, and power conversion systems will generate localized heat fluxes on 

the order of ~1 kW/cm2 [3,4]. Heat must be effectively removed to keep these devices at the desired 

operating temperatures required for performance, efficiency, and reliability. Traditional air-

cooling technologies are straightforward in their implementation, but may be limited to dissipation 

of lower heat fluxes in compact spaces [5]. Microchannel flow boiling heat sinks offer a compact 

alternative owing to high heat transfer coefficients and requires lower pumping power compared 

to single-phase liquid cold plates. Therefore, this approach is being actively explored for the 
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cooling of advanced electronic semiconductor devices, electric machines and drives in vehicles 

and aircraft, and lithium-ion batteries, to name a few [6,7]. However, one practical challenge 

associated with the implementation of microchannel flow boiling heat sinks is their susceptibility 

to flow instabilities that may reduce operational performance compared to design predictions if 

not considered. 

The various flow instabilities observed in microchannel heat sinks can be broadly classified 

into two categories, static and dynamic instabilities, which have been reviewed extensively in the 

literature [1,2]. A well-known and frequently observed static instability is the flow excursion or 

Ledinegg instability [8]. Due to this instability, which is governed based interaction between the 

flow boiling channel pressure drop versus mass flux (demand curve) and pump curve 

characteristics, a microchannel can experience a sudden change in mass flux from its initial 

operating condition. A sudden change to a lower mass flux, and commensurate higher exit vapor 

quality, may cause premature critical heat flux. In networks of multiple parallel channels, this 

instability can lead to steady maldistribution of the flow [9–12]. Commonly identified dynamic 

instabilities include density wave oscillations, parallel channel instabilities, and pressure drop 

oscillations. Dynamic instabilities occur inside the channel because of feedback interactions 

between various effects such as inertia and compressibility of the flow. In microchannel heat sinks, 

pressure drop oscillations are of particular concern as sustained large amplitude and low frequency 

oscillations of mass flux and pressure have been observed to occur [2,13,14]. Hence, pressure drop 

oscillations can initiate premature critical heat flux (CHF), cause mechanical vibrations, and 

deteriorate the heat transfer coefficient [1,15]. The focus of the current study is investigation of 

pressure drop oscillations in microchannel heat sinks, with particular emphasis on stability analysis 

techniques and offering prediction of the amplitude and period of such oscillations. 

1.1 Pressure drop oscillation mechanism  
Pressure drop oscillations generally occur in the microchannel heat sinks when the demand 

curve (pressure drop versus mass flux) has a negative slope region and there exists an upstream 

compressible volume [1,2,16]. Such compressible volume is difficult to unconditionally avoid as 

it can arise from trapped noncondensables, plenums, or slight mechanical compliance, rendering 

microchannel heat sinks prone to pressure drop oscillations [14]. A representative flow boiling 

demand curve for fixed heat input and subcooled inlet temperature has a non-monotonic N-shape, 

as shown in Figure 1(a) (see the blue dotted line). This curve is labelled based on three regions 
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where the outlet is a subcooled liquid phase, a vapor-liquid two-phase mixture, or superheated 

vapor phase. At a high mass flux, the heat input is insufficient to bring the liquid up to the saturation 

temperature at the outlet; hence, the channel contains only liquid and the pressure drop decreases 

with decreasing mass flux due to lesser friction. As the mass flux decreases, the liquid eventually 

reaches the saturation temperature and will begin to generate vapor at the microchannel outlet. The 

demand curve reaches a local minimum pressure drop at this mass flux. The pressure drop 

increases with further decreases in mass flux due to increased friction and acceleration of the flow 

by vapor generation, leading to a negative slope region. As the mass flux further decreases, the 

pressure drop begins to decrease (positive slope in the demand curve) as a majority of the channel 

length is single-phase vapor upstream of the outlet. The demand curve has a local maximum during 

this transition between regions.Figure 1(a) shows that the demand curve (blue dotted line) 

intersecting with a source of constant mass flux 𝐺𝑏𝑢𝑓 (vertical dashed line) within the negative 

slope region. This constant mass flux supply is representative of a positive displacement pump. 

The intersection point (red circle) is stable with respect to the Ledinegg instability due to the 

relative slope of the demand curve being algebraically smaller than the slope of the supply curve 

[1,2]. Although the point is stable for the Ledinegg instability, pressure drop oscillations may still 

occur at this point in the presence of upstream compressible volume (such as for the system with 

an upstream buffer tank as shown in Figure 1(b)). Pressure drop oscillations (PDO) follow a time-

periodic limit cycle around the desired operating point, following the representative dynamic path 

(solid green line) of mass flux (𝐺𝑖𝑛) versus pressure drop (Δ𝑃 = 𝑃𝑏𝑢𝑓 − 𝑃𝑎𝑡𝑚) traced over the 

channel load curve in Figure 1(a). The PDO mechanism is triggered for an unstable system by a 

small disturbance in mass flux when intending to operate at the pump-demand intersection point 

(red circle), and can be explained by following along the dynamic path from A to D. From D to A, 

the instantaneous mass flux into microchannel heat sink (𝐺𝑖𝑛) is more than the mass flux into the 

buffer tank (𝐺𝑏𝑢𝑓), so the height of the liquid level and pressure in the buffer tank decrease. At 

point A, the low available pressure difference cannot supply such a high mass flux into the heat 

sink per the channel demand curve characteristics. Hence, a jump occurs from a low outlet vapor 

quality at point A to a high vapor quality at point B. From B to C, the mass flux into the buffer 

tank is greater than mass flux into the channel, so the buffer tank pressure and thereby total pressure 

drop (Δ𝑃) increases. At point C, the overly high pressure causes an excursion from a superheated 

vapor outlet at point C to a subcooled liquid outlet at point D, and the process repeats continuously. 
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(a) 

 

(b) 

Figure 1  (a) Typical N-shape steady demand curve (blue dotted line) for flow in a heated channel. 

The curve is annotated with a dashed vertical line for the constant mass flux (into buffer tank, 

𝐺𝑏𝑢𝑓) point of desired operation and green line overlay tracing the pressure drop oscillation (PDO) 

dynamic path during where mass flux into microchannel (𝐺𝑖𝑛) varies. (b) Schematic diagrams of 

the system, a heated microchannel with an upstream compressible volume, with the instantaneous 

fluid states in the buffer tank and microchannel shown the locations A, B, C, and D along the PDO 

limit cycle (liquid in solid blue, two-phase mixture hashed, and vapor in solid white). 

 

Per the pressure drop oscillation mechanism, the result is a fluctuation between high and low 

mass fluxes (above and below the desired operating point) inside the microchannel. The 

significance of oscillating mass flux is the potential implications on the heat transfer performance. 

First, at the relatively high mass fluxes from D to A, a majority of the fluid along the channel 

length remains subcooled liquid and dissipates heat by single-phase convection at a reduced heat 

transfer coefficient compared to the desired operating point. Next, at the comparatively low mass 
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flux from B to C, the channel length contains a two-phase mixture with a superheated vapor outlet. 

Heat transfer may deteriorate significantly in the superheated regions, and at worst, this could 

initiate critical heat flux (CHF). Apart from the possible triggering of CHF, such oscillations of 

mass flux and pressure in the microchannel raise reliability concerns associated with nonuniform 

oscillations in temperature or vibrations. 

1.2 Literature survey 
Several experimental studies have been carried out to understand the effects of pressure drop 

oscillations (viz., mass flux, pressure, and thermal oscillations) on the heat transfer coefficient and 

CHF in microchannel heat sinks [13,17–20]. Several of these studies [17,18,20] have found that 

the pressure drop and temperature oscillations significantly deteriorate the heat transfer 

performance of the heat sinks due to these oscillations. Whereas other recent work, such as Ref. 

[19] using HFE-7100 as coolant fluid, reports relatively minor effects on the heat transfer 

coefficient in the presence of mass flow rate and pressure oscillations. Modeling approaches are 

needed for understanding these effects of pressure drop oscillations on microchannel heat sinks, 

which may strongly depend on application-specific factors such as the fluid properties, heat sink 

geometry, and operating conditions. Stability analysis is used to map the occurrence of oscillations 

over a range of parametric operational space (i.e., heat input, mass flux, inlet subcooling, etc.) and 

can potentially detect their effect on heat transfer coefficient or CHF.  

Researchers have therefore developed various modeling approaches to predict these instability 

phenomena [16,21–24]. Padki et al. [21] created a lumped model (i.e., integrated over channel 

length to yield governing ordinary differential equations only as a function of time) to predict the 

occurrence of pressure drop oscillations and the Ledinegg instability using a bifurcation analysis. 

They reported that a Hopf bifurcation confirms the occurrence of pressure drop oscillations, and a 

saddle-node bifurcation confirms the Ledinegg instability. Other studies [22,25,26] investigate 

pressure drop oscillations using nonlinear stability analysis. Rahman et al. [25] used a lumped-

parameter model to identify the Ledinegg instability, pressure drop oscillations, and a unique flow 

excursion with compressible volume (FECV), while varying external pump characteristics. The 

seminal work by Zhang et al. [16] developed a model to identify the pressure drop oscillations, 

and compared against experimental observations. This study further offered a method to determine 

the amount of compressibility present in the system when there is no external buffer tank and 

devised a scheme for model-based active control to address pressure drop oscillations in 
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microchannel heat sinks. Eborn [27] proposed a control method to suppress pressure drop 

oscillations based on the liquid-to-vapor density ratio in the microchannel heat sink. The method 

derived a condition that, if the density ratio is lower than certain critical threshold, then the negative 

slope in the demand curve will vanish and there will be no occurrence of pressure drop oscillations. 

Zhang et al. [23] extended this approach by using the system pressure to suppress pressure 

oscillations, in addition to the conventional passive control technique of using inlet restrictors for 

flow stabilization. Kuang et al. [24] simplified the evaluation of the pressure drop using a 

functional approximation to identify the stable and unstable operating regions based on a 

subcooling number and phase change number. The effect of gravity on the stability of 

microchannel heat sinks was also discussed; the system has a larger stable region with higher 

gravity.  

Stability analyses are useful to identify the regions of operation (e.g., heat input, inlet 

temperature, mass flux) over which instabilities occur. But these do not necessarily describe the 

severity of the dynamics, such as the amplitude and period of oscillations, that primarily affect the 

heat transfer coefficient [28]. In the regions where pressure drop oscillations are predicted to occur 

in microchannel heat sinks, the literature lacks quantitative discussion of amplitude and period of 

the oscillations. Such investigation into the oscillation severity is necessary to draw correlations 

between the occurrence of pressure drop oscillations and deterioration in the heat transfer 

coefficient, as has been observed under certain experimental conditions. In addition, stability 

analysis using nonlinear or bifurcation techniques have not been applied in the context of 

microchannel heat sinks. The present work uses bifurcation theory to assess flow boiling stability 

in a microchannel heat sink with upstream compressible volume. In the range of operation where 

pressure drop oscillations are predicted to occur, the effect of heat input and inlet throttling on the 

amplitude and period of oscillations is discussed. Mapping the effects of these parameters on the 

period and amplitude provides a pathway to determine operational regimes where such instabilities 

may have lesser or larger effect on the heat transfer performance of the microchannel heat sink.  
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2 Modeling and analysis approach 

Figure 2 shows a schematic diagram of the system. The system has a constant liquid mass flux 

𝐺𝑏𝑢𝑓 at the inlet to a partially filled and sealed buffer tank that contains a trapped volume of 

compressible gas (with properties of air and assuming no species transport between the two 

phases). There is an inlet throttle (flow resistance coefficient 𝐾) between the buffer volume and 

the channel section representative of a heat sink where a constant and uniform heat input per unit 

length 𝑞′ is applied to the flow. Physical parameters are selected for this model system such that 

they are representative of characteristic dimensions and operating conditions for two-phase 

microchannel heat sinks in potential electronics thermal management applications. The size of the 

buffer tank is 𝑉 = 40 ml. The heat sink dimensions and other system operating parameters are 

given in Table 1. The channel heat input, mass flux to the buffer, and throttle flow resistance 

coefficient are all kept constant for a given case, but ranges are specified as these parameters are 

varied later in the study. The coolant used is HFE-7100, a dielectric, low global warming potential, 

low toxicity, nonflammable, and thermally stable fluid [29]. The thermophysical and 

environmental properties of HFE-7100 are given in Table 2. In the present work, the model uses 

constant fluid properties evaluated at saturation conditions at the given outlet atmospheric 

pressure. 

 

 

Figure 2  Schematic diagram of the model microchannel heat sink system used to analyze pressure 

drop oscillations. 
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Table 1 Dimensions of the microchannel, system parameters, and ranges of operation investigated. 

Parameter Value 

Channel length, 𝐿𝑐 (mm) 20 

Channel width, 𝑊𝑐 (µm) 500 

Channel height, 𝐻𝑐 (µm) 500 

Hydraulic diameter, 𝐷ℎ (µm) 500 

Pipe diameter, 𝐷𝑝 (mm) 2 

Size of buffer tank, 𝑉 (ml) 40 

Initial compressible volume (CV), 𝑉𝑖 (ml) 35 

Initial pressure of CV, 𝑃𝑖 (kPa) 101 

Heat input per length, 𝑞′ (W/m) 0-325 

Mass flux, 𝐺𝑏𝑢𝑓 (kg/m2s) 0-1100 

Throttle flow resistance, 𝐾 (-) 0-1100 

Inlet temperature, 𝑇𝑖𝑛 (℃) 40 

 

Table 2 Thermophysical and environmental properties of HFE-7100 at 1 atm [29]. 

Property Value 

Saturation temperature, 𝑇𝑠𝑎𝑡 (℃) 60.0 

Liquid density, 𝜌𝑓 (kg/m3) 1407 

Vapor density, 𝜌𝑔 (kg/m3) 9.6235 

Liquid dynamic viscosity, 𝜇𝑓 (Pa·s) 3.6691×10-4 

Vapor dynamic viscosity, 𝜇𝑔 (Pa·s) 1.2157×10-5 

Liquid saturation enthalpy, ℎ𝑓 (kJ/kg) 92.776 

Enthalpy of vaporization, ℎ𝑓𝑔 (kJ/kg) 111.552 

Ozone depletion potential (ODP) 0.0 

Global warming potential (GWP) 320.0 

Atmospheric lifetime ALT (years) 4.1 
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2.1 Dynamic system model 

Transient governing equations are used to analyze the system response and pressure drop 

oscillations. The model consists of two components, the buffer tank and microchannel heat sink, 

as shown in Figure 2, and is developed based on the following assumptions [1,21,24,26]: 

1. The temperature of the compressible ideal gas in the buffer tank is constant 

2. The mass flux into the buffer tank is constant (equivalent to supply from a fixed 

displacement pump). 

3. The instantaneous mass flux through microchannel is uniform 

4. The pressure drop between the buffer tank and heat sink inlet is due to the inlet throttle 

resistance (all other pressure drops in the flow lines are negligible).  

The continuity equation of the buffer tank is derived as follows. The difference between the 

size of the buffer tank, 𝑉, and the liquid volume inside the buffer tank,𝑉𝑓, is the volume of 

compressible gas, 𝑉𝑏𝑢𝑓 = 𝑉 − 𝑉𝑓 at the pressure defined as 𝑃𝑏𝑢𝑓. The initial values of volume and 

pressure of the compressible gas are defined as 𝑉𝑖 and 𝑃𝑖, respectively. Then, according to the first 

assumption of a constant temperature buffer, 

𝑉𝑏𝑢𝑓𝑃𝑏𝑢𝑓 = 𝑉𝑖𝑃𝑖 (1) 

differentiating Equation (1) with respect to time and substituting 𝑉𝑏𝑢𝑓 = 𝑉𝑖𝑃𝑖/𝑃𝑏𝑢𝑓, yields 

𝑑𝑃𝑏𝑢𝑓

𝑑𝑡
= −

𝑃𝑏𝑢𝑓
2

𝑉𝑖𝑃𝑖

𝑑𝑉𝑏𝑢𝑓

𝑑𝑡
 (2) 

Because 𝑉𝑏𝑢𝑓 = 𝑉 − 𝑉𝑓, 

𝑑𝑉𝑏𝑢𝑓

𝑑𝑡
=

𝑑(𝑉 − 𝑉𝑓)

𝑑𝑡
= −

𝑑𝑉𝑓

𝑑𝑡
 (3) 

Substituting Equation (3) into Equation (2), 

𝑑𝑃𝑏𝑢𝑓

𝑑𝑡
=

𝑃𝑏𝑢𝑓
2

𝑉𝑖𝑃𝑖

𝑑𝑉𝑓

𝑑𝑡
 (4) 

Given the mass flux into the buffer tank, 𝐺𝑏𝑢𝑓, and mass flux into the heat sink, 𝐺𝑖𝑛, the 

accumulated volume of liquid inside the buffer tank is, 
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𝑑𝑉𝑓

𝑑𝑡
=

(𝐺𝑏𝑢𝑓𝐴𝑐 − 𝐺𝑖𝑛𝐴𝑐)

𝜌𝑓
 (5) 

Substituting Equation (5) into Equation (4), the final form of the buffer tank continuity equation 

becomes, 

𝑑𝑃𝑏𝑢𝑓

𝑑𝑡
= 𝑃𝑏𝑢𝑓

2 (𝐺𝑏𝑢𝑓𝐴𝑐 − 𝐺𝑖𝑛𝐴𝑐)

𝑃𝑖𝑉𝑖𝜌𝑓
 (6) 

where 𝐴𝑐 is the cross-sectional area of the microchannel. 

The one-dimensional partial differential momentum equation of the microchannel heat sink 

is, 

𝜕𝐺

𝜕𝑡
+

𝜕(𝐺𝑢)

𝜕𝑧
= −

𝜕𝑝

𝜕𝑧
− 𝐹𝐹 − 𝐹𝐺 −

𝐾𝐴𝑐
2𝐺2

𝜌𝑓𝐴𝑝
2

𝛿(𝑧 − 𝐿𝑐) (7) 

where the second term on the left-hand side is acceleration pressure gradient, 𝐹𝐹 is frictional 

pressure gradient, and 𝐹𝐺  is gravitational pressure gradient. The last term on the right-hand side is 

pressure drop due to inlet throttle resistance between buffer tank and microchannel heat sink inlet. 

A lumped dynamic momentum equation for the heat sink is obtained by integrating the momentum 

equation along the length from buffer tank to heat sink exit,  

𝑑𝐺𝑖𝑛

𝑑𝑡
=

1

𝐿𝑐
 (𝑃𝑏𝑢𝑓 − 𝑃𝑎𝑡𝑚 −

𝐾𝐴𝑐
2𝐺𝑖𝑛

2

𝜌𝑓𝐴𝑝
2

− ∆𝑃𝐹 − Δ𝑃𝐴 − Δ𝑃𝐺) (8) 

where 𝐿𝑐 is the length of the microchannel, 𝑃𝑎𝑡𝑚 the atmospheric pressure, and ∆𝑃𝐹, ∆𝑃𝐴, and ∆𝑃𝐺 

are the frictional, acceleration, and gravitational pressure drop, respectively. 

The right-hand sides of Equations (6) and (8) must be equal to zero at the equilibrium (or 

steady state) points of the system. The equilibrium points of the system are: 

𝑃𝑏𝑢𝑓
∗ =  𝑃𝑎𝑡𝑚 +

𝐾𝐴𝑐
2𝐺∗

𝑖𝑛
2

𝜌𝑓𝐴𝑝
2

+ ∆𝑃𝐹 − Δ𝑃𝐴 − Δ𝑃𝐺 (9) 

𝐺𝑖𝑛
∗ = 𝐺𝑏𝑢𝑓 (10) 

where 𝑃𝑏𝑢𝑓
∗  is the equilibrium pressure of buffer tank and 𝐺𝑖𝑛

∗  is the equilibrium mass flux into the 

heat sink (in this study, it equals mass flux into buffer tank). These two equilibrium points are used 

to find the eigenvalues of the Jacobian matrix to identify whether they are stable or unstable (this 

stability analysis will be discussed ahead in Section 2.3).  
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2.2 Channel pressure drop 

The time period of pressure drop oscillations is typically large compared to the residence 

time of fluid inside the channel when there is a relatively large compressible volume. For instance, 

experimentally reported periods of pressure drop oscillations can be 10 s or longer [2,15]. In 

comparison, for the channel dimensions and fluid properties considered in this work, at a mass 

flux 𝐺𝑏𝑢𝑓 = 600 kg/(m2s) fluid takes <0.05 s to travel through the entire microchannel length. 

Hence, any dynamic changes in system operation that occur due to pressure drop oscillations do 

not instantaneously affect a given particle of fluid, which instead are governed by the quasi-steady-

state condition of the channel [16,21,24,26]. Therefore, steady-state approaches are typically 

implemented to analyze the instantaneous channel pressure drop. 

The channel pressure drop (∆𝑃𝑐) during two-phase flow of the heated vapor-liquid mixture 

consists of a frictional pressure drop (∆𝑃𝐹), acceleration pressure drop (∆𝑃𝐴), and gravitational 

pressure drop (∆𝑃𝐺). In the present analysis, the gravitational pressure drop is neglected (such as 

in a horizontal microchannel); criteria to assess the importance of gravitational effects in two-

phase flows are available [30,31], and this term can be trivially added to pressure drop calculations 

as needed. A one-dimensional separated flow model is developed to calculate the pressure drop in 

the microchannel heat sink for this work. This assumes that the vapor and liquid phases have 

distinct properties and are in local thermal equilibrium (have the same temperature), but the slip 

ratio may not be equal to 1 (i.e., the liquid and vapor can have different velocities). The flow 

properties change only in flow direction. Heating from viscous dissipation is neglected for 

simplicity.  

Based on these assumptions, the governing continuity, momentum conservation, and energy 

conservation equations are respectively written as: 

𝜕𝐺

𝜕𝑧
= 0 (11) 

𝜕

𝜕𝑧
[(

𝑣𝑓(1 − 𝑥)2

1 − 𝛼
+

𝑣𝑔𝑥2

𝛼
) 𝐺2] = −

𝜕𝑝

𝜕𝑧
− 𝐹𝐹  (12) 

𝜕

𝜕𝑧
(ℎ𝐺) =

𝑞′

𝐴𝑐
 (13) 
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These governing partial differential equations of 𝐺, 𝑝, and ℎ are solved to obtain the demand curve 

of the microchannel. The boundary conditions are applied for the one-dimensional flow from the 

inlet to outlet. At the inlet (𝑧 = 0), the mass flux is 𝐺𝑖𝑛 and the enthalpy is calculated from the inlet 

temperature and pressure as ℎ𝑖𝑛 = ℎ(𝑇𝑖𝑛, 𝑝(𝑧 = 0)). At the outlet (𝑧 = 𝐿𝑐), the pressure is 𝑃𝑎𝑡𝑚. 

The thermodynamic equilibrium vapor quality (limited between 0 and 1) is defined as: 

𝑥 =
ℎ − ℎ𝑓

ℎ𝑔 − ℎ𝑓
=

𝑞′𝑧 − 𝐺𝑖𝑛𝐴𝑐∆ℎ𝑖𝑛

𝐺𝑖𝑛𝐴𝑐ℎ𝑓𝑔
 (14) 

The void fraction 𝛼 is determined using Zivi’s correlation [32]: 

𝛼 =
1

1 + (
𝑣𝑓

𝑣𝑔
)

2/3 1 − 𝑥
𝑥

 
(15) 

In the momentum equation (12), the left-hand side defines the acceleration pressure gradient; 

on the right-hand side, the first term is pressure loss gradient through the channel and the last term 

is the frictional pressure gradient. The frictional gradient is calculated using the Lockhart-

Martinelli method [33]. For the pressure gradient calculation, the formulation by Muzychka and 

Awad [34] is used: 

𝐹𝑤 = (
𝜕𝑝

𝜕𝑧
)

𝑓
+ 𝐶√(

𝜕𝑝

𝜕𝑧
)

𝑓
(

𝜕𝑝

𝜕𝑧
)

𝑔
+ (

𝜕𝑝

𝜕𝑧
)

𝑔
 (16) 

with the correlation developed by Mishima and Hibiki [35] used for the Chisholm parameter 𝐶 =

21[1 − exp (−319𝐷ℎ)]. The single-phase pressure gradients are determined assuming that each 

phase is present inside the microchannel and occupies the entire cross-section of the channel. 

Therefore, the liquid and vapor single-phase pressure gradients are respectively: 

(
𝜕𝑝

𝜕𝑧
)

𝑓
= 2𝑓𝑓 

𝑣𝑓(1 − 𝑥)2𝐺2

𝐷ℎ
 (17) 

(
𝜕𝑝

𝜕𝑧
)

𝑔
= 2𝑓𝑔

𝑣𝑔𝑥2𝐺2

𝐷ℎ
 (18) 

where the friction factor 𝑓 for laminar flow in the rectangular channel is [9] 

𝑓 =
24

𝑅𝑒
(1 − 1.3553𝛽 + 1.9467𝛽2 − 1.7012𝛽3 + 0.9564𝛽4 − 0.2537𝛽5) (19) 



16 

 

and 𝛽 is the aspect ratio of the channel within 0 ≤ 𝛽 ≤ 1. The Reynolds number of each phase is 

separately calculated as follows: 

𝑅𝑒𝑓 =
(1 − 𝑥)𝐺𝐷ℎ

𝜇𝑓
 (20) 

𝑅𝑒𝑔 =
𝑥𝐺𝐷ℎ

𝜇𝑔
 (21) 

To solve Equations (11)-(13)(14) for 𝐺, 𝑝, and ℎ, first, the continuity equation yields a trivial 

solution for the mass flux through the channel of 𝐺(𝑧) = 𝐺𝑖𝑛. The remaining two quantities, 𝑝 and 

ℎ, are solved using trapezoidal integration with constant fluid properties. The channel of length 𝐿𝑐 

is discretized into 103 nodes. 

2.3 Stability analysis 

A system is called stable at an operating point if after experiencing a disturbance it returns to 

this initial operating point; otherwise, it is called unstable. The eigenvalues of a Jacobian matrix 

identify the stability of a system. If all the eigenvalues have negative real parts for a particular 

operating parameter (say the amount of heat input), then the system is known as a stable system. 

On the other hand, if at least one eigenvalue has a positive real part, then the system is unstable 

for that operating parameter. The Jacobian matrix used to identify the eigenvalues and judge 

stability is formed from Equations (6)-(8). The eigenvalues are calculated based on the 

characteristic equation, 

|𝑱 − 𝜆𝑰| = 0 (22) 

where 𝜆 is the eigenvalues and 𝑰 the identity matrix.  

A stability boundary separates a stable region from an unstable region when sweeping across 

operating parameters. In the present work, the eigenvalues on the stable and unstable sides of the 

stability boundary are complex (i.e., 𝜆 = 𝜆𝑅 ± 𝑖𝜔, where the sign of 𝜆𝑅 determines the stability as 

discussed above). So, at the stability boundary, the eigenvalues are purely imaginary (i.e., 𝜆 = 0 ±

𝑖𝜔). A stability boundary having purely imaginary eigenvalues is one indication of a particular 

type of bifurcation called a Hopf bifurcation. At a bifurcation, the qualitative behavior (i.e., 

diverging to converging or vice-versa) or number equilibrium points of a dynamical system 

changes when an operating parameter changes. The significance of Hopf bifurcation is that it 
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indicates an oscillating limit cycle will arise for a particular dynamical system [36,37]. A 

dynamical system is confirmed to have a Hopf bifurcation at some specific parameter 𝑀𝑐 if it 

satisfies the following two conditions at that parameter: i) has purely imaginary eigenvalues 𝜆 =

±𝑖𝜔 ; and ii) 
𝑑𝜆𝑅

𝑑𝑀𝐶
≠ 0.  

2.4 Transient solution of oscillation dynamics  

In this work, the system stability boundaries are assessed for parameter changes in the heat 

input, mass flux, and amount of inlet restriction. Both conditions for a Hopf bifurcation are 

confirmed in the present system, which indicates the occurrence of pressure drop oscillations in 

the unstable regions of the stability maps. The characteristics of transient system oscillations are 

then predicted in these unstable regions. In order to obtain the transient solutions, the set of 

ordinary differential Equations (6) and (8) are numerically solved using MATLAB (ODE15s), as 

these equations are stiff. The solution method is a variable-step, variable-order (VSVO) solver 

based on the numerical differentiation formulas (NDF) of orders 1 to 5. This solves the equations 

as initial values problems (IVP), and the initial values are perturbed equilibrium points (𝑃𝑏𝑢𝑓
∗ ±

𝛿𝑃𝑏𝑢𝑓 , 𝐺𝑖𝑛
∗ ± 𝛿𝐺𝑖𝑛). 

 

3 Results and Discussions 

The bifurcation analysis results are first shown as parametric stability maps, followed by 

detailed descriptions of the oscillatory system mass flux dynamics for operating points in the 

unstable region. Lastly, the characteristic period and amplitude of these pressure drop oscillations, 

as well as the damping effects of inlet throttling, are mapped over the parameter space and 

discussed.  

3.1 Stability map 

Stability maps are first generated by calculating the eigenvalues over parameter sweeps of the 

heat input and mass flux from 0-325 W/m and 0-1100 kg/m2s, respectively, with no inlet throttling. 

The other system parameters are fixed as given in Table 1. 
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Figure 3(a) shows the stable and unstable regions of the microchannel in this parametric plane 

of mass flux and heat input by labeling the discrete stability points. Notably, at a given heat input, 

the system exhibits two stable regions at high and low mass fluxes, with an unstable region in 

between. As introduced earlier, the stable region at higher mass fluxes occurs because there is only 

subcooled liquid inside the channel. Similarly, the stability of the channel at a significantly lower 

mass fluxes is because the channel is filled with superheated vapor along most of the length; the 

single-phase vapor flow characteristics dominate the behavior. The unstable region corresponds to 

the intermediate mass flux range over which the channel pressure drop demand curve is inversely 

proportional to the mass flux in a two-phase flow region. For a given mass flux, there is a minimum 

heat input below which the system has a stable nature because the applied heat input is insufficient 

to saturate the flow, which remains a single liquid phase. With increasing heat input, the fluid 

becomes saturated and generates a liquid-vapor mixture in the channel over a broader range of 

mass fluxes, leading to a broader unstable region. 

To assess the influence of inlet throttling, Figure 3(b) shows a stability map in the parametric 

plane of the resistance coefficient and mass flux, for a fixed heat input 𝑞′ = 300 W/m. The effect 

of mass flux on stability without throttling (𝐾 = 0) matches the behavior and regions as discussed 

above. The stability boundaries at low and high mass fluxes converge with increasing inlet 

throttling, narrowing the unstable region; at a certain throttling (𝐾 > 1000), the unstable region 

vanishes, and the system is stable across all mass fluxes. This map illustrates the effect of throttling 

to stabilize two-phase operation, a phenomenon known in the literature [14]. 

The two stability maps in Figure 3 are useful to identify the stable and unstable regions, but 

they do not offer insight into the nature of the system dynamics in the unstable regions (in this 

case, pressure drop oscillations). The following subsections explore in detail these transient 

dynamics as a function of heat input and throttling, as well as mapping of the period and amplitude 

of pressure drop oscillations that occur.  
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(a) 

 

(b) 

Figure 3 Stability map for the microchannel heat sink system in parametric planes of (a) heat input 

versus mass flux without inlet throttle (𝐾 = 0) and (b) inlet throttling versus mass flux for heat 

input 𝑞′ =300 W/m. The symbols noted in the legends differentiate the stable region (converging 

nature) and unstable region (diverging nature), with the stability boundary between. The filled 

symbols indicate the specific unstable operating points at which the transient pressure drop 

oscillation dynamics are described in Sections 3.2 and 3.3. 

 

3.2 Effect of heat input on oscillation dynamics 

The effect of heat input on the transient oscillations is analyzed for several representative 

cases within the unstable region at a fixed nominal mass flux of 𝐺𝑏𝑢𝑓 = 400 kg/m2s and no inlet 
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throttling. Specifically, the transient dynamics are predicted at the operating points of the 

parameter space indicated by filled triangles in Figure 3(a). 

At heat inputs below 150 W/m, the system is stable and any disturbance to the system results 

in converging oscillations of mass flux that return the system to the initial operating equilibrium 

point. Above this heat input, in the unstable region, a disturbance to the system leads to diverging 

oscillations in mass flux that eventually reach a time-periodic limit cycle. Figure 4(a) plots these 

time-periodic oscillations in mass flux at three increasing heat inputs (150 W/m, 250 W/m, and 

300 W/m); a horizontal dashed reference line indicates stable operation at 400 kg/m2s associated 

with lower heat inputs. It is evident from the figure that the amplitude of the oscillations increases 

with increasing heat input. Higher heat inputs can evaporate more liquid inside the microchannel 

and hence generate more vapor at the same fixed mass flux, leading to this increased amplitude 

compared to lower heat inputs. The frequency of oscillations also becomes smaller, or the period 

longer, at higher heat inputs. As a result, during these oscillations, the duration over which the 

channel is flow starved at a low mass flux (with a single vapor phase outlet) becomes longer. This 

extended time at a very low mass flux is likely to reduce the time-averaged heat transfer coefficient 

and increases risk that the system may experience a premature critical heat flux (i.e., a permanent 

temperature runaway due to formation of a stable vapor film over the heat surface). The amplitude 

and period of these oscillations can therefore be considered a metric for the severity of their impact 

on the heat transfer performance.  

Figure 4(b) plots the time-periodic limit cycle of the pressure drop oscillations for two selected 

heat inputs of 150 W/m and 300 W/m. Specifically, a solid line traces the dynamic path of the 

pressure drop (Δ𝑃 = 𝑃𝑏𝑢𝑓 − 𝑃𝑎𝑡𝑚) versus channel mass flux 𝐺𝑖𝑛, with an arrow indicating the 

direction of the cycle; because there is no inlet throttle in this case, the buffer tank pressure is 

equivalent to the pressure rise above ambient across the channel. At each heat input, the limit cycle 

overlays a dashed line indicating the channel demand curve for the system. The demand curve at 

a given heat input has the typical non-monotonic N-shaped curve associated with flow boiling. The 

negative slope in the two-phase region at 400 kg/m2s become steeper for higher heat input. During 

the oscillations, the microchannel periodically shifts between a single-phase liquid outlet (at high 

mass fluxes on the right side) and single-phase vapor outlet (at low mass fluxes on the left side). 
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The periodic oscillations follow the same trajectory as discussed in Figure 1(a), per the mechanism 

of pressure drop oscillations discussed in the introduction section.  

 

 

(a) 

 

(b) 

Figure 4 (a) Temporal variation of mass flux due to pressure drop oscillations in the unstable region 

(𝐺𝑏𝑢𝑓 = 400 kg/m2s for  𝑞′ = 150 W/m, 250 W/m, and 300 W/m; 𝐾 = 0; locations of these operating 

points indicated by filled triangles in Figure 3(a)). (b) Limit cycle path of pressure drop versus 

channel mass flux overlaid on channel demand curve. 

 

The period and amplitude of these oscillations are calculated over the complete range of mass 

fluxes and heat inputs. Figure 5 shows the parametric plane of heat input and mass flux over the 
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same range as the previously discussed stability map (Figure 3(a)), where the color assigned to 

each point indicates the amplitude (Figure 5(a)) and period (Figure 5(b)) of the pressure drop 

oscillations. It is noted from the Figure 5(a) that the amplitude of oscillations directly corresponds 

with an increasing heat input. At lower heat input, say 50 W/m, while there exists an unstable 

region, the amplitude of oscillations is very mild and may not have significant impact on the heat 

transfer performance. With higher heat input, the amplitude of oscillations can increase 

dramatically, over thirty-five times greater at 300 W/m versus 50 W/m for example. Interestingly, 

at a given heat input, the mass flux has no effect on the amplitude; as soon as the system enters 

into the unstable region through either stability boundary, oscillations occur with the same 

amplitude. Conversely, the period of oscillations shown in Figure 5(b) is affected by both the heat 

input and mass flux. Similar to the amplitude, the period of oscillations increases with increasing 

heat input. However, the period of oscillations is also determined by the mass flux and becomes 

longer with decreasing mass flux.  

Compared to a stability diagram that only labels the regions of stability, these contour plots 

provide critical insight into potential effects of the pressure drop oscillations on heat transfer 

performance. The significance of identifying the amplitude and period of oscillations is that their 

severity is expected to correspond to the heat transfer coefficient deterioration and vulnerability to 

critical heat flux. Moreover, the frequency and period of the oscillations may have possible impact 

via thermal cycling or vibration of system components. Hence, these results indicate that operation 

at either lower mass flow rate or increasing heat inputs generally makes systems more susceptible 

to these deleterious effects. 
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(a) 

 

(b) 

Figure 5 Pressure drop oscillation (a) amplitude and (b) period in the parametric plane of heat input 

versus mass flux for inlet throttle 𝐾=0. The color of each unstable point maps to the contour scales 

shown; stable points having zero oscillation amplitude are excluded. 

 

3.3 Effect of inlet throttling on oscillation dynamics 

While inlet throttling is known to generally stabilize these flow boiling systems, previous 

studies typically investigate a fixed inlet throttling or do not interrogate their effect on the period 

or amplitude of pressure drop oscillations. This section uses the same data presentation established 

in Section 3.2 above to describe the effect of inlet throttling on these behaviors of pressure drop 

oscillations in detail. 



24 

 

The effect of inlet throttling on the time-periodic oscillations of mass flux inside the channel 

are shown in Figure 6(a). The time evolution of mass flux is plotted for cases of three different 

inlet throttling resistance coefficients of 𝐾 = 100, 300, and 500, at a nominal mass flux of 𝐺𝑏𝑢𝑓 = 

400 kg/m2s and constant heat input of 𝑞′ = 300 W/m, all within the unstable region (operating 

points indicated with filled triangles in Figure 3(b)). While the important effect of inlet restriction 

on narrowing the unstable region was previously shown in the stability map, this result is the first 

to illustrate that the amplitude of oscillations decreases and the period of oscillations shortens as 

the throttling is increased within the unstable region. This trend can be explained by inspecting the 

pressure drop oscillation limit cycle plotted in Figure 6(b), overlaid on the demand curves of the 

combined channel and orifice system.  

The system demand curve with the lowest throttling 𝐾 = 0 has a two-phase mixture region 

that spans a much broader range of mass flux (177-1043 kg/m2s) and pressure drop (0.62-3.82 

kPa). This two-phase mixture region generally gets narrower with increasing throttling. For the 

higher throttling at 𝐾 = 500, this region spans significant smaller ranges of mass flux (190-1021 

kg/m2s) and pressure drop (2.95-3.88 kPa). Hence, the limit cycle must only traverse this shorter 

range of mass fluxes, leading to the lower amplitude of oscillations. The same reasoning explains 

the shortened period of oscillations, as it takes less time to complete one cycle. As discussed 

previously, this reduction of severity in the oscillations is likely to have associated benefits in the 

heat transfer performance of the system, meaning that inlet restrictors provide benefit within the 

unstable region even if they do not completely suppress the instability. Also, if the concern is 

primarily regarding vibrations associated with these oscillations in some system, with degradation 

mechanisms known to occur at a specific frequency, inlet throttling may be used to tune away from 

this frequency. 
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(a) 

 

(b) 

Figure 6 Temporal variation of mass flux due to pressure drop oscillations in the unstable region 

(𝐺𝑏𝑢𝑓 = 400 kg/m2s for  𝐾 = 0, 300, and 500; 𝑞′ = 300 W/m; locations of these operating points 

indicated by filled triangles in Figure 3(b)). (b) Limit cycle path (solid line) of pressure drop versus 

channel mass flux overlaid on channel demand curve. 

 

To assess the impact of inlet restriction over the complete range of operation at a constant heat 

input 𝑞′=300 W/m, Figure 7 plots the pressure drop oscillation amplitude (Figure 7(a)) and period 

(Figure 7(b)) throughout the parametric plane of throttling resistance coefficients and mass fluxes 

from the stability map shown earlier in Figure 3(b). The color of each point denotes the amplitude 

and period of oscillations. It is evident from Figure 7(a) that the amplitude of oscillations is 

decreases with increasing inlet throttling across the complete range of mass fluxes; the stabilizing 
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effect of higher inlet throttling on the magnitude of the amplitude is also consistent across all mass 

fluxes. Conversely, Figure 7(b) shows that the shortening of the period with increasing mass flux 

is most effective over an intermediate range of mass fluxes. Near the stability boundary at very 

low and high mass fluxes, while there is a resistance coefficient above which the system is fully 

stable, once the system enters into the unstable region with a decreasing resistance coefficient, the 

there is little effect of throttling on the period. 

 

(a) 

 

(b) 

Figure 7. Pressure drop oscillation (a) amplitude and (b) period in the parametric plane of inlet 

throttle versus mass flux for heat input 𝑞′ = 300 W/m. The color of each unstable point maps to 

the contour scales shown; stable points having zero oscillation amplitude are excluded. 

 

. 
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Overall, an increasing amount of inlet throttling is beneficial in terms of both the amplitude 

and period of oscillations, rendering the microchannel less prone to reduction in heat transfer 

performance as the stability boundary is approached. This work motivates future study of the 

specific relationship between the oscillation severity and such deleterious effects in the heat 

transfer coefficient or critical heat flux. For example, the work of Park et al. [38] has 

experimentally shown the affect of flow oscillation (not necessarily due to pressure drop 

oscillations) on heat transfer coefficient during flow boiling. They identified a threshold amplitude 

and period above which oscillations can deteriorate the heat transfer coefficient, and that the 

amount of deterioration depends on amplitude and period of oscillations. Given specific targets for 

the amplitude or period below which performance is unaffected, this modeling framework could 

be used to more precisely design inlet restrictors that impose less pressure drop penalty than 

required for full suppression of the instability. 

 

4 Conclusion 

The dynamic flow instability mechanism of pressure drop oscillations is investigated for 

microchannel flow boiling heat sink systems. Pressure drop oscillations occur when the pressure 

drop versus mass flux demand curve of the channels has the characteristic non-monotonic shape 

associated with flow boiling, along with an upstream compressible volume. A dynamic model is 

developed for analyzing the pressure drop oscillations and assessing the system stability. Stability 

maps are generated over ranges of different operating parameters (heat inputs 𝑞′ from 0-325 W/m, 

mass fluxes 𝐺𝑏𝑢𝑓 from 0-1100 kg/m2s, and inlet restriction resistance coefficients 𝐾 from 0-1100) 

using bifurcation analysis. Investigation of these maps recovers several typical stability 

characteristics of such systems. Namely, at higher heat inputs (𝑞′=325 W/m), the system generally 

has a narrower region of mass fluxesover which operation is stable (e.g.,, a stable region from 

𝐺𝑏𝑢𝑓=0-200 kg/m2s and unstable region from 𝐺𝑏𝑢𝑓=200-1100 kg/m2s). Inlet restrictors act to 

stabilize the system and broaden this stable region with higher flow resistance coefficients (e.g., 

at 𝐾=1100, the unstable region vanishes, and the system becomes stable). 

While the stability map is useful for determining the occurrence of instabilities, it offers no 

insight into the behavior of the pressure drop oscillations in the unstable region. Of particular 
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interest is predicting and understanding the severity of the amplitude and period of pressure drop 

oscillations, which serve as proxy metrics for the potential deleterious effects on the heat transfer 

performance. Oscillations in mass flux are known to affect the heat transfer coefficient and longer 

periods of flow starvation are more likely to induce premature critical flux. The dynamic model is 

therefore solved to predict the unstable limit cycle and analyze these dynamic pressure drop 

oscillation characteristics. The amplitude and period of pressure drop oscillations are plotted over 

the unstable region, quantitatively mapping how their severity generally increases with increasing 

heat input, reducing mass flux, and reducing inlet restriction. This reveals a new design space in 

which pressure drop oscillations may be tolerable, even within the unstable region, due to having 

a sufficiently low amplitude or high frequency; inlet restrictors can be used tune these oscillation 

dynamics to meet specific design criteria. This modeling framework motivates future work that 

could predictively map the effects of the oscillation dynamics on heat transfer performance over 

the same parametric space. 
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