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A new mechanism for glymphatic flow of interstitial 

fluid in branched perivascular spaces of the brain 
 

 

Charles F. Babbs, MD, PhD, Weldon School of Biomedical Engineering,  

Purdue University, January 27, 2023 

 

 

Abstract 

 

Objective. To explore the biophysics of interstitial tissue fluid flow in the brain, based upon the 

anatomy and mechanics of the perivascular spaces, in order to better understand how glymphatic 

flow happens.  

 

Methods. The dynamics of fluid flow at cardiac frequencies are investigated in rapidly 

computable, branched, geometric models of brain tissue at multiple scales.  The models are 

supplied by intermingled trees of penetrating arteries and veins.  They include pulsatile changes 

in intracranial pressure and intravascular pressure, elastic expansion of brain tissue, and 

nonlinear changes in resistance to flow of cerebrospinal fluid along the axis of the Virchow-

Robin space.  Resulting changes in periarterial and perivenous pressures and the resulting bulk 

flow of interstitial fluid from arteriolar to venular perivascular spaces are calculated on a laptop 

computer.   

 

Results. Under typical physiological conditions a time averaged positive pressure of ~ 0.5 

mmHg develops between the smaller, distal periarteriolar and perivenous branches.  Based on 

tissue geometry and hydraulic resistance, the resulting flow is sufficient to refresh the interstitial 

fluid once every 1 to 10 hours.  The effect is degraded by increasing radial widths of the 

perivascular spaces.  The calculated average glymphatic flow through the whole brain is similar 

to the measured production of new cerebrospinal fluid by the arachnoid villi. 

 

Conclusions. When the branching structure of perivascular trees is properly considered, their 

classical anatomy has surprising emergent properties.  Biologically meaningful amounts of 

advective flow can happen between smaller, distal branches of periarteriolar and perivenous 

spaces.  

 

 

Key words.  advection, Alzheimer’s disease, amyloid, biophysics, blood brain barrier, bulk flow, 

cerebrospinal fluid, circulation, extracellular, hydraulic, intracranial pressure, perivascular 

pumping, permeability, pia mater, pulsation, subarachnoid space, Virchow-Robin space, waste. 
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Introduction 

 

All tissues in the body have a second fluid and solute transport system in addition to the 

cardiovascular system.  In the periphery, a steady influx of plasma ultrafiltrate through 

capillaries drives interstitial fluid into tissues, most of which re-enters capillaries at their venular 

ends.  This process by which water and small to medium sized molecules circulate through gaps 

between capillary endothelial cells is known as Starling’s equilibrium of the capillary.  Residual 

tissue fluid that is not returned to the blood stream by the Starling mechanism is drained by 

lymphatic vessels.   

 

In the central nervous system, however, the blood brain barrier eliminates the usual Starling 

mechanism.  There are no lymphatic channels or lymph nodes.  Instead, interstitial fluid is 

refreshed and waste products removed by pulsatile, net unidirectional “glymphatic” fluid flow, a 

term coined by Iliff et al.[1], who found that tracers injected into cerebrospinal fluid (CSF) were 

swept into Virchow-Robin spaces surrounding penetrating arteries, entered the brain’s 

extracellular space, and accumulated around veins.  Tracer studies reveal that there must be a 

continuous pathway through periarteriolar spaces and brain tissue into perivenous spaces, 

providing a low-resistance route for CSF flow[2].  Among such tracers is amyloid beta, a toxic 

protein that accumulates in Alzheimer’s disease[1-3].   

 

Because of the likely connections of glymphatic flow to the pathogenesis of Alzheimer’s disease, 

stroke, vascular dementia, and other neurodegenerative disorders[3], the study of glymphatic 

fluid flow as attracted a large community of investigators, leading to thousands of research 

publications, which have been well reviewed[4-11].  In principle, the observed net flow of 

interstitial fluid in the brain should be driven by a small, net-positive pressure gradient.  

However, defining the exact mechanism responsible for such a gradient remains an open 

problem[4,11-15].  Especially lacking are mechanisms and models including arterial and venous 

vascular trees with branches of realistic length and diameter, and including brain tissue 

surrounding perivascular spaces that is soft enough to be deformed significantly when artery 

walls pulsate[4,14].  The present paper takes a fresh, first-principles approach to this open 

problem, resulting in a new, computationally simple, dynamic model of glymphatic fluid flow.  

The model is based upon the classical anatomy of the perivascular or Virchow-Robin space, 

which may constitute an effective pulsatile pump that has been hiding in plain sight. 
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Figure 1, drawn artfully by Laurence Weed in 1923[8] illustrates the unique anatomy of blood 

vessels in the subarachnoid space, including penetrating branches diving into the cerebral cortex.  

The branching vascular trees and the channels into which they penetrate are covered by thin 

layers of pia mater, creating a cuff or sleeve-like perivascular space that is unique to the central 

nervous system.  The perivascular space continues downward into the brain for many orders of 

arterial or venous branches.  The diameters of the perivascular spaces are roughly twice those of 

the companion blood vessels at each order of branching (Figure 1) with veins having roughly 

twice the diameters, much thinner smooth muscle walls, and much greater compliances than their 

companion arteries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Relevant anatomy, as drawn by Lawrence Weed in 1923 [8]. 
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A conceivable perivascular pump mechanism 

 

The breakthrough insight inspiring the present work is that this well-known and simple anatomy 

may provide a hidden and unappreciated mechanism for pumping of cerebrospinal fluid from the 

periarterial to the perivenous spaces.  After some preliminary work with early models, a working 

hypothesis emerged.  Pressure in the subarachnoid space, also known as intracranial pressure 

(ICP) remains nearly constant at ~ 10-20 mmHg, but does have pulsatile fluctuations in 

association with the heartbeat.  These changes are clearly shown on clinical recordings, such as 

that sketched in Figure 2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Time domain waveforms of peripheral arterial pulse and intracranial 

pressure from Evensen[16].  ICP indicates intracranial pressure.  PPG indicates 

photoplethysmogram.  

 

 

The waveforms and timing of the ICP pulses suggest that they likely arise from expansion of 

arteries in the subarachnoid space.  For the purpose of understanding the perivascular pump 

mechanism, it is the changes in pressure with respect to the mean value of ICP, denoted P, that 

are of consequence for cerebrospinal fluid flow.  A value of P = 0 corresponds to mean ICP.  

When ICP increases during systolic expansion of larger arteries on the brain surface, 

subarachnoid pressure will increase and fluid will flow into both periarteriolar and perivenous 

perivascular spaces from the subarachnoid space (Figure 3).  Simultaneously there will be elastic 

expansion of soft surrounding brain.   

 

On the venous side there will be volume compensation caused by partial collapse of the thin-

walled vein with low internal pressure.  However, on the arterial side there will be pulsatile 

expansion of the artery, further increasing periarterial space pressure, and simultaneously 

narrowing the perivascular space, increasing its resistance to outflow between heartbeats.  In 

turn, excess fluid and pressure could accumulate in the periarterial space compared to the 

perivenous space.  The resulting time averaged differences in periarterial and perivenous 

pressure could drive glymphatic fluid flow. 

  



5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   (a)          (b) 
 

 

Figure 3:  Motions of walls of the shaded perivascular spaces.  Solid lines indicate end-

diastole; dashed lines indicate end-systole.  (a) In the periarterial space brain tissue 

forming the outer wall moves radially outward, and the artery forming the inner wall 

also moves radially outward.  (b) In the perivenous space brain tissue forming the 

outer wall moves radially outward, however the vein forming the inner wall moves 

radially inward, further relieving pressure.  Opposite effects happen during diastole. 

 

  

Periarterial 
space 

Perivenous 
space 
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On the arterial side, fluid in the perivascular space is squeezed by the expanding blood vessel, 

increasing pressure and also increasing resistance to outflow into the subarachnoid space.  If 

outflow resistance from the periarteriolar space is high because of relative channel narrowing 

and nonlinear increases in resistance (and RC time constant), then there would be incomplete 

drainage of excess systolic pressure into the subarachnoid space before the next arterial pulse.  

On the venous side, fluid in the larger perivascular space is decompressed from brain side and 

also decompressed from the venous side, so average pressure and resistance remain less. These 

effects might lead to accumulation of net positive perivascular pressure on the arterial side 

compared to the venous side, owing to a fundamental asymmetry between peri-arteriolar spaces 

and peri-venous spaces.   

 

Mathematical models are an excellent way to explore, test, and refine understanding of such 

mechanisms and to determine if they could cause sufficient pressure differences to drive 

biologically meaningful glymphatic fluid flow.  This paper details the development and testing of 

such a model to determine if the perivascular spaces might, in fact, constitute an unappreciated 

pump for glymphatic flow. 
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Methods 

 

Geometric model of brain tissue domains 

 

Figure 4 shows a simplified model of the perivascular space surrounding a branched artery or 

vein in the cerebral cortex.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Branching tree of perivascular spaces, without (a) and with (b) 

representative cylindrical domains of surrounding brain tissue.  A given brain cell may 

be part of more than one domain.  For clarity, not all overlapping domains are shown.  

Trees of domains encompass nearly all brain tissue.  Each full cylindrical domain can 

be divided into quarter cylinder sectors for convenience in pairing neighboring arterial 

and venous watersheds (c) , as suggested in Figure 5.  

 

  

  

 

  

 

(a) 

  

 

  
 

(b) 

(c) 
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Here, for simplicity, each parent vessel gives rise to two and only two daughter vessels.  The 

narrowing and shortening of the branching pattern is determined by a branching factor,  , such 

as 0.75, that describes the fractional reduction in linear dimensions, both radius and length, of 

blood vessels at each successive level.  As shown in Appendix 1, a branching factor of the square 

root of one half (0.707) describes an idealized tree with equal cross-sectional area at each level, 

permitting equal volumetric flow with equal velocity.  However, given classical Poiseuille 

resistance (~ 1/r4) , a branching factor of cube root of one half (0.794) describes a tree in which 

the tradeoff between increasing numbers of vessels and decreasing caliber of vessels at each 

level produces a constant, linear stepwise reduction in pressure at each level, as described 

experimentally[17-19] and in classical textbook physiology.  Accordingly, for present purposes, 

a branching factor  = 0.75 is used as a compromise value to describe an idealized 

cerebrovascular tree.  Note that a given brain cell may be part of more than one domain.  

However, as will be seen subsequently, glymphatic fluid flow is greatest in the smallest domains 

at the highest level of branching.  

 

Looking down on the surface of the cerebral cortex from above (Figure 5), one can imagine a 

honeycomb-like pattern of roughly cylindrical tissue domains packed together.  These largest 

domains, surrounding the largest vessels penetrating the surface of the brain, represent first order 

branches of modeled arterial and venous vascular trees.  As shown in Figures 5 and 6, by 

dividing each cylinder into four quarter cylinders it is possible to match back-to-back arterial and 

venous territories to represent a volume of tissue fed by a particular artery and drained by a 

particular companion vein at each level of branching.  Conceptually, one can represent the 

glymphatic bulk flow as that occurring between overlapping peri-arterial and peri-venous 

domains of tissue at each level of branching, despite biological irregularities in the locations of 

arteries and veins.**   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

** Footnote: Interestingly, for an ideal checkerboard pattern with alternating dark squares 

representing tissue around arteries and alternating white squares representing tissue around veins, 

it is easy to demonstrate that a perfect tiling of diamond shaped spaces, half dark and half white, 

with points at the centers of each checkerboard square, perfectly fills the plane. 
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Figure 5(a) shows the present geometric model viewed from a patch of cortical surface.  There 

are equal numbers of arteries and veins at multiple levels in a hexagonal lattice, similar to the 

approach of Jin et al.[20] and Schreder et al.[14].  To simplify subsequent mathematics using 

radial symmetry, the back-to-back overlapping of paired arterial and venous domains can be 

represented as overlapping arcs of quarter cylinders (Figure 5(b)). 
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      (b) 
 

 

Figure 5. Quarter cylindrical tissue domains representing regions of local glymphatic 

flow between pairs of smaller arterial and larger venous perivascular spaces at a 

particular branching level.  (a) composite arrangement (b) zones of overlapping 

arterial and venous vascular trees.  
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Correction for total volume of tissue domains 

 
The tissue domain radii, r3(n) , for each branching level, n , are jointly subject to the constraint 

that at the last branching level (e.g. r3(10)) the total volume of the domains should equal the total 

volume of the one column of cortical tissue with radius r3(1) and length, D , representing the full 

thickness of cerebral cortex (Figure 6).  This constraint ensures that all brain cells within a short 

distance of both a terminal arteriole and a terminal venule will be served by both an artery and a 

vein, and that the total volume of the model is conserved.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  (a)     (b) 
 

 

Figure 6:  Paired, overlapping quadrants of coupled arterial and venous vascular trees 

(a) top view, (b) perspective view of the full cortical thickness.   

 

 

This constraint means that the stepwise reduction in the outer radii of tissue domains, r3(n) , at 

each branching level, n , may be different than the stepwise reduction in vascular lengths and 

radii, branching factor  .  Let   represent the reduction factor for tissue domain radii r3(n) at 

each branch.  Consider a vascular tree with a total of N+1 branching levels, including the first, 

with N generations of daughter branches.  For volume conservation we must have 

 

𝜋𝑟3
2(1)𝐷 = 2𝑁𝜋𝑟3

2(1)𝛽2𝑁𝐿(1)𝛼𝑁 ,       (1) 

 

where L(1) represents the length of the first, longest arterial or venous segments and r3(1) 

represents its radius .  In turn, 

  

D 

L(1) 

r3(1) 

top view 
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𝛼𝛽2 = (
1

2𝑁
∙

𝐷

𝐿(1)
)

1

𝑁
=

1

2
 (

𝐷

𝐿(1)
)

1

𝑁
 ,         (2) 

 

and 

 

𝛽 = √ 1

2𝛼
 (

𝐷

𝐿(1)
)

1

𝑁
 ,           (3) 

 

For example, if  = 0.75, as before, N = 9 generations of branches, and D/L(1) = 4.5 for the 

human cerebral cortex, then  

 

𝛽 = √
1

2(0.75)
(4.5)

1

9 = 0.888 ,         (4) 

 

and 
𝛽

𝛼
=

0.888

0.75
= 1.1784.  Geometrically, therefore, the vascular and perivascular radii r1 and r2 

will be reduced by factor,  , at each branching level, but outer tissue domain radius r3 will be 

reduced by a slightly larger factor,  = 1.184 , at each branching level.  After 9 successive 

orders of branching, the ratio of r3/r2 , representing the relative thickness of the outer cylindrical 

shell of tissue, would be (
𝛽

α
)

9

= 4.573   This difference will increase the relative resistances of 

the smaller domains to bulk flow, as described by Darcy’s law, and slow calculated glymphatic 

flow. 
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Discretized model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Sketches of one sector at one branching level of the perivascular space.  

North border represents surrounding brain.  South border represents blood vessel wall.  

East-West axis is parallel to blood flow. 
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In Figure 7 the long axis of the perivascular space is horizontal and radial axis is vertical.  Axial 

flow from right to left indicates inflow from the subarachnoid space, deeper into the brain.  Flow 

from left to right indicates outflow into the subarachnoid space.  The upper, “north” edge 

represents the pia covered brain surface.  The “south” edge represents the pia covered vascular 

surface.  The dimension in and out of the page is the “hoop” or circumferential dimension.  

These diagrams represent just one branch of a vascular tree.  With successive branches the 

vascular dimensions become smaller according to the branching factor,  . 

 

The axial length of the cylindrical domain is denoted L.  Each domain surrounds a central vessel 

in a pattern similar to that of a microscopic liver lobule surrounding its central vein.  Radius r1 

represents the radius of the artery or vein.  Radius r2 represents the radius of the extended 

Virchow-Robin space.  Radius r3 represents the outer boundary of the brain tissue domain, which 

in this geometric model approximates the separation between an artery and its companion vein in 

the cerebral cortex.  Here r1 < r2 << r3 .   

 

 

Changes in perivascular volumes and pressures 

 

Consider first a brain penetrating artery surrounded by its perivascular cuff.  Radial directions 

correspond to the north--south direction, and axial directions correspond to the east--west 

direction.  CSF can flow along the east--west axis of the perivascular space from one discrete 

segment to another.  These flows are denoted as ieast and iwest in Figure 7 , with signed directions 

denoted by the arrows.  If all signed flow values sum to zero (that is, inflow equals outflow) then 

the compartmental volume is constant.   

 

Typically, the volume of perivascular fluid will change due to resistive axial flows during time 

increment, dt .  If the combined Poiseuille resistance to flow from the west is denoted Rwest and 

the combined Poiseuille resistance to flow from the east is denoted Reast , and if corresponding 

compartmental pressures are denoted P, then the incremental volume, 

 

𝑑𝑉𝑤𝑒𝑠𝑡 = 𝑖𝑤𝑒𝑠𝑡𝑑𝑡 =
𝑃𝑤𝑒𝑠𝑡−𝑃

𝑅𝑤𝑒𝑠𝑡
𝑑𝑡 ,        (5) 

 

and similarly, 

 

𝑑𝑉𝑒𝑎𝑠𝑡 = 𝑖𝑒𝑎𝑠𝑡𝑑𝑡 = −
𝑃𝑒𝑎𝑠𝑡−𝑃

𝑅𝑒𝑎𝑠𝑡
𝑑𝑡 .        (6) 
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In addition, the expanding artery acts like a piston to push extra volume, dVsouth , radially upward 

into the perivascular space in short time increment, dt.  Because the stiffness of artery wall is 

much greater than the stiffness of brain tissue, it is reasonable to regard the pulsating artery as a 

piston-like “volume source”.  Inner compression of the perivascular space by the arterial piston 

is given in terms of the local vascular compliance, Cart , and the local change in arterial pressure, 

dPart .  Using the derivative of the arterial pressure function, 

 

𝑑𝑉𝑠𝑜𝑢𝑡ℎ =  𝐶𝑎𝑟𝑡
𝑑𝑃𝑎𝑟𝑡(𝑡)

𝑑𝑡
𝑑𝑡  .         (7) 

 

This volume is pushed into the segmental perivascular space, and creates an effective flow,  

 

𝑖𝑠𝑜𝑢𝑡ℎ =  
𝑑𝑉𝑠𝑜𝑢𝑡ℎ

𝑑𝑡
 .          (8) 

 

Similarly, the expansion of multiple arteries in surrounding brain tissue will cause the brain 

surrounding the perivascular space to simultaneously expand like a piston to push extra volume, 

dVnorth , radially downward in time dt, compressing the perivascular space from the north.  

However, simple calculations (not shown) suggest this effect is very small, compared to others, 

so that for purposes of the present model 

 

𝑖𝑛𝑜𝑟𝑡ℎ = 𝑑𝑉𝑛𝑜𝑟𝑡ℎ = 0 .         (9) 

 

Both 𝑑𝑉𝑠𝑜𝑢𝑡ℎ and 𝑑𝑉𝑛𝑜𝑟𝑡ℎ are counterbalanced by reactive elastic expansion or contraction of the 

underlying artery or the overlying brain tissue, caused by the resulting changes in the 

perivascular pressure.  The reactive change in volume of the blood vessel, according to its 

compliance on the south side, is given by  𝐶𝑎𝑟𝑡𝑑𝑃𝑝𝑣𝑠.  The reactive change in volume of the brain 

caused by compression on the north side, according to its compliance, is given by 𝐶𝑏𝑟𝑎𝑖𝑛𝑑𝑃𝑝𝑣𝑠.  

The combined elastic effects produce a net change in perivascular pressure, 

 

𝑑𝑃𝑝𝑣𝑠 =
𝑑𝑉𝑝𝑣𝑠

𝐶𝑏𝑟𝑎𝑖𝑛+𝐶𝑎𝑟𝑡
 ,          (10) 

 

for total change in perivascular space volume, 𝑑𝑉𝑝𝑣𝑠 , or 

 

𝑑𝑃𝑝𝑣𝑠 =
(𝑑𝑉𝑤𝑒𝑠𝑡+𝑑𝑉𝑒𝑎𝑠𝑡+𝑑𝑉𝑠𝑜𝑢𝑡ℎ+𝑑𝑉𝑛𝑜𝑟𝑡ℎ−𝐶𝑎𝑟𝑡𝑑𝑃𝑝𝑣𝑠−𝐶𝑏𝑟𝑎𝑖𝑛𝑑𝑃𝑝𝑣𝑠)

𝐶𝑏𝑟𝑎𝑖𝑛+𝐶𝑎𝑟𝑡
 .    (11) 

 

Solving for incremental perivascular pressure, 𝑑𝑃𝑝𝑣𝑠 , 

 

𝑑𝑃𝑝𝑣𝑠 (1 +
𝐶𝑎𝑟𝑡

𝐶𝑏𝑟𝑎𝑖𝑛+𝐶𝑎𝑟𝑡
+

𝐶𝑏𝑟𝑎𝑖𝑛

𝐶𝑏𝑟𝑎𝑖𝑛+𝐶𝑎𝑟𝑡
) =

(𝑑𝑉𝑤𝑒𝑠𝑡+𝑑𝑉𝑒𝑎𝑠𝑡+𝑑𝑉𝑠𝑜𝑢𝑡ℎ+𝑑𝑉𝑛𝑜𝑟𝑡ℎ)

𝐶𝑏𝑟𝑎𝑖𝑛+𝐶𝑎𝑟𝑡
 ,   (12) 

 

and  

 

𝑑𝑃𝑝𝑣𝑠 =
𝑑𝑉𝑤𝑒𝑠𝑡+𝑑𝑉𝑒𝑎𝑠𝑡+𝑑𝑉𝑠𝑜𝑢𝑡ℎ+𝑑𝑉𝑛𝑜𝑟𝑡ℎ

2(𝐶𝑏𝑟𝑎𝑖𝑛+𝐶𝑎𝑟𝑡)
 .       (13) 
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In this dynamic system incremental volumes, dVeast , dVwest , dVsouth , and dVnorth , change with 

every time step, dt .  Compartmental volumes, Vart and Vpvs , continually change as functions of 

time, and must be re-computed after each time step, dt , as 𝑉𝑎𝑟𝑡 = 𝑉𝑎𝑟𝑡 + 𝑑𝑉𝑎𝑟𝑡 and 

𝑉𝑝𝑣𝑠 = 𝑉𝑝𝑣𝑠 + 𝑑𝑉𝑝𝑣𝑠 . 

 

Now, knowing the incremental change in perivascular pressure, dVpvs , one can calculate the net 

change in perivascular compartment volume, 

 

𝑑𝑉𝑝𝑣𝑠 = 𝑑𝑉𝑤𝑒𝑠𝑡 + 𝑑𝑉𝑒𝑎𝑠𝑡 + 𝑑𝑉𝑠𝑜𝑢𝑡ℎ + 𝑑𝑉𝑛𝑜𝑟𝑡ℎ − 𝐶𝑎𝑟𝑡𝑑𝑃𝑝𝑣𝑠 − 𝐶𝑏𝑟𝑎𝑖𝑛𝑑𝑃𝑝𝑣𝑠 .  (14) 

 

Thus every time step, dt , one can update compartmental volumes as 

 

𝑉𝑎𝑟𝑡 = 𝑉𝑎𝑟𝑡 + 𝑑𝑉𝑠𝑜𝑢𝑡ℎ − 𝐶𝑎𝑟𝑡𝑑𝑃𝑝𝑣𝑠 ,        (15) 

 

and 

 

𝑉𝑝𝑣𝑠 = 𝑉𝑝𝑣𝑠 + 𝑑𝑉𝑝𝑣𝑠 .           (16) 

 

Then, for cylindrical sectors spanning angle , such as /2 radians, and noting that 𝑉𝑎𝑟𝑡 =

(
∆𝜃

2𝜋
) 𝜋𝑟1

2𝐿 and 𝑉𝑎𝑟𝑡 + 𝑉𝑝𝑣𝑠 = (
∆𝜃

2𝜋
) 𝜋𝑟2

2𝐿 , one can also update values of radii  

 

𝑟1 = √
2𝑉𝑎𝑟𝑡

∆𝜃𝐿
          (17) 

 

and 

 

𝑟2 = √
2(𝑉𝑎𝑟𝑡+𝑉𝑝𝑣𝑠)

∆𝜃𝐿
 .          (18) 

 

 

The forgoing treatment allows computation of changes in perivascular pressures, volumes, and 

radii, for trees of brain penetrating arteries and periarterial spaces.  For companion veins, similar 

expressions apply, with suitable subscript changes to denote veins, rather than arteries, namely 

𝑉𝑣𝑒𝑖𝑛 , 𝐶𝑣𝑒𝑖𝑛 and with r1 and r2 being specific for veins rather than arteries. 
 

The upgraded values of artery and cuff radii allow for subsequent re-calculation after every time 

increment, dt , of axial resistance to flow of CSF along the axis of the perivascular space in the 

model, as described in detail subsequently. 
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Compliance of vascular segments 

 

Values for model compliances (change in volume divided by change in pressure, or V/P) can 

be estimated from vascular ultrasound and from textbook anatomy and physiology.  For a sector 

 of an elastic tube or blood vessel of length, L, and radius, r , that expands by amount, r , in 

response to transmural pressure change, P .  The compliance  

 

𝐶 =
∆𝜃𝑟𝐿∆𝑟

∆𝑃
=

∆𝜃𝑟2𝐿

∆𝑃
(

∆𝑟

𝑟
) .   (19) 

 

For a quarter cylinder domain as shown in Figure 6 

 

𝐶 =
𝜋𝑟2𝐿

2∆𝑃
(

∆𝑟

𝑟
) .          (20) 

 

Here, in computing compliances, values of P(n) for venules at branching level, n , in a tree of N 

total branching levels, are 1 mmHg*(1 − n/N), and values of P for arteries are  

20 mmHg*(1 − n/N), in keeping with the linear change in pressure down branching vascular 

trees. 

 

 

Domain compliance for brain tissue of constant stiffness  

 

As shown in Appendix 2, it is easy to demonstrate from basic mechanical principles that the 

compliance, C , of a sector,  , of a cylindrical segment of brain tissue in Figure 7 is given by 

the expression 

 

𝐶 =
∆𝜃𝑟2

2𝐿

𝐸
𝑙𝑛 (

𝑟3

𝑟2
) ,          (21) 

 

where E represents Young’s modulus of stiffness for brain tissue[21], and ln() represents the 

natural logarithm.   

 

 

Resistance of segmental perivascular spaces to axial fluid flow 

 

To calculate resistance, imagine the perivascular space as being split longitudinally and opened 

to form a flat sheet with a width equal to the average radius, (r1+r2)/2 , and a thickness of r2 – 

r1 .  Classically[12], for flow of a fluid having viscosity,  , between two parallel plates of width 

(r1+r2)/2,  length L, and separation r2 – r1, we have axial resistance of the perivascular space 

 

𝑅𝑝𝑣𝑠 ≈
12𝜇𝐿

∆𝜃
(𝑟1+𝑟2)

2
(𝑟2−𝑟1)3

=
24𝜇𝐿

∆𝜃(𝑟2+𝑟1)(𝑟2−𝑟1)3 ,       (22) 

 

or for 
𝑟1

𝑟2
= 𝜆 , 
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𝑅𝑝𝑣𝑠 ≈
24𝜇𝐿

∆𝜃 𝑟2
4 (1+𝜆)(1−𝜆)3 .          (23) 

 

This is a reasonable approximation to the resistance to axial flow in the cuff of fluid forming the 

perivascular space.  To include instantaneous changes in this nonlinear resistance, R , it is 

necessary to account for small, time-varying changes in the arterial and perivascular radii, which 

must be recomputed each time step, dt .   

 

Then, to calculate axial resistance between perivascular cuffs of different branches, one can 

compute interface resistance as series combination of upstream and downstream half segments  

 

𝑅𝑒𝑎𝑠𝑡(𝑛) ≈
1

2
(𝑅𝑛 + 𝑅𝑛+1)          (24) 

 

and 

 

𝑅𝑤𝑒𝑠𝑡(𝑛) ≈
1

2
(𝑅𝑛−1 + 𝑅𝑛) .         (25) 

 

 

Hydraulic resistance of tissue domains 

 

As shown in Appendix 3, it is possible using Darcy’s Law, to compute an analytical expression 

for the resistance to radial flow between paired periarterial and perivenous sectors,  . For two 

back-to-back overlapping sectors of cylindrical domains of inner radius r2, outer radius r3, and 

lengths, L , having hydraulic permeability constant, 𝜅 , the hydraulic resistance to flow of fluid 

with viscosity,  , is given by the expression  

 

𝑅𝑏𝑟𝑎𝑖𝑛 =
2𝜇

𝜅𝐿∆𝜃
𝑙𝑛 (

1

4

𝑟3
2

  𝑟2
𝑎𝑟𝑡∙𝑟2

𝑣𝑒𝑖𝑛  ) ,        (26) 

 

where superscripts art and vein denote the perivascular radii. 

 

 

Washout times of tissue domains 

 

The washout time for the paired arterial and venous domains would be given by total interstitial 

fluid volume (ISF in ml) divided by volumetric interstitial fluid flow (in ml/sec) or 

 

𝑡𝑤𝑎𝑠ℎ𝑜𝑢𝑡 =
      𝑡𝑖𝑠𝑠𝑢𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 ∗ 𝐼𝑆𝐹 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛      

   𝑎𝑟𝑡𝑒𝑟𝑖𝑜𝑣𝑒𝑛𝑜𝑢𝑠 𝑝𝑒𝑟𝑖𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒   

ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 .     (27) 

 

The volume of interstitial fluid between periarterial and perivenous spaces in the diamond 

shaped columns in Figures 5 and 6 is 

 

𝑉𝐼𝑆𝐹 = 2𝜎𝐼𝑆𝐹  𝜋 (
𝑟3

2
)

2

𝐿 
∆𝜃

2𝜋
=

1

4
𝜎𝐼𝑆𝐹  𝑟3

2𝐿∆𝜃 .     (28) 
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The interstitial fluid flow is the arteriovenous difference in time averaged perivascular pressure, 

Ppvs , divided by the local hydraulic resistance, Rbrain , or 

 

𝑓𝑙𝑜𝑤 =
∆𝑃𝑝𝑣𝑠

2𝜇

𝜅𝐿∆𝜃
 𝑙𝑛(

1

4

𝑟3
2

  𝑟2
𝑎𝑟𝑡∙𝑟2

𝑣𝑒𝑖𝑛  ) 

 .          (29) 

 

The washout time for the interstitial fluid is  
 

𝑡𝑤𝑎𝑠ℎ𝑜𝑢𝑡 =
𝑉𝐼𝑆𝐹

𝑓𝑙𝑜𝑤 
=

1

4
𝜎𝐼𝑆𝐹 𝑟3

2𝐿∆𝜃

∆𝑃𝑝𝑣𝑠

2𝜇
𝜅𝐿∆𝜃

 𝑙𝑛(
1
4

𝑟3
2

  𝑟2
𝑎𝑟𝑡∙𝑟2

𝑣𝑒𝑖𝑛  
) 

=
1

2

𝜎𝐼𝑆𝐹 𝑟3
2 

𝜇

𝜅
 𝑙𝑛(

1

4

𝑟3
2

  𝑟2
𝑎𝑟𝑡∙𝑟2

𝑣𝑒𝑖𝑛  )

∆𝑃𝑝𝑣𝑠 
 .    (30) 

 

Smaller domains at higher branching levels, also having relatively smaller values of r3/r2, have 

shorter washout times.  Hence the domains around smaller branch arteries and veins in brain 

tissue that are still surrounded by perivascular spaces are the focus of glymphatic flow. 

 

 

Numerical values of model parameters 

 

Table 1 presents specific numerical values of input parameters of the standard normal model. 

 

Table 1. Standard Model Parameters 

 

Symbol Definition Value Units 

 Vascular size reduction at each branching level 0.75  

 Radial tissue size reduction at each branching level 0.888  

PVratio Perivascular space to vessel ratio (r2/r1) 2  

dt Time increment for numerical integration 0.0001 sec 

art Fractional expansion of artery diameter with pulse 0.1  

vein Fractional expansion of vein diameter with pulse 0.03  

Freq Cardiac frequency or pulse rate 1 Hz 

𝜅 Darcy’s Law hydraulic permeability of brain tissue 1.2 x 10-11 cm2 

L(1) Length of first vascular segment at the brain surface 1 cm 

 Viscosity of cerebrospinal fluid 0.01 dyne/cm2-

sec 

Ebrain Young’s modulus of brain tissue 10000 dyne/cm2 

N Number of branching levels in vascular tree 10  

 Circle ratio  3.1416  

∆𝑃𝑚𝑎𝑥
𝑎𝑟𝑡  One half pulse pressure in brain surface artery 20 mmHg 

∆𝑃𝑚𝑎𝑥
𝑣𝑒𝑖𝑛 One half pulse pressure in brain surface vein 1 mmHg 

∆𝑃𝑚𝑎𝑥
𝑠𝑎𝑠  One half pulse pressure in subarachnoid space CSF 2 mmHg 

r1(1) Radius of first parent brain artery  0.03 cm 

r3_r2 Ratio of domain radius to PVS radius at any level 12  

ISF Interstitial fluid volume fraction 0.15  
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Vascular dimensions are based upon classical anatomy[22].  Pulsatile arterial and venous 

expansion fractions are based on those observed clinically for retinal arteries and veins through 

an ophthalmoscope.  Venous to arterial diameter ratios are based on light microscopic images.  

Extracellular fluid volume fraction in brain is 18% to 20% in the cerebral cortex in several 

species[23].  However, since interstitial fluid volume equals extracellular fluid minus 

intravascular fluid; the interstitial fluid volume fraction is estimated at 15%.  A consensus value 

is chosen for Young’s elastic modulus, E , of brain tissue[21].  Multiple sources give values for 

the amplitude of pulsatile changes in intracranial pressure [16,24-26].  The hydraulic 

permeability of brain is from the recent studies and Vidotto[27] and Vidotto’s tabulated 

summary of published values. 

 

 

Numerical methods 

 

Code is written in Microsoft Visual Basic and executed on an ordinary laptop computer.  

Pressures, volumes, axial resistances for a particular vascular domain, either arterial or venous, 

are computed iteratively for successive small time steps, dt = 0.0001 sec, from “cold start” initial 

conditions (mean ICP in all compartments) until the pulsatile pressure changes and the time 

averaged pressure differences become stable, reaching a steady-state.  Pulsatile changes in 

arterial pressure and similar pulsatile changes from mean ICP are computed using approximate 

arterial pulse waveforms 

 

∆𝑃(𝑡) = ∆𝑃𝑚𝑎𝑥 [(sin (𝜔𝑡) +
1

2
(sin (2𝜔𝑡))] .      (31) 

 

For intracranial pressure pulses in the subarachnoid space ∆𝑃𝑚𝑎𝑥 = ∆𝑃𝑚𝑎𝑥
𝑠𝑎𝑠  (2 mmHg in the 

standard model).  For arterial pulses in branched segment of order, n , the pulse amplitude 

diminishes linearly as 𝑃𝑚𝑎𝑥(𝑛) = ∆𝑃𝑚𝑎𝑥
𝑎𝑟𝑡 (1 −

𝑛−1

𝑁
) .  For internal venous pressure a simple 

sinusoidal function having a phase shift of  radians and an amplitude of 1 mmHg is substituted 

for Equation (31).  The standard simulation duration is 30 seconds, after which pressures and 

volumes become stable.  In real time each arterial or venous pressure simulation requires less 

than 10 seconds to execute.  The core algorithm for numerical integration of model variables can 

be outlined as follows: 
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COMPUTATIONAL ALGORITHM 

 

Initialize variables 

 

Compute time varying ICP using an approximate arterial pulse waveform 

 

For each time step, dt { 

 

        Compute instantaneous minus mean subarachnoid space pressure 

 

        For each segment, n , compute { 

            dVwest [Eq. 5] 

            dVeast [Eq. 6] 

            incremental arterial or venous pressure [Eq. 31] 

            dVnorth [Eq. 9] 

            dVsouth [Eq. 8] 

            dPpvs [Eq. 13] 

            Ppvs(n) = Ppvs(n) + dPpvs 

            dVpvs = dVwest + dVeast + dVsouth + dVnorth − Cart(n) * dPpvs − Cbrain(n) * dPpvs [Eq. 14] 

            Vpvs(n) = Vpvs(n) + dVpvs 

            r1(n) [Eq. 17] 

            r2(n) [Eq. 18] 

            Rpvs(n) [Eq. 23] 

        } 

 

} 

 

 

Typical outputs include perivascular pressures, volumes, and radii.  Washout times for interstitial 

fluid compartment of brain tissue in hours are calculated using Eq. (30) and Eq. (4). 

 

 

Results 

 

Time domain waveforms of arterial and intracranial pressures 

 

Figure 8 shows the time domain pressure waveforms in peri-arterial and peri-venous spaces of a 

middle level branch (n = 5 of 10). The tracings show instantaneous cyclic changes in intra-

arterial pressure and in intracranial pressure at steady state.  In the standard model cerebrospinal 

fluid flows in and out of brain surface openings of the Virchow-Robin spaces in response to 

changes in ICP, causing cyclic changes in pressure.  Peri-arterial pressure is boosted by relatively 

greater expansion of arteries during cardiac systole. 
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Figure 8: Pressure tracings for a middle branch at level 5 after 30 sec of steady 

pumping.  Dashed curve represents scaled arterial pulse waveform as a timing 

reference.  
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Figure 9 illustrates time domain waveforms of vascular and perivascular radii in middle level  

(n = 5) arterial and venous branches.  Radii r1 represent the blood vessel and radii r2 represent the 

CSF filled perivascular space.   

 

 

    
 

   (a)       (b) 

 

 

Figure 9: Time domain waveforms of perivascular (r2) and vascular (r1) radii at 

branching level 5, illustrating pumping mechanism.  Venous and perivenous radii 

are larger than arterial and periarterial radii according to normal anatomy.  (a) 

on the arterial side, both artery walls and Virchow-Robin spaces expand during 

systole and taper during diastole.  (b) on the venous side, vein walls collapse 

partially during systole.  Perivascular space width, r3 – r2 , is smaller around 

arteries than around veins. 

 

 

The arterial radii (a) are less than the venous radii (b), as expected from normal anatomy.  On the 

arterial side, radius, r1 (solid curve) expands slightly, as expected about 5 percent during systole.  

Volume of the periarterial space increases due to inflow from the subarachnoid space.  The outer 

wall of the perivascular space having radius r2 (dashed curve) expands according of the 

compliance of the channel through soft brain tissue.  In contrast, on the venous side, the softer 

wall of the larger diameter vein, which is distended by much lower blood pressure, collapses in 

response to inflow from the subarachnoid space.  The outer wall of the surrounding perivenous 

space expands according to the compliance of the larger venous channel through soft brain 

tissue.  There is a relatively greater net expansion of the perivenous space in response to fluid 

inflow from the subarachnoid space.  On the arterial side, the narrowed channel seems to slow 

outflow back into the subarachnoid space between pulses more than on the venous side, allowing 

the time-averaged perivascular pressure difference to persist. 
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Time averaged perivascular pressure gradients 

 

Figure 10 shows the difference between mean pressure inside the perivascular spaces 

surrounding arteries and mean pressure inside the perivascular spaces surrounding veins, plotted 

as a function of the radius of the artery.  The differences are greater in the smaller diameter 

perivascular spaces surrounding more distal vascular branches.  These spaces have arteries less 

than 50 microns in radius or less than 100 microns in diameter. 

 

 

 
 

 

Figure 10: Time averaged pressure differences in dynes/cm2 between neighboring 

periarterial and perivenous spaces as a function of local artery radius. 
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Figure 11 shows steady-state perivascular arteriovenous, or AV, pressure differences at 

branching level 5 as a function of relative perivascular space width, quantified as the cuff ratio.  

The cuff ratio is defined as the radius of the perivascular space divided by the radius of the local 

artery or vein.  A cuff ratio of 1.00 would indicate a zero-width perivascular space.  In the 

standard normal model, the cuff ratio is 2.0.  The generation of a positive AV perivascular 

difference is dependent on a relatively narrow perivascular space width and a relatively small 

cuff ratio.   

 

 

 
 

 

Figure 11: Mean periarterial minus perivenous pressures as a function of the cuff 

ratio, defined as the radius of the perivascular space to the radius of the local 

artery or vein.  A cuff ratio of 1.00 would indicate a zero-width perivascular space.  

A cuff ratio of 2 is roughly normal.  AV denotes arteriovenous. 
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Washout times 

 

Figure 12 shows the calculated washout times (Eq. 30) for interstitial spaces in cylindrical tissue 

domains at various branching levels and corresponding arterial radii.  Note the log scale of 

washout time on the vertical axis.  The data points represent branching levels 3 through 10.  

Biologically meaningful bulk flow of interstitial fluid through brain tissue in response to 

perivascular pumping of cerebrospinal fluid occurs only in smaller branches of the arterial and 

venous vascular trees.  Only the higher branching levels with the smaller vascular diameters have 

washout times less than 10 hours.  A middle value for these branches is about 6 hours.   

 

 
 

Figure 12: Calculated interstitial space washout times from simulated glymphatic 

flow as a function of penetrating artery size and branching level.  Note vertical log 

scale. 
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Discussion 

 

When the branching structure of vascular trees is properly considered, the classical anatomy of 

the Virchow-Robins space hides a surprising pump mechanism.  Bringing together 

biomechanics, fluid mechanics, anatomy, and physiology, one can show in detail how 

glymphatic flow could occur, driven by a net time averaged positive pressure difference between 

distal branches of periarteriolar and perivenular Virchow-Robin spaces.  Perivascular pumps 

work better at smaller scales.  At the level of medium to small scale vessels, the flow is sufficient 

to cause a complete washout or replacement of interstitial fluid between brain cells every 1 to 10 

hours.   

 

Intriguingly, the human choroid plexus secretes ∼1 L of CSF per day[28], which is similar to the 

rate of glymphatic flow calculated here.  For example, choroid plexus secretion of 1000 

ml/24hours = 41.7 ml/hour, which for a 1500-gram brain, having an interstitial fluid volume of 

about 0.15*1500 ml = 225 ml, would correspond to a turnover time of 225/41.7 = 5.3 hours.  

This value is in the middle range of the predicted turnover times in Figure 12 for the three 

highest levels of branching with artery radii in the range of 25 to 50 microns, or 50 to 100 

microns in diameter.  This observation suggests that the full volume of freshly secreted 

cerebrospinal fluid might seep through whole brain tissue by glymphatic flow.  Perhaps 

macroscopic production and distribution of CSF over the brain surface, together with 

microscopic glymphatic pumping, constitute a unitary and integrated system for tissue waste 

removal. 

 

The present mechanism has biological significance both for normal physiology and 

pathophysiology.  CSF flow is now known to be increased during sleep[29].  During sleep higher 

pulse pressure from slower heart rates, and superimposed swings in ICP associated with slower 

breathing may boost the effectiveness of the present pump mechanism.  Greater clearance of 

waste products and toxins may explain the refreshing effects of sleep, as well as of strenuous 

exercise, in which increased arterial pulsation and increased respiratory swings in blood pressure 

occur.  Further, the proposed mechanism offers an unappreciated reason why cerebral arteries 

have thinner walls than systemic arteries of similar caliber: they pulsate more and drive the 

perivascular pump better.   

 

There are also links to several important disease states[1,3,8].  Clearance of amyloid beta, a 

putative toxin causing Alzheimer’s disease, may be reduced by impaired glymphatic flow[8,30-

32].  Cerebral atherosclerosis may reduce distal arteriolar pulsations and impair glymphatic flow, 

leading to accelerated vascular dementia or by a glymphatic related mechanism as well as an 

ischemic one.  Similarly in ischemic strokes, reduced clearance of postischemic toxins, including 

reactive oxygen species, may further amplify ischemic tissue damage[33].  In hypertension 

raised blood pressure causes arterial stiffening owing to nonlinear compliance of blood vessels, 

which would also diminish arterial pumping[1,34].  Also, as demonstrated here, the enlarged 

perivascular spaces resulting from neuronal loss in vascular dementia and in Alzheimer’s 

disease[8,35], would contribute to an acceleration of such pathologies, owing to reduced 

glymphatic flow[36].   
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In turn, there are potential implications of small branch perivascular pumping for diagnosis and 

treatment.  Diagnostically, there may be useful information in the amplitude of retinal arterial 

and venous pulsations[37,38].  The cornea provides a practical window on the intracranial 

microvasculature.  Retinal arterial pulsations might be used as a noninvasive screening test.  

Therapeutically, arteriolar volumetric pumping might be increased by vasodilator drugs, which 

could increase washout of beta amyloid in early cases of Alzheimer’s disease.  Beta blockers, 

which can increase systemic pulse pressure generated by nonischemic hearts, as well as exercise, 

could promote better glymphatic waste removal. 

 

Predictions of the present model are supported by experimental evidence.  For example, 

Rosenberg et al.[39] used the radiotracer paradigm to look for bulk flow in the extracellular 

space of the cat caudate nucleus. They concluded that there was flow in white matter bundles 

with a velocity of 10.5 microns/min.  These results are in agreement with the present model 

predictions.  A migration speed of 10 microns/min = 10*60*24 microns/day = 14400 

microns/day = 1.4 cm/day.  For 6th order brain domains located about 0.14 cm apart, it would 

take 0.14 cm /1.4 (cm/day) = 0.1 days, or 2.4 hours for washout.  This finding is in reasonable 

agreement with predictions of the present model (Figure 12). 

 

Others have described theoretical and numerical models of glymphatic flow[4].  Previously 

Hadaczek et al.[40] described a mechanism called ‘‘perivascular pumping”[34].  Ray et al.[13] 

showed that in vivo radioactive tracer measurements could be matched more accurately with a 

model that included advective transport with flow speeds of about 10 microns/min.  Recently, 

Rey and Sarntinoranont[41] described a resistive flow network from intraarterial spaces, through 

brain tissue, to intravenous spaces with no net flow over time; however the perivascular spaces, 

axial perivascular flow, and axial perivascular resistance are not included.  The present work 

shows that these features are critical.  

 

Importantly, the present model does NOT simulate peristaltic pumping, associated with the travel 

and milking action of pulse waves along the perivascular spaces[42].  Typical segments of real 

perivascular networks are shorter than the arterial pulse wavelength by a factor of 1/10,000 or 

less (10 m/sec x 1 sec pulse period = 10 meters, compared to less than 0.001 meter in smaller 

branched tissue domains) making true peristaltic pumping unlikely.  Kedarasetti[43] showed that 

peristaltic arterial pulsations can drive oscillatory flow of CSF but not directional pumping.  

However, in keeping with the present model and concept, Kazimierska et al.[44] suggested the 

importance of elasticity of the brain tissue surrounding perivascular spaces.  They viewed the 

brain as a porous medium that is soft enough to be deformed appreciably by the pressures 

squeezing fluid through pores, and they concluded that further study of poroelastic pumping is 

warranted.   
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The present paper presents a new, first-principles mechanism for glymphatic fluid flow.  

Biologically meaningful amounts of flow could happen between smaller periarteriolar and 

perivenous spaces in human sized brains.  Although full scale fluid dynamic simulations of 

multiple branched systems in three dimensions are computationally daunting and very time 

consuming; here geometric simplifications allow easy computation of the major branching 

effects.  After accounting for the branching structure of vascular trees, the annular channels of 

the Virchow-Robin space, well known for over a century, provide a plausible pump mechanism 

that has been hiding in plain sight.   

 

 

Appendix 1 details, justifying branch reduction factor of 0.75 

 

It is helpful to specify resistance at each branching level to determine arterial pressure at each 

branching level: pressure drop = aggregate flow*aggregate local resistance at each level.  For 

linear shortening factor , for EACH individual segment, aggregate local resistance to blood 

flow in an arterial tree for all parallel branches at level  n  is  

 

𝑅𝑛 ∝ (
𝛽

𝛽4)
1

2𝑛 ,           (A1) 

 

and 

𝑅𝑛

𝑅𝑛−1
=

(
1

𝛽3)
𝑛

1

2𝑛

(
1

𝛽3)
𝑛−1

1

2𝑛−1

=
1

2𝛽3 .         (A2) 

 

Case 1: 

 

If 𝛽 = √
1

2

3
= 0.794, then 

𝑅𝑛

𝑅𝑛−1
= 1 ,        (A3) 

 

there will be equal resistances and equal total pressure drops at each branch point in the model 

arterial tree. 

 

Case 2: 

 

On the other hand, for equal total cross-sectional area at each branch point we have  

𝛽 =
1

√2
= 0.707.  In this case 

 
𝑅𝑛

𝑅𝑛−1
=

1

2𝛽3 =
2√2

2
= 1.414 .          (A4) 

 

The relative internal pressure drop across each branch level would be 

 
∆𝑃𝑎𝑟𝑡𝑛

∆𝑃𝑎𝑟𝑡𝑛−1
=

𝑅𝑛

𝑅𝑛−1

1

2𝛽3 = 1.414 .         (A5) 
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To approximately satisfy desirable both factors in an idealized model system, one might select 

 

𝛽 =
0.794+0.707

2
= 0.75 .         (A6) 

 

This is a branch reduction factor that is approximately ideal and allows roughly equal flow at all 

branch levels and also a linear decrease in internal arterial pressure. 

 

 

Appendix 2: compliance of a brain domain 

 

 

 

 

 

 

 

 

 

 

 

   (a)      (b) 

 

Figure 13: Compression of wedge-shaped sector of an elastic cylinder. 

 

Figure 13 (a) shows a wedge-shaped section of a cylindrical brain domain of angle  .  Radius, 

r2 , represents the outer border of the perivascular space.  Ordinary brain tissue fills the wedge 

shape from r2 to r3 .  To appreciate the elastic properties of this composite structure, consider 

multiple radial layers of brain, dr thick, as constituting series springs as shown in (b).  The series 

springs are characterized by spring constants, k1 , k2 , and so on.  Quantitatively, the reactive 

force produced by compression of the stacked springs in Figure 13 (b) by total amount, x is 

given by F = ktotal x , where the combined spring constant, ktotal , of the series springs is 

classically given by the expression  

 
1

𝑘𝑡𝑜𝑡𝑎𝑙
=

1

𝑘1
+

1

𝑘2
+ ⋯ +  

1

𝑘𝑛
 .          (A7) 

 

For a rectangular elastic solid of surface area A, thickness, h, and Young’s modulus of stiffness, 

E , the effective spring constant is given by the formula, k = “EA/h”.  Young’s modulus tissue is 

a known material property of brain tissue (~ 1 kPa).  Hence, by calculus, we can write 

 
1

𝑘𝑡𝑜𝑡𝑎𝑙
= ∫

𝑑𝑟

𝐸𝐿𝑟∆𝜃

𝑟3

𝑟2
 =

1

𝐸𝐿∆𝜃
∫

1

𝑟

𝑟3

𝑟2
𝑑𝑟 =

1

𝐸𝐿∆𝜃
𝑙𝑛 (

𝑟3

𝑟2
) .       (A8) 

 

Inverting Equation A8, the lumped spring constant of the stacked layers of ordinary brain tissue 

in one cylindrical domain  

 

r2 r3 

k1 k2 

L 



h 

kn 
. . . 
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𝑘𝑡𝑜𝑡𝑎𝑙 = ∆𝜃
𝐸𝑏𝑟𝑎𝑖𝑛 𝐿 

ln (
𝑟3
𝑟2

)
 .           (A9) 

 

The reactive pressure from expansion of the perivascular space of radius r2 equals the reactive 

force divided by area, ktotal * r2 / surface area or  

 

∆𝑃 =
𝑘𝑡𝑜𝑡𝑎𝑙∆𝑟2  

𝑟2∆𝜃𝐿
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)

∆𝑟2
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𝐸𝑏𝑟𝑎𝑖𝑛  

ln (
𝑟3
𝑟2

)

∆𝑟2

𝑟2
 .       (A10) 

 

 

The compliance of the sector of brain tissue is the incremental change in volume divided by the 

incremental change in pressure 

 

𝐶 =
∆𝑉

∆𝑃
=   

𝑟2 ∆𝜃𝐿∆𝑟2 
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𝑟3
𝑟2

)
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2 ∆𝜃𝐿 

𝐸𝑏𝑟𝑎𝑖𝑛
ln (

𝑟3

𝑟2
) .        (A11) 

 

 

Appendix 3: hydraulic resistance of the brain tissue domains 

 

Applying Darcy’s law for the flow of a viscous fluid through a porous medium, the fluid flow,  

𝑄 =   
𝜅𝐴∆𝑃 

𝜇𝐿
 , where P is the pressure difference across the medium, L is the length in the 

direction of flow, A is the cross-sectional area perpendicular to flow,  is the fluid viscosity, and 

 is permeability constant of the medium, the hydraulic resistance to fluid flow through a 

rectangular solid permeable medium is  

 

𝑅 =
∆𝑃

𝑄
=  

𝜇𝐿

𝜅𝐴
  .           (A12) 

 

This expression can be used to find the series resistance of two overlapping quarter cylindrical 

domains providing a diamond shaped path from the periarterial space to the perivenous space as 

shown in Figures 5 and 6.   

 

Consider the resistance of either periarterial or perivenous tissue domain having radius 

approximately equal to one half the distance between an artery and a vein at a given segmental 

level, namely r3/2 .  Using an algebraic approach very similar to that in Appendix 2 for 

concentric cylindrical shells, we have for a differential shell of brain tissue dr thick, at radius r , 

and having length, L , over sector  , 

 

𝑑𝑅 =  
𝜇

𝜅
∙

𝑑𝑟

𝑟∆𝜃𝐿
 .           (A13) 

 

Integrating, the resistance for one arterial or venous sector from r2 to 
𝑟3

2
 is  
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in terms of known material tissue properties and geometry.  Note, however, that the perivascular 

radius, r2 , for veins is not equal to, and typically larger than, the perivascular radius, r2 , for 

arteries.  During fluid flow from the periarterial space to the perivenous space, the back-to-back 

arterial and venous domains are in series.  Series resistances add.  So, the total resistance to flow 

from artery to vein is  

 

𝑅𝑏𝑟𝑎𝑖𝑛 =
𝜇

𝜅𝐿∆𝜃
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