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Abstract 

This paper presents an optimize method of the well known 

Redundancy Optimization Problem (ROP) using a combined ANT 

Colony System (ACS) and Universal Moment Generating Function 

(UMGF). The ACS searches for the minimum cost solution by 

selecting the appropriate components for a series-parallel system, 

given a minimum system reliability constraint. The UMGF is used to 

estimate the system reliability value during search. This approach is 

an example of a computationally efficient method to apply ACS 

optimization to problems for which repeated calculation of the 

objective function is impractical. 
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            Introduction 

  

Many of modern Power systems can perform the 

task at several different levels. In this case the system 

failure can lead to decreased capability to perform a 

given task, but not to complete failure. In addition, every 

system element also can perform its task with some 

different levels. For example, Power plant unit has its 

nominal generating capacity. If there are no failures the 

nominal capacity is available. Some kinds of failures can 

cause the complete unit outage while for some other 

failures the unit can work with reduced capacity. A 

system which can have some different task performance 

levels is named Multi-State Power System (MSPS). 

This paper uses an ACS combined with Ushakov‘s technique to solve the ROP 

for MSPS. The idea of employing ants of cooperating agents to solve combinatorial 

optimization problems was recently proposed in [1]. The ACO has been successfully 

applied to the classical traveling salesman problem in [2], to the quadratic assignment 

problem in [3], and to scheduling in [4]. Ant algorithm shows very good results in 

each applied area. It has been recently adapted for the reliability design of binary state 

systems in [5]. The ACO has also been adapted with success to other combinatorial 

optimization problems such as the vehicle routing problem in [6], telecommunication 

networks management in [7], and graph coloring in [8]. 

The remainder of this paper is organized as follows: In section 2, the 

Redundancy Optimization problem formulation is formulated. In section 3, the 

reliability estimation based on Ushakov’s technique is developed. In section 4, the ant 

algorithm is adapted to solve the Cost Structure Optimization Problem of MSPS. In 

section 5, illustrative example and numerical results are presented and discussed. 

Conclusions are drawn in section 6. 



  

  

            Formulation of the redundancy 

optimization problem 

  

            Series-parallel system with different 

redundant elements 

Let consider a series-parallel system containing n subcomponents Ci (i = 1, 2, 

…, n) in series as represented in Figure 1. Every component Ci contains a number of 

different elements connected in parallel. For each component i, there are a number of 

element versions available in the market. For any given system component, different 

versions and number of elements may be chosen. For each subcomponent i, elements 

are characterized according to their version v by their cost (Civ), availability (Aiv) and 

performance (iv). The structure of system component  can be defined by the 

numbers of parallel elements (of each version)  for , where  is a 

number of versions available for element of type i. Figure 1 illustrates these notations 

for a given component i. The entire system structure is defined by the vectors ki  = 

{kiv} (1 ≤ i ≤ n, 1 ≤v ≤ Vi). 

 

Figure 1. Structure of series parallel System 



  

For a given set of vectors k1, k2, …, kn the total investment cost of the system 

can be calculated as: 

 

(1) 

The problem of total investment-cost minimization, subject to reliability or 

availability constraints, is well known as the redundancy optimization problem 

(ROP).It can be formulated as follows: find the Structure (topology) corresponding to 

the minimal total cost, such that the corresponding reliability A exceeds or equal the 

specified desired A0: 

            Minimize 

 

(2) 

  

            Subject to 

A ≥ A0 (3) 

  

            System Reliability 

In electric power systems, reliability is considered as a measure of the system 

ability to meet the load demand (W), i.e., to provide an adequate supply of electrical 

energy (). This definition of the reliability index is widely used for power systems: 

see e.g., [9], and [10]. The Loss of Load Probability index (LOLP) is usually used to 

estimate the reliability index in [11]. This index is the overall probability that the load 

demand will not be met. Thus, we can write A = Proba (  W) and the LOLP= 1-A . 

This reliability index depends on consumer demand W. 

For reparable MSS, a multi-state steady-state availability E is used as Proba 

(  W). In the steady-state the distribution of states probabilities is given by equation 

(4), while the MSS stationary reliability is formulated by equation (5): 



 

(4) 

 

(5) 

            If the operation period T is divided into intervals (with durations T1, 

T2, …, TM) and each interval has a required demand level (W1, W2, …, WM , 

respectively), then the generalized MSS reliability index A is: 

 

(6) 

We denote by W and T the vectors  and  ( ), respectively. As 

the reliability A is a function of k1, k2, …, kn, W and T. In the case of electrical power 

system, the vectors W and T define the cumulative load curve (consumer demand). In 

general, this curve is known for every power system.  

In the classical reliability, much work was devoted to the binary state 

reliability analysis, where the system is either working perfectly or completely failed. 

In this paper, the system and its devices are considered to have a range of 

performance levels, MSS reliability theory will be used. The most of research works 

in MSS reliability can be found in [11] or [12]. Generally speaking, the methods of 

MSS reliability assessment are based on four different approaches:  

1. The structure function approach. 

2. The stochastic process (Markov) approach. 

3. The Monte-Carlo simulation technique. 

4. The universal moment generating function (UMGF) technique. 

In [11], a comparison between these four approaches highlights that the 

UMGF technique is fast enough to be used in the complex problems where the search 

space is sizeable. 



  

  

            Reliability estimation based on Ushakov's technique 

The last few years have seen the appearance of a number of works presenting 

various methods of quantitative estimation of systems consisting of devices that have 

a range of working levels in [13] and [14]. In general forms the series connection, the 

level of working is determined by the worst state observed for any one of the devices, 

while for parallel connection is determined by the best state. However, such the 

approach is not applicable for the majority of real systems. 

In this paper the procedure used is based on the universal z-transform, which is 

a modern mathematical technique introduced in [15]. This method, convenient for 

numerical implementation, is proved to be very effective for high dimension 

combinatorial problems. In the literature, the universal z-transform is also called 

UMGF or simply u-transform. The UMGF extends the widely known ordinary 

moment generating function [16]. The UMGF of a discrete random variable  is 

defined as a polynomial: 

 

(7) 

Where the variable  has  possible values and  is the probability that  is 

equal to j.  

The probabilistic characteristics of the random variable  can be found using 

the function u(z). In particular, if the discrete random variable  is the MSS stationary 

output performance, the availability A is given by the probability Proba( ≥ W) which 

can be defined as follows: 

Proba( ≥ W) = Φ(u(z)z-W) (8) 

Where Φ (a distributive operator) is defined by expressions (9) and (10): 



 

(9) 

 

(10) 

It can be easily shown that equations (9)-(10) meet the condition: 

. By using the operator Φ, the coefficients of polynomial u(z) 

are summed for every term with j  W, and the probability that  is not less than 

some arbitrary value W is systematically obtained. 

Consider single devices with total failures and each device i has nominal 

performance i and reliability Ai. The UMGF of such an element has only two terms 

can be defined as: 

ui(z) = (1-Ai)z
0 + Aiz

i = (1-Ai) + Aiz
i (11) 

To evaluate the MSS availability of a series-parallel system, two basic 

composition operators are introduced. These operators determine the polynomial u(z) 

for a group of devices. 

  

  

            Parallel devices 

Let us consider a system device m containing Jm devices connected in parallel. 

The total performance of the parallel system is the sum of performances of all its 

devices. In power systems, the term capacity is usually used to indicate the 

quantitative performance measure of a device in [17]. The u-function of MSS device 

m containing Jm parallel devices can be calculated by using the  operator: 

up(z) = (ui(z), u2(z), …, un(z))   



where . 

Therefore for a pair of devices connected in parallel: 

 

  

The parameters ai and bj are physically interpreted as the performances of the 

two devices. n and m are numbers of possible performance levels for these devices. Pi 

and Qj are steady-state probabilities of possible performance levels for devices. One 

can see that the  operator is simply a product of the individual u-functions. Thus, the 

device UMGF is: . Given the individual UMGF of devices defined in 

equation (11), we have: 

 

  

  

  

            Series devices 

When the devices are connected in series, the device with less performance 

becomes the bottleneck of the system. This device therefore defines the total system 

productivity. To calculate the u-function for system containing n devices connected in 

series, the operator δ should be used: us(z) = δ(u1(z), u2(z),…,um(z)), where δ(1, 2, 

…,3) = min{1, 2, …, m}, so that: 

 

  



Applying composition operators  and δ consecutively, one can obtain the 

UMGF of the entire series-parallel system. To do this we must first determine the 

individual UMGF of each device. 

  

  

            Devices with total failures 

Let’s consider the usual case where only total failures are considered and each 

subsystem of type i and version vi has nominal performance iv and availability Aiv. In 

this case, we have: Proba( = iv) = Aiv and Proba( = W) = 1-Aiv. 

The UMGF of such an device has only two terms can be defined as in 

equation (11) by u*
i(z) = (1-Aiv)z

0 + Aivz
iv = 1-Aiv + Aivz

iv. Using the  operator, we 

can obtain the UMGF of the i-th system device containing ki parallel devices: ui(z) = 

(u*
i(z))ki = (Aivz

iv + (1-Aiv))
ki. 

The UMGF of the entire system containing n devices connected in series is: 

 

(12) 

To evaluate the probability Proba( ≥W) for the entire system, the operator Φ 

is applied to equation (12): 

Proba( ≥W) = Φ(us(z)z-W) (13) 

  

  

            The Ant Colony System Approach 



  

Ant Colony Optimization (ACO) is one of the adaptive meta-heuristic 

optimization methods inspired by nature which include simulated annealing, genetic 

algorithms and tabu search. ACO is distinctly different from these methods in that it is 

a constructive, rather than an improvement, algorithm. ACO was inspired by the 

behaviour of real ants. Ethologists have studied how blind animals, such as ants, could 

establish shortest paths from their nest to food sources. The medium that is used to 

communicate information among individual ants regarding paths is pheromone trails. 

A moving ant lays some pheromone on the ground, thus marking the path. The 

pheromone, while gradually dissipating over time, is reinforced as other ants use the 

same trail. Therefore, efficient trails increase their pheromone level over time while 

poor ones reduce to null. Inspired by this behaviour of real ants, Marco Dorigo first 

introduced the ant colony optimization approach in his Ph.D. thesis in 1992 [17] and 

expanded it in his further work as summarized in [18, 19, 20, 2 1]. 

  

            The general algorithm 

To apply the ACO meta-heuristic to a combinatorial optimization problem, it 

is convenient to represent the problem by a graph G = (N, S), where N are the nodes 

and S is the set of edges. To represent our problem as such a graph, the set of nodes N 

is given by subsystem and components, and edges connect each subsystem to its 

available components. Some nodes are added to represent positions where additional 

component was not used. As in [19], these nodes are called blanks nodes and have 

attributes of zero. The obtained graph is partially connected. Ants cooperate by using 

indirect from of communication mediated by pheromone they deposit on the edges of 

the graph G while building solutions. 

In fact, the algorithm works as follows: M ants are initially positioned on node 

representing a subsystem. Each ant looks for a solution and represents one possible 

topology of the entire system. This topology is represented by Ki devices put in 

parallel for n different components. The Ki devices can be chosen among any 

combination from Vi available type of components. Each ant builds a feasible solution 



(tour) to the reliability optimization problem. Applying this iteration becomes a 

stochastic rule. At each constructing solution, ant also modifies the amount of 

pheromone for each visited edges by local updating rule. When all ants finished their 

tour, a pheromone amount is modified again by global updating rule. A heuristic 

information (ij) and pheromone amount (ij) guide the ants to build the best solution 

to select Ki best reliabilities devices in each subsystem. At each node i an ant is 

positioned to choose the device j by applying the simple expression: 

 

(14) 

And J is chosen according to the probability: 

 

(15) 

where  =the relative importance of the trail;  = the relative importance of the 

heuristic information ij; ACi = the set of available reliable devices choices for 

subsystem i; q = random number uniformly generated between 0 and 1. 

The heuristic information used is: ij=1/(1+Aij) where Aij represents the 

associated reliable of device j for subsystem i. A “tuning” factor ti= ij=1/(1+Ai(Mi+1)) 

is associated to blank device (Mi+1) of subsystem i. the reliable devices is arranged 

from the best one to the bed one. The parameter qo determines the relative importance 

of exploitation versus exploration: every time an ant in subsystem i have to choose a 

device j, it samples a random number 0 ≤ q ≤ 1. If q ≤ qo then the best edge, according 

to (14), is chosen (exploitation), otherwise an edge is chosen according to (15). 

  

            The local updating pheromone 



While the ants built a solution of the reliability optimization problem, these 

ants choose reliable device by the visiting edges on the graph G, and their pheromone 

level is updated by local rule given by: 

 

(16) 

Where  is a coefficient such that (1-) represents the evaporation of trail and 

0 is an initial value of trail intensity. It is initialized to the value(n.TAnn)
-1 with n is the 

size of the problem (i.e. number of subsystem and total number of available devices) 

and TAnn is the result of a solution obtained through some simple heuristic. 

  

            The global updating pheromone 

After all ants have built a complete configuration, pheromone is updated, only 

for the best ant. A amount of pheromone ij is deposited on each edge that the best 

ant has used. This amount is given by 1/TAnm-best where TAnm-best is the reliable device 

system design. Therefore, the global updating pheromone can be given as: 

 

(17) 

Such as: 

 

(18) 

The followings are formal description of the algorithm. 

Set NC:=0                  (NC: cycle counter) 

For every edge (i,j) set an initial value ij(0)= o 

            1. For k=1 to NbAnt do 

            2. For i=1 to NbSubSystem do 

                       For j=1 to MaxComponents do 



             Choose a component, including blanks, 

according to (14) and (15). 

                        Local update of pheromone trail for chosen 

subsystem- component edge (i,j)0: 

                                                           

           End For 

End For 

3. Calculate Rk (system reliability for each ant) 

            Calculate the total cost for each ant TCk 

                Update the best found feasible solution 

4.      Global update of pheromone trail: 

For each edge (i,j) best feasible solution, update the pheromone trail 

according to: 

             

             

End For 

5.      cycle = cycle +1 

6.      if (NC < NCmax) and ( not stagnation behaviour) 

Then  

      Go to step 2 

Else 

                 Print the best feasible solution and components 

selection. 

      Stop.  

  

  



            Illustrative Example 
  

In order to illustrate the proposed ant colony algorithm, a numerical example 

is solved by use of the data given in tables 1. Table 1 shows the demands levels as a 

percentage of the maximum load. 

  

Table 1. Parameters of the cumulative demand curve 

Demand level (%) 100 80 50 20 

Duration (h) 4203 788 1228 2536 

  

Each element of the sub-system is considered as a unit with total failures. 

Table 2 contains the data of cumulative demand. Table 3 presents the obtained 

configuration. 

  

Tables 2. Data examples 

Sub # Devi # Avai A Cost C Per  

Power Units 1 

1 

2 

3 

4 

5 

6 

7 

0.980 

0.977 

0.982 

0.978 

0.983 

0.992 

0.984 

0.590 

0.535 

0.470 

0.42 

0.40 

0.18 

0.22 

120 

100 

85 

85 

48 

31 

26 

HT 

Transformers 
2 

1 

2 

3 

4 

5 

0.995 

0.996 

0.997 

0.997 

0.998 

0.205 

0.189 

0.091 

0.056 

0.042 

100 

92 

53 

28 

21 

HT lines 3 

1 

2 

3 

4 

0.971 

0.973 

0.971 

0.976 

0.985 

0.885 

0.872 

0.158 

100 

60 

40 

20 



HT/MT 

Transformers 
4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

  0.977  0.978 

0.978 

0.983 

0.981 

0.971 

0.935 

0.982 

0.977 

0.18 

0.16 

0.15 

0.121 

0.102 

0.096 

0.071 

0.715 

0.044 

115 

100 

91 

72 

72 

72 

55 

25 

25 

Comp #: System component number; Vers #: System version number 

  

Table 3. Computing Results 

Constraint 
Optimal Topology 

  

Ad A C(MillionU€) 

0.97 

Subsys 1 

Subsys 2 

Subsys 3 

Subsys 4 

6 4 7 1 3 6 5 

5 1 4 2 3 

2 4 3 4 

6 9 2 5 8 7 3 1 4 

0.9860 19.942 

0.95 

Subsys 1 

Subsys 2 

Subsys 3 

Subsys 4 

6 2 5 7 3 6 4 

5 1 4 3 2 

4 3 4 4 

4 6 3 5 9 8 1 7 2 

0.9502 17.252 

  

  

            Description of the system to be optimized 

The electrical power station system which supplies the consumers is designed 

with four basic sub-systems (stations) as depicted in Figure 2. This figure showed the 

detailed process of the electrical power station system distribution. 



The process of electrical power system distribution follows as: The electrical 

power is generated from the station units (component 1). Then transformed for high 

tension (HT) by the HT transformers (component 2) and carried by the HT lines 

(component 3). A second transformation in HT/MT transformers (component 4), 

which supplies the MT load (throw the MT lines). Each element of the system is 

considered as unit with total failures. 

  

 

Figure 2. Detailed generating power station system 

  

To provide a desired availability or reliability “t“ present time, the system 

should be expended by the choice among several products available on the market. 

The characteristics for each type of equipment are presented in Table 2. 

This latter shown for each Device (Devi) availability A, nominal performance 

 and cost unit C. both the equipment performance (capacity) and the demand levels 

can be measured as a percentage of the maximum boiler capacity (Demand) at each 

stage. Interval duration of load can be measured as a fraction (percentages %) of the 

total operation time. 

  

  



  

  

            Results and Discussion 

  

Table 3 illustrate the computation of two basic indices (cost and reliability) 

corresponding to their optimal or near optimal structure. 

In order to show the effect of the desired availability on the investments cost. 

Two different values of Ad are considered. 

The best system structures, obtained by the suggested approach for two 

desired reliability levels Ad (0.97 and 0.9), are determined by the number and the 

version of components in each subsystem 

The solution depends strongly of ACS parameter choices. An experiment is 

implemented. In this experiment a set of values parameters of ACS algorithm are 

tested, the choice of these values affects strongly the solutions.  The best values that 

show the best structure are:  = 5,  = 2, 0 = 0.05 and  = 0.008.  

  

  

            Conclusion 

  

In conclusion, in this paper we have shown that the hybrid approach which 

combines between the UMGF and the ANT system is an interesting approach to solve 

the Redundancy Optimization Problem. This approach allows us to minimize the total 

investments cost subject to availability constraint. 

This approach will be especially applicable to problems where an exact 

calculation of objective function is not possible. This situation is found in 



Redundancy Optimization Problem in complex and/or large Multi state Power 

Systems. 
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