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A Weakly Overlapping Parallel Domain Decomposition Preconditioner
for the Finite Element Solution of Convection-Dominated Problems in
Three Dimensions

Peter K. Jimack®* Sarfraz A. Nadeem?®'
2Computational PDEs Unit, School of Computing, University of Leeds, L.S2 9JT, UK

In this paper we describe the parallel application of a novel two level additive Schwarz
preconditioner to the stable finite element solution of convection-dominated problems in
three dimensions. This is a generalization of earlier work, [2,6], in 2-d and 3-d respec-
tively. An algebraic formulation of the preconditioner is presented and the key issues
associated with its parallel implementation are discussed. Some computational results
are also included which demonstrate empirically the optimality of the preconditioner and
its potential for parallel implementation.

1. INTRODUCTION

Convection-diffusion equations play a significant role in the modeling of a wide variety
of fluid flow problems. Of particular challenge to CFD practitioners is the important case
where the convection term is dominant and so the resulting flow contains small regions
of rapid change, such as shocks or boundary layers. This paper will build upon previous
work of [1,2,6] to produce an efficient parallel domain decomposition (DD) preconditioner
for the adaptive finite element (FE) solution of convection-dominated elliptic problems of
the form

—eVPu+b-Yu=f onQCR3, (1)

where 0 < ¢ << |||, subject to well-posed boundary conditions. An outline of the parallel
solution strategy described in [1] is as follows.

1. Obtain a finite element solution of (1) on a coarse mesh of tetrahedra and obtain
corresponding a posteriori error estimates on this mesh.

2. Partition €2 into p subdomains corresponding to subsets of the coarse mesh, each
subset containing about the same total (approximate) error (hence some subdomains
will contain many more coarse elements than others if the a posterior: error estimate
varies significantly throughout the domain). Let processor ¢ (i = 1, ..., p) have a copy
of the entire coarse mesh and sequentially solve the entire problem using adaptive
refinement only in subdomain i (and its immediate neighbourhood): the target
number of elements on each processor being the same.
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3. A global fine mesh is defined to be the union of the refined subdomains (with possible
minor modifications near subdomain interfaces, to ensure that it is conforming),
although it is never explicitly assembled.

4. A parallel solver is now required to solve this distributed (well load-balanced) prob-
lem.

This paper will describe a solver of the form required for the final step above, although the
solver may also be applied independently of this framework. The work is a generalization
and extension of previous research in two dimensions, [2], and in three dimensions, [6]. In
particular, for the case of interest here, where (1) is convection dominated, a stabilized FE
method is required and we demonstrate that the technique introduced in [2,6] may still
be applied successfully. The following section of this paper provides a brief introduction
to this preconditioning technique, based upon what we call a weakly overlapping domain
decomposition, and Section 3 presents a small number of typical computational results.
The paper concludes with a brief discussion.

2. THE WEAKLY OVERLAPPING DOMAIN DECOMPOSITION PRE-
CONDITIONER

The standard Galerkin FE discretization of (1) seeks an approximation uy to u from a
finite element space Sy, such that

6/92uh-2vdg+/ﬂ(b-2uh)vd@z/nfvdg (2)

for all v € S, (disregarding boundary conditions for simplicity). Unless the mesh is
sufficiently fine this is known to be unstable when 0 < ¢ << ||b|| and so we apply a more
stable FE method such as the streamline-diffusion algorithm (see, for example, [7] for
details). This replaces v in (2) by v+ ab- Vv to yield the problem of finding u;, € Sj, such
that

5/92%-2(@4—04@-2@) dg—k/ﬂ(b-ﬂu@(v—i—ab-lv) dz=/9f(v+ab-2v) dz. (3)

for all v € §p,. In general « is chosen to be proportional to the mesh size h and so, as the
mesh is refined, the problem (3) approaches the problem (2).

Once the usual local FE basis is defined for the space Sp,, the system (3) may be written
in matrix notation as

Au=15>. (4)

If the domain (2 is partitioned into two subdomains (the generalization to p subdomains
is considered below), using the approach described in Section 1 for example, then the
system (4) may be written in block-matrix notation as
A1 0 B1 Ql il
0 A2 B2 Uo = i2 . (5)
C: Cy A Ug /
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Here u; is the vector of unknown finite element solution values at the nodes strictly inside
subdomain i (7 = 1, 2) and wu, is the vector of unknown values at the nodes on the interface
between subdomains. The blocks A;, B;, C; and f, represent the components of the FE
system that may be assembled (and stored) independently on processor i (1 = 1,2).
Furthermore, we may express

As = Asq) +Asey and fo= is(l) + is(2) ’ (6)

where A, and [ @) are the components of A; and f_ respectively that may be calculated

(and stored) independently on processor i.

The system (5) may be solved using an iterative technique such as preconditioned
GMRES (see [10] for example). Traditional parallel DD solvers typically take one of
two forms: either applying block elimination to (5) to obtain a set of equations for the
interface unknowns u, (e.g. [5]), or solving the complete system (5) in parallel (e.g. [3]).
The weakly overlapping approach that we take is of the latter form. Apart from the
application of the preconditioner, the main computational steps required at each GMRES
iteration are a matrix-vector multiplication and a number of inner products. Using the
above partition of the matrix and vectors it is straightforward to perform both of these
operations in parallel with a minimal amount of interprocessor communication (see [4] or
[5] by way of two examples). The remainder of this section therefore concentrates on an
explanation of our novel DD preconditioner.

Our starting point is to assume that we have two meshes of the same domain which
are hierarchical refinements of the same coarse mesh. Mesh 1 has been refined heavily
in subdomain 1 and in its immediate neighbourhood (any element which touches the
boundary of a subdomain is defined to be in that subdomain’s immediate neighbourhood),
whilst mesh 2 has been refined heavily in subdomain 2 and its immediate neighbourhood.
Hence, the overlap between the refined regions on each processor is restricted to a single
layer at each level of the mesh hierarchy. Figure 1 shows an example coarse mesh, part
of the final mesh and the corresponding meshes on processors 1 and 2 in the case where
the final mesh is a uniform refinement (to 2 levels) of the initial mesh of 768 tetrahedral
elements. Throughout this paper we refine a tetrahedron by bisecting each edge and
producing 8 children. Special, temporary, transition elements are also used to avoid
“hanging nodes” when neighbouring tetrahedra are at different levels of refinement. See
[11] for full details of this procedure.

The DD preconditioner, P say, that we use with GMRES when solving (5) may be
described in terms of the computation of the action of z = P‘lj_a. On processor 1 solve
the system

A0 B[] [ oa ]
0 42 By Zy1 | = M22_72 ) (7)
| C1 Cy Ay || 251 | L P,
and on processor 2 solve the system
(A, 0 B[ 219 | [ M11_71 |
0 Ay B Z22 | = p, ) (8)
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Figure 1. An initial mesh of 768 tetrahedral elements (top left) refined uniformly into
49152 elements (top right) and the corresponding meshes on processor 1 (bottom left)
and processor 2 (bottom right).

|
/
i

N
T
|
=
B
/

s
!
/
i

then set
21 Z1,1
Z2 | = . 2292 . (9)
Zs 2 (gs,l + gs,Q)

In the above notation, the blocks 1212, By and C, (resp. fll, By and él) are the assembled
components of the stiffness matrix for the part of the mesh on processor 1 (resp. 2) that
covers subdomain 2 (resp. 1). These may be computed and stored without communication.
Moreover, because of the single layer of overlap in the refined regions of the meshes, A;
may be computed and stored on each processor without communication. Finally, the
rectangular matrix M; (resp. Ms) represents the restriction operator from the fine mesh
covering subdomain 1 (resp. 2) on processor 1 (resp. 2) to the coarser mesh covering
subdomain 1 (resp. 2) on processor 2 (resp. 1). This is the usual hierarchical restriction
operator that is used in most multigrid algorithms (see, for example [9]).

The generalization of this idea from 2 to p subdomains is straightforward. We will
assume for simplicity that there is a one-to-one mapping between subdomains and pro-
cessors. Each processor, i say, produces a mesh which covers the whole domain (the
coarse mesh) but is refined only in subdomain i, €2; say, and its immediate neighbour-
hood. Again, this means that the overlapping regions of refinement consist of one layer



of elements at each level of the mesh. For each processor i the global system (4) may be
written as

0 A B a | =1 f; | (10)
Ci G Ai,s U; g f

where now u; is the vector of finite element unknowns strictly inside §2;, u;, ; is the vector
of unknowns on the interface of €; and 4, is the vector of unknowns (in the global fine
mesh) outside of ;. Similarly, the blocks A;, B;, C; and f, are all computed from the
elements of the mesh inside subdomain i, etc.

The action of the preconditioner (z = P~ 'p), in terms of the computations required on
each processor i, is therefore as follows.

(i) Solve
4; 0 B Zi P
0 A B Z | =| Mp; | . (11)
Ci C; A Zis p

24,8

(ii) Replace each entry of z; ; with the average value over all corresponding entries of z;
on neighbouring processors j.

In (11) A;, B; and C; are the components of the stiffness matrix for the mesh stored on
processor i (this is not the global fine mesh but the mesh actually generated on processor
i) which correspond to nodes outside of ;. The rectangular matrix M; represents the
hierarchical restriction operator from the global fine mesh outside of §; to the mesh on
processor i covering the region outside of ;.

The main parallel implementation issue that now needs to be addressed is that of
computing these hierarchical restrictions, Mi[_ii, efficiently at each iteration. Because each
processor works with its own copy of the coarse mesh (which is locally refined) processor
1 must contribute to the restriction operation Mj]_ij for each j # i, and processor j must

contribute to the calculation of Mi;z_ii (for each j # 7). To achieve this, processor i restricts
its fine mesh vector p, (covering €2;) to the part of the mesh on processor j which covers
€2; (received initially from j in a setup phase) and sends this restriction to processor j (for
each j # 7). Processor i then receives from each other processor j the restriction of the fine
mesh vector p; (covering €2; on processor j) to the part of the mesh on processor 7 which

covers {2;. These received vectors are then combined to form Mi}_iz. before (11) is solved.
The averaging of the z;, in step (ii) above requires only local neighbour-to-neighbour
communication.

3. COMPUTATIONAL RESULTS

All of the results presented in this section were computed with an ANSI C implementa-
tion of the above algorithm using the MPI communication library, [8], on a shared memory
SG Origin2000 computer. The NUMA (non-uniform memory access) architecture of this
machine means that timings for a given calculation may vary significantly between runs
(depending on how the memory is allocated), hence all timings quoted represent the best
time that was achieved over numerous repetitions of the same computation.



Table 1

The performance of the proposed DD algorithm using the stabilized FE discretization of
the convection-diffusion test problem for two choices of e: figures quoted represent the
number of iterations required to reduce the initial residual by a factor of 10°.

e=10"2 e=1073
Elements/Procs. || 2 4 8 16 2 4 8 16
6144 3 4 4 6 d d d 7
49152 3 4 4 6 4 3 d 7
393216 3 4 ) 7 4 3 d 6
3145728 3 5 6 8 3 4 3 7
Table 2

Timings for the parallel solution using the stabilized FE discretization of the convection-
diffusion test problem for two choices of : the solution times are quoted in seconds and
the speed-ups are relative to the best sequential solution time.

e =102 e=10"3
Processors 1 2 4 8 16 1 2 4 8 16
Solution Time ||770.65[484.53|347.61|228.39|136.79||688.12(442.44|277.78/187.16/108.75
Speed-Up — 1.6 | 22 | 34 | 5.6 — 1.6 | 25 | 3.7 | 6.3

We begin with a demonstration of the quality of the weakly overlapping DD precon-
ditioner when applied to a convection-dominated test problem of the form (1). Table 1
shows the number of preconditioned GMRES iterations that are required to solve this
equation when b* = (1,0, 0) and f is chosen so as to permit the exact solution

_ ew/s
u= ( - %) y(1—9)=(1 - 2) (12)

on the domain 2 = (0,2) x (0,1) x (0,1). Two different values of € are used, reflecting the
width of the boundary layer in the solution in the region of x = 2. For these calculations
the initial grid of 768 tetrahedral elements shown in Figure 1 (top left) is refined uniformly
by up to four levels, to produce a sequence of meshes containing between 6144 and 3145782
elements.

It is clear that, as the finite element mesh is refined or the number of subdomains is
increased, the number of iterations required grows extremely slowly. This is an essential
property of an efficient preconditioner. In fact, the iteration counts of Table 1 suggest that
the preconditioner may in fact be optimal (i.e. the condition number of the preconditioned
system is bounded as the mesh is refined or the number of subdomains is increased),
however we are currently unable to present any mathematical confirmation of this. In
Table 2 we present timings for the complete FE calculations tabulated above on the finest
mesh, with 3145728 tetrahedral elements.



Figure 2. An illustration of the partitioning strategy, based upon recursive coordinate
bisection, used to obtain 2, 4, 8 and 16 subdomains in our test problem.

4. DISCUSSION

There are a number of features concerning the parallel timings in Table 2 that warrant
further discussion. Perhaps the most important of these is that the algebraic action of
the preconditioner that we have applied depends not only on the number of subdomains
p, but also on the geometric properties of these subdomains. In each case the parallel
implementation of these algorithms may be very efficient but if the algorithm itself is such
that its sequential execution time is greater than that of the fastest available sequential
algorithm (for this work we use [10]) then the speed-up will be adversely affected. In an
effort to minimize this particular parallel overhead we have selected a simple partitioning
strategy based upon recursive coordinate bisection. This strategy, illustrated in Figure
2, led to the best solution times that we were able to achieve in practice (from the small
number of partitioning techniques so far considered). Furthermore, inexact solutions to
the systems (11) have been used: reducing the residual by a factor of just 10 at each
approximate solve (again using [10]). Whilst this can have the effect of slightly increasing
the total number of iterations required for convergence it appears to yield the fastest
overall solution time.

The main advantage of the partitions illustrated in Figure 2 is that the surface-area to
volume ratio of the subdomains is small. This means that both the amount of additional
refinement and the quantity of neighbour-to-neighbour communication is relatively small,
making the cost of each iteration as low as possible. For convection-dominated problems
however the number of preconditioned iterations required to converge to the solution may
be decreased from those given in Table 1 by selecting a partition which contains long



thin subdomains that are aligned with the convection direction. This trade-off that exists
between minimizing the number of iterations required and minimizing the cost of each
iteration is an important issue that is worthy of further investigation.

In addition to the particular question of subdomain shape and the more general issue
of the overall partitioning strategy there are a number of further lines of research that
need to be undertaken. When a nonlinear elliptic PDE is solved for example, the FE
discretization leads to a nonlinear algebraic system which may be solved using a quasi-
Newton method. At each nonlinear iteration a linear Jacobian system must be dealt
with, and the Jacobian matrix itself may be partitioned and assembled in parallel using
the block pattern of (10). These linear systems may then be solved using the weakly
overlapping preconditioner to obtain a parallel nonlinear DD algorithm. The extension
to linear and nonlinear systems of PDEs may then be undertaken and assessed.
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