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ABSTRACT

The relationship between the shape of finite elements in unstructured meshes and the
error that results in the numerical solution is of increasing importance as finite elements
are used to solve problems with highly anisotropic and, often, very complex solutions.
This issue is explored in terms of a priori and a posteriori error estimates, and through
consideration of the practical issues associated with assessing element shape quality and
implementing an adaptive finite element solver.

Key words. anisotropic finite elements, a priori estimates, a posteriori estimates,
element shape, maximum angle condition

1.1 INTRODUCTION

The solutions of many important partial differential equations (PDEs) possess features
whose accurate resolution using finite element (FE) trial functions requires local refine-
ment of the underlying computational mesh. Frequently however these solution features
are strongly directional, with the principal length scale in one direction being significantly
smaller than in others. Examples of such features include boundary layers, shocks and
edge singularities. The most efficient FE trial spaces for representing these solutions are
defined by the use of anisotropic meshes whose elements have an orientation and geometry
which reflect the nature of the solution itself. In this paper we present a brief overview of
some of our work towards better understanding the practical issues associated with using
such anisotropic meshes. This begins by considering how one might define anisotropic
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elements in 2D and 3D and the observation that, in order to realize improved a priori
estimates using such elements, interpolation error estimates which make explicit use of
anisotropy need to be derived. This is discussed in §1.2, which also shows how improved «
priori estimates may be made for certain model problems when an appropriate sequence
of anisotropic meshes is considered. Section 1.3 of the paper then considers a posteriori
error estimates on anisotropic meshes. It is observed that conventional a posteriori esti-
mates are not generally appropriate for anisotropic elements and a number of modified
estimators are considered for two different types of PDE.

Having introduced a fundamental theory which is applicable to appropriately aligned
anisotropic meshes in §§1.2 and 1.3, the final parts of the paper discuss some of the algo-
rithmic issues associated with mesh shape and anisotropic mesh adaptivity respectively.
In §1.4 a practical means of quantifying the quality of the shape of a tetrahedron is in-
troduced and its use in estimating interpolation error is illustrated. This is followed by a
brief comparison with some other known element quality indicators. Finally, in §1.5 the
adaptive solution of a 3D hyperbolic test problem is considered. It is demonstrated that
the use of anisotropic elements can improve the solution process through the addition of a
very simple “r-refinement” strategy to a conventional isotropic “h-refinement” algorithm.

1.2 A PRIORI ERROR ESTIMATION

(Classical finite element theory assumes that the aspect ratio of the finite elements is
bounded. In contrast to this, the aspect ratio of anisotropic finite elements is large, and
may even be unbounded in the limit. If we wish to use such elements we must be aware that
the whole finite element theory has then to be reassessed. In order to convince ourselves
of the necessity of anisotropic mesh refinement consider the following two examples.

Example 1 Consider the Poisson equation, —Au = f in , with Dirichlet boundary
conditions, u = ¢ on 0F), in a polyhedral domain Q C R>. It is well known that the
solution u has singularities of 7* type near edges with interior angle w, with A = 7/w < 1
for w > . Since r is here the distance to the edge and the solution is more regular in the
direction of the edge, the solution behaves anisotropically.

As a result of this singularity, the finite element method with piecewise linear shape
functions on a quasi-uniform family of tetrahedral meshes converges with order A* in the
energy norm. To recover the optimal convergence order h, an anisotropically refined finite
element mesh is suggested, see Figure 1.1 for an example mesh in the neighbourhood of
an edge. Such meshes have been described, and the optimal convergence order has been
proved by Apel et al. [1, 2, 5] under different assumptions on the data and also for higher
order shape functions. Several refinement strategies are compared in [4].

Example 2 The solution of the singularly perturbed reaction-diffusion problem —e?Au+
cu= fin Q = (0,1)%, u = 0 on IQ, behaves like 1 — e~"/*. r being here the distance to
9. Therefore the fth derivative in the normal direction grows with e~ in a boundary
layer of width O(¢|Ine|), while derivatives in the tangential direction are not affected by
ek 1.

Consequently, the finite element method with trial functions of degree k converges
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: . : Fi 1.2: Anisotropi h in a bound
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Figure 1.3: lustration of the definition of the element sizes.

in the energy norm like [||u — uy ||| < Ch*e'/27% on a family of quasi-uniform meshes.
Anisotropic refinement in the boundary layer, as shown in Figure 1.2, leads to the the
optimal error estimate || u — uy || < Ch*(e'/27% + h) [1, 3], § > 0 arbitrarily small. We
note that the number of unknowns is of the order A~%, d being the space dimension, in
both examples. Moreover, an optimal error estimate that is uniform in the perturbation
parameter ¢, cannot be obtained with isotropic mesh refinement.

One of the basic tasks in finite element theory is to estimate the local interpolation
error. Such error estimates are needed for a priori estimates of the finite element error, for
the theory of error estimators, and in the multilevel theory for the solution of the resulting
systems of equations. For simplicity, let us focus here on Lagrange interpolation with
linear trial functions on simplicial elements as one of the simplest interpolation operators,
though this operator is not suited for interpolating functions with low regularity.

(Classical finite element theory leads to the estimate

lu — Thulypx < Cahluls, k,

where we denote by a the aspect ratio of the element K and by ||, ;. x the usual seminorm
in W"?(K). The dependence on the aspect ratio was removed in the fifties ([17]) and
seventies ([6, 10]), but the resulting error estimate was still not satisfactory because only
the diameter h of the element appears in the estimate.
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In order to compensate large norms of certain directional derivatives of the solution u
by a small element size in this direction, we need sharper estimates, like

d

ou
lu — Thulipe < CD_h
=1

8;1%

, (1.1)

1,p,K

where h; are suitably defined element sizes (see Figure 1.3 for a possible definition). We
emphasize that a refined estimate on the reference element is necessary for the proof of
such estimates, see [1, Example 2.1]. Moreover, the geometry of the elements is restricted
by a maximal angle condition (see also §1.4 below). Anisotropic local interpolation error
estimates may now be derived. Indeed, such estimates have been proved by Apel et al. for
several element types (triangles, quadrilaterals, tetrahedra, triangular prisms, hexahedra,
including some subparametric and non-conforming elements), for trial functions of arbi-
trary order, and under various smoothness assumptions on the function to be interpolated
(including functions from weighted Sobolev spaces) [1, 2].

We stress that anisotropic elements must be treated carefully. For example, estimate
(1.1) is valid for simplicial elements and linear trial functions under the following assump-
tions on p. In the 2D case (1.1) is valid for the whole range of p, p € [1,c0]. However,
in the 3D case the estimate is valid for p € (3/2, oo] for isotropic elements but only for
p € (2, 00] for anisotropic elements. There is a counterexample for p < 2, see [2]. For the
interpolation of less regular functions one can use modified Scott—Zhang interpolants [1].

1.3 A POSTERIORI ERROR ESTIMATION

The fundamental requirements of an adaptive algorithm that is able to exploit the use of
anisotropic elements are that information on the stretching direction of the anisotropic
elements, the stretching ratio (or aspect ratio) of the elements and the size of the ele-
ments should be utilized. None of these issues have yet been fully understood however.
For example, the stretching direction and ratio are often determined (heuristically) by
investigation of the Hessian matrix, but other approaches may equally well be employed
(see § 1.5 for example). The question of the appropriate element size is closely related to
a posteriori error estimation.

Research into error estimators for anisotropic meshes has been intensified in recent
years. So far, many applications of anisotropic elements utilize heuristic arguments and
lack rigorously analyzed error estimators. Some strictly mathematically-based estimators
have appeared recently however, due to Siebert [16], Kunert [13, 14], Kunert and Verfiirth
[15] and Dobrowolski et al. [9]. Before discussing these estimators in more detail, let us
comment on an important feature that seems to be inherent in anisotropic error estima-
tors. The theory of these estimators is not as complete as for isotropic elements since,
at this time, no error estimator is known that bounds the error reliably from above and
below, independently of the mesh 7, and the solutions u and wuj. In other words, the
effectivity index cannot be guaranteed to be O(1). This rather unsatisfactory situation
can be interpreted in two ways.

e If the error is to bounded from above and below without further assumplions on
u, up, Tn, then the two error bounds have to contain different terms. Hence fwo
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error estimators would be required, one for each bound.

e If a single error estimator is to give upper and lower error bounds, then the mesh 7y,
and the solutions u, uy have to correspond in some way. For example, the anisotropy
of T, may have to be aligned with the anisotropy of u to result in an effectivity index
O(1). Such assumptions on w,u, Tp can be seen in the aforementioned work, and
are briefly discussed below.

In the following paragraphs we briefly describe existing approaches to anisotropic a pos-
teriort error estimation. Rather than giving detailed formulae we attempt to present the
main ideas and results for each of the estimators. We begin by investigating the Poisson
problem (see e.g. Example 1 of the previous section).

Siebert [16] considers anisotropic rectangular, cuboidal or prismatic meshes and derives
a residual error estimator by measuring and weighting the residuals (i.e. gradient jumps
and element residual). Two specific assumptions on u,up, 7, guarantee a global upper
and a local lower error bound in the energy norm.

In Kunert [14], a residual error estimator for tetrahedral or triangular meshes is pre-
sented, thus giving a greater geometrical flexibility. Moreover, it improves Siebert’s esti-
mator by means of better weights of the gradient jumps. Hence one of Siebert’s assump-
tions is superfluous. The remaining assumption on u,uy, 75 is expressed by a so-called
matching function my(v,7T;,) which measures how well an anisotropic mesh 7}, is aligned
with an anisotropic function v (see [13] for details). The matching function m; (v —us, 7Tp)
enters the upper bound of the error: the better the mesh 7} is suited to the problem,
the sharper the error bound will be. Note that although m;(u — us, Ts) cannot be cal-
culated exactly, it can be approximated numerically ([13]). In Kunert and Verfiirth [15]
a modification of the previous residual error estimator is analyzed. The difference being
that the gradient jumps alone suffice to define the estimator, i.e. the element residuals are
omitted. All conclusions and results remain valid. Kunert has also derived a recent error
estimator based on the solution of a local problem which is given for tetrahedral meshes.
The appropriate choice of local problem appears to be more critical than for the isotropic
case, leading to a result very similar to that obtained for the residual error estimation.

Zienkiewicz—7Zhu (77) type error estimators utilize a postprocessing procedure (like an
averaged gradient) to estimate the error. On anisotropic meshes, such estimators are much
less developed. Furthermore, on these meshes the analysis is hindered by an apparent lack
of superconvergence. Nevertheless some initial promising attempts of ZZ estimators are
presented in Kunert [13]. There, the equivalence to the residual error estimator of [15] is
proven for specific meshes. Also in [13], Kunert derives and analyzes an Ly residual error
estimator for tetrahedral meshes that bounds the error (in the Ly norm) from above and
below. Additionally, the face residuals (i.e. the gradient jumps) alone suffice to define this
estimator, see Kunert and Verfiirth [15] for further details.

Dobrowolski et al. [9] also investigate the Poisson problem on triangular meshes. Ap-
plying the methodology of Bank and Weiser, they derive a global error estimator by
solving a global problem. The (global) error bound relies on a saturation assumption that
again requires a suitable anisotropic mesh. Note that no local error bound is obtained.

We summarize by noting that recent and ongoing research is ensuring that anisotropic
a posteriori error estimators are becoming increasingly well understood. As well as for
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Poisson’s equation discussed here it should also be noted that other problems are also
currently under investigation. These include singularly perturbed reaction—(convection)-
diffusion problems which lend themselves naturally to anisotropic boundary or interior
layers. A model equation —eAu+wu = f is investigated by Kunert [13, 15] on tetrahedral
meshes (see also Example 2 of the previous section). A residual error estimator is derived
that bounds the error (in the ¢ dependent energy norm) locally from below and globally
from above. Note that the upper error bound contains exactly the same matching function
mq(u — up,Tp) as in the Poisson case. Despite this recent progress however it is clear
that the incorporation of these, and possible future estimators, into practical adaptive
anisotropic strategies is still a significant challenge. Some of the issues associated with
this challenge are discussed in the remainder of this paper.

1.4 INTERPOLATION ERRORS AND ELEMENT SHAPE

Nedelec-Raviart-Thomas edge and face elements play an increasingly important role in
computational electromagnetism, incompressible flow problems, and other areas. This
section presents, as a somewhat unexpected application of edge elements, a new H'-inter-
polation error bound for first order tetrahedra. This estimate is in terms of the minimum
singular value of a particular rectangular matrix. The derivation (see [19]) is based on the
well known fact ([8]) that the standard Lagrange P'-interpolation (with operator IIp1) of
a scalar field v on a tetrahedral mesh M is equivalent to the edge element interpolation
.45 of the respective conservative field v = Vu. (Il 45 preserves edge circulations, so
that [ ;. (Heggev) - dl = [ 4. v - dl over each tetrahedral edge.)

1.4.1 The Mimimum Singular Value Condition for Tetrahedra

The shape of a tetrahedron can be characterized by six unit vectors ey, ..., e directed
along the edges (in either of two possible directions). The element ‘edge shape matrix’
E [19] is a 3 x 6 matrix whose columns are the (Cartesian) vectors e;. The ET-matrix
governs the transformation between the Cartesian and edge components of an arbitrary
vector £ in R3: edge = ET €.4rs, where €edge € RS and £, € R®.

A key role in our analysis is played by the singular value decomposition £ = PXQ7 of
the edge shape matrix. In particular, the minimum singular value' omin(E) = /\Iln/i(EET)
characterizes, algebraically, the level of linear independence of the unit edge vectors e;,
or, geometrically, their proximity to one plane. More precisely ([19]),

omin(F) = [€eagellre = min B &arellpe (1.2)
||§cart||— [[€cart]]=1
with minimization achieved when £, is the eigenvector £, corresponding to )\min(EET).
Note that owin(£) = 0 if and only if all six edge vectors lie in one plane (perpendicular to
min), 1.€. the tetrahedron is degenerate. Moreover, the following error bound ([19]) shows
that omin(£) may be considered as a governing factor for interpolation errors:

M~ ullfgy = IMegew = vl < Cl)- X RAoph(B(K)V:.  (13)

K,eM

"Which is obviously independent of the choice of the Cartesian system in R3.
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Here v = Vu is a (sufficiently smooth) conservative field, K; is a tetrahedral element,
h; = diam(K;), V; = meas(K;). This is a global estimate, but each term in the sum
represents the square of the element-wise interpolation error.

1.4.2  Links with Mazimum Angle, Krizek and Jamet Conditions

In the illustrative case of a triangular element with angles ¢, ¢, ¢3 the minimum singular
value of the 2 x 3 edge shape matrix
1 cos¢y —cos gy

L= 0 sing;  sing, (1.4)

can be explicitly evaluated via the trace of (FET)~!, which ultimately yields
1 2
g(sin2 b1 +sin® ¢y +sin*g3) < ol (E) < g(sin2 b1 +sin® ¢y +sin*p3) . (1.5)

This is equivalent to the maximum angle condition [17, 6] as, in (1.5), omin may only tend
to zero on a sequence of elements if one angle tends to 7 and the other two to zero.

Possibly the most common geometric characteristic of a tetrahedral element is the ratio
of radius r of the inscribed sphere to the maximum element edge length h. Tsukerman
[19] shows that the singular value criterion is less stringent than the r/h ratio.

Kiizek [12] introduced a sufficient convergence condition requiring that all dihedral
angles, as well as all face angles, be bounded away from 7. A rather simple lower bound of
Omin 10 terms of the dihedral and face angles can be given and will be presented elsewhere.
The minimum singular value and K#izek conditions are equivalent as asymptotic criteria
of convergence of piecewise-linear interpolation on a family of tetrahedral meshes.

Jamet [10] has obtained interpolation error bounds under quite general assumptions.
For tetrahedral elements, the governing factor cos# in Jamet’s estimate can be obtained
from the rightmost expression in (1.2) for o, by simply replacing the 2-norm in R® with
the oco-norm.

1.5 A CASE STUDY OF 3D ANISOTROPIC REFINEMENT

We conclude this paper with a simple example which demonstrates the practical use
of anisotropic adaptation using an hr-refinement scheme in which the nodes are moved
according to an edge-based error indicator and comparing against standard h-refinement
results. The test problem considered is the steady 3D hyperbolic equation a-Vu = 0, and
a standard SUPG finite element method [11] is used, based on an unstructured tetrahedral
mesh with linear basis functions ¢;(x) and test functions ¢;(x)¢; + 7a- V¢, defined at each
of the Np nodes x;. The parameter 7 is defined as an element quantity, 7% = ah™/|a]
for some measure of the element length A%, taken here to be the minimum element height,
and the resulting linear system is solved using the ILU preconditioned GMRES method.

In order to compare the two adaptive algorithms being considered, standard finite
element h-refinement is driven by solving a problem with a known solution and using
the L' norm of the exact error e(x) on each element. The total L' error, e, may then be
split into its contributions e from each of the Ny elements. To achieve a final L' error
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of e* the error in each cell is reduced to below e*/Ng using nested isotropic h-refinement
of an initial unstructured tetrahedral base mesh.

As well as using local mesh refinement, the hr-refinement algorithm makes use of a
simple node movement scheme designed to steer nodes towards regions of sharp variation
in the solution. This is motivated by recent work of Berzins, [7], in which the interpolation
error is estimated by assuming that the exact solution can be approximated in a locally
quadratic form on each tetrahedral element and then considering the difference between
this quadratic function and the linear finite element interpolant:

9 6\’ 6
/ e ) = gvk bl ((E ds) — dydy — dyds — dsdg + Z d?) (1.6)
K . =1

s=1

where V¥ is the volume of element K. Here, d, denotes the directed edge second derivative
for an edge s = s(x;,%;) that connects the nodes x; and x;. It is given by
dy = (Vu(x;) = Vu(x;)) - (xi = %) - L7? with Ly =[x —x;]] . (1.7)

A node movement scheme is then developed by using the edge second derivatives (1.7) as
weights in the following weighted average expression for the node position,

av Z] L2]|d5|X]

x;" = with 5 = 5(X;,X;) . 1.8
SRR (i ;) (1.8)

The nodal position is updated by x; — (1 —4;)x; + v:x*" where v; is a safety factor at
each node x; that prevents the mesh from becoming tangled. Several such iterations are
performed at each r-refinement stage (which is undertaken prior to h-refinement).

Further details of the test problem are shown in Figure 1.4 (a 2D form of the problem
is also included to aid comprehension). At the inflow boundary, where a-n < 0, the
imposed solution is defined to have a thin vertical layer across which u varies linearly
from 1 to 0. The solution within the domain is therefore defined by the convection of
this layer in the direction a, as illustrated. Here, a = (2,1,1) and the layer has thickness
0.025 on a unit cube domain.

u=0

Figure 1.4: Model steady solution of the 3D convection equation

The initial mesh is a uniform 11% discretisation of the unit cube, with each sub-cube
divided into six similar tetrahedra. Figure 1.5 compares the total error for the h- and hr-
refinement schemes. The hAr-refinement scheme significantly reduces the error on a given
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Figure 1.5: Errors on the adapted grid se- Figure 1.6: Zoom of the hr-refined tetrahe-
quences for h- and hr-refinement dra near the layer

grid, leading a similar level of error with approximately 20000 nodes to that requiring
over 100000 nodes using isotropic h-refinement. Figure 1.6 shows two tetrahedra from the
final hr-refined mesh in the region (z,y,z) € [0.3,0.4] x [0.7,0.8] x [0.1,0.2]. It is seen
that the upper tetrahedron is aligned with the layer, although large internal angles have
been produced. In contrast, the lower tetrahedron is less well-aligned.

1.6 DISCUSSION

This paper reflects the main topics presented at the Minisymposium on Anisotropic Finite
Elements at the 1999 MAFELAP conference. Whilst it is impossible to cover all aspects
relating to element shape and anisotropy in such a brief exposition, we have attempted to
present an overview of what we believe to be some of the most important issues: a priori
and a posteriori error estimation, mesh quality, and mesh adaptivity.
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