| Instructional resourcesIntegrating Elementary-Level Mathematics
 Curricula with Expansively-Framed Computer
 Science Instruction |
| ---: | ---: |

2-2023

Cache Code Math: Fractions, Functions, \& For-Loops Preparatory Materials

Aubrey Rogowski
Utah State University, aubrey.rogowski@usu.edu
Umar Shehzad
Utah State University, agha.umar.s@gmail.com
Jody Clarke-Midura
Utah State University, jody.clarke@usu.edu
Jessica F. Shumway
Utah State University, jessica.shumway@usu.edu
Kimberly Beck
Utah State University, kimberly.beck@usu.edu
Mimi Recker
Utah State University, mimi.recker@usu.edu
Follow this and additional works at: https://digitalcommons.usu.edu/eled_support_instructional

Recommended Citation

Rogowski, Aubrey; Shehzad, Umar; Clarke-Midura, Jody; Shumway, Jessica F.; Beck, Kimberly; and Recker, Mimi, "Cache Code Math: Fractions, Functions, \& For-Loops Preparatory Materials" (2023). Instructional resources. Paper 8.
https://digitalcommons.usu.edu/eled_support_instructional/8

This Curriculum is brought to you for free and open access by the Integrating Elementary-Level Mathematics Curricula with Expansively-Framed Computer Science Instruction at DigitalCommons@USU. It has been accepted for inclusion in Instructional resources by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Stanford

Cache Code Math: Fractions, Functions, \& For-Loops Preparatory Activities

Aubrey Rogowski
Umar Shehzad
Jody Clarke-Midura
Jessica Shumway
Kimberly Beck
Mimi Recker
Utah State University
Instructional Resource
February 2023

Abstract

These instructional guides are used in the 5th-grade computer labs in conjunction with JavaScript/CodeHS. Computer Lab Specialists are provided with step-by-step instructions to review with students how to use functions and for-loops. These lessons support learning the following CS ideas: repeat/for, functions, algorithmic thinking, and abstraction. These preparatory activities are meant to be delivered before the "Cache Code Math: Fractions, Functions, \& For-Loops."

Acknowledgment

This work was supported by National Science Foundation Grant no. 2031382. Opinions, findings, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the funding agency. We thank the participating teachers and students.

Karel Runs Laps

CACHE Lesson Overview

This optional lesson supports students learning about functions and for-loops within a codeHS/javascript program by writing a program for Karel to run laps around the world. This lesson supports learning the following CS ideas: repeat/for-loops, functions, algorithmic thinking, and abstraction.

Learning Objective

I can use functions and for-loops to have Karel run laps.

Timing \& Sequence

Teach before Karel Cleans Up \& Karel at the Dog Park
20 minutes total ($1 / 2$ of class time)

- 2 minutes- Sign into computer/codeHS
- 8-10 minutes- Teacher demonstration with students watching or "follow the leader" with teacher demonstrating and students following along in codeHS.
- 10 minutes- Students' coding task

Resources

- For-loops poster

Karel Runs Laps

CodeHS Sandbox Links

Teacher Demo: https://codehs.com/sandbox/id/karel-runs-laps-teacher-demonstration-zyl0Tu
Student Follow the Leader: https://codehs.com/sandbox/id/karel-runs-laps-follow-the-leader-H3EvVK
Teacher Demo Solution: https://codehs.com/sandbox/id/karel-runs-laps-teacher-demo-solution-Bc4lxD
Student Task: https://codehs.com/sandbox/id/karel-runs-laps-student-task-DoWtfF

CACHE Teacher Demonstration

CODE
MATH
We want to see how fast Karel can run 10 laps around the world with our code on "fast." We can use a for-loop to help us. A for-loop does a repeated sequence in our code.

First, we create a function for Karel to run one length (side) of the world. The world is 10×10 with Karel starting in row 1 , avenue $1(1,1)$. Then we will add our for-loop within our sideLength function. Remember, Karel only needs to move nine more spaces to get to the end of the row because Karel is already on the first space $(1,1)$.


```
12- function sideLength(){
13. for (var i = 0; i < 9; i++) {
```


Karel Runs Laps

Next, we create a for-loop for Karel to run 10 laps around the world using the "sideLength" function we created. We will put a 10 in the "i < COUNT" (index or loop control variable) to tell Karel to repeat the "sideLength(), turnLeft()" sequence 10 times.

How many times do we need to place our "sideLength(), turnLeft()" sequence within our for-loop? (Students' response: Four times!) Karel's world is a square which means there are four equal sides. Karel will run the length (side) and then turn left to run the next side of the square. There are four sides so we will do this four times.

Let's see how fast Karel runs ten laps. (Use a timer on your phone or computer). It took Karel about 25 seconds to run 10 laps on fast speed. Good job Karel!

Karel Runs Laps

```
// This function will have Karel run 10 laps.
function start(){
    for (var i = 0; i < 10; i++) {
        sideLength();
        turnLeft();
        sideLength();
        turnLeft();
        sideLength();
        turnLeft();
        sideLength();
        turnLeft();
    }
}
// This function will have Karel run one side of the world.
function sideLength(){
    for (var i = 0; i < 9; i++) {
    move();
    }
}
//Challenge:
//Karel ran 10 laps in 25 seconds!
//How many laps can Karel run in 2 minutes at fast speed?
```


CACHE

 CODE MATH
Student Task Option A

How many laps can you get Karel to run on fast speed in 2 minutes?
(Students will change the index value to change the number of laps.)

Student Task Option B (Advanced)

Can you find another place in our code to use a for-loop to make our code even more efficient?
(Students can have Karel run one lap by putting the sideLength() and turnLeft() commands within a for-loop and renaming the variable i to "side" in the nested for-loop.)

```
function start()
    for ( var i = 0); 1 < 10); (1++)
        for (var side- 0); side < 4); side? +) (
            sideLength();
            turnLeft();
```


Tennis Ball Pick Up

CACHE Lesson Overview

CODE
MATH

This optional lesson supports students learning about functions and for-loops within a codeHS/javascript program by writing a program for Karel to pick up tennis balls. This lesson supports learning the following CS ideas: repeat/for, functions, algorithmic thinking, and abstraction.

Learning Objective

I can use functions and for-loops to help Karel pick up tennis balls.

Timing \& Sequence

Teach before the Karel Cleans Up \& Karel at the Dog Park lessons

20 minutes total ($1 / 2$ of class time)

- 2 minutes- Sign into computer/codeHS
- 8-10 minutes- Teacher demonstration with students watching. Students may follow along with "Follow the Leader" sandbox.
- 10 minutes- Students' coding task

Resources

- For-loops poster

Tennis Ball Pick Up

CodeHS Sandbox Links

Teacher Demo: https://codehs.com/sandbox/id/tennis-ball-pick-up-teacher-demo-fUbZLP
Student Follow the Leader: https://codehs.com/sandbox/id/tennis-ball-pick-up-follow-the-leader-WiqTOd
Student Task: https://codehs.com/sandbox/id/tennis-ball-pick-up-student-task-SHtolc
Student Task Solution: https://codehs.com/sandbox/id/tennis-ball-pick-up-student-solution-eUjtxf

CACHE
CODE
MATH

Teacher Demonstration

There are two stacks of 75 tennis balls in front of Karel. We will write code that directs Karel to move to the stack, pick up all of the tennis balls, and then move to the next stack. We will define a function named "pickUp()" and use a for-loop.

Starting World

Ending World

| \cdot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot | \cdot | | \cdot |

First, let's define a function named "pickUp"


```
1 // Write your code here
2. function start(){
3
4}
5- function pickUp(){
6
7 }
```


Tennis Ball Pick Up

Next, we want Karel to pick up 75 tennis balls. We can use a for-loop to have Karel repeat the takeBall command 75 times. We will change the " i < COUNT" to " $\mathrm{i}<75$ " to do this.

Lastly, we can call our function and add the move commands to our start function to help Karel pick up tennis balls! We will first add a comment telling us what our start function does. Then, we will add a move command to get Karel to the first stack of tennis balls, pick them up, and move to the next stack to pick up the tennis balls.

```
// Write your code here
function start() {
    // Karel picks up two piles of }75\mathrm{ tennis balls.
    move();
    pickUp();
    move();
    pickUp();
function pickUp()
    for (var i = 0); i< < 75); i++)
        takeBall();
    }
}
```

```
// Write your code here
function start(){
    // Karel picks up two piles of }75\mathrm{ tennis balls.
    move();
    pickUp();
    move();
    pickUp();
}
function pickUp(){
    for (var i = 0; i < 75; i++) {
        takeBall();
    }
}
```


Tennis Ball Pick Up

CACHE
 CODE
 MATH

Student Task

There are three stacks of 50 tennis balls in front of Karel. Have Karel move to the stack, pick up all of the tennis balls, and then move to the next stack. Repeat until all the balls are picked up. Define a function named "pickUp()" and use a for-loop!

Starting World

| \cdot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| | 5 | \cdot | 50 | \cdot | 50 | \cdot | \cdot | \cdot | \cdot |

Solution

```
// Write your code here
```

// Write your code here
function start()f
function start()f
// Karel picks up three piles of }50\mathrm{ tennis balls.
// Karel picks up three piles of }50\mathrm{ tennis balls.
move ();
move ();
pickUp();
pickUp();
move();
move();
move();
move();
pickUp();
pickUp();
move();
move();
move();
move();
pickUp();
pickUp();
function pickUp()
function pickUp()
for(var i = 0); i< < 50; i++) i
for(var i = 0); i< < 50; i++) i
takeBall();
takeBall();
}

```
        }
```


Ending World


```
// Write your code here
function start(){
    // Karel picks up three piles of 50 tennis balls.
    move();
    pickUp();
    move();
    move();
    pickUp();
    move();
    move();
    pickUp();
}
function pickUp(){
    for(var i = 0; i < 50; i++){
        takeBall();
        }
}
```

